WO2015046842A1 - 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체 - Google Patents

드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체 Download PDF

Info

Publication number
WO2015046842A1
WO2015046842A1 PCT/KR2014/008791 KR2014008791W WO2015046842A1 WO 2015046842 A1 WO2015046842 A1 WO 2015046842A1 KR 2014008791 W KR2014008791 W KR 2014008791W WO 2015046842 A1 WO2015046842 A1 WO 2015046842A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
resin composition
solder resist
transparent carrier
group
Prior art date
Application number
PCT/KR2014/008791
Other languages
English (en)
French (fr)
Inventor
정민수
경유진
최병주
정우재
최보윤
이광주
구세진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/763,414 priority Critical patent/US9788434B2/en
Priority to CN201480013033.8A priority patent/CN105190442B/zh
Priority to JP2015546407A priority patent/JP6047666B2/ja
Publication of WO2015046842A1 publication Critical patent/WO2015046842A1/ko

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • G03F7/327Non-aqueous alkaline compositions, e.g. anhydrous quaternary ammonium salts
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/027Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed by irradiation, e.g. by photons, alpha or beta particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/281Applying non-metallic protective coatings by means of a preformed insulating foil
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks

Definitions

  • the present invention relates to a method for producing DFSR that enables the formation of a dry film solder resist (DFSR) having fine irregularities on its surface in a simpler manner, and to a film laminate used therein.
  • DFSR dry film solder resist
  • photosensitive and solder resists capable of forming minute openings and patterns are used in printed circuit boards, semiconductor package substrates, and flexible circuit boards.
  • solder resists characteristics such as developability, high resolution, insulation, soldering heat resistance, and gold plating resistance are generally required.
  • film type as needed Fine surface irregularities are formed on the solder resist.
  • a separate surface treatment process such as a plasma treatment process may be performed,
  • the method of changing the composition itself for forming DFSR, and the like were applied.
  • a separate treatment process such as the plasma treatment process is added or a change of composition is involved, there is a disadvantage in that the complexity and economical efficiency of the overall process are greatly caused.
  • the present invention provides a method for producing DFSR that enables the formation of DFSR having fine unevenness on the surface in a simpler manner without additional process addition or composition change.
  • This invention also provides the film laminated body used as an intermediate body etc. in the manufacturing method of said DFSR.
  • the present invention relates to (a) a carboxyl group (-CO is H), an acid-modified oligomer having a photocurable unsaturated functional group, (b) a photopolymerizable monomer having two or more photocurable unsaturated functional groups, and (c) a thermosetting Forming a resin composition having a thermosetting binder having a possible functional group and (d) a photocurable and thermosetting comprising a photoinitiator on a transparent carrier film with a fine roughness of average roughness (Ra 50nm to 5 / / m formed on the surface .
  • the present invention also provides a surface-carrier average roughness (transparent carrier film having a fine concavo-convex having a Rap of 50 nm to 5 kPa);
  • a resin composition having a photocurable and thermosetting composition comprising a polymer, (b) a photopolymerizable monomer having two or more photocurable unsaturated functional groups, (c) a thermosetting binder having a thermosetting functional group, and (d) a photoinitiator.
  • the resin composition layer provides a film laminate for forming DFSR having a gelation time of 2 to 5 minutes under the conditions of 0.4 g and 16 CTC.
  • the film laminated body for DFSR used for this is demonstrated in detail.
  • thermosetting binder a carboxyl group (-COOH), an acid-modified oligomer having a photocurable unsaturated functional group, (b) a photopolymerizable monomer having two or more photocurable unsaturated functional groups, (c) having thermosetting functional groups Forming a thermosetting binder and (d) a photocurable and thermosetting resin composition comprising a photoinitiator on a transparent carrier film having fine irregularities having an average roughness (Ra) of 50 nm or more on a surface thereof; Stacking the resin composition on a substrate to form a laminated structure in which a substrate, a resin composition, and a transparent carrier film are sequentially formed; Exposing to the resin composition, and peeling off the transparent carrier film; And alkali developing and thermally curing the resin composition of the non-exposed part is provided.
  • a manufacturing method after forming a general photocurable and thermosetting resin composition for forming DFSR on a transparent carrier film having a surface fine unevenness, and then proceeds to the subsequent DFSR manufacturing process, fine unevenness on the transparent carrier film is applied to the DFSR.
  • the DFSR reflecting and finally having fine irregularities can be produced well. That is, in the manufacturing method of the embodiment, the surface having fine irregularities in a simpler manner using only the transparent carrier film having the surface fine irregularities formed without the addition of a separate process such as a plasma treatment process or a change in the composition for forming DFSR. DFSR can be formed.
  • a resin composition having photocurability and thermosetting property is basically used.
  • a resin composition contains a carboxy group (-COOH) and an acid-modified oligomer which has a photocurable unsaturated functional group as one of the main components.
  • acid-modified oligomers may be combined with other components of the resin composition by photocuring, namely photopolymerizable monomers and / or thermosetting binders.
  • Crosslinking is formed to enable the formation of DFSR, and the resin composition, including carboxyl groups, exhibits alkali developability.
  • Such acid-modified oligomers include all components known to be usable in photocurable resin compositions from before the oligomers having a carboxyl group and a photocurable functional group, for example, an acrylate group or a curable functional group having an unsaturated double bond in the molecule.
  • the main chain of such acid-modified ligomer may be a novolak sepoxy or polyurethane, and may be used as an acid-modified oligomer having a carboxyl group and an acrylate group introduced therein.
  • the photocurable functional group may suitably be an acrylate group, wherein the acid-modified oligomer is a copolymer of oligomer form in which a polymerizable monomer having a carboxyl group and a monomer including an acrylate compound and the like are co-condensed. It may include.
  • acid-modified oligomer usable for the resin composition include the following components.
  • ethylenically unsaturated groups such as vinyl groups, allyl groups, (meth) acryloyl groups, epoxy groups, acid chlorides, and the like, as part of the co-polymer of the unsaturated carboxylic acid (a) and the compound (b) having an unsaturated double bond
  • a carboxyl group-containing photosensitive resin obtained by reacting a compound having a semi-aromatic group, for example, glycidyl (meth) acrylate and adding an ethylenically unsaturated group as a pendant;
  • (6) 1 molecule increase such as a C2-C17 alkylcarboxylic acid aromatic group containing alkylcarboxylic acid, of the epoxy group of the copolymer of the compound (b) and glycidyl (meth) acrylate which have an unsaturated double bond
  • a carboxyl group-containing resin obtained by reacting an organic acid (j) having two carboxyl groups and not having an ethylenically unsaturated bond and reacting a saturated or unsaturated polybasic acid anhydride (d) with the resulting secondary hydroxy group;
  • diisocyanates (j) such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates and aromatic diisocyanates; and carboxyl group-containing dialcohol compounds (k) such as dimethylolpropionic acid and dimethylolbutanoic acid, and polycarboxes;
  • Diol compounds such as compounds having carbonate polyols, polyether polys, polyester polys, polyolefin polys, acrylic polys, bisphenol A alkylene oxide adducts, phenolic hydroxyl groups and alcoholic hydroxyl groups ( carboxyl group-containing urethane resin in which the middle part of m) is obtained by reaction;
  • diisocyanate (j) bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, non (Meth) acrylate of bifunctional epoxy resins, such as a phenol type epoxy resin, or Photosensitive carboxyl group-containing urethane resin obtained by the polyaddition reaction of its partial acid anhydride modified substance (n), a carboxyl group-containing dialcoul compound (k), and a diol compound (m);
  • Carboxyl group-containing urethane resin which added the compound which has a (meth) acryloyl group, and was terminal (meth) acrylated;
  • Carboxylic-containing photosensitive resin obtained by introducing an unsaturated double bond into the reaction product of a bisepoxy compound and bisphenols, and then reacting saturated or unsaturated polybasic anhydride (d);
  • Novolak-type phenol resins alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, trimethylene oxide, tetrahydrofuran, tetrahydropyran and / or ethylene carbonate, propylene carbon Saturated or unsaturated to the reaction product obtained by reacting the unsaturated monocarboxylic acid (h) with the reaction product with cyclic carbonates, such as carbonate, butylene carbonate, and 2,3-carbonate propyl methacrylate Carboxyl group-containing photosensitive resin obtained by reacting polybasic acid anhydride (d); .
  • alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, trimethylene oxide, tetrahydrofuran, tetrahydropyran and / or ethylene carbonate
  • the polyfunctional and bifunctional epoxy resins used for the synthesis are bisphenol A skeleton, bisphenol F When it becomes a compound of the linear structure which has a skeleton, a biphenyl skeleton, or a bixylenol skeleton, or its hydrogenated compound, the component which can be preferably used as an acid-modified oligomer from the viewpoint of flexibility of DFSR, etc. can be obtained.
  • the modified product of the resins of the above (7) to (10) is preferable for the bending including the urethane bond in the main chain.
  • the acid-modified oligomer may be used as the acid-modified oligomer, and specific examples of such components include ZAR-2000, ZFR-1031, ZFR-1 121 or ZFR-1 122, etc. have.
  • the above-mentioned acid-modified oligomer is the photocurable and about 15, based on the total weight of the resin composition having a thermosetting to 75 wt 0/0, or from about 20 to 50 parts by weight 0 /., Or about 25 to 45 parts by weight 0 /. It may be included in the content of.
  • the content of the acid-modified oligomer is too small, the developability of the resin composition may be lowered and the strength of the DFSR may be lowered.
  • the content of the acid-modified oligomer is too high, not only the resin composition may be excessively developed, but also uniformity may be decreased during coating.
  • the acid value of the acid-modified oligomer may be about 40 to 120 mgKOH / g, black is about 50 to 110 mgKOH / g, or 60 to 90 mgKOH / g.
  • the acid value is too low, alkali developability may be lowered.
  • the acid value is too high, it may be difficult to form a photocurable part, for example, an exposed part, by a developing solution, which makes it difficult to form a normal pattern of DFSR.
  • the resin composition which has the said photocurable property and thermosetting property contains a photopolymerizable monomer.
  • a photopolymerizable monomer may be, for example, a compound having a photocurable unsaturated functional group such as two or more polyfunctional vinyl groups, and may form a crosslink with the unsaturated functional group of the acid-modified oligomer described above to provide photocuring during exposure. Crosslinked structure can be formed.
  • the resin composition of the exposed portion facing the portion where the DFSR is to be formed can be left on the substrate without being alkali developed.
  • a liquid phase may be used at room temperature, and accordingly, the viscosity of the resin composition may be adjusted according to a coating method, It can also play a role of further improving alkali developability of the non-exposed part.
  • a (meth) acrylate-based compound having 3 or 6 photocurable unsaturated functional groups in the molecule may be used, or more specifically, pentaeri Hydroxy group-containing polyfunctional acrylate compounds such as tritriacrylate and dipentaerythritol pentaacrylate; Water-soluble polyfunctional acrylate compounds such as polyethylene glycol diacrylate or polypropylene glycol diacrylate; Polyfunctional polyester acrylate compounds of polyhydric alcohols such as trimethylolpropane triacrylate, pentaerythritol tetraacrylate, or dipentaerythr; Acrylate compounds of ethylene oxide adducts and / or propylene oxide adducts of polyfunctional alcohols such as trimethyl to propane or hydrogenated bisphenol A or polyhydric phenols such as bisphenol A and biphenol; A polyfunctional or monofunctional polyurethane acrylate compound which is an isocyanate modified product of the hydroxy group-containing polyfunctional
  • Epoxy acrylate compounds which are (meth) acrylic acid adducts of A diglycidyl ether or phenol novolac epoxy resins; Caprolactone.
  • Caprolactone modified acrylate compounds such as acrylate of a modified ditrimethyl to propane tetraacrylate, an epsilon -caprolactone modified dipentaerythr, or a caprolactone modified hydroxy pivalate neopentyl glycol ester diacrylate, and
  • One or more compounds selected from the group consisting of photosensitive (meth) acrylate-based compounds such as (meth.) Acrylate-based compounds such as the above-mentioned acrylate-based compounds may be used, and these may be used alone or in combination of two or more. Can also be used.
  • the photopolymerizable monomer a polyfunctional (meth) acrylate-based compound having two or more, or three or more black, or three to six (meth) acryloyl groups in one molecule is preferably used. And especially pentaerythritol triacrylate, trimethylolpropanetriacrylate, dipentaerythrocyte nucleoacrylate, or caprolactone modified Ditrimethylol propane tetraacrylate etc. can be used suitably.
  • Examples of commercially available photopolymerizable monomers include Kaylarad's DPEA-12 and the like.
  • the content of the aforementioned photo-polymerization monomer is from about 7 to 20 weight 0/0, the resin composition based on the total amount of about 5 to 30 parts by weight 0/0, the black is black can be about 7 to 15 weight 0 /.
  • the content of the photopolymerizable monomer is too small, the photocuring may not be divided, and when too large, the dryness of the DFSR may deteriorate and the physical properties may be degraded.
  • the photocurable and thermosetting resin composition contains a photoinitiator.
  • photoinitiators serve to initiate radical photocuring, for example, in the exposed portion of the resin composition.
  • a photoinitiator As a photoinitiator, a well-known thing can be used and it is a benzoin type
  • Irugacure registered trademark
  • an oxime ester compound is mentioned.
  • 2-aminoethyl ether 2-aminoethyl ether
  • 2-aminoethyl ether 2-aminoethyl ether
  • 2-aminoethyl ether 2-aminoethyl ether
  • 2-aminoethyl ether 2-aminoethyl ether
  • 2-aminoethyl ether 2-a specific example of an oxime ester compound
  • the content of the photoinitiator may be about 0.5 to 20 weight 0 /., Or about 1 to 10 weight 0 /. Or about 1 to 5 weight 0 /. If the content of the photoinitiator is too small, the photocuring may not occur properly, on the contrary, if the content of the photoinitiator is too large, the resolution of the resin composition may be lowered or the reliability of the DFSR may not be sufficient.
  • the photocurable and 3 ⁇ 4curable resin composition also includes a thermosetting binder having at least one member selected from thermosetting functional groups such as epoxy groups, oxetanyl groups, cyclic ether groups, and cyclic thio ether groups.
  • a thermosetting binder may form a crosslinking bond with an acid-modified oligomer and the like by thermosetting to secure heat resistance or mechanical properties of DFSR.
  • the thermosetting binder may have a softening point of about 70 to 100 ° C, thereby reducing the unevenness during lamination. Low softening points increase the tackiness of the DFSR and high flow rates can deteriorate.
  • thermosetting binder a resin having two or more cyclic ether groups and / or cyclic thioether groups (hereinafter referred to as cyclic (thio) ether groups) in a molecule can be used, and a bifunctional epoxy resin can be used. have. Other Diisocyanate and its bifunctional block isocyanate can also be used.
  • the thermosetting binder having two or more cyclic (thio) ether groups in the molecule may be a compound having any one or two or more of three, four or five membered cyclic ether groups, or cyclic thioether groups in the molecule. have.
  • the thermosetting binder may be a polyfunctional epoxy compound having at least two or more epoxy groups in a molecule, a polyfunctional oxetane compound having at least two or more oxetanyl groups in a molecule, or an episulfide resin having two or more thioether groups in a molecule And so on.
  • the said polyfunctional epoxy compound bisphenol-A epoxy resin, hydrogenated bisphenol-A epoxy resin, brominated bisphenol-A epoxy resin, bisphenol F-type epoxy resin, bisphenol S-type epoxy resin, novolak-type epoxy resin, for example Phenol phenolic epoxy resin, cresol novolac epoxy resin, M-glycidyl epoxy resin, bisphenol A novolak epoxy resin, bixylenol epoxy resin, biphenol epoxy resin, chelate epoxy resin, glyox Flesh type epoxy resin, amino group-containing epoxy resin, rubber modified epoxy resin, dicyclopentadiene phenolic epoxy resin, diglycidyl phthalate resin, heterocyclic epoxy resin, tetraglycidyl xylenoylethane resin, silicone modified epoxy resin, (epsilon) -caprolactone modified epoxy resin, etc.
  • Phenol phenolic epoxy resin cresol novolac epoxy resin
  • M-glycidyl epoxy resin bisphenol A novolak epoxy resin
  • thermosetting these epoxy resins characteristics such as adhesiveness of a cured film, solder heat resistance, and electroless plating resistance are improved.
  • polyfunctional oxetane compound Bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3-methyl-3-jade Cetanylmethoxy) methyl] banzen, 1,4-bis [(3-ethyl-3-oxetanylmethoxyoxy) methyl] benzene, (3-methyl-3-oxetanyl) methylacrylate, (3-ethyl- 3-oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3 oxetanyl) methyl methacrylate or an oligomer or copolymer thereof
  • polyfunctional oxetanes such as oxetane alcohol, novolak resin, poly ( ⁇ -hydroxystyrene), cardo
  • YDCN-500-80P etc. of Kukdo Chemical Co., Ltd. can be used.
  • thermosetting binder may be included in an amount of 0.8 to 2.0 equivalents based on 1 equivalent of the carboxyl group of the acid-modified oligomer.
  • carboxyl groups remain in the DFSR after curing, which may lower heat resistance, alkali resistance, electrical insulation, and the like.
  • the content is too large, it is not preferable because the low molecular weight thermosetting binder remains in the dry coating film because the strength and the like of the coating film decrease.
  • the resin composition having the photocurable and thermosetting is a solvent; And at least one selected from the group consisting of a thermosetting binder catalyst (thermosetting catalyst), a filler, a pigment, and an additive to be described later.
  • thermosetting binder catalyst thermosetting catalyst
  • Thermosetting Binder Catalyst (Thermosetting Catalyst)
  • thermosetting binder catalyst serves to promote thermosetting of the thermosetting binder.
  • thermosetting binder catalyst for example, imidazole, 2-methylimidazole- 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole Imidazole derivatives such as 2-phenylimidazole and 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; Amines such as dicyandiamide, benzyldimethylamine, 4- (dimethylamino) - ⁇ , ⁇ -dimethylbenzylamine, 4-methoxy- ⁇ , ⁇ -dimethylbenzylamine, 4-methyl- ⁇ , ⁇ -dimethylbenzylamine compound; Hydrazine compounds such as adipic dihydrazide and sebacic acid dihydrazide; Phosphorus compounds, such as a triphenylphosphine, etc.
  • imidazole 2-methylimidazole- 2-ethylimidazole, 2-e
  • thermosetting catalyst of an epoxy resin or an oxetane compound or it promotes reaction of an epoxy group and / or an oxetanyl group, and a carboxyl group, and can also be used individually or in mixture of 2 or more types. .
  • guanamine, acetoguanamine, benzoguanamine, melamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-tree Azine, 2-vinyl-4,6-diamino-S-triazine isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl -S-triazine ⁇ isocyanuric acid S-triazine derivatives, such as an adduct, can also be used,
  • the compound which also functions as these adhesive imparting agents can be used together with the said thermosetting binder catalyst.
  • the content of the thermosetting binder catalyst may be about 0.3 to 15 weight 0 / .about the total weight of the resin composition described above, in terms of suitable thermosetting.
  • the filler serves to improve heat stability, thermal dimensional stability and resin adhesion. In addition, it also serves as a constitution pigment by reinforcing the color.
  • a filler can be inorganic or organic fillers, such as barium sulfate, barium titanate, amorphous silica, crystalline silica, molten silica, spherical silica, talc,. Clay, magnesium carbonate, calcium carbonate, aluminum oxide (alumina), aluminum hydroxide, mica and the like can be used.
  • the content of a filler is about 5 to 50 weight 0 /. With respect to the total weight of the resin composition mentioned above. In the case of using more than 50 weight 0 /., The viscosity of the composition becomes high and the coating property is lowered or the degree of curing is poor, which is not preferable.
  • Pigments exhibit visibility and hiding power to hide defects such as scratches on circuit lines.
  • a red, blue, green, yellow, or dark pigment may be used.
  • Phthalocyanine blue, pigment blue 15: 1, pigment blue 15: 2, pigment blue 15: 3, pigment blue 15: 4, pigment blue 15: 6, pigment as a blue pigment Blue 60, etc. can be used.
  • Pigment Green 7, Pigment Green 36, Solvent Green 3, Solvent Green 5, Solvent Green 20, Solvent Green 28 and the like can be used as the green pigment.
  • the yellow pigments include anthraquinones, isoindolinones, condensed azos, and benzimidazolones.
  • the content of the pigment is preferably used at about 0.5 to 3 weight 0 /. Relative to the total weight of the resin composition. When using less than 0.5 weight 0 /. When used in visibility, and the hiding power drops, exceeding 3 parts by weight 0/0, will drop in heat resistance.
  • the additive may be added to remove bubbles of the resin composition, or to remove the popping and craters on the surface of the film, to impart flame retardancy, to control viscosity, and to provide a catalyst.
  • the silica powder such as an organic bentonite, montmorillonite, thickeners conventionally known; Antifoaming agents and / or leveling agents such as silicone-based, fluorine-based and polymer-based; Silane coupling agents such as imidazole series, thiazole series, and triazole series; Known and common additives such as phosphorus flame retardants and flame retardants such as antimony flame retardants can be blended.
  • the leveling agent serves to remove the popping or craters of the surface when the film is coated, for example, BYK-380N, BYK-307, BYK-307, BYK-378, BYK-350 of BYK-Chemie GmbH.
  • the content of the additive is about 0.01 to about the total weight of the resin composition
  • Is increased from 10 0/0 is preferred.
  • Ketones such as methyl ethyl ketone and cyclonucleanone
  • Aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene
  • Ethylene glycol monoethyl ether ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, Diethylene glycol monoethyl ether, diethylene glycol monomethyl ether diethylene glycol monobutyl ether, propylene glycol monomethyl ether propylene glycol monoethyl ether, dipropylene glycol diethyl ether triethylene glycol monoethyl ether glycol ether (cellosolve ), Ethyl acetate, butyl acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether: teracetate,
  • Acetate esters such as dipropylene glycol monomethyl ether acetate
  • Alcohols such as ethanol, propanol, ethylene glycol, propylene glycol and carbyl
  • Octane decane aliphatic hydrocarbons
  • Petroleum solvents such as petroleum ether, petroleum naphtha, hydrogenated petroleum naphtha and solvent naphtha
  • Amides such as dimethylacetamide and dimethylformamide (DMF).
  • the solvent content is about 10 to about the total weight of the resin composition described above.
  • 50 weight can be 0 /. If it is less than 10% by weight, the viscosity is high, the coating property is inferior, and if it exceeds 50% by weight 0 /.
  • DFSR having fine irregularities on the surface is formed by using the above-described photocurable and thermosetting resin composition.
  • these DFSR and the formation process will be described for each step.
  • 1A to 1E are process flowcharts schematically illustrating a process of forming DFSR having fine concavities and convexities in a manufacturing method according to an embodiment of the present invention.
  • the resin composition 110 having the photocurable and thermosetting properties including the above-described components has an average roughness (Ra) of about 50 nm to 5, and black on the surface thereof. Is formed on the transparent carrier film 100 on which fine unevennesses of about 200 nm to 2 / ⁇ , or about 250 nm to 1, or about 300 nm to 500 nm are formed. Transparent formed with these fine irregularities As the resin composition 110 is formed on the carrier film 100, fine irregularities on the transparent carry film 100 are reflected on the resin composition 110 and the DFSR formed therefrom to finally obtain DFSR having fine irregularities. It can manufacture.
  • Ra average roughness
  • the transparent carrier film 100 needs to exhibit excellent transparency and light transmittance and low haze characteristics so that the resin composition 110 may be irradiated with ultraviolet rays through the exposure process in a subsequent process.
  • the transparent carrier film may exhibit a light transmittance of about 90% or more, or about 92 to 100% and a haze of about 5% or less, or about 1 to 4%.
  • the transparent carrier film 100 does not have to be limited to show the above light transmittance and haze, and in some cases, it is not relatively high of about 65% or more, for example, about 65 to 80%. It is also possible to use a transparent carrier film 100 such as matt PET exhibiting light transmittance.
  • the transparent carrier film 100 fine irregularities are formed on the surface.
  • an inorganic filler may be injected into a predetermined transparent plastic film, and the transparent plastic film having fine unevenness formed through the injection of such an inorganic filler may be laminated with another flat transparent plastic film to make the transparent
  • the appropriate thickness of the carrier film 100 can be adjusted.
  • a transparent plastic film in which fine unevenness is directly formed through the above-described method may be used, or a commercially available transparent plastic film having fine unevenness may be obtained and used commercially.
  • the average roughness (Ra) is about 50 nm to 5 H1, or about 200 nm to zm, or about 250 nm to ⁇ m, or so as to enable good formation of DFSR having fine irregularities of appropriate size. Fine unevenness may be formed that is about 300 nm to 500 nm. If the average roughness Ra of the fine unevenness is too small, it may be impossible to form fine unevenness having an appropriate size on the DFSR surface. On the contrary, when the average roughness (Ra) of the fine unevenness is too large, light scattering may occur excessively in the exposure process due to such unevenness on the transparent carrier film 100. In addition, good DFSR may not be formed. of It may be disadvantageous to secure the haze, and there may be a problem in that a gap may be formed during adhesion with subsequent materials in the manufacturing process of the semiconductor device.
  • the transparent carrier film 100 may be easily removed from the photocured resin composition 110 by appropriately performing the subsequent exposure process, and may be formed so that the fine irregularities of the size described above may be properly formed and maintained on the surface.
  • 5 to 30 // m, black may have a thickness of about 12 to 25.
  • a plastic film which satisfies physical properties such as transparency, fine concavo-convex size and thickness described above can be used, and for example, a polyester film or a polyolefin film can be used. More specific examples thereof include polyester films such as PET films including matt polyethylene terephthalate (PET) films, and polyolefin films such as polypropylene films.
  • PET polyethylene terephthalate
  • polyolefin films such as polypropylene films.
  • the resin composition 110 as a photosensitive coating material, a comma coater, a blade coater, Lip coaters, rod coaters, squeeze coaters, reverse coaters, transfers can be applied onto the transparent carrier film 100 with a coater, a gravure coater, a spray coater, or the like.
  • coating on the transparent carrier film 100 the resin composition 110 on this transparent carrier film 100 can be dried. For this drying, the transparent carrier film 100 on which the resin composition 110 is formed is placed in an oven at a temperature of about 50 to 130 ° C., about 60 to 120 ° C.
  • the resin composition 110 on the transparent carrier film 100 may be in a semi-dry state having a viscosity raised to some extent.
  • the elevated viscosity of this semi-dried resin composition 110 can be expressed by its gelation time.
  • the semi-dry resin composition 110 may have a gelation time of about 2 to 5 minutes, or about 2 minutes 30 seconds to 4 minutes 30 seconds under the conditions of 0.4g and 16C C.
  • the gelation time is a gel time measuring device, for example, a gel time measuring device such as the model name DH-15 of Daeheung Science.
  • the measuring temperature can be measured by setting a measuring temperature of 160 ° C in such a measuring device, and taking about 0.5 g of the resin composition 110 into the measuring device and slowly stirring with an insulator such as a wooden rod to visually observe the gelling time. It can be measured. In this way, the measured value of the gelation time can be determined by the average value derived by measuring the gelation time three times repeatedly.
  • a release film or the like described later is attached to the resin composition to proceed with a subsequent DFSR forming process (forming process on the substrate of the resin composition, exposure and developing process, etc.). It can be carried out in order to remove the release film, etc. immediately before the DFSR forming process can proceed to the subsequent process. If the viscosity of the resin composition after drying is too low, it may not be suitable for the transfer for the subsequent process, and conversely, if the viscosity of the resin composition after the drying is too high, it may be unsuitable for the subsequent process. Can be.
  • a release film (Release Rim) ol may be formed on the resin composition (1 10).
  • a release film is formed between the process of forming the said resin composition (10) on the transparent carrier substrate 100, and the following DFSR formation process (formation process on the board
  • a release film a polyethylene (PE) film, a polytetrafluoroethylene film, a polypropylene film, a polyethylene terephthalate (PET) film, or a surface treated paper may be used, and when the release film is peeled off, the resin composition ( It is preferable that the adhesive force of the said resin composition (10) and a release film is lower than the adhesive force of the 110 and the transparent carrier film 100.
  • PE polyethylene
  • PET polyethylene terephthalate
  • the resin composition 110 is a transparent carrier.
  • the film laminate after formation on the substrate 100 and after drying has progressed may be provided as an intermediary for the production of DFSR. These film laminates have an average roughness (Ra) of about 50 nm on the surface.
  • the film laminate may further include a release film formed on the resin composition layer as described above.
  • the resin composition 110 may be laminated on a package substrate of a semiconductor device to form a laminated structure in which the substrate 120, the resin composition 110, and the transparent carrier film 100 are sequentially formed.
  • the release film described above may be peeled from the resin composition 110 immediately before the forming step of such a laminated structure.
  • the transparent carrier film 100 having the resin composition 1 10 formed thereon is a vacuum laminator, a hot laminator or a vacuum press so that the resin composition 1 10 is formed on the substrate 120. Or the like may be bonded onto the substrate 120.
  • the transparent resin substrate 100 may be exposed to the resin composition 110 through the transparent carrier substrate 100, and the transparent carrier film 100 may be peeled off.
  • the exposure process may be performed by irradiating light such as ultraviolet rays having a constant wavelength band, and may be selectively exposed through a photomask, or may be directly exposed to a pattern by a laser direct exposure machine. Since the exposure process proceeds through the transparent carrier film 1 10 having the fine unevenness formed on the surface, light scattering due to the fine unevenness occurs during the exposure, so that selective exposure may not be easily performed. In consideration of this, the exposure process may be performed with an increased exposure amount than in the exposure process for forming a known DFSR.
  • Such exposure dose is a thickness to be exposed, for example, the transparent
  • the exposure process may be performed by a method of irradiating ultraviolet rays with the exposure amount thus determined.
  • the exposure process may be appropriately performed while reducing the influence of light scattering, whereby DFSR having fine unevenness may be formed well.
  • the exposure process described above is carried out, for example, in the exposed portion, the unsaturated functional groups contained in the acid-modified oligomer in the resin composition (10) and the unsaturated functional groups contained in the photopolymerizable monomer cause photocuring and crosslink with each other.
  • the resin composition 110 of such an exposed part may be in a state that cannot be removed by a subsequent alkali development process, and photocuring proceeds while reflecting the fine unevenness of the surface of the transparent carrier substrate 100, thereby causing crosslinking of the exposed part.
  • the resin composition 110 may be formed in a shape having fine concavo-convex on the surface in contact with the transparent carrier substrate 100.
  • the carboxyl group of an acid-modified oligomer is maintained as it is, and it can be in the state which can develop alkali.
  • the transparent carrier film 100 After advancing the said exposure process, the transparent carrier film 100 can be peeled off.
  • the transparent carrier film 100 When the transparent carrier film 100 is peeled off prior to exposure, the peeling may not be performed well due to the adhesive strength with the resin composition 1 10, and the subsequent process may be difficult. In consideration of this, the transparent carrier film 100 may be peeled off after exposure.
  • the resin composition 110 of a non-exposure part is developed using alkaline solution etc.
  • an alkaline solution for carrying out such a developing step an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, or amines can be used.
  • an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, or amines can be used.
  • the acid-modified oligomer, the photopolymerizable monomer, etc. of a non-exposed part can melt
  • the resin composition 1 10 can be left only in the desired portion on the substrate facing the exposed portion to form the DFSR, and as described above, the DFSR (resin composition; 1 10) is because the fine irregularities of the surface of the transparent carrier film 100 may be reflected to have a fine irregularities on the surface, it is easier to manufacture a DFSR having fine irregularities without changing the composition or the change of the process, such as a plasma treatment process You can do it.
  • DFSR can be finally formed by heat curing the resin composition 110 on the substrate 120 (Post Cure).
  • the heat curing temperature is suitably about 10 C C or more.
  • the thermosetting functional group of the thermosetting binder included in the resin composition (1 10) and the carboxyl group of the acid-modified oligomer may be crosslinked to form a crosslinked structure.
  • fine unevennesses having an average roughness (Ra) of about 50 nm to 5 // m, or about 200 nm to 2, or about 250 nm to 1 Pa, or about 300 nm to 500 nm are formed on the surface.
  • the DFSR can be finally formed.
  • a DFSR and a printed circuit board including the same for example, a package substrate of a semiconductor device may be provided, and the DFSR contacts a subsequent process material and the like as predetermined fine unevenness is formed on a surface thereof.
  • the surface area can be increased to show good adhesion.
  • the DFSR is the acid-modified oligomer described above as the photocuring and thermal curing; Photopolymerizable monomers; And a cured product of a thermosetting binder having a thermosetting functional group.
  • the carboxyl group of the acid-modified oligomer may be crosslinked with a thermosetting functional group of a thermosetting semi-unggi group by thermosetting, and the photocurable unsaturated functional group of the acid-modifying oligomer
  • the crosslinking may be carried out by crosslinking with the unsaturated functional groups included in the photopolymerizable monomer.
  • fine ruggedness may be formed on the surface of the DFSR.
  • DFSR having fine irregularities formed on the surface can be formed in an easier and simplified manner without adding or changing a process such as a separate plasma treatment or changing a composition, a subsequent process when applied to a semiconductor package substrate or the like. While it is possible to provide DFSR showing excellent adhesion to materials, it is possible to change or decrease the physical properties of DFSR due to process or composition change. It becomes possible to provide DFSR which suppresses and expresses and maintains excellent physical properties.
  • the DFSR may further include a small amount of photoinitiator remaining in the cured product after participating in photocuring.
  • DFSR having fine unevennesses on the surface can be formed by a simpler method using only a transparent carrier film having surface fine unevennesses without adding or changing a process such as a plasma treatment process or changing the composition.
  • 1A to 1E are process flowcharts schematically illustrating a process of forming DFSR having fine unevenness by a manufacturing method according to an embodiment of the present invention.
  • 2 and 3 show surface conditions of the DFSR formed in Examples 1 and 2.
  • 4A and 4B are 2D images and 3D images measured with an OP (Optical profiler) to calculate the surface roughness of the DFSR formed in Comparative Example 1.
  • 5A and 5B are 2D images and 3D images measured with an OP (Optical profiler) to calculate the surface roughness of the DFSR formed in Example 1.
  • Darocur TPO (Ciba Specialty Chemicals Inc.), the YDCN-500-80P (Kukdo Chemical Co.) in 3 parts by weight 0/0, a thermoset binder a photoinitiator 16 weight 0 /.
  • 2-phenyl imidazole is a 1 weight 0 / 15 weight 0 / ⁇ of ⁇ -30 (Sakai Chemical Co., Ltd.) as a filler, 0.5 wt% of ⁇ ⁇ ⁇ -333 from ⁇ as an additive, and 13 wt% of this IF as a solvent to mix and stir each component.
  • the filler was dispersed in a mill mill to prepare a resin composition having photocurability and thermosetting.
  • the resin composition prepared above was applied to PET used as a transparent carrier film using a comma coater. At this time, SKC's SD-15 product was used as the transparent carrier film, and fine irregularities having an average roughness of about 344.67 nm (Ra) and about 636 kW (Rz) were formed on the transparent carrier film. 20 was.
  • the photosensitive film layer was vacuum laminated with a vacuum laminator (MV LP-500 manufactured by Meisei Seisakusho Co., Ltd.) on a substrate on which a circuit was formed, and then 400 mJ / After exposing to cm 2 , the PET film was removed. Subsequently, the resultant was immersed in a stirring solution of 31 ° C. Na 2 CO 3 1% for 60 seconds, followed by development and heat curing at 15 CTC for 1 hour to complete a printed circuit board including dry film solder resist (DFSR). It was.
  • a stirring solution 31 ° C. Na 2 CO 3 1% for 60 seconds
  • the substrate on which the circuit is formed has a thickness of 5 cm and a length of 5 cm for the LG-C-500GA copper-clad laminate LG-T-500GA having a thickness of 0.1 mm and a copper foil thickness of 12. It cut into the board
  • An acid-modified oligomer is a ZFR-1122 of Nippon Kayaku as 41.5 weight 0/0, a photopolymerizable monomer functional epoxy acrylate as (DPEA-12 of Nippon Kayaku), 10 parts by weight 0/0, the photoinitiator Darocur TPO (Ciba Specialty Chemicals Inc.) for the ⁇ -30 (Sakai Chemical Co., Ltd.) as a third increment 0/0, YDCN-500-80P (Kukdo Chemical Co.) 16 wt% of a thermosetting binder, a thermal curing catalyst 2-phenyl-1% by weight of the imidazole, the filler 15 % by weight, and as an additive using DMF 13 parts by weight 0/0 to ⁇ -333's ⁇ as 0.5 0/0, a solvent for a photo-curable and heat-curable by combining the components and dispersing the filler in three reulmil equipment after stirring
  • the resin composition prepared above was applied to PET used as a transparent carrier film using a comma coater. At this time, a product of Toray Co., Ltd. was used as the transparent carrier film. Fine unevennesses having an average roughness of about 405 nm (Ra) and about 11.67 (Rz) were formed, and the thickness was about 23 / m . It was.
  • the photosensitive film layer was vacuum-laminated on the board
  • LP-500 was vacuum laminated, and then exposed to 400 mJ / cm 2 under UV of 365 nm wavelength band, and then the PET film was removed.
  • the resultant was immersed in an alkali solution of 1% Na 2 CO 3 at 31 ° C. for 60 seconds, and then developed and heat-cured at 150 ° C. for 1 hour, thereby including a printed circuit board including dry film solder resist (DFSR).
  • DFSR dry film solder resist
  • the substrate on which the circuit is formed is cut LG substrate copper-clad LG-T-500GA of 0.1mm thickness, copper foil thickness 12 / m into a substrate of 5cm width and 5cm length, and fine roughness on the surface of the copper foil by chemical etching What was formed was used. .
  • Example 3
  • thermosetting binder 2-phenylimidazole as 1 weight 0 / O as a thermosetting catalyst, ⁇ -30 (Saka Chemical) as a filler 15% by weight, the photo-curable and heat-curable by dispersing the filler in three roll mill equipment after blending the components and stirring by using a ⁇ -333's ⁇ 0.5 increase% and 13 in DMF as a solvent by weight 0/0 as an additive
  • the resin composition which has is manufactured.
  • the resin composition prepared above was applied to PET used as a transparent carrier film using a comma coater. At this time, a product of Toray Co., Ltd. was used as the transparent carrier film. Fine irregularities having an average roughness of about 500 nm (Ra) and about 26.71 (Rz) were formed on the transparent carrier film, and the thickness was about 19.
  • the photosensitive film layer was vacuum laminated with a vacuum laminator (MV LP-500 manufactured by Meisei Seisakusho Co., Ltd.) on a substrate on which a circuit was formed, and then 400 mJ / After exposing to cm 2 , the PET film was removed. Subsequently, the resultant was immersed in a stirring 31 ° C. Na 2 CO 3 1% alkaline solution for 60 seconds, and then developed and heat cured at 150 ° C. for 1 hour, thereby including a printed circuit board including dry film solder resist (DFSR). Was completed.
  • a vacuum laminator MV LP-500 manufactured by Meisei Seisakusho Co., Ltd.
  • the substrate on which the circuit was formed was cut into a copper-clad laminate LG-T-500GA of LG Chemical having a thickness of 0.1 mm and a copper thickness of 12 into a substrate having a width of 5 cm and a length of 5 cm.
  • a copper-clad laminate LG-T-500GA of LG Chemical having a thickness of 0.1 mm and a copper thickness of 12 into a substrate having a width of 5 cm and a length of 5 cm. was used.
  • the filler 30 to 15 parts by weight 0 / (Sakai Chemical Co., Ltd.), and then blending the components using a 13 increment 0 /. a DMF a ⁇ -333's ⁇ as 0.5 0/0, the solvent, as an additive, which was stirred for 3 roll mill equipment
  • the filler was dispersed to prepare a resin composition having photocurability and thermosetting property.
  • the photosensitive film layer was vacuum laminated with a vacuum laminator (MV LP-500 manufactured by Meisei Seisakusho Co., Ltd.) on a substrate on which a circuit was formed, and then 400 mJ / After exposing to cm 2 , the PET film was removed. Subsequently, the resultant was immersed in an agitated alkaline solution of Na 2 CO 3 1% at 31 ° C. for 60 seconds, followed by development and heat curing at 15 C C for 1 hour to form a printed circuit board including a dry film solder resist (DFSR). Completed.
  • a vacuum laminator MV LP-500 manufactured by Meisei Seisakusho Co., Ltd.
  • the substrate on which the circuit is formed is cut to LG Chem's copper-clad laminate LG-T-500GA having a thickness of 0.1 mm and a copper foil thickness of 12 m into a substrate having a width of 5 cm and a length of 5 cm to form fine roughness on the surface of the copper foil by chemical etching.
  • LG Chem's copper-clad laminate LG-T-500GA having a thickness of 0.1 mm and a copper foil thickness of 12 m into a substrate having a width of 5 cm and a length of 5 cm to form fine roughness on the surface of the copper foil by chemical etching.
  • a negatively drawn quartz photomask was placed on the laminated DFSR and exposed to UV (i band) of 400 mJ / cm 2 , and then the PET film used as a carrier film was removed, and Na 2 at 30 ° C. After developing for 60 seconds in an alkali solution of CO 3 1%, washed with water and dried.
  • Example 1 and Comparative Example 1 The surface of the dried sample was observed using FE-SEM (Hitachi S-4800); and in Example 1 and Comparative Example 1, using OP (Optical profiler) to accurately measure the difference in average roughness It measured by comparing the value of average roughness value Ra.
  • FE-SEM photographs of the surface states of Examples 1 and 2 are as shown in Figs. 2 and 3, and the images measured using the OP for Example 1 and Comparative Example 1 are shown in Fig. 4A (Comparative Example 1 2D-image), 4B (3D-image of Comparative Example 1), 5A (2D-image of Example 1) and 5B (3D-image of Example 1).
  • the Ra values measured in Examples 1 and 2 were as summarized in Tables 1 and 2 below.
  • a negatively drawn quartz photomask was placed on the laminated DFSR, exposed to UV (i band) of 400 mJ / cirf, and then the PET film used as a carrier film was removed, and Na 2 CO at 30 ° C. 3 1% alkali. The solution was developed for 60 seconds, washed with water and dried.
  • the protective film for printed circuit board was laminated on CCL, and finished through photocuring, thermal curing and back curing, and then cut to 150mm * 130mm.
  • a temperature of 288 ° C was set in the bath (electrically heated, temperature-controlled and at least 2.25 kg of lead for testing), and the test specimen was placed with the film on top of the bath. The test specimens were inspected for visible peeling or deformation of the film.
  • the gelation time for each resin composition was measured by the following method.
  • a gel time meter of DH-15 was used, and the measuring temperature was set at 16 C C. About 0.5 g of the resin composition was collected and placed in the meter, and the wooden rod was stired slowly about twice per second using a wooden rod. Stirred. The time of gelation by visual observation with this stirring was measured. In this way, the measured value of the gelation time was determined from the average value derived by measuring the gelation time three times repeatedly. Of such gelation time The measurement results are summarized in Table 4 below.
  • composition of Examples 1 to 3 may have a suitable viscosity defined by the gelation time after the drying process, to proceed to the subsequent process to enable the appropriate preparation of DFSR having fine irregularities It was confirmed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Laminated Bodies (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

본 발명은 보다 단순화된 방법으로 표면에 미세 요철을 갖는 드라이 필름 솔더 레지스트의 형성을 가능케 하는 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체에 관한 것이다. 상기 드라이 필름 솔더 레지스트의 제조 방법은 소정의 광경화성 및 열경화성을 갖는 수지 조성물을, 표면에 평균 조도(Ra)가 200nm 내지 2㎛인 미세 요철이 형성된 투명 캐리어 필름 상에 형성하는 단계; 기판 상에 상기 수지 조성물을 적층하여 기판, 수지 조성물 및 투명 캐리어 필름이 순차 형성된 적층 구조를 형성하는 단계; 상기 수지 조성물에 노광하고, 투명 캐리어 필름을 박리하는 단계; 및 비노광부의 수지 조성물을 알칼리 현상하고, 열경화하는 단계를 포함한다.

Description

【명세서】
【발명의 명칭】
드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체
【기술분야】
본 발명은 보다 단순화된 방법으로 표면에 미세 요철을 갖는 드라이 필름 솔더 레지스트 (DFSR: Dry Film Solder Resist; 이하, "DFSR")의 형성을 가능케 하는 DFSR의 제조 방법과, 이에 사용되는 필름 적층체에 관한 것이다
[배경기술]
각종 전자 기기의 소형화와 경량화에 따라, 인쇄회로기판, 반도체 패키지 기판, 플렉시블 회로기판 등에는 미세한 개구.패턴을 형성할 수 있는 감광성와솔더 레지스트가사용되고 있다.
촐더 레지스트에 대해서는, 일반적으로 현상성, 고해상성, 절연성, 납땜 내열성, 금 도금 내성 등의 특성이 요구된다. 또한, 이러한 솔더 레지스트를 반도체 패키지 기판 등에 적용할 경우, 공정 진행 과정에서 후속 재료 둥과의 우수한 접착력을 확보하거나, EMC 몰드 등과의 이형성을 확보하는 등 공정의 용이성 확보를 위해, 필요에 따라 필름 타입 솔더 레지스트 상에 미세한 표면 요철을 형성하고 있다.
그런데, 이전에는 이러한 미세 표면 요철을 형성하기 위해, 광경화, 열경화 공정 등을 거쳐 필름 타입 솔더 레지스트, 예를 들어, DFSR을 형성한 후에, 플라즈마 처리 공정 등 별도의 표면 처리 공정을 진행하거나, DFSR을 형성하기 위한 조성물 자체를 변경하는 방법 등을 적용하였다. 그러나, 이라한 플라즈마 처리 공정 등 별도의 처리 공정을 부가하거나, 조성의 변경이 수반됨에 따라, 전체적인 공정의 복잡성 및 비경제성이 크게 야기되는 단점이 있었다.
【발명의 내용】
【해결하고자 하는과제】 이에 본 발명은 별도의 공정 부가나 조성 변경 없이, 보다 단순화된 방법으로 표면에 미세 요철을 갖는 DFSR의 형성을 가능케 하는 DFSR의 제조 방법을 제공하는 것이다.
본 발명은 또한, 상기 DFSR의 제조 방법에서 중간체 등으로 사용되는 필름 적층체를 제공하는 것이다.
【과제의 해결 수단】
본 발명은 (a) 카르복시기 (-CO이 H)와, 광경화 가능한 불포화 작용기를 갖는 산변성 올리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광중합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 광경화성 및 열경화성을 갖는 수지 조성물을, 표면에 평균 조도 (Ra 50nm 내지 5//m인 미세 요철이 형성된 투명 캐리어 필름 상에 형성하는 .단계; 기판 상에 상기 수지 조성물을 적층하여 기판, 수지 조성물 및 투명 캐리어 필름이 순차 형성된 적층 구조를 형성하는 단계; 상기 수지 조성물에 노광.하고, 투명 캐리어 필름을 박리하는 단계; 및 비노광부의 수지 조성물을 알칼리 현상하고, 열경화하는 단계를 포함하는 DFSR의 제조 방법을 제공한다.
본 발명은 또한, 표면쎄 평균 조도 (Rap 50nm 내지 5卿인 미세 요철이 형성된 투명 캐리어 필름; 및 상기 필름 상에 형성된 (a) 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 을리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광중합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 광경화성 및 열경화성을 갖는 수지 조성물층을 포함하고, 상기 수지 조성물층은 0.4g 및 16CTC의 조건 하에, 2 내지 5 분의 겔화 시간을 갖는 DFSR 형성용 필름 적층체를 제공한다. 이하, 발명의 구현예에 따른 DFSR의 제조 방법 및 이에 사용되는 DFSR용 필름 적층체에 대하여 보다 상세하게 설명한다.
발명의 일 구현예에 따르면, (a) 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 을리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광증합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 광경화성 및 열경화성을 갖는 수지 조성물을, 표면에 평균 조도 (Ra)가 50nm 내지 인 미세 요철이 형성된 투명 캐리어 필름 상에 형성하는 단계; 기판 상에 상기 수지 조성물을 적층하여 기판, 수지 조성물 및 투명 캐리어 필름이 순차 형성된 적층 구조를 형성하는 단계; 상기 수지 조성물에 노광하고, 투명 캐리어 필름을 박리하는 단계; 및 비노광부의 수지 조성물을 알칼리 현상하고, 열경화하는 단계를 포함하는 DFSR의 제조 방법이 제공된다.
이러한 제조 방법에서는, 일반적인 DFSR 형성용 광경화성 및 열경화성 수지 조성물을 표면 미세 요철이 형성된 투명 캐리어 필름 상에 형성한 후, 이후의 DFSR 제조 공정을 진행함에 따라, 상기 투명 캐리어 필름 상의 미세 요철이 DFSR에 반영되어 최종적으로 미세 요철을 갖는 DFSR을 양호하게 제조할 수 있다. 즉, 일 구현예의 제조 방법에서는, 플라즈마 처리 공정 등의 별도 공정의 부가나, DFSR 형성용 조성물의 변경 없이도, 표면 미세 요철이 형성된 투명 캐리어 필름만을 사용하는 보다 단순화된 방법으로 표면에 미세 요철을 갖는 DFSR을 형성할 수 있다.
따라서, 일 구현예에 따르면, 공정의 복잡성 또는 조성 변경에 따른 물성 저하 등의 기존 기술의 문제점을 해결하고, 매우 간단하게 표면 미세 요철을 갖는 DFSR을 제조할 수 있고, 이를 반도체 패키지 기판 등에 적용하여 공정 진행 과정에서 후속 재료 등과의 우수한 접착력을 확보하거나, EMC 몰드 등과의 이형성을 확보하는 등 공정의 용이성을 확보할 수 있다. ' '
한편, 이하에서는, 일 구현예의 제조 방법에 적용되는 광경화성 및 열경화성을 갖는 수지 조성물을 각 성분별로 보다 구체적으로 설명한 후, 이를 이용한 DFSR의 제조 방법에 대해 설명하기로 한다.
산변성 올리고머
상기 일 구현예의 DFSR 제조 방법에서는 기본적으로 광경화성 및 열경화성을 갖는 수지 조성물이 사용된다. 이러한 수지 조성물은 주된 성분의 하나로서 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 올리고머를 포함한다. 이러한 산변성 올리고머는 광경화에 의해 수지 조성물의 다른 성분, 즉, 광중합성 모노머 및 /또는 열경화성 바인더와 가교 결합을 형성해 DFSR의 형성을 가능케 하며, 카르복시기를 포함하여 수지 조성물이 알칼리 현상성을 나타내게 한다.
이러한 산변성 올리고머로는 카르복시기와 광경화 가능한 작용기, 예를 들어, 아크릴레이트기나 불포화 이중 결합을 갖는 경화 가능한 작용기를 분자 내에 갖는 올리고머로세 이전부터 광경화성 수지 조성물에 사용 가능한 것으로 알려진 모든 성분을 별다른 제한없이 사용할 수 있다. 예를 들어, 이러한 산변성 을리고머의 주쇄는 노볼락 쎄폭시 또는 폴리우레탄으로 될 수 있고, 이러한 주쇄에 카르복시기와 아크릴레이트기 등이 도입된 산변성 을리고머로서 사용할 수 있다. 상기 광경화 가능한 작용기는 적절하게는 아크릴레이트기로 될 수 있는데, 이때, 상기 산변성 올리고머는 카르복시기를 갖는 중합 가능한 모노머와, 아크릴레이트계 화합물 등을.포함한 모노머를 공증합한 을리고머 형태의 공중합체를 포함할 수 있다.
보다 구체적으로, 상기 수지 조성물에 사용 가능한 산변성 올리고머의 구체적인 예로는 다음과 같은 성분들을 들 수 있다.
(1 ) (메트)아크릴산 등의 불포화 카르복실산 (a)과 스티렌, α - 메틸스티렌, 저급 알킬 (메트)아크릴레이트, 이소부틸렌 등의 불포화 이중 결합을 갖는 화합물 (b)을 공중합시킴으로서 얻어지는 카르복시기 함유 수지;
(2) 불포화 카르복실산 (a)과 불포화 이중 결합을 갖는 화합물 (b)의 공증합체의 일부에 비닐기, 알릴기, (메트)아크릴로일기 등의 에틸렌성 불포화기와 에폭시기, 산클로라이드 등의 반웅성기를 갖는 화합물, 예를 들어, 글리시딜 (메트)아크릴레이트를 반웅시키고, 에틸렌성 불포화기를 팬던트로서 부가시킴으로서 얻어지는 카르복시기 함유 감광성 수지;
(3) 글리시딜 (메트)아크릴레이트, α -메틸글리시딜 (메트)아크릴레이트 등의 에폭시기와 불포화 이중 결합을 갖는 화합물 (c)과 불포화 이중 결합을 갖는 화합물 (b)의 공중합체에 불포화 카르복실산 (a)을 반웅시키고, 생성된 2급의 히드록시기에 무수프탈산, 테트라히드로무수프탈산, 핵사히드로무수프탈산 등의 포화 또는 불포화 다염기산 무수물 (d)을 반웅시켜 얻어지는 카르복시기 함유 감광성 수지; (4) 무수 말레산, 무수 이타콘산 등의 불포화 이중 결합을 갖는 산무수물 (e)과 불포화 이중 결합을 갖는 화합물 (b)의 공중합체에 히드록시알킬 (메트)아크릴레이트 등의 1개의 히드록시기와 1개 이상의 에틸렌성 불포화 이중 결합을 갖는 화합물 (f)을 반웅시켜 얻어지는 카르복시기 함유 감광성 수지;
(5) 후술하는 바와 같은 분자 중에 2개 이상의 에폭시기를 갖는 다관능 에폭시 화합물 (g) 또는 다관능 에폭시 화합물의 히드록시기를 추가로 에피클로로히드린으로 에폭시화한 다관능 에폭시 수지의 에폭시기와, (메트)아크릴산 등의 불포화 모노카르복실산 (h)의 카르복시기를 에스테르화 반웅 (전체 에스테르화 또는 부분 에스테르화, 바람직하게는 전체 에스테르화)시키고, 생성된 히드록시기에 추가로 포화 또는 불포화 다염기산 무수물 (d)을 반응시켜 얻어지는 카르복시기 함유 감광성 화합물;
(6) 불포화 이중 결합을 갖는 화합물 (b)과 글리시딜 (메트)아크릴레이트의 공증합체의 에폭시기에 탄소수 2 내지 17의 알킬카르복실산 방향족기 함유 알킬카르복실산 등의 1 분자 증에 1개의 카르복시기를 갖고, 에틸렌성 불포화 결합을 갖지 않는 유기산 (j)을 반웅시키고, 생성된 2급의 히드록시기에 포화 또는 불포화 다염기산 무수물 (d)을 반웅시켜 얻어지는 카르복시기 함유 수지;
(7) 지방족 디이소시아네이트, 분지 지방족 디이소시아네이트, 지환식 디이소시아네이트, 방향족 디이소시아네이트 등의 디이소시아네이트 (j)와, 디메틸올프로피온산, 디메틸올부탄산 등의 카르복시기 함유 디알코올 화합물 (k), 및 폴리카르보네이트계 폴리올, 폴리에테르계 폴리을, 폴리에스테르계 폴리을, 폴리올레핀계 폴리을, 아크릴계 폴리을, 비스페놀 A계 알킬렌옥시드 부가체 디올, 페놀성 히드톡실기 및 알코올성 히드록실기를 갖는 화합물 등의 디올 화합물 (m)의 중부가 반웅에 의해 얻어지는 카르복시기 함유 우레탄 수지;
(8) 디이소시아네이트 (j)와, 비스페놀 A형 에폭시 수지, 수소 첨가 비스페놀 A형 에폭시 수지, 브롬화 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 비크실레놀형 에폭시 수지, 비페놀형 에폭시 수지 등의 2관능 에폭시 수지의 (메트)아크릴레이트 또는 그의 부분산 무수물 변성물 (n), 카르복시기 함유 디알코을 화합물 (k), 및 디올 화합물 (m)의 중부가 반응에 의해 얻어지는 감광성의 카르복시기 함유 우레탄 수지;
(9) 상기 (7) 또는 (8)의 수지의 합성 중에 히드록시알킬 (메트)아크릴레이트 등의 1개의 히드록시기와 1개 이상의 에틸렌성 불포화 이증 결합을 갖는 화합물 (f)을 가하여, 말단에 불포화 이중 결합을 도입한 카르복시기 함유 우레탄 수지;
(10) 상기 (7) 또는 (8)의 수지의 합성 중에 이소포론디이소시아네이트와 펜타에리트리를트리아크릴레이트의 등몰 반웅물 . 등의 분자 내에 1개의 이소시아네이트기와 1개 이상의
(메트)아크릴로일기를 갖는 화합물을 가하고, 말단 (메트)아크릴화한 카르복시기 함유 우레탄 수지;
(1 1 ) 후술하는 바와 같은 분자 중에 2개 .이상의 옥세탄환을 갖는 다관능 옥세탄 화합물에 불포화 모노카르복실산 (h)을 반옹시켜, 얻어진 변성 옥세탄 화합물 증의 1급 히드록시기에 대하여 포화 또는 불포화 다염기산 무수물 (d)을 반응시켜 얻어지는 카르복시기 함유 감광성 수지;
(12) 비스에폭시 화합물과 비스페놀류와의 반웅 생성물에 불포화 이증 결합을 도입하고, 계속해서 포화 또는 불포화 다염기산 무수물 (d)을 반웅시켜 얻어지는 카르복시기 함유 감광성 수지;
(13) 노볼락형 페놀 수지와, 에틸렌옥시드, 프로필렌옥시드, 부틸렌옥시드, 트리메틸렌옥시드, 테트라히드로푸란, 테트라히드로피란 등의 알킬렌옥시드 및 /또는 에틸렌카르보네이트, 프로필렌카르보네이트, 부틸렌카르보네이트, 2,3-카르보네이트프로필메타크릴레이트 등의 환상 카르보네이트와의 반웅 생성물에 블포화 모노카르복실산 (h)을 반웅시켜, 얻어진 반웅 생성물에 포화 또는 불포화 다염기산 무수물 (d)을 반웅시켜 얻어지는 카르복시기 함유 감광성 수지; .
상술한 성분들 중에서도, 상기 (7) 내지 (10)에서, 수지 합성에 이용되는 이소시아네이트기 함유 화합물이 벤젠환을 포함하지 않는 디이소시아네이트로 되는 경우와, 상기 (5) 및 (8) 에서, 수지 합성에 이용되는 다관능 및 2관능 에폭시 수지가 비스페놀 A 골격, 비스페놀 F 골격, 비페닐 골격 또는 비크실레놀 골격을 갖는 선상 구조의 화합물이나 그 수소 첨가 화합물로 되는 경우, DFSR의 가요성 등의 측면에서 산변성 을리고머로서 바람직하게 사용 가능한 성분이 얻어질 수 있다. 또한, 다른 측면에서, 상기 (7) 내지 (10)의 수지의 변성물은 주쇄에 우레탄 결합을 포함하여 휘어짐에 대해 바람직하다.
그리고, 상술한 산변성 을리고머로는 상업적으로 입수 가능한 성분을 사용할 수도 있는데, 이러한 성분의 구체적인 예로는 일본화약사의 ZAR- 2000, ZFR-1031 , ZFR-1 121 또는 ZFR-1 122 등을 들 수 있다.
한편, 상술한 산변성 올리고머는 상기 광경화성 및 열경화성을 갖는 수지 조성물의 전체 중량에 대하여 약 15 내지 75 중량0 /0, 혹은 약 20 내지 50 중량0 /。, 혹은 약 25 내지 45 중량0 /。의 함량으로 포함될 수 있다. 상기 산변성 을리고머의 함량이 지나치게 작으면 수지 조성물의 현상성이 떨어지고 DFSR의 강도가 저하될 수 있다. 반대로, 산변성 을리고머의 함량이 지나치게 높아지면, 수지 조성물이 과도하게 현상될 뿐 아니라 코팅 시 균일성이 떨어질 수 있다.
또, 산변성 올리고머의 산가는 약 40 내지 120 mgKOH/g, 흑은 약 50 내지 110 mgKOH/g, 혹은 60 내지 90 mgKOH/g로 될 수 있다. 산가가 지나치게 낮아지면, 알칼리 현상성이 저하될 수 있고, 반대로 지나치게 높아지면 현상액에 의해 광경화부, 예를 들어, 노광부까지 용해될 수 있으므로, DFSR의 정상적 패턴 형성이 어려워질 수 있다.
광증합성 모노머
한편, 상기 광경화성 및 열경화성을 갖는 수지 조성물은 광중합성 모노머를 포함한다. 이러한 광중합성 모노머는, 예를 들어, 2개 이상의 다관능 비닐기 등 광경화 가능한 불포화 작용기를 갖는 화합물로 될 수 있으며, 상술한 산변성 올리고머의 불포화 작용기와 가교 결합을 형성하여 노광시 광경화에 의한 가교 구조를 형성할 수 있다. 이로서, DFSR이 형성될 부분에 대웅하는 노광부의 수지 조성물이 알칼리 현상되지 않고 기판 상에 잔류하도록 할 수 있다.
이러한 광중합성 모노머로는, 실온에서 액상인 것을 사용할 수 있고, 이에 따라 상기 수지 조성물의 점도를 도포 방법에 맞게 조절하거나, 비노광부의 알칼리 현상성을 보다 향상시키는 역할도 함께 할 수 있다.
상기 광증합성 모노머로는, 분자 내에 2개 이상, 혹은 3개 이상, 흑은 3 내지 6개의 광경화 가능한 불포화 작용기를 갖는 (메트)아크릴레이트계 화합물을 사용할 수 있고, 보다 구체적인 예로서, 펜타에리트리를트리아크릴레이트, 또는 디펜타에리트리를펜타아크릴레이트 등의 히드록시기 함유 다관능 아크릴레이트계 화합물; 폴리에틸렌글리콜디아크릴레이트, 또는 폴리프로필렌글리콜디아크릴레이트 등의 수용성 다관능 아크릴레이트계 화합물; 트리메틸올프로판트리아크릴레이트, 펜타에리트리를테트라아크릴레이트, 또는 디펜타에리트리를핵사아크릴레이트 등의 다가 알코을의 다관능 폴리에스테르아크릴레이트계 화합물; 트리메틸을프로판, 또는 수소 첨가 비스페놀 A 등의 다관능 알코을 또는 비스페놀 A, 비페놀 등의 다가 페놀의 에틸렌옥시드 부가물 및 /또는 프로필렌옥시드 부가물의 아크릴레이트계 화합물; 상기 히드록시기 함유 다관능 아크릴레이트계 화합물의 이소시아네이트 변성물인 다관능 또는 단관능 폴리우레탄아크릴레이트계 화합물; 비스페놀 A 디글리시딜에테르, 수소. 첨가 비스페놀 . A 디글리시딜에테르 또는 페놀 노볼락 에폭시 수지의 (메트)아크릴산 부가물인 에폭시아크릴레이트계 화합물; 카프로락톤 . 변성 디트리메틸을프로판테트라아크릴레이트, ε -카프로락톤 변성 디펜타에리트리를의 아크릴레이트, 또는 카프로락톤 변성 히드톡시피발산네오펜틸글리콜에스테르디아크릴레이트 등의 카프로락톤 변성의 아크릴레이트계 화합물, 및 상술한 아크릴레이트계 화합물에 대웅하는 (메트.)아크릴레이트계 화합물 등의 감광성 (메트)아크릴레이트계 화합물로 이루어진 군에서 선택된 1종 이상의 화합물을 사용할 수 있고, 이들을 단독 또는 2종 이상을 조합하여 사용할 수도 있다.
이들 중에서도, 상기 광중합성 모노머로는 1 분자 중에 2개 이상, 혹은 흑은 3개 이상, 흑은 3 내지 6개의 (메트)아크릴로일기를 갖는 다관능 (메트)아크릴레이트계 화합물을 바람직하게 사용할 수 있으며, 특히 펜타에리트리를트리아크릴레이트, 트리메틸올프로판트리아크릴레이트, 디펜타에리트리를핵사아크릴레이트, 또는 카프로락톤 변성 디트리메틸올프로판테트라아크릴레이트 등을 적절히 사용할 수 있다. 상업적으로 입수 가능한 광중합성 모노머의 예로는, 카야라드의 DPEA-12 등을 들 수 있다.
상술한 광중합성 모노머의 함량은 상기 수지 조성물 전체 중량에 대하여 약 5 내지 30 중량0 /0, 흑은 약 7 내지 20 중량0 /0, 흑은 약 7 내지 15 중량0 /。로 될 수 있다. 광중합성 모노머의 함량이 지나치게 작아지면, 광경화가 층분하지 않게 될 수 있고, 지나치게 커지면 DFSR의 건조성이 나빠지고 물성이 저하될 수 있다.
광개시제
한편, 상기 광경화성 및 열경화성을 갖는 수지 조성물은 광개시제를 포함한다. 이러한 광개시제는, 예를 들어, 수지 조성물의 노광부에서 라디칼 광경화를 개시하는 역할을 한다.
광개시제로서는 공지의 것을 사용할 수 있고, 벤조인, 벤조인메틸에테르, 벤조인에틸에테르 등의 벤조인과 그 알킬에테르류로 되는 벤조인계 .화합물; .아세토페논,. 2,2-디메톡시 -2-페닐아세토페논, 1 ,1- 디클로로아세토페논, 4-(1-t-부틸디옥시 -1-메틸에틸)아세토페논 등의 아세토페논계 화합물; 2-메틸안트라퀴논, 2-아밀안트라퀴논, 2-t- 부틸안트라퀴논, 클로로안트라퀴논 등의 안트라퀴논계 화합물; 2,4- 디메틸티오크산톤, 2,4-디이소프로필티오크산톤, 2-클로로티오크산톤 등의 티오크산톤 화합물; 아세토페논디메틸케탈, 벤질디메틸케탈 등의 케탈 화합물; 벤조페논, 4-(1 -t-부틸디옥시 -1-메틸에틸)벤조페논, 3,3',4,4'- 테트라키스 (t-부틸디옥시카르보닐)벤 ^페논 등의 벤조페논계 화합물 등의 물질을 사용할 수 있다.
또, 2-메틸 -1 -[4- (메틸티오)페닐] -2-모르폴리노프로파논 -1 ,2-벤질 -2- 디메틸아미노 -1-(4-몰포리노페닐) -부탄 -1 -은, 2- (디메틸아미노) -2-[(4- 메틸페닐)메틸 ]-1 -[4-(4-몰포리닐)페닐] -1 -부타논, Ν,Ν- 디메틸아미노아세토페논 (시판품으로서는 치바스페셜리티케미컬사 (현, 치바저팬사) 제품의 이루가큐어 (등록상표) 907, 이루가큐어 369, 이루가큐어 379 등) 등의 α -아미노아세토페논 화합물; 2,4,6- 트리메틸벤조일디페닐포스핀옥사이드, 비스 (2,4,6-트리메틸벤조일) - 페닐포스핀옥사이드, 비스 (2,6-디메특시벤조일) -2,4,4-트리메틸- 펜틸포스핀옥사이드 (시판품으로서는, BASF사 제품 루실린 (등록상표) TPO, 치바스페셜리티케미컬사 제품의 이루가큐어 819 등) 등의 아실포스핀옥사이드 화합물 역시 적절한 광개시제로서 언급될 수 있다.
그리고, 다른 적절한 광개시제로서는 옥심에스테르 화합물을 들 수 있다. 옥심에스테르 화합물의 구체예로서는 2-
(아세틸옥시이미노메틸)티오크산텐 -9-온, (1 ,2-옥탄디온, 1-[4- (페닐티오)페닐] -, 2-(0-벤조일옥심)) , (에탄온, 1 -[9-에틸 -6-(2-메틸벤조일) -9H-카르바졸 -3-일] -, 1- (0-아세틸옥심)) 등을 들 수 있다. 시판품으로서는 치바스페셜리티케미컬사 제품의 GGI-325, 이루가큐어 ᄋ XE01 , 이루가큐어 OXE02, ADEKA사 제품 N- 1919, 치바스페셜리티케미컬사의 Darocur TPO 등을 들 수 있다. 부가하여, 비이미다졸계 화합물 또는 트리아진계 화합물 등도 적절한 광 71]시제로서 사용될 수 있다.
광개시제의 함량은 상기 수지 조성물 전체 중량에 대하여 약 0.5 내지 20 중량0 /。, 혹은 약 1 내지 10 중량0 /。, 혹은 약 1 내지 5 중량0 /。로 될 수 있다. 광개시제의 함량이 지나치게 작으면, 광경화가 제대로 일어나지 않을 수 있고, 반대로 지나치게 커지면 수지 조성물의 해상도가 저하되거나 DFSR의 신뢰성이 충분하지 않을 수 있다.
열경화성 바인더
상기 광경화성 및 ¾경화성을 갖는 수지 조성물은 또한 열경화 가능한 작용기, 예를 들어, 에폭시기, 옥세타닐기, 환상 에테르기 및 환상 티오 에테르기 중에서 선택된 1종 이상을 갖는 열경화성 바인더를 포함한다. 이러한 열경화성 바인더는 열경화에 의해 산변성 올리고머 등과 가교 결합을 형성해 DFSR의 내열성 또는 기계적 물성을 담보할 수 있다.
이러한 열경화성 바인더는 연화점이 약 70 내지 100 °C로 될 수 있고, 이를 통해 라미네이션시 요철을 줄일 수 있다. 연화점이 .낮을 경우 DFSR의 끈적임 (Tackiness)이 증가하고, 높을 경우 흐름성이 악화될 수 있다.
상기 열경화성 바인더로는, 분자 중에 2개 이상의 환상 에테르기 및 /또는 환상 티오에테르기 (이하, 환상 (티오)에테르기라고 함)를 갖는 수지를 사용할 수 있고, 또 2관능성의 에폭시 수지를 사용할 수 있다. 기타 디이소시아네이트나 그의 2관능성 블록이소시아네이트도 사용할 수 있다. 상기 분자 중에 2개 이상의 환상 (티오)에테르기를 갖는 열경화성 바인더는 분자 중에 3, 4 또는 5원환의 환상 에테르기, 또는 환상 티오에테르기 중 어느 한쪽 또는 2종의 기를 2개 이상 갖는 화합물로 될 수 있다. 또, 상기 열경화성 바인더는 분자 중에 적어도 2개 이상의 에폭시기를 갖는 다관능 에폭시 화합물, 분자 중에 적어도 2개 이상의 옥세타닐기를 갖는 다관능 옥세탄 화합물 또는 분자 중에 2개 이상의 티오에테르기를 갖는 에피술피드 수지 등으로 될 수 있다.
상기 다관능 에폭시 화합물의 구체예로서는, 예를 들면 비스페놀 A형 에폭시 수지, 수소 첨가 비스페놀 A형 에폭시 수지, 브롬화 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 비스페놀 S형 에폭시 수지, 노볼락형 에폭시 수지, 페놀 노블락형 에폭시 수지, 크레졸 노볼락형 에폭시 수지, M-글리시딜형 에폭시 수지, 비스페놀 A의 노볼락형 에폭시 수지, 비크실레놀형 에폭시 수지, 비페놀형 에폭시 수지, 킬레이트형 에폭시 수지, 글리옥살형 에폭시 수지, 아미노기 함유 에폭시 수지, 고무 변성 에폭시 수지, 디시클로펜타디엔 페놀릭형 에폭시 수지, 디글리시딜프탈레이트 수지, 헤테로시클릭 에폭시 수지 , 테트라글리시딜크실레노일에탄 수지 , 실리콘 변성 에폭시 수지, ε -카프로락톤 변성 에폭시 수지 등을 들 수 있다. 또한, 난연성 부여를 위해, 인 등의 원자가 그 구조 중에 도입된 것을 사용할 수도 있다. 이들 에폭시 수지는 열경화함으로써, 경화 피막의 밀착성, 땜납 내열성, 무전해 도금 내성 등의 특성을 향상시킨다.
상기 다관능 옥세탄 화합물로서는. 비스 [(3-메틸 -3- 옥세타닐메록시)메틸]에테르, 비스 [(3-에틸 -3-옥세타닐메톡시 )메틸]에테르, 1 ,4- 비스 [(3-메틸 -3-옥세타닐메록시)메틸]밴젠, 1 , 4-비스 [(3-에틸 -3- 옥세타닐메록시)메틸]벤젠, (3-메틸 -3-옥세타닐)메틸아크릴레이트, (3-에틸 -3- 옥세타닐)메틸아크릴레이트, (3-메틸 -3-옥세타닐)메틸메타크릴레이트, (3-에틸- 3-옥세타닐)메틸메타크릴레이트나 이들의 을리고머 또는 공중합체 등의 다관능 옥세탄류 이외에, 옥세탄 알코올과 노볼락 수지, 폴리 (Ρ- 히드록시스티렌), 카르도형 비스페놀류, 카릭스아렌류, 카릭스레졸신아렌류, 또는 실세스퀴옥산 등의 히드록시기를 갖는 수지와의 에테르화물 등을 들 수 있다. 그 밖의, 옥세탄환을 갖는 불포화 모노머와 알킬 (메트)아크릴레이트와의 공중합체 등도 들 수 있다.
상기 분자 중에 2개 이상의 환상 티오에테르기를 갖는 화합물로서는, 예를 들면 재팬 에폭시 레진사 제조의 비스페놀 A형 에피술피드 수지 YL7000 등을 들 수 있다. 또한, 노볼락형 에폭시 수지의 에폭시기의 산소 원자를 황 원자로 대체한 에피술피드 수지 등도 사용할 수 있다.
또한, 시판되고 있는 것으로서, 국도화학사의 YDCN-500-80P 등을 사용할 수 있다.
열경화성 바인더는 상기 산변성 올리고머의 카르복시기 1 당량에 대하여 0.8 내지 2.0 당량에 대웅하는 함량으로 포함될 수 있다. 열경화성 바인더의 함량이 지나치게 작아지면, 경화 후 DFSR에 카르복시기가 남아 내열성, 내알칼리성, 전기 절연성 등이 저하될 수 있다. 반대로, 함량이 지나치게 커지면, 저분자량의 열경화성 바인더가 건조 도막에 잔존함으로써, 도막의 강도 등이 저하되기 때문에 바람직하지 않다.
상술한 각 성분 외에도, 상기 광경화성 및 열경화성을 갖는 수지 조성물은 용제; 및 후술하는 열경화성 바인더 촉매 (열경화 촉매), 필러, 안료 및 첨가제로 이루어진 군에서 선택된 1종 이상을 더 포함할 수도 있다.
열경화성 바인더 촉매 (열경화 촉매)
열경화성 바인더 촉매는 열경화성 바인더의 열경화를 촉진시키는 역할을 한다.
이러한 열경화성 바인더 촉매로서는, 예를 들면 이미다졸, 2- 메틸이미다졸ᅳ 2-에틸이미다졸, 2-에틸 -4-메틸이미다졸, 2-페닐이미다졸, 4- 페닐이미다졸, 1_시아노에틸ᅵ 2-페닐이미다졸, 1 -(2-시아노에틸) -2-에틸 -4- 메틸이미다졸 등의 이미다졸 유도체; 디시안디아미드, 벤질디메틸아민, 4- (디메틸아미노) -Ν,Ν-디메틸벤질아민, 4-메톡시 -Ν,Ν-디메틸벤질아민, 4-메틸- Ν,Ν-디메틸벤질아민 등의 아민 화합물; 아디프산 디히드라지드, 세박산 디히드라지드 등의 히드라진 화합물; 트리페닐포스핀 등의 인 화합물 등을 들 수 있다. 또한, 시판되고 있는 것으로서는, 예를 들면 시코쿠 가세이 고교사 제조의 2ΜΖ-Α, 2ΜΖ-ΟΚ, 2ΡΗΖ, 2Ρ4ΒΗΖ, 2Ρ4ΜΗΖ (모두 이미다졸계 화합물의 상품명), 산아프로사 제조의 U-CAT3503N, UCAT3502T (모두 디메틸아민의 블록이소시아네이트 화합물의 상품명), DBU, DBN, U- CATSA102, U-CAT5002(모두 이환식 아미딘 화합물 및 그의 염) 등을 들 수 있다. 특히 이들에 한정되는 것이 아니고, 에폭시 수지나 옥세탄 화합물의 열경화 촉매, 또는 에폭시기 및 /또는 옥세타닐기와 카르복시기의 반웅을 촉진하는 것일 수 있고, 단독으로 또는 2종 이상을 흔합하여 사용할 수도 있다. 또한, 구아나민, 아세토구아나민, 벤조구아나민, 멜라민, 2,4-디아미노 -6- 메타크릴로일옥시에틸 -S-트리아진, 2-비닐 -4,6-디아미노 -S-트리아진, 2-비닐- 4,6-디아미노 -S-트리아진 ·이소시아누르산 부가물, 2,4-디아미노 -6- 메타크릴로일옥시에틸 -S-트리아진ᅳ이소시아누르산 부가물 등의 S-트리아진 유도체를 이용할 수도 있고, 바람직하게는 이들 밀착성 부여제로서도 기능하는 화합물을 상기 열경화성 바인더 촉매와 병용할 수 있다.
열경화성 바인더 촉매의 함량은 적절한 열경화성의 측면에서, 상술한 수지 조성물 전체 중량에 대하여 약 0.3 내지 15 중량0 /。로 될 수 있다.
필러
필러는 내열 안정성, 열에 의한 치수안정성, 수지 접착력을 향상시키는 역할을 한다. 또한, 색상을 보강함으로써 체질안료 역할도 한다. 필러로는 무기 또는 유기 충전제를 사용할 수가 있는데, 예를 들어 황산바륨, 티탄산바륨, 무정형 실리카, 결정성 실리카, 용융 실리카, 구형 실리카, 탈크,. 클레이, 탄산마그네슴, 탄산칼슴, 산화알루미늄 (알루미나), 수산화알루미늄, 마이카 등을 사용할 수 있다
필러의 함량은 상술한 수지 조성물 전체 중량에 대하여 약 5 내자 50 중량 0/。인 것이 바람직하다. 50 중량 0/。를 초과하여 사용할 경우에는 조성물의 점도가 높아져서 코팅성이 저하되거나 경화도가 떨어지게 되어 바람직하지 않다.
안료
안료는 시인성, 은폐력을 발휘하여 회로선의 긁힘과 같은 결함을 숨기는 역할을 한다.
안료로는 적색, 청색, 녹색, 황색, 혹색 안료 등을 사용할 수 있다. 청색 안료로는 프탈로시아닌 블루, 피그먼트 블루 15:1 , 피그먼트 블루 15:2, 피그먼트 블루 15:3, 피그먼트 블루 15:4, 피그먼트 블루 15:6, 피그먼트 블루 60 등을 사용할 수 있다. 녹색 안료로는 피그먼트 그린 7, 피그먼트 그린 36, 솔벤트 그린 3, 솔벤트 그린 5, 솔벤트 그린 20, 솔벤트 그린 28 등을 사용할 수 있다. 황색 안료로는 안트라퀴논계, 이소인돌리논계, 축합 아조계, 벤즈이미다졸론계 등이 있으며, 예를 들어 피그먼트 옐로우 108, 피그먼트 옐로우 147, 피그먼트 옐로우 151 , 피그먼트 옐로우 166, 피그먼트 옐로우 181 , 피그먼트 엘로우 193 등을 사용할 수 있다.
안료의 함량은 상기 수지 조성물 전체 중량에 대하여 약 0.5 내지 3 중량0 /。로 사용하는 것이 바람직하다. 0.5 중량0 /。 미만으로 사용할 경우에는 시인성, 은폐력이 떨어지게 되며, 3 중량0 /0를 초과하여 사용할 경우에는 내열성이 떨어지게 된다.
첨가제
. -첨가제는 수지 조성물의 기포를 제거하거나, 필름 코팅시 표면의 팝핑 (Popping)아나 크레이터 (Crater)를 제거, 난연성질 부여, 점도 조절, 촉매 등의 역할로 첨가될 수 있다.
구체적으로, 미분실리카, 유기 벤토나이트, 몬모릴로나이트 등의'공지 관용의 증점제; 실리콘계, 불소계, 고분자계 등의 소포제 및 /또는 레벨링제; 이미다졸계, 티아졸계, 트리아졸계 등의 실란 커플링제; 인계 난연제, .안티몬계 난연제 등의 난연제 등과 같은 공지 관용의 첨가제류를 배합할 수 있다.
이중에서 레벨링제는 필름 코팅시 표면의 팝핑이나 크레이터를 제거하는 역할을 하며, 예를 들어 BYK-Chemie GmbH의 BYK-380N, BYK- 307, BYK-378, BYK-350 등을 사용할 수 있다.
첨가제의 함량은 상기 수지 조성물 전체 중량에 대하여 약 0.01 내지
10 증량0 /0인 것이 바람직하다.
^
수지 조성물을 용해시키거나 적절한 점도를 부여하기 위해 1개
-이상의 용제를 흔용하여 사용할 수 있다.
용제로서는 메틸에틸케톤, 시클로핵사논 등의 케톤류; 를루엔, 크실렌, 테트라메틸벤젠 등의 방향족 탄화수소류; 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 에털렌글리콜모노부틸에테르, 디에틸렌글리콜모노에틸에테르, 디에틸렌글리콜모노메틸에테르 디에틸렌글리콜모노부틸에테르, 프로필렌글리콜모노메틸에테르 프로필렌글리콜모노에틸에테르, 디프로필렌글리콜디에틸에테르 트리에틸렌글리콜모노에틸에테르 글라콜에테르류 (셀로솔브), 아세트산에틸, 아세트산부틸, 에틸렌글리콜모노에틸에테르아세테이트, 에틸렌글리콜모노부틸에:테르아세테이트,
디에틸렌글리콜모노에틸에테르아세테이트,
디에틸렌글리콜모노부틸에테르아세테이트,
프로필렌글리콜모노메틸에테르아세테이트,
디프로필렌글리콜모노메틸에테르아세테이트 등의 아세트산에스테르류; 에탄올, 프로판올, 에틸렌글리콜, 프로필렌글리콜, 카르비를 등의 알코올류; 옥탄, 데칸 둥의 지방족 탄화수소; 석유에테르, 석유나프타, 수소 첨가 석유나프타, 용매나프타 등의 석유계 용제; 디메틸아세트아미드, 디메틸포름아미드 (DMF) 등의 아미드류 등을 들 수 있다. 이들 용제는 단독으로 또는 2종 이상의 흔합물로서 사용할 수 있다.
용제의 함량은 상술한 수지 조성물 전체 중량에 대하여 약 10 내지
50 중량 0/。로 될 수 있다. 10 중량 % 미만인 경우에는 점도가 높아 코팅성이 떨어지고 50 중량 0/。를 초과할 경우에는 건조가 잘 되지 않아 끈적임이 증가하게 된다.
한편, 일 구현예의 제조 방법에서는, 상술한 광경화성 및 열경화성을 갖는 수지 조성물을 이용하여 표면에 미세 요철을 갖는 DFSR을 형성한다. 이하, 첨부한 도면을 참고로, 이러한 DFSR와 형성 과정을 각 단계별로 설명하기로 한다. 도 1 a 내지 1e는 발명의 일 구현예에 따른 제조 방법으로 미세 요철을 갖는 DFSR을 형성하는 과정을 개략적으로 나타낸 공정 순서도아다.
먼저, 도 1 a를 참고하면, 일 구현예의 제조 방법에서는, 상술한 각 성분을 포함하는 광경화성 및 열경화성을 갖는 수지 조성물 (110)을, 표면에 평균 조도 (Ra)가 약 50nm 내지 5 , 흑은 약 200nm 내지 2/ΛΠ, 혹은 약 250nm 내지 1 , 혹은 혹은 약 300nm 내지 500nm인 미세 요철이 형성된 투명 캐리어 필름 (100) 상에 형성한다. 이러한 미세 요철이 형성된 투명 캐리어 필름 (100) 상에 상기 수지 조성물 (110)을 형성함에 따라, 투명 캐리이 필름 (100) 상의 미세 요철이 수지 조성물 (110) 및 이로부터 형성된 DFSR 상에 반영되어 최종적으로 미세 요철을 갖는 DFSR을 제조할 수 있다.
이때, 상기 투명 캐리어 필름 (100)은 이후의 공정에서 이를 통해 수지 조성물 (110)에 자외선 등을 조사하여 노광 공정을 진행할 수 있도록, 우수한 투명성 및 광투과성과 낮은 헤이즈 특성을 나타낼 필요가 있다. 이를 위해, 상기 투명 캐리어 필름은 약 90% 이상, 혹은 약 92 내지 100%의 광투과율 및 약 5% 이하, 혹은 약 1 내지 4%의 헤이즈를 나타낼 수 있다. 다만, 투명 캐리어 필름 (100)이 위 광투과율 및 해이즈를 나타내는 것으로 한정 사용되어야 하는 것은 아니며, 경우에 따라서는, 약 65% 이상, 예를 들어, 약 65 내지 80%의 상대적으로 그리 높지 않은 광투과율을 나타내는 matt PET등의 투명 캐리어 필름 (100)을 사용할 수도 있다.
또한, 상기 투명 캐리어 필름 (100)으로는 표면에 미세 요철이 형성된 것을. 사용할 수 있는데, 이러한 미세 요철의 형성을 위해 소정의 투명 플라스틱 필름에 무기 필러를 주입할 수 있고 이러한 무기 필러 등의 주입을 통해 미세 요철이 형성된 투명 플라스틱 필름을 다른 평평한 투명 플라스틱 필름과 합지하여 상기 투명 캐리어 필름 (100)의 적절한 두께를 조절할 수 있다. 이러한 투명 캐리어 필름 (100)으로는 상술한 방법을 통해 직접 미세 요철을 형성한 투명 플라스틱 필름을 사용하거나, 미세 요철이 형성된 상용화된 투명 플라스틱 필름을 상업적으로 입수하여 사용할 수도 있다.
이러한 투명 캐리어 필름 (100) 상에는, 적절한 크기의 미세 요철을 갖는 DFSR의 양호한 형성이 가능하도록, 평균 조도 (Ra)가 약 50nm 내지 5 H1, 혹은 약 200nm 내지 zm, 혹은 약 250nm 내지 ^ m, 혹은 약 300nm 내지 500nm인 미세 요철이 형성될 수 있다. 만일, 상기 미세 요철의 평균 조도 (Ra)가 지나치게 작을 경우, DFSR 표면 상에 원하는 성능을 갖는 적절한 크기의 미세 요철을 형성하지 못하게 될 수 있다. 반대로, 미세 요철의 평균 조도 (Ra 지나치게 클 경우에는 이러한 투명 캐리어 필름 (100) 상의 미세 요철에 의해 노광 공정에서 빛의 산란이 과도하게 발생하여 양호한 DFSR이 형성되지 못할 수 있다. 또한, DFSR 필름 자체의 헤이즈 확보에도 불리할 수 있고, 반도체 소자 등의 제조 과정에서 후속 재료와 접착시 공극을 형성할 우려가 있어 문제점이 발생할 수 있다.
그리고, 상기 투명 캐리어 필름 (100)은 이후의 노광 공정을 적절히 진행하고 광경화된 수지 조성물 (110)로부터 용이하게 제거될 수 있으며 상술한 크기의 미세 요철이 표면에 적절히 형성 및 유지될 수 있도록 약 5 내지 30//m, 흑은 약 12 내지 25 의 두께를 가질 수 있다.
또 상기 투명 캐리어 필름 (100)으로는, 상술한 투명성, 미세 요철 크기 및 두께 등의 물성을 층족하는 플라스틱 필름을 사용할 수 있고, 예를 들어, 폴리에스테르계 필름 또는 폴리올레핀계 필름 등을 사용할 수 있다. 이의 보다 구체적인 예로는, matt 폴리에틸렌테레프탈레이트 (PET) 필름을 포함한 PET 필름 등의 폴리에스테르 필름이나, 폴리프로필렌 필름 등의 플리올레핀계 필름을 들 수 있다.
한편, 상술한 광경화성 및 열경화성을 갖는 수지 조성물 (110)을 투명 캐리어 필름 (100) 상에 형성함에 있어서는, 상기 수지 조성물 (110)을 감광성 코팅 재료 (Photosensitive Coating Materials)로서 콤마 코터, 블레이드 코터, 립 코터, 로드 코터, 스퀴즈 코터, 리버스 코터, 트랜스퍼 를 코터, 그라비아 코터 또는 분무 코터 등으로 투명 캐리어 필름 (100) 상에 도포할 수 있다. 이러한 방법으로 수지 조성물 (1 10)을 도포하여 투명 캐리어 필름 (100) 상에 도포한 후에는, 이러한 투명 캐리어 필름 (100) 상의 수지 조성물 (110)을 건조할 수 있다. 이러한 건조를 위해, 상기 수지 조성물 (110)이 형성된 투명 캐리어 필름 (100)을 약 50 내지 130 °C 온도, 흑은 약 60 내지 12O °C 온도, 흑은 약 70 내지 v rc 온도의 오븐에 약 1 내지 30분, 혹은 약 약 3 내지 20분, 흑은 약 5 내지 15분간 통과시킬 수 있다. 이러한 건조 공정의 진행을 통해, 상기 투명 캐리어 필름 (100) 상의 수지 조성물 (110)은 어느 정도 상승된 점도를 갖는 반건조 상태로 될 수 있다. 이러한 반건조 상태의 수지 조성물 (110)의 상승된 점도는 이의 겔화 시간으로 표현될 수 있다. 예를 들어, 상기 반건조 상태의 수지 조성물 (110)은 0.4g 및 16C C의 조건 하에, 약 2 내지 5 분, 혹은 약 2 분 30초 내지 4 분 30초의 겔화 시간을 가질 수 있다. 이때, 상기 겔화 시간은 겔 타임 측정기, 예를 들어, 대흥과학의 모델명 DH-15 등의 겔 타임 측정기 등으로 측정할 수 있으며, 이러한 측정기에서 측정 온도 160 °C를 설정하고 상기 수지 조성물 (110)의 약 0.5g을 채취하여 측정기에 넣고 나무 막대 등의 부도체로 천천히 저어주면서 육안 관찰하여 겔화되는 시간을 측정할 수 있다. 이러한 방법으로 상기 겔화 시간을 3회 반복 측정하여 도출된 평균 값으로 상기 겔화 시간의 측정 값을 정할 수 있다.
이렇게 수지 조성물 (110)을 반건조 상태로 건조한 후, 후술하는 이형 필름 등을 수지 조성물에 부착하여 이후의 DFSR 형성 공정 (상기 수지 조성물의 기판 상의 형성 공정과, 노광 및 현상 공정 등)을 진행하기 위해 이송할 수 있으며, 이러한 DFSR 형성 공정 직전에 이형 필름 등을 제거하여 이후의 공정을 진행할 수 있다. 만일, 상기 건조 후의 수지 조성물의 점도 등이 지나치게 낮아지면, 이후의 공정 진행을 위한 이송에 적합하지 않을 수 있고, 반대로 상기 건조 후의 수지 조성물의 점도 등이 지나치게 높아지는 경우에는 이후의 공정 진행에 부적합할 수 있다.
한편, 상기 건조 공정 후에는, 상기 수지 조성물 (1 10) 상에 이형 필름 (Release Rim)올 형성할 수 있다. 이러한 이형 필름은 상기 수지 조성물 (1 10)을 투명 캐리어 기판 (100) 상에 형성하는 공정과, 이후의 DFSR 형성 공정 (상기 수지 조성물의 기판 상의 형성 공정과, 노광 및 현상 공정 등) 사이에, 이송 또는 보관이 필요한 경우, 상기 수지 조성물 (110)의 보호 및 물성 유지 등을 위한 것 로서, 이후의 공정 진행 직전에 박리될 수 있다. 이러한 이형 필름으로는 폴리에틸렌 (PE) 필름, 폴리테트라플루오로에틸렌 필름, 폴리프로필렌 필름, 폴리에틸렌테레프탈레이트 (PET) 필름 또는 표면 처리한 종이 등을 사용할 수 있으며, 이형필름을 박리할 때 상기 수지 조성물 (110)과 투명 캐리어 필름 (100)의 접착력보다 상기 수지 조성물 (1 10)과 이형 필름의 접착력이 낮은 것이 바람직하다.
상술한 바와 같이, 상기 수지 조성물 (1 10)을 투명 캐리어 기판 (100) 상에 형성하는 공정과, 이후의 DFSR 형성 공정 사이에, 이송 또는 보관이 필요한 경우, 상기 수지 조성물 (110)이 투명 캐리어 기판 (100) 상에 형성된 후 건조가 진행된 후의 필름 적층체가 DFSR의 제조를 위한 증간체로서 제공될 수 있다. 이러한 필름 적층체는 표면에 평균 조도 (Ra)가 약 50nm 내지 5/im인 미세 요철이 형성된 투명 캐리어 필름; 및 상기 필름 상에 형성된 상술한 광경화성 및 열경화성을 갖는 수지 조성물층, 즉, (a) 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 올리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광중합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 조성물층을 포함할 수 있고, 상기 수지 조성물층은 0.4g 및 160 °C의 조건 하에, 약 2 내지 5 분의 겔화 시간을 가질 수 있다. 또한, 이러한 필름 적층체는, 상술한 바와 같이, 상기 수지 조성물층 상에 형성된 이형 필름을 더 포함할 수 있다.
한편 상술한 바와 같이 , 광경화성 및 열경화성을 갖는 수지 조성물 (1 10)을 미세 요철을 갖는 투명 캐리어 필름 (100) 상에 형성한 후에는, 도 1 b와 같이, 회로가 형성된 기판 (120), 예를 들어, 반도체 소자의 패키지 기판 상에 상기 수지 조성물 (110)을 적층하여 기판 (120), 수지 조성물 (110) 및 투명 캐리어 필름 (100)이 순차 형성된 적층 구조를 형성할 수 있다. 상술한 이형 필름은 이러한 적층 구조의 형성 단계 직전에 상기 수지 조성물 (110)로부터 박리될 수 있다. 이러한 적층 구조를 형성함에 있어서는, 상기 기판 (120) 상에 수지 조성물 (1 10)이 형성되도록, 상기 수지 조성물 (1 10)이 형성된 투명 캐리어 필름 (100)을 진공 라미네이터, 핫 를 라미네이터 또는 진공 프레스 등을 이용하여 상기 기판 (120) 상에 접합할 수 있다.
이어서, 도 1 c에 도시된 바와 같이, 상기 투명 캐리어 기판 (100)을 통해 상기 수지 조성물 (110)에 노광하고, 투명 캐리어 필름 (100)을 박리할 수 있다. 이때, 상기 노광 공정은 일정한 파장대를 갖는 자외선 등의 광을 조사함으로서 진행할 수 있고, 포토 마스크를 통해 선택적으로 노광하거나, 또는 레이저 다이렉트 노광기로 직접 패턴 노광할 수도 있다. 이러한 노광 공정은 표면에 미세 요철이 형성된 투명 캐리어 필름 (1 10)을 통해 진행되므로, 노광 중에 미세 요철에 의한 빛의 산란이 발생하여 선택적 노광이 진행되기 용이치 않을 수 있다. 이를 고려하여, 상기 노광 공정은 기존에 알려진 DFSR 형성을 위한 노광 공정에서보다 증가된 노광량으로 진행될 수 있다. 다만, 이러한 노광량은 노광할 두께, 예를 들어, 상기 투명 캐리어 필름 (100) 및 수지 조성물 (1 10)의 두께와, 투명 캐리어 필름 (1 10) 상의 미세 요철의 조도 등을 고려하여 당업자가 자명하게 결정할 수 있다. 상기 노광 공정은 이렇게 결정된 노광량으로 자외선을 조사하는 방법으로 진행될 수 있다. 이를 통해, 빛의 산란에 따른 영향을 줄이면서 노광 공정을 적절히 진행하여, 미세 요철이 형성된 DFSR을 양호하게 형성할 수 있다. ' 상술한 노광 공정을 진행하면, 예를 들어, 노광부에서는 수지 조성물 (1 10) 중의 산변성 을리고머에 포함된 불포화 작용기와, 광중합성 모노머에 포함된 불포화 작용기가 광경화를 일으켜 서로 가교 결합을 형성할 수 있고, 그 결과 노광부에서 광경화에 의한 가교 구조가 형성될 수 있다. 따라서, 이러한 노광부의 수지 조성물 (110)은 이후의 알칼리 현상 공정에 의해 제거되지 않는 상태로 될 수 있고, 또 상기 투명 캐리어 기판 (100) 표면의 미세 요철이 반영된채 광경화가 진행되어, 노광부의 가교된 수지 조성물 (110)은 투명 캐리어 기판 (100)에 접촉하는 표면에 미세 요철을 갖는 형상으로 형성될 수 있다. 이에 비해, 비노광부의 수지 조성물 (1 10)은 산변성 을리고머의 카르복시기가 그대로 유지되어, 알칼리 현상 가능한 상태로 될 수 있다.
상기 노광 공정을 진행한 후에는, 투명 캐리어 필름 (100)을 박리할 수 있다. 이러한 투명 캐리어 필름 (100)을 노광 전에 박리할 경우, 수지 조성물 (1 10)과의 접착력 등으로 인해 박리 등이 잘 이루어지기 어렵고 이후의 공정 진행이 어려워질 수 있는 바, 이를 고려해 상기 투명 캐리어 필름 (100)은 노광 후에 박리될 수 있다.
한편, 상기 노광 공정 및 투명 캐리어 필름의 박리를 진행한 후에는, 도 1 d에 도시된 바와 같이, 알칼리 용액 등을 이용하여 비노광부의 수지 조성물 (110)을 현상 (Development)한다. 이러한 현상 공정을 진행하기 위한 알칼리 용액으로는 수산화칼륨, 수산화나트륨, 탄산나트륨, 탄산칼륨, 인산나트륨, 규산나트륨, 암모니아, 또는 아민류 등의 알칼리 수용액을 사용할 수 있다. 이러한 현상에 의해, 비노광부의 산변성 올리고머 및 광중합성 모노머 등이 현상액에 녹아 제거돨 수 있다. 그 결과, 노광부에 대웅하는 기판 상의 원하는 부분에만 수지 조성물 (1 10)을 잔류시켜 DFSR을 형성할 수 있고, 상술한 바와 같이, 이러한 노광부의 DFSR (수지 조성물; 1 10)은 투명 캐리어 필름 (100) 표면의 미세 요철이 반영되어 그 표면에 미세 요철을 가질 수 있으므로, 플라즈마 처리 공정 등의 공정의 변경 또는 조성의 변경 없이도 보다 용이하게 미세 요철을 갖는 DFSR을 제조할 수 있게 된다.
상술한 현상 공정을 진행한 후에는, 도 1e에 도시된 바와 같이, 기판 (120) 상의 수지 조성물 (110)을 가열 경화시킴으로써 (Post Cure), DFSR을 최종 형성할 수 있다. 가열 경화온도는 약 10C C 이상이 적당하다. 이러한 가열 경화에 의해, 상기 수지 조성물 (1 10)에 포함된 열경화성 바인더의 열경화 가능한 작용기와, 산변성 을리고머의 카르복시기가 가교 결합되어 가교 구조를 이를 수 있다. 또, 이러한 가열 경화까지 거친 결과, 표면에, 약 50nm 내지 5//m, 혹은 약 200nm 내지 2 , 혹은 약 250nm 내지 1卿, 혹은 약 300nm 내지 500nm의 평균 조도 (Ra)를 갖는 미세 요철이 형성된 DFSR이 최종 형성될 수 있다.
상술한 방법 등을 통해, DFSR 및 이를 포함하는 인쇄회로기판, 예를 들어, 반도체 소자의 패키지 기판이 제공될 수 있으며, 상기 DFSR은 소정의 미세 요철이 표면에 형성됨에 따라, 후속 공정 재료 등과 접촉 표면적이 증가하여 우수한 접착력을 나타낼 수 있다. 또, 상기 DFSR은 광경화 및 열경화를 거침에 따라, 상술한 산변성 을리고머; 광중합성 모노머; 및 열경화 가능한 작용기를 갖는 열경화성 바인더의 경화물을 포함할 수 있다.
보다 구체적으로, 상기 경화물에서, 상기 산변성 을리고머의 카르복시기는 열경화에 의해, 열경화성 반웅기의 열경화 가능한 작용기와 가교 결합될 수 있고, 상기 산변성 올리고머의 광경화 가능한 불포화 작용기는 광경화에 의해 광중합성 모노머에 포함된 불포화 작용기와 가교 결합되어 가교 구조를 이를 수 있다. 또, 이미 상술한 바와 같이, 상기 DFSR의 표면에는 미세 요철이 형성될 수 있다.
이와 같이, 별도의 플라즈마 처리 등의 공정 추가 또는 변경이나, 조성의 변경 없이도, 보다 용이하고 단순화된 방법으로 표면에 미세 요철이 형성된 DFSR의 형성이 가능해 짐에 따라, 반도체 패키지 기판 등에 적용시 후속 공정 재료와의 우수한 접착력을 나타내는 DFSR의 제공이 가능해 지면서도, 공정 또는 조성 변경 등에 의한 DFSR의 물성 변경 또는 저하를 억제하여 우수한 물성을 발현 및 유지하는 DFSR의 제공이 가능해 진다. 부가하여, 상기 DFSR은 광경화에 참여하고 남은 소량의 광개시제를 경화물 내에 분산된 상태로 더 포함할 수 있다.
【발명의 효과】
본 발명에 따르면, 플라즈마 처리 공정 등 공정 추가 또는 변경이나, 조성의 변경 없이도, 표면 미세 요철이 형성된 투명 캐리어 필름만을 사용하는 보다 단순화된 방법으로 표면에 미세 요철을 갖는 DFSR의 형성할 수 있다.
이렇게 형성된 DFSR은 반도체 패키지 기판 등에 적용되었을 때, 미세 요철에 의해 후속 공정 재료와의 우수한 접착력을 나타내거나, EMC 몰드 등과의 우수한 이형성이 확보되어 공정의 용이성이 담보될 수 있다. 【도면의 간단한 설명】 '
도 1 a 내지 1 e는 발명의 일 구현예에 따른 제조 방법으로 미세 요철을 갖는 DFSR을 형성하는 과정을 개략적으로 나타낸 공정 순서도이다. 도 2 및 3은 실시예 1 및 2에서 형성된 DFSR의 표면상태에 대한
FE-SEM 사진이다.
도 4a 및 4b는 비교예 1에서 형성된 DFSR의 표면 조도를 산출하기 위해 OP (Optical profiler)로 측정된 2D 이미지 및 3D 이미지이다.
도 5a 및 5b는 실시예 1에서 형성된 DFSR의 표면 조도를 산출하기 위해 OP (Optical profiler)로 측정된 2D 이미지 및 3D 이미지이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.
<실시예 >
실시예 1
(1 ) 광경화성 및 열경화성을 갖는 수지 조성물의 제조
산변성 올리고머로서 일본화약의 ZFR-1122를 41.5 중량 %, 광중합성 모노머로서 다관능 에폭시 아크릴레이트 (일본화약의 DPEA-12) 10 중량0 /。, 광개시제로서 Darocur TPO(치바스페셜리티케미컬사)를 3 중량0 /0, 열경화성 바인더로 YDCN-500-80P (국도화학사) 16중량0 /。, 열경화 촉매로서 2- 페닐이미다졸을 1 중량0 /。, 필러로서 Β-30 (사카이 케미컬사)를 15중량0 /。, 첨가제로서 ΒΥΚ사의 ΒΥΚ-333을 0.5 중량 %, 용제로서 이 IF를 13증량%를 사용하여 각 성분을 배합하고 교반한 후 3를밀 장비로 필러를 분산시켜 광경화성 및 열경화성을 갖는 수지 조성물을 제조하였다.
(2) 드라이 필름 솔더 레지스트의 제조 (미세 요철을 갖는 투명 캐리어 필름 사용)
상기 제조된 수지 조성물을 콤마 코터를 이용하여 투명 캐리어 필름으로 사용되는 PET에 도포하였다. 이때, 투명 캐리어 필름으로는, SKC 사의 SD-15 제품을 사용하였는데, 이러한 투명 캐리어 필름 상에는 평균 조도가 약 344.67nm (Ra) 및 약 636卿 (Rz)인 미세 요철이 형성되어 있었고, 두께는 약 20 이었다.
상기 수지 조성물을 투명 캐리어 필름 상에 도포한 후, 75°C의 오븐을 8분간 통과시켜 건조사킨 다음, 이형 필름으로서 PE를 적층함으로써, 아래로부터 미세 요철을 갖는 투명 캐리어 필름, 감광성 필름, 이형 필름으로 구성되는 드라이 필름을 제조하였다. 이러한 드라이 필름에서, 건조 공정 진행 후의 상기 감광성 필름의 겔화 시간을 0.4g 및 16C C의 조건 하에 측정하였으며, 그 측정 방법 및 측정 결과는 후술하는 시험예 4에 정리하여 나타내었다.
(3) 반도체 패키지 기판의 제조
상기 제조된 드라이 필름의 이형 필름을 벗긴 후, 회로가 형성된 기판 위에 감광성 필름층을 진공라미네이터 (메이끼 세이사꾸쇼사 제조 MV LP-500)로 진공 적층한 다음, 365nm 파장대의 UV로 400 mJ/cm2로 노광한 후, PET 필름을 제거하였다. 이러한 결과물을 교반 중인 31 °C의 Na2C03 1 %의 알칼리 용액에 60초간 담근 후, 현상하여 15CTC에서 1 시간 동만 가열 경화시킴으로써, 드라이 필름 솔더 레지스트 (DFSR)를 포함하는 인쇄회로기판을 완성하였다.
한편, 상기 회로가 형성된 기판은 두께가 0.1 mm, 동박 두께가 12 인 LG화학의 동박적층판 LG-T-500GA를 가로 5cm, 세로 5cm의 기판으로 잘라, 화학적 에칭으로 동박 표면에 미세 조도를 형성한 것을 사용하였다. 실시예 2
(1 ) 드라이 필름 솔더 레지스트의 제조
산변성 올리고머로서 일본화약의 ZFR-1122를 41.5 중량0 /0, 광중합성 모노머로서 다관능 에폭시 아크릴레이트 (일본화약의 DPEA-12) 10 중량0 /0, 광개시제로서 Darocur TPO(치바스페셜리티케미컬사)를 3 증량0 /0, 열경화성 바인더로 YDCN-500-80P (국도화학사) 16중량%, 열경화 촉매로서 2- 페닐이미다졸을 1 중량%, 필러로서 Β-30 (사카이 케미컬사)를 15중량%, 첨가제로서 ΒΥΚ사의 ΒΥΚ-333을 0.5 중량0 /0, 용제로서 DMF를 13중량0 /0를 사용하여 각 성분을 배합하고 교반한 후 3를밀 장비로 필러를 분산시켜 광경화성 및 열경화성을 갖는 수지 조성물을 제조하였다.
(2) 드라이 필름 솔더 레지스트의 제조 (미세 요철을 갖는 투명 캐리어 필름 사용)
상기 제조된 수지 조성물을 콤마 코터를 이용하여 투명 캐리어 필름으로 사용되는 PET에 도포하였다. 이때, 투명 캐리어 필름으로는, Toray 사의 제품을 사용하였는데, 이러한 투명 캐리어 필름 상에는 평균 조도가 약 405nm (Ra) 및 약 11.67 (Rz)인 미세 요철이 형성되어 있었고, 두께는 약 23 /m 이'었다.
상기 수지 조성물을 투명 캐리어 필름 상에 도포한 후, 75 °C의 오븐을 8분간 통과시켜 건조시킨 다음, 이형 필름으로사 PE를 적층함으로써, 아래로부터 미세 요철을 갖는 투명 캐리어 필름, 감광성 필름, 이형 필름으로 구성되는 드라이 필름을 제조하였다. 이러한 드라이 필름에서, 건조 공정 진행 후의 상기 감광성 필름의 겔화 시간을 겔화 시간을 0.4g 및 160 °C의 조건 하에 측정하였으며, 그 측정 방법 및 측정 결과는 후술하는 시험예 4에 정리하여 나타내었다.
(3) 반도체 패키지 기판의 제조
상기 제조된 드라이 필름의 이형 필름을 벗긴 후, 회로가 형성된 기판 위에 감광성 필름층을 진공라미네이터 (메이끼 세이사꾸쇼사 제조 MV LP-500)로 진공 적층한 다음, 365nm 파장대의 UV로 400 mJ/cm2로 노광한 후, PET 필름을 제거하였다. 이러한 결과물을 교반 증인 31 °C의 Na2CO3 1 %의 알칼리 용액에 60초간 담근 후, 현상하여 150 °C에서 1 시간 동안 가열 경화시킴으로써, 드라이 필름 솔더 레지스트 (DFSR)를 포함하는 인쇄회로기판을 완성하였다.
한편, 상기 회로가 형성된 기판은 두께가 0.1 mm, 동박 두께가 12 /m인 LG화학의 동박적층판 LG-T-500GA를 가로 5cm, 세로 5cm의 기판으로 잘라, 화학적 에칭으로 동박 표면에 미세 조도를 형성한 것을 사용하였다. . 실시예 3
(1 )드라이 필름 솔더 레지스트의 제조
산변성 을리고머로서 일본화약의 ZFR-1122를 41 .5 중량 %, 광증합성 모노머로서 다관능 에폭시 아크릴레이트 (일본화약의 DPEA-12) 10 중량0 /。, 광개시제로서 Darocur TPO(치바스페셜리티케미컬사)를 3 중량 열경화성 바인더로 YDCN-500-80P (국도화학사) 16중량0 /。, 열경화 촉매로서 2- 페닐이미다졸을 1 중량0 /ᄋ, 필러로서 Β-30 (사카이 케미컬사)를 15중량 %, 첨가제로서 ΒΥΚ사의 ΒΥΚ-333을 0.5 증량 %, 용제로서 DMF를 13중량0 /0를 사용하여 각 성분을 배합하고 교반한 후 3롤밀 장비로 필러를 분산시켜 광경화성 및 열경화성을 갖는 수지 조성물을 제조하였다.
(2) 드라이 필름 솔더 레지스트의 제조 (미세 요철을 갖는 투명 캐리어 필름 사용)
상기 제조된 수지 조성물을 콤마 코터를 이용하여 투명 캐리어 필름으로 사용되는 PET에 도포하였다. 이때, 투명 캐리어 필름으로는, Toray 사의 제품을 사용하였는데, 이러한 투명 캐리어 필름 상에는 평균 조도가 약 500nm (Ra) 및 약 26.71 (Rz)인 미세 요철이 형성되어 있었고, 두께는 약 19 이었다.
상기 수지 조성물을 투명 캐리어 필름 상에 도포한 후, 75 °C의 오븐을 8분간 통과시켜 건조시킨 다음, 이형 필름으로서 PE를 적층함으로써, 아래로부터 미세 요철을 갖는 투명 캐리어 필름, 감광성 필름, 이형 필름으로 구성되는 드라이 필름을 제조하였다. 이러한 드라이 필름에서, 건조 공정 진행 후의 상기 감광성 필름의 겔화 시간을 겔화 시간을 0.4g 및 16C C의 조건 하에 측정하였으며, 그 측정 방법 및 측정 결과는 후술하는 시험예 4에 정리하여 나타내었다.
(3) 반도체 패키지 기판의 제조
상기 제조된 드라이 필름의 이형 필름을 벗긴 후, 회로가 형성된 기판 위에 감광성 필름층을 진공라미네이터 (메이끼 세이사꾸쇼사 제조 MV LP-500)로 진공 적층한 다음, 365nm 파장대의 UV로 400 mJ/cm2로 노광한 후, PET 필름을 제거하였다. 이러한 결과물을 교반 중인 31 °C의 Na2C03 1 %의 알칼리 용액에 60초간 담근 후, 현상하여 150 °C에서 1 시간 동안 가열 경화시킴으로써, 드라이 필름 솔더 레지스트 (DFSR)를 포함하는 인쇄회로기판을 완성하였다.
한편, 상기 회로가 형성된 기판은 두께가 0.1 mm, 동박 두께가 12 인 LG화학의 동박적층판 LG-T-500GA를 가로 5cm, 세로 5cm의 기판으로 잘라, 화학적 에칭으로 동박 표면에 미세 조도를 형성한 것을 사용하였다.
<비교예 >
비교예 1
. (1 ) 드라이 필름솥더 레지스트의 제조
산변성 을리고머로서 일본화약의 ZFR-1122를 41 .5 중량0 /0, 광중합성 모노머로서 다관능 에폭시 아크릴레이트 (일본화약의 DPEA-12) 10 중량0 /。, 광개시제로서 Darocur TPO(치바스페셜리티케미컬사)를 3 중량0 /。, 열경화성 바인더로 YDCN-500-80P (국도화학사) 16중량0 /。, 열경화 촉매로서 2- 페닐이미다졸을 1 중량0 /0, 필러로서 Β-30 (사카이 케미컬사)를 15중량0 /。, 첨가제로서 ΒΥΚ사의 ΒΥΚ-333을 0.5 중량0 /0, 용제로서 DMF를 13증량0 /。를 사용하여 각 성분을 배합하고 교반한 후 3롤밀 장비로 필러를 분산시켜 광경화성 및 열경화성을 갖는 수지 조성물을 제조하였다.
(2) 드라이 필름 솔더 레지스트의 제조 (미세 요철을 갖는 투명 캐리어 필름 사용) 상기 제조된 수지 조성물을 콤마 코터를 이용하여 투명 캐리어 필름으로 사용되는 PET에 도포하였다. 이때, 투명 캐리어 필름으로는, Teijin- Dupont 사의 G2 그레이드 제품을 사용하였는데, 이러한 투명 캐리어 필름 상에는 평균 조도가 약 47.83nm (Ra) 및 약 0.99 (Rz)인 미세 요철이 형성되어 있었고, 두께는 약 23//m 이었다.
상기 수지 조성물을 투명 캐리어 필름 상에 도포한 후, 75 °C의 오븐을 8분간 통과시켜 건조시킨 다음, 이형 필름으로서 PE를 적층함으로써, 아래 ¾부터 미세 요철을 갖는 투명 캐리어 필름, 감광성 필름, 이형 필름으로 구성되는 드라이 필름을 제조하였다. 이러한 드라이 필름에서, 건조 공정 진행 후의 상기 감광성 필름의 겔화 시간을 겔화 시간을 0.4g 및 160 °C의 조건 하에 측정하였으며, 그 측정 방법 및 측정 결과는 후술하는 실험예 4에 정리하여 나타내었다.
(3) 반도체 패키지 기판의 제조 ᅳ
상기 제조된 드라이 필름의 이형 필름을 벗긴 후, 회로가 형성된 기판 위에 감광성 필름층을 진공라미네이터 (메이끼 세이사꾸쇼사 제조 MV LP-500)로 진공 적층한 다음, 365nm 파장대의 UV로 400 mJ/cm2로 노광한 후, PET 필름을 제거하였다. 이러한 결과물을 교반 중인 31 °C의 Na2C03 1 %의 알칼리 용액에 60초간 담근 후, 현상하여 15C C에서 1 시간 동안 가열 경화시킴으로써, 드라이 필름 솔더 레지스트 (DFSR)를 포함하는 인쇄회로기판을 완성하였다.
한편, 상기 회로가 형성된 기판은 두께가 0.1 mm, 동박 두께가 12 m인 LG화학의 동박적층판 LG-T-500GA를 가로 5cm, 세로 5cm의 기판으로 잘라, 화학적 에칭으로 동박 표면에 미세 조도를 형성한 것을 사용하였다.
<시험예: 인쇄회로 기판용보호필름의 물성 평가 >
실시예 1 내지 3 및 비교예 1에서 제조한 인쇄회로 기판용 드라이 필름 솔더 레지스트에 대하여 아래방법과 같이 표면조도, 현상성 및 내열 신뢰성을 평가하여 다- 실험예 1 : 평균조도 (Ra) 실시예 1 내지 1 및 비교예 1에서 얻어진 DFSR 의 이형 필름을 벗기고 동박 적층판 위에 위치시킨 후에, 진공 라미네이터로 20초간 진공 처리하고, 40 초간 65 °C의 은도, 0.7Mpa의 압력으로 라미네이션 (lamination)하였다.
그리고, 라미네이션된 DFSR 위에 네가티브 방식으로 그려진 쿼츠 (quartz) 포토마스크를 놓고 400mJ/cm2의 UV(i band)로 노광한 후, 캐리어 필름으로 사용되는 PET 필름을 제거하고, 30 °C의 Na2CO3 1 %의 알칼리 용액에 60초간 현상한후 수세하여 건조시켰다.
건조시킨 샘플을 FE-SEM (Hitachi S-4800) 을 이용하여 표면상태를 관찰히;였고, 실시예 1과 비교예 1의 경우 평균 조도의 차이점을 정확히 측정하기 위해 OP (Optical profiler)를 이용하여 평균 조도 값 Ra의 값을 비교하여 측정하였다. 실시예 1, 2의 표면상태에 대한 FE-SEM 사진은 도 2 및 3 에 도시된 바와 같으며, 실시예 1 및 비교예 1에 대해 OP를 이용해 측정한 이미지는 각각 도 4a (비교예 1의 2D-이미지), 도 4b (비교예 1의 3D- 이미지), 도 5a (실시예 1의 2D-이미지) 및 도 5b (실시예 1의 3D-이미지)에 도시된 바와 같았다. 그리고, 상기 실시예 1 및 2에서 측정된 Ra값은 하기 표 1 및 2에 정리된 바와 같았다.
[표 1 ] 실험예 1 에서 비교예 1의 Ra 측정결과
Figure imgf000029_0001
상기 표 2, 도 5a 및 5b를 참고하면, 실시예의 DFSR은 표면에 일정 수준의 평균 조도 (Ra)를 갖는 미세한 요철이 형성된 것으로 확인되었다. 이에 따라, 후속 재료와의 접착성 향상 등을 위해, 적절하게 적용 가능한 것으로 확인되었다.
이에 비해, 표 1 , 도 4a 및 4b를 참고하면, 비교예 1의 DFSR은 평균 조도 (Ra)가 실시예에 비해 매우 작은 수준에 불과하여, 미세 요철의 형성에 따른 작용, 효과를 제대로 거둘 수 없는 것으로 확인되었다. 실험예 2: 현상성 평가
실시예 1 내지 3 및 비교예 1에서 얻어진 DFSR 의 이형 필름을 벗기고 동박 적층판 위에 위치시킨 후에, 진공 라미네이터로 20초간 진공 처리하고, 40 초간 65 °C의 온도, 0.7Mpa의 압력으로 라미네이션 (lamination)하였다.
그리고, 라미네이션된 DFSR 위에 네가티브 방식으로 그려진 쿼츠 (quartz) 포토마스크를 놓고 400mJ/cirf의 UV(i band)로 노광한후, 캐리어 필름으로 사용되는 PET 필름을 제거하고, 30 °C의 Na2CO3 1 %의 알칼리 . 용액에 60초간 현상한 후 수세하여 건조시켰다.
이러한 현상성 평가 기준 및 결과는 하기 표 3에 정리된 바와 같았다. 실험예 3: 내열 신뢰성 측정 방법
인쇄기판용 보호필름을 CCL에 lamination하여 광경화, 열경화 및 후광경화를 거쳐 완성한 후 150mm*130mm 로 잘랐다. 납조 (전기적으로 가열되고 온도 조절이 가능하며 테스트를 위해 최소 2.25kg 이상의 납이 들어 있는 전기로)에 288 °C의 온도를 setting 하고 테스트 시편을 납조 위에 film이 있는 면이 위로 가게 띄웠다. 테스트 시편이 외관적으로 필름의 박리나 변형이 있는지 검사하였다.
이러한 내열 신뢰성 평가 기준 및 결과는 하기 표 3에 정리된 바와 같았다. [표 3] 실험예 2 및 3의 측정결과
Figure imgf000031_0001
상기 표 3을 참고하면, 실시예의 DFSR은 표면에 미세한 요철이 형성되어 있으면서도, 미세 요철이 거의 형성되지 않은 비교예에 준하는 우수한 내열 신뢰성 및 현상성을 나타냄이 확인되었다. 따라서, 실시예의 DFSR은 우수한 접착력을 나타낼 수 있으면서도 DFSR로서의 우수한 물성을 나타낼 수 있다. 실험예 4: 겔화 시간측정 방법
상술한 각 실시예에서 건조 단계를 진행한 후에, 각 수지 조성물에 대한 겔화 시간을 다음의 방법으로 측정하였다.
상기 겔화 시간의 측정을 위한 시험 기기로는 대흥과학의 모델명
DH-15의 겔 타임 측정기를 사용하였으며, 이러한 측정기에서 측정 온도 16C C를 설정하고 상기 수지 조성물의 약 0.5g을 채취하여 측정기에 넣고 나무 막대를 사용하여 상기 수지 조성물을 초당 2회 정도로 천천히 저어주면서 교반하였다. 이러한 교반과 함께 육안 관찰하여 겔화되는 시간을 측정하였다. 이러한 방법으로 상기 겔화 시간을 3회 반복 측정하여 도출된 평균 값으로 상기 겔화 시간의 측정 값을 정하였다. 이러한 겔화 시간의 측정 결과를 하기 표 4에 정리하여 나타내었다.
[표 4] 겔화 시간 측정결과 (단위: 초)
Figure imgf000032_0001
상기 시험 결과를 통해, 실시예 1 내지 3의 조성물은 건조 공정 후에 상기 겔화 시간으로 정의되는 적절한 점도를 가질 수 있음을 확인하였고, 이후의 공정을 진행하여 미세 요철을 갖는 DFSR의 적절한 제조가 가능하게 됨을 확인하였다.

Claims

【특허청구범위】
【청구항 1】
(a) 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 을리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광중합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 광경화성 및 열경화성을 갖는 수지 조성물을, 표면에 평균 조도 (Ra)가 50nm 내지 5 인 미세 요철이 형성된 투명 캐리어 필름 상에 형성하는 단계;
기판 상에 상기 수지 조성물을 적층하여 기판, 수지 조성물 및 투명 캐리어 필름이 순차 형성된 적층 구조를 형성하는 단계;
상기 수지 조성물에 노광하고, 투명 캐리어 필름을 박리하는 단계; 및 비노광부의 수지 조성물을 알칼리 현상하고, 열경화하는 단계를 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 2】
제 1 항에 있어서, 상기 적층 구조의 형성 단계 전에, 상기 투명 캐리어 필름 상의 수지 조성물을 건조하는 단계를 더 포함하는 드라이 필름 솔더 레지스트의 제조 방법. -
【청구항 3】
제 2 항에 있어서, 상기 건조 단계 후에, 상기 투명 캐리어 필름 상의 수지 조성물은 0.4g 및 16C C의 조건 하에, 2 내지 5 분의 겔화 시간을 갖는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 4】
제 2 항에 있어서, 상기 건조 단계와, 적층 구조의 형성 단계 사이에, 상기 수지 조성물 상에 이형 필름을 형성하는 단계를 더 포함하고, 상기 이형 필름은 상기 적층 구조의 형성 단계 직전에 박리되는 드라이 필름 솔더 레지스트의 제조 방법. 【청구항 5]
제 1 항에 있어서, 상기 투명 캐리어 필름은 90% 이상의 광투과율 및 5% 이하의 헤이즈를 갖는 드라이 필름 솔더 레지스트의 제조 방법.
5
【청구항 6】
제 1 항에 있어서, 상기 투명 캐리어 필름은 5 내지 30 의 두께를 갖는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 7]
.0 게 1 항에 있어서, 상기 투명 캐리어 필름은 폴리에스테르계 필름 또는 폴리올레핀계 필름을 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 8】
5 제 4 항에 있어서, 상기 이형 필름은 폴리에틸렌 (PE) 필름, 폴리테트라플루오로에틸렌 필름 폴리프로필렌 필름, 폴리에틸렌테레프탈레이트 (PET) 필름 또는 표면 처리한 종이인 드라이 필름 솔더 레지스트의 제조 방법.
:0
【청구항 9】 - 제 1 항에 있어서, 상기 (a) 산변성 올리고머의 광경화 가능한 불포화 작용기는 아크릴레이트기인 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 10】
:5 제 1 항에 있어서, 상기 (a) 산변성 을리고머는 카르복시기를 갖는 중합 가능한 모노머와, 아크릴레이트계 화합물을 포함한 모노머의 공중합체를 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 1 1】
0 게 1 항에 있어서, 상기 수지 조성물은 이의 전체 중량을 기준으로 15 내지 75 중량 0/。의 (a) 산변성 올리고머를 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 12】
제 1 항에 있어서, 상기 (b) 광중합성 모노머는 분자 내에 2개 이상의
(메트)아크릴로일기를 갖는 다관능 (메트)아크릴레이트계 화합물을 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 13】
제 1 항에 있어서, 상기 수지 조성물은 이의 전체 중량을 기준으로 5 내지 30 중량0 /。의 (b) 광중합성 모노머를 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 14]
게 1 항에 있어서 수지 조성물은 이의 전체 중량을 기준으로
0.5 내지 20 중량0 /0의 광개시제를 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 15】
제 1 항에 있어서, 상기 (C) 열경화 가능한 작용기는 에폭시기, 옥세타닐기, 환상 에테르기 및 환상 오 에테르기로 이루어진 군에서 선택된 1종 이상인 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 16】
제 1 항에 있어서, 상기 열경화성 바인더는 상기 산변성 올리고머의 카르복시기 1 당량에 대하여 0.8 내지 2.0 당량에 대웅하는 함량으로 상기 수지 조성물에 포함되는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 17】
제 1 항에 있어서, 상기 수지 조성물은 용제; 및 열경화성 바인더 촉매, 필러, 안료 및 첨가제로 이루어진 군에서 선택된 1종 이상을 더 포함하는 드라이 필름 솔더 레지스트의 제조 방법.
【청구항 18】
표면에 평균 조도 (Rap 50nm 내지 5 인 미세 요철이 형성된 투명 캐리어 필름; 및
상기 필름 상에 형성된 (a) 카르복시기 (-COOH)와, 광경화 가능한 불포화 작용기를 갖는 산변성 올리고머와, (b) 2개 이상의 광경화 가능한 불포화 작용기를 갖는 광증합성 모노머와, (c) 열경화 가능한 작용기를 갖는 열경화성 바인더와, (d) 광개시제를 포함하는 광경화성 및 열경화성을 갖는 수지 조성물층을 포함하고,
상기 수지 조성물층은 0.4g 및 160 °C의 조건 하에, 2 내지 5 분의 겔화 시간을 갖는 드라이 필름 솔더 레지스트 형성용 필름 적층체.
【청구항 19】
제 18 항에 있어서, 상기 수지 조성물층 상에 형성된 이형 필름을 더 포함하는 드라이 필름 솔더 레지스트 형성용 필름 적층체.
【청구항 20】
제 .18 항에 있어서, 반도체 소자의 패키지 기판의 제조 공정에서 드라이 필름 솔더 레지스트를 형성하기 위해 사용되는 드라이 필름 솔더 레지스트 형성용 필름 적충체.
PCT/KR2014/008791 2013-09-24 2014-09-22 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체 WO2015046842A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/763,414 US9788434B2 (en) 2013-09-24 2014-09-22 Preparation method for dry film solder resist and film laminate used therein
CN201480013033.8A CN105190442B (zh) 2013-09-24 2014-09-22 阻焊干膜的制备方法以及其中使用的层压膜
JP2015546407A JP6047666B2 (ja) 2013-09-24 2014-09-22 ドライフィルムソルダーレジストの製造方法と、これに用いられるフィルム積層体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130113179A KR101734425B1 (ko) 2013-09-24 2013-09-24 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체
KR10-2013-0113179 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015046842A1 true WO2015046842A1 (ko) 2015-04-02

Family

ID=52743891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/008791 WO2015046842A1 (ko) 2013-09-24 2014-09-22 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체

Country Status (6)

Country Link
US (1) US9788434B2 (ko)
JP (1) JP6047666B2 (ko)
KR (1) KR101734425B1 (ko)
CN (1) CN105190442B (ko)
TW (1) TWI565589B (ko)
WO (1) WO2015046842A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027435A (ja) * 2014-06-30 2016-02-18 太陽インキ製造株式会社 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法
KR20200061793A (ko) * 2018-11-26 2020-06-03 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102040224B1 (ko) * 2016-08-09 2019-11-06 주식회사 엘지화학 절연층 제조방법 및 다층인쇄회로기판 제조방법
CN108319108A (zh) * 2017-01-14 2018-07-24 臻鼎科技股份有限公司 感光树脂组合物及其制备方法、印刷电路板的制备方法
CN108459465B (zh) * 2017-01-17 2021-12-14 太阳油墨制造株式会社 感光性膜、感光性膜层积体和使用它们形成的固化物
JP6175205B1 (ja) * 2017-02-01 2017-08-02 太陽インキ製造株式会社 感光性フィルム、感光性フィルム積層体およびそれらを用いて形成された硬化物
TWI634003B (zh) 2017-01-26 2018-09-01 長興材料工業股份有限公司 感光型乾膜及其應用
TWM543773U (zh) * 2017-01-26 2017-06-21 長興材料工業股份有限公司 感光型乾膜
JP6199525B1 (ja) * 2017-07-03 2017-09-20 太陽インキ製造株式会社 感光性フィルム、感光性フィルム積層体およびそれらを用いて形成された硬化物
JP6199524B1 (ja) * 2017-07-03 2017-09-20 太陽インキ製造株式会社 感光性フィルム、感光性フィルム積層体およびそれらを用いて形成された硬化物
JP2019033205A (ja) * 2017-08-09 2019-02-28 住友ベークライト株式会社 配線基板の製造方法、半導体装置の製造方法
JP7225553B2 (ja) * 2018-03-30 2023-02-21 住友ベークライト株式会社 ソルダーレジスト形成用の樹脂シート
JP7113644B2 (ja) * 2018-03-30 2022-08-05 太陽インキ製造株式会社 ドライフィルム、硬化物およびプリント配線板
KR102117873B1 (ko) * 2018-07-02 2020-06-02 도레이첨단소재 주식회사 노광 공정용 점착보호필름
CN113646698B (zh) * 2019-03-29 2024-05-10 太阳控股株式会社 光致抗蚀剂组合物及其固化物
CN110753455A (zh) * 2019-10-23 2020-02-04 深南电路股份有限公司 一种抗镀干膜加工方法
TWI780648B (zh) * 2020-04-03 2022-10-11 日商旭化成股份有限公司 感光性元件、及抗蝕圖案之形成方法
CN114641145A (zh) * 2020-12-16 2022-06-17 深南电路股份有限公司 一种线路板及其线路板阻焊层的制作方法
JPWO2022138246A1 (ko) * 2020-12-25 2022-06-30
WO2022145764A1 (ko) * 2020-12-29 2022-07-07 코오롱인더스트리 주식회사 감광성 엘리먼트, 드라이 필름 포토레지스트, 레지스터 패턴, 회로기판, 및 디스플레이 장치
CN113825322B (zh) * 2021-09-15 2023-02-10 常州硕成半导体材料有限公司 一种阻焊胶层的制备工艺及其应用
WO2023054616A1 (ja) * 2021-09-30 2023-04-06 太陽インキ製造株式会社 感光性フィルム積層体、硬化物、およびプリント配線板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106237A (ko) * 2010-03-22 2011-09-28 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20130095683A (ko) * 2012-02-20 2013-08-28 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20140018117A (ko) * 2012-08-01 2014-02-12 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240810A1 (de) 1992-12-04 1994-06-09 Teroson Gmbh Beschichtungsmittel mit wärmehärtender Filmbildung und dessen Verwendung
US5909314A (en) 1994-02-15 1999-06-01 Dai Nippon Printing Co., Ltd. Optical functional materials and process for producing the same
JP3789144B2 (ja) * 1994-06-14 2006-06-21 三菱化学ポリエステルフィルム株式会社 フォトレジスト用積層ポリエステルフィルム
JP4666754B2 (ja) * 2000-12-12 2011-04-06 太陽ホールディングス株式会社 多層プリント配線板用ドライフィルム及びそれを用いた多層プリント配線板の製造方法
JP2004004263A (ja) 2002-05-31 2004-01-08 Mitsubishi Paper Mills Ltd ソルダーレジスト組成物、ドライフィルム、およびレジストパターンの形成方法
JP4366942B2 (ja) 2003-01-29 2009-11-18 旭硝子株式会社 キャリアフィルム及びその製造方法
JP4485239B2 (ja) 2004-04-01 2010-06-16 富士フイルム株式会社 パターン形成方法
WO2006059345A2 (en) 2004-11-30 2006-06-08 Sun Pharmaceutical Industries Limited Process for the preparation of acetylenic retinoid
JP2006154622A (ja) * 2004-12-01 2006-06-15 Fuji Photo Film Co Ltd パターン形成材料及びパターン形成方法
JP2006220886A (ja) 2005-02-10 2006-08-24 Showa Denko Kk プリント配線板保護膜用感光性ドライフィルム、その製造方法およびプリント配線板
CN101171894B (zh) 2005-06-30 2010-05-19 揖斐电株式会社 印刷线路板
CN101291990B (zh) 2005-10-21 2012-05-30 日本化药株式会社 热固化性树脂组合物及其用途
JP2007178500A (ja) 2005-12-27 2007-07-12 Fujifilm Corp 感光性フイルム、並びに、永久パターン及びその形成方法
JP2008176278A (ja) 2006-10-18 2008-07-31 Jsr Corp ドライフィルム、マイクロレンズおよびそれらの製造方法
JP2009122325A (ja) 2007-11-14 2009-06-04 Fujifilm Corp トップコート組成物、それを用いたアルカリ現像液可溶性トップコート膜及びそれを用いたパターン形成方法
JP2009223142A (ja) 2008-03-18 2009-10-01 Fujifilm Corp 感光性フィルムの粗面化処理方法、及び感光性フィルム
JP2012027368A (ja) 2010-07-27 2012-02-09 Hitachi Chem Co Ltd 感光性フィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110106237A (ko) * 2010-03-22 2011-09-28 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20130095683A (ko) * 2012-02-20 2013-08-28 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20140018117A (ko) * 2012-08-01 2014-02-12 주식회사 엘지화학 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027435A (ja) * 2014-06-30 2016-02-18 太陽インキ製造株式会社 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法
KR20200061793A (ko) * 2018-11-26 2020-06-03 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터
KR102287215B1 (ko) 2018-11-26 2021-08-06 삼성에스디아이 주식회사 감광성 수지 조성물, 이를 이용한 감광성 수지막 및 컬러필터

Also Published As

Publication number Publication date
KR20150033324A (ko) 2015-04-01
CN105190442A (zh) 2015-12-23
JP2016501388A (ja) 2016-01-18
KR101734425B1 (ko) 2017-05-11
TWI565589B (zh) 2017-01-11
US20150366070A1 (en) 2015-12-17
JP6047666B2 (ja) 2016-12-21
CN105190442B (zh) 2020-01-14
TW201522044A (zh) 2015-06-16
US9788434B2 (en) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2015046842A1 (ko) 드라이 필름 솔더 레지스트의 제조 방법과, 이에 사용되는 필름 적층체
KR101361753B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR102444451B1 (ko) 감광성 엘리먼트, 적층체, 영구 마스크 레지스터 및 그 제조 방법 및 반도체 패키지의 제조 방법
TWI529489B (zh) 光固化性及熱固性樹脂組成物、其製造之防焊乾膜及包含該防焊乾膜之電路板
KR101545724B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR101256553B1 (ko) 감광성 수지 조성물, 드라이 필름 솔더 레지스트 및 회로 기판
CN104380196B (zh) 光固化和热固性树脂组合物、由其制备的阻焊干膜及包含所述阻焊干膜的电路板
JP5977361B2 (ja) 光硬化性および熱硬化性を有する樹脂組成物と、ドライフィルムソルダレジスト
KR101799094B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
WO2014021590A1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR101360968B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20140023717A (ko) 광경화성 및 열경화성을 갖는 수지 조성물과 및 이를 사용하여 제조된 드라이 필름 솔더 레지스트
TWI814970B (zh) 硬化性樹脂組成物、乾膜、硬化物及電子零件
KR101755018B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
KR101629942B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물, 및 드라이 필름 솔더 레지스트
KR101331573B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
KR20150047863A (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
TW202328815A (zh) 感光性樹脂組成物、具有感光性樹脂組成物之乾薄膜及具有感光性樹脂組成物的硬化物之印刷配線板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013033.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546407

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14763414

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848720

Country of ref document: EP

Kind code of ref document: A1