WO2015098854A1 - 光学装置の製造方法 - Google Patents

光学装置の製造方法 Download PDF

Info

Publication number
WO2015098854A1
WO2015098854A1 PCT/JP2014/083933 JP2014083933W WO2015098854A1 WO 2015098854 A1 WO2015098854 A1 WO 2015098854A1 JP 2014083933 W JP2014083933 W JP 2014083933W WO 2015098854 A1 WO2015098854 A1 WO 2015098854A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
optical
substrate
component
groove
Prior art date
Application number
PCT/JP2014/083933
Other languages
English (en)
French (fr)
Inventor
松本 亮吉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to JP2015554887A priority Critical patent/JPWO2015098854A1/ja
Publication of WO2015098854A1 publication Critical patent/WO2015098854A1/ja
Priority to US15/192,335 priority patent/US20160306120A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3692Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier with surface micromachining involving etching, e.g. wet or dry etching steps

Definitions

  • the present invention relates to a method for manufacturing an optical device capable of manufacturing an optical device capable of suppressing light loss.
  • an optical component such as an optical waveguide or an optical element is installed on a substrate, and the optical component and the optical fiber are optically connected, and light enters the optical component from the optical fiber, or
  • An optical device that emits light from the optical component via an optical fiber is known.
  • Patent Document 1 describes such an optical device.
  • a V-groove is formed in a Si substrate on which an optical waveguide as an optical component is formed, an optical fiber is installed in the V-groove, and the optical fiber core and the optical waveguide are optically coupled. It is produced by combining them.
  • the position of the optical fiber is determined by a V-groove formed on the substrate. If a portion of the optical component on the substrate that is to be optically connected to the optical fiber (for example, the incident end of the optical waveguide) is shifted from the core of the optical fiber, light loss occurs. Therefore, it is important to form the V groove at an accurate position and depth.
  • This V groove is generally formed by etching or the like.
  • an object of the present invention is to provide an optical device manufacturing method capable of easily manufacturing an optical device capable of suppressing light loss.
  • an optical device manufacturing method uses a thin film process to install an optical component having an end portion to be optically connected to an optical fiber on one surface of a component installation substrate.
  • An optical component mounting step, a V-groove is formed on one surface side of the optical fiber fixing substrate, the optical fiber fixing step of fixing the optical fiber in the V-groove, and a component installation in which the optical component is provided
  • the substrate on which the optical fiber is fixed and the substrate on which the optical component is installed are different substrates.
  • the optical component is installed through a thin film process.
  • the formation of the V groove on the optical fiber fixing substrate is not affected. . Therefore, the V-groove of the optical fiber fixing substrate can be formed at an accurate position and depth.
  • the surface of the component installation board is rough after installation of the optical component, only the physical properties of the surface change, and the influence of the rough surface on the thickness of the component installation board.
  • the V-groove is accurately formed in the optical fiber fixing substrate, and the optical fiber fixing substrate on which the optical fiber is fixed is brought into contact with the component mounting substrate on which the optical component is installed. It can suppress that a part and the edge part of an optical fiber shift
  • the thickness or etching of the thin film By forming the V-groove in consideration of the thickness, it is possible to prevent the end of the optical component and the end of the optical fiber from shifting in a direction perpendicular to the contact surface.
  • the surface on the side where the optical component is provided of the component installation substrate provided with the optical component is directly exposed to the component installation substrate after the optical component is installed and before the optical component is installed. It refers to a surface or a surface in which a thin film is laminated or etched after an optical component is installed.
  • the component installation substrate includes the optical fiber installation substrate in a direction perpendicular to the longitudinal direction of the optical fiber in a direction parallel to a contact surface between the optical fiber fixing substrate and the component installation substrate. It is preferable that a guide for regulating the movement is formed.
  • Alignment in the direction perpendicular to the contact surface is performed by the contact between the component installation substrate and the optical fiber fixing substrate.
  • the direction perpendicular to the contact surface is also a direction perpendicular to the longitudinal direction of the optical fiber.
  • the movement of the optical fiber installation substrate in the direction parallel to the contact surface in the direction perpendicular to the longitudinal direction of the optical fiber is further restricted by the guide. Therefore, alignment in two directions perpendicular to the longitudinal direction of the optical fiber can be performed.
  • the alignment in the two directions is required to be performed with stricter accuracy than the alignment along the longitudinal direction of the optical fiber.
  • the guide makes the movement of the optical fiber installation substrate along the longitudinal direction of the optical fiber unregulated.
  • the optical fiber fixing substrate is adjusted along the longitudinal direction of the optical fiber in accordance with the longitudinal position of the end portion of the optical fiber fixed to the optical fiber fixing substrate. Alignment can be performed.
  • the guide is preferably formed in the process of providing the optical component.
  • the step of providing a separate guide can be omitted.
  • the controllability of the position where the thin film is formed is very excellent. Therefore, if the guide is formed of the thin film, the guide can be formed at a more accurate position, and an optical device that can further suppress light loss can be manufactured.
  • an alignment mark is provided on the component installation substrate, and a relative positional relationship between the component installation substrate and the optical fiber fixing substrate is determined based on the alignment mark.
  • the alignment mark Based on the alignment mark, it is possible to accurately set the relative position in the direction parallel to the contact surface between the component mounting substrate and the optical fiber fixing substrate. Therefore, the position of the optical fiber fixing substrate relative to the component mounting substrate can be determined more easily.
  • both the end of the optical component and the end of the optical fiber are visible, and after the abutting step, the end of the optical component and the end of the optical fiber are connected.
  • An alignment process is further provided which visually recognizes and adjusts a relative position in a direction perpendicular to the longitudinal direction of the optical fiber in a direction parallel to the contact surface between the component setting substrate and the optical fiber fixing substrate. It is preferable.
  • the respective positions can be adjusted accurately.
  • the fact that the end of the optical component or the end of the optical fiber is visible includes the case where the end of the optical component or the end of the optical fiber is photographed with a camera or the like and visually confirmed via a monitor.
  • the wavelength of light that visually recognizes the end of the optical component and the end of the optical fiber includes not only the wavelength of visible light but also the wavelength of invisible light such as infrared light.
  • the optical fiber may be fixed in a state where the end of the optical fiber protrudes from the optical fiber fixing substrate. By directly viewing the end of the optical fiber, the position adjustment process can be performed more easily.
  • the optical fiber fixing substrate may be light transmissive, and the end portion of the optical fiber may be visually recognized through the optical fiber fixing substrate.
  • the optical fiber fixing substrate By visually recognizing the optical fiber through the optical fiber fixing substrate, alignment can be performed without the end portion of the optical fiber protruding from the optical fiber fixing substrate. That is, the optical fiber can be fixed so that the end portion of the optical fiber is positioned inside the edge of the optical fiber fixing substrate. Thereby, in each process, possibility that the edge part of an optical fiber will hit other parts and may be damaged can be made low.
  • the optical fiber fixing substrate is made of Si
  • the optical fiber fixing substrate since the optical fiber fixing substrate transmits infrared light, the end of the optical fiber may be visually recognized using infrared light.
  • the end of the optical component is in a visible state
  • the optical fiber fixing substrate is light transmissive
  • the end of the optical component and the V groove An alignment step of visually recognizing a center line and adjusting a relative position in a direction perpendicular to the longitudinal direction of the optical fiber and parallel to a contact surface between the component setting substrate and the optical fiber fixing substrate; It is good also to prepare.
  • the axis of the optical fiber arranged in the V groove and the center axis of the V groove are coincident with each other.
  • the center position of the V-groove is usually the deepest position of the V-groove, and is easy to visually recognize because it looks linear through the optical fiber fixing substrate. Therefore, the center axis of the optical fiber can be easily grasped and alignment can be easily performed.
  • the case where the center line of the V-groove is photographed with a camera or the like and visually recognized via a monitor is included. Includes wavelengths of invisible light such as outside light.
  • the optical fiber when the optical fiber is to be arranged in a plan view of the optical component mounting board, the optical fiber is connected to the optical fiber when the optical component fixing substrate and the optical fiber fixing substrate are brought into contact with each other. It is preferable that a groove is formed so as not to contact the installation substrate.
  • the optical fiber is not buried in the V-groove, and even when a part of the optical fiber protrudes from the V-groove in the thickness direction of the optical fiber fixing substrate, the substrate is appropriately formed. Abutting each other can be performed.
  • the rotation direction of the optical fiber with respect to the central axis of the optical fiber may be adjusted.
  • the optical fiber is preferably a polarization maintaining optical fiber or a multi-core optical fiber.
  • the optical fiber for adjusting the rotation direction of the optical fiber is suitable for the case of using an optical fiber that needs to be aligned in the rotation direction with respect to the central axis, such as a polarization maintaining optical fiber or a multi-core optical fiber. It is.
  • adjustment of the rotation direction of an optical fiber is performed before arrange
  • the adjustment may be performed after the optical fiber is disposed in the V-groove, or may be performed when the optical fiber is disposed in the V-groove.
  • an optical device manufacturing method capable of easily manufacturing an optical device capable of suppressing light loss.
  • FIG. 3 is a cross-sectional view taken along line V 1 -V 1 of the optical device shown in FIGS. 1 and 2.
  • FIG. 3 is a cross-sectional view taken along line V 2 -V 2 of the optical device shown in FIGS. 1 and 2.
  • FIG. 1 is a diagram showing an optical device according to an embodiment of the present invention, and is a side view of the optical device shown in FIG. 3 is a cross-sectional view taken along line V 1 -V 1 of the optical device shown in FIGS. 1 and 2, and FIG. 4 is a cross-sectional view taken along line V 2 -V 2 of the optical device shown in FIGS. FIG.
  • the optical device 1 includes a component installation substrate 10, an optical layer 20 provided on the component installation substrate 10, and an optical fiber fixing device disposed on the component installation substrate 10.
  • a substrate 30 and an optical fiber 40 fixed to the optical fiber fixing substrate 30 are provided as main components.
  • the component installation board 10 has a substantially rectangular shape when viewed from one side.
  • a groove 15 is formed on one surface side of the component installation substrate 10, one side with respect to the groove 15 is an optical component installation portion 11, and the other side of the groove 15 is an optical fiber placement portion 12. Is done.
  • the surface 11s of the optical component placement section 11 and the surface 12s of the optical fiber placement section 12 divided by the groove 15 are flush with each other.
  • the optical fiber placement portion 12 is formed with a groove 16 that extends in a direction orthogonal to the groove 15 and is shallower than the groove 15.
  • An optical layer 20 is provided on the surface 11 s of the optical component installation unit 11.
  • the optical layer 20 is formed from a plurality of thin films.
  • the optical layer 20 includes a lower layer formed on the surface 11s, an upper layer formed on the lower layer, and an optical element layer 21 and a waveguide 22 formed between the lower layer and the upper layer. ing.
  • the boundary between the lower layer and the upper layer is omitted.
  • the lower layer and the upper layer are made of, for example, SiO2.
  • the optical element layer 21 is a layer that receives light and performs a predetermined optical operation, and is, for example, a photodiode layer.
  • the waveguide 22 is made of Si.
  • the waveguide 22 can guide light having a predetermined wavelength due to a difference in refractive index between the lower layer and the upper layer.
  • the waveguide 22 has a thickness of 0.5 ⁇ m, a width substantially equal to the thickness, and can propagate light having a wavelength of 1550 nm in a single mode.
  • the waveguide 22 is optically connected to the optical element layer 21, and light that enters the waveguide 22 and propagates through the waveguide 22 enters the optical element layer 21 and is emitted from the optical element layer 21. Propagates through the waveguide 22 and exits from the waveguide 22.
  • an optical component 23 is configured by the optical element layer 21 and the waveguide 22.
  • the waveguide 22 extends to the edge of the optical layer 20 on the groove 15 side, and the end 25 on the groove 15 side of the waveguide 22 is connected to the optical fiber 40 and the end 25 to be optically connected. Is done. Note that, at the end portion 25, a mode field diameter conversion unit is installed to match the mode field diameter with the optical fiber 40 as necessary.
  • the optical fiber fixing substrate 30 has a size that can be arranged on the surface 12 s of the optical fiber arrangement portion 12 of the component installation substrate 10.
  • the optical fiber fixing substrate 30 is disposed on the surface 12 s of the optical fiber placement portion 12 so as to cover at least a part of the groove 16 formed on the surface 12 s side of the optical fiber placement portion 12.
  • a V-groove 35 is formed linearly on the optical fiber placement portion 12 side of the optical fiber fixing substrate 30.
  • the V groove 35 is perpendicular to the longitudinal direction of the groove 16, that is, the longitudinal direction of the groove 15 formed in the component installation substrate 10, with the optical fiber fixing substrate 30 disposed on the optical fiber placement portion 12. Along the direction.
  • the optical fiber fixing substrate 30 is arranged on the optical fiber arrangement part 12 so that the V-groove 35 faces in such a direction.
  • the surface 12s of the component installation substrate 10 and the surface 30s on the V-groove side of the optical fiber fixing substrate 30 are fixed to each other by fusion bonding or adhesion.
  • the surface 12 s of the component setting substrate 10 and the surface 30 s of the optical fiber fixing substrate 30 are contacted by contacting the surface 12 s and the surface 30 s with an adhesive. Including the case of contact via
  • the optical fiber 40 includes a core 41 and a clad 42 that covers the outer peripheral surface of the core 41.
  • the core 41 has a predetermined refractive index difference from the clad 42 and has a predetermined diameter, so that light having a wavelength that the waveguide 22 propagates in a single mode can propagate in a single mode.
  • the optical fiber 40 is fixed to the V-groove 35 along the longitudinal direction of the V-groove 35 formed in the optical fiber fixing substrate 30. In the present embodiment, the optical fiber 40 is fixed to the V-groove 35 so that one end 45 protrudes from the optical fiber fixing substrate 30. Further, as shown in FIG. 3, the optical fiber 40 protrudes from the V groove in the diameter direction without being buried in the V groove 35.
  • the optical fiber fixing substrate 30 is disposed on the optical fiber placement portion 12 of the component placement substrate 10 in a state where the optical fiber fixing substrate 30 is disposed on the optical fiber placement portion 12 of the component placement substrate 10, a part of the optical fiber 40 is located in the groove 16, and the optical fiber 40 and the component placement portion are disposed.
  • the substrates 10 do not contact each other.
  • the end portion 25 of the waveguide 22 and one end portion 45 of the optical fiber 40 are connected to each other, and the waveguide 22 and the core 41 of the optical fiber 40 are optically coupled. Has been.
  • FIG. 5 is a flowchart showing the steps of the method for manufacturing the optical device 1.
  • the manufacturing method of the optical device 1 of the present embodiment includes an optical component installation step P1, an optical fiber fixing step P2, a contact step P3, a first alignment step P4, and a second alignment step.
  • FIG. 6 is a diagram illustrating a state in which the component mounting substrate 10 on which the optical layer 20 is installed and the optical fiber fixing substrate 30 on which the optical fiber 40 is fixed are brought into contact with each other.
  • a substrate to be a component installation substrate 10 is prepared.
  • this substrate is a silicon substrate whose surface is oxidized. That is, this substrate is mainly made of Si, and the surface is a SiO 2 layer. This SiO 2 layer corresponds to the lower layer of the optical layer 20.
  • substrate is a flat board
  • a waveguide 22 composed of the optical element layer 21 and the Si layer is formed on the SiO 2 layer of the silicon substrate.
  • the optical element layer 21 and the waveguide 22 are formed by, for example, a thin film process including a combination of a film forming process such as CVD (Chemical Vapor Deposition) or vapor deposition and a removing process that removes other than necessary portions by etching or the like.
  • the waveguide 22 is formed so that the waveguide 22 extends to a region where the groove 15 is to be formed.
  • a SiO 2 film is formed in a region to be the optical component installation unit 11. This SiO 2 film is the upper layer of the optical layer 20.
  • the SiO 2 film is formed so that the upper layer protrudes to the region where the groove 15 is to be formed.
  • the optical element layer 21 and the waveguide 22 are sandwiched between the lower layer and the upper layer made of SiO 2 .
  • the surface 12s of the optical fiber placement portion 12 includes the film on which the film formation has been performed. It may be on the surface or on an etched surface.
  • an SOI (silicon on insulator) substrate having a structure in which a SiO 2 layer is inserted between the Si substrate and the surface Si layer is used as the component installation substrate 10.
  • SOI silicon on insulator
  • the Si layer on the surface is etched to form the waveguide 22, and an upper layer similar to the above is formed.
  • the groove 16 is formed by etching in a region opposite to the side where the optical layer 20 is formed. At this time, the groove 16 is formed to extend to a region where the groove 15 is to be formed.
  • the groove 15 is formed.
  • the groove 15 is formed by dicing, for example. As described above, since the waveguide 22 extends to the region where the groove 15 is to be formed, the waveguide 22 is exposed from the side surface of the optical layer 20 by dicing. The end including the exposed portion of the waveguide 22 is an end 25 to be optically coupled to the core of the optical fiber 40. Further, the groove 15 is formed deeper than the groove 16. As described above, the groove 16 is formed so as to extend to a region where the groove 15 is to be formed. Therefore, the groove 16 and the groove 15 are connected by forming the groove 15. By forming the groove 15, the side of the substrate on which the optical layer 20 is formed is the optical component placement section 11, and the side on which the groove 16 is formed is the optical fiber placement section 12. Thus, by forming the groove 15 and the groove 16, the component installation substrate 10 is formed from the prepared substrate. The groove 15 may be formed in a region in contact with the groove 16, and may not be formed from one side surface of the component installation board 10 to the other side surface.
  • the thickness of the film to be formed to form the end portion 25 to be connected to the optical fiber of the optical component 23 is preferably 2.5 times or less the mode field diameter of the light propagating through the optical fiber 40. This is due to the following reason. Generally, the thickness of a thin film formed through a film forming process has an error of 10% or less with respect to the thickness of a thin film having a design value to be formed. Similarly, the thickness of the thin film removed through the etching process generally has an error within 10% with respect to the thickness of the thin film of the design value to be removed.
  • the axial deviation between the axis of the core 41 at the end 45 of the optical fiber 40 and the end 25 of the optical component 23 is 25% or less of the mode field diameter of the light propagating through the optical fiber 40,
  • the loss of light at the connection portion between the end portion 25 of the optical component 23 and the end portion 45 of the optical fiber 40 is 1 dB or less. Therefore, even if the position of the end portion 25 of the optical component 23 is shifted due to an error in film thickness of film formation or etching, the position of the end portion 25 of the optical component 23 and the end portion 45 of the optical fiber 40 is changed.
  • the optical component 23 composed of the optical element layer 21 and the waveguide 22 is placed on the component placement substrate 10.
  • the method of forming the optical component 23 is an example, and the optical component 23 may be formed on the component installation substrate 10 by another forming method.
  • a substrate to be an optical fiber fixing substrate 30 to which the optical fiber 40 is fixed, and the optical fiber 40 are prepared.
  • This substrate is not formed with the V-groove 35, and has a flat plate shape.
  • This substrate is, for example, a substrate that transmits light of a specific wavelength formed of Si or the like.
  • the coating layer is peeled from the end 45 over a predetermined length.
  • a V-groove 35 is formed on one surface of the prepared substrate.
  • the V groove 35 is formed by an etching process, but the V groove 35 may be formed by cutting.
  • the V-groove 35 is perpendicular to the contact surface between the component setting substrate 10 and the optical fiber fixing substrate 30 when the optical fiber fixing substrate 30 is disposed on the component setting substrate 10 as will be described later.
  • the axis of the core 41 of the optical fiber 40 and the axis of the waveguide 22 are formed so as to coincide with each other. Accordingly, in the component installation step P1, when a thin film is laminated on the optical fiber placement portion 12 of the component placement substrate 10 or the optical fiber placement portion 12 is etched, the thin film to be laminated and the amount of etching are taken into consideration.
  • the size of the V groove 35 is determined.
  • the V-groove 35 is formed in the substrate thus prepared, and the substrate is used as the optical fiber fixing substrate 30.
  • the optical fiber 40 is disposed in the V-groove 35 and the optical fiber 40 is fixed to the optical fiber fixing substrate 30.
  • the optical fiber 40 is preferably disposed in the V-groove so that the end portion 45 protrudes from the optical fiber fixing substrate 30.
  • this process and the optical component installation process P1 may be performed simultaneously, and the optical component installation process P1 may be performed after this process.
  • ⁇ Contact process P3> Next, the contact process P3 is performed. In this step, as shown in FIG. 6, a part of the surface on which the optical component 23 is provided of the component installation substrate 10 on which the optical component 23 is provided, and the optical fiber 40 of the optical fiber fixing substrate 30. Abuts with at least a part of the surface on the side where is fixed.
  • the component placement board is arranged so that the surface 12s of the optical fiber placement portion 12 of the component placement board 10 and the surface 30s of the optical fiber fixing board 30 on the side where the optical fiber 40 is fixed are in contact with each other.
  • An optical fiber fixing substrate 30 is disposed on the substrate 10. At this time, even if a part of the optical fiber 40 protrudes from the V-groove 35 in a direction perpendicular to the surface 30 s, the protruding part of the optical fiber 40 is formed on the component installation substrate 10. Is accommodated in the groove 16. Accordingly, the groove 16 prevents the protruding portion of the optical fiber 40 from interfering with the contact between the surface 12 s of the optical fiber placement portion 12 and the surface 30 s of the optical fiber fixing substrate 30.
  • the axis of the waveguide 22 and the axis of the core 41 of the optical fiber 40 coincide with each other in the direction perpendicular to the contact surface between the component setting substrate 10 and the optical fiber fixing substrate 30.
  • the direction perpendicular to the contact surface between the component placement substrate 10 and the optical fiber fixing substrate 30 at the end portion 25 of the optical component 23 and the end portion 45 of the optical fiber 40 is obtained. The alignment in is completed.
  • FIG. 7 is a diagram illustrating a state of the first alignment step P4 and the second alignment step P5 of the present embodiment.
  • the optical fiber fixing substrate 30 is moved along the longitudinal direction of the optical fiber 40 to adjust the distance between the end 25 of the optical component 23 and the end 45 of the optical fiber 40. That is, the optical fiber fixing substrate 30 is moved in the x direction shown in FIG.
  • the optical fiber fixing substrate 30 is moved in the x direction.
  • the space between the end portion 25 of the optical component 23 and the end portion 45 of the optical fiber 40 is concerned.
  • the optical fiber fixing substrate 30 is moved in the x direction so as to have a predetermined interval.
  • the movement of the optical fiber fixing substrate 30 is preferably performed by visually observing the end 45 of the optical fiber 40. At this time, it is preferable to view the optical fiber 40 by photographing the optical fiber 40 with a camera and monitoring the photographed image.
  • the end portion 45 of the optical fiber 40 protrudes from the optical fiber fixing substrate 30
  • the end portion 45 of the optical fiber 40 is directly visually recognized and the optical fiber fixing substrate 30. Is moved in the x direction.
  • the optical fiber 40 is directly photographed with a camera for visual recognition.
  • the optical fiber fixing substrate 30 when the end portion 45 of the optical fiber 40 does not protrude from the optical fiber fixing substrate 30 along the longitudinal direction of the optical fiber 40, the optical fiber fixing substrate 30 is interposed. The end 45 of the optical fiber 40 is visually confirmed.
  • the optical fiber fixing substrate 30 needs to be light transmissive to transmit at least light of a predetermined wavelength. If the optical fiber fixing substrate 30 is light transmissive, the end portion 45 of the optical fiber 40 is visually recognized using light having a wavelength that passes through the optical fiber fixing substrate 30. For example, when the optical fiber fixing substrate 30 is made of Si, the optical fiber 40 may be visually recognized using infrared light.
  • this step may be performed without visually checking the end 45 of the optical fiber 40.
  • the end 45 of the optical fiber 40 is particularly visually recognized. It is not necessary. However, it is preferable to visually recognize the end 45 of the optical fiber 40 in order to prevent the optical fiber 40 from being damaged in this alignment step.
  • the optical component 23 is optically operable, the light is emitted from the optical fiber 40 to the optical component 23 and the output from the optical component 23 is measured, or the light from the optical component 23 to the optical fiber 40 is measured.
  • the output from the optical fiber 40 may be measured, and the optical fiber fixing substrate 30 may be moved based on the measurement result. Further, when the distance between the end portion 45 of the optical fiber 40 and the end surface on the optical component 23 side of the optical fiber fixing substrate 30 is known, for example, the end portion 45 of the optical fiber 40 is located in the V groove 35, When the distance between the end portion 45 and the end surface of the fixing substrate 30 on the optical component 23 side is known, the end portion 25 of the optical component 23 and the end surface of the fixing substrate 30 are fixed so as to have a predetermined distance. The position of the end 45 of the optical fiber 40 may be adjusted by adjusting the position of the substrate 30 for use.
  • the distance between the end surface of the fixing substrate 30 on the optical component 23 side and the end 45 of the optical fiber 40 is a predetermined value.
  • the optical fiber 40 may be disposed in the V-groove 35 so as to be a distance, and after the optical fiber 40 is disposed in the V-groove 35, the end surface on the optical component 23 side of the fixing substrate 30 and the end of the optical fiber 40 are arranged. The distance from the unit 45 may be measured.
  • ⁇ Second alignment step P5> a second alignment process is performed.
  • the optical fiber fixing substrate 30 is moved along the direction perpendicular to the longitudinal direction of the optical fiber 40 out of the directions parallel to the contact surface between the component setting substrate 10 and the optical fiber fixing substrate 30.
  • the relative position between the component installation substrate 10 and the optical fiber fixing substrate 30 is adjusted by moving the substrate. That is, the optical fiber fixing substrate 30 is moved in the y direction shown in FIG.
  • the alignment between the end 25 of the optical component 23 and the end 45 of the optical fiber 40 in the direction perpendicular to the longitudinal direction of the optical fiber 40 is performed. Accordingly, the position of the optical fiber fixing substrate 30 in the y direction is adjusted so that the axis of the end portion 25 of the optical component 23 and the axis of the end portion 45 of the optical fiber 40 are aligned.
  • the movement of the optical fiber fixing substrate 30 is preferably performed by visually recognizing the core 41 at the end 25 of the optical component 23 and the end 45 of the optical fiber 40.
  • the core 41 at the end 25 of the optical component 23 and the end 45 of the optical fiber 40 is photographed by a camera, and the photographed image is monitored to monitor the end 25 of the optical component 23 and the end of the optical fiber 40. It is preferable to visually recognize the core 41 at 45.
  • the optical fiber fixing substrate 30 is moved in the y direction.
  • the optical fiber 40 is directly photographed with a camera for visual recognition.
  • the optical fiber fixing substrate 30 is interposed.
  • the core 41 at the end 45 of the optical fiber 40 is visually recognized.
  • the center line 35c of the V groove 35 may be visually recognized without visually recognizing the optical fiber 40.
  • the optical fiber fixing substrate 30 When visualizing the core 41 of the optical fiber 40 and the center line 35c of the V-groove 35 through the optical fiber fixing substrate 30, the optical fiber fixing substrate 30 is light-transmitting at least transmitting light of a predetermined wavelength. There must be. If the optical fiber fixing substrate 30 is light transmissive, the end portion 45 of the optical fiber 40 is visually recognized using light having a wavelength that passes through the optical fiber fixing substrate 30. For example, when the optical fiber fixing substrate 30 is made of Si, the optical fiber 40 may be visually recognized using infrared light.
  • the end 25 of the optical component 23 is moved through the upper layer of the optical layer 20.
  • the upper layer needs to be light transmissive so as to transmit at least light having a predetermined wavelength. If the upper layer is light transmissive, the end 25 of the optical component 23 is visually recognized using light having a wavelength that passes through the upper layer. For example, when the upper layer of the optical layer 20 is made of Si as described above, the end 25 of the optical component 23 may be visually recognized using infrared light.
  • the optical fiber fixing substrate 30 is made of Si as described above, the core 41 of the optical fiber 40 or the center line 35c of the V-groove 35 of the optical fiber fixing substrate 30 and the optical component are formed using infrared light. 23 end portions 25 can be visually recognized at the same time. On the other hand, unlike the figure of the present embodiment, when the end 25 of the optical component 23 is exposed, the end 25 of the optical component 23 is directly visually recognized.
  • this step may be performed without visually recognizing the end portion 25 of the optical component 23.
  • the optical component 23 is optically operable, light is emitted from the optical fiber 40 to the optical component 23 to measure the output from the optical component 23, or light is transmitted from the optical component 23 to the optical fiber 40. It is only necessary to measure the output from the optical fiber 40 and move the optical fiber fixing substrate 30 in the y direction based on the measurement result.
  • the alignment in the direction perpendicular to the longitudinal direction of the optical fiber 40 in the direction parallel to the contact surface between the component mounting substrate 10 and the optical fiber fixing substrate 30 is completed.
  • the component setting substrate 10 and the optical fiber fixing substrate 30 are fixed to each other.
  • the component mounting substrate 10 and the optical fiber fixing substrate 30 are fixed by fusion bonding or adhesion.
  • the fusion is performed by, for example, laser fusion or ultrasonic bonding.
  • the bonding is performed by, for example, solidifying an adhesive previously applied to the surface 30s of the optical fiber fixing substrate 30, or after the alignment process is completed, the edge of the surface 30s of the optical fiber fixing substrate 30 and the component You may perform by apply
  • optical device 1 shown in FIGS. 1 to 4 is obtained.
  • the optical fiber fixing substrate 30 on which the optical fiber 40 is fixed and the component installation substrate 10 on which the optical component 23 is installed are different. It is a substrate.
  • the optical component 23 is installed through a thin film process. For this reason, even if the surface 12s of the optical fiber placement portion 12 in the component placement substrate 10 is roughened due to the influence of film formation or etching, the V-groove 35 is formed in the optical fiber fixing substrate 30. There is no effect. Therefore, the V-groove 35 to the optical fiber fixing substrate 30 can be formed with an accurate position and size.
  • the V-groove 35 is accurately formed in the optical fiber fixing substrate 30, and the optical fiber fixing substrate 30 to which the optical fiber 40 is fixed is brought into contact with the component installation substrate 10. 25 and the end 45 of the optical fiber 40 can be prevented from shifting in the direction perpendicular to the contact surface, and the alignment of the optical fiber 40 in the direction perpendicular to the contact surface of each substrate is completed. In this way, alignment in at least a direction perpendicular to the abutting surface among the directions for aligning the position of the optical fiber 40 can be easily performed. Therefore, the optical device 1 that can suppress the loss of light can be easily manufactured.
  • FIG. 8 is a diagram illustrating a state in which the component setting substrate 10 and the optical fiber fixing substrate 30 are brought into contact with each other in the present embodiment.
  • the component installation board 10 of this embodiment is different from the component installation board 10 of the first embodiment in that a pair of guides 51 are provided on the surface 12 s of the optical fiber placement portion 12. .
  • These guides 51 are arranged in a direction parallel to the contact surface between the optical fiber fixing substrate 30 and the component installation substrate 10 when the optical fiber fixing substrate 30 is disposed on the component installation substrate 10.
  • the movement of the optical fiber fixing substrate 30 in the direction perpendicular to the longitudinal direction of the optical fiber 40 (the y direction in FIG. 7) is restricted, and the optical fiber in the direction along the longitudinal direction of the optical fiber 40 (the x direction in FIG. 7).
  • the movement of the fixing substrate 30 is not regulated.
  • These guides 51 are provided at the same interval as the width in the direction perpendicular to the longitudinal direction of the optical fiber 40 of the optical fiber fixing substrate 30. Accordingly, the pair of guides 51 regulates the movement of the optical fiber fixing substrate 30 by sandwiching the mutually opposing side surfaces of the optical fiber fixing substrate 30 on the component installation substrate 10. For this reason, when the optical fiber fixing substrate 30 is disposed on the component installation substrate 10, the pair of guides 51 has an axis of the end portion 25 of the optical component 23 and an axis of the end portion 45 of the optical fiber 40.
  • the optical fiber fixing substrate 30 is provided so as to coincide with each other.
  • a guide may be formed in the optical component installation step P1 of the first embodiment.
  • Each guide 51 is preferably formed together with the optical component 23 in a thin film process for forming the optical component 23.
  • the controllability of the formation position of the thin film is very excellent. Therefore, if the guide 51 is formed of the thin film, the guide 51 can be formed at a more accurate position.
  • a pattern for forming the guide 51 can be provided in the mask used when forming the optical component 23, and the optical component 23 has a positional correlation with the guide 51. It can be controlled appropriately.
  • the optical fiber fixing step P2 is performed as in the first embodiment.
  • the contact step P3 is performed in the same manner as in the first embodiment.
  • the optical fiber fixing substrate 30 is arranged on the component installation substrate 10 so that the optical fiber fixing substrate 30 is sandwiched between the guides 51.
  • FIG. 8 is a diagram showing an alignment process of the present embodiment.
  • the first alignment process P4 and the second alignment process P5 are performed, but in the present embodiment, the guide 51 is formed at an appropriate position, so that the second alignment process is unnecessary. Therefore, the alignment process is performed by moving the optical fiber fixing substrate 30 along the longitudinal direction of the optical fiber 40 as shown in FIG.
  • the specific method of the alignment process is the same as the first alignment process P4 of the first embodiment.
  • the optical fiber fixing substrate 30 and the component setting substrate 10 are fixed in the same manner as in the first embodiment. In this way, the optical device of this embodiment is obtained.
  • the optical fiber fixing substrate 30 is disposed on the component installation substrate 10 and the component installation substrate 10 and the optical fiber fixing substrate 30 are parallel to the contact surface. Among these directions, alignment in a direction perpendicular to the longitudinal direction of the optical fiber can be performed. Therefore, according to the manufacturing method of the optical device of this embodiment, alignment in two directions perpendicular to the longitudinal direction of the optical fiber can be performed only by arranging the optical fiber fixing substrate 30 on the component installation substrate 10. . Therefore, according to the manufacturing method of the optical device of the present embodiment, it is possible to manufacture an optical device that can more easily suppress the loss of light than the manufacturing method of the optical device of the first embodiment.
  • the guide 51 is installed at a position where the opposing side surfaces of the optical fiber fixing substrate 30 are sandwiched, but the position of the guide 51 is not limited to this.
  • a uniform groove extending in a direction parallel to the longitudinal direction of the optical fiber 40 is formed on the surface 30 s of the optical fiber fixing substrate 30, and a guide having a position and shape that fits with the groove is disposed in the optical fiber. You may provide on the surface 12s of the part 12.
  • the guide 51 may be provided so as to further restrict the movement of the optical fiber fixing substrate 30 in the direction along the longitudinal direction of the optical fiber 40.
  • the guide 51 may be provided by a thin film process different from the optical component installation process P1, and may be formed not by the thin film but by other members.
  • FIG. 10 is a diagram illustrating a state in which the component setting substrate 10 and the optical fiber fixing substrate 30 are brought into contact with each other in the present embodiment.
  • the component placement substrate 10 of the present embodiment is different from the component placement substrate 10 of the first embodiment in that a pair of alignment marks 52 are provided on the surface 12 s of the optical fiber placement portion 12. Different.
  • This alignment mark 52 is preferably provided in advance on a substrate to be the component installation substrate 10. And if the optical component installation process P1 is performed similarly to 1st Embodiment on the basis of the position of the said alignment mark, the positional relationship of the alignment mark 52 and the edge part 25 of the optical component 23 can be grasped
  • the optical fiber fixing step P2 is performed as in the first embodiment.
  • the contact process P3 is performed.
  • the position of the optical fiber fixing substrate 30 is determined based on the alignment mark 52, and the optical fiber fixing substrate 30 is arranged on the component installation substrate 10. If the relationship between the position of the alignment mark 52 and the position of the end portion 25 of the optical component 23 can be grasped as described above, the optical fiber fixing substrate 30 can be disposed at an appropriate position. Therefore, the first alignment process P4 and the second alignment process P5 of the first embodiment can be omitted.
  • the optical fiber fixing step P2 when the position of the end portion 45 of the optical fiber 40 with respect to the optical fiber fixing substrate 30 is shifted, it is preferable to perform the first alignment step P4.
  • the optical fiber fixing substrate 30 and the component setting substrate 10 are fixed in the same manner as in the first embodiment. In this way, the optical device of this embodiment is obtained.
  • FIG. 11 is a diagram showing the optical device of the present embodiment from the same viewpoint as FIG.
  • the optical device 1 of the present embodiment is different from the optical device 1 of the first embodiment in that the optical fiber 40 includes a pair of stress applying portions 43 that sandwich the core 41.
  • the optical fiber 40 of the embodiment is a PANDA fiber (Polarization / maintaining / AND / Absorption / reducing / fiber) which is a kind of polarization maintaining optical fiber.
  • the stress applying portion 43 is a portion that applies stress to the core 41 when the optical fiber 40 is manufactured.
  • Each of the stress applying portions 43 has a diameter larger than the diameter of the core, for example, and is provided at a position away from the core 41 by a certain distance.
  • the optical fiber 40 can propagate single-polarized light while maintaining the polarization axis. Therefore, the light incident on the optical fiber 40 may be a single polarized light whose polarization axis is aligned or perpendicular to the direction of the stress applying portion of the polarization maintaining optical fiber. Therefore, the position of the optical fiber 40 in the direction of the rotation axis is adjusted in order to align the polarization direction of the light that exits the waveguide 22 and enters the optical fiber 40 or exits from the optical fiber 40 and enters the waveguide 22. It becomes important.
  • the optical component installation step P1 is performed as in the first embodiment.
  • the polarization direction of the light that exits the waveguide 22 and enters the optical fiber 40 for propagation, or exits the optical fiber 40 and enters the waveguide 22 is the desired direction.
  • the rotation direction of the optical fiber 40 with respect to the central axis of the optical fiber 40 is adjusted. This adjustment is performed while visually recognizing the end portion 45 of the optical fiber 40, for example.
  • the end portion 45 of the optical fiber 40 may be photographed with a camera or the like and viewed through a monitor.
  • the adjustment of the rotation direction of the optical fiber 40 is preferably performed before the optical fiber 40 is arranged in the V-groove 35 because the adjustment can be easily performed by visual recognition of the optical fiber 40 or the like.
  • the adjustment may be performed after the optical fiber 40 is disposed in the V-groove 35 or may be performed when the optical fiber 40 is disposed in the V-groove 35.
  • the contact process P3, the first alignment process P4, and the second alignment process P5 are performed in the same manner as in the first embodiment to obtain the optical device of the present embodiment.
  • FIG. 12 is a diagram showing the optical device of the present embodiment from the same viewpoint as FIG. 3, and FIG. 13 is a diagram showing the optical device of the present embodiment from the same viewpoint as FIG.
  • the optical device 1 of the present embodiment is a multi-core optical fiber in which the optical fiber 40 has a plurality of cores 41, and a plurality of optical fibers 40 are formed on the optical layer 20 on the component installation substrate 10 as shown in FIG. This is different from the optical device 1 of the first embodiment in that the waveguide 22 is formed.
  • a plurality of cores 41 are arranged in a straight line.
  • the plurality of waveguides 22 formed in the optical layer 20 on the component placement substrate 10 are the same number and the same number as the plurality of cores 41 of the optical fiber 40.
  • light emitted from each waveguide 22 enters each core 41 of the optical fiber 40, or light emitted from each core 41 of the optical fiber 40 corresponds to each waveguide. It is important that it is incident on 22.
  • the optical component installation step P1 of the manufacturing method of the optical device 1 of the present embodiment is different from the optical component installation step P1 of the first embodiment in that a plurality of waveguides 22 are formed.
  • the respective waveguides 22 are formed so that the intervals between the plurality of waveguides 22 are the same as the plurality of cores 41 of the optical fiber 40 as described above.
  • the alignment direction of the plurality of cores 41 of the optical fiber 40 is the same as the alignment direction of the plurality of waveguides 22 of the optical layer 20 after the contact step P3.
  • the rotation direction of the optical fiber 40 with respect to the central axis of the optical fiber 40 is adjusted. This adjustment may be performed in the same manner as the adjustment in the fourth embodiment.
  • the adjustment of the rotation direction of the optical fiber 40 is preferably performed before the optical fiber 40 is arranged in the V-groove 35, but the adjustment is performed on the optical fiber 40 in the V-groove 35. May be performed after the optical fiber 40 is disposed in the V-groove 35.
  • the contact process P3, the first alignment process P4, and the second alignment process P5 are performed in the same manner as in the first embodiment to obtain the optical device of the present embodiment.
  • the optical component 23 is composed of the optical element layer 21 and the waveguide 22.
  • the present invention is not limited to this.
  • the optical component may be composed only of a waveguide, or the optical component is composed only of an optical element layer having an end portion that performs at least one of light incidence and emission. Also good.
  • grooves 15 and the grooves 16 formed on the component installation board 10 may be omitted if unnecessary.
  • an optical device capable of suppressing light loss can be easily manufactured and used in the fields of optical communication equipment and optical measuring instruments. can do.

Abstract

 部品設置用基板10の一方の面に光ファイバ40と光学的に接続されるべき端部25を有する光学部品23を薄膜工程を用いて形成する光学部品設置工程P1と、光ファイバ固定用基板30の一方の面にV溝35を形成し、V溝35に光ファイバ40を固定する光ファイバ固定工程P2と、光学部品23が設けられた部品設置用基板10の光学部品23が設けられている側の表面と、光ファイバ固定用基板30の光ファイバ40が固定されている側の表面とを当接する当接工程P3とを備える。

Description

光学装置の製造方法
 本発明は、光の損失を抑制することができる光学装置を製造することができる光学装置の製造方法に関する。
 光学装置として、基板上に光導波路や光学素子等の光学部品が設置されると共に、当該光学部品と光ファイバとが光学的に接続されて、当該光学部品に光ファイバから光を入射する、或いは、当該光学部品からの光を光ファイバを介して出射する光学装置が知られている。
 下記特許文献1には、このような光学装置が記載されている。特許文献1に記載の光学装置は、光学部品としての光導波路が形成されたSi基板にV溝を形成し、このV溝に光ファイバを設置して、光ファイバのコアと光導波路とを光学的に結合することで作製される。
特許2771167号公報
 特許文献1の光学装置では、光ファイバの位置が基板上に形成されたV溝により定められる。そして、基板上の光学部品における光ファイバと光学的に接続されるべき部分(例えば光導波路の入射端)と光ファイバのコアとがずれると、光の損失が生じる。従って、V溝を正確な位置や深さに形成することは重要である。
 このV溝は、一般的にエッチング等により形成される。ところで基板上に光学部品を設置すると、光学部品の形成過程における成膜やエッチング等により基板表面の物性が酸化等により変化する傾向がある。このようにして基板表面の物性が変化する場合、基板表面で一律な物性変化が生じずに基板表面が荒れる傾向がある。このように基板表面が荒れると、V溝を正確な位置、深さに形成することが困難となる。
 この場合、光ファイバを正確な位置に設置することが困難となる。このため、光学部品と光ファイバとの接続部における光の漏れによる光の損失を防ぐことが困難となる。
 そこで、本発明は、光の損失を抑制することができる光学装置を容易に製造することができる光学装置の製造方法を提供することを目的とする。
 上記課題を解決するため、本発明の光学装置の製造方法は、部品設置用基板の一方の面上に光ファイバと光学的に接続されるべき端部を有する光学部品を薄膜工程を用いて設置する光学部品設置工程と、光ファイバ固定用基板の一方の面側にV溝を形成し、当該V溝に前記光ファイバを固定する光ファイバ固定工程と、前記光学部品が設けられた部品設置用基板の前記光学部品が設けられている側の表面の一部と、前記光ファイバ固定用基板の前記光ファイバが固定されている側の表面の少なくとも一部とを当接する当接工程と、を備えることを特徴とするものである。
 この光学装置の製造方法では、光ファイバが固定される基板と光学部品が設置される基板とを別の基板としている。光学部品が設置される基板においては、光学部品が薄膜工程を経て設置される。このため、部品設置用基板における光学部品が設置される面が成膜やエッチングの影響で物性が変化して荒れる場合であっても、光ファイバ固定用基板へのV溝の形成に影響はない。従って、光ファイバ固定用基板のV溝を正確な位置や深さで形成することができる。また、前記のようにたとえ光学部品の設置後に部品設置用基板の表面が荒れた状態であっても、表面の物性が変わるだけであり、表面が荒れることによる部品設置用基板の厚みへの影響は殆どない。従って、光ファイバ固定用基板にV溝を正確に形成して、光ファイバが固定された光ファイバ固定用基板を光学部品が設置された部品設置用基板に当接させることで、光学部品の端部と光ファイバの端部とが、当接面に垂直な方向にずれることを抑制することができる。このように光ファイバの長手方向に垂直な方向のうち、少なくとも当接面に垂直な方向におけるアライメントを容易に行うことができるのである。こうして、光の損失を抑制することができる光学装置を容易に製造することができる。
 なお、部品設置用基板における光ファイバ固定用基板が配置されるべき部位に、光学部品を設置するために成膜が施されたりエッチングが施されたりする場合であっても、薄膜の厚みやエッチングの厚みを考慮してV溝を形成することで、光学部品の端部と光ファイバの端部とが、当接面に垂直な方向にずれることを抑制することができる。つまり、光学部品が設けられた部品設置用基板の光学部品が設けられている側の表面とは、光学部品が設置された後において光学部品が設置される前の部品設置用基板が直接露出した表面や、光学部品が設置された後において薄膜が積層された状態やエッチングが施された状態の表面を指す。
 また、前記部品設置用基板には、前記光ファイバ固定用基板と前記部品設置用基板との当接面に平行な方向のうち前記光ファイバの長手方向に垂直な方向における前記光ファイバ設置用基板の動きを規制するガイドが形成されるが好ましい。
 部品設置用基板と光ファイバ固定用基板との当接により、当接面に垂直な方向のアライメントが行われる。この当接面に垂直な方向は光ファイバの長手方向に垂直な方向でもある。この当接面に垂直な方向のアライメントに加えて、光ファイバの長手方向に垂直な方向のうち当接面に平行な方向の光ファイバ設置用基板の動きがガイドにより更に規制される。したがって、光ファイバの長手方向に垂直な2方向のアライメントを行うことができる。当該2方向のアライメントは、光ファイバの長手方向に沿ったアライメントよりも厳しい精度で行うことが求められる。この厳しい精度で行うアライメントを当接面及びガイドで行うことで、光の損失を抑制することができる光学装置をより容易に製造することができる。
 さらに、前記ガイドは、前記光ファイバ設置用基板の前記光ファイバの長手方向に沿った動きを非規制状態とすることが好ましい。
 この場合、光ファイバ固定用基板に固定された光ファイバの端部の長手方向の位置に応じて、光ファイバ固定用基板を光ファイバの長手方向に沿って調整することで光ファイバの長手方向のアライメントを行うことができる。
 また、前記ガイドは、前記光学部品を設ける過程において形成されることが好ましい。
 光学部品の形成とともにガイドを形成することで、別途ガイドを設ける工程を省略することができる。一般に薄膜により部品を形成する場合、薄膜の形成位置の制御性は大変優れている。従って、当該薄膜でガイドを形成すれば、ガイドをより正確な位置に形成することができ、光の損失をより抑制することができる光学装置を製造することができる。
 或いは、前記部品設置用基板には、アライメントマークが設けられ、前記アライメントマークに基づいて、前記部品設置用基板と前記光ファイバ固定用基板との相対的な位置関係を定めることが好ましい。
 アライメントマークに基づくことによって、部品設置用基板と光ファイバ固定用基板との当接面に平行な方向の相対的な位置を正確に設定することができる。従って、より容易に光ファイバ固定用基板の部品設置用基板に対する位置を定めることができる。
 また或いは、前記光学部品の前記端部及び前記光ファイバの端部は共に視認可能な状態とされ、前記当接工程後において、前記光学部品の前記端部と前記光ファイバの前記端部とを視認して、前記部品設置用基板と前記光ファイバ固定用基板との当接面に平行な方向のうち前記光ファイバの長手方向に垂直な方向の相対的な位置を調整するアライメント工程を更に備えることが好ましい。
 光学部品の端部と光ファイバの端部とを視認して、光学部品の端部と光ファイバの端部との相対的位置を調整することにより、正確にそれぞれの位置を調整することができる。なお、光学部品の端部や光ファイバの端部が視認可能であるとは、光学部品の端部や光ファイバの端部をカメラ等で撮影してモニタを介して視認する場合も含まれる。さらに光学部品の端部や光ファイバの端部を視認する光の波長は、可視光の波長に限らず赤外光等の非可視光の波長を含む。
 この場合、前記光ファイバの前記端部が前記光ファイバ固定用基板から突出した状態で、前記光ファイバは固定されることとしても良い。光ファイバの端部を直接視認することで、より容易に位置調整工程を行うことができる。
 或いは、前記光ファイバ固定用基板は光透過性であり、前記光ファイバの前記端部を前記光ファイバ固定用基板を介して視認することとしても良い。
 光ファイバ固定用基板を介して光ファイバを視認することで、光ファイバの端部が光ファイバ固定用基板から突出せずともアライメントを行うことができる。つまり、光ファイバの端部が光ファイバ固定用基板の縁よりも内側に位置するように光ファイバを固定することができる。これにより、各工程において、光ファイバの端部が他の部分に当たって損傷を受ける可能性を低くすることができる。例えば、光ファイバ固定用基板がSiからなる場合には、光ファイバ固定用基板は赤外光を透過するため、赤外光を用いて光ファイバの端部を視認すればよい。
 また或いは、前記光学部品の前記端部は視認可能な状態とされ、前記光ファイバ固定用基板は光透過性であり、前記当接工程後において、前記光学部品の前記端部と前記V溝のセンターラインとを視認して、前記部品設置用基板と前記光ファイバ固定用基板との当接面に平行で前記光ファイバの長手方向に垂直な方向の相対的な位置を調整するアライメント工程を更に備えることとしても良い。
 V溝に配置される光ファイバの軸とV溝の中心軸とは互いに一致する。また、V溝の中心位置は、通常V溝の最も深い位置であり、光ファイバ固定用基板を介して線状に見えるため視認し易い。従って、容易に光ファイバの中心軸を把握することができ、容易にアライメントを行うことができる。なお、V溝のセンターラインを視認する場合、V溝のセンターラインをカメラ等で撮影してモニタを介して視認する場合も含まれ、視認する光の波長は、可視光の波長に限らず赤外光等の非可視光の波長を含む。
 また、前記部品設置用基板を平面視する場合における前記光ファイバが配置されるべき位置には、前記部品設置用基板と前記光ファイバ固定用基板とを当接した際に前記光ファイバが前記部品設置用基板に接触しないよう溝が形成されることが好ましい。
 このような溝が形成されることで、光ファイバがV溝内に埋もれることなく、光ファイバの一部がV溝から光ファイバ固定用基板の厚み方向にはみ出る場合であっても、適切に基板同士の当接を行うことができる。
 また、前記固定工程において、前記光ファイバの中心軸を基準とした前記光ファイバの回転方向を調整することとしても良い。この場合、前記光ファイバが偏波保持光ファイバ或いはマルチコア光ファイバであることが好ましい。
 この場合、光ファイバの回転方向を調整する光ファイバが偏波保持光ファイバやマルチコア光ファイバといった具合に、中心軸を基準とした回転方向の調心を行う必要がある光ファイバを用いる場合に好適である。なお、光ファイバの回転方向の調整は、光ファイバをV溝に配置する前に行われることが、調整を行いやすいため好ましい。ただし、当該調整は、光ファイバをV溝に配置した後に行われても良く、光ファイバをV溝に配置する際に行っても良い。
 以上のように、本発明によれば、光の損失を抑制することができる光学装置を容易に製造することができる光学装置の製造方法が提供される。
本発明の実施形態に係る光学装置を示す平面図である。 図1に示す光学装置の側面図である。 図1、図2に示す光学装置のV-V線における断面図である。 図1、図2に示す光学装置のV-V線における断面図である。 光学装置の製造方法の工程を示すフローチャートである。 部品設置用基板と光ファイバ固定用基板とが当接される様子を示す図である。 第1アライメント工程、第2アライメント工程の様子を示す図である。 第2実施形態において部品設置用基板と光ファイバ固定用基板とが当接される様子を示す図である。 第2実施形態におけるアライメント工程の様子を示す図である。 第3実施形態において部品設置用基板と光ファイバ固定用基板とが当接される様子を示す図である。 第4実施形態の光学装置を図3と同じ視点で示す図である。 第5実施形態の光学装置を図3と同じ視点で示す図である。 第5実施形態の光学装置を図4と同じ視点で示す図である。
 以下、本発明に係る光学装置の製造方法の好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図に記載のスケールと以下の説明に記載のスケールとが異なる場合がある。
 (第1実施形態)
 図1は、本発明の実施形態に係る光学装置を示す図であり、図1に示す光学装置の側面図である。また、図3は、図1、図2に示す光学装置のV-V線における断面図であり、図4は、図1、図2に示す光学装置のV-V線における断面図である。
 図1、図2に示すように、光学装置1は、部品設置用基板10と、部品設置用基板10上に設けられる光学層20と、部品設置用基板10上に配置される光ファイバ固定用基板30と、光ファイバ固定用基板30に固定される光ファイバ40とを主な構成として備える。
 部品設置用基板10は、一方の面側から平面視する場合に略四角形の形状をしている。部品設置用基板10の一方の面側には、溝15が形成されており、溝15を基準とした一方側は光学部品設置部11とされ、溝15の他方側は光ファイバ配置部12とされる。溝15で分割された光学部品設置部11の表面11sと光ファイバ配置部12の表面12sとは、互いに面一とされている。また、光ファイバ配置部12には、溝15と直交する方向に延在し溝15よりも浅く形成された溝16が形成されている。
 光学部品設置部11の表面11s上には、光学層20が設けられている。光学層20は複数の薄膜から形成されている。具体的には、光学層20は、表面11s上に形成される下層と、下層上に形成される上層と、下層と上層との間に形成される光素子層21及び導波路22から構成されている。ただし、下層と上層とを視認可能な図2、図4において、下層と上層との境界は省略されている。下層及び上層は、例えば、SiO2から成る。また、光素子層21は、光を受けて所定の光学的動作を行う層であり、例えば、フォトダイオード層とされる。また、導波路22はSiからなる。従って、導波路22は、下層及び上層との屈折率差により所定の波長の光を導波することができる。例えば、導波路22は、厚みが0.5μmとされ、幅が厚みと略同等とされて、波長が1550nmの光をシングルモードで伝搬することができる。そして、導波路22は光素子層21と光学的に接続されており、導波路22に入射して導波路22を伝搬する光は光素子層21に入射し、光素子層21から出射する光は導波路22を伝搬して導波路22から出射する。本実施形態では、光素子層21と導波路22とにより、光学部品23が構成されている。また、導波路22は、光学層20の溝15側の縁まで延在しており、導波路22の溝15側の端部25が光ファイバ40と光学的に接続されるべき端部25とされる。なお、端部25では、必要に応じて、光ファイバ40とのモードフィールド径を整合させるために、モードフィールド径変換部が設置される。
 また、光ファイバ固定用基板30は、部品設置用基板10の光ファイバ配置部12の表面12s上に配置可能な大きさとされる。そして、光ファイバ固定用基板30は、光ファイバ配置部12の表面12s側に形成されている溝16の少なくとも一部を覆って、光ファイバ配置部12の表面12s上に配置されている。また、図3に示すように、光ファイバ固定用基板30の光ファイバ配置部12側には、V溝35が直線状に形成されている。そして、光ファイバ固定用基板30が光ファイバ配置部12上に配置された状態で、V溝35は、溝16の長手方向、すなわち部品設置用基板10に形成された溝15の長手方向に垂直な方向に沿っている。つまり、光ファイバ固定用基板30は、V溝35がこのような方向を向くように光ファイバ配置部12上に配置されているのである。そして、部品設置用基板10の表面12sと光ファイバ固定用基板30のV溝側の表面30sとは、融着や接着により互いに固定されている。なお、接着による固定において、部品設置用基板10の表面12sと光ファイバ固定用基板30の表面30sの当接には、表面12sと表面30sとが接触して当接する場合の他、接着剤を介して当接する場合を含む。
 光ファイバ40は、コア41と、コア41の外周面を覆うクラッド42とから成る。このコア41はクラッド42と所定の屈折率差とされ、所定の径を有しており、導波路22がシングルモードで伝搬する波長の光をシングルモードで伝搬することができる。そして、光ファイバ40は、光ファイバ固定用基板30に形成されたV溝35の長手方向に沿って、V溝35に固定されている。なお、本実施形態では、光ファイバ40は、一方の端部45が光ファイバ固定用基板30から突出するようにしてV溝35に固定されている。また、図3に示すように、光ファイバ40は、V溝35内に埋もれずに、V溝から直径方向にはみ出ている。しかし、光ファイバ固定用基板30が部品設置用基板10の光ファイバ配置部12上に配置された状態で、光ファイバ40の一部は、溝16内に位置し、光ファイバ40と部品設置用基板10とは互いに接触しない。また、図4に示すように、導波路22の端部25と光ファイバ40の一方の端部45とが互いに接続されており、導波路22と光ファイバ40のコア41とが光学的に結合されている。
 このような光学装置1では、光ファイバ40のコア41を導波路22に向かって光が伝搬する場合には、当該光は導波路22を介して光素子層21まで到達する。一方、光素子層21が導波路22に光を出射する場合には、当該光は導波路22から光ファイバに伝搬する。
 次に光学装置1の製造方法について説明する。
 図5は、光学装置1の製造方法の工程を示すフローチャートである。図5に示すように、本実施形態の光学装置1の製造方法は、光学部品設置工程P1と、光ファイバ固定工程P2と、当接工程P3と、第1アライメント工程P4と、第2アライメント工程P5とを備える。図6は、光学層20が設置された部品設置用基板10と、光ファイバ40が固定された光ファイバ固定用基板30とを当接する様子を示す図である。
 <光学部品設置工程P1>
 まず、部品設置用基板10となる基板を準備する。本実施形態では、この基板は表面が酸化したシリコン基板とされる。つまり、この基板は、主にSiから成り、表面がSiO層とされているのである。このSiO層が、光学層20の下層に該当する。なお、この基板は、平板状の基板であり、溝15及び溝16が形成されていない。
 次に、シリコン基板のSiO層上に光素子層21やSi層から成る導波路22を形成する。光素子層21や導波路22の形成は、例えば、CVD(Chemical Vapor Deposition)や蒸着等の成膜工程と、必要な部位以外をエッチング等で除去する除去工程との組み合わせからなる薄膜工程により行う。このとき、溝15が形成されるべき領域まで導波路22が延在するように導波路22を形成する。次に、光学部品設置部11となる領域にSiO膜を成膜する。このSiO膜が光学層20の上層である。このとき上層が溝15が形成されるべき領域まではみ出るようにSiO膜を成膜する。こうして光素子層21及び導波路22がSiOから成る下層と上層とで挟まれた状態とされる。この工程において、光ファイバ配置部12上に成膜が施されたり、光ファイバ配置部12がエッチングされる場合には、光ファイバ配置部12の表面12sは、成膜が施された膜を含む表面上であったり、エッチングが施された状態の表面上であったりする。
 なお、部品設置用基板10となる基板としては、表面が酸化したシリコン基板の他に、例えば、Si基板と表面Si層の間にSiO層が挿入された構造のSOI(silicon on insulator)基板を使用することもできる。この場合、表面のSi層をエッチングして導波路22を形成し、上記と同様の上層を形成する。
 次に、溝15が形成されるべき位置を基準として、光学層20が形成されている側と反対側の領域に溝16をエッチングにより形成する。このとき溝16は、溝15が形成されるべき領域まで延在するように形成される。
 次に、溝15を形成する。溝15は、例えばダイシングにより形成される。上記のように、導波路22は、溝15が形成されるべき領域まで延在しているため、ダイシングにより導波路22が光学層20の側面から露出する。この導波路22の露出する部分を含む端部が、光ファイバ40のコアと光学的に結合されるべき端部25とされる。また、溝15は、溝16よりも深く形成される。上記のように溝16は溝15が形成されるべき領域まで延在して形成されるため、溝15を形成することで、溝16と溝15とがつながる。溝15が形成されることで、基板の光学層20が成膜されている側が光学部品設置部11とされ、溝16が形成されている側が光ファイバ配置部12とされる。こうして、溝15及び溝16が形成されることで、準備した基板から部品設置用基板10が形成される。なお、溝15は、溝16と接する領域に形成されていれば良く、部品設置用基板10の一方の側面から他方の側面に渡って形成されていなくても良い。
 なお、光学部品23を上記のように成膜やエッチング等の薄膜工程を用いて設置する場合、光学部品23の光ファイバと接続されるべき端部25を形成するために成膜する膜の厚み及びエッチングする膜の厚みの総計は、光ファイバ40を伝搬する光のモードフィールド径の2.5倍以下とされることが好ましい。これは次の理由による。一般的に成膜工程を経て成膜される薄膜の厚みは、成膜されるべき設計値の薄膜の厚みに対して10%以内の誤差を有する。同様に一般的にエッチング工程を経て除去される薄膜の厚みは、除去されるべき設計値の薄膜の厚みに対して10%以内の誤差を有する。ところで、一般的に光ファイバ40の端部45におけるコア41の軸と、光学部品23の端部25との軸ずれが光ファイバ40を伝搬する光のモードフィールド径の25%以下であれば、光学部品23の端部25と光ファイバ40の端部45との接続部における光の損失が1dB以下となる。従って、成膜やエッチングの膜厚の誤差に起因して、光学部品23の端部25の位置がずれる場合であっても、光学部品23の端部25と光ファイバ40の端部45の位置ずれがモードフィールド径の25%以下とされることが好ましい。従って、光学部品23の端部25を形成するために成膜する膜の厚み及びエッチングする膜の厚みの上記総計は、0.25/0.10=2.5より、モードフィールド径の2.5倍以下とされることが好ましいのである。
 以上のような薄膜工程を経て、図6に示すように、部品設置用基板10上に光素子層21と導波路22とから成る光学部品23が設置される。なお、上記光学部品23の形成方法は一例であり、他の形成方法により部品設置用基板10上に光学部品23を形成しても良い。
 <光ファイバ固定工程P2>
 本工程では、まず、光ファイバ40が固定される光ファイバ固定用基板30となる基板、及び、光ファイバ40を準備する。この基板は、V溝35が形成されておらず、平板状とされる。この基板は、例えばSi等から形成される特定の波長の光を透過する基板とされる。なお、光ファイバ40のクラッド42が樹脂等の保護層で被覆されている場合、端部45から所定の長さにわたって被覆層を剥離する。
 次に、準備した基板の一方の面にV溝35を形成する。一般的にエッチング工程によりV溝35を形成するが、切削によりV溝35を形成しても良い。V溝35は、後述のように部品設置用基板10上に光ファイバ固定用基板30が配置された際に、部品設置用基板10と光ファイバ固定用基板30との当接面に垂直な方向において、光ファイバ40のコア41の軸と、導波路22の軸とが一致するように形成される。従って、部品設置工程P1において、部品設置用基板10における光ファイバ配置部12上に薄膜が積層されたり、光ファイバ配置部12がエッチングされたりする場合、積層される薄膜やエッチングの量を考慮してV溝35の大きさを定める。こうして準備した基板にV溝35が形成されて、当該基板が光ファイバ固定用基板30とされる。
 次に、光ファイバ40をV溝35に配置し、光ファイバ40を光ファイバ固定用基板30に固定する。このとき、光ファイバ40は、端部45が光ファイバ固定用基板30から突出するように、V溝に配置されることが好ましい。このように光ファイバ40が配置されることで、光ファイバ40の位置を調整する段階で、光ファイバ40を直接視認することができる。なお、光ファイバ40の光ファイバ固定用基板30への固定は、例えば接着剤を用いて行われる。
 なお、本工程と光学部品設置工程P1とを同時に行っても良く、光学部品設置工程P1を本工程の後に行っても良い。
 <当接工程P3>
 次に当接工程P3を行う。本工程では、図6に示すように、光学部品23が設けられた部品設置用基板10の光学部品23が設けられている側の表面の一部と、光ファイバ固定用基板30の光ファイバ40が固定されている側の表面の少なくとも一部とを当接する。
 具体的には、部品設置用基板10の光ファイバ配置部12の表面12sと光ファイバ固定用基板30の光ファイバ40が固定されている側の表面30sとが当接するように、部品設置用基板10上に光ファイバ固定用基板30を配置する。このとき、光ファイバ40の一部が表面30sに垂直な方向にV溝35からはみ出ている場合であっても、この光ファイバ40のはみ出ている部分は、部品設置用基板10に形成されている溝16内に収容される。従って、この光ファイバ40のはみ出ている部分が光ファイバ配置部12の表面12sと光ファイバ固定用基板30の表面30sとの当接を邪魔することを、溝16が防止している。
 上記のように、V溝35は、部品設置用基板10と光ファイバ固定用基板30との当接面に垂直な方向において、導波路22の軸と光ファイバ40のコア41の軸とが一致するように形成されているため、本工程により、光学部品23の端部25と光ファイバ40の端部45の部品設置用基板10と光ファイバ固定用基板30との当接面に垂直な方向におけるアライメントが完了する。
 <第1アライメント工程P4>
 次に第1アライメント工程を行う。図7は、本実施形態の第1アライメント工程P4及び第2アライメント工程P5の様子を示す図である。第1アライメント工程P4では、光ファイバ40の長手方向に沿って光ファイバ固定用基板30を移動させて、光学部品23の端部25と光ファイバ40の端部45の間隔を調整する。つまり、図7に示すx方向に光ファイバ固定用基板30を移動させるのである。本工程により、例えば、光学部品23の端部25と光ファイバ40の端部45との間隔がゼロとする場合には、光ファイバ40の端部45を光学部品23の端部25につき当てるように光ファイバ固定用基板30をx方向に移動する。また、光学部品23の端部25と光ファイバ40の端部45との間に所定の間隔を設ける場合には、光学部品23の端部25と光ファイバ40の端部45との間が当該所定の間隔となるように光ファイバ固定用基板30をx方向に移動する。
 光ファイバ固定用基板30の移動は、光ファイバ40の端部45を視認して行うことが好ましい。このとき光ファイバ40をカメラで撮影して、撮影した画像をモニタすることで光ファイバ40を視認することが好ましい。
 本実施形態の図で示すように、光ファイバ40の端部45が光ファイバ固定用基板30から突出している場合には、光ファイバ40の端部45を直接視認して光ファイバ固定用基板30をx方向に移動する。上記のようにカメラを用いて視認する場合には、光ファイバ40を直接カメラで撮影して視認する。
 一方、本実施形態の図とは異なり、光ファイバ40の端部45が光ファイバ40の長手方向に沿って光ファイバ固定用基板30から突出していない場合には、光ファイバ固定用基板30を介して光ファイバ40の端部45を視認する。この場合、光ファイバ固定用基板30は、少なくとも所定の波長の光を透過する光透過性である必要がある。光ファイバ固定用基板30が光透過性であれば、光ファイバ固定用基板30を透過する波長の光を用いて光ファイバ40の端部45を視認する。例えば、光ファイバ固定用基板30がSiからなる場合、赤外光を用いて光ファイバ40を視認すればよい。
 また、光ファイバ40の端部45を視認せずに本工程を行っても良い。例えば、上記のように光ファイバ40の端部45を光学部品23の端部25につき当てるように光ファイバ固定用基板30をx方向に移動する場合、特に光ファイバ40の端部45を視認しなくても良い。ただし、このアライメント工程において光ファイバ40が破損することを抑制するために、光ファイバ40の端部45を視認することが好ましい。或いは、光学部品23が光学的に動作可能である場合には、光ファイバ40から光学部品23に光を出射して光学部品23からの出力を測定したり、光学部品23から光ファイバ40に光を出射して光ファイバ40からの出力を測定したりして、当該測定結果に基づいて光ファイバ固定用基板30を移動させても良い。また、光ファイバ40の端部45と光ファイバ固定用基板30の光学部品23側の端面との距離が既知の場合、例えば、光ファイバ40の端部45がV溝35内に位置し、当該端部45と固定用基板30の光学部品23側の端面との距離が既知の場合には、光学部品23の端部25と固定用基板30の上記端面とが所定の距離となるように固定用基板30の位置を調整することで、光ファイバ40の端部45の位置調整を行っても良い。このように光ファイバ40を固定用基板30に配置するには、光ファイバ固定工程P2において、固定用基板30の光学部品23側となる端面と光ファイバ40の端部45との距離が所定の距離となるように光ファイバ40をV溝35内に配置しても良く、光ファイバ40をV溝35内に配置した後に固定用基板30の光学部品23側となる端面と光ファイバ40の端部45との距離を計測しても良い。
 こうして光ファイバ40の長手方向におけるアライメントが完了する。
 <第2アライメント工程P5>
 次に第2アライメント工程を行う。第2アライメント工程P5では、部品設置用基板10と光ファイバ固定用基板30との当接面に平行な方向のうち光ファイバ40の長手方向に垂直な方向に沿って光ファイバ固定用基板30を移動させて、部品設置用基板10と光ファイバ固定用基板30との相対的な位置を調整する。つまり、図7に示すy方向に光ファイバ固定用基板30を移動させるのである。本工程では、光ファイバ40の長手方向に垂直な方向における光学部品23の端部25と光ファイバ40の端部45とのアライメントが行われる。従って、光学部品23の端部25の軸と光ファイバ40の端部45の軸とが合うように光ファイバ固定用基板30のy方向の位置が調整される。
 光ファイバ固定用基板30の移動は、光学部品23の端部25及び光ファイバ40の端部45におけるコア41を視認して行うことが好ましい。この場合、光学部品23の端部25及び光ファイバ40の端部45におけるコア41をカメラで撮影して、撮影した画像をモニタすることで光学部品23の端部25及び光ファイバ40の端部45におけるコア41を視認することが好ましい。
 本工程において本実施形態の図で示すように、光ファイバ40の端部45が光ファイバ固定用基板30から突出している場合には、光ファイバ40の端部45におけるコア41を直接視認して光ファイバ固定用基板30をy方向に移動させる。上記のようにカメラを用いて視認する場合には、光ファイバ40を直接カメラで撮影して視認する。
 一方、本実施形態の図とは異なり、光ファイバ40の端部45が光ファイバ40の長手方向に沿って光ファイバ固定用基板30から突出していない場合には、光ファイバ固定用基板30を介して光ファイバ40の端部45におけるコア41を視認する。或いは、この場合、光ファイバ40を視認せずに、V溝35のセンターライン35cを視認しても良い。これは、光ファイバ40がV溝35に配置される場合、V溝35のセンターライン35cと光ファイバ40の軸(コア41の軸)とは、V溝35の深さ方向に見る場合に一致するためである。光ファイバ固定用基板30を介して光ファイバ40のコア41やV溝35のセンターライン35cの視認を行う場合、光ファイバ固定用基板30は、少なくとも所定の波長の光を透過する光透過性である必要がある。光ファイバ固定用基板30が光透過性であれば、光ファイバ固定用基板30を透過する波長の光を用いて光ファイバ40の端部45を視認する。例えば、光ファイバ固定用基板30がSiからなる場合、赤外光を用いて光ファイバ40を視認すればよい。
 また、例えば本実施形態の図のように、光学部品23の端部25が光学層20の上層により露出していない場合には、光学層20の上層を介して光学部品23の端部25を視認する。光学層20の上層を介して端部25の視認を行う場合、当該上層は、少なくとも所定の波長の光を透過する光透過性である必要がある。当該上層が光透過性であれば、当該上層を透過する波長の光を用いて光学部品23の端部25を視認する。例えば、上記のように光学層20の上層がSiからなる場合、赤外光を用いて光学部品23の端部25を視認すればよい。この場合、上記のように光ファイバ固定用基板30がSiから成れば、赤外光を用いて光ファイバ40のコア41や光ファイバ固定用基板30のV溝35のセンターライン35cと光学部品23の端部25とを同時に視認することができる。一方、本実施形態の図と異なり、光学部品23の端部25が露出している場合には、光学部品23の端部25を直接視認する。
 また、光学部品23の端部25を視認せずに本工程を行っても良い。例えば、光学部品23が光学的に動作可能である場合には、光ファイバ40から光学部品23に光を出射して光学部品23からの出力を測定たり、光学部品23から光ファイバ40に光を出射して光ファイバ40からの出力を測定たりして、当該測定結果に基づいて光ファイバ固定用基板30をy方向に移動させれば良い。
 こうして、部品設置用基板10と光ファイバ固定用基板30との当接面に平行な方向のうち光ファイバ40の長手方向に垂直な方向のアライメントが完了する。なお、本工程と第1アライメント工程P4とを同時に行っても良い。また、本工程の後に第1アライメント工程P4を行っても良い。
 次に、部品設置用基板10と光ファイバ固定用基板30とを互いに固定する。部品設置用基板10と光ファイバ固定用基板30との固定は、融着や接着により行う。融着は例えばレーザ融着や超音波接合により行う。接着は、例えば、光ファイバ固定用基板30の表面30sに予め塗布しておいた接着剤を固化させることで行なったり、上記アライメント工程の完了後に光ファイバ固定用基板30の表面30sの縁と部品設置用基板10における光ファイバ配置部12の表面12sとに接着剤を塗布して固化させることで行っても良い。
 こうして図1~4に示す光学装置1を得る。
 以上説明したように、本実施形態の光学装置1の製造方法によれば、光ファイバ40が固定される光ファイバ固定用基板30と光学部品23が設置される部品設置用基板10とが別の基板とされる。部品設置用基板10においては、光学部品23が薄膜工程を経て設置される。このため、部品設置用基板10における光ファイバ配置部12の表面12sが成膜やエッチングの影響で物性が変化して荒れる場合であっても、光ファイバ固定用基板30へのV溝35の形成に影響はない。従って、光ファイバ固定用基板30へのV溝35を正確な位置や大きさで形成することができる。また、たとえ光学部品23を設置後に光ファイバ配置部12の表面12sが荒れた状態であっても、表面の物性が変わるだけであり、部品設置用基板10の厚みへの影響は殆どない。従って、光ファイバ固定用基板30にV溝35を正確に形成し、光ファイバ40が固定された光ファイバ固定用基板30を部品設置用基板10に当接させることで、光学部品23の端部25と光ファイバ40の端部45とが、当接面に垂直な方向にずれることを抑制することができ、それぞれの基板の当接面に垂直な方向における光ファイバ40のアライメントが完了する。このように、光ファイバ40の位置をアライメントする方向のうち、少なくとも当接面に垂直な方向におけるアライメントを容易に行うことができるのである。従って、光の損失を抑制することができる光学装置1を容易に製造することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について図8、図9を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図8は、本実施形態おいて部品設置用基板10と光ファイバ固定用基板30とが当接される様子を示す図である。図8に示すように、本実施形態の部品設置用基板10は、光ファイバ配置部12の表面12s上に一対のガイド51が設けられる点において、第1実施形態の部品設置用基板10と異なる。これらのガイド51は、光ファイバ固定用基板30が部品設置用基板10上に配置された際に、光ファイバ固定用基板30と部品設置用基板10との当接面に平行な方向のうち、光ファイバ40の長手方向に垂直な方向(図7のy方向)における光ファイバ固定用基板30の動きを規制し、光ファイバ40の長手方向に沿った方向(図7のx方向)の光ファイバ固定用基板30の動きを非規制とする。
 これらガイド51は、光ファイバ固定用基板30の光ファイバ40の長手方向に垂直な方向の幅と同じ間隔をあけて設けられている。従って、一対のガイド51は、部品設置用基板10上において、光ファイバ固定用基板30の互いに対向する側面を挟み込むことにより、光ファイバ固定用基板30の上記動きの規制を行う。このため、一対のガイド51は、光ファイバ固定用基板30が部品設置用基板10上に配置された際に、光学部品23の端部25の軸と光ファイバ40の端部45の軸とが一致するように光ファイバ固定用基板30が位置されるような位置に設けられる。
 このようなガイド51を設けるには、第1実施形態の光学部品設置工程P1において、ガイドを形成すればよい。それぞれのガイド51の形成は、光学部品23を形成する薄膜工程において、光学部品23と共に形成されることが好ましい。一般に薄膜の形成位置の制御性は大変優れている。従って、当該薄膜でガイド51を形成すれば、ガイド51をより正確な位置に形成することができる。特に、光学部品23と共に形成することで、光学部品23を形成する際に用いるマスク中にガイド51を形成するためのパターンを設けることができ、光学部品23をガイド51との位置的相関性を適切にコントロールすることができるのである。
 そして、第1実施形態と同様に光ファイバ固定工程P2を行う。
 次に、第1実施形態と同様にして、当接工程P3を行う。ただし、本実施形態では、光ファイバ固定用基板30がそれぞれのガイド51で挟まれるように光ファイバ固定用基板30を部品設置用基板10上に配置する。
 図8は、本実施形態のアライメント工程を示す図である。第1実施形態では、第1アライメント工程P4と第2アライメント工程P5とを行ったが、本実施形態では、ガイド51が適切な位置に形成されることで、第2アライメント工程が不要である。従って、図8に示すように光ファイバ固定用基板30を光ファイバ40の長手方向に沿って移動させることで、アライメント工程を行う。当該アライメント工程の具体的手法、第1実施形態の第1アライメント工程P4と同様である。
 次に光ファイバ固定用基板30と部品設置用基板10とを第1実施形態と同様に固定する。こうして本実施形態の光学装置を得る。
 本実施形態の光学装置の製造方法によれば、部品設置用基板10に光ファイバ固定用基板30を配置するだけで、部品設置用基板10と光ファイバ固定用基板30とに当接面に平行な方向のうち光ファイバの長手方向に垂直な方向のアライメントを行うことができる。従って、本実施形態の光学装置の製造方法によれば、部品設置用基板10に光ファイバ固定用基板30を配置するだけで、光ファイバの長手方向に垂直な2方向のアライメントを行うことができる。従って、本実施形態の光学装置の製造方法によれば、第1実施形態の光学装置の製造方法と比べて、より容易に光の損失を抑制することができる光学装置を製造することができる。
 なお、本実施形態では、ガイド51を、光ファイバ固定用基板30の互いに対向する側面を挟み込む位置に設置しているが、ガイド51の位置はこれに限定されるものではない。例えば、光ファイバ固定用基板30の表面30sに、光ファイバ40の長手方向に平行な方向に延在する均一な溝を形成し、これと嵌合するような位置、形状のガイドを光ファイバ配置部12の表面12s上に設けても良い。
 また、ガイド51は、更に光ファイバ40の長手方向に沿った方向の光ファイバ固定用基板30の動きを規制するように設けられても良い。
 また、ガイド51は、光学部品設置工程P1とは別の薄膜工程により設けられても良く、さらに、薄膜により形成されず他の部材から形成されても良い。
 (第3実施形態)
 次に、本発明の第3実施形態について図10を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図10は、本実施形態おいて部品設置用基板10と光ファイバ固定用基板30とが当接される様子を示す図である。図10に示すように、本実施形態の部品設置用基板10は、光ファイバ配置部12の表面12s上に一対のアライメントマーク52が設けられる点において、第1実施形態の部品設置用基板10と異なる。
 このアライメントマーク52は、部品設置用基板10となる基板上に予め設けられていることが好ましい。そして、当該アライメントマークの位置を基準にして、第1実施形態と同様に光学部品設置工程P1が行われれば、アライメントマーク52と光学部品23の端部25との位置的関係を把握することができる。
 そして、第1実施形態と同様に光ファイバ固定工程P2を行う。
 次に、当接工程P3を行う。本実施形態の当接工程では、アライメントマーク52に基づいて、光ファイバ固定用基板30の位置を定めて、光ファイバ固定用基板30を部品設置用基板10上に配置する。上記のようにアライメントマーク52の位置と光学部品23の端部25の位置の関係が把握できていれば、光ファイバ固定用基板30を適切な位置に配置することができる。従って、第1実施形態の第1アライメント工程P4、第2アライメント工程P5を省略することができる。ただし、光ファイバ固定工程P2において、光ファイバ固定用基板30に対する光ファイバ40の端部45の位置がずれる場合には、第1アライメント工程P4を行うことが好ましい。
 次に光ファイバ固定用基板30と部品設置用基板10とを第1実施形態と同様に固定する。こうして本実施形態の光学装置を得る。
 (第4実施形態)
 次に、本発明の第4実施形態について図11を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図11は、本実施形態の光学装置を図3と同じ視点で示す図である。図11に示すように、本実施形態の光学装置1は、光ファイバ40がコア41を挟む一対の応力付与部43を有する点において、第1実施形態の光学装置1と異なる。つまり、実施形態の光ファイバ40は、偏波保持光ファイバの一種であるPANDA fiber(Polarization maintaining AND Absorption reducing fiber)とされる。応力付与部43は、光ファイバ40の製造時にコア41に応力を付与する部位である。それぞれの応力付与部43は、例えば、コアの直径よりも大きな直径とされ、コア41から一定の距離離れた位置に設けられる。このような応力付与部43を設けることにより、光ファイバ40は単一偏波の光を偏波軸が維持されたまま伝搬することができる。従って、このような光ファイバ40に入射する光も偏波保持光ファイバの応力付与部方向に偏波軸を整合、あるいは直行させた単一偏波の光とされる場合がある。このため導波路22を出射し光ファイバ40に入射、あるいは光ファイバ40から出射し導波路22に入射する光の偏波方向を整合させるために、光ファイバ40の回転軸方向の位置を調整することが重要となる。
 本実施形態の光学装置1の製造方法では、第1実施形態と同様に光学部品設置工程P1を行う。また、本実施形態の光ファイバ固定工程P2では、導波路22を出射し光ファイバ40を伝搬に入射、あるいは光ファイバ40から出射し導波路22に入射する光の偏波方向が所望の方向となるように、光ファイバ40の中心軸を基準とした光ファイバ40の回転方向を調整する。この調整は、例えば光ファイバ40の端部45を視認しながら行う。例えば光ファイバ40の端部45をカメラ等で撮影してモニタを介して視認すればよい。また、光ファイバ40の回転方向の調整は、光ファイバ40をV溝35に配置する前に行われることが、光ファイバ40の視認等により調整を行いやすいため好ましい。ただし、当該調整は、光ファイバ40をV溝35に配置した後に行われても良く、光ファイバ40をV溝35に配置する際に行っても良い。
 次に、当接工程P3、第1アライメント工程P4、第2アライメント工程P5を第1実施形態と同様にして行い、本実施形態の光学装置を得る。
 (第5実施形態)
 次に、本発明の第5実施形態について図12、図13を参照して詳細に説明する。なお、第1実施形態と同一又は同等の構成要素については、特に説明する場合を除き、同一の参照符号を付して重複する説明は省略する。
 図12は、本実施形態の光学装置を図3と同じ視点で示す図であり、図13は、本実施形態の光学装置を図4と同じ視点で示す図である。本実施形態の光学装置1は、図12に示すように、光ファイバ40がコア41を複数有するマルチコア光ファイバであり、図13に示すように、部品設置用基板10上の光学層20に複数の導波路22が形成される点において、第1実施形態の光学装置1と異なる。本実施形態の光ファイバ40では、複数のコア41が直線状に並んでいる。従って、部品設置用基板10上の光学層20に形成される複数の導波路22は、光ファイバ40の複数のコア41と同数で同間隔とされる。このような光学装置1では、それぞれの導波路22から出射する光が、光ファイバ40のそれぞれのコア41に入射する、或いは光ファイバ40のそれぞれのコア41から出射する光が、それぞれの導波路22に入射することが重要である。
 本実施形態の光学装置1の製造方法の光学部品設置工程P1は、複数の導波路22を形成する点において、第1実施形態の光学部品設置工程P1と異なる。本実施形態の本工程では、上記のように複数の導波路22の間隔が光ファイバ40の複数のコア41と同数で同間隔となるように、それぞれの導波路22を形成する。
 また、本実施形態の光ファイバ固定工程P2では、当接工程P3を行った後において光ファイバ40の複数のコア41の並び方向が光学層20の複数の導波路22の並び方向と同じになるように、光ファイバ40の中心軸を基準とした光ファイバ40の回転方向を調整する。この調整は、第4実施形態における調整と同様に行えばよい。なお、本実施形態でおいても、光ファイバ40の回転方向の調整は、光ファイバ40をV溝35に配置する前に行われることが好ましいが、当該調整は、光ファイバ40をV溝35に配置した後に行われても良く、光ファイバ40をV溝35に配置する際に行っても良い。
 次に、当接工程P3、第1アライメント工程P4、第2アライメント工程P5を第1実施形態と同様にして行い、本実施形態の光学装置を得る。
 以上、本発明について、第1~第5実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 例えば、上記実施形態では、光学部品23が光素子層21と導波路22とからなるものとした。しかし本発明はこれに限らず、例えば、光学部品が導波路のみからなっても良く、或いは、光学部品が光の入射及び出射の少なくとも一方を行う端部を有する光素子層のみからなっていても良い。
 また、部品設置用基板10に形成される溝15や溝16は不要であれば形成しなくても良い。
 以上説明したように、本発明の光学装置の製造方法によれば、光の損失を抑制することができる光学装置を容易に製造することができ、光通信機器や光計測機等の分野に利用することができる。
 1・・・光学装置
 10・・・部品設置用基板
 11・・・光学部品設置部
 12・・・光ファイバ配置部
 20・・・光学層
 21・・・光素子層
 22・・・導波路
 23・・・光学部品
 30・・・光ファイバ固定用基板
 35・・・V溝
 40・・・光ファイバ
 51・・・ガイド
 52・・・アライメントマーク
 P1・・・光学部品設置工程
 P2・・・光ファイバ固定工程
 P3・・・当接工程
 P4・・・第1アライメント工程
 P5・・・第2アライメント工程
 

Claims (12)

  1.  部品設置用基板の一方の面上に光ファイバと光学的に接続されるべき端部を有する光学部品を薄膜工程を用いて設置する光学部品設置工程と、
     光ファイバ固定用基板の一方の面側にV溝を形成し、当該V溝に前記光ファイバを固定する光ファイバ固定工程と、
     前記光学部品が設けられた部品設置用基板の前記光学部品が設けられている側の表面の一部と、前記光ファイバ固定用基板の前記光ファイバが固定されている側の表面の少なくとも一部とを当接する当接工程と、
    を備える
    ことを特徴とする光学装置の製造方法。
  2.  前記部品設置用基板には、前記光ファイバ固定用基板と前記部品設置用基板との当接面に平行な方向のうち前記光ファイバの長手方向に垂直な方向における前記光ファイバ設置用基板の動きを規制するガイドが形成される
    ことを特徴とする請求項1に記載の光学装置の製造方法。
  3.  前記ガイドは、前記光ファイバ設置用基板の前記光ファイバの長手方向に沿った動きを非規制状態とする
    ことを特徴とする請求項2に記載の光学装置の製造方法。
  4.  前記ガイドは、前記光学部品を設ける過程において形成される
    ことを特徴とする請求項2または3に記載の光学装置の製造方法。
  5.  前記部品設置用基板には、アライメントマークが設けられ、
     前記アライメントマークに基づいて、前記部品設置用基板と前記光ファイバ固定用基板との相対的な位置関係を定める
    ことを特徴とする請求項1に記載の光学装置の製造方法。
  6.  前記光学部品の前記端部及び前記光ファイバの端部は共に視認可能な状態とされ、
     前記当接工程後において、前記光学部品の前記端部と前記光ファイバの前記端部とを視認して、前記部品設置用基板と前記光ファイバ固定用基板との当接面に平行な方向のうち前記光ファイバの長手方向に垂直な方向の相対的な位置を調整するアライメント工程を更に備える
    ことを特徴とする請求項1に記載の光学装置の製造方法。
  7.  前記光ファイバの前記端部が前記光ファイバ固定用基板から突出した状態で、前記光ファイバは固定される
    ことを特徴とする請求項6に記載の光学装置の製造方法。
  8.  前記光ファイバ固定用基板は光透過性であり、前記光ファイバの前記端部を前記光ファイバ固定用基板を介して視認する
    ことを特徴とする請求項6に記載の光学装置の製造方法。
  9.  前記光学部品の前記端部は視認可能な状態とされ、
     前記光ファイバ固定用基板は光透過性であり、
     前記当接工程後において、前記光学部品の前記端部と前記V溝のセンターラインとを視認して、前記部品設置用基板と前記光ファイバ固定用基板との当接面に平行で前記光ファイバの長手方向に垂直な方向の相対的な位置を調整するアライメント工程を更に備える
    ことを特徴とする請求項1に記載の光学装置の製造方法。
  10.  前記部品設置用基板を平面視する場合における前記光ファイバが配置されるべき位置には、前記部品設置用基板と前記光ファイバ固定用基板とを当接した際に前記光ファイバが前記部品設置用基板に接触しないよう溝が形成される
    ことを特徴とする
    ことを特徴とする請求項1から9のいずれか1項に記載の光学装置の製造方法。
  11.  前記固定工程において、前記光ファイバの中心軸を基準とした前記光ファイバの回転方向を調整する
    ことを特徴とする請求項1から10のいずれか1項に記載の光学装置の製造方法。
  12.  前記光ファイバが偏波保持光ファイバ或いはマルチコア光ファイバである
    ことを特徴とする請求項11に記載の光学装置の製造方法。
PCT/JP2014/083933 2013-12-27 2014-12-22 光学装置の製造方法 WO2015098854A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015554887A JPWO2015098854A1 (ja) 2013-12-27 2014-12-22 光学装置の製造方法
US15/192,335 US20160306120A1 (en) 2013-12-27 2016-06-24 Production method for optical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013271123 2013-12-27
JP2013-271123 2013-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/192,335 Continuation US20160306120A1 (en) 2013-12-27 2016-06-24 Production method for optical devices

Publications (1)

Publication Number Publication Date
WO2015098854A1 true WO2015098854A1 (ja) 2015-07-02

Family

ID=53478707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083933 WO2015098854A1 (ja) 2013-12-27 2014-12-22 光学装置の製造方法

Country Status (3)

Country Link
US (1) US20160306120A1 (ja)
JP (1) JPWO2015098854A1 (ja)
WO (1) WO2015098854A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179285A1 (de) * 2015-12-07 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Steckbare faserkoppeleinheit, faserkoppelsystem und verfahren zur ankopplung von optischen fasern an integrierte optische wellenleiter
US20180217342A1 (en) * 2017-02-02 2018-08-02 Fujitsu Optical Components Limited Optical device and manufacturing method of optical device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7264273B2 (ja) * 2019-11-13 2023-04-25 日本電信電話株式会社 光デバイス
US11686906B1 (en) * 2020-10-12 2023-06-27 Poet Technologies, Inc. Self-aligned structure and method on interposer-based PIC

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189812A (ja) * 1987-02-03 1988-08-05 Nippon Telegr & Teleph Corp <Ntt> 光コネクタの製造方法
JPS644710A (en) * 1987-06-29 1989-01-09 Nippon Telegraph & Telephone Method for connecting light guide and optical fiber
JPH0213909A (ja) * 1988-07-01 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド光集積回路
JPH05100122A (ja) * 1991-10-11 1993-04-23 Fujitsu Ltd 導波路型光デバイス及びその製造方法並びに該光デバイスと他の光学要素の接続方法
JPH06138340A (ja) * 1992-10-26 1994-05-20 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバとの光結合構造
JPH0843677A (ja) * 1994-08-03 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバーの接続用治具及び接続方法
JPH08110428A (ja) * 1994-10-07 1996-04-30 Hitachi Cable Ltd 光導波路と光ファイバの接続構造
JPH08160249A (ja) * 1994-12-01 1996-06-21 Hitachi Cable Ltd 複屈折性を有する光ファイバと光導波路との接続構造
JPH08201649A (ja) * 1995-01-26 1996-08-09 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバとの接続構造および接続方法
JPH1082930A (ja) * 1996-09-06 1998-03-31 Mitsubishi Electric Corp 光モジュール,およびその製造方法
JPH1195062A (ja) * 1997-09-16 1999-04-09 Kyocera Corp 光接続構造
JPH11133264A (ja) * 1997-10-27 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ・ガイド部材の固定方法
JP2000171668A (ja) * 1998-12-09 2000-06-23 Fujitsu Ltd フェルールアセンブリ及び光モジュール
JP2001141953A (ja) * 1999-11-17 2001-05-25 Hitachi Ltd 光導波路モジュール
JP2002071985A (ja) * 2000-08-28 2002-03-12 Hitachi Cable Ltd 導波路素子
JP2002090578A (ja) * 2000-09-18 2002-03-27 Fujitsu Ltd フェルールアセンブリ及び光モジュール
JP2003156648A (ja) * 2001-11-21 2003-05-30 Ngk Insulators Ltd 偏波ファイバおよびその製造方法、並びにこれを用いたリボンファイバおよび光導波路デバイス、光ファイバアレイとその製造方法
JP2005345708A (ja) * 2004-06-02 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> 光導波路フィルムおよびその作製方法と接続方法
JP2013025113A (ja) * 2011-07-21 2013-02-04 Citizen Holdings Co Ltd 光モジュール

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2771167B2 (ja) * 1987-11-11 1998-07-02 株式会社日立製作所 光集積回路の実装方法
KR960014123B1 (ko) * 1991-05-20 1996-10-14 후루카와덴기코교 카부시키가이샤 광도파로와 광파이버의 접속방법
JPH06201936A (ja) * 1992-12-28 1994-07-22 Matsushita Electric Ind Co Ltd 光ファイバアレイ及びその製造方法
CA2127861C (en) * 1993-07-14 2004-09-21 Shinji Ishikawa Coupling structure of optical fibers and optical waveguides
JP2546506B2 (ja) * 1993-07-27 1996-10-23 日本電気株式会社 光半導体素子と光導波路の結合構造およびその結合方法
FR2716012B1 (fr) * 1994-02-09 1996-04-12 Corning Inc Procédé et dispositif d'assemblage d'extrémités de fibres optiques disposées en nappe.
JP3792040B2 (ja) * 1998-03-06 2006-06-28 松下電器産業株式会社 双方向光半導体装置
CA2258398A1 (en) * 1999-01-07 2000-07-07 Victor Benham An adhesive-free lens-attached optical fibers to optical waveguide packaging system
CA2274193A1 (en) * 1999-01-11 2000-07-11 Hamid Hatami-Hanza Method for making integrated and composite optical devices utilizing prefabrication optical fibers and such devices
US6529670B1 (en) * 1999-07-08 2003-03-04 The Furukawa Electric Co., Ltd. Optical fiber array and optical light-wave device, and connecting the same
US6341189B1 (en) * 1999-11-12 2002-01-22 Sparkolor Corporation Lenticular structure for integrated waveguides
JP3721935B2 (ja) * 2000-04-19 2005-11-30 住友電気工業株式会社 光学装置
US6964528B2 (en) * 2000-08-17 2005-11-15 Matsushita Electric Industrial Co., Ltd. Optical mount substrate, optical module, optical transmitter-receiver, optical transmitter-receiver system, and manufacturing method of optical mount substrate
US6766082B2 (en) * 2000-10-18 2004-07-20 Nippon Telegraph And Telephone Corporation Waveguide-type optical device and manufacturing method therefor
JP3712934B2 (ja) * 2000-11-01 2005-11-02 株式会社日立製作所 光導波路部材、その製造方法及び光モジュール
KR100439088B1 (ko) * 2001-09-14 2004-07-05 한국과학기술원 상호 자기 정렬된 다수의 식각 홈을 가지는 광결합 모듈및 그 제작방법
EP1321791A2 (en) * 2001-12-04 2003-06-25 Matsushita Electric Industrial Co., Ltd. Optical package substrate, optical device, optical module, and method for molding optical package substrate
JP2005352453A (ja) * 2004-05-12 2005-12-22 Nec Corp 光ファイバ部品及び光導波路モジュール並びにこれらの製造方法
JP2006065163A (ja) * 2004-08-30 2006-03-09 Omron Corp 光導波路装置
JP2006301610A (ja) * 2005-03-25 2006-11-02 Fuji Xerox Co Ltd 光結合装置
KR20080022553A (ko) * 2005-06-24 2008-03-11 쓰리엠 이노베이티브 프로퍼티즈 컴파니 외팔보형 섬유 어레이를 구비한 광학 장치 및 방법
JP4306678B2 (ja) * 2005-12-28 2009-08-05 ミツミ電機株式会社 光導波路装置の製造方法
WO2007080740A1 (ja) * 2006-01-13 2007-07-19 Mitsumi Electric Co., Ltd. 光導波路デバイス及び光導波路デバイスの製造装置
WO2011136741A1 (en) * 2010-04-29 2011-11-03 Agency For Science, Technology And Research An optical arrangement and a method of forming the same
JP5401399B2 (ja) * 2010-05-24 2014-01-29 日東電工株式会社 光接続構造およびこれに用いる光導波路の製法
JP5736743B2 (ja) * 2010-11-22 2015-06-17 日立化成株式会社 光ファイバコネクタ及びその製造方法
JP2012181266A (ja) * 2011-02-28 2012-09-20 Hitachi Chem Co Ltd 光ファイバコネクタ及びその製造方法

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189812A (ja) * 1987-02-03 1988-08-05 Nippon Telegr & Teleph Corp <Ntt> 光コネクタの製造方法
JPS644710A (en) * 1987-06-29 1989-01-09 Nippon Telegraph & Telephone Method for connecting light guide and optical fiber
JPH0213909A (ja) * 1988-07-01 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> ハイブリッド光集積回路
JPH05100122A (ja) * 1991-10-11 1993-04-23 Fujitsu Ltd 導波路型光デバイス及びその製造方法並びに該光デバイスと他の光学要素の接続方法
JPH06138340A (ja) * 1992-10-26 1994-05-20 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバとの光結合構造
JPH0843677A (ja) * 1994-08-03 1996-02-16 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバーの接続用治具及び接続方法
JPH08110428A (ja) * 1994-10-07 1996-04-30 Hitachi Cable Ltd 光導波路と光ファイバの接続構造
JPH08160249A (ja) * 1994-12-01 1996-06-21 Hitachi Cable Ltd 複屈折性を有する光ファイバと光導波路との接続構造
JPH08201649A (ja) * 1995-01-26 1996-08-09 Nippon Telegr & Teleph Corp <Ntt> 光導波路と光ファイバとの接続構造および接続方法
JPH1082930A (ja) * 1996-09-06 1998-03-31 Mitsubishi Electric Corp 光モジュール,およびその製造方法
JPH1195062A (ja) * 1997-09-16 1999-04-09 Kyocera Corp 光接続構造
JPH11133264A (ja) * 1997-10-27 1999-05-21 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ・ガイド部材の固定方法
JP2000171668A (ja) * 1998-12-09 2000-06-23 Fujitsu Ltd フェルールアセンブリ及び光モジュール
JP2001141953A (ja) * 1999-11-17 2001-05-25 Hitachi Ltd 光導波路モジュール
JP2002071985A (ja) * 2000-08-28 2002-03-12 Hitachi Cable Ltd 導波路素子
JP2002090578A (ja) * 2000-09-18 2002-03-27 Fujitsu Ltd フェルールアセンブリ及び光モジュール
JP2003156648A (ja) * 2001-11-21 2003-05-30 Ngk Insulators Ltd 偏波ファイバおよびその製造方法、並びにこれを用いたリボンファイバおよび光導波路デバイス、光ファイバアレイとその製造方法
JP2005345708A (ja) * 2004-06-02 2005-12-15 Nippon Telegr & Teleph Corp <Ntt> 光導波路フィルムおよびその作製方法と接続方法
JP2013025113A (ja) * 2011-07-21 2013-02-04 Citizen Holdings Co Ltd 光モジュール

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3179285A1 (de) * 2015-12-07 2017-06-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Steckbare faserkoppeleinheit, faserkoppelsystem und verfahren zur ankopplung von optischen fasern an integrierte optische wellenleiter
US9983360B2 (en) 2015-12-07 2018-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Plug-in fiber coupling unit, fiber coupling system and method for coupling optical fibers to integrated optical waveguides
US20180217342A1 (en) * 2017-02-02 2018-08-02 Fujitsu Optical Components Limited Optical device and manufacturing method of optical device
JP2018124488A (ja) * 2017-02-02 2018-08-09 富士通オプティカルコンポーネンツ株式会社 光デバイス及び光デバイスの製造方法

Also Published As

Publication number Publication date
US20160306120A1 (en) 2016-10-20
JPWO2015098854A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
KR960014123B1 (ko) 광도파로와 광파이버의 접속방법
US9008477B2 (en) Alignment of single-mode polymer waveguide (PWG) array and silicon waveguide (SiWG) array for providing adiabatic coupling
JP3749652B2 (ja) 光合分波器、光導波路モジュールおよび光通信装置
US9372305B2 (en) Alignment of single-mode polymer waveguide (PWG) array and silicon waveguide (SIWG) array of providing adiabatic coupling
WO2015098854A1 (ja) 光学装置の製造方法
WO2009119850A1 (ja) 複合光伝送基板および光モジュール
JP2008216905A (ja) 光モジュール及び光導波路の製造方法
US20090208167A1 (en) Manufacturing method of opto-electric hybrid board and opto-electric hybrid board obtained thereby
US10025040B2 (en) Connector for multilayered optical waveguide
US6728450B2 (en) Alignment of optical fibers with an optical device
JP2007072007A (ja) 光導波路モジュール
JP6052815B2 (ja) 導波路用のコネクタおよびアライメント方法
JP4385168B2 (ja) 回折格子及び分散補償回路
JP3631622B2 (ja) 光導波路と光ファイバとの接続構造および接続方法
JP6678510B2 (ja) 光導波路素子
KR20140024887A (ko) 두 개의 광 도파로를 위한 광 결합 시스템
US6744953B2 (en) Planar optical waveguide with alignment structure
TWI526723B (zh) 光波導組件、其製造方法、以及光波導裝置
KR20020056975A (ko) 랜드 마크를 이용한 평면 광도파로 소자
JP6427072B2 (ja) 光ファイバブロック
JP2006098897A (ja) 光学部品およびその製造方法
WO2022163481A1 (ja) 光回路基板およびそれを用いた電子部品実装構造体
JP5686015B2 (ja) 光コネクタ及び光コネクタの製造方法
US11480732B2 (en) Optical connection structure
JPH11295551A (ja) 光デバイス用光導波路モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875375

Country of ref document: EP

Kind code of ref document: A1