WO2015087395A1 - 走行制御装置 - Google Patents

走行制御装置 Download PDF

Info

Publication number
WO2015087395A1
WO2015087395A1 PCT/JP2013/083094 JP2013083094W WO2015087395A1 WO 2015087395 A1 WO2015087395 A1 WO 2015087395A1 JP 2013083094 W JP2013083094 W JP 2013083094W WO 2015087395 A1 WO2015087395 A1 WO 2015087395A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
intersection
stop
stop position
stopped
Prior art date
Application number
PCT/JP2013/083094
Other languages
English (en)
French (fr)
Inventor
茂樹 森田
永 菅原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/083094 priority Critical patent/WO2015087395A1/ja
Priority to CN201380081615.5A priority patent/CN105814619B/zh
Priority to JP2015552228A priority patent/JP6230620B2/ja
Priority to DE112013007677.2T priority patent/DE112013007677T5/de
Priority to US15/023,741 priority patent/US9884624B2/en
Publication of WO2015087395A1 publication Critical patent/WO2015087395A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/17Control of distance between vehicles, e.g. keeping a distance to preceding vehicle with provision for special action when the preceding vehicle comes to a halt, e.g. stop and go
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096708Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control
    • G08G1/096725Systems involving transmission of highway information, e.g. weather, speed limits where the received information might be used to generate an automatic action on the vehicle control where the received information generates an automatic action on the vehicle control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096733Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place
    • G08G1/096758Systems involving transmission of highway information, e.g. weather, speed limits where a selection of the information might take place where no selection takes place on the transmitted or the received information
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/161Decentralised systems, e.g. inter-vehicle communication
    • G08G1/163Decentralised systems, e.g. inter-vehicle communication involving continuous checking
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control

Definitions

  • the present invention relates to a travel control device having a function of traveling following a preceding vehicle.
  • the distance between the host vehicle and the preceding vehicle is detected by a sensor.
  • a travel control technology called adaptive auto cruise that adjusts the speed has been put into practical use.
  • brake control has been put into practical use, which has a function of stopping the host vehicle when the preceding vehicle decelerates or stops.
  • the veteran driver determines the states of a plurality of vehicles ahead in order to control the traveling speed of the host vehicle based on the relative distance and speed with the nearest preceding vehicle. Compared with the case where the speed of the host vehicle is adjusted, the acceleration / deceleration of the vehicle ahead is more likely to be affected by acceleration and deceleration. Therefore, in the follow-up running control device of Patent Document 1, it is possible to realize follow-up running considering the movements of a plurality of vehicles by calculating the relative positional relationship of not only the nearest preceding vehicle but also a plurality of vehicles and controlling the own vehicle. Is disclosed.
  • the driving support device of Patent Document 2 uses the information of the signal and the information of the vehicle existing near the stop line as infrastructure.
  • a configuration is disclosed that is obtained by communication from (hereinafter referred to as infrastructure), predicts a position where the host vehicle stops, and implements fuel efficiency improvement driving.
  • the timing at which the stop train starts when the vehicle turns green is predicted based on the signal information and the stop train length stopped at the intersection.
  • a configuration is disclosed that provides a driver with a speed that can be passed by stopping.
  • millimeter wave radar is employed as an example of a sensor that detects a plurality of vehicles ahead.
  • the radio wave reaches the vehicle ahead due to the gap between the vehicle and the road surface and the reflection of the road surface.
  • the distance and speed obtained from the Doppler frequency can be detected relatively accurately even for vehicles that cannot be seen directly, as described above, but the accuracy of the direction obtained from the difference in radio wave intensity is limited to the vehicle ahead. Deteriorated greatly compared to.
  • the vehicle that stops before the nearest preceding vehicle is a stopped vehicle that stops on the own lane according to the red signal at the intersection, and the vehicle needs to decelerate It is not possible to determine whether the vehicle is a parked vehicle and the vehicle can pass sideways without decelerating. Therefore, it is practically possible to decelerate the vehicle ahead of the nearest preceding vehicle. However, it was only possible to decelerate by relying only on the information of the vehicle ahead.
  • an object of the present invention is to provide a travel control device that can start deceleration of the host vehicle.
  • the travel control device is based on the distance information from the own vehicle to each of the preceding vehicles and the distance information to the intersection existing in front of the own vehicle.
  • the intersection stop vehicle determination unit and the intersection stop vehicle determination unit determine that the preceding vehicle is a stop vehicle
  • the stop position at the intersection of the own vehicle is predicted based on the distance information of the stop vehicle.
  • a vehicle stop position prediction unit is based on the distance information from the own vehicle to each of the preceding vehicles and the distance information to the intersection existing in front of the own vehicle.
  • the present invention it is determined whether one or more forward vehicles existing ahead of the host vehicle are stopped vehicles or parked vehicles stopped at the intersection, and in the case of a stopped vehicle stopped at the intersection, Because the stop position at the intersection of the own vehicle is predicted based on the position of the vehicle, it does not depend on the deceleration of the following vehicle, and even if the infrastructure equipment that delivers the signal information and the stopped vehicle information is not at the intersection, It becomes possible to decelerate the vehicle with the target stop position of the vehicle at the intersection. Accordingly, it is possible to provide a travel control device that can start deceleration of the host vehicle even if the vehicle ahead is stopped even when the vehicle ahead is not decelerated or stopped at an intersection without infrastructure facilities.
  • FIG. 1 It is a block diagram which shows the structure of the traveling control apparatus by Embodiment 1. It is a figure explaining the deceleration example in the intersection at the time of using the traveling control apparatus by Embodiment 1.
  • FIG. It is a figure explaining the example of deceleration other than the intersection at the time of using the traveling control apparatus by Embodiment 1.
  • FIG. It is a figure explaining the vehicle stop position prediction method of the traveling control apparatus by Embodiment 1.
  • FIG. It is a figure which shows the change of the stop position estimation range with respect to the magnitude
  • FIG. 4 is a flowchart showing an operation of an intersection processing unit of the travel control apparatus according to the first embodiment.
  • 5 is a flowchart showing an operation of a travel mode switching unit of the travel control device according to the first embodiment.
  • FIG. 3 is a state transition diagram of the travel control device according to the first embodiment.
  • FIG. 1 is a block diagram showing a configuration of a travel control device 10 according to Embodiment 1 of the present invention.
  • the travel control device 10 includes an intersection processing unit 11 having an intersection stop vehicle determination unit 12 and a vehicle stop position prediction unit 13, a travel mode switching unit 14, and a travel speed control unit 15, and the forward vehicle detection device 1 as an external device.
  • the front intersection distance acquisition device 2, the traveling speed setting device 3, the vehicle information providing device 4, the brake control device 5, the powertrain control device 6, and the notification device 7 are connected.
  • These external devices may be incorporated in the travel control device 10. Alternatively, some or all of the components of the travel control device 10 may be built in the external device.
  • the hardware of the traveling control device 10 is a general automotive ECU (Electronic Control Unit) such as a CPU (Central Processing Unit) that performs arithmetic processing, a memory that records information, a power supply device, and a communication interface that communicates with external devices. Consists of the same parts. Moreover, although each component in the traveling control apparatus 10 is described separately in the explanation of the present invention, the arithmetic processing of each component may be processed collectively by one CPU.
  • a CPU Central Processing Unit
  • the forward vehicle detection device 1 is configured by, for example, a millimeter wave radar or the like, and detects a relative distance, a relative speed, and a relative direction with respect to the own vehicle for a plurality of vehicles ahead of the own vehicle. Since the forward vehicle detection device 1 only needs to be able to detect the distance, speed, and direction of the forward vehicle, it does not use an in-vehicle sensor such as a millimeter wave radar, but uses a communication means and a server such as inter-vehicle communication or telematics. Thus, the vehicle position information of each other may be obtained.
  • the forward vehicle detection device 1 includes a communication means
  • the vehicle approaches the intersection where the vehicle detection device and the communication device are installed on the infrastructure side and can receive information on the infrastructure side the information is received from the infrastructure side.
  • the vehicle position around the intersection included in the information may be used.
  • the front intersection distance acquisition device 2 uses, for example, map data built in the car navigation device, detects an intersection in front of the position of the host vehicle, and acquires a distance between the distances.
  • the journey distance is a distance along the road, and in a curve, it is a distance along the curve shape. Since the front intersection distance acquisition device 2 only needs to be able to acquire the distance to the intersection, the map data on the server is referred to via a communication means such as a smartphone without using the map data of the in-vehicle navigation device, The distance to the intersection may be acquired, or map data downloaded in advance on a smartphone may be used.
  • the road linear information of the intersection included in the information received from the infrastructure side may be used.
  • the traveling speed setting device 3 is configured by, for example, an auto-cruise speed setting switch installed on the steering, and sets the traveling speed of the host vehicle when the switch is pressed.
  • the travel speed setting device 3 only needs to be able to set the travel speed.
  • the travel speed setting device 3 is obtained by recognizing the regulation speed preset in the map data of the car navigation device, the regulation speed obtained via the communication means, and the road sign.
  • An upper limit speed such as a regulation speed may be set as the traveling speed.
  • the traveling speed setting device 3 may have a function of changing to an appropriate speed lower than the regulation speed when traveling on a curve or the like using map data of a car navigation device or the like.
  • the travel speed setting device 3 is designated from a communication device installed at a place where a traffic jam is likely to occur, which is called a tunnel or a sag portion where the slope changes when traveling on a road where the communication device is installed on the infrastructure side.
  • the set speed may be set as the traveling speed.
  • the vehicle information providing device 4 collects information such as the traveling speed of the own vehicle, the position of the gear, the type of drive source (whether it is an internal combustion engine or a motor), the presence or absence of a driver brake and accelerator operation, and the like. To provide.
  • the intersection stop vehicle determination unit 12 of the intersection processing unit 11 includes a plurality of front vehicles based on distance information of a plurality of vehicles in front detected by the front vehicle detection device 1 and a distance to a front intersection acquired by the front intersection distance acquisition device 2. It is determined whether the vehicle is a parked vehicle or a stopped vehicle that has stopped due to a red light at a front intersection or a temporary stop.
  • the vehicle stop position prediction unit 13 of the intersection processing unit 11 determines a position at which the host vehicle and the preceding vehicle approach and stop when the intersection stop vehicle determination unit 12 determines that a stop vehicle exists at the front intersection. Predict. In addition, the vehicle stop position prediction unit 13 notifies the driver via the notification device 7 when a stop of the host vehicle at a front intersection is predicted. Detailed operations of the stop vehicle determination method of the intersection stop vehicle determination unit 12 and the stop position prediction method of the vehicle stop position prediction unit 13 will be described separately.
  • the travel mode switching unit 14 switches travel modes such as a set speed travel mode, an intersection deceleration mode, and a front vehicle following travel mode, calculates a target speed in the switched travel mode, and notifies the travel speed control unit 15 of the target speed.
  • travel modes such as a set speed travel mode, an intersection deceleration mode, and a front vehicle following travel mode
  • calculates a target speed in the switched travel mode and notifies the travel speed control unit 15 of the target speed.
  • the calculation methods of the various travel modes and the target speed will be described separately.
  • the travel mode switching unit 14 uses the information on the front vehicle detection device 1, the information on the travel speed setting device 3, and the intersection processing unit 11.
  • a change in the target speed until the vehicle stops at the front intersection is calculated from the information and the speed of the host vehicle provided from the vehicle information providing device 4, and sequentially output to the traveling speed control unit 15.
  • the travel speed control unit 15 provides the brake control device 5 and the powertrain control device 6 so that the speed of the host vehicle provided from the vehicle information providing device 4 becomes the target speed output from the travel mode switching unit 14. To output instructions.
  • the travel mode switching unit 14 and the travel speed control unit 15 cooperate to realize an auto cruise function.
  • the brake control device 5 is a device that controls the brake when deceleration that cannot be realized by an engine brake or the like is performed.
  • the brake is operated according to an instruction from the traveling speed control unit 15 to adjust the deceleration of the vehicle.
  • the power train control device 6 is a device for controlling the output of the power train such as the engine output or the motor output and the transmission gear ratio.
  • the power train control device 6 controls the output of the power train in accordance with an instruction from the traveling speed control unit 15 to Adjust acceleration and deceleration.
  • the notification device 7 is configured by, for example, a display device, a voice output device, or the like, and receives an instruction from the intersection processing unit 11 when a stop of the vehicle at a front intersection is predicted. The driver is notified by a buzzer or the like.
  • FIG. 2 shows an example of deceleration at an intersection when the travel control device 10 is used. Details of the stop position estimation range A shown in FIG. 2 will be described later.
  • the own vehicle 100 is traveling on the road 200 at the regulated speed, and the preceding vehicle 101 is traveling at a slightly higher speed in front of the own vehicle 100, so it is not in the following state.
  • the traveling control apparatus 10 since the traveling control apparatus 10 operates in the same manner whether or not it is in the following state, the description of the following state is omitted.
  • the preceding vehicle 101 that is following or is not following has not yet started to decelerate, but the preceding vehicles 102 and 103 ahead of the preceding vehicle 101 are stopped at the front intersection 201 by a red signal (not shown) or a temporary stop. It is in a state.
  • the oncoming vehicle 104 stops at the front intersection 201 due to a red light or the like.
  • the thin line shows the speed change of the preceding vehicle 101
  • the thick broken line shows the speed change of the own vehicle 100 in the conventional follow-up running mode (auto cruise).
  • the conventional auto-cruise function since the preceding vehicle 101 starts decelerating and detects that it has approached the own vehicle 100, the own vehicle 100 is similarly decelerated in accordance with the deceleration of the preceding vehicle 101.
  • the deceleration of the own vehicle 100 is also a strong deceleration, and the riding comfort is deteriorated. Further, since the output of the power train is maintained until deceleration is started, useless energy is consumed.
  • the preceding vehicle 102 and the preceding vehicle 103 are stopped before the front intersection 201 even if the preceding vehicle 101 has not started decelerating. If this is detected, it is determined that the preceding vehicle 102 and the preceding vehicle 103 are temporarily stopped at the front intersection 201 by a red signal or the like, and the preceding vehicle 101 needs to stop behind the preceding vehicle 102. Judgment is made, and it is judged that the own vehicle 100 needs to stop further behind, and the stop position of the own vehicle 100 (predicted stop position P100 shown in FIG. 2) is predicted.
  • the engine When stopping on the stop line in the absence of the preceding cars 101-103, the engine was turned off early and the engine brake was activated, and the fuel consumption improvement operation was implemented so that the section that does not consume energy can be taken longer by fuel cut.
  • the change in speed is shown by a thin broken line.
  • the accelerator is turned off with P100 as a target, the engine brake is operated, and the fuel efficiency improvement operation is performed so that the speed change shown by a thick solid line is obtained.
  • the present invention by switching the driving mode near the intersection, it is possible to perform the fuel efficiency improvement driving with good riding comfort even during tracking.
  • FIG. 2 an example of deceleration other than at an intersection is shown in FIG.
  • the own vehicle 100 is traveling on the road 200 at the regulated speed
  • the preceding vehicle 101 is traveling at a slightly higher speed.
  • the parked vehicles 105 and 106 are vehicles parked on the road edge.
  • changes in speed and distance of the host vehicle 100 and the preceding vehicle 101 are shown in a graph.
  • a thick line indicates the speed of the host vehicle 100
  • a thin line indicates the speed of the preceding vehicle 101.
  • the parking operation is performed using the parked vehicle 105 as the nearest forward obstacle, not following the preceding vehicle 101.
  • Embodiment 1 of the present invention only when there is an intersection in front of the host vehicle 100, the stopped vehicle is not a parked vehicle (for example, the parked vehicles 105 and 106 in FIG. 3), but an intersection stopped vehicle (for example, 2), the predicted stop position of the host vehicle is predicted, and it is determined whether or not to switch to the intersection deceleration mode.
  • the intersection processing unit 11 periodically acquires information on the speed and position (distance) of each vehicle via the forward vehicle detection device 1, and determines the speed of each vehicle from time t1 to time t2 after a certain time.
  • the change in distance is indicated by a solid line in the graph.
  • the vehicle stop position prediction unit 13 obtains a deceleration from the speed at time t1 and the speed at time t2. Further, the vehicle stop position prediction unit 13 sets the time when the speed becomes zero when the preceding vehicle 102 and the preceding vehicle 103 continue to decelerate at the deceleration and the stop position (the predicted stop position P102 of the preceding vehicle 102, the preceding vehicle). 103 predicted stop positions P103).
  • the preceding vehicle 101 has not yet started decelerating between time t1 and time t2, but when the predicted stop position P102 of the preceding vehicle 102 is predicted, it is necessary to stop behind it. Therefore, the vehicle stop position prediction unit 13 predicts that the preceding vehicle 101 stops with a certain inter-vehicle distance behind the predicted stop position P102 of the preceding vehicle 102 (predicted stop position P101 of the preceding vehicle 101).
  • the vehicle stop position prediction unit 13 predicts that the vehicle will stop with a certain inter-vehicle distance behind the predicted stop position P101. (Predicted stop position P100 of own vehicle 100).
  • the vehicle stop position prediction unit 13 predicts stop positions for the number of preceding vehicles 101 to 103 existing from the own vehicle 100 to the front intersection 201 in order from the closest to the front intersection 201, and finally stops the own vehicle 100. Predict location. Note that when the preceding vehicles 102 and 103 have already stopped as shown in FIG. 2, the predicted stop positions P102 and P103 are the same as the actual stop positions. Thus, if the preceding vehicle has started decelerating, the stop position can be predicted even if the preceding vehicle has not stopped.
  • a range regarded as a vehicle approaching the front intersection 201 is defined as a stop position estimation range A, and the range from the center of the front intersection 201 to a certain distance is targeted. Since the size of the front intersection 201 varies depending on the location, if the distance 203 from the front intersection 201 to the stop line 202 is large, the stop position estimation range A needs to be corrected accordingly.
  • the map data of the car navigation device or the like has position information of the stop line 202
  • the range of a certain distance from the stop line 202 is set as the stop position estimation range A, and the stop position estimation range A is stopped or decelerated. It is only necessary to predict the stop position for the vehicle that is in the vehicle, but since the position up to the stop line 202 is not recorded in a normal navigation device, it is necessary to estimate the position of the stop line 202.
  • the map data possessed by the navigation device or the like includes information on the distance and direction from an intersection or curve point on the road to the center of the next intersection, called a link, and points where a plurality of roads called nodes (see figure). 4 and the information of the intersection center 204) shown in FIG.
  • the intersection stop vehicle determination unit 12 can estimate the distance 203 to the stop line 202 as “half the road width + a constant distance”.
  • the road width is calculated from the number of lanes, the type of road (whether it is a general road or a main road such as a national road), and various attribute information included in the map data. Just guess.
  • the intersection stop vehicle determination unit 12 considers the shape of the forward intersection 201 to be line symmetric with respect to the intersection center 204, and passes through the intersection center 204.
  • the distance from the vehicle to the stop position of the oncoming vehicle 104 may be a distance 203 from the line passing through the intersection center 204 to the stop line 202.
  • FIG. 5 shows an example of a small forward intersection 201-1
  • FIG. 6 shows an example of a large forward intersection 201-2. In this example, it is assumed that the number of lanes is recorded in advance for large intersections in the map data of the navigation device.
  • the intersection stop vehicle determination unit 12 estimates the distance 203 from the intersection center 204 to the stop line 202 based on the intersection attribute information of the map data.
  • the distance 203 from the intersection center 204 to the stop line 202 is also small. Therefore, the intersection stop vehicle determination unit 12 sets the estimated distance (eg, 10 m) to a certain distance (eg, from one ordinary car). Assuming a stop of about 4 vehicles, 40 m) is added, and the stop position estimation range A is determined to be 50 m.
  • the number of lanes is three lanes on one side, so the stop line 202 is away from the intersection center 204.
  • the intersection stop vehicle determination unit 12 corrects the distance 203 to the stop line 202 by the number of lanes, and also corrects the stop position estimation range A by the correction amount to obtain the stop position estimation range A1.
  • the vehicle 120 that has been determined to be a parked vehicle at the small front intersection 201-1 in FIG. 5 is determined to be an intersection-stopped vehicle at the large front intersection 201-2.
  • the vehicles 121 and 122 are also determined to be vehicles that stop at the intersection.
  • FIG. 7 shows an example of a traffic jam at a small front intersection 201-1. Even at a small front intersection 201-1, if a slight traffic jam occurs due to a signal, a large number of vehicles 130 to 134 may stop in succession. Thus, when the forward vehicle detection device 1 detects that a large number of vehicles are stopped at regular intervals, the intersection stop vehicle determination unit 12 uses the standard stop position estimation range A estimated by the method of FIG. Is widely corrected to a stop position estimation range A2 in a traffic jam. Thus, the vehicle 130 that is determined to be a parked vehicle according to the standard stop position estimation range A is determined to be an intersection stop vehicle according to the stop position estimation range during traffic jams.
  • the distances D0 to D3 of the vehicles 130 to 134 are within a predetermined distance (for example, 10 ⁇ 7 m), and the vehicles 130 to 134 are continuous.
  • the intersection stop vehicle determination unit 12 performs processing such as correcting the stop position estimation range A.
  • the millimeter wave radar outputs multiple detection points in response to the shape of the cargo bed, trailer, structure under the vehicle, etc. Therefore, the correction distance of the stop position estimation range A may be increased accordingly.
  • the correction distance of the stop position estimation range A may be adjusted based on the vehicle type type.
  • the traveling speed control unit 15 is omitted because it is the same operation as the control of a general auto cruise device.
  • the intersection stop vehicle determination unit 12 acquires the distance from the vehicle position to the nearest forward intersection from the information acquired from the forward intersection distance acquisition device 2 (step ST1). Further, the intersection stop vehicle determination unit 12 is based on information for estimating the position of the stop line, such as the information on the stop line of the front intersection and the width of the intersecting road, included in the information obtained from the front intersection distance acquisition device 2. Estimate the stop line position.
  • the stop line position at the standard intersection size is set (step ST2). Subsequently, the intersection stop vehicle determination unit 12 sets a certain distance range from the intersection center of the front intersection as the stop position estimation range (for example, the stop position estimation range A in FIG. 4), and responds to the stop line position estimated in step ST2.
  • the stop position estimation range is corrected (step ST3).
  • the stop position estimation range is used to determine how far a stop vehicle from the center of the intersection is recognized as a stop vehicle that is temporarily stopped at the front intersection, and when the distance from the intersection center to the stop line is large Perform correction to widen the stop position estimation range.
  • the vehicle stop position prediction unit 13 acquires the position and speed of the forward vehicle existing in front of the host vehicle from the information obtained from the forward vehicle detection device 1.
  • the prediction unit 13 obtains the speed from the position change (step ST4).
  • the vehicle stop position prediction unit 13 predicts the stop position when the deceleration state is assumed to continue (step ST5), and the predicted stop position and already It is determined whether or not the stop position of the stopped vehicle is within the stop position estimation range (step ST6).
  • the vehicle stop position prediction unit 13 determines the number of vehicles between the own vehicle and the stop vehicle (including the estimated stop vehicle) in the forward vehicle detection device 1. (Step ST7). Subsequently, the vehicle stop position prediction unit 13 is behind the stop vehicle (including the estimated stop vehicle) that is closest to the host vehicle obtained in step ST5, and the distance (for example, one vehicle) for the number of vehicles obtained in step ST7. Therefore, the stop position of the host vehicle (for example, the predicted stop position P100 in FIG. 4) is predicted by adding the vehicle length of 5 m and the inter-vehicle distance of 5 m (a total of 10 m) (step ST8).
  • step ST6 NO
  • the vehicle stop position prediction unit 13 clears the predicted stop position of the own vehicle (step ST9). Thereafter, the flow returns to the process of step ST1, and the above-described process is repeated.
  • the processing operation of the travel mode switching unit 14 will be described with reference to FIG. (2) Travel Mode Switching and Target Speed Calculation Processing
  • the current vehicle speed is recorded as a travel speed set value by pressing a speed setting switch for auto cruise during travel.
  • the road speed limit value included in the map data of the car navigation device, the recognition result of the speed sign obtained by the in-vehicle camera, or the like may be used as the travel speed setting value.
  • the traveling speed setting device 3 performs the traveling speed setting operation as described above and stores the traveling speed setting value.
  • Travel mode switching unit 14 acquires the travel speed setting value stored by travel speed setting device 3 (step ST10). Subsequently, the traveling mode switching unit 14 determines whether or not the nearest preceding vehicle is decelerating or approaching the own vehicle based on the information obtained from the preceding vehicle detection device 1 (step ST11).
  • step ST11 If the nearest forward vehicle is decelerating and approaching earlier than the own vehicle (step ST11: YES), the vehicle is set to the preceding vehicle follow-up running mode that follows the nearest forward vehicle (step ST20), and the target speed is set. The speed of the vehicle ahead is set (step ST21).
  • the travel mode switching unit 14 causes the vehicle stop position prediction unit 13 to predict its own stop position (for example, the predicted stop position P100 in FIG. 4). Is determined (step ST12).
  • the traveling mode switching unit 14 determines whether or not the current traveling mode is the intersection deceleration mode (step ST13).
  • step ST14 the intersection deceleration mode is set (step ST14), and the vehicle is decelerated with an engine brake, for example, so that the fuel can be cut off as a fuel efficiency improvement operation.
  • a deceleration target curve toward the predicted stop position is calculated and set (step ST15). Since the optimum deceleration target curve varies depending on the type of vehicle powertrain, the travel mode switching unit 14 depends on the size of the engine brake for gasoline vehicles or diesel vehicles, the size of the regenerative brake for hybrid vehicles or electric vehicles, etc. Set differently.
  • the deceleration by the engine brake is set to be small (stops at a long distance), and the hybrid vehicle and the electric vehicle that can recover energy by regeneration are set to have a large deceleration (stop at a short distance). If it is necessary to change the regeneration amount depending on the situation, the deceleration may be set dynamically.
  • step ST13 If already set to the intersection deceleration mode (step ST13: YES), the traveling mode switching unit 14 sets the target speed so as to decelerate along the deceleration target curve set in step ST15 (step ST16).
  • step ST12 determines whether or not the speed of the nearest preceding vehicle is higher than the traveling speed set value (step ST12).
  • step ST17 When the speed of the latest vehicle ahead is higher (step ST17: YES), the set speed travel mode is set (step ST18), and the travel speed set value is set to the target speed (step ST19).
  • step ST17 NO
  • the traveling mode switching unit 14 sets the preceding vehicle following traveling mode (step ST20) and sets the speed of the nearest preceding vehicle to the target speed. (Step ST21). Thereafter, the flow returns to the process of step ST10 and repeats the above-described process.
  • the travel speed control unit 15 controls the brake control device 5 and the powertrain control device 6 so as to travel at the target speed set by the travel mode switching unit 14.
  • the vehicle is decelerated in the intersection deceleration mode in a state where there are stopped vehicles (including estimated stopped vehicles) in the stop position estimation range.
  • stopped vehicles including estimated stopped vehicles
  • the signal at the front intersection changes from red to blue.
  • the traveling mode switching unit 14 cancels the intersection deceleration mode when there is another stopped vehicle (including an estimated stopped vehicle) when the leading vehicle starts, and promptly enters the normal mode (for example, the following vehicle following traveling). Mode or set speed travel mode), it may be possible to prevent unnecessary deceleration.
  • a mode release standby time corresponding to the number of stopped vehicles is provided, and an intersection after the leading vehicle starts in the traveling mode switching unit 14 Smooth operation may be performed by delaying the time until the deceleration mode is canceled.
  • step ST6 when the vehicle stop position prediction unit 13 performs the determination in step ST6 of FIG. 8, when a stop vehicle exists in the stop position estimation range and the leading vehicle among the stop vehicles starts, Proceeding to step ST9, the predicted stop position of the host vehicle is cleared (after the mode release standby time has elapsed). As a result, after the determination in step ST12 of FIG. 9, the vehicle shifts to a travel mode other than the intersection deceleration mode (that is, the intersection deceleration mode is canceled).
  • the traveling speed control unit 15 instructs the powertrain control device 6 at the time of transition to the intersection mode, and enters the idling stop until the set speed (for example, 20 km / h) at which the fuel cut at the time of deceleration is restored. Increase the maximum speed.
  • FIG. 10 the state transition diagram of the traveling control apparatus 10 is shown. Together with the description of this state transition diagram, the operation of the notification device 7 will also be described.
  • the travel control device 10 enters a standby state 30 when the power is turned on. Even in the standby state 30, information on the vehicle ahead and the like detected by the vehicle detection apparatus 1 is input, and the operation of FIG.
  • the traveling speed setting device 3 detects the pressing of the switch, and stores the vehicle speed at that time as the traveling speed setting value. Then, the travel mode switching unit 14 sets the set speed travel mode 31 and sets the travel speed set value to the target speed. The traveling speed control unit 15 controls the vehicle to travel at the target speed.
  • the traveling speed setting device 3 detects the cancellation of the auto-cruise, notifies the traveling mode switching unit 14, and returns to the standby state 30.
  • the conditions for canceling the auto cruise by the driver are generally to press a release switch, step on a brake, operate a gear, and the like.
  • the traveling mode switching unit 14 switches to the intersection deceleration mode 32.
  • the traveling mode switching unit 14 sets a target speed and causes the traveling speed control unit 15 to control the vehicle so as to perform a deceleration operation that suppresses fuel consumption with the predicted stop position of the host vehicle as a target.
  • the intersection processing unit 11 instructs the notification device 7 to notify that the vehicle has entered the intersection deceleration mode.
  • the notification device 7 outputs a display for notification to the driver, or a sound or an audible sound (such as a buzzer) in response to an instruction from the intersection processing unit 11.
  • the traveling mode switching unit 14 switches from the intersection deceleration mode 32 to the front vehicle following traveling mode 33.
  • the traveling mode switching unit 14 sets the speed of the preceding vehicle to the target speed when the speed of the preceding vehicle is equal to or lower than the set speed of the host vehicle, and the traveling speed control unit 15 Travel control while maintaining
  • the traveling mode switching unit 14 switches to the intersection deceleration mode 32.
  • the traveling mode switching unit 14 sets the target speed so as to perform a deceleration operation that suppresses fuel consumption with the predicted stop position of the host vehicle as a target even if the preceding vehicle has not started decelerating. Further, the intersection processing unit 11 instructs the notification device 7 to notify the driver that the vehicle has entered the intersection deceleration mode. However, when the vehicle ahead is decelerated more than the deceleration of the host vehicle during deceleration and approaches, the vehicle immediately switches to the front vehicle follow-up travel mode 33.
  • the intersection processing unit 11 notifies the travel mode switching unit 14 so that the travel mode switching unit 14 Is switched to the intersection deceleration warning mode 34.
  • traveling control autonomous cruise
  • traveling speed control unit 15 traveling speed control unit 15
  • traveling is performed by the driver's accelerator and brake operation.
  • the stop vehicle at the intersection starts and the stop vehicle disappears, the vehicle returns to the standby state 30.
  • the intersection processing unit 11 notifies the notification device 7.
  • the transition line is not described because it is complicated, but the traveling mode switching unit 14 is in a standby state 30, a set speed traveling mode 31, when the vehicle ahead suddenly approaches and collides immediately unless an emergency brake is applied. From all the states of the intersection deceleration mode 32, the front vehicle following traveling mode 33, and the intersection deceleration attention mode 34, the emergency brake mode 35 is switched.
  • the traveling speed control unit 15 that has received the notification of the transition to the intersection deceleration attention mode 34 from the traveling mode switching unit 14 controls the brake control device 5 to perform emergency braking by high deceleration to avoid a collision with the preceding vehicle.
  • the traveling mode switching unit 14 switches to the standby state 30 when the host vehicle stops due to an emergency brake and there is no preceding vehicle or obstacle.
  • the traveling control device 10 has the front vehicle following traveling function of following the vehicle with the immediately preceding vehicle as the following vehicle among one or more forward vehicles existing ahead of the host vehicle. It is a device having a travel mode switching unit 14 and a travel speed control unit 15 to be realized, and further, the distance information from the own vehicle to the preceding vehicle acquired by the front vehicle detection device 1 and the front intersection distance acquisition device 2 are acquired. Based on the distance information to the intersection existing in front of the own vehicle, the intersection stopped vehicle determination unit 12 determines whether the preceding vehicle is a stopped vehicle stopped at the intersection, and the intersection stopped vehicle determination unit 12 moves forward.
  • the vehicle stop position prediction unit 13 that predicts a stop position at the intersection of the own vehicle based on the distance information of the stopped vehicle is provided. For this reason, at the intersection where no infrastructure equipment is installed, the traveling control device 10 capable of starting the deceleration of the own vehicle if the vehicle ahead is stopped even when the nearest preceding vehicle is not decelerated or stopped. Can be provided.
  • the vehicle stop position prediction unit 13 obtains a change in traveling speed of each of the preceding vehicles from a change in distance information from the own vehicle to each of the preceding vehicles, and predicts a stop position at the intersection. Based on the predicted stop position, it is determined whether or not the preceding vehicle is a stop vehicle that stops at the intersection, and the stop position at the intersection of the own vehicle is predicted. For this reason, it is possible to determine whether or not the forward vehicle traveling toward the intersection is also a stopped vehicle, and thus it is possible to start the deceleration operation by predicting the stop position of the own vehicle.
  • the intersection stop vehicle determination unit 12 estimates the distance from the center of the intersection to the stop line based on the attribute information of the intersection acquired by the forward intersection distance acquisition device 2, and performs the estimation.
  • a stop distance estimation range is set by adding a fixed distance to the determined distance, and a front vehicle that is stopped within the stop position estimation range or a front vehicle that is estimated to stop is determined as a stop vehicle. Therefore, the stop position estimation range can be set even if the map data of the navigation device or the like does not include stop line information, and it can be determined whether the preceding vehicle is a stop vehicle based on the stop position estimation range.
  • the intersection stop vehicle determination unit 12 determines that the preceding vehicle is continuously stopped based on the distance information from the own vehicle to each of the preceding vehicles and the distance information to the intersection. In this case, the stop position estimation range was expanded. For this reason, even if a traffic jam occurs at the intersection, the stopped vehicle and the parked vehicle can be correctly distinguished.
  • the travel control device 10 includes a front vehicle following traveling mode in which the vehicle travels with the speed of the following vehicle as a target, and a vehicle stop position prediction unit even if the following vehicle has not started to decelerate. 13 is provided with a travel mode switching unit 14 that switches and executes an intersection deceleration mode that decelerates with the stop position predicted by 13 as a target. Even when the vehicle ahead is not decelerated or stopped at the intersection, if the vehicle ahead is stopped, the host vehicle can start decelerating, and a fuel-consumption improving driving with a comfortable ride can be performed.
  • the traveling mode switching unit 14 cancels the intersection deceleration mode when it is determined that the preceding vehicle determined to be a stopped vehicle by the intersection stopped vehicle determination unit 12 has started. I made it. For this reason, generation
  • the traveling mode switching unit 14 determines that the preceding vehicle determined to be a stopped vehicle by the intersection stopped vehicle determination unit 12 has started, based on the number of stopped vehicles. Delayed the time to cancel the intersection deceleration mode. For this reason, it is possible to prevent the vehicle from being released when deceleration in the intersection deceleration mode is necessary, and smooth travel control can be performed.
  • the traveling mode switching unit 14 has an intersection deceleration mode that decelerates at a different deceleration for each type of drive source of the host vehicle, and the intersection deceleration mode is set according to the type of drive source. Switched to implement. For this reason, a more appropriate fuel efficiency improvement driving
  • the travel control device 10 includes the travel speed control unit 15 that controls the upper limit speed at which the host vehicle enters the idling stop, and the travel speed control unit 15 includes the type of the drive source of the host vehicle.
  • the upper limit speed for entering the idling stop during the execution of the intersection deceleration mode is set higher than that in the case of not using the intersection deceleration mode. For this reason, it is possible to improve fuel efficiency by aggressively stopping the engine in the intersection deceleration mode.
  • the intersection stop vehicle determination unit 12 sends the intersection deceleration to the driver via the notification device 7 mounted on the own vehicle. Announced that mode will be implemented. For this reason, when the vehicle ahead starts to decelerate even though the vehicle ahead has not started decelerating, the driver will not be confused by sudden automatic deceleration or be mistaken for a system malfunction.
  • intersection stop vehicle determination unit 12 determines that the preceding vehicle is a stop vehicle
  • the vehicle at the intersection is notified to the driver via the notification device 7 mounted on the own vehicle. Announced that the car is expected to stop. For this reason, when the auto-cruise is not operated, the driver can be notified of the necessity of deceleration and stop when the front red signal is not visible.
  • the travel control device 10 is configured to include the forward vehicle detection device 1 that acquires distance information from the host vehicle to each of the forward vehicles using millimeter wave radar or inter-vehicle communication. . For this reason, fuel efficiency improvement driving
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the travel control device predicts the stop position of the own vehicle at the intersection regardless of whether the following vehicle is decelerated, and implements a deceleration operation that suppresses fuel consumption with the stop position as a target. Therefore, it is suitable for use in a travel control device for driving support for improving fuel efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 走行制御装置10は、前方車両検知装置1が取得した自車から前方車両それぞれまでの距離情報、および前方交差点距離取得装置2が取得した自車の前方に存在する交差点までの距離情報に基づいて、前方車両が交差点で停止している停止車両か否かを判断する交差点停止車両判断部12と、前方車両が停止車両であると判断された場合に、停止車両の距離情報に基づいて自車の交差点での停止位置を予測する車両停止位置予測部13とを備える。

Description

走行制御装置
 この発明は、前方車両に追従走行する機能を持った走行制御装置に関する。
 ドライバの設定した速度で車両を自動走行させる走行制御装置において、自車と前方車両との間の距離をセンサで検知し、前方車両がある程度接近した場合、前方車両の速度に合わせて自車の速度を調整するアダプティブオートクルーズと呼ばれる走行制御技術が実用化されている。最近では、パワートレインの出力調整だけでなく、ブレーキの制御も行い、前方車両が減速または停止した場合に自車を停止させる機能を持った走行制御装置も実用化されている。
 上記のような一般的な走行制御装置では、直近の前方車両との相対距離および速度に基づいて、自車の走行速度を制御するため、ベテランドライバが、前方の複数の車両の状態を判断して自車の速度を調整する場合と比べて、直近の前方車両の加減速の影響を受けやすく、加減速が急になる場合があった。そのため特許文献1の追従走行制御装置では、直近の前方車両だけでなく、複数車両の相対位置関係を演算し、自車を制御することで、複数の車両の動きを考慮した追従走行を実現できることが開示されている。
 また、信号交差点で、赤信号の場合に停止する際に、燃費向上運転を支援するために、特許文献2の運転支援装置では、信号の情報と停止線付近に存在する車両の情報をインフラストラクチャ(以下、インフラ)からの通信で入手し、自車両が停止する位置を予測し、燃費向上運転を実施する構成が開示されている。
 同様に、特許文献3の走行支援装置では、信号情報と交差点に停止している停止車列長により、青信号に変わったときに停止車列が発進するタイミングを予測し、自車が交差点を無停止で通過可能な速度をドライバに提供する構成が開示されている。
国際公開第2010/100725号 特開2011-95828号公報 国際公開第2012/144255号
 上述した特許文献1に開示された技術では、前方の複数の車両を検知するセンサの例として、ミリ波レーダが採用されている。ミリ波レーダを使用して、直近の前方車両より先の複数車両を検知する場合、車両と路面の間の隙間と路面の反射などにより、その前方の車両に電波が到達し、反射した電波を受信することで、ドライバからは直接見えない車両を検出することができる。
 レーダの原理上、ドップラ周波数から求める距離と速度は、前記のような直接見えない車両に対しても比較的正確に検出できるが、電波の強度の差から求める方向の精度は、直近の前方車両に比べて大きく劣化する。そのため、駐車車両が多く存在する一般道路では、直近の前方車両より先で停止している車両が、交差点の赤信号に従い自車線上で停止している停止車両であって自車は減速を必要とする状況か、駐車車両であって自車は減速せずに横を通過することが可能な状況かを判断できないため、直近の前方車両より先の車両に対する減速を実用上は行うことができず、直近の前方車両の情報のみに頼って減速することしかできなかった。
 また、特許文献2および特許文献3に開示された技術である走行支援装置では、インフラ側から通信によって、信号情報および停止車両情報を受信する必要がある。そのため、信号、車両検知設備および通信設備といったインフラ設備が設置されている交差点において、対応する車載機器を搭載している車両のみしか支援を受けられないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、インフラ設備が設置されていない交差点において、直近の前方車両が減速または停止していない状態でも、その先の車両の状態に応じて自車の減速を開始可能な走行制御装置を提供することを目的とする。
 この発明の走行制御装置は、自車から前方車両それぞれまでの距離情報、および自車の前方に存在する交差点までの距離情報に基づいて、前方車両が交差点で停止している停止車両か否かを判断する交差点停止車両判断部と、交差点停止車両判断部により前方車両が停止車両であると判断された場合に、当該停止車両の距離情報に基づいて自車の交差点での停止位置を予測する車両停止位置予測部とを備えるものである。
 この発明によれば、自車の前方に存在する1台以上の前方車両が交差点で停止している停止車両か駐車車両かを判別し、交差点で停止している停止車両の場合に、停止車両の位置に基づいて自車の交差点での停止位置を予測するようにしたので、追従車両の減速度によらず、また、信号情報および停止車両情報を配信するインフラ設備が交差点になくても、交差点での自車の停止位置を目標にして減速運転することが可能になる。従って、インフラ設備のない交差点において直近の前方車両が減速または停止していない状態でも、その先の車両が停止していれば自車の減速を開始可能な走行制御装置を提供することができる。
実施の形態1による走行制御装置の構成を示すブロック図である。 実施の形態1による走行制御装置を使用した際の交差点での減速例を説明する図である。 実施の形態1による走行制御装置を使用した際の交差点以外での減速例を説明する図である。 実施の形態1による走行制御装置の車両停止位置予測方法を説明する図である。 実施の形態1による走行制御装置の交差点の大きさに対する停止位置推定範囲の変化を示す図であり、小さい交差点の一例である。 実施の形態1による走行制御装置の交差点の大きさに対する停止位置推定範囲の変化を示す図であり、大きい交差点の一例である。 実施の形態1による走行制御装置の交差点の大きさに対する停止位置推定範囲の変化を示す図であり、小さい交差点での渋滞時の一例である。 実施の形態1による走行制御装置の交差点処理部の動作を示すフローチャートである。 実施の形態1による走行制御装置の走行モード切替部の動作を示すフローチャートである。 実施の形態1による走行制御装置の状態遷移図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1による走行制御装置10の構成を示すブロック図である。
 走行制御装置10は、交差点停止車両判断部12と車両停止位置予測部13を有する交差点処理部11、走行モード切替部14、および走行速度制御部15で構成され、外部装置として前方車両検知装置1、前方交差点距離取得装置2、走行速度設定装置3、車両情報提供装置4、ブレーキ制御装置5、パワートレイン制御装置6、および報知装置7が接続されている。これらの外部装置は、走行制御装置10に内蔵されていてもよい。または、走行制御装置10の一部または全部の構成要素が、外部装置に内蔵されていてもよい。
 走行制御装置10のハードウエアは、演算処理を行うCPU(Central Processing Unit)、情報を記録するメモリ、電源装置、外部装置と通信を行う通信インタフェースなど、一般的な自動車用ECU(Electronic Control Unit)と同じ部品で構成される。また、走行制御装置10内の各構成要素は、この発明の説明上、各構成要素を分けて記載しているが、各構成要素の演算処理を一つのCPUでまとめて処理してもよい。
 前方車両検知装置1は、例えば、ミリ波レーダ等で構成され、自車両より前方の複数の車両について、自車両との相対距離、相対速度および相対方向を検出する。
 前方車両検知装置1は、前方車両の距離、速度および方向を検知できればよいので、ミリ波レーダなどの車載センサを用いず、通信手段を用いて、車車間通信またはテレマティックス等のサーバを経由してお互いの車両位置情報を入手してもよい。
 さらに、前方車両検知装置1が通信手段を備えている場合、インフラ側に車両検知装置と通信装置が設置されている交差点等に接近し、インフラ側の情報を受信できる際に、インフラ側から受信した情報に含まれる交差点周辺の車両位置を利用してもよい。
 前方交差点距離取得装置2は、例えば、カーナビゲーション装置に内蔵された地図データを使い、自車両の位置から前方にある交差点を検出し、その間の道程距離を取得する。
 道程距離とは、道路に沿った距離であり、カーブではそのカーブ形状に沿った距離となる。
 前方交差点距離取得装置2は、交差点までの道程距離を取得できればよいので、車載のナビゲーション装置等の地図データを使わず、スマートフォンなどの通信手段を経由してサーバ上にある地図データを参照し、交差点までの道程距離を取得してもよいし、スマートフォン上に予めダウンロードされた地図データを利用してもよい。
 さらに、前方交差点距離取得装置2は、インフラ側に通信装置が設置されている交差点等に接近し、インフラ側の情報を受信できる際に、インフラ側から受信した情報に含まれる交差点の道路線形情報(交差点までの距離、道路形状、交差点の大きさ、一時停止の位置等)を利用してもよい。
 走行速度設定装置3は、例えば、ステアリング上に設置されたオートクルーズ用の速度設定スイッチ等により構成され、スイッチを押された時の自車の速度を走行速度に設定する。
 走行速度設定装置3は走行速度の設定ができればよいので、例えば、カーナビゲーション装置の地図データに予め設定された規制速度、通信手段を経由して入手した規制速度、道路標識を認識して入手した規制速度などの上限速度を走行速度に設定してもよい。
 また、走行速度設定装置3は、カーナビゲーション装置等の地図データを使って、カーブ等を走行する際に規制速度より低い適切な速度に可変する機能を持っていてもよい。
 さらに、走行速度設定装置3は、インフラ側に通信装置が設置されている道路を走行する際に、トンネルまたは勾配が変化するサグ部と呼ばれる渋滞が発生しやすい箇所に設置された通信装置から指定された速度を走行速度に設定してもよい。
 車両情報提供装置4は、自車の走行速度、ギアの位置、駆動源の種別(内燃機関かモータか等)、ならびに、ドライバのブレーキおよびアクセル操作有無の情報等を収集し、走行制御装置10に提供する。
 交差点処理部11の交差点停止車両判断部12は、前方車両検知装置1が検知した前方の複数車両の距離情報と、前方交差点距離取得装置2が取得した前方交差点までの道程距離から、前方の複数車両が、駐車車両か、前方交差点の赤信号または一時停止により停止している停止車両かを判断する。
 交差点処理部11の車両停止位置予測部13は、交差点停止車両判断部12が前方交差点に停止車両が存在すると判断した場合に、自車両および前方車両がその停止車両に接近して停止する位置を予測する。また、車両停止位置予測部13は、前方交差点での自車の停止が予測された場合等に、報知装置7を介してドライバに報知させる。
 交差点停止車両判断部12の停止車両判断方法、および車両停止位置予測部13の停止位置予測方法の詳しい動作は別途説明する。
 走行モード切替部14は、設定速度走行モード、交差点減速モード、前車追従走行モードといった走行モードを切り替えると共に、切り替えた走行モードにおける目標速度を演算し、走行速度制御部15に通知する。各種走行モードおよび目標速度の演算方法は別途説明するが、例えば交差点減速モードでは、走行モード切替部14が前方車両検知装置1の情報と、走行速度設定装置3の情報と、交差点処理部11の情報と、車両情報提供装置4から提供された自車の速度から、前方交差点で停止するまでの目標速度の変化を演算し、走行速度制御部15に逐次出力する。
 走行速度制御部15は、車両情報提供装置4から提供された自車の速度が、走行モード切替部14から出力された目標速度になるように、ブレーキ制御装置5およびパワートレイン制御装置6に対して指示を出力する。
 これら走行モード切替部14と走行速度制御部15が協働して、オートクルーズ機能を実現している。
 ブレーキ制御装置5は、エンジンブレーキ等では実現できない減速が必要な場合に、ブレーキを制御する装置であり、走行速度制御部15の指示によりブレーキを作動させ、自車の減速度を調整する。
 パワートレイン制御装置6は、エンジン出力またはモータ出力、およびトランスミッションの変速比等、パワートレインの出力を制御する装置であり、走行速度制御部15の指示によりパワートレインの出力を制御して、自車の加速および減速を調整する。
 報知装置7は、例えば、表示装置または音声出力装置等により構成され、前方交差点での自車の停止が予測された場合等に交差点処理部11から指示を受けて、表示、音声、喚起音(ブザー等)等によりドライバに報知する。
 最初に、図2および図3を参照しながら、この発明の実施の形態1による走行制御装置10の動作の概要を説明する。
 図2は、走行制御装置10を用いた場合の交差点での減速例を示す。なお、図2に示す停止位置推定範囲Aの詳細は後述する。
 図2の上部に示す道路地図において、自車100は道路200を規制速度で走行中であり、自車100の前方を先行車101がわずかに高い速度で走行しているため、追従状態ではないが、追従状態であっても無くても走行制御装置10は同様の動作をするので、追従状態の説明は割愛する。
 追従中またはこれから追従する先行車101は、まだ減速を開始していないが、先行車101より前方の先行車102,103は、前方交差点201で赤信号(不図示)または一時停止などにより停止している状態である。対向車104は、赤信号等により前方交差点201に停止している。
 図2の下部に、自車100および先行車101の速度と距離の変化をグラフに示す。なお、グラフ横軸の距離は、道路200上の距離に対応している。
 また、車両が一定速度で減速する場合、グラフ横軸が時間であれば速度変化は直線になるが、横軸が距離のため積分され曲線になる。図2、後述する図3、図4では説明を簡単にするために速度変化を折れ線にしているが、厳密には二次曲線になる。
 細い線が先行車101の速度変化を示し、太い破線は、従来の追従走行モード(オートクルーズ)による自車100の速度変化を示す。従来のオートクルーズ機能では、先行車101が減速を開始し、自車100に接近したことを検出してから、先行車101の減速に合わせて自車100も同じように減速するため、先行車101が強い減速を行った場合は、自車100の減速も同様に強い減速になり、乗り心地が悪化する。さらに、減速を開始するまでパワートレインの出力を維持しているため、無駄なエネルギを消費していた。
 一方、この発明による交差点減速モード(図2に太い実線で示す)では、先行車101が減速を開始していなくても、先行車102と先行車103が前方交差点201の手前で停止していることを検知した場合、先行車102と先行車103は赤信号等により前方交差点201に一時的に停止している車両と判断し、先行車101は先行車102の後ろに停止する必要があると判断し、自車100はさらにその後ろに停止する必要があると判断して自車100の停止位置(図2に示す予測停止位置P100)を予測する。
 先行車101~103が存在しない状態で停止線に停車する場合に、早めにアクセルオフしてエンジンブレーキを作動させ、燃料カットによりエネルギを消費しない区間を長く取れるようにする燃費向上運転を実施したときの速度変化を、細い破線で示す。先行車101~103が存在する場合でも燃費向上運転を同じように実施するために、この発明の交差点減速モードでは、先行車101が減速を開始していない状態でも、自車100の予測停止位置P100を目標にしてアクセルオフしてエンジンブレーキを作動させ、太い実線で示す速度変化になるような燃費向上運転を行う。
 上記のように、この発明では、走行モードを交差点付近で切り替えることで、追従中であっても、乗り心地の良い燃費向上運転を行うことができる。
 次に、交差点以外での減速例を、図3に示す。図2同様に、自車100は道路200を規制速度で走行しており、先行車101はわずかに高い速度で走行している。駐車車両105,106は道路端に駐車している車両である。図3の下部に、自車100および先行車101の速度と距離の変化をグラフに示す。太い線が自車100の速度を示し、細い線が先行車101の速度を示す。先行車101は、駐車車両105に接近した際、追い越しが容易な場合は減速を行わずステアリング操作により駐車車両105,106を追い越す。その場合、自車100も減速を行わず、駐車車両105,106を追い越す。
 一方、自車100が駐車車両105,106に接近した際、対向車が来ているなど、ステアリング操作により回避ができない場合であって駐車車両105が正面に存在する場合は、太い破線のように、緊急ブレーキが動作して停止する。このような場合は、先行車101への追従状態ではなく、駐車車両105を直近の前方障害物としてブレーキ操作する。
 自車100の前方に存在する車両をミリ波レーダだけで認識している場合(例えば、上記特許文献1)、図2の前方交差点201で停止している先行車102,103と交差点以外の駐車車両105,106とで車両位置および速度が同じであり、停止車両か、駐車車両かの区別ができない。よって、この発明の実施の形態1では、自車100の前方に交差点がある場合にのみ、停止車両を駐車車両(例えば、図3の駐車車両105,106)ではなく、交差点停止車両(例えば、図2の先行車102,103)として判断し、自車の予測停止位置を予測し、交差点減速モードに切り替えるか否かを判断する。
 次に、図4を用いて、交差点処理部11の車両停止位置予測部13による予測停止位置の予測方法を説明する。
 現在の時刻をt1として、時刻t1の自車100、先行車101~103、対向車104の位置を、図4の上部の道路地図上に示す。そのときの自車100および先行車101~103の速度と前方交差点201までの距離の関係を、図4の下部のグラフに示す。交差点処理部11は、前方車両検知装置1を介して周期的に各車の速度と位置(距離)の情報を取得しており、時刻t1から一定時間後の時刻t2までの各車の速度と距離の変化をグラフに実線で示す。
 先行車102と先行車103は前方交差点201で停止するための減速を開始しているので、車両停止位置予測部13は、時刻t1の速度と時刻t2の速度から減速度を求める。また、車両停止位置予測部13は、先行車102と先行車103がその減速度で減速を続けた場合に速度がゼロになる時刻とその停止位置(先行車102の予測停止位置P102、先行車103の予測停止位置P103)をそれぞれ予測する。
 先行車101は、時刻t1から時刻t2の間にはまだ減速を開始していないが、先行車102の予測停止位置P102が予測された場合、その後ろに停車する必要がある。従って、車両停止位置予測部13は、先行車101が、先行車102の予測停止位置P102の後ろに一定の車間距離を持って停止することを予測する(先行車101の予測停止位置P101)。
 自車100は、先行車101の予測停止位置P101の後ろに停車する必要があるので、車両停止位置予測部13は、予測停止位置P101の後ろに一定の車間距離を持って停止することを予測する(自車100の予測停止位置P100)。
 つまり、車両停止位置予測部13は、自車100から前方交差点201までに存在する先行車101~103の台数分の停止位置を、前方交差点201に近い順に予測し、最後に自車100の停止位置を予測する。
 なお、前に示した図2のように、先行車102,103が既に停止している場合は、予測停止位置P102,P103と実際の停止位置は同じとなる。
 このように、先行車が減速を開始していれば、先行車が停止していなくても、停止位置を予測することができる。
 次に、図4~図7を用いて、交差点処理部11の交差点停止車両判断部12による停止位置推定範囲の推定方法を説明する。
 図4に示した車両停止位置予測部13の動作は、前方交差点201に接近している車両に対して行われる。前方交差点201に接近している車両と見なす範囲を停止位置推定範囲Aとして、前方交差点201の中心から一定の距離の範囲までを対象とする。前方交差点201の大きさは場所によって異なるため、前方交差点201から停止線202までの距離203が大きい場合は、停止位置推定範囲Aをそれに応じて補正する必要がある。
 また、カーナビゲーション装置等が有する地図データに停止線202の位置情報があれば、その停止線202から一定距離の範囲を停止位置推定範囲Aとし、その停止位置推定範囲Aで停止または減速を行っている車両に対して停止位置を予測すればよいが、通常のナビゲーション装置では停止線202の位置までは記録されていないため、停止線202の位置を推定する必要がある。
 ナビゲーション装置等が有する地図データには、リンクと呼ばれる、道路上の交差点またはカーブの地点から次の交差点中心部分までの距離および方向の情報と、ノードと呼ばれる、複数の道路が交差する点(図4に示す交差点中心204)の情報とが記録されている。
 図4に示すように、交差点中心204から停止線202までの距離203は、交差する道路の幅などの交差点属性情報からある程度推定できるので、地図データの交差点属性情報中に交差する道路の道路幅の情報があれば、交差点停止車両判断部12は、停止線202までの距離203を「道路幅の半分+一定距離」として推定することができる。
 他方、交差点属性情報中に道路幅の情報が無い場合は、車線数、道路の種別(一般生活道路か、国道等の主要道路かなど)、地図データに含まれる様々な属性情報から道路幅を推測すればよい。
 また、前方車両検知装置1が対向車104の停止を検出できる場合、交差点停止車両判断部12は、前方交差点201の形状を交差点中心204を基準にした線対称と考え、交差点中心204を通る線から対向車104の停止位置までの距離を、交差点中心204を通る線から停止線202までの距離203としてもよい。
 次に、図5~図7を用いて、交差点停止車両判断部12による停止位置推定範囲Aの補正方法と、駐車車両と信号停止車両の判断方法とを説明する。
 図5は、小さな前方交差点201-1の例、図6は、大きな前方交差点201-2の例である。本例では、ナビゲーション装置が有する地図データに、大きな交差点だけ車線数が予め記録されているものとする。
 図5に示す小さな前方交差点201-1では、交差点停止車両判断部12が、地図データの交差点属性情報等に基づいて交差点中心204から停止線202までの距離203を推定する。
 小さな前方交差点201-1では、交差点中心204から停止線202までの距離203も小さいため、交差点停止車両判断部12は、推定した距離(例えば、10m)に一定距離(例えば、普通車1台から4台程度の停止を想定して40m)を加算して、停止位置推定範囲Aは50mと判断する。そして、車両停止位置予測部13は、停止位置推定範囲A=50mに存在する車両121,122を前方交差点201-1に赤信号等により停止している信号停止車両と判断し、停止位置推定範囲Aから外れた車両120は駐車車両と判断すればよい。
 また、車両停止位置予測部13は、前方交差点201-1から停止位置推定範囲A=50mの間で、自車100の予測停止位置P100を予測すればよい。
 なお、一定距離として示した40mは一例であり、パラメータとして調整可能にしてもよいし、普段の交通量等に応じて異なる距離を地図データ上に予め設定しておいてもよい。
 図6に示す大きな前方交差点201-2では、車線数が片側3車線あり、そのため停止線202は交差点中心204から離れている。この場合、交差点停止車両判断部12は、停止線202までの距離203を車線数分広く補正し、その補正分、停止位置推定範囲Aも広く補正して停止位置推定範囲A1とする。その結果、図5の小さな前方交差点201-1では駐車車両と判断されていた車両120は、大きな前方交差点201-2では交差点停止車両と判断される。車両121,122も交差点停止車両と判断される。
 図7は、小さな前方交差点201-1の渋滞時の例を示す。小さな前方交差点201-1でも、信号によって少しの渋滞が発生した場合には、多数の車両130~134が連続して停止する可能性がある。このように、一定距離間隔で多数の車両が停止していることを前方車両検知装置1が検知した場合、交差点停止車両判断部12は、図5の方法で推定した標準の停止位置推定範囲Aを広く補正して、渋滞時停止位置推定範囲A2にする。これにより、標準の停止位置推定範囲Aに従えば駐車車両と判断されていた車両130が、渋滞時停止位置推定範囲に従って交差点停止車両と判断される。
 具体的には、前方車両検知装置1の検出結果より各車両130~134の間隔D0~D3それぞれが所定間隔(例えば、10±7m)の範囲内であって、各車両130~134が連続して停止していると見なせる場合に、交差点停止車両判断部12が停止位置推定範囲Aを補正する等の処理を行う。また、車両の長さは大型車ではもっと長くなるが、ミリ波レーダは荷台部、トレーラ部、車両下の構造物等の形状に反応して複数の検出点を出力するので、それらの検出点から車両130~134を大型車と判断できる場合は、その分、停止位置推定範囲Aの補正距離を広くしてもよい。また、車車間通信などで、車両130~134の車両種別を入手できる場合は、その車両種種別に基づいて停止位置推定範囲Aの補正距離を調整してもよい。
 次に、図8および図9のフローチャートを参照しながら、走行制御装置10の動作をより詳細に説明する。なお、説明では、交差点処理部11の処理方法(図8)と、走行モード切替部14の処理方法(図9)に分けて説明する。走行速度制御部15は一般的なオートクルーズ装置の制御と同じ動作のため割愛する。
 まず、交差点処理部11の処理動作について図8を参照しながら説明する。
(1)交差点停止車両の判断と車両停止位置の予測処理
 この車両停止位置の予測処理では、走行制御装置10が搭載された自車両が、交差点に接近している状況にあると想定して説明を行う。
 交差点停止車両判断部12は、前方交差点距離取得装置2から入手した情報の中から、自車位置から直近の前方交差点までの距離を取得する(ステップST1)。また、交差点停止車両判断部12は、前方交差点距離取得装置2から入手した情報に含まれる、前方交差点の停止線の情報および交差する道路幅など、停止線の位置を推定する情報を元に、停止線位置を推定する。前方交差点距離取得装置2から入手した情報中に、停止線の位置を推定する情報が特にない場合は、標準的な交差点の大きさにおける停止線位置を設定する(ステップST2)。続けて交差点停止車両判断部12は、前方交差点の交差点中心から一定距離範囲を停止位置推定範囲(例えば、図4の停止位置推定範囲A)に設定し、ステップST2で推定した停止線位置に応じてこの停止位置推定範囲を補正する(ステップST3)。停止位置推定範囲は、交差点中心からどこまでの範囲の停止車両を前方交差点で一時停止している停止車両として認識するかを判断するものであり、交差点中心から停止線までの距離が大きい場合には停止位置推定範囲を広げる補正を行う。
 続いて、車両停止位置予測部13が、前方車両検知装置1から入手した情報の中から、自車の前方に存在する前方車両の位置および速度を取得する。実施の形態1ではミリ波レーダを前方車両検知装置1として想定しているため、前方車両の位置および速度を同時に取得できるが、位置のみしか検知できない検知装置を使用する場合には、車両停止位置予測部13において位置の変化から速度を求める処理も同時に行う(ステップST4)。
 車両停止位置予測部13は、前方車両の中で減速中の車両があった場合は、その減速状態が継続すると仮定した場合の停止位置を予測し(ステップST5)、予測した停止位置、および既に停止している車両の停止位置が停止位置推定範囲に存在するか否か判断する(ステップST6)。
 停止車両が停止位置推定範囲に存在する場合は(ステップST6:YES)、車両停止位置予測部13が、自車から停止車両(推定停止車両含む)の間にある車両数を前方車両検知装置1から取得する(ステップST7)。続いて車両停止位置予測部13は、ステップST5で求めた自車から最も近い位置にある停止車両(推定停止車両含む)の後ろに、ステップST7で求めた台数分の距離(例えば、車両1台につき、車両の長さ5mおよび車間距離5mの計10m)を加算して、自車の停止位置(例えば、図4の予測停止位置P100)を予測する(ステップST8)。
 停止位置推定範囲に停止車両が存在しない場合(ステップST6:NO)、車両停止位置予測部13は自車の予測停止位置をクリアする(ステップST9)。
 その後、フローはステップST1の処理に戻り、上述した処理を繰り返す。
 次に、走行モード切替部14の処理動作について図9を参照しながら説明する。
(2)走行モード切り替えおよび目標速度の演算処理
 一般的なオートクルーズ装置では、走行中にオートクルーズ用の速度設定スイッチ等が押されることで、現在の車速が走行速度設定値として記録される。その他の走行速度設定例として、例えば、カーナビゲーション装置の地図データに含まれる道路の規制速度、車載カメラで入手した速度標識の認識結果等を、走行速度設定値としてもよい。
 走行速度設定装置3は、上述したような走行速度設定動作を行って、走行速度設定値を記憶する。
 走行モード切替部14は、走行速度設定装置3が記憶した走行速度設定値を取得する(ステップST10)。続いて走行モード切替部14は、前方車両検知装置1から入手した情報を元に、直近の前方車両が減速、または自車に接近しているか否か判定する(ステップST11)。
 直近の前方車両が自車よりも早く減速して接近している場合は(ステップST11:YES)、直近の前方車両に追従走行する前車追従走行モードにセットし(ステップST20)、目標速度に直近の前方車両の速度をセットする(ステップST21)。
 直近の前方車両が減速を開始していない場合(ステップST11:NO)、走行モード切替部14は、車両停止位置予測部13によって自車の予測停止位置(例えば、図4の予測停止位置P100)がセットされているか否か判定する(ステップST12)。自車の予測停止位置がセットされている場合(ステップST12:YES)、走行モード切替部14は、現在の走行モードが交差点減速モードか否か判定する(ステップST13)。
 現在の走行モードが交差点減速モードでない場合は(ステップST13:NO)、交差点減速モードをセットし(ステップST14)、燃費向上運転として、例えばエンジンブレーキで減速して燃料カットできるように、自車の予測停止位置へ向けた減速目標カーブを演算し、セットする(ステップST15)。
 最適な減速目標カーブは、車両のパワートレインの種類により変わるため、走行モード切替部14は、ガソリン車用またはディーゼル車用のエンジンブレーキ、ハイブリッド車用または電気自動車用の回生ブレーキの大きさ等により異なる設定をする。例えば、エンジンブレーキでの減速度は少なめとし(長い距離で停止)、回生によりエネルギを回収できるハイブリッド車および電気自動車は減速度を大きめに(短い距離で停止)設定する。状況により回生量を変える必要がある場合は、動的に減速度を設定できるようにしてもよい。
 すでに交差点減速モードにセットされている場合(ステップST13:YES)、走行モード切替部14はステップST15でセットした減速目標カーブに沿った減速となるように、目標速度をセットする(ステップST16)。
 ステップST12で自車の予測停止位置がセットされていない場合(ステップST12:NO)、走行モード切替部14は、走行速度設定値より直近の前方車両の速度のほうが大きいか否か判断し(ステップST17)、直近の前方車両の速度のほうが大きい場合に(ステップST17:YES)、設定速度走行モードにセットし(ステップST18)、目標速度に走行速度設定値をセットする(ステップST19)。
 直近の前方車両の速度のほうが小さい場合には(ステップST17:NO)、走行モード切替部14は、前車追従走行モードにセットし(ステップST20)、目標速度に直近の前方車両の速度をセットする(ステップST21)。
 その後、フローはステップST10の処理に戻り、上述した処理を繰り返す。
 走行速度制御部15は、走行モード切替部14がセットした目標速度で走行するよう、ブレーキ制御装置5およびパワートレイン制御装置6を制御する。
 図8および図9の処理動作では、停止位置推定範囲の停止車両(推定停止車両含む)が存在する状態では交差点減速モードでの減速を行うが、例えば、前方交差点の信号が赤から青に変わり、先頭車両(前方交差点に最も近い停止車両)が発進した場合は、2台目以降の停止車両も順次発進するため、自車の予測停止位置に停止する必要が無くなる。そのため、走行モード切替部14は、先頭車両が発進した場合に、他の停止車両(推定停止車両含む)がいても、交差点減速モードを解除して、速やかに通常モード(例えば、前車追従走行モード、または設定速度走行モード)に移行することで、不要な減速の発生を防止できるようにしてもよい。
 また、前方交差点での停止車両の台数が多い場合、先頭車両が発進しても後続車両の発進には時間がかかるため、先頭車両の発進のみで交差点減速モードを解除した場合には、まだ交差点減速モードでの減速が必要なとき(後続車両が前方交差点をまだ通過していないとき等)に解除されてしまう可能性がある。
 上記の可能性を考慮し、「先頭車両が発進した場合」という条件に加え、停止車両の台数に応じたモード解除待機時間を設けて、走行モード切替部14において先頭車両が発進してから交差点減速モードを解除するまでの時間を遅らせるようにすることで、円滑な運転を実施できるようにしてもよい。
 具体的には、車両停止位置予測部13が図8のステップST6の判定を行う際、停止位置推定範囲に停止車両が存在しており、その停止車両のうちの先頭車両が発進した場合に、ステップST9の処理に進み、(モード解除待機時間が経過したのち)自車の予測停止位置をクリアする。
 これにより、図9のステップST12の判定を経て、交差点減速モード以外の走行モードに移行する(つまり、交差点減速モードが解除される)。
 なお、アイドリングストップ機能を持ったエンジンが搭載された車両では、交差点減速モードに移行した場合に自車両が減速および停止に向かう際に、エンストしないようにすることが望ましい。具体的には、交差点モード移行時に走行速度制御部15からパワートレイン制御装置6に指示して、設定された減速時の燃料カットが復帰する速度(例えば、20km/h)まで、アイドリングストップに入る上限速度を上げる。
 また、交差点減速モードが解除されたときは加速に移る可能性が高いので、アイドリングストップを禁止、またはアイドリングストップに入る上限速度を下げる(例えば、5km/h)ことで、再加速時のエンジンの始動遅れによる走行フィーリングの悪化を防止しつつ、極力燃料を節約することができる。
 ここで、図10に、走行制御装置10の状態遷移図を示す。この状態遷移図の説明とあわせて、報知装置7の動作についても説明する。
 走行制御装置10は電源が投入されると待機状態30になる。
 待機状態30でも、前方車両検知装置1が検知する前方の車両の情報などは入力されており、図8の動作等が実行されている。
 この待機状態30において、ドライバがオートクルーズ用の速度設定スイッチ等を押した場合に、走行速度設定装置3がスイッチの押下を検出し、そのときの車速を走行速度設定値として記憶する。そして、走行モード切替部14が設定速度走行モード31をセットすると共に走行速度設定値を目標速度にセットする。走行速度制御部15は、目標速度で走行するように車両を制御する。ドライバによりオートクルーズが解除された場合は、走行速度設定装置3がオートクルーズ解除を検出して走行モード切替部14に通知し、待機状態30に戻す。ドライバによるオートクルーズの解除条件は、一般的に解除スイッチを押す、ブレーキを踏む、ギアを操作する等である。
 設定速度走行モード31中に交差点に接近し、交差点に停止車両(推定停止車両含む)がある場合は、走行モード切替部14が交差点減速モード32に切り替える。交差点減速モード32では、自車の予測停止位置を目標にして燃料消費を抑える減速運転を実施するよう、走行モード切替部14が目標速度をセットし、走行速度制御部15に車両を制御させる。
 このとき、自車の直近の前方車両が減速を開始していなくても、交差点減速モード32への移行時に自動で減速を開始することがあるので、ドライバが突然の自動減速により混乱を起こしたり、システムの不具合と勘違いしないように、交差点処理部11から報知装置7に指示して交差点減速モードに入ったことを報知する。報知装置7は、交差点処理部11の指示に応じ、ドライバに報知する表示、または音声若しくは喚起音(ブザー等)を出力する。
 交差点の停止車両が発進し、停止車両がなくなった場合と、直近の前方車両に自車が接近した場合は、走行モード切替部14が交差点減速モード32から前車追従走行モード33に切り替える。
 前車追従走行モード33では、走行モード切替部14が、前方車両の速度が自車の設定速度以下の場合に前方車両の速度を目標速度にセットし、走行速度制御部15が、適切な車間を維持しながら走行制御する。
 前車追従走行モード33中に交差点に接近し、交差点に停止車両(推定停止車両含む)がある場合は、走行モード切替部14が交差点減速モード32に切り替える。走行モード切替部14は、前方車両が減速を開始していなくても、自車の予測停止位置を目標にして燃料消費を抑える減速運転を実施するよう、目標速度をセットする。また、交差点処理部11から報知装置7に指示して、交差点減速モードに入ったことをドライバに報知する。
 ただし、減速中に、直近の前方車両が自車の減速度以上に減速し、接近した場合は、速やかに前車追従走行モード33に切り替える。
 他方、待機状態30中に交差点に接近し、交差点に停止車両(推定停止車両含む)がある場合、交差点処理部11から走行モード切替部14に通知し、走行モード切替部14が、交差点減速注意をドライバに知らせる交差点減速注意モード34に切り替える。この状態では、走行速度制御部15による走行制御(オートクルーズ)はしておらず、ドライバのアクセルとブレーキ操作での走行となる。交差点の停止車両が発進し、停止車両がなくなった場合には、待機状態30に戻る。
 また、オートクルーズを動作させていないときでも、交差点で停止する必要があるとき、つまり車両停止位置予測部13により自車の予測停止位置がセットされた場合は、交差点処理部11から報知装置7に指示してドライバに報知することが好ましい。これにより、例えば前方がトラックなどで、自車のドライバから赤信号が見えない場合でも、交差点で停止する必要性を報知することができ、トラックが交差点で急減速したとしてもドライバが対応できるようになる。
 遷移の線は煩雑になるため記載しないが、走行モード切替部14は、前方車両が急接近し、緊急ブレーキをかけないと直ぐに衝突する状態の場合に、待機状態30、設定速度走行モード31、交差点減速モード32、前車追従走行モード33および交差点減速注意モード34の全ての状態から、緊急ブレーキモード35に切り替える。走行モード切替部14から交差点減速注意モード34移行の通知を受けた走行速度制御部15は、ブレーキ制御装置5を制御して高い減速度による緊急ブレーキを行い、前方車両との衝突を回避する。
 走行モード切替部14は、緊急ブレーキにより自車両が停止し、前方車両または障害物が無くなった場合に待機状態30に切り替える。
 以上より、実施の形態1によれば、走行制御装置10は、自車より前方に存在する1台以上の前方車両のうち、直近の前方車両を追従車両として追従走行する前車追従走行機能を実現する走行モード切替部14と走行速度制御部15を有する装置であって、さらに、前方車両検知装置1が取得した自車から前方車両それぞれまでの距離情報、および前方交差点距離取得装置2が取得した自車の前方に存在する交差点までの距離情報に基づいて、前方車両が交差点で停止している停止車両か否かを判断する交差点停止車両判断部12と、交差点停止車両判断部12により前方車両が停止車両であると判断された場合に、停止車両の距離情報に基づいて自車の交差点での停止位置を予測する車両停止位置予測部13とを備える構成にした。このため、インフラ設備が設置されていない交差点において、直近の前方車両が減速または停止していない状態でも、その先の車両が停止していれば自車の減速を開始可能な走行制御装置10を提供することができる。
 また、実施の形態1によれば、車両停止位置予測部13は、自車から前方車両それぞれまでの距離情報の変化から前方車両それぞれの走行速度の変化を求めて交差点での停止位置を予測し、当該予測した停止位置に基づいて前方車両が交差点で停止する停止車両か否かを判断すると共に、自車の交差点での停止位置を予測するようにした。このため、交差点に向かう走行中の前方車両についても停止車両か否かを判断でき、ひいては自車の停止位置を予測して減速運転を開始することができる。
 また、実施の形態1によれば、交差点停止車両判断部12は、前方交差点距離取得装置2が取得した交差点の属性情報に基づいて、交差点の中心から停止線までの距離を推測し、当該推測した距離に一定距離を加算して停止位置推定範囲を設定し、当該停止位置推定範囲内で停止している前方車両または停止すると推定された前方車両を停止車両と判断するようにした。このため、ナビゲーション装置等の地図データに停止線の情報が含まれていなくても停止位置推定範囲を設定でき、当該停止位置推定範囲に基づいて前方車両が停止車両か否かを判断できる。
 また、実施の形態1によれば、交差点停止車両判断部12は、自車から前方車両それぞれまでの距離情報および交差点までの距離情報に基づいて前方車両が連続して停止していると判断した場合に、停止位置推定範囲を広げるようにした。このため、交差点で渋滞が発生している場合であっても停止車両と駐車車両を正しく判別できる。
 また、実施の形態1によれば、走行制御装置10は、追従車両の速度を目標にして走行する前車追従走行モードと、追従車両が減速を開始していなくても、車両停止位置予測部13により予測された停止位置を目標にして減速する交差点減速モードとを切り替えて実施する走行モード切替部14を備える構成にした。交差点において直近の前方車両が減速または停止していない状態でも、その先の車両が停止していれば自車の減速を開始して、乗り心地のよい燃費向上運転を行うことができる。
 また、実施の形態1によれば、走行モード切替部14は、交差点停止車両判断部12により停止車両と判断された前方車両が発進を開始したと判断した場合に、交差点減速モードを解除するようにした。このため、不要な減速の発生を防止できる。
 また、実施の形態1によれば、走行モード切替部14は、交差点停止車両判断部12により停止車両と判断された前方車両が発進を開始したと判断した場合に、停止車両の台数に基づいて交差点減速モードを解除する時間を遅らせるようにした。このため、交差点減速モードでの減速が必要なときに解除されてしまうことを防止でき、円滑な走行制御を実施できる。
 また、実施の形態1によれば、走行モード切替部14は、自車の駆動源の種別毎に異なる減速度で減速する交差点減速モードを有し、駆動源の種別に応じて交差点減速モードを切り替えて実施するようにした。このため、より適切な燃費向上運転を行うことができる。
 また、実施の形態1によれば、走行制御装置10は、自車がアイドリングストップに入る上限速度を制御する走行速度制御部15を備え、走行速度制御部15は、自車の駆動源の種別が内燃機関である場合に、交差点減速モード実施中のアイドリングストップに入る上限速度を、交差点減速モードでない場合に比して高く設定するようにした。このため、交差点減速モードの積極的なエンジン停止による燃費向上が可能である。一方、交差点減速モードではない状態、つまり加速する可能性がある状態(例えば、青信号で加速が必要なとき)ではエンジンを停止しにくくさせることになるので、交差点減速モードではない状態でエンジンが止まり再加速時に再びエンジン始動することによる加速遅れを防止することができる。
 また、実施の形態1によれば、交差点停止車両判断部12は、走行モード切替部14が交差点減速モードに切り替えた場合に、自車に搭載された報知装置7を介してドライバへ、交差点減速モードを実施する旨を報知するようにした。このため、直近の前方車両が減速を開始していないのに自車が減速を開始した場合に、ドライバが突然の自動減速により混乱を起こしたり、システムの不具合と勘違いしないようになる。
 また、実施の形態1によれば、交差点停止車両判断部12は、前方車両が停止車両であると判断した場合に、自車に搭載された報知装置7を介してドライバへ、交差点での自車の停止が予測される旨を報知するようにした。このため、オートクルーズを動作させていないとき、ドライバが前方の赤信号が見えないとき等に、減速、停止の必要性を報知できる。
 また、実施の形態1によれば、走行制御装置10は、ミリ波レーダあるいは車車間通信を使用して自車から前方車両それぞれまでの距離情報を取得する前方車両検知装置1を備える構成にした。このため、交差点の信号情報および停止車両情報を配信するインフラ設備が無くても、燃費向上運転を行うことができる。
 なお、この発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 以上のように、この発明に係る走行制御装置は、追従車両の減速の有無によらず交差点での自車の停止位置を予測し、その停止位置を目標にして燃料消費を抑える減速運転を実施するようにしたので、燃費向上運転支援のための走行制御装置等に用いるのに適している。
 1 前方車両検知装置、2 前方交差点距離取得装置、3 走行速度設定装置、4 車両情報提供装置、5 ブレーキ制御装置、6 パワートレイン制御装置、7 報知装置、10 走行制御装置、11 交差点処理部、12 交差点停止車両判断部、13 車両停止位置予測部、14 走行モード切替部、15 走行速度制御部、30 待機状態、31 設定速度走行モード、32 交差点減速モード、33 前車追従走行モード、34 交差点減速注意モード、35 緊急ブレーキモード、100 自車、101~103 先行車、104 対向車、105,106 駐車車両、120~122 車両、200 道路、201,201-1,201-2 前方交差点、202 停止線、203 停止線までの距離、204 交差点中心、A,A1 停止位置推定範囲、A2 渋滞時停止位置推定範囲、P100~P103 予測停止位置。

Claims (12)

  1.  自車より前方に存在する1台以上の前方車両のうち、直近の前方車両を追従車両として追従走行する前車追従走行機能を有する走行制御装置において、
     前記自車から前記前方車両それぞれまでの距離情報、および前記自車の前方に存在する交差点までの距離情報に基づいて、前記前方車両が前記交差点で停止している停止車両か否かを判断する交差点停止車両判断部と、
     前記交差点停止車両判断部により前記前方車両が前記停止車両であると判断された場合に、前記停止車両の距離情報に基づいて前記自車の前記交差点での停止位置を予測する車両停止位置予測部とを備えることを特徴とする走行制御装置。
  2.  前記車両停止位置予測部は、前記自車から前記前方車両それぞれまでの距離情報の変化から前記前方車両それぞれの走行速度の変化を求めて前記交差点での停止位置を予測し、当該予測した停止位置に基づいて前記前方車両が前記交差点で停止する前記停止車両か否かを判断すると共に、前記自車の前記交差点での停止位置を予測することを特徴とする請求項1記載の走行制御装置。
  3.  前記交差点停止車両判断部は、前記交差点の属性情報に基づいて前記交差点の中心から停止線までの距離を推測し、当該推測した距離に一定距離を加算して停止位置推定範囲を設定し、当該停止位置推定範囲内で停止する前記前方車両を前記停止車両と判断することを特徴とする請求項1記載の走行制御装置。
  4.  前記交差点停止車両判断部は、前記自車から前記前方車両それぞれまでの距離情報および前記交差点までの距離情報に基づいて前記前方車両が連続して停止していると判断した場合に、前記停止位置推定範囲を広げることを特徴とする請求項3記載の走行制御装置。
  5.  少なくとも、前記追従車両の速度を目標にして走行する前記前車追従走行機能を実行する前車追従走行モードと、前記追従車両が減速を開始していなくても、前記車両停止位置予測部により予測された前記自車の停止位置を目標にして減速する交差点減速モードとを切り替えて実施する走行モード切替部を備えることを特徴とする請求項1記載の走行制御装置。
  6.  前記走行モード切替部は、前記交差点停止車両判断部により前記停止車両と判断された前記前方車両が発進を開始したと判断した場合に、前記交差点減速モードを解除することを特徴とする請求項5記載の走行制御装置。
  7.  前記走行モード切替部は、前記交差点停止車両判断部により前記停止車両と判断された前記前方車両が発進を開始したと判断した場合に、前記停止車両の台数に基づいて前記交差点減速モードを解除する時間を遅らせることを特徴とする請求項5記載の走行制御装置。
  8.  前記走行モード切替部は、前記自車の駆動源の種別毎に異なる減速度で減速する前記交差点減速モードを有し、前記駆動源の種別に応じて前記交差点減速モードを切り替えて実施することを特徴とする請求項5記載の走行制御装置。
  9.  前記自車がアイドリングストップに入る上限速度を制御する走行速度制御部を備え、
     前記走行速度制御部は、前記自車の駆動源の種別が内燃機関である場合に、前記交差点減速モード実施中の前記アイドリングストップに入る上限速度を、前記交差点減速モードでない場合に比して高く設定することを特徴とする請求項8記載の走行制御装置。
  10.  前記交差点停止車両判断部は、前記走行モード切替部が前記交差点減速モードに切り替えた場合に、前記自車に搭載された報知装置を介してドライバへ、前記交差点減速モードを実施する旨を報知することを特徴とする請求項5記載の走行制御装置。
  11.  前記交差点停止車両判断部は、前記前方車両が前記停止車両であると判断した場合に、前記自車に搭載された報知装置を介してドライバへ、前記交差点での前記自車の停止が予測される旨を報知することを特徴とする請求項1記載の走行制御装置。
  12.  ミリ波レーダあるいは車車間通信を使用して前記自車から前記前方車両それぞれまでの距離情報を取得する前方車両検知装置を備えることを特徴とする請求項1記載の走行制御装置。
PCT/JP2013/083094 2013-12-10 2013-12-10 走行制御装置 WO2015087395A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/083094 WO2015087395A1 (ja) 2013-12-10 2013-12-10 走行制御装置
CN201380081615.5A CN105814619B (zh) 2013-12-10 2013-12-10 行驶控制装置
JP2015552228A JP6230620B2 (ja) 2013-12-10 2013-12-10 走行制御装置
DE112013007677.2T DE112013007677T5 (de) 2013-12-10 2013-12-10 Fahrsteuerungsvorrichtung
US15/023,741 US9884624B2 (en) 2013-12-10 2013-12-10 Travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/083094 WO2015087395A1 (ja) 2013-12-10 2013-12-10 走行制御装置

Publications (1)

Publication Number Publication Date
WO2015087395A1 true WO2015087395A1 (ja) 2015-06-18

Family

ID=53370741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083094 WO2015087395A1 (ja) 2013-12-10 2013-12-10 走行制御装置

Country Status (5)

Country Link
US (1) US9884624B2 (ja)
JP (1) JP6230620B2 (ja)
CN (1) CN105814619B (ja)
DE (1) DE112013007677T5 (ja)
WO (1) WO2015087395A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106740842A (zh) * 2016-12-07 2017-05-31 浙江吉利控股集团有限公司 一种用于自适应巡航系统的节油装置及方法
WO2018230245A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー 走行支援装置、制御プログラム、コンピュータ読み出し可能持続的有形記録媒体
EP3333820A4 (en) * 2015-07-21 2019-01-23 Nissan Motor Co., Ltd. DRIVING PLATFORM DEVICE, CIRCULATION ASSISTING DEVICE, AND DRIVING PLANE METHOD
WO2019044627A1 (ja) * 2017-09-01 2019-03-07 株式会社デンソー 衝突回避支援装置
WO2019054258A1 (ja) * 2017-09-12 2019-03-21 株式会社デンソー 車両の制御装置
JP2019133281A (ja) * 2018-01-29 2019-08-08 株式会社東芝 情報処理装置、車載装置、情報処理システム、および情報処理方法
JP2020082802A (ja) * 2018-11-16 2020-06-04 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN112859062A (zh) * 2021-01-19 2021-05-28 巍泰技术(武汉)有限公司 一种基于雷达的车辆排队长度检测方法及系统
CN113538911A (zh) * 2020-02-11 2021-10-22 北京百度网讯科技有限公司 路口距离的检测方法、装置、电子设备和存储介质
US11216002B1 (en) * 2014-08-29 2022-01-04 Waymo Llc Determining the stationary state of detected vehicles
JP2022039115A (ja) * 2020-08-27 2022-03-10 本田技研工業株式会社 自動運転車用情報提示装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10692370B2 (en) * 2014-03-03 2020-06-23 Inrix, Inc. Traffic obstruction detection
US20210009136A1 (en) * 2014-03-03 2021-01-14 Inrix, Inc. Presenting geographic search results using location projection and time windows
KR101991611B1 (ko) * 2015-05-26 2019-06-20 닛산 지도우샤 가부시키가이샤 정차 위치 설정 장치 및 방법
DE102017213071A1 (de) * 2016-08-17 2018-02-22 Ford Global Technologies, Llc Vorrichtung zum Reduzieren einer Geschwindigkeit eines Kraftfahrzeugs
WO2018066560A1 (ja) * 2016-10-03 2018-04-12 本田技研工業株式会社 車両制御装置
JP6630443B2 (ja) * 2016-10-03 2020-01-15 本田技研工業株式会社 車両制御装置
US10202118B2 (en) * 2016-10-14 2019-02-12 Waymo Llc Planning stopping locations for autonomous vehicles
JP6776968B2 (ja) * 2017-03-23 2020-10-28 いすゞ自動車株式会社 走行制御装置、車両および走行制御方法
JP6823291B2 (ja) * 2017-04-20 2021-02-03 トヨタ自動車株式会社 運転支援装置及び運転支援方法
JP6756661B2 (ja) * 2017-04-28 2020-09-16 日立オートモティブシステムズ株式会社 車両電子制御装置
US10373500B1 (en) * 2017-09-22 2019-08-06 State Farm Mutual Automobile Insurance Company Technology for using image data to assess vehicular risks and communicate notifications
DE102017218222A1 (de) 2017-10-12 2019-04-18 Continental Automotive Gmbh Bestimmung der Position eines späteren Haltepunktes eines Fahrzeugs
CN111148677B (zh) 2017-10-12 2023-03-24 日产自动车株式会社 自动驾驶车辆的控制方法及控制装置
EP3702228B1 (en) * 2017-10-26 2022-04-20 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle
JP7049808B2 (ja) * 2017-11-08 2022-04-07 株式会社デンソー 制動制御装置
US10741081B2 (en) * 2017-11-14 2020-08-11 GM Global Technology Operations LLC Remote park assist system
JP6954052B2 (ja) * 2017-11-27 2021-10-27 トヨタ自動車株式会社 車群制御装置
US10926759B2 (en) * 2018-06-07 2021-02-23 GM Global Technology Operations LLC Controlling a vehicle based on trailer position
US10845478B2 (en) * 2018-09-07 2020-11-24 GM Global Technology Operations LLC Micro-doppler apparatus and method for trailer detection and tracking
WO2020066498A1 (ja) * 2018-09-26 2020-04-02 京セラ株式会社 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP7132057B2 (ja) * 2018-09-27 2022-09-06 株式会社Subaru 車両用通信装置、並びにこれを用いる車両制御システムおよび交通システム
KR102657326B1 (ko) * 2018-10-22 2024-04-12 현대모비스 주식회사 경보 발생 장치 및 방법
JP7215368B2 (ja) * 2019-07-19 2023-01-31 トヨタ自動車株式会社 走行制御装置、走行システムおよび走行プログラム
US11741719B2 (en) * 2019-08-27 2023-08-29 GM Global Technology Operations LLC Approach to maneuver planning for navigating around parked vehicles for autonomous driving
JP2021142841A (ja) * 2020-03-11 2021-09-24 本田技研工業株式会社 車両及びその制御装置
JP2021148572A (ja) * 2020-03-18 2021-09-27 本田技研工業株式会社 車載装置、車両、および制御方法
FR3120595B1 (fr) * 2021-03-09 2023-07-07 Renault Sas Procédé de régulation automatique de la vitesse d’un véhicule automobile
CN113428164B (zh) * 2021-07-21 2023-01-03 上汽通用五菱汽车股份有限公司 驾驶习惯学习方法、装置及计算机可读存储介质
CN113460050B (zh) * 2021-07-22 2022-11-15 上汽通用五菱汽车股份有限公司 车辆跟停控制方法、装置及计算机可读存储介质
CN117789486B (zh) * 2024-02-28 2024-05-10 南京莱斯信息技术股份有限公司 一种大型车交叉路口右转必停监管系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257139A (ja) * 2009-04-23 2010-11-11 Toyota Motor Corp 発進支援装置
JP2011154619A (ja) * 2010-01-28 2011-08-11 Toyota Motor Corp 減速支援装置
JP2011192177A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 前方状況予測装置
JP2012146252A (ja) * 2011-01-14 2012-08-02 Denso Corp 運転支援装置
JP2013167510A (ja) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp 情報機器

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006327314A (ja) * 2005-05-24 2006-12-07 Aisin Aw Co Ltd 配光制御システム及び配光制御方法
JP4541973B2 (ja) * 2005-06-09 2010-09-08 富士通テン株式会社 運転支援装置および運転支援方法
JP4720457B2 (ja) * 2005-11-22 2011-07-13 アイシン・エィ・ダブリュ株式会社 車両の運転支援方法及び運転支援装置
JP2008049917A (ja) * 2006-08-25 2008-03-06 Toyota Motor Corp 自動停止制御装置
JP2008310398A (ja) * 2007-06-12 2008-12-25 Denso Corp 運転支援装置および運転支援装置用のプログラム
US9126525B2 (en) * 2009-02-27 2015-09-08 Magna Electronics Inc. Alert system for vehicle
US8483928B2 (en) 2009-03-04 2013-07-09 Toyota Jidosha Kabushiki Kaisha Follow-up run control device
US8977489B2 (en) * 2009-05-18 2015-03-10 GM Global Technology Operations LLC Turn by turn graphical navigation on full windshield head-up display
WO2010144900A1 (en) * 2009-06-12 2010-12-16 Magna Electronics Inc. Scalable integrated electronic control unit for vehicle
JP5273013B2 (ja) 2009-10-27 2013-08-28 トヨタ自動車株式会社 運転支援装置
CN102947160A (zh) * 2010-06-23 2013-02-27 通用汽车环球科技运作有限责任公司 通过交通路口的车辆队伍控制
JP6060091B2 (ja) * 2010-12-29 2017-01-11 ボルボ ラストバグナー アーベー 車間距離制御システム
US8618952B2 (en) * 2011-01-21 2013-12-31 Honda Motor Co., Ltd. Method of intersection identification for collision warning system
CN103503044B (zh) 2011-04-21 2015-10-21 三菱电机株式会社 行驶支援装置
US9092986B2 (en) * 2013-02-04 2015-07-28 Magna Electronics Inc. Vehicular vision system
US20150268665A1 (en) * 2013-11-07 2015-09-24 Google Inc. Vehicle communication using audible signals
US9557736B1 (en) * 2015-04-08 2017-01-31 Google Inc. Detecting street parked vehicles
US9672734B1 (en) * 2016-04-08 2017-06-06 Sivalogeswaran Ratnasingam Traffic aware lane determination for human driver and autonomous vehicle driving system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010257139A (ja) * 2009-04-23 2010-11-11 Toyota Motor Corp 発進支援装置
JP2011154619A (ja) * 2010-01-28 2011-08-11 Toyota Motor Corp 減速支援装置
JP2011192177A (ja) * 2010-03-16 2011-09-29 Toyota Motor Corp 前方状況予測装置
JP2012146252A (ja) * 2011-01-14 2012-08-02 Denso Corp 運転支援装置
JP2013167510A (ja) * 2012-02-15 2013-08-29 Mitsubishi Electric Corp 情報機器

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11216002B1 (en) * 2014-08-29 2022-01-04 Waymo Llc Determining the stationary state of detected vehicles
US11835959B1 (en) 2014-08-29 2023-12-05 Waymo Llc Determining the stationary state of detected vehicles
EP3333820A4 (en) * 2015-07-21 2019-01-23 Nissan Motor Co., Ltd. DRIVING PLATFORM DEVICE, CIRCULATION ASSISTING DEVICE, AND DRIVING PLANE METHOD
CN106740842A (zh) * 2016-12-07 2017-05-31 浙江吉利控股集团有限公司 一种用于自适应巡航系统的节油装置及方法
WO2018230245A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー 走行支援装置、制御プログラム、コンピュータ読み出し可能持続的有形記録媒体
WO2019044627A1 (ja) * 2017-09-01 2019-03-07 株式会社デンソー 衝突回避支援装置
JP2019046136A (ja) * 2017-09-01 2019-03-22 株式会社デンソー 衝突回避支援装置
WO2019054258A1 (ja) * 2017-09-12 2019-03-21 株式会社デンソー 車両の制御装置
JP2019049246A (ja) * 2017-09-12 2019-03-28 株式会社デンソー 車両の制御装置
JP2019133281A (ja) * 2018-01-29 2019-08-08 株式会社東芝 情報処理装置、車載装置、情報処理システム、および情報処理方法
JP2020082802A (ja) * 2018-11-16 2020-06-04 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
CN113538911A (zh) * 2020-02-11 2021-10-22 北京百度网讯科技有限公司 路口距离的检测方法、装置、电子设备和存储介质
CN113538911B (zh) * 2020-02-11 2022-08-02 北京百度网讯科技有限公司 路口距离的检测方法、装置、电子设备和存储介质
JP2022039115A (ja) * 2020-08-27 2022-03-10 本田技研工業株式会社 自動運転車用情報提示装置
CN114194105A (zh) * 2020-08-27 2022-03-18 本田技研工业株式会社 自动驾驶车用信息提示装置
JP7157780B2 (ja) 2020-08-27 2022-10-20 本田技研工業株式会社 自動運転車用情報提示装置
US11897499B2 (en) 2020-08-27 2024-02-13 Honda Motor Co., Ltd. Autonomous driving vehicle information presentation device
CN114194105B (zh) * 2020-08-27 2024-04-12 本田技研工业株式会社 自动驾驶车用信息提示装置
CN112859062B (zh) * 2021-01-19 2023-11-24 巍泰技术(武汉)有限公司 一种基于雷达的车辆排队长度检测方法及系统
CN112859062A (zh) * 2021-01-19 2021-05-28 巍泰技术(武汉)有限公司 一种基于雷达的车辆排队长度检测方法及系统

Also Published As

Publication number Publication date
JP6230620B2 (ja) 2017-11-15
JPWO2015087395A1 (ja) 2017-03-16
US20160229402A1 (en) 2016-08-11
CN105814619B (zh) 2018-04-03
US9884624B2 (en) 2018-02-06
DE112013007677T5 (de) 2016-09-08
CN105814619A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
JP6230620B2 (ja) 走行制御装置
US10730522B2 (en) Lane change support apparatus
US10160450B2 (en) Travel control device for vehicle
EP3220226B1 (en) Automated vehicle having optimized driving speed profiles
EP2916307B1 (en) Vehicle safety apparatus
US11226620B2 (en) Automated driving systems and control logic with enhanced longitudinal control for transitional surface friction conditions
JP5613597B2 (ja) 車両用運転支援装置
JP5471516B2 (ja) 減速支援装置
KR20140051996A (ko) 거리 및 속력을 적응적으로 제어하고 자동차를 정지시키는 방법 및 시스템, 및 이에 따라 작동하는 자동차
US11872983B2 (en) Vehicle collision prediction apparatus
CN110072751B (zh) 汽车的行驶控制装置和汽车的行驶控制系统
CN111601745A (zh) 车辆的自动驾驶方法及自动控制装置
JP2021507849A (ja) 車両の縦方向動力を自動的に調整するための方法および装置
EP4074567A1 (en) Driving control method and driving control device
WO2019235278A1 (ja) 車両制御装置
JP2013089136A (ja) 車両の道路形状予測装置及びこれを備えた車両の走行制御装置
JP2006290149A (ja) 車両用走行制御装置
JP2007062403A (ja) 自動車の追従走行装置
JP2013089135A (ja) 車両の道路形状予測装置及びこれを備えた車両の走行制御装置
JP2012218548A (ja) 車両用情報処理装置
US20230234575A1 (en) Vehicle driving assist device and vehicle driving assist system
JP2024093439A (ja) 車両の走行制御装置
JP2011102091A (ja) 車両制御装置
JP2023047007A (ja) 車両の走行制御装置
JP2021144313A (ja) 潜在的危険回避装置および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899018

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552228

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15023741

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007677

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13899018

Country of ref document: EP

Kind code of ref document: A1