WO2020077710A1 - 一种聚合物-金属螯合物阴极界面材料及其应用 - Google Patents

一种聚合物-金属螯合物阴极界面材料及其应用 Download PDF

Info

Publication number
WO2020077710A1
WO2020077710A1 PCT/CN2018/114708 CN2018114708W WO2020077710A1 WO 2020077710 A1 WO2020077710 A1 WO 2020077710A1 CN 2018114708 W CN2018114708 W CN 2018114708W WO 2020077710 A1 WO2020077710 A1 WO 2020077710A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
cathode interface
interface material
cathode
amino group
Prior art date
Application number
PCT/CN2018/114708
Other languages
English (en)
French (fr)
Inventor
周印华
覃飞
王文
孙露露
蒋友宇
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2020077710A1 publication Critical patent/WO2020077710A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention belongs to the technical field of photoelectric materials, and more specifically, relates to a novel polymer-metal chelate cathode interface material with universality.
  • solar cells can directly convert solar energy into electrical energy, which can effectively alleviate problems such as energy crisis and environmental pollution; light-emitting diodes convert electrical energy into light energy, and have rich applications in the field of lighting and display.
  • Organic solar cells have huge development prospects due to their advantages of light weight, bendability, simple preparation process and roll-to-roll production.
  • quantum dot light-emitting diodes have attracted wide attention due to their advantages of adjustable spectrum and high luminous efficiency.
  • the cathode interface layer plays an irreplaceable role.
  • the cathode interface layer can assist electron conduction, modify the cathode electrode, and improve the efficiency of the device.
  • Common cathode interface layers include polymer materials, metal oxides and other materials. But organic polymer materials have very little tolerance for thickness due to their poor conductivity; metal oxides have a high work function and a single, and the preparation process requires high temperature treatment; for non-fullerene systems, the amino group in the polymer molecule can Reducing the active layer results in poor performance of the fabricated device; in addition, different cathode interface layers also have special requirements for the interface environment.
  • the present invention provides a polymer-metal chelate cathode interface material and its application, which obtains a polymer by coordinating an amino group in a polymer molecule with a metal ion- Metal chelate materials, metal ions passivate the reducing ability of the amino group in the polymer, and also increase the conductivity of the polymer itself.
  • this material as a cathode interface material can be well applied to different electrode interfaces and different Device structure, thereby solving the technical problems that the existing polymer cathode interface material has poor conductivity and poor reactivity resulting in poor device performance, the metal oxide cathode interface material has a high work function, and the prior art cathode interface material has a narrow application range.
  • a cathode interface material which is a chelate compound of a polymer molecule and a metal ion, the polymer molecule contains an amino group; and the amino group and the metal ion A coordination reaction occurs to obtain the cathode interface material.
  • the polymer molecule is one or more of PEI, PEIE, PAAm, PAM and PFN.
  • the metal ion is one or more of Zn, Sn and Ti.
  • the preparation method of the cathode interface material includes the following steps: mixing a polymer solution with a metal organic salt, obtaining a precursor solution under stirring conditions, coating the precursor solution on the cathode surface of the device, and drying to obtain The cathode interface material; wherein, the mass ratio of the polymer in the polymer solution to the metal organic salt is 1: (5-20).
  • the mass fraction of the polymer in the polymer solution is 0.5% to 1%.
  • the solvent in the polymer solution is 2-methoxyethanol.
  • a solar cell including the cathode interface material.
  • a light emitting diode including the cathode interface material.
  • the polymer-metal chelate cathode interface material provided by the present invention is a chelate compound obtained by coordination reaction between a metal ion and an amino group of a polymer, and the nitrogen atom of the amino group has a lone pair of electrons. After the amino group is coordinated with the metal ion, the metal ion occupies the pair of electrons, which deactivates the reducing ability of the amino group in the polymer. The amino group in the polymer is no longer reactive, and the correspondingly prepared device has better performance.
  • metal ions coordinate with the amino group of the polymer, which also increases the conductivity of the polymer itself.
  • the preparation process of the polymer-metal chelate cathode interface material in the present invention is simple, the work function is low, and the electrical conductivity is high.
  • the polymer-metal chelate cathode interface layer in the present invention has a wide range of applications and can be used for different base electrodes and different active layer materials.
  • FIG. 1 is a schematic diagram of a polymer-metal chelate compound of the present invention
  • FIG. 2 (a) is a schematic diagram of the organic solar cell structure of the present invention, and FIG. 2 (b) current density-voltage (J-V) curve of the corresponding device structure;
  • FIG. 3 (a) is a schematic diagram of the light-emitting diode structure of the present invention, and FIG. 3 (b) the EQE curve of the corresponding device structure;
  • FIG. 4 (a) is the structure of the organic solar cell of Comparative Example 1
  • FIG. 4 (b) is the current density-voltage graph of the two organic solar cells.
  • the present invention provides a polymer-metal chelate cathode interface material, which is a chelate compound obtained by a coordination reaction between a polymer molecule and a metal ion.
  • the schematic diagram is shown in FIG. 1.
  • the polymer molecule is an interface modification material containing an amino group; and the amino group undergoes a coordination reaction with the metal ion to obtain the polymer-metal chelate cathode interface material.
  • the novel polymer-metal chelate cathode interface material provided by the present invention is composed of a polymer material with an amino group and metal ions through coordination.
  • the cathode interface material in the present invention passivates the reducing ability of the amino group in the polymer through metal ions, and also increases the conductivity of the polymer itself, and can be well applied to different electrode interfaces and different device structures.
  • the polymer molecule described in the present invention is an interface modification material containing an amino group.
  • the polymer is PEI (polyetherimide), PEIE (polyethoxyethyleneimine), PAAm (poly Acrylamide), PAM (polyacrylamine) and PFN (poly ((9,9-bis (30- (N, N-dimethylamino) propyl) -2,7-fiuorene) -alt-2,7- (9, 9-dioctylyluorene)))).
  • the metal ion described in the present invention is used to passivate the reactivity of the amino group in the polymer, and any metal ion capable of coordinating and chelating with the amino group in the polymer molecule described in the present invention may be used.
  • the metal ion is one or more of Zn, Sn, and Ti.
  • the method for preparing a cathode interface material of the present invention includes the following steps: mixing a polymer solution with a metal organic salt, obtaining a precursor solution under stirring conditions, coating the precursor solution on the surface of the device cathode, and drying The cathode interface material is obtained; wherein, the mass ratio of the polymer in the polymer solution to the metal organic salt is 1: (5-20).
  • Cathode interface materials with different work functions can be obtained by adjusting the mass ratio of polymer to metal organic salt, so that the work function range is larger than that of a single metal oxide cathode interface material, and the application range is wider.
  • the mass fraction of the polymer in the polymer solution is 0.5% to 1%.
  • the polymer mass fraction affects the film formation quality and film thickness.
  • the solvent in the polymer solution is 2-methoxyethanol.
  • the role of the solvent is to dissolve the polymer, other solvents are also possible.
  • the invention also provides the application of the cathode interface material in solar cells and light-emitting diodes.
  • the present invention provides a solar cell including the cathode interface material described above.
  • the solar cell is a trans organic solar cell, including a substrate, a cathode, a cathode interface layer, a light absorption layer, an anode interface layer, and an anode.
  • the cathode interface layer is the polymer-metal chelate compound of the present invention.
  • the cathode material is a common metal oxide electrode, metal electrode, or polymer conductor electrode.
  • the light absorbing layer is a non-fullerene or fullerene active layer.
  • the anode interface layer of the trans organic solar cell is an inorganic semiconductor or an organic conjugated polymer.
  • the anode material of the trans organic solar cell is a silver or gold electrode.
  • the present invention provides a light emitting diode including the cathode interface material described above.
  • the light emitting diode is a quantum dot light emitting diode. It specifically includes a substrate, a cathode, a cathode interface layer, a light emitting layer, an anode interface layer, and an anode.
  • the cathode interface layer is composed of the polymer-metal chelate compound of the present invention.
  • the substrate, cathode, light-emitting layer, anode interface layer and anode are all commonly used materials in the prior art light-emitting diodes.
  • the preparation method of the organic solar cell using metal oxide as the electrode according to the present invention is as follows:
  • the resulting cathode interface layer is called PEIZ; spin-coat PBDB-T-2F: IT on the above interface layer -4F solution (total concentration 20mg / ml, mass ratio 1: 1), rotation speed 2000 rpm / min, time 60 seconds; then annealing at 100 ° C for 10 minutes; finally move the device to the evaporation chamber, under vacuum After the pressure is less than 5 * 10 -7 Torr, 10 nm of MoO 3 and 100 nm of silver are thermally evaporated.
  • the preparation method of the organic solar cell using conductive polymers as electrodes according to the present invention is as follows:
  • the preparation method of the organic solar cell using metal nanowires as electrodes according to the present invention is as follows:
  • the preparation method of the light-emitting diode according to the present invention is as follows:
  • the resulting cathode interface layer is called PEIZ; spin the CdSe solution on the interface layer and rotate at 2000 rpm / Min, time 60 seconds; then annealing at 100 ° C for 10 minutes; finally move the device into the evaporation chamber, thermally evaporate 10nm CBP, 10nm MoO 3 and 100nm silver after the vacuum pressure is less than 5 * 10-7 Torr.
  • the external quantum efficiency of the light-emitting diode prepared by the method of this example is shown in Fig. 3 (b).
  • the external quantum efficiency of the light emitting diode reaches 9.8%.
  • cathode interface layer precursor solution prepare two cathode interface layer PEI solutions and PEI-metal ion chelating polymer precursor solution. Prepare a 0.1% mass fraction of PEI solution, the solvent is 2-methoxyethanol; configure a mass fraction of 0.5% PEI solution, the solvent is 2-methoxyethanol, and then add zinc acetate to make the polymer quality and zinc acetate The quality is 1:10, stirring for 4h until clear.
  • the resulting cathode interface layer is called PEIZ;
  • spin-coat PBDB-T-2F: IT-4F solution total concentration 20mg / ml, mass ratio 1: 1), rotation speed 2000 rpm / min, time 60 seconds; then annealing at 100 °C for 10 Minutes; finally move the device to the evaporation chamber, thermal evaporation of 10nm MoO 3 and 100nm silver after the vacuum pressure is less than 5 * 10 -7 Torr.
  • the current density-voltage of the two organic solar cells prepared by the method of this example is shown in FIG. 4 (b).
  • the open circuit voltage Voc of the cell is 0.76V and the current density Jsc is 18.92mA 2.
  • the open circuit voltage Voc of the battery is 0.84 V
  • the current density Jsc is 20.04 mA cm-2
  • the fill factor FF is 76.1%
  • the efficiency PCE is 12.81%. It can be seen from this that the present invention introduces metal ions into PEI, passivates the reaction between PEI and the active layer, and the battery efficiency is almost tripled.
  • the resulting cathode interface layer is called PEIZ; spin-coat PBDB-T-2F: IT on the above interface layer -4F solution (total concentration 20mg / ml, mass ratio 1: 1), rotation speed 2000 rpm / min, time 60 seconds; then annealing at 100 ° C for 10 minutes; finally move the device to the evaporation chamber, under vacuum After the pressure is less than 5 * 10 -7 Torr, 10 nm of MoO 3 and 100 nm of silver are thermally evaporated.
  • the resulting cathode interface layer is called PEIZ; spin-coat PBDB-T-2F: IT on the above interface layer -4F solution (total concentration 20mg / ml, mass ratio 1: 1), rotation speed 2000 rpm / min, time 60 seconds; then annealing at 100 ° C for 10 minutes; finally move the device to the evaporation chamber, under vacuum After the pressure is less than 5 * 10 -7 Torr, 10 nm of MoO 3 and 100 nm of silver are thermally evaporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于光电材料技术领域,更具体地,涉及一种新型的具有普适性的聚合物-金属螯合物阴极界面材料。其为聚合物分子与金属离子的螯合物,所述聚合物分子为含有氨基的界面修饰材料;且所述氨基与所述金属离子发生配位反应,得到所述聚合物-金属螯合物阴极界面材料。其通过将聚合物分子中的氨基与金属离子发生配位获得聚合物-金属螯合物材料,金属离子钝化了聚合物中氨基的还原能力,也增加了聚合物本身的导电能力,将这种材料用作阴极界面材料,能够很好的适用于不同电极界面以及不同的器件结构。

Description

一种聚合物-金属螯合物阴极界面材料及其应用 【技术领域】
本发明属于光电材料技术领域,更具体地,涉及一种新型的具有普适性的聚合物-金属螯合物阴极界面材料。
【背景技术】
随着技术的革新与发展,光电器件渐渐成为了研究热点。其中太阳能电池能够将直接将太阳能转换为电能,能够有效的缓解能源危机、环境污染等问题;发光二极管将电能转换为光能,在发光、显示领域有着丰富的应用。有机太阳能电池因其质量轻、可弯折、制备工艺简单可卷对卷生产等优势具备巨大的发展前景。同时量子点发光二极管因其光谱可调、发光效率高等优势引起了人们广泛的关注。
常见的光电器件中,阴极界面层起着不可替代的作用。阴极界面层能够辅助电子传导,修饰阴极电极,提高器件的效率。常见的阴极界面层有聚合物材料、金属氧化物等材料。但是有机聚合物材料因其导电性差对厚度的容忍度很小;金属氧化物的功函数偏高且单一,而且其制备过程需要高温处理;对于非富勒烯体系,聚合物分子中的氨基能够还原活性层,导致制备的器件性能很差;另外不同阴极界面层对于界面环境等也有特殊要求。这些缺点大大限制了这些材料在光电器件中的应用,每一种材料其应用范围比较窄。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种聚合物-金属螯合物阴极界面材料及其应用,其通过将聚合物分子中的氨基与金属离子发生配位获得聚合物-金属螯合物材料,金属离子钝化了聚合物中氨基的还原能力,也增加了聚合物本身的导电能力,将这种材料用作阴极界面材料, 能够很好的适用于不同电极界面以及不同的器件结构,由此解决现有的聚合物阴极界面材料导电性差、反应活性导致器件性能差,金属氧化物阴极界面材料功函数偏高,现有技术的阴极界面材料适用范围窄的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种阴极界面材料,其为聚合物分子与金属离子的螯合物,所述聚合物分子含有氨基;且所述氨基与所述金属离子发生配位反应,得到所述阴极界面材料。
优选地,所述聚合物分子为PEI、PEIE、PAAm、PAM和PFN中的一种或多种。
优选地,所述金属离子为Zn、Sn和Ti中的一种或多种。
优选地,所述的阴极界面材料,其制备方法包含如下步骤:将聚合物溶液与金属有机盐混合,搅拌条件下获得前驱液,将所述前驱液涂覆在器件阴极表面,干燥后获得所述阴极界面材料;其中,所述聚合物溶液中的聚合物与所述金属有机盐的质量比为1:(5~20)。
优选地,所述聚合物溶液中聚合物的质量分数为0.5%~1%。
优选地,所述聚合物溶液中的溶剂为2-甲氧基乙醇。
按照本发明的另一个方面,提供了一种太阳能电池,包括所述的阴极界面材料。
按照本发明的另一个方面,提供了一种发光二极管,包括所述的阴极界面材料。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)本发明提供的聚合物-金属螯合物阴极界面材料,其为金属离子与聚合物的氨基发生配位反应得到的螯合物,氨基的氮原子上面有个孤对电子,本发明将该氨基与金属离子配位后,金属离子占用了这对电子,钝化了聚合物中氨基的还原能力,聚合物中的氨基不再具有反应性,相应制备得到的器件性能更佳。
(2)本发明提供的聚合物-金属螯合物阴极界面材料,金属离子与聚合物的氨基发生配位,也增加了聚合物本身的导电能力。
(3)本发明提供的聚合物-金属螯合物阴极界面材料,金属离子与聚合物的氨基发生配位,通过调控聚合物与金属的质量比,可以调控获得的阴极界面材料的功函数,相对于现有技术单一聚合物界面材料或单一金属氧化物界面材料,其功函数范围可调,使得采用本发明的螯合物阴极界面材料可适用于不同功函数要求的器件的制备。
(4)本发明中的聚合物-金属螯合物阴极界面材料制备工艺简单,功函数低,电导率高。
(5)本发明中的聚合物-金属螯合物阴极界面层适用范围广,可用于不同的基底电极以及不同的活性层材料。
【附图说明】
图1是本发明的一种聚合物-金属螯合物的示意图;
图2(a)本发明的有机太阳能电池结构一种示意图,图2(b)相应器件结构的电流密度-电压(J-V)曲线;
图3(a)本发明的发光二极管结构一种示意图,图3(b)相应器件结构的EQE曲线;
图4(a)为对比例1有机太阳能电池的结构,图4(b)为两种有机太阳能电池的电流密度-电压图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种聚合物-金属螯合物阴极界面材料,其为聚合物分子 与金属离子发生配位反应获得的螯合物,其示意图如图1所示。所述聚合物分子为含有氨基的界面修饰材料;且所述氨基与所述金属离子发生配位反应,得到所述聚合物-金属螯合物阴极界面材料。本发明提供的这种新型的聚合物-金属螯合物阴极界面材料由带氨基的聚合物材料和金属离子通过配位作用构成。本发明中的阴极界面材料,通过金属离子钝化了聚合物中氨基的还原能力,也增加了聚合物本身的导电能力,能够很好的适用于不同电极界面以及不同的器件结构。
现有技术的聚合物阴极界面材料,聚合物中氨基的氮原子上面有个孤对电子,这对孤对电子很容易还原其他物质,比如还原非富勒烯活性层,导致制备得到的器件性能很差,本发明将该氨基与金属离子配位后,金属离子占用了这对电子,聚合物中的氨基不再具有反应性,相应制备得到的器件性能更好。
本发明所述的聚合物分子为含有氨基的界面修饰材料,在一些实施例中,所述聚合物为PEI(聚醚酰亚胺)、PEIE(聚乙氧基乙烯亚胺)、PAAm(聚丙烯酰胺)、PAM(聚丙烯胺)和PFN(poly[(9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fiuorene)-alt-2,7-(9,9-dioct ylfiuorene)])中的一种或多种。
本发明所述的金属离子用于钝化聚合物中氨基的反应活性,能够与本发明所述的聚合物分子中的氨基发生配位螯合的金属离子都可以。在一些实施例中,所述金属离子为Zn、Sn和Ti中的一种或多种。
在一些实施例中,本发明的阴极界面材料的制备方法包含如下步骤:将聚合物溶液与金属有机盐混合,搅拌条件下获得前驱液,将所述前驱液涂覆在器件阴极表面,干燥后获得所述阴极界面材料;其中,所述聚合物溶液中的聚合物与所述金属有机盐的质量比为1:(5~20)。通过调节聚合物与金属有机盐的质量比可以获得不同功函数的阴极界面材料,使得其功函数范围较单一金属氧化物阴极界面材料大,适用范围更广。
一些实施例中,所述聚合物溶液中聚合物的质量分数为0.5%~1%。聚合物质量分数大小影响成膜质量以及薄膜厚度。
一些实施例中,聚合物溶液中的溶剂为2-甲氧基乙醇。溶剂的作用在于将聚合物溶解,其他溶剂也可。
本发明还提供了该阴极界面材料在太阳能电池、发光二极管中的应用。
本发明提供了一种太阳能电池,其包括上面所述的阴极界面材料。
一些实施例中,该太阳能电池为反式有机太阳能电池,包括衬底、阴极、阴极界面层、光吸收层、阳极界面层和阳极。其中阴极界面层为本发明的聚合物-金属螯合物。
一些实施例中,阴极材料为常见的金属氧化物电极、金属电极或聚合物导体电极。
一些优选实施例中,光吸收层为非富勒烯或者富勒烯活性层。
一些优选实施例中,该反式有机太阳能电池的阳极界面层为无机半导体或有机共轭聚合物。
一些优选实施例中,该反式有机太阳能电池的阳极材料为银或金电极。
本发明提供了一种发光二极管,其包括上面所述的阴极界面材料。
一些实施例中,该发光二极管为量子点发光二极管。其具体包括衬底、阴极、阴极界面层、发光层、阳极界面层和阳极。该量子点发光二极管中,阴极界面层由本发明的聚合物-金属螯合物构成。其衬底、阴极、发光层、阳极界面层和阳极均为现有技术发光二极管中常用的材料。
以下为实施例:
实施例1
本发明所述的以金属氧化物为电极的有机太阳能电池制备方法如下:
(1)阴极界面层前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清;图1是本实施例的聚合物-金属螯合物一种示意 图,其中氨基与锌离子发生配位。
(2)有机太阳能电池的制备:有机太阳能电池的结构如图2(a)。具体制备过程为,将刻蚀好的ITO导电玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的ITO上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
利用本实例方法制备的有机太阳能电池的电流密度-电压如图2(b),Voltage代表电压,current density代表电流密度,开路电压V oc=0.84V,电流密度J sc=20.04mA cm -2,填充因子FF=76.1%,效率PCE=12.81%。
实施例2
本发明所述的以导电高分子为电极的有机太阳能电池制备方法如下:
(1)阴极界面层前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清;
(2)有机太阳能电池的制备:将大小为2.5*2.5cm的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃上旋涂一层高导电的PEDOT:PSS作为电极,随后在PEDOT:PSS电极上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
实施例3
本发明所述的以金属纳米线为电极的有机太阳能电池制备方法如下:
(1)阴极界面层前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清;
(2)有机太阳能电池的制备:将大小为2.5*2.5cm的玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的玻璃上旋涂一层银纳米线作为电极,随后在银纳米线的电极上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
实施例4
本发明所述的发光二极管的制备方法如下:
(1)阴极界面层前驱液的准备:先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清;
(2)有机太阳能电池的制备:发光二极管的结构如图3(a)将刻蚀好的ITO导电玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的ITO上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂CdSe溶液,转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的CBP,10nm的MoO 3和100nm的银。
利用本实例方法制备的发光二极管的外量子效率如图3(b)。发光二极管外量子效率达到9.8%。
对比例1
1)阴极界面层前驱液的准备:准备两种阴极界面层PEI溶液和PEI-金属离子螯合聚合物前驱液。配制0.1%质量分数的PEI溶液,溶剂为2-甲氧基乙醇;配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清。
2)有机太阳能电池的制备:有机太阳能电池的结构如图4(a)。具体制备过程为,将刻蚀好的ITO导电玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的ITO上分别旋涂PEI溶液或者聚合物金属离子螯合物前驱液。PEI溶液转速为5000转/分钟,旋完100℃下加热10分钟;聚合物金属离子螯合物前驱液转速3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
利用本实例方法制备的两种有机太阳能电池的电流密度-电压如图4(b),单独聚合物PEI作为阴极界面层时,电池的开路电压Voc=0.76V,电流密度Jsc=18.92mA cm-2,填充因子FF=30.1%,效率PCE=4.31%。
本发明的聚合物金属螯合物作为界面层时,电池的开路电压Voc=0.84V,电流密度Jsc=20.04mA cm-2,填充因子FF=76.1%,效率PCE=12.81%。由此可见,本发明将金属离子引入PEI,钝化了PEI与活性层之间的反应,电池效率几乎提高了3倍。
实施例5
(1)阴极界面层前驱液的准备(聚丙烯胺PAM作为聚合物):先配置质量分数为0.5%的聚丙烯胺溶液,溶剂为2-甲氧基乙醇,然后加入醋酸锌,使聚合物的质量和醋酸锌的质量为1:10,搅拌4h至澄清;
(2)有机太阳能电池的制备:有机太阳能电池的结构如图2(a)。具 体制备过程为,将刻蚀好的ITO导电玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的ITO上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
实施例6
(1)阴极界面层前驱液的准备(锡作为金属离子):先配置质量分数为0.5%的PEI溶液,溶剂为2-甲氧基乙醇,然后加入氯化锡,使聚合物的质量和醋酸锡的质量为1:10,搅拌4h至澄清;
(2)有机太阳能电池的制备:有机太阳能电池的结构如图2(a)。具体制备过程为,将刻蚀好的ITO导电玻璃依次用去离子水(洗洁精)、丙酮及异丙醇超声清洗15分钟。在洗净的ITO上旋涂阴极界面层前驱液,3000转/分钟,然后150℃下加热10分钟,所得的阴极界面层称为PEIZ;在上述界面层上面旋涂PBDB-T-2F:IT-4F溶液(总浓度为20㎎/ml,质量比为1:1),转速为2000转/分钟,时间60秒;然后100℃退火10分钟;最后把器件移到蒸镀舱内,在真空压力小于5*10 -7Torr后热蒸发10nm的MoO 3和100nm的银。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种阴极界面材料,其特征在于,其为聚合物分子与金属离子的螯合物,所述聚合物分子含有氨基;且所述氨基与所述金属离子发生配位反应,得到所述阴极界面材料。
  2. 如权利要求1所述的阴极界面材料,其特征在于,所述聚合物分子为PEI、PEIE、PAAm、PAM和PFN中的一种或多种。
  3. 如权利要求1所述的阴极界面材料,其特征在于,所述金属离子为Zn、Sn和Ti中的一种或多种。
  4. 如权利要求1所述的阴极界面材料,其特征在于,其制备方法包含如下步骤:将聚合物溶液与金属有机盐混合,搅拌条件下获得前驱液,将所述前驱液涂覆在器件阴极表面,干燥后获得所述阴极界面材料;其中,所述聚合物溶液中的聚合物与所述金属有机盐的质量比为1:(5~20)。
  5. 如权利要求4所述的阴极界面材料,其特征在于,所述聚合物溶液中聚合物的质量分数为0.5%~1%。
  6. 如权利要求4所述的阴极界面材料,其特征在于,所述聚合物溶液中的溶剂为2-甲氧基乙醇。
  7. 一种太阳能电池,其特征在于,包括如权利要求1至6任一项所述的阴极界面材料。
  8. 一种发光二极管,其特征在于,包括如权利要求1至6任一项所述的阴极界面材料。
PCT/CN2018/114708 2018-10-19 2018-11-09 一种聚合物-金属螯合物阴极界面材料及其应用 WO2020077710A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811222328.2 2018-10-19
CN201811222328.2A CN111081885A (zh) 2018-10-19 2018-10-19 一种聚合物-金属螯合物阴极界面材料及其应用

Publications (1)

Publication Number Publication Date
WO2020077710A1 true WO2020077710A1 (zh) 2020-04-23

Family

ID=70284467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114708 WO2020077710A1 (zh) 2018-10-19 2018-11-09 一种聚合物-金属螯合物阴极界面材料及其应用

Country Status (2)

Country Link
CN (1) CN111081885A (zh)
WO (1) WO2020077710A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106688B (zh) * 2021-12-22 2022-06-17 华中科技大学 防静电涂层材料的配置方法、防静电涂层及其形成方法
CN114512615A (zh) * 2021-12-29 2022-05-17 电子科技大学 基于有机-金属离子螯合电子传输层的有机光电探测器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291593A (ja) * 2000-04-10 2001-10-19 Mitsubishi Chemicals Corp 有機電界発光素子
CN104638109A (zh) * 2015-01-30 2015-05-20 华南理工大学 一种有机太阳能电池的阴极界面材料及其制备方法
US20150179965A1 (en) * 2013-12-24 2015-06-25 Gwangju Institute Of Science And Technology Inverted organic electronic device and method for manufacturing the same
WO2015104045A1 (de) * 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
CN109148729A (zh) * 2018-09-03 2019-01-04 中国工程物理研究院流体物理研究所 一种光电器件阴极界面层及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101423757A (zh) * 2008-12-09 2009-05-06 吉林大学 高性能有机电致发光材料及在有机电致发光器件中的应用
CN101834280B (zh) * 2009-03-09 2012-05-30 元欣科技材料股份有限公司 有机发光元件的制造方法
CN106876599B (zh) * 2017-03-10 2019-07-16 纳晶科技股份有限公司 无机金属化合物、含其的组合物、器件和装置及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291593A (ja) * 2000-04-10 2001-10-19 Mitsubishi Chemicals Corp 有機電界発光素子
US20150179965A1 (en) * 2013-12-24 2015-06-25 Gwangju Institute Of Science And Technology Inverted organic electronic device and method for manufacturing the same
WO2015104045A1 (de) * 2014-01-13 2015-07-16 Merck Patent Gmbh Metallkomplexe
CN104638109A (zh) * 2015-01-30 2015-05-20 华南理工大学 一种有机太阳能电池的阴极界面材料及其制备方法
CN109148729A (zh) * 2018-09-03 2019-01-04 中国工程物理研究院流体物理研究所 一种光电器件阴极界面层及其制备方法

Also Published As

Publication number Publication date
CN111081885A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
Jiang et al. Amazing stable open-circuit voltage in perovskite solar cells using AgAl alloy electrode
Shi et al. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites
Zhao et al. Simplification of device structures for low-cost, high-efficiency perovskite solar cells
Wang et al. Highly efficient poly (3-hexylthiophene) based monolithic dye-sensitized solar cells with carbon counter electrode
CN109802041B (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
CN106025085A (zh) 基于Spiro-OMeTAD/CuXS复合空穴传输层的钙钛矿太阳能电池及其制备方法
CN108832002B (zh) 一种基于pva修饰空穴传输层的钙钛矿太阳能电池
US9515274B2 (en) Photovoltaic cells
CN112331740B (zh) 旋涂-蒸发两步法的无机钙钛矿太阳能电池的制备方法
KR102167492B1 (ko) 태양전지 및 이를 포함하는 태양전지 모듈
CN113363279A (zh) 一种高效互联层及其双结钙钛矿/有机叠层太阳能电池
WO2023169068A1 (zh) 一种基于金属诱导有机界面层的有机光电器件及制备方法
WO2020077710A1 (zh) 一种聚合物-金属螯合物阴极界面材料及其应用
CN108832001B (zh) 一种无铅钙钛矿太阳能电池器件及其制备方法
CN107032341A (zh) 一种石墨烯材料及其修饰方法与应用
CN111403606B (zh) 一种掺杂番茄红素的钙钛矿太阳能电池及其制备方法
JP2015532524A (ja) ポリマー太陽電池及びその製造方法
KR101701670B1 (ko) 산소와 할로겐 원자로 개질 된 n형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법
CN106960911A (zh) 一种双光敏层杂化太阳能电池及其制备方法
KR101458565B1 (ko) 유기 태양전지 및 이의 제조방법
CN108470836B (zh) 一种钙钛矿薄膜的制备方法及太阳能电池
KR101791801B1 (ko) 칼코겐원소로 개질된 n형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법
CN113066930B (zh) 快速氧化spiro-OMeTAD的方法及太阳能电池
KR20230067926A (ko) 유무기 페로브스카이트 태양전지 및 이의 제조방법
CN111490164B (zh) 基于dnt-ph复合空穴传输层的钙钛矿光电探测器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18937325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18937325

Country of ref document: EP

Kind code of ref document: A1