WO2015060367A1 - 白金族金属分離剤及び白金族金属イオンの分離方法 - Google Patents

白金族金属分離剤及び白金族金属イオンの分離方法 Download PDF

Info

Publication number
WO2015060367A1
WO2015060367A1 PCT/JP2014/078149 JP2014078149W WO2015060367A1 WO 2015060367 A1 WO2015060367 A1 WO 2015060367A1 JP 2014078149 W JP2014078149 W JP 2014078149W WO 2015060367 A1 WO2015060367 A1 WO 2015060367A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum group
group metal
separating agent
metal ions
ions
Prior art date
Application number
PCT/JP2014/078149
Other languages
English (en)
French (fr)
Inventor
幸徳 須藤
隆洋 増田
正寛 服部
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2015060367A1 publication Critical patent/WO2015060367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3272Polymers obtained by reactions otherwise than involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a separating agent and a rhodium ion separating method that selectively adsorb platinum group metal ions from a solution containing a plurality of metal ions to enable separation and recovery of platinum group metals.
  • Platinum group metals such as palladium, platinum, and rhodium are used in industrial catalysts, automobile exhaust gas purification catalysts, and many electrical appliances. Since these noble metals are expensive and useful as resources, they are conventionally collected and reused after use, that is, recycled. Recently, demands for resource conservation have increased, and the importance of recycling platinum group metals has further increased.
  • the solvent extraction method is an extraction step of extracting platinum group metal ions to the organic phase side by bringing the aqueous phase in which the platinum group metal ions are dissolved into contact with the organic phase in which the platinum group metal ion extractant is dissolved. It comprises a back extraction step of back extracting platinum group metal ions to the aqueous phase side by bringing the platinum group metal ions extracted on the organic phase side into contact with the aqueous phase in which the back extractant is dissolved.
  • the solvent extraction method has a problem in terms of safety and environmental load because a large amount of organic solvent is used. Further, in the separation of platinum group metals by the solvent extraction method, especially rhodium has no effective separation reagent, so it has been necessary to recover from the extraction residual liquid after separating other metals.
  • platinum group metals are often treated with hydrochloric acid for the purpose of separation from other components in a wet process
  • platinum group metal ions are selectively selected from a hydrochloric acid solution containing a plurality of metal ions. Development of a separation method for platinum group metal ions that can be separated and recovered is desired.
  • Patent Document 2 selectively separates and recovers platinum, palladium, and ruthenium from a chloride solution containing platinum, palladium, and ruthenium because they are eluted simultaneously. It was difficult.
  • Patent Document 3 The applicant has also filed a patent application for a platinum group metal adsorbent having a specific amide-containing sulfur functional group on the support surface (see Patent Document 3).
  • the present invention has been made in view of the above-described background art, and is a separating agent capable of selectively separating and recovering a platinum group metal ion from a solution containing a plurality of metal ions, and platinum using the separating agent. It aims at providing the separation method of a group metal ion.
  • the present inventors have found a novel separating agent capable of selectively separating platinum group metal ions from a solution containing a plurality of metal ions, and completed the present invention. It came to do.
  • the present invention has the following gist.
  • a platinum group metal separating agent wherein polyethyleneimine is chemically bonded to an inorganic carrier through an amide bond.
  • [8] A method for separating platinum group metal ions, comprising bringing the platinum group metal separating agent according to any one of [1] to [5] above into contact with a solution containing platinum group metal ions.
  • a platinum group metal separating agent is brought into contact with a mole of platinum group metal ions in a solution containing the platinum group metal ions in a molar amount of 0.1 to 100 times as a molar amount of nitrogen in the platinum group metal separating agent.
  • the separating agent of the present invention can be used repeatedly and does not require an organic solvent. As a result, the separation and recovery of platinum group metal ions can be carried out economically without imposing an environmental burden.
  • platinum group metal ions can be selectively separated and recovered from a solution containing a plurality of metal ions, and separation and recovery of rhodium ions from a hydrochloric acid solution, which has been difficult in the past. Is also possible.
  • FIG. 6 The figure which shows the adsorption rate of each metal in Example 6.
  • FIG. 7 The figure which shows the adsorption rate of each metal in Example 7.
  • FIG. 8 The figure which shows the adsorption rate of each metal in Example 8.
  • the platinum group metal separating agent of the present invention is characterized in that polyethyleneimine is chemically bonded to an inorganic carrier via an amide bond.
  • examples of polyethyleneimine include linear polymers such as a polymer obtained by polycondensation reaction of ethylene dichloride and ethylenediamine, a polymer obtained by heat-opening 2-oxazoline, and ethyleneimine. And a complete linear polymer such as a polymer obtained by ring-opening polymerization. Further, branched polymer polymers each having a structural portion having a primary amino group, a secondary amino group, and a tertiary amino group are included.
  • the molecular weight of polyethyleneimine is not particularly limited, but the number average molecular weight is preferably from 300 to 100,000, more preferably from 600 to 10,000.
  • the inorganic carrier is preferably insoluble in a solvent, and examples thereof include silica gel, alumina, titania, magnesia, zirconia, iron oxide, copper oxide, glass, silica sand, talc, mica, clay, wollastonite and the like. It is done. Of these inorganic carriers, silica gel is particularly preferable because of its high chemical resistance and low cost and high versatility.
  • the shape of the inorganic carrier for example, spherical (eg, spherical particles), granular, fibrous, granular, monolithic column, hollow fiber, membrane (eg, flat membrane), etc.
  • the shape used is available. Of these, spherical, membranous, granular, granular or fibrous ones are preferred.
  • Spherical, granular, or granular inorganic carriers are particularly preferably used because their use volume can be arbitrarily set when used in a column method or a batch method.
  • the particle size of the spherical, granular or granular inorganic carrier for example, those having an average particle diameter of 1 ⁇ m to 10 mm can be used, and among them, those having an average particle diameter of 2 ⁇ m to 1 mm are preferable in terms of operability and adsorption capacity.
  • the average particle diameter means the median diameter.
  • an inorganic carrier having a carboxyl group described below (hereinafter referred to as “carboxylated inorganic carrier”) is reacted with polyethyleneimine (hereinafter referred to as “immobilization reaction”). ) Can be manufactured.
  • carboxylated inorganic carrier examples include carboxylated silica gel, carboxylated alumina, carboxylated zirconia, carboxylated titania, carboxylated magnesia, and carboxylated glass. Of these, carboxylated silica gel is more preferable.
  • carboxylated inorganic carrier commercially available products can be used, and those obtained by carboxylating the above-described inorganic carrier by a generally known method can be used, and are not particularly limited.
  • the polyethyleneimine is preferably reacted in an amount of 0.01 to 10 times mol, more preferably 0.1 to 2 times mol for 1 mol of the carboxyl group in the carboxylated inorganic carrier.
  • the immobilization reaction is usually performed in a solvent.
  • the solvent is not particularly limited as long as it does not inhibit the reaction, but organic solvents such as benzene, toluene, xylene, dichloromethane, chloroform, tetrahydrofuran, N, N-dimethylformamide are preferably used. More preferably, it is used.
  • the amount of the solvent used is usually 2 to 40 parts by weight, preferably 3 to 15 parts by weight with respect to 100 parts by weight of the carboxylated inorganic carrier.
  • a reaction accelerator can be added to the reaction solution.
  • the reaction accelerator include N, N′-dicyclohexylcarbodiimide, N, N′-diisopropylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide, diphenylphosphate azide, benzotriazol-1-yloxy
  • Dehydrating condensing agents such as trisdimethylaminophosphonium chloride, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride, 3,5-bis (trifluoro Examples thereof include boronic acid derivatives such as methyl) phenylboronic acid, 4-trifluoromethylphenylboronic acid, 3,4,5-trifluorophenylboronic acid, and 3-nitrophenylboronic acid.
  • these dehydrating condensing agents or boronic acid derivatives commercially available reagents can be
  • the amount of the dehydrating condensing agent used is, for example, usually 1 to 10 moles per mole of the carboxyl group of the carboxylated inorganic carrier. From the point of reaction promotion effect and economical efficiency, 1 to 3 times mol is preferable.
  • an additive such as 1-hydroxybenzotriazole, 1-hydroxy-7-azabenzotriazole, N-hydroxysuccinimide may be added for the purpose of improving the reactivity.
  • the amount of the boronic acid derivative used is 0.0001 to 1 times the mole of the carboxyl group of the carboxylated inorganic carrier. From the point of reaction promotion effect and economy, 0.001 to 0.5 times mole is preferable, and 0.005 to 0.1 times mole is more preferable.
  • the reaction temperature in the immobilization reaction is preferably, for example, 0 to 200 ° C, more preferably 100 to 180 ° C.
  • reaction time in the immobilization reaction varies depending on the concentrations of polyethyleneimine and reaction accelerator, reaction temperature, etc., but is usually in the range of several minutes to 24 hours.
  • the separating agent of the present invention obtained by the above-described immobilization reaction can be easily separated from other components in the reaction solution by operations such as filtration, washing and drying.
  • the separation method of the present invention is first carried out by bringing a separation agent of the present invention into contact with a solution containing a white metal metal ion.
  • Examples of the method for bringing the solution containing a platinum group metal ion into contact with the separating agent of the present invention include, for example, a method of preparing a slurry in which a solution containing a platinum group metal ion and the separating agent of the present invention are mixed and stirring the slurry. (Fluidized bed). Moreover, the method (fixed bed) which fills the separation agent of this invention in a column etc., distribute
  • examples of the solution containing platinum group metal ions to be brought into contact with the separation agent of the present invention include, for example, a solution in which an automobile exhaust gas treatment catalyst and jewelry are dissolved, and an acid in a platinum group metal wet refining process.
  • examples include solutions after leaching.
  • the solution containing the platinum group metal ions described above may contain base metal ions such as copper ions, iron ions, nickel ions and zinc ions in addition to the platinum group metal ions. It is possible to selectively separate platinum group metal ions by a separation method in which this solution is brought into contact with the platinum group metal separating agent of the present invention.
  • the solution containing platinum group metal ions may be either an aqueous solution or an organic solvent solution, but an aqueous solution is preferably used in terms of environmental load.
  • the liquidity of the solution containing platinum group metal ions for example, when it is an aqueous solution, it is preferably acidic.
  • the acid used to make the solution containing the platinum group metal ion acidic include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid. Of these, hydrochloric acid is particularly preferred because it is used as an acid leaching solution of platinum group metal ions.
  • the acid concentration in the solution containing platinum group metal ions is preferably 0.1 to 10 mol / L (liter), more preferably 0.1 to 6 mol / L. When the acid concentration is within this range, platinum group metal ions can be adsorbed without impairing the adsorption efficiency of the separating agent of the present invention.
  • the type of the organic solvent is not particularly limited.
  • toluene, benzene, xylene, chloroform, dichloromethane, dichloroethane, chlorobenzene, hexane, tetrahydrofuran, N Common organic solvents such as N′-dimethylformamide, ethyl acetate, acetone, methanol, ethanol and the like can be used.
  • the amount of the separating agent used in the present invention is, for example, preferably 0.1 to 100 times moles of nitrogen in the separating agent with respect to 1 mole of platinum group metal ions in the solution containing the platinum group metal ions. More preferably, it is 5 to 10 moles.
  • the separation method of the present invention is further carried out by bringing the separating agent of the present invention adsorbing platinum group metal ions into contact with the desorbing agent to desorb the platinum group metal ions.
  • Examples of the method for bringing the separating agent having adsorbed platinum group metal ions into contact with the releasing agent include the same contact method as the above-described method for contacting the separating agent of the present invention with a solution containing white metal metal ions. Can do.
  • Examples of the desorbent used in the separation method of the present invention include at least one selected from the group consisting of ammonia, ethylenediamine, triethylenediamine, diethylenetriamine, polyethyleneimine, thiourea, and methionine. Of these, diethylenetriamine, polyethyleneimine, or thiourea is particularly preferable in terms of elimination efficiency and elimination rate. These releasing agents are preferably selected appropriately depending on the physical properties of the inorganic carrier.
  • the release agent can be used as it is, or can be used as a solution dissolved in an arbitrary solvent.
  • a releasing agent solution for example, it can be used as an organic solution, an organic solvent-water mixed solution, an aqueous solution or an acidic aqueous solution.
  • inorganic acids such as hydrochloric acid, a sulfuric acid, nitric acid, can be used, for example.
  • the acid concentration of the acidic aqueous solution is preferably from 0.1 to 10 mol / L, more preferably from 0.1 to 6 mol / L.
  • the amount of the inorganic salt added is preferably 1 to 50% by weight, and more preferably 5 to 20% by weight.
  • the concentration of the releasing agent in the releasing agent solution is, for example, 1 to 99% by weight, preferably 1 to 10% by weight.
  • the amount of the releasing agent used is, for example, 2 to 10000 times mol with respect to 1 mol of nitrogen in the separating agent, and more preferably 5 to 1000 times mol in terms of elimination efficiency and economy.
  • the separation agent is preferably packed in a column or the like from the viewpoints of operability, transportability, and repeated use.
  • the column packed with the separation agent of the present invention is preferably a material excellent in acid resistance, base resistance, and chemical resistance, and for example, a glass column, an acrylic resin column, or the like is preferably used. A commercial item can be used as the column.
  • the separation agent of the present invention can be used in combination with an existing or commercially available adsorption separation device, and can be arbitrarily used in combination with a liquid feeding device or the like.
  • the separation agent of the present invention is used to separate and recover platinum group metal ions, and a desorption solution containing desorbed platinum group metal ions (hereinafter referred to as “platinum group metal ion desorption solution”). ) Is obtained.
  • the platinum group metal ions in the platinum group metal ion desorption solution can be precipitated as a platinum group metal or a platinum group metal complex by a conventionally known method such as reduction treatment or addition of a chelating agent, and further filtered. It can collect
  • the reduction treatment method for the platinum group metal ion desorption solution various methods can be used depending on the purpose and equipment. For example, an electrolytic reduction method by electrolysis or a chemical reduction method in which a reducing agent such as hydrazine or sodium borohydride is added.
  • a reducing agent such as hydrazine or sodium borohydride
  • the reduction treatment of the platinum group metal ion desorbed liquid can be carried out under any of acidic, neutral, or basic conditions, but from the viewpoint of suppressing the reduction efficiency of platinum group metal ions and the corrosiveness of the equipment.
  • the pH is preferably 1 or more and 13 or less, more preferably neutral conditions of pH 6 or more and 8 or less.
  • an inorganic base compound such as sodium hydroxide, potassium hydroxide, sodium bicarbonate, slaked lime or the like can be preferably used. Of these, sodium hydroxide is more preferably used as a neutralizing agent.
  • the operation of the reduction treatment of the platinum group metal ion desorbing liquid is usually carried out under normal pressure and atmospheric atmosphere, but it can also be carried out under pressurized or reduced pressure conditions and inert gas atmosphere.
  • the reduction treatment is usually carried out at a temperature of 4 to 100 ° C., more preferably 10 to 50 ° C.
  • Examples of the method for filtering the precipitate of the platinum group metal or the white metal metal complex include a method using a membrane filter, filter paper, filter cloth, glass filter, and the like. For ease of operation, filtration with a membrane filter or filter paper is used. Is preferred.
  • the platinum group metal or platinum group metal complex precipitate obtained by filtration can be separated as a high-purity platinum group metal by heating to a melting point of the platinum group metal or higher and melting.
  • the nitrogen content was measured with a fully automatic elemental analyzer (2400II, manufactured by PerkinElmer Japan).
  • Example 1 (Preparation of separating agent used in Examples 2 to 11)
  • 5 g of carboxyl group-bonded silica gel manufactured by Fuji Silysia Chemical Ltd., trade name: ACD-COOH
  • 30 g of o-xylene, 3,5-bis (trifluoromethyl) phenylboronic acid 0.009 g and 5 g of polyethyleneimine manufactured by Wako Pure Chemical Industries, Ltd., number average molecular weight 1800) were weighed and heated to reflux for 24 hours with vigorous stirring.
  • the reaction mixture was filtered, and the collected solid was washed with methanol to obtain 7.1 g of a platinum group metal separating agent.
  • the nitrogen content of the obtained separating agent was 9.0% by weight.
  • Metal adsorption rate (%) [(initial concentration of metal ions ⁇ metal ion concentration in liquid after metal adsorption by separating agent) ⁇ initial concentration of metal ions] ⁇ 100% (1)
  • Example 2 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of a 1 mol / L hydrochloric acid solution containing 1000 mg / L of palladium ions, and the mixture was stirred at room temperature for 1 hour. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • FIG. 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of 1 mol / L hydrochloric acid solution containing 1000 mg / L of platinum ions, and the mixture was stirred at room temperature for 1 hour. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • Example 4 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of a 6 mol / L hydrochloric acid solution containing 100 mg / L of rhodium ion and stirred at room temperature for 24 hours. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • FIG. 0.3 g of the separating agent prepared in Example 1 was added to 10 mL of 6 mol / L hydrochloric acid solution containing 100 mg / L of palladium ion, platinum ion, and rhodium ion, and the mixture was stirred at room temperature for 24 hours. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • the palladium adsorption rate was 81.9%
  • the platinum adsorption rate was 90.6%
  • the rhodium adsorption rate was 89.7%.
  • platinum group metal ions were adsorbed all at once.
  • Example 6 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of a 1 mol / L hydrochloric acid solution containing 100 mg / L each of palladium ion, copper ion, iron ion, nickel ion, and zinc ion, and the mixture was stirred at room temperature for 1 hour. . Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • the palladium adsorption rate is 96.8%
  • the copper adsorption rate is 0%
  • the iron adsorption rate is 0%
  • the nickel adsorption rate is 0%
  • the zinc adsorption rate was 5.6%.
  • Example 7 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of 1 mol / L hydrochloric acid solution containing 100 mg / L each of platinum ion, copper ion, iron ion, nickel ion, and zinc ion, and the mixture was stirred at room temperature for 1 hour. . Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • platinum which is a platinum group metal, is selectively adsorbed, the platinum adsorption rate is 95.6%, the copper adsorption rate is 0%, the iron adsorption rate is 0%, the nickel adsorption rate is 0%, The zinc adsorption rate was 7.2%.
  • FIG. 0.1 g of the separating agent prepared in Example 1 was added to 10 mL of a 6 mol / L hydrochloric acid solution containing 100 mg / L each of rhodium ions, copper ions, iron ions, nickel ions, and zinc ions, and stirred at room temperature for 24 hours. . Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • the platinum group metal rhodium is selectively adsorbed, the rhodium adsorption rate is 76.3%, the copper adsorption rate is 19.3%, the iron adsorption rate is 8.6%, and the nickel adsorption rate. was 0%, and the zinc adsorption rate was 29.3%.
  • Metal desorption rate (%) (metal desorption amount / metal adsorption amount) ⁇ 100% (2)
  • Example 9 0.5 g of the separating agent prepared in Example 1 was added to 10 mL of a 1 mol / L hydrochloric acid solution containing 500 mg / L of palladium ions, and the mixture was stirred at room temperature for 1 hour. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and calculated the adsorption amount of palladium ion as 9.7 mg per 1 g of adsorption agent from the residual palladium ion density
  • the separating agent collected by filtration is washed with water and dried, and then 0.1 g of the separating agent is added to 10 mL of a releasing agent prepared as a 1 mol / L hydrochloric acid solution having a thiourea concentration of 5% by weight. Stir for hours. Thereafter, filtration was performed using a membrane filter having a pore diameter of 0.45 ⁇ m, and the amount of desorbed palladium ions was determined from the concentration of palladium ions in the filtrate. As a result, the desorption rate of palladium ions was 79.6% from equation (2). Met.
  • Example 10 To 10 mL of 1 mol / L hydrochloric acid solution containing 500 mg / L of platinum ions, 0.5 g of the separating agent prepared in Example 1 was added and stirred at room temperature for 1 hour. Thereafter, the mixture was filtered using a membrane filter having a pore diameter of 0.45 ⁇ m, and the amount of platinum ions adsorbed was calculated to be 9.6 mg per 1 g of the adsorbent from the residual platinum ion concentration and the initial concentration in the filtrate.
  • the separating agent collected by filtration is washed with water and dried, and then 0.1 g of the separating agent is added to 10 mL of a releasing agent prepared as a 1 mol / L hydrochloric acid solution having a thiourea concentration of 5% by weight. Stir for hours. Thereafter, the mixture was filtered using a membrane filter having a pore diameter of 0.45 ⁇ m, and the amount of platinum ions desorbed was determined from the platinum ion concentration in the filtrate. As a result, the desorption rate of platinum ions was 100% from equation (2). It was.
  • Example 11 0.5 g of the separating agent prepared in Example 1 was added to 10 mL of 1 mol / L hydrochloric acid solution containing 500 mg / L of rhodium ion, and the mixture was stirred at room temperature for 1 hour. Thereafter, the solution was filtered using a membrane filter having a pore diameter of 0.45 ⁇ m, and the amount of rhodium ions adsorbed was calculated to be 9.2 mg per 1 g of the adsorbent from the residual rhodium ion concentration and the initial concentration in the filtrate.
  • the separating agent collected by filtration is washed with water and dried, and then 0.1 g of the separating agent is added to 10 mL of a releasing agent prepared as a 6 mol / L hydrochloric acid solution having a diethylenetriamine concentration of 10% by weight, and the mixture is stirred at room temperature for 1 hour. Stir. Thereafter, filtration was performed using a membrane filter having a pore diameter of 0.45 ⁇ m, and the amount of rhodium ions desorbed was determined from the rhodium ion concentration in the filtrate. As a result, the rhodium ion desorption rate was 46.4% from the equation (2). Met.
  • Example 12 (Preparation of separating agent used in Examples 13 to 15)
  • 5 g of carboxyl group-bonded silica gel manufactured by Fuji Silysia Chemical Ltd., trade name: ACD-COOH
  • 30 g of o-xylene, 3,5-bis (trifluoromethyl) phenylboronic acid 0.009 g and 0.65 g of polyethyleneimine manufactured by Wako Pure Chemical Industries, Ltd., number average molecular weight 1800
  • the reaction mixture was filtered, and the collected solid was washed with methanol to obtain 5.5 g of a platinum group metal separating agent.
  • the nitrogen content of the obtained separating agent was 4.7% by weight.
  • Example 13 0.1 g of the separating agent prepared in Example 12 was added to 10 mL of a 6 mol / L hydrochloric acid solution containing 100 mg / L of rhodium ion, and the mixture was stirred at room temperature for 24 hours. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • Example 14 After 0.5 g of the separating agent prepared in Example 12 was dispersed in water, it was filled in a glass column (inner diameter 5 mm, length 100 mm), and 20 mL of 6 mol / L hydrochloric acid was passed through the top of the column. Next, 20 mL of a 6 mol / L hydrochloric acid aqueous solution containing 500 mg / L of rhodium ions was passed from the top of the column at a flow rate of 20 mL / Hr to adsorb rhodium ions, and then 20 mL of 6 mol / L hydrochloric acid was passed through (flow rate of 20 mL / L). Hr) to wash the column.
  • the rhodium ion adsorption rate was determined from the formula (1) from the rhodium ion concentration and the initial concentration in the column effluent, and the rhodium adsorption rate was 94.9%.
  • a 1.6 mol / L hydrochloric acid aqueous solution containing 10% by weight polyethyleneimine (manufactured by Wako Pure Chemical Industries, Ltd., number average molecular weight 10,000) and 10% by weight sodium chloride was flowed from the top of the column at a flow rate of 20 mL / Hr. 10 mL was passed through to desorb rhodium ions adsorbed on the separating agent.
  • the rhodium ion desorption rate was 96.4% from the equation (2).
  • Example 15 After 0.5 g of the separating agent prepared in Example 12 was dispersed in water, it was packed in a glass column (inner diameter 5 mm, length 100 mm), and 20 mL of 6 mol / L hydrochloric acid was passed through the top of the column. Next, 30 mL of a 6 mol / L hydrochloric acid aqueous solution containing 500 mg / L of rhodium ions was passed from the top of the column at a flow rate of 20 mL / Hr to adsorb rhodium ions, and 10 mL of 6 mol / L hydrochloric acid was passed through (flow rate 20 mL / Hr). The column was washed.
  • the rhodium adsorption rate was 90.6%.
  • 30 mL of a 1.5 mol / L hydrochloric acid aqueous solution containing 10% by weight of triethylenediamine was passed through the column at a flow rate of 20 mL / Hr to desorb rhodium ions adsorbed on the separating agent.
  • the rhodium ion desorption rate was 90.8% from the formula (2).
  • Metal deposition rate (%) [(initial concentration of metal ions ⁇ residual metal concentration in liquid) ⁇ initial concentration of metal ions] ⁇ 100% (3)
  • Example 16 Sodium hydroxide was added to the detachment liquid obtained in Example 15 (containing 411 mg / L of rhodium ion) to adjust the pH of the liquid to 3. Next, 23 mg of sodium borohydride was added, and the mixture was stirred at room temperature for 1 hour to reduce rhodium ions to obtain a rhodium black precipitate. As a result of obtaining the rhodium black precipitation rate from the residual rhodium ion concentration and the initial concentration in the liquid from the equation (3), the rhodium black precipitation rate was 99.6%.
  • Comparative Example 1 Instead of the separating agent prepared in Example 1, Diaion SA10A manufactured by Mitsubishi Chemical Corporation was used as a platinum group metal separating agent, and 0.1 g of the separating agent was added to 10 mL of a 6 mol / L hydrochloric acid solution containing 100 mg / L of rhodium ions. The mixture was added and stirred at room temperature for 24 hours. Then, it filtered using the membrane filter with the hole diameter of 0.45 micrometer, and measured the residual metal density
  • Comparative Example 2 It carried out similarly to the comparative example 1 except having used Amberlite IRA96SB by Organo Co. as a platinum group metal separating agent instead of the separating agent prepared in Example 1. As a result, the rhodium adsorption rate determined from the equation (1) was 0%.
  • the separating agent of the present invention can selectively separate platinum group metal ions from a solution containing a plurality of metal ions, and can be used repeatedly, and is widely used in the field of precious metal recovery from the economical and environmental viewpoints.

Abstract

 複数の金属イオンを含有する溶液から白金族金属イオンを選択的に分離回収可能な分離剤、及び白金族金属イオンの分離方法を提供する。 ポリエチレンイミンがアミド結合を介して無機担体に化学結合していることを特徴とする白金族金属分離剤、及びそれを用いて白金族金属イオンを分離する方法。

Description

白金族金属分離剤及び白金族金属イオンの分離方法
 本発明は、複数の金属イオンを含有する溶液から白金族金属イオンを選択的に吸着し、白金族金属の分離回収を可能にする分離剤及びロジウムイオンの分離方法に関する。
 工業用触媒、自動車排ガス浄化触媒及び多くの電化製品には、パラジウム、白金、ロジウム等の白金族金属が用いられている。これらの貴金属は高価であり、資源としても有用であることから、従来から使用後に回収して再利用する、すなわちリサイクルすることが行われている。最近では、資源保全の要求が高まり、白金族金属のリサイクルの重要性が一層増加している。
 白金族金属を回収するために、沈殿分離法、イオン交換法、電解析出法、溶媒抽出法、吸着法等の方法が開発されており、これらのうち溶媒抽出法が経済性及び操作性の点から広く採用されている。
 溶媒抽出法は、白金族金属イオンが溶解した水相と白金族金属イオン抽出剤が溶解した有機相を液-液接触させることで、白金族金属イオンを有機相側に抽出する抽出工程と、有機相側に抽出された白金族金属イオンと逆抽出剤が溶解した水相を接触させることで白金族金属イオンを水相側に逆抽出する逆抽出工程からなる。
 この方法によれば、白金族金属イオンを高選択率で回収できるため、工業的に利用されている(例えば、特許文献1参照)。
 しかしながら、当該溶媒抽出法では、多量の有機溶媒を使用することから、安全性や環境負荷の面で課題を有する。また、溶媒抽出法による白金族金属の分離において、特にロジウムは有効な分離試薬が存在しないため、他金属を分離した後の抽出残液から回収する必要があった。
 尚、白金族金属は、湿式法において他の成分との分離等を目的として浸出液が塩酸で処理される場合が多いため、複数の金属イオンを含有する塩酸溶液から白金族金属イオンを選択的に分離回収可能な白金族金属イオンの分離方法の開発が望まれている。
 そこで、白金族元素と不純物元素を含む塩化物溶液をポリアミン型アニオン交換樹脂と接触させて白金族元素を選択的に吸着させる第一の工程、吸着処理後の樹脂を洗浄処理する第二の工程、及び洗浄処理後の樹脂から白金族元素を溶離させる第三の工程を含む白金族元素の分離回収方法が提案されている(例えば、特許文献2参照)。
 しかしながら、特許文献2に記載のポリアミン型アニオン交換樹脂は、白金、パラジウム、及びルテニウムを含む塩化物溶液については、白金、パラジウム、及びルテニウムが同時に溶出されるため、これらを選択的に分離回収することは困難であった。
 また、本件出願人も、特定のアミド含有硫黄官能基を担体表面に有する白金族金属吸着剤について特許出願している(特許文献3参照)。
 しかしながら、パラジウム、白金、及びロジウムを各々含む塩酸溶液に対してこの吸着剤を適用すると、パラジウムが優先的に吸着され、ロジウムはほとんど吸着されないことから、ロジウムを効率良く分離可能な分離剤、分離方法という点では未だ不十分であった。
日本特公平1-30896号公報 日本特開2004-131745号公報 日本特開2011-41918号公報
 本発明は、上記の背景技術に鑑みてなされたものであって、複数の金属イオンを含有する溶液から白金族金属イオンを選択的に分離回収可能な分離剤、及びその分離剤を使用する白金族金属イオンの分離方法を提供することを目的とする。
 本発明者らは、上記の課題を解決するため鋭意検討を重ねた結果、複数の金属イオンを含有する溶液から白金族金属イオンを選択的に分離できる新規の分離剤を見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の要旨を有するものである。
 [1]ポリエチレンイミンがアミド結合を介して無機担体に化学結合していることを特徴とする白金族金属分離剤。
 [2]無機担体がシリカゲルである、上記[1]に記載の白金族金属分離剤。
 [3]ポリエチレンイミンの数平均分子量が300~100000である、上記[1]又は[2]に記載の白金族金属分離剤。
 [4]無機担体の形状が、球状、粒状、繊維状、顆粒状、モノリスカラム、中空糸又は膜状である、上記[1]~[3]のいずれかに記載の白金族金属分離剤。
 [5]球状、粒状又は顆粒状の無機担体の粒子サイズの平均粒径が、1μm~10mmである、上記[1]~[4]いずれかに記載の白金族金属分離剤。
 [6]ポリエチレンイミンとカルボキシル基を有する無機担体を反応させることを特徴とする、上記[1]~[5]のいずれかに記載の白金族金属分離剤の製造方法。
 [7]ポリエチレンイミンを、カルボキシル化無機担体中のカルボキシル基1モルに対し、0.01~10倍モル反応させる、上記[6]に記載の製造方法。
 [8]上記[1]~[5]のいずれかに記載の白金族金属分離剤と、白金族金属イオンを含有する溶液を接触させる、白金族金属イオンの分離方法。
 [9]白金族金属分離剤を、白金族金属イオンを含む溶液中の白金族金属イオン1モルに対し、当該白金族金属分離剤中の窒素モル量として、0.1~100倍モル接触させる、上記[8]に記載の分離方法。
 [10]さらに、白金族金属イオンを吸着した白金族金属分離剤と脱離剤を接触させる、上記[8]又は[9]に記載の分離方法。
 [11]脱離剤が、アンモニア、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミン、ポリエチレンイミン、チオ尿素、及びメチオニンからなる群より選ばれる少なくとも一種である、上記[10]に記載の分離方法。
 [12]脱離剤を、白金族金属分離剤中の窒素1モルに対して、2~10000倍モル接触させる、上記[10]又は[11]に記載の分離方法。
 [13]さらに、脱離剤及び白金族金属イオンを含有する溶液を還元処理して、白金族金属又は白金族金属錯体を得る、上記[10]~[12]のいずれかに記載の分離方法。
 本発明の分離剤は、繰返し利用が可能であり、且つ有機溶媒を必須としない。その結果、白金族金属イオンの分離回収が、環境負荷を掛けることなく、経済的に実施される。
 また、本発明の分離方法によれば、複数の金属イオンを含有する溶液から白金族金属イオンを選択的に分離回収することができ、特に従来困難だった塩酸溶液中からのロジウムイオンの分離回収も可能である。
実施例6における各金属の吸着率を示す図。 実施例7における各金属の吸着率を示す図。 実施例8における各金属の吸着率を示す図。
 本発明の白金族金属分離剤は、ポリエチレンイミンがアミド結合を介して無機担体に化学結合していることをその特徴とする。
 本発明において、ポリエチレンイミンとしては、例えば、エチレンジクロライドとエチレンジアミンとの重縮合反応により得られる重合体、2-オキサゾリンを加熱開環して得られる重合体等の線状高分子重合体、エチレンイミンを開環重合して得られる重合体等の完全な線状高分子重合体が挙げられる。さらに、第1級アミノ基、第2級アミノ基、第3級アミノ基をもつ構造部分をそれぞれ有する分枝状高分子重合体が含まれる。
 ポリエチレンイミンの分子量は特に制限されないが、数平均分子量は300~100000が好ましく、600~10000がより好ましい。
 本発明において、無機担体としては、溶媒に不溶性のものが好ましく、例えば、シリカゲル、アルミナ、チタニア、マグネシア、ジルコニア、酸化鉄、酸化銅、ガラス、珪砂、タルク、マイカ、クレイ、ウォラスナイト等が挙げられる。これらの無機担体のうち、耐薬品性が高く安価であり、汎用性が高い点でシリカゲルが特に好ましい。
 無機担体の形状としては、例えば、球状(例えば、球状粒子等)、粒状、繊維状、顆粒状、モノリスカラム、中空糸、膜状(例えば、平膜)等の、一般的に分離基材として使用される形状が利用可能である。これらのうち、球状、膜状、粒状、顆粒状、又は繊維状のものが好ましい。球状、粒状、又は顆粒状の無機担体は、カラム法やバッチ法で使用する際、その使用体積を任意に設定できることから、特に好ましく用いられる。
 球状、粒状又は顆粒状の無機担体の粒子サイズとしては、例えば、平均粒径1μm~10mmのものを用いることができ、このうち、操作性と吸着容量の点で、2μm~1mmのものが好ましい。ここで、平均粒径とはメジアン径のことをいう。
 本発明の分離剤の製造法としては、例えば、後述するカルボキシル基を有する無機担体(以下、「カルボキシル化無機担体」という。)と、ポリエチレンイミンを反応させる(以下、「固定化反応」という。)ことによって製造することができる。
 カルボキシル化無機担体としては、例えば、カルボキシル化シリカゲル、カルボキシル化アルミナ、カルボキシル化ジルコニア、カルボキシル化チタニア、カルボキシル化マグネシア、カルボキシル化ガラス等を挙げることができる。なかでも、カルボキシル化シリカゲルがより好ましい。
 カルボキシル化無機担体としては、市販品を用いることもできるし、前述した無機担体を一般公知の方法によってカルボキシル化したものを用いることもでき、特に限定されない。
 固定化反応において、ポリエチレンイミンは、例えば、カルボキシル化無機担体中のカルボキシル基1モルに対し、0.01~10倍モル反応させることが好ましく、0.1~2倍モルがより好ましい。
 固定化反応は、通常、溶媒中で行われる。溶媒としては、反応を阻害するものでなければ特に制限はないが、ベンゼン、トルエン、キシレン、ジクロロメタン、クロロホルム、テトラヒドロフラン、N,N-ジメチルホルムアミド等の有機溶媒が好ましく用いられ、キシレン、トルエン等を用いることがより好ましい。
 溶媒の使用量は、カルボキシル化無機担体100重量部に対し、通常、2~40重量部、好ましくは3~15重量部である。
 固定化反応において、反応液には反応促進剤を添加することもできる。反応促進剤としては、例えば、N,N’-ジシクロヘキシルカルボジイミド、N,N’-ジイソプロピルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド、ジフェニルリン酸アジド、ベンゾトリアゾール-1-イルオキシ-トリスジメチルアミノホスホニウムクロリド、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド等の脱水縮合剤、3,5-ビス(トリフルオロメチル)フェニルボロン酸、4-トリフルオロメチルフェニルボロン酸、3,4,5-トリフルオロフェニルボロン酸、3-ニトロフェニルボロン酸等のボロン酸誘導体等が挙げられる。これらの脱水縮合剤又はボロン酸誘導体としては、市販の試薬をそのまま使用することができる。
 脱水縮合剤の使用量としては、例えば、カルボキシル化無機担体のカルボキシル基1モルに対し、通常1~10倍モルである。反応促進効果と経済性の点からは1~3倍モルが好ましい。脱水縮合剤を用いる場合は、反応性を向上させる目的で、さらに1-ヒドロキシベンゾトリアゾール、1-ヒドロキシ-7-アザベンゾトリアゾール、N-ヒドロキシスクシンイミド等の添加剤を添加しても良い。
 また、ボロン酸誘導体の使用量としては、カルボキシル化無機担体のカルボキシル基1モルに対し、0.0001~1倍モルである。反応促進効果と経済性の点からは、0.001~0.5倍モルが好ましく、0.005~0.1倍モルがさらに好ましい。
 固定化反応における反応温度は、例えば、0~200℃が好ましく、100~180℃がより好ましい。
 固定化反応における反応時間は、ポリエチレンイミン及び反応促進剤の濃度、並びに反応温度等によって変化するが、通常、数分~24時間の範囲である。
 上記の固定化反応によって得られた本発明の分離剤は、ろ過、洗浄、乾燥等の操作によって、反応液中の他の成分から、容易に分離することができる。
 次に、本発明の分離剤を使用する白金属金属イオンの分離方法について説明する。
 本発明の分離方法は、まず、本発明の分離剤と白金属金属イオンを含有する溶液を接触させることにより行われる。
 白金族金属イオンを含有する溶液と本発明の分離剤を接触させる方法としては、例えば、白金族金属イオンを含有する溶液と本発明の分離剤を混合したスラリーを調製し、これを攪拌する方法(流動床)が挙げられる。また、本発明の分離剤をカラム等に充填し、白金族金属イオンを含有する溶液を流通して接触させる方法(固定床)が挙げられる。
 本発明の分離方法において、本発明の分離剤と接触させる白金族金属イオンを含有する溶液としては、例えば、自動車排ガス処理触媒や宝飾品を溶解した溶液や、白金族金属の湿式精錬工程における酸浸出後の溶液等が挙げられる。
 本発明の分離方法において、上記した白金族金属イオンを含む溶液は、白金族金属イオンの他に、銅イオン、鉄イオン、ニッケルイオン、亜鉛イオン等の卑金属イオンを含有していても良い。この溶液を、本発明の白金族金属分離剤と接触させる分離方法で、白金族金属イオンを選択的に分離することが可能となる。また、白金族金属イオンを含有する溶液は、水溶液、あるいは有機溶媒の溶液のいずれであってもよいが、環境負荷の点で、水溶液が好ましく用いられる。
 白金族金属イオンを含む溶液の液性としては、例えば、水溶液である場合は、酸性であることが好ましい。白金族金属イオンを含む溶液を酸性にするために用いられる酸としては、例えば、塩酸、硫酸、硝酸等の無機酸が挙げられる。これらのうち、塩酸が白金族金属イオンの酸浸出液として用いられるため、特に好ましい。
 白金族金属イオンを含む溶液における酸濃度としては、0.1~10mol/L(リットル)が好ましく、0.1~6mol/Lがより好ましい。この範囲の酸濃度であれば、本発明の分離剤の吸着効率を損なうことなく、白金族金属イオンの吸着を行うことができる。
 また、白金族金属イオンを含む溶液が有機溶媒の溶液である場合、有機溶媒の種類は特に限定されず、例えば、トルエン、ベンゼン、キシレン、クロロホルム、ジクロロメタン、ジクロロエタン、クロロベンゼン、ヘキサン、テトラヒドロフラン、N,N’-ジメチルホルムアミド、酢酸エチル、アセトン、メタノール、エタノール等の一般的な有機溶媒を用いることができる。
 本発明の分離剤の使用量は、例えば、上記白金族金属イオンを含む溶液中の白金族金属イオン1モルに対し、分離剤中の窒素モル量が0.1~100倍モルが好ましく、0.5~10倍モルがより好ましい。
 本発明の分離方法は、さらに、白金族金属イオンを吸着した本発明の分離剤と、脱離剤を接触させ、白金族金属イオンを脱離させることにより行われる。
 白金族金属イオンを吸着した分離剤と脱離剤を接触させる方法としては、例えば、上記した本発明の分離剤と白金属金属イオンを含有する溶液との接触方法と同様の接触方法を挙げることができる。
 本発明の分離方法に用いられる脱離剤としては、例えば、アンモニア、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミン、ポリエチレンイミン、チオ尿素、及びメチオニンからなる群より選ばれる少なくとも一種が挙げられる。これらのうち、脱離効率及び脱離速度の点で、ジエチレントリアミン、ポリエチレンイミン、又はチオ尿素が特に好ましい。これらの脱離剤は、無機担体の物性によって適切なものを選択することが好ましい。
 脱離剤は、液体の場合は市販品をそのまま用いることもできるし、任意の溶媒に溶解した溶液として用いることもできる。脱離剤溶液として用いる場合、例えば、有機溶液、有機溶媒-水混合溶液、水溶液又は酸性水溶液として用いることができる。これらのうち、環境負荷の点で、水溶液又は酸性水溶液として用いることが好ましい。また、酸性水溶液とする場合は、例えば、塩酸、硫酸、硝酸等の無機酸を用いることができる。酸性水溶液の酸濃度としては、0.1~10mol/Lが好ましく、0.1~6mol/Lがより好ましい。また、脱離剤中のアニオン濃度を調整する目的として、必要に応じて塩化ナトリウム、硝酸ナトリウム、硫酸ナトリウム等の無機塩を添加してもよい。無機塩の添加量としては、1~50重量%が好ましく、5~20重量%がより好ましい。
 脱離剤溶液中の脱離剤の濃度としては、例えば、1~99重量%、好ましくは1~10重量%が選ばれる。
 脱離剤の使用量は、例えば、分離剤中の窒素1モルに対して、2~10000倍モルであり、脱離効率及び経済性の点で、5~1000倍モルがより好ましい。
 本発明の分離方法においては、操作性、輸送性、及び繰り返し利用の点から、分離剤はカラム等に充填して用いることが好ましい。
 本発明の分離剤を充填するカラムとしては、耐酸性、耐塩基性、及び耐薬品性に優れる素材のものが好ましく、例えば、ガラス製カラム、アクリル樹脂製カラム等が好ましく用いられる。当該カラムとしては、市販品を用いることができる。
 本発明の分離方法においては、本発明の分離剤を、既存又は市販の吸着分離装置と組み合わせて使用することもでき、さらには、任意に送液装置等と組み合わせて使用することもできる。
 以上の操作によって、本発明の分離剤を用いて、白金族金属イオンの分離回収が行われ、脱離した白金族金属イオンを含む脱離液(以下、「白金族金属イオン脱離液」という)が得られる。
 次に、白金族金属イオン脱離液から白金族金属を回収する方法について説明する。
 白金族金属イオン脱離液中の白金族金属イオンは、例えば、還元処理やキレート剤の添加等の従来公知の方法により、白金族金属又は白金族金属錯体として沈殿させることができ、さらに、ろ過等の方法により、回収することができる。
 白金族金属イオン脱離液の還元処理方法としては、目的や設備に応じて種々の方法を用いることができる。例えば、電気分解による電解還元法や、ヒドラジンや水素化ホウ素ナトリウム等の還元剤を添加する化学的還元方法が挙げられる。
 白金族金属イオン脱離液の還元処理は、酸性条件、中性条件、又は塩基性条件のいずれの条件でも実施可能であるが、白金族金属イオンの還元効率及び設備の腐食性を抑える点から、pH1以上13以下が好ましく、pH6以上8以下の中性条件がより好ましい。白金族金属イオン脱離液の中和剤としては、水酸化ナトリウム、水酸化カリウム、重曹、消石灰等の無機塩基化合物を好ましく用いることができる。中でも水酸化ナトリウムが中和剤としてより好ましく用いられる。
 白金族金属イオン脱離液の還元処理の操作は、通常、常圧、大気雰囲気下で実施されるが、加圧又は減圧条件、不活性ガス雰囲気下で実施することもできる。該還元処理の操作は、通常4~100℃の温度で実施されるが、10~50℃の温度がより好ましい。
 白金族金属又は白金属金属錯体の沈殿物のろ過方法としては、例えば、メンブレンフィルター、ろ紙、ろ布、グラスフィルター等を用いる方法が挙げられるが、操作の容易性から、メンブレンフィルター又はろ紙によるろ過が好ましい。
 ろ過により得られた白金族金属又は白金族金属錯体の沈殿物は、白金族金属の融点以上に加熱して溶融させることで、高純度の白金族金属として分離することができる。
 以下、本発明を具体的に説明するが、本発明はこれらの実施例により限定して解釈されるものではない。
 (分析方法)
 1.水溶液中の金属イオン濃度は、ICP発光分光分析装置(OPTIMA3300DV、Perkin Elmaer社製)で測定した。また、有機溶媒中の金属濃度は、有機溶媒を留去して得られた残渣を王水に溶解してICP発光分光分析装置で測定した。
 2.窒素含有量は、全自動元素分析装置(2400II、パーキンエルマージャパン社製)で測定した。
 実施例1(実施例2~11で使用した分離剤の調製)
 ディーン・スターク装置付き50mLナス型フラスコに、カルボキシル基結合型シリカゲル(富士シリシア化学社製、商品名:ACD-COOH)5g、o-キシレン 30g、3,5-ビス(トリフルオロメチル)フェニルボロン酸 0.009g、及び5gのポリエチレンイミン(和光純薬工業社製、数平均分子量1800)を量り取り、激しく攪拌しながら、24時間加熱還流した。室温まで冷却した後、反応混合物をろ過し、ろ取した固体をメタノールで洗浄して、白金族金属分離剤を7.1g得た。
 得られた分離剤の窒素含有量は9.0重量%であった。
 金属吸着率は、以下の計算式により算出した。
  金属吸着率(%)=[(金属イオン初濃度-分離剤による金属吸着後の液中の金属イオン濃度)÷金属イオン初濃度]×100%   (1)
 実施例2.
 パラジウムイオンを1000mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。(1)式から求めたパラジウム吸着率は97.6%であった。
 実施例3.
 白金イオンを1000mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。(1)式から求めた白金吸着率は95.8%であった。
 実施例4.
 ロジウムイオンを100mg/L含む6mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で24時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。(1)式から求めたロジウム吸着率は91.6%であった。
 実施例5.
 パラジウムイオン、白金イオン、及びロジウムイオンを各々100mg/L含む6mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.3g添加して室温で24時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。残存金属濃度と初濃度から各金属イオンの吸着率を(1)式から求めた結果、パラジウム吸着率は81.9%、白金吸着率は90.6%、ロジウム吸着率は89.7%であり、白金族金属イオンが一挙に吸着された。
 実施例6.
 パラジウムイオン、銅イオン、鉄イオン、ニッケルイオン、及び亜鉛イオンを各々100mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。残存金属濃度と初濃度から各金属イオンの吸着率を(1)式から求めた。結果を図1に示す。図1から明らかなとおり、白金族金属であるパラジウムが選択的に吸着され、パラジウム吸着率は96.8%、銅吸着率は0%、鉄吸着率は0%、ニッケル吸着率は0%、亜鉛吸着率は5.6%であった。
 実施例7.
 白金イオン、銅イオン、鉄イオン、ニッケルイオン、及び亜鉛イオンを各々100mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。残存金属濃度と初濃度から各金属イオンの吸着率を(1)式から求めた。結果を図2に示す。図2から明らかなとおり、白金族金属である白金が選択的に吸着され、白金吸着率は95.6%、銅吸着率は0%、鉄吸着率は0%、ニッケル吸着率は0%、亜鉛吸着率は7.2%であった。
 実施例8.
 ロジウムイオン、銅イオン、鉄イオン、ニッケルイオン、及び亜鉛イオンを各々100mg/L含む6mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.1g添加して室温で24時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。残存金属濃度と初濃度から各金属イオンの吸着率を(1)式から求めた。結果を図3に示す。図3から明らかなとおり、白金族金属であるロジウムが選択的に吸着され、ロジウム吸着率は76.3%、銅吸着率は19.3%、鉄吸着率は8.6%、ニッケル吸着率は0%、亜鉛吸着率は29.3%であった。
  金属脱離率は、以下の計算式により算出した。
  金属脱離率(%)=(金属脱離量÷金属吸着量)×100%  (2)
 実施例9.
 パラジウムイオンを500mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.5g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存パラジウムイオン濃度と初濃度からパラジウムイオンの吸着量を吸着剤1g当たり9.7mgと算出した。次に、ろ取した分離剤を水洗後、乾燥した後、その内の0.1gを、チオ尿素濃度5重量%の1mol/L塩酸溶液として調製した脱離剤10mL中に加え、室温で1時間撹拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中のパラジウムイオン濃度からパラジウムイオンの脱離量を求めた結果、(2)式からパラジウムイオンの脱離率は79.6%であった。
 実施例10.
 白金イオンを500mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.5g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存白金イオン濃度と初濃度から白金イオンの吸着量を吸着剤1g当たり9.6mgと算出した。次に、ろ取した分離剤を水洗後、乾燥した後、その内の0.1gを、チオ尿素濃度5重量%の1mol/L塩酸溶液として調製した脱離剤10mL中に加え、室温で1時間撹拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の白金イオン濃度から白金イオンの脱離量を求めた結果、(2)式から白金イオンの脱離率は100%であった。
 実施例11.
 ロジウムイオンを500mg/L含む1mol/L塩酸溶液10mLに、実施例1で調製した分離剤を0.5g添加して室温で1時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存ロジウムイオン濃度と初濃度からロジウムイオンの吸着量を吸着剤1g当たり9.2mgと算出した。次に、ろ取した分離剤を水洗後、乾燥した後、その内の0.1gを、ジエチレントリアミン濃度10重量%の6mol/L塩酸溶液として調製した脱離剤10mL中に加え、室温で1時間撹拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中のロジウムイオン濃度からロジウムイオンの脱離量を求めた結果、(2)式からロジウムイオンの脱離率は46.4%であった。
 実施例12(実施例13~15で使用する分離剤の調製)
 ディーン・スターク装置付き50mLナス型フラスコに、カルボキシル基結合型シリカゲル(富士シリシア化学社製、商品名:ACD-COOH)5g、o-キシレン 30g、3,5-ビス(トリフルオロメチル)フェニルボロン酸 0.009g、及び0.65gのポリエチレンイミン(和光純薬工業社製、数平均分子量1800)を量り取り、激しく攪拌しながら、24時間加熱還流した。室温まで冷却した後、反応混合物をろ過し、ろ取した固体をメタノールで洗浄して、白金族金属分離剤を5.5g得た。
 得られた分離剤の窒素含有量は4.7重量%であった。
 実施例13.
 ロジウムイオンを100mg/L含む6mol/L塩酸溶液10mLに、実施例12で調製した分離剤を0.1g添加して室温で24時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。(1)式から求めたロジウム吸着率は83.3%であった。
 実施例14.
 実施例12で調製した分離剤 0.5gを水に分散させた後、ガラス製のカラム(内径5mm、長さ100mm)に充填し、6mol/L塩酸をカラム上部から20mL通液した。次いで、ロジウムイオンを500mg/L含む6mol/L塩酸水溶液20mLをカラム上部から20mL/Hrの流速で通液してロジウムイオンの吸着を行い、その後、6mol/L塩酸20mLを通液(流速20mL/Hr)してカラムを洗浄した。得られたカラム流出液中のロジウムイオン濃度と初濃度からロジウムイオンの吸着率を(1)式から求めた結果、ロジウム吸着率は94.9%であった。次に、10重量%の濃度のポリエチレンイミン(和光純薬社製、数平均分子量10000)と10重量%の濃度の塩化ナトリウムを含む1.6mol/L塩酸水溶液をカラム上部から20mL/Hrの流速で10mL通液して、分離剤に吸着されたロジウムイオンの脱着を行った。得られたカラム流出液中のロジウムイオン濃度からロジウムイオンの脱離量を求めた結果、(2)式からロジウムイオンの脱離率は96.4%であった。
 実施例15.
 実施例12で調整した分離剤 0.5gを水に分散させた後、ガラス製のカラム(内径5mm、長さ100mm)に充填し、6mol/L塩酸をカラム上部から20mL通液した。次いで、ロジウムイオンを500mg/L含む6mol/L塩酸水溶液30mLをカラム上部から20mL/Hrの流速で通液してロジウムイオンの吸着を行い、6mol/L塩酸10mLを通液(流速20mL/Hr)してカラムを洗浄した。得られたカラム流出液中のロジウムイオン濃度と初濃度からロジウムイオンの吸着率を(1)式から求めた結果、ロジウム吸着率は90.6%であった。次に、10重量%の濃度のトリエチレンジアミンを含む1.5mol/L塩酸水溶液をカラム上部から20mL/Hrの流速で30mL通液して、分離剤に吸着されたロジウムイオンの脱着を行った。得られたカラム流出液中のロジウムイオン濃度からロジウムイオンの脱離量を求めた結果、(2)式からロジウムイオンの脱離率は90.8%であった。
 金属析出率は、以下の計算式により算出した。
 金属析出率(%)=[(金属イオン初濃度-液中の残存金属濃度)÷金属イオン初濃度]×100%   (3)
 実施例16.
 実施例15で得られた脱離液(ロジウムイオンを411mg/L含有)に水酸化ナトリウムを添加して液のpHを3とした。次に水素化ホウ素ナトリウム 23mgを添加し、室温で1時間撹拌してロジウムイオンを還元し、ロジウムブラックの沈殿を得た。液中の残存ロジウムイオン濃度と初濃度からロジウムブラックの析出率を(3)式から求めた結果、ロジウムブラックの析出率は99.6%であった。
 比較例1.
 実施例1で調製した分離剤の代わりに、三菱化学社製ダイヤイオンSA10Aを白金族金属分離剤として用い、ロジウムイオンを100mg/L含む6mol/L塩酸溶液10mLに、当該分離剤を0.1g添加して室温で24時間攪拌した。その後、孔径0.45μmのメンブレンフィルターを用いてろ過し、ろ液中の残存金属濃度を測定した。(1)式から求めたロジウム吸着率は0%であった。
 比較例2.
 実施例1で調製した分離剤の代わりにオルガノ社製アンバーライトIRA96SBを白金族金属分離剤として用いた以外は比較例1と同様に行った。その結果、(1)式から求めたロジウム吸着率は0%であった。
 本発明の分離剤は、複数の金属イオンを含有する溶液から白金族金属イオンを選択的に分離でき、さらに、繰り返し使用が可能であり、経済的にも環境保全上からも貴金属回収分野において広範に使用することができる。
 なお、2013年10月24日に出願された日本特許出願2013-221239号、及び2014年6月2日に出願された日本特許出願2014-114274号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  ポリエチレンイミンがアミド結合を介して無機担体に化学結合していることを特徴とする白金族金属分離剤。
  2.  無機担体がシリカゲルであることを特徴とする、請求項1に記載の白金族金属分離剤。
  3.  ポリエチレンイミンの数平均分子量が300~100000であることを特徴とする請求項1又は2に記載の白金族金属分離剤。
  4.  無機担体の形状が、球状、粒状、繊維状、顆粒状、モノリスカラム、中空糸又は膜状であることを特徴とする請求項1~3のいずれかに記載の白金族金属分離剤。
  5.  球状、粒状又は顆粒状の無機担体の粒子サイズの平均粒径が、1μm~10mmであることを特徴とする請求項1~4のいずれかに記載の白金族金属分離剤。
  6.  ポリエチレンイミンとカルボキシル基を有する無機担体を反応させることを特徴とする、請求項1~5のいずれかに記載の白金族金属分離剤の製造方法。
  7.  ポリエチレンイミンを、カルボキシル化無機担体中のカルボキシル基1モルに対し、0.01~10倍モル反応させることを特徴とする、請求項6に記載の製造方法。
  8.  請求項1~5のいずれかに記載の白金族金属分離剤と、白金族金属イオンを含有する溶液を接触させることを特徴とする、白金族金属イオンの分離方法。
  9.  白金族金属分離剤を、白金族金属イオンを含む溶液中の白金族金属イオン1モルに対し、当該白金族金属分離剤中の窒素モル量として、0.1~100倍モル接触させることを特徴とする、請求項8に記載の分離方法。
  10.  さらに、白金族金属イオンを吸着した白金族金属分離剤と脱離剤を接触させることを特徴とする、請求項8又は9に記載の分離方法。
  11.  脱離剤が、アンモニア、エチレンジアミン、トリエチレンジアミン、ジエチレントリアミン、ポリエチレンイミン、チオ尿素、及びメチオニンからなる群より選ばれる少なくとも一種であることを特徴とする、請求項10に記載の分離方法。
  12.  脱離剤を、白金族金属分離剤中の窒素1モルに対して、2~10000倍モル接触させることを特徴とする、請求項10又は11に記載の分離方法。
  13.  さらに、脱離剤及び白金族金属イオンを含有する溶液を還元処理して、白金族金属又は白金族金属錯体を得ることを特徴とする、請求項10~12のいずれかに記載の分離方法。
PCT/JP2014/078149 2013-10-24 2014-10-22 白金族金属分離剤及び白金族金属イオンの分離方法 WO2015060367A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-221239 2013-10-24
JP2013221239 2013-10-24
JP2014-114274 2014-06-02
JP2014114274 2014-06-02

Publications (1)

Publication Number Publication Date
WO2015060367A1 true WO2015060367A1 (ja) 2015-04-30

Family

ID=52992956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078149 WO2015060367A1 (ja) 2013-10-24 2014-10-22 白金族金属分離剤及び白金族金属イオンの分離方法

Country Status (2)

Country Link
JP (1) JP2016011456A (ja)
WO (1) WO2015060367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013518A1 (en) * 2020-07-15 2022-01-20 Johnson Matthey Public Limited Company Methods for the separation and/or purification of metals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6992586B2 (ja) * 2018-02-23 2022-01-13 三菱ケミカル株式会社 貴金属の除去方法、及び化合物の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316368A (en) * 1976-06-21 1978-02-15 Nat I Fuoa Metaraajii Method of separating and refining platinum and*or palladium
JPS58180238A (ja) * 1982-03-29 1983-10-21 イギリス国 金属イオン抽出法
JP2008502470A (ja) * 2004-06-18 2008-01-31 リアクサ・リミテッド スカベンジャー担体及び金属抽出プロセスでのスカベンジャー担体の使用
JP2011041918A (ja) * 2009-08-21 2011-03-03 Tosoh Corp 白金族金属吸着剤、及びそれを用いた白金族金属の分離回収方法
JP2012067267A (ja) * 2010-09-27 2012-04-05 Kuraray Co Ltd 組成物、金属イオン吸着材、及び金属回収方法
JP2013056290A (ja) * 2011-09-07 2013-03-28 Denso Corp 貴金属吸着剤及び貴金属の回収方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316368A (en) * 1976-06-21 1978-02-15 Nat I Fuoa Metaraajii Method of separating and refining platinum and*or palladium
JPS58180238A (ja) * 1982-03-29 1983-10-21 イギリス国 金属イオン抽出法
JP2008502470A (ja) * 2004-06-18 2008-01-31 リアクサ・リミテッド スカベンジャー担体及び金属抽出プロセスでのスカベンジャー担体の使用
JP2011041918A (ja) * 2009-08-21 2011-03-03 Tosoh Corp 白金族金属吸着剤、及びそれを用いた白金族金属の分離回収方法
JP2012067267A (ja) * 2010-09-27 2012-04-05 Kuraray Co Ltd 組成物、金属イオン吸着材、及び金属回収方法
JP2013056290A (ja) * 2011-09-07 2013-03-28 Denso Corp 貴金属吸着剤及び貴金属の回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SABERMAHANI FATEMEH ET AL.: "Flame atomic absorption determination of palladium after separation and preconcentration using polyethyleneimine water-soluble polymer/alumina as a new sorbent", JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, vol. 25, no. 7, pages 1102 - 1106 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022013518A1 (en) * 2020-07-15 2022-01-20 Johnson Matthey Public Limited Company Methods for the separation and/or purification of metals

Also Published As

Publication number Publication date
JP2016011456A (ja) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6079113B2 (ja) パラジウム分離剤、並びにその製造方法及び用途
JP4852743B2 (ja) 吸着剤及びその製造方法
CN103282116B (zh) 从含贵金属离子的溶液回收贵金属的方法、用于该方法的萃取剂或吸附剂及反萃取剂或解吸附剂
CN102676836B (zh) 用于从官能化的、含贵金属的吸附材料回收贵金属的方法
JP6083077B2 (ja) 金属イオンの吸着材
WO2015060367A1 (ja) 白金族金属分離剤及び白金族金属イオンの分離方法
CN101905146A (zh) 硅胶-多亚乙基多胺、其制备及其在吸附重金属离子方面的应用
WO2014092133A1 (ja) 分離剤及び分離方法
JP5344607B2 (ja) パラジウムイオン吸着剤及びパラジウムの分離回収法
JP5251786B2 (ja) 白金族金属吸着剤、及びそれを用いた白金族金属の分離回収方法
JP6123294B2 (ja) パラジウム分離剤の製造方法
JP4862148B2 (ja) 金属の分離回収方法
JP2014133227A (ja) 白金分離剤及び白金イオンの分離方法
JP2017179409A (ja) ロジウム回収剤及びロジウム回収方法
Xu et al. Efficient and selective recovery of gold and palladium by simple and easily synthesized polyethylenimine based polymer
JP5489033B2 (ja) キチンを出発源とした架橋キトサンによるモリブデン、タングステンおよびバナジウムなどのオキソアニオンの回収方法
JP2014140835A (ja) ロジウム分離剤及びロジウムイオンの分離方法
JP5114704B2 (ja) 金属の分離方法、および金属の回収方法
JP2007224333A (ja) 架橋キトサンを用いる金属の選択的回収方法
JP6317964B2 (ja) パラジウムと白金の分離方法
JP6933360B2 (ja) アンチモンの分離および回収方法
JPH07112128A (ja) ニッケルとコバルトあるいはニッケル、コバルトとアルミニウムの分離のための吸着剤および分離方法
JP2016113650A (ja) 金とパラジウムの選択的分離回収方法
JP2000351834A (ja) カリックス[4]アレーン重合体、その製造方法およびこれを使用した2価鉛イオンの分離方法
JP5803136B2 (ja) アミド含有スルフィド化合物、並びにその製造方法及び用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14855612

Country of ref document: EP

Kind code of ref document: A1