WO2015041167A1 - 非水二次電池 - Google Patents

非水二次電池 Download PDF

Info

Publication number
WO2015041167A1
WO2015041167A1 PCT/JP2014/074215 JP2014074215W WO2015041167A1 WO 2015041167 A1 WO2015041167 A1 WO 2015041167A1 JP 2014074215 W JP2014074215 W JP 2014074215W WO 2015041167 A1 WO2015041167 A1 WO 2015041167A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
secondary battery
mixture layer
electrode mixture
Prior art date
Application number
PCT/JP2014/074215
Other languages
English (en)
French (fr)
Inventor
陽明 細谷
三木 健
善彦 山本
信一郎 井内
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Publication of WO2015041167A1 publication Critical patent/WO2015041167A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a non-aqueous secondary battery that enables charging / discharging with a large current, and more particularly, to a non-aqueous secondary battery having good discharge characteristics at a large current exceeding 10 ItA and a high capacity. It is.
  • Non-aqueous secondary batteries such as lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density. As the performance of portable devices increases, the capacity of lithium ion secondary batteries tends to increase further, and research and development for further improving the energy density is underway.
  • non-aqueous secondary batteries have begun to be used as power sources other than the power source of portable devices.
  • non-aqueous secondary batteries have begun to be used for power sources for automobiles and motorcycles, and power sources for mobile objects such as robots.
  • power sources for automobiles and motorcycles and for mobile objects such as robots.
  • an Mn-based material is used for the positive electrode.
  • a NiCoMo ternary material having a larger theoretical capacity and more stable as a positive electrode active material.
  • carbonaceous materials such as graphite used for the negative electrode
  • materials that can occlude / release more lithium (ions) such as silicon (Si) and tin (Sn) are attracting attention. It has been reported that SiO x having a structure in which ultrafine particles of Si are dispersed in SiO 2 has characteristics such as excellent load characteristics (Patent Documents 2 and 3).
  • Patent Document 4 when a positive electrode and a negative electrode having a thickness as described in Patent Document 4 are used, it is difficult to ensure a practical capacity because the amount of active material in the battery is reduced. . And even if it uses the positive electrode active material of patent document 1, and makes a positive electrode and a negative electrode into thickness as described in patent document 4, charging / discharging of the electrical power collector, separator, etc. which occupy for the internal volume of a battery Therefore, the relative amount of the active material in the positive electrode and the negative electrode does not increase, and it is difficult to increase the capacity per unit volume of the battery.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a non-aqueous secondary battery having a high capacity and excellent charge / discharge load characteristics at a large current.
  • the non-aqueous secondary battery of the present invention that has achieved the above object is a non-aqueous secondary battery including an electrode body having a positive electrode, a negative electrode, and a separator, and an electrolytic solution obtained by dissolving a lithium salt in a non-aqueous solvent.
  • the electrode body is a laminated electrode body obtained by laminating the positive electrode and the negative electrode with the separator interposed therebetween, or the positive electrode and the negative electrode are spirally wound via the separator.
  • the positive electrode has a positive electrode mixture layer containing a positive electrode active material, the porosity of the positive electrode mixture layer is 25% to 35%, and the negative electrode contains a negative electrode active material A negative electrode mixture layer, the negative electrode mixture layer The porosity of the layer is 25 to 40%, the air permeability of the separator is 250 sec / 100 ml or less, and the electrolyte is selected from the group consisting of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate as the non-aqueous solvent.
  • D value represented by the following formula (1) containing at least one selected from ethylene carbonate, wherein the content of ethylene carbonate in the total amount of the non-aqueous solvent is 10 to 35% by volume. Is 0.4 or less, and the actual operation time when discharging is performed at the current value a (ItA) from the state where the charging depth is 100% to the state where the charging depth is 0%, and discharging is performed at the current value a.
  • the operating time rate obtained from the ratio with the theoretical operating time when the current value a exceeds 10 ItA is 75% or more. It is characterized in.
  • D value kinematic viscosity of non-aqueous solvent (cSt) / electric conductivity of electrolyte (mS / cm) (1)
  • the present invention it is possible to provide a non-aqueous secondary battery having a high capacity and excellent charge / discharge load characteristics at a large current.
  • the present invention by optimizing the structure of the electrode body composed of the positive electrode, the negative electrode, and the separator, the porosity of the positive electrode mixture layer and the negative electrode mixture layer, the air permeability of the separator, and the D value related to the electrolyte solution Even if the positive and negative electrode mixture layers are comparable to those of ordinary non-aqueous secondary batteries, they can exhibit excellent charge / discharge load characteristics at room temperature, high temperature, and low temperature, and have high capacity non-aqueous batteries.
  • the secondary battery can be provided.
  • the non-aqueous secondary battery of the present invention is excellent in charge / discharge load characteristics.
  • the current value is from the state of 100% charge depth (SOC) to the state of 0% charge depth.
  • the operating time rate obtained from the ratio of the actual operating time when discharging is performed at a (ItA) and the theoretical operating time when discharging is performed at the current value a is that the current value a exceeds 10 ItA.
  • the current value is 75% or more.
  • the discharge at the current value a for measuring the operating time rate is a constant current charge of up to 4.2 V at a current value of 1 ItA (1 C) in an environment of 23 ° C., followed by a constant voltage of 4.2 V Then, charging is performed until the current value reaches 0.05 ItA (0.05 C), and thereafter, discharging is performed at a constant current of the current value a until the voltage reaches 2.5V. Therefore, the “charging depth of 100%” means a state in which the constant current charging and constant voltage charging are completed and the battery voltage becomes 4.2 V, and the “charging depth of 0%” is described above. Means a state in which the battery voltage is 2.5V after constant current discharge at the current value a.
  • the positive electrode according to the nonaqueous secondary battery of the present invention has a positive electrode mixture layer containing a positive electrode active material.
  • the positive electrode mixture layer is formed on one side or both sides of a current collector. is there.
  • the positive electrode active material it is preferable to use a lithium-containing composite oxide represented by the following general composition formula (2).
  • ⁇ 0.15 ⁇ y ⁇ 0.15, and M represents a group of three or more elements including at least Ni, Co, and Mn, and each element constituting M In which the ratios (mol%) of Ni, Co and Mn are a, b and c, respectively, 25 ⁇ a ⁇ 90, 5 ⁇ b ⁇ 35, 5 ⁇ c ⁇ 35 and 10 ⁇ b + c ⁇ 70 It is.
  • the lithium-containing composite oxide represented by the general composition formula (2) has a low operating voltage at the time of charging, and is advantageous in enhancing the charge / discharge load characteristics of the battery. Further, the lithium-containing composite oxide represented by the general composition formula (2) has high thermal stability and stability in a high potential state, and by using this, the safety of the non-aqueous secondary battery and various Battery characteristics can be improved.
  • the Ni ratio a is 25 mol from the viewpoint of improving the capacity of the lithium-containing composite oxide. % Or more, preferably 48 mol% or more.
  • the proportion of Ni in the element group M is too large, for example, the amount of Co or Mn is reduced, and the effects of these may be reduced. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the lithium-containing composite oxide is 100 mol%, the Ni ratio a is 90 mol% or less and 70 mol% or less. Is preferable, and it is more preferable that it is 52 mol% or less.
  • Co contributes to the capacity of the lithium-containing composite oxide and acts to improve the packing density in the positive electrode mixture layer.
  • too much Co may cause an increase in cost and a decrease in safety. Therefore, when the total number of elements in the element group M in the general composition formula (2) representing the lithium-containing composite oxide is 100 mol%, the Co ratio b is 5 mol% or more (preferably 18 mol% or more) 35 mol%. Or less (more preferably 22 mol% or less).
  • the ratio c of Mn is 35 mol% or more (preferably 28 mol% or more) 35 mol. % Or less (preferably 32 mol% or less).
  • the lithium-containing composite oxide by containing Co, fluctuations in the valence of Mn due to Li doping and dedoping during charging and discharging of the battery are suppressed, and the average valence of Mn is set to a value close to tetravalent. The value can be stabilized, and the reversibility of charge / discharge can be further increased. Therefore, by using such a lithium-containing composite oxide, it becomes possible to configure a battery with more excellent charge / discharge cycle characteristics.
  • the total number of elements in the element group M in the general composition formula (2) is set to 100 mol%.
  • the sum b + c of the ratio b of Co and the ratio c of Mn is 10 mol% or more and 70 mol% or less (preferably 50 mol% or less).
  • the element group M in the general composition formula (2) representing the lithium-containing composite oxide may contain elements other than Ni, Co, and Mn.
  • elements such as Al, Ge, Sn, Mg, Ag, Tl, Nb, B, P, Zr, Ca, Sr, and Ba.
  • f is preferably 15 mol% or less, and more preferably 3 mol% or less.
  • the crystal structure of the lithium-containing composite oxide can be stabilized, and the thermal stability thereof can be improved.
  • High non-aqueous secondary battery can be configured.
  • Al is present at the grain boundaries and surfaces of the lithium-containing composite oxide particles, the stability over time and side reactions with the electrolyte can be suppressed, and a longer-life non-aqueous secondary battery is constructed. It becomes possible to do.
  • the Al ratio is preferably 10 mol% or less.
  • the Al ratio is preferably 0.02 mol% or more.
  • the crystal structure of the lithium-containing composite oxide when Mg is present in the crystal lattice, the crystal structure of the lithium-containing composite oxide can be stabilized and the thermal stability thereof can be improved, so that the safety is higher.
  • a non-aqueous secondary battery can be configured.
  • Mg is rearranged to relax the irreversible reaction, and the lithium-containing Since the reversibility of the crystal structure of the composite oxide can be increased, a non-aqueous secondary battery having a longer charge / discharge cycle life can be configured.
  • the ratio of Mg is preferably 10 mol% or less.
  • the ratio of Mg is preferably 0.02 mol% or more.
  • the lithium-containing composite oxide when Ti is contained in the particles, the lithium-containing composite oxide stabilizes the crystal structure by being disposed in a defect portion of the crystal such as oxygen deficiency in the LiNiO 2 type crystal structure.
  • the reversibility of the reaction increases, and a non-aqueous secondary battery with better charge / discharge cycle characteristics can be configured.
  • the ratio of Ti when the total number of elements in the element group M is 100 mol%, the ratio of Ti is 0 It is preferably 0.01 mol% or more, and more preferably 0.1 mol% or more.
  • the ratio of Ti when the total number of elements in the element group M is 100 mol%, the ratio of Ti is preferably 10 mol% or less, preferably 5 mol%. More preferably, it is more preferably 2 mol% or less.
  • the lithium-containing composite oxide contains at least one element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (2).
  • element M ′ selected from Ge, Ca, Sr, Ba, B, Zr and Ga as the element group M in the general composition formula (2).
  • the crystal structure of the composite oxide after Li is destabilized can improve the reversibility of the charge / discharge reaction, It is possible to configure a non-aqueous secondary battery with higher safety and more excellent charge / discharge cycle characteristics.
  • Ge is present on the particle surface or grain boundary of the lithium-containing composite oxide, disorder of the crystal structure due to Li desorption / insertion at the interface is suppressed, greatly contributing to improvement of charge / discharge cycle characteristics. be able to.
  • the lithium-containing composite oxide contains an alkaline earth metal such as Ca, Sr, or Ba
  • the growth of primary particles is promoted, and the crystallinity of the lithium-containing composite oxide is improved.
  • the active site can be reduced, and the stability over time when a coating material for forming a positive electrode mixture layer (a positive electrode mixture-containing composition to be described later) is improved, and the electrolyte solution of the nonaqueous secondary battery Irreversible reaction with can be suppressed.
  • the CO 2 gas in the battery can be trapped. It can be configured.
  • the lithium-containing composite oxide contains Mn
  • the primary particles tend to be difficult to grow. Therefore, the addition of an alkaline earth metal such as Ca, Sr, or Ba is more effective.
  • the electrochemical properties of the lithium-containing composite oxide are impaired due to the presence of Zr at the grain boundaries and surfaces of the particles of the lithium-containing composite oxide.
  • the surface activity is suppressed, it is possible to construct a non-aqueous secondary battery that is more storable and has a longer life.
  • the growth of primary particles is promoted and the crystallinity of the lithium-containing composite oxide is improved, so that the active sites can be reduced, and the positive electrode mixture Stability over time when a coating for forming a layer is improved, and irreversible reaction with the electrolyte can be suppressed.
  • the layer spacing of the crystal lattice can be expanded, and the rate of expansion and contraction of the lattice due to insertion and desorption of Li can be reduced. For this reason, the reversibility of a crystal structure can be improved and it becomes possible to comprise a non-aqueous secondary battery with a longer charge-discharge cycle life.
  • the lithium-containing composite oxide contains Mn, the addition of Ga is more effective because primary particles tend to be difficult to grow.
  • the ratio is 0.1 mol% or more in all elements of the element group M. It is preferable. Further, the ratio of these elements M ′ in all elements of the element group M is preferably 10 mol% or less.
  • Elements other than Ni, Co, and Mn in the element group M may be uniformly distributed in the lithium-containing composite oxide, or may be segregated on the particle surface or the like.
  • the lithium-containing composite oxide when the relationship between the Co ratio b and the Mn ratio c in the element group M is b> c, the lithium-containing composite oxide is used.
  • the lithium-containing composite oxide By promoting the growth of the oxide particles, the lithium-containing composite oxide having a high packing density at the positive electrode (the positive electrode mixture layer) and a higher reversibility can be obtained. Further improvement can be expected.
  • the general composition formula (2) representing the lithium-containing composite oxide when the relationship between the Co ratio b and the Mn ratio c in the element group M is b ⁇ c, thermal stability is further improved.
  • the lithium-containing composite oxide can be made high, and further improvement in the safety of the battery using this can be expected.
  • Lithium-containing composite oxide having a composition of the the true density becomes large as 4.55 ⁇ 4.95g / cm 3, a material having a high volume energy density.
  • the true density of the lithium-containing composite oxide containing Mn in a certain range varies greatly depending on the composition, but the structure is stabilized and the uniformity can be improved in the narrow composition range as described above. It is considered to be a large value close to the true density of LiCoO 2 .
  • capacitance per mass of lithium containing complex oxide can be enlarged, and it can be set as the material excellent in reversibility.
  • the lithium-containing composite oxide has a higher true density especially when the composition is close to the stoichiometric ratio.
  • ⁇ 0.15 ⁇ y ⁇ 0. .15 is preferable, and the true density and reversibility can be improved by adjusting the value of y in this way.
  • y is more preferably ⁇ 0.05 or more and 0.05 or less.
  • the true density of the lithium-containing composite oxide can be set to a higher value of 4.6 g / cm 3 or more. .
  • the composition analysis of the lithium-containing composite oxide used as the positive electrode active material can be performed as follows using an ICP (Inductive Coupled Plasma) method. First, 0.2 g of a lithium-containing composite oxide to be measured is collected and placed in a 100 mL container. Thereafter, 5 mL of pure water, 2 mL of aqua regia, and 10 mL of pure water are added in order and dissolved by heating. After cooling, the mixture is further diluted 25 times and analyzed by ICP (“ICP-757” manufactured by JARRELASH) (calibration). Line method). The composition formula of the lithium-containing composite oxide can be derived from the results obtained by this analysis.
  • ICP Inductive Coupled Plasma
  • the lithium-containing composite oxide represented by the general composition formula (2) includes Li-containing compounds (such as lithium hydroxide monohydrate), Ni-containing compounds (such as nickel sulfate), and Co-containing compounds (such as cobalt sulfate).
  • Li-containing compounds such as lithium hydroxide monohydrate
  • Ni-containing compounds such as nickel sulfate
  • Co-containing compounds such as cobalt sulfate
  • Mn-containing compounds such as manganese sulfate
  • compounds containing other elements contained in element group M such as aluminum sulfate and magnesium sulfate
  • a composite compound (hydroxide, oxide, etc.) containing a plurality of elements contained in the element group M and a Li-containing compound are mixed and fired. It is preferable to do.
  • the firing conditions can be, for example, 800 to 1050 ° C. for 1 to 24 hours, but once heated to a temperature lower than the firing temperature (for example, 250 to 850 ° C.) and maintained at that temperature, preheating is performed. After that, it is preferable to raise the temperature to the firing temperature to advance the reaction. There is no particular limitation on the preheating time, but it is usually about 0.5 to 30 hours.
  • the atmosphere during firing can be an atmosphere containing oxygen (that is, in the air), a mixed atmosphere of an inert gas (such as argon, helium, or nitrogen) and oxygen gas, or an oxygen gas atmosphere.
  • the oxygen concentration (volume basis) is preferably 15% or more, and more preferably 18% or more.
  • the lithium-containing composite oxide represented by the general composition formula (2) may be used as the positive electrode active material, and the positive electrode active material is represented by the general composition formula (2).
  • Other positive electrode active materials may be used together with the lithium-containing composite oxide.
  • Examples of other positive electrode active materials that can be used in combination with the lithium-containing composite oxide represented by the general composition formula (2) include lithium cobalt oxides such as LiCoO 2 ; lithium manganese such as LiMnO 2 and Li 2 MnO 3 Oxides; lithium nickel oxides such as LiNiO 2 ; lithium-containing composite oxides having a spinel structure such as LiMn 2 O 4 and Li 4/3 Ti 5/3 O 4 ; lithium-containing composite oxides having an olivine structure such as LiFePO 4 A lithium-containing composite oxide such as an oxide having the above-described oxide as a basic composition and substituted with various elements, or the like. Only one of these may be used, or two or more may be used in combination. Good.
  • the content of the lithium-containing composite oxide represented by the general composition formula (2) is preferably 85% by mass or more in the total amount of the positive electrode active material. , 100% by mass [that is, only the lithium-containing composite oxide represented by the general composition formula (2) is used] is particularly preferable.
  • the positive electrode mixture layer usually contains a conductive additive and a binder.
  • the conductive additive related to the positive electrode mixture layer include graphite (graphite carbon material) such as natural graphite (flaky graphite, etc.) and artificial graphite; acetylene black, ketjen black, channel black, furnace black, lamp black. And carbon materials such as carbon black, carbon black, and the like.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • the positive electrode for example, a paste-like or slurry-like positive electrode mixture-containing composition in which a positive electrode active material, a conductive additive, a binder, and the like are dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP) or water is prepared.
  • NMP N-methyl-2-pyrrolidone
  • the binder may be dissolved in a solvent, which is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary.
  • the positive electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
  • the positive electrode has a current collecting tab for electrical connection with other members in the non-aqueous secondary battery.
  • the current collector tab of the positive electrode is provided with an exposed portion where the positive electrode mixture layer is not formed on the current collector, and is used as the current collector tab, or the exposed portion of the current collector has a thickness of 50 to 300 ⁇ m. It can be formed by welding current collecting tabs made of metal foil (aluminum foil, nickel foil, etc.).
  • the positive electrode current collector may be the same as that used for the positive electrode of a conventionally known lithium ion secondary battery.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferable.
  • the amount of the positive electrode active material is preferably 60 to 95% by mass
  • the amount of the binder is preferably 1 to 15% by mass
  • the amount of the conductive auxiliary agent is 3%. It is preferably ⁇ 20% by mass.
  • the porosity of the positive electrode mixture layer is 25% or more and 35% or less. By limiting the porosity of the positive electrode mixture layer as described above, it is possible to provide a certain amount of voids in the positive electrode mixture layer and secure a pass line for the electrolyte solution. It becomes possible to improve the characteristics.
  • the porosity of the mixture layer (the positive electrode mixture layer and the negative electrode mixture layer) referred to in this specification is generally determined by the mercury intrusion method for the positive electrode mixture layer and the negative electrode mixture layer formed on the current collector. It can be calculated by measuring the pore distribution according to.
  • the density of the positive electrode mixture layer is preferably 3.25 g / cm 3 or less, more preferably 3.20 g / cm 3 or less.
  • the density of the positive electrode mixture layer is preferably 3.25 g / cm 3 or less, more preferably 3.20 g / cm 3 or less.
  • the density of the positive electrode mixture layer is preferably 2.5 g / cm 3 or more, and more preferably 2.8 g / cm 3 or more.
  • the density of the mixture layer (positive electrode mixture layer and negative electrode mixture layer) referred to in the present specification is a value measured by the following method.
  • An electrode positive electrode or negative electrode
  • the mass is measured using an electronic balance with a minimum scale of 0.1 mg
  • the mass of the mixture layer is calculated by subtracting the mass of the current collector.
  • the total thickness of the electrode is measured at 10 points with a micrometer having a minimum scale of 1 ⁇ m, and the volume of the mixture layer is calculated from the average value obtained by subtracting the thickness of the current collector from these measured values and the area. .
  • the density of the mixture layer is calculated by dividing the mass of the mixture layer by the volume.
  • the negative electrode according to the nonaqueous secondary battery of the present invention has a negative electrode mixture layer containing a negative electrode active material.
  • the negative electrode mixture layer is formed on one side or both sides of a current collector. is there.
  • graphite such as natural graphite (flaky graphite), artificial graphite, or expanded graphite.
  • the negative electrode active material only graphite may be used, or graphite and another negative electrode active material may be used in combination.
  • examples of other negative electrode active materials that can be used in combination with graphite include graphitizable carbonaceous materials such as coke obtained by baking pitch; furfuryl alcohol resin (PFA), polyparaphenylene (PPP), and phenol resin.
  • carbon materials such as non-graphitizable carbonaceous materials such as amorphous carbon obtained by firing at low temperature.
  • lithium or a lithium-containing compound can be used in combination with graphite as a negative electrode active material.
  • lithium-containing compound examples include a lithium alloy such as Li—Al, and an alloy containing an element that can be alloyed with lithium such as Si and Sn. Furthermore, oxide-based materials such as Sn oxide and Si oxide can be used in combination with graphite.
  • the negative electrode active materials in order to increase the capacity of the battery, in particular, a material containing Si and O as constituent elements (provided that the atomic ratio x of O to Si is 0.5 ⁇ x ⁇ 1.5
  • the material is preferably referred to as “SiO x ”.
  • the SiO x may contain Si microcrystal or amorphous phase.
  • the atomic ratio of Si and O is a ratio including Si microcrystal or amorphous phase Si. That is, the SiO x includes a structure in which Si (for example, microcrystalline Si) is dispersed in an amorphous SiO 2 matrix, and is dispersed in the amorphous SiO 2 .
  • SiO x has low conductivity
  • the surface of SiO x may be coated with carbon, so that a conductive network in the negative electrode can be formed better.
  • the carbon for covering the surface of SiO x for example, low crystalline carbon, carbon nanotube, vapor grown carbon fiber, or the like can be used.
  • the hydrocarbon gas is heated in the gas phase, the carbon generated by thermal decomposition of hydrocarbon gas, in the method [vapor deposition (CVD)] to deposit on the surface of the SiO x particulate, SiO x
  • CVD vapor deposition
  • the hydrocarbon-based gas spreads to every corner of the SiO x particle, and a thin and uniform film containing carbon having conductivity (carbon coating layer) on the surface of the particle and the pores of the surface.
  • toluene, benzene, xylene, mesitylene and the like can be used, but toluene that is easy to handle is particularly preferable.
  • a hydrocarbon-based gas can be obtained by vaporizing them (for example, bubbling with nitrogen gas).
  • methane gas, ethylene gas, acetylene gas, etc. can also be used.
  • the processing temperature of the CVD method is preferably 600 to 1200 ° C., for example. Further, SiO x subjected to CVD method is preferably granulated material was granulated by a known method (composite particles).
  • the amount of carbon is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, with respect to SiO x : 100 parts by mass, and 95 The amount is preferably at most part by mass, more preferably at most 90 parts by mass.
  • SiO x has a large volume change accompanying charging / discharging of the battery like other high-capacity negative electrode materials
  • the ratio of SiO x when the total of SiO x and graphite is 100% by mass is from the viewpoint of favorably securing a high capacity effect by using SiO x. is preferably 2 mass% or more, it is preferable that the negative electrode of the expansion and shrinkage due to SiO x from the viewpoint of suppressing a 20 mass% or less.
  • the graphite content is preferably 80% by mass or more in the total amount of the negative electrode active material.
  • the negative electrode mixture layer usually contains a binder in addition to the negative electrode active material.
  • the binder relating to the negative electrode mixture layer include the same binders as those exemplified above as relating to the positive electrode mixture layer.
  • the negative electrode mixture layer may contain a conductive aid as necessary.
  • a conductive support agent which concerns on a negative mix layer, the same thing as the various conductive support agents illustrated previously as what concerns a positive mix layer is mentioned.
  • the negative electrode is prepared, for example, by preparing a paste-like or slurry-like negative electrode mixture-containing composition in which a negative electrode active material and a binder and, if necessary, a conductive additive are dispersed in a solvent such as water or NMP (however, The binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary.
  • a solvent such as water or NMP (however, The binder may be dissolved in a solvent), and this is applied to one or both sides of the current collector, dried, and then subjected to a calendering process as necessary.
  • the negative electrode is not limited to those manufactured by the above manufacturing method, and may be manufactured by other methods.
  • the negative electrode has a current collecting tab for electrically connecting to other members in the non-aqueous secondary battery.
  • the current collector tab of the negative electrode is provided with an exposed portion where the negative electrode mixture layer is not formed on the current collector, and is used as the current collector tab, or the exposed portion of the current collector has a thickness of 50 to 300 ⁇ m. It can be formed by welding a current collecting tab made of metal foil (such as nickel foil).
  • a foil made of copper, stainless steel, nickel, titanium, or an alloy thereof, a punched metal, an expanded metal, a net, or the like can be used.
  • a copper having a thickness of 5 to 30 ⁇ m is used.
  • a foil is preferably used.
  • the content of the negative electrode active material is preferably 70 to 99% by mass, and the content of the binder is preferably 1 to 30% by mass.
  • the content of the conductive assistant in the negative electrode mixture layer is preferably 1 to 20% by mass.
  • the porosity of the negative electrode mixture layer is 25% or more and 40% or less. By limiting the porosity of the negative electrode mixture layer as described above, a certain amount of voids can be provided in the negative electrode mixture layer, and a pass line for the electrolyte can be secured. It becomes possible to improve the characteristics.
  • the density of the negative electrode mixture layer is preferably 1.55 g / cm 3 or less.
  • a certain amount of voids are provided in the negative electrode mixture layer, and a pass line for the electrolyte can be secured.
  • charge / discharge cycle characteristics can be further improved.
  • the density of the negative electrode mixture layer is preferably 1.3 g / cm 3 or more.
  • the sum of the thickness of the positive electrode mixture layer and the thickness of the negative electrode mixture layer is 250 ⁇ m or less. It is preferably 200 ⁇ m or less.
  • the sum of the thicknesses of the positive electrode mixture layer and the negative electrode mixture layer is preferably 120 ⁇ m or more.
  • the thickness of the positive electrode mixture layer (when the positive electrode mixture layer is formed on both sides of the current collector, the thickness per side) is preferably 50 to 100 ⁇ m.
  • the thickness (when the negative electrode mixture layer is formed on both sides of the current collector, the thickness per side) is preferably 70 to 130 ⁇ m.
  • the positive electrode and the negative electrode are in the form of a laminated body (laminated electrode body) laminated via a separator or a wound body (wound electrode body) obtained by winding the laminated body in a spiral shape. Used for non-aqueous secondary batteries.
  • a method of laminating a plurality of positive electrodes and a plurality of negative electrodes via a plurality of separators can be employed.
  • a plurality of positive electrodes are arranged at regular intervals on one side of a strip-shaped separator (lower separator), and a separator (upper separator) cut according to the shape of each positive electrode is formed on each positive electrode.
  • a strip separator is used for the lower separator, and a strip separator is also used for the upper separator.
  • a plurality of positive electrodes are arranged on one side of the lower separator at regular intervals. Put each of the separators in a bag shape by heat-sealing the lower separator and the upper separator in the vicinity of the peripheral edge of each positive electrode (near the peripheral edge of the portion where the current collecting tab of the positive electrode is not drawn). After the positive electrode is wrapped, the lower separator and the upper separator are not facing the positive electrode and are folded in a zigzag manner, and the negative electrode is formed between the portions of the folded separator containing the positive electrode in a bag-like part or at the outermost part.
  • a laminated electrode body can also be formed by arranging the electrodes.
  • each positive electrode and each negative electrode has a current collecting tab even in the case of a laminated electrode body having a plurality of positive electrodes and a plurality of negative electrodes. Therefore, the area of the electrodes (positive electrode and negative electrode) that collect current with one current collecting tab is relatively small. Therefore, in the case of a battery having a laminated electrode body, the direct-current resistance is reduced, so that charge / discharge load characteristics can be improved.
  • a wound electrode body in the case of a wound electrode body, it has a plurality of positive electrode current collecting tabs protruding from the positive electrode at one end face and a plurality of negative electrode current collecting tabs protruding from the negative electrode at one end face of the electrode body.
  • FIG. 1 is a perspective view schematically showing an example of a wound electrode body according to the nonaqueous secondary battery of the present invention.
  • the wound electrode body 1 has a plurality of positive current collecting tabs 10 protruding from the positive electrode on one end face (upper end face in the drawing), and a plurality of negative current collecting tabs 20 protruding from the negative electrode on the same end face. Yes.
  • the positive electrode and the negative electrode constituting the wound electrode body As the positive electrode and the negative electrode constituting the wound electrode body, a strip-shaped long one is usually used. However, when each of the positive electrode and the negative electrode has only one current collecting tab, 1 The area of the electrode that collects current with one current collecting tab is larger than that of each current collecting tab of the electrode according to the laminated electrode body, and the direct current resistance tends to increase. Therefore, in the case of a wound electrode body, a plurality of current collecting tabs are provided on each of the positive electrode and the negative electrode constituting the wound electrode body, thereby reducing the direct current resistance of the battery and improving the charge / discharge load characteristics.
  • the number of the positive electrode current collecting tabs and the negative electrode current collecting tabs in the wound electrode body may be, for example, 3 or more, and the upper limit thereof may be twice the number of windings.
  • the separator has sufficient strength and can hold a large amount of nonaqueous electrolyte, and has a thickness of 5 to 50 ⁇ m and an open area ratio of 30 to 70%.
  • the microporous membrane constituting the separator may be, for example, one using only PE or one using PP only, may contain an ethylene-propylene copolymer, and may be made of PE.
  • a laminate of a membrane and a PP microporous membrane may be used.
  • the air permeability is preferably 90 sec / 100 ml or more.
  • the air permeability of the separator as used herein is measured by a method according to JIS P 8117, and is a Gurley value indicated by the number of seconds that 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2. .
  • the separator according to the non-aqueous secondary battery includes a porous layer (I) mainly composed of a resin having a melting point of 140 ° C. or less, a resin that does not melt at a temperature of 150 ° C. or less, or an inorganic that has a heat resistance temperature of 150 ° C.
  • a laminated separator composed of a porous layer (II) mainly containing a filler can be used.
  • “melting point” means a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121.
  • “Heat resistant temperature is 150 ° C. or higher” means at least 150 ° C. This means that no deformation such as softening is observed.
  • the porous layer (I) relating to the laminated separator is mainly for ensuring a shutdown function, and the melting point of the resin, which is a component in which the nonaqueous secondary battery is the main component of the porous layer (I) When the above is reached, the resin related to the porous layer (I) melts and closes the pores of the separator, thereby causing a shutdown that suppresses the progress of the electrochemical reaction.
  • Examples of the resin having a melting point of 140 ° C. or less as a main component of the porous layer (I) include PE, and the form thereof is a substrate such as a microporous film used in a non-aqueous secondary battery or a nonwoven fabric. And PE particles coated thereon.
  • the volume of the resin having a main melting point of 140 ° C. or less is 50% by volume or more, and more preferably 70% by volume or more.
  • the volume is 100% by volume.
  • the porous layer (II) according to the multilayer separator has a function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode even when the internal temperature of the non-aqueous secondary battery is increased,
  • the function is secured by a resin that does not melt at a temperature of 150 ° C. or lower or an inorganic filler having a heat resistant temperature of 150 ° C. or higher. That is, when the battery becomes hot, even if the porous layer (I) shrinks, the porous layer (II) that does not easily shrink can cause the positive and negative electrodes directly when the separator is thermally contracted. It is possible to prevent a short circuit due to the contact of. Moreover, since this heat-resistant porous layer (II) acts as a skeleton of the separator, the thermal contraction of the porous layer (I), that is, the thermal contraction of the entire separator itself can be suppressed.
  • the porous layer (II) is mainly formed of a resin that does not melt at a temperature of 150 ° C. or lower
  • the form thereof is, for example, a microporous film formed of a resin that does not melt at a temperature of 150 ° C. or lower (for example, the above-mentioned A composition (coating solution) for forming a porous layer (II) containing fine particles of a resin that does not melt at a temperature of 150 ° C. or lower, in which a PP battery microporous membrane) is laminated on the porous layer (I).
  • the coating lamination type include laminating a porous layer (II) containing fine particles of a resin that is applied to the porous layer (I) and does not melt at a temperature of 150 ° C. or lower.
  • Examples of the resin constituting the fine particles of the resin that does not melt at a temperature of 150 ° C. or lower include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, styrene-divinylbenzene copolymer crosslinked product, polyimide, melamine resin, phenol resin, And various cross-linked polymers such as benzoguanamine-formaldehyde condensate; heat-resistant polymers such as PP, polysulfone, polyethersulfone, polyphenylene sulfide, polytetrafluoroethylene, polyacrylonitrile, aramid, and polyacetal.
  • the average particle size of the resin fine particles that do not melt at a temperature of 150 ° C. or lower is, for example, preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 10 ⁇ m or less. More preferably, it is 2 ⁇ m or less.
  • the average particle size of the fine particles is a laser scattering particle size distribution meter (for example, “LA-920 manufactured by Horiba, Ltd.). )), The particle size at 50% (D 50% ) in the volume-based cumulative fraction measured by dispersing the negative electrode active material in a medium that does not dissolve.
  • the total volume of the constituent components of the porous layer (II) (excluding pores)
  • the total volume) is 50% by volume or more, preferably 70% by volume or more, more preferably 80% by volume or more, still more preferably 90% by volume or more, and 99% by volume or less. It is preferable that
  • the porous layer (II) is mainly composed of an inorganic filler having a heat resistant temperature of 150 ° C. or higher
  • a composition for forming the porous layer (II) containing the inorganic filler having a heat resistant temperature of 150 ° C. or higher (coating liquid) ) Is applied to the porous layer (I), and a porous layer (II) containing an inorganic filler having a heat resistant temperature of 150 ° C. or higher is laminated.
  • the inorganic filler related to the porous layer (II) has a heat-resistant temperature of 150 ° C. or higher, is stable with respect to the non-aqueous electrolyte of the non-aqueous secondary battery, and is oxidized and reduced within the operating voltage range of the non-aqueous secondary battery.
  • Any electrochemically stable material that is difficult to be treated may be used, but fine particles are preferable from the viewpoint of dispersion and the like, and alumina, silica, and boehmite are preferable.
  • Alumina, silica, and boehmite have high oxidation resistance, and the particle size and shape can be adjusted to the desired numerical values, making it easy to accurately control the porosity of the porous layer (II). It becomes.
  • the thing of the said illustration may be used individually by 1 type, and may use 2 or more types together, for example.
  • an inorganic filler having a heat resistant temperature of 150 ° C. or higher and resin fine particles that do not melt at a temperature of 150 ° C. or lower may be used in combination.
  • the shape of the inorganic filler having a heat resistant temperature of 150 ° C. or higher related to the porous layer (II) is not particularly limited, and is substantially spherical (including true spherical), substantially elliptical (including elliptical), plate-like, etc. Various shapes can be used.
  • the average particle size of the inorganic filler having a heat resistance temperature of 150 ° C. or higher (the average particle size of the plate-like filler and other shape fillers; the same applies hereinafter) of the porous layer (II) is too small, the ion permeability is high. Since it falls, it is preferable that it is 0.3 micrometer or more, and it is more preferable that it is 0.5 micrometer or more.
  • the average particle diameter is preferably 5 ⁇ m or less, and more preferably 2 ⁇ m or less.
  • the inorganic filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (II) is mainly contained in the porous layer (II), the amount in the porous layer (II) Is 50% by volume or more, preferably 70% by volume or more, more preferably 80% by volume or more, and 90% by volume or more. More preferably, it is preferably 99% by volume or less.
  • the total amount of these components may be 50% by volume or more in the total volume of the constituent components of the porous layer (II) (total volume excluding the voids), and 70% by volume.
  • the volume is 80% by volume or more, more preferably 90% by volume or more, and preferably 99% by volume or less.
  • porous layer (II) fine particles of a resin that does not melt at a temperature of 150 ° C. or less or inorganic fillers having a heat resistant temperature of 150 ° C. or more are bound, or the porous layer (II) and the porous layer (I For example, it is preferable to contain an organic binder.
  • Organic binders include ethylene-vinyl acetate copolymers (EVA, structural units derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymers such as ethylene-ethyl acrylate copolymers, fluorine-based binders Examples include rubber, SBR, CMC, hydroxyethyl cellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), cross-linked acrylic resin, polyurethane, and epoxy resin.
  • a heat-resistant binder having a heat-resistant temperature is preferably used.
  • the organic binder those exemplified above may be used singly or in combination of two or more.
  • the coating laminate type separator is, for example, a porous layer (II) forming composition (liquid such as slurry) containing fine particles of resin that does not melt at a temperature of 150 ° C. or lower, or an inorganic filler having a heat resistant temperature of 150 ° C. or higher.
  • the composition etc. can be applied to the surface of the microporous membrane for constituting the porous layer (I) and dried at a predetermined temperature to form the porous layer (II).
  • the composition for forming a porous layer (II) contains fine particles of a resin that does not melt at a temperature of 150 ° C. or lower, or an inorganic filler having a heat resistant temperature of 150 ° C. or higher, and an organic binder as necessary. (Including a dispersion medium, the same shall apply hereinafter).
  • the organic binder can be dissolved in a solvent.
  • the solvent used in the composition for forming the porous layer (II) is not particularly limited as long as it can uniformly disperse the inorganic filler and can uniformly dissolve or disperse the organic binder.
  • Common organic solvents such as hydrocarbons, furans such as tetrahydrofuran, and ketones such as methyl ethyl ketone and methyl isobutyl ketone are preferably used.
  • alcohols ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents.
  • water may be used as a solvent.
  • alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.
  • the composition for forming the porous layer (II) has a solid content containing, for example, 10 to 80 masses of resin fine particles that do not melt at a temperature of 150 ° C. or lower, an inorganic filler having a heat resistance temperature of 150 ° C. or higher, and an organic binder. % Is preferable.
  • the porous layer (I) and the porous layer (II) do not have to be one each, and a plurality of layers may be present in the separator.
  • the porous layer (I) may be arranged on both sides of the porous layer (II), or the porous layer (II) may be arranged on both sides of the porous layer (I).
  • increasing the number of layers may increase the thickness of the separator and increase the internal resistance of the battery or decrease the energy density. Therefore, it is not preferable to increase the number of layers.
  • the total number of the porous layers (I) and (II) is preferably 5 or less.
  • the thickness of a separator (a separator made of a polyolefin microporous film or the laminated separator) according to a non-aqueous secondary battery is more preferably 10 to 30 ⁇ m.
  • the thickness of the porous layer (II) [when the separator has a plurality of porous layers (II), the total thickness] From the viewpoint of exhibiting more effectively, it is preferably 3 ⁇ m or more. However, if the porous layer (II) is too thick, the energy density of the battery may be lowered. Therefore, the thickness of the porous layer (II) is preferably 8 ⁇ m or less.
  • the thickness of the porous layer (I) [when the separator has a plurality of porous layers (I), the total thickness thereof. same as below. ] Is preferably 6 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of more effectively exerting the above-described action (particularly the shutdown action) due to the use of the porous layer (I).
  • the porous layer (I) is too thick, there is a possibility that the energy density of the battery may be lowered.
  • the force that the porous layer (I) tends to shrink is increased, and the heat of the entire separator is increased. There is a possibility that the action of suppressing the shrinkage becomes small. Therefore, the thickness of the porous layer (I) is preferably 25 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 14 ⁇ m or less.
  • the porosity of the separator as a whole is preferably 30% or more in a dry state in order to ensure the amount of electrolyte retained and to improve ion permeability.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator: P (%) can be calculated by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following equation (3).
  • a i ratio of component i when the total mass is 1
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • t thickness of separator (cm).
  • m is the mass per unit area (g / cm 2 ) of the porous layer (I)
  • t is the thickness of the porous layer (I) ( cm)
  • the porosity: P (%) of the porous layer (I) can also be obtained using the formula (2).
  • the porosity of the porous layer (I) obtained by this method is preferably 30 to 70%.
  • the porosity of the porous layer (II) obtained by this method is preferably 20 to 60%.
  • the electrolyte solution according to the non-aqueous secondary battery of the present invention is a solution (non-aqueous electrolyte solution) in which a lithium salt is dissolved in a non-aqueous solvent, and the D value represented by the formula (1) is 0. Less than 4 are used.
  • the non-aqueous solvent has a kinematic viscosity (cSt) that is infinitely small, and the larger the electric conductivity (mS / cm) of the electrolyte solution is, the closer it is to the electrolyte in the ideal state. It is important to. Viscosity varies depending on the type of non-aqueous solvent.In addition, increasing the lithium salt concentration increases the electrical conductivity, but the viscosity increases proportionally, so the balance between the combination of the non-aqueous solvent and the lithium salt concentration must be balanced. By adjusting, the D value represented by the formula (1) is controlled.
  • the kinematic viscosity of the non-aqueous solvent relating to the electrolytic solution is preferably 5.0 cSt or less, more preferably 4.0 cSt or less, and preferably 2.4 cSt or more.
  • the electrical conductivity of the electrolytic solution is preferably 8.0 mS / cm or more, more preferably 12.0 mS / cm or less, and even more preferably 9.0 mS / cm or less.
  • the nonaqueous solvent for the electrolytic solution at least one selected from dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) and ethylene carbonate (EC) are used together.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • EC ethylene carbonate
  • the EC content in the total volume of 100% by volume of the nonaqueous solvent for the electrolyte is 10% by volume to 35% by volume, and the remaining amount of the nonaqueous solvent is mixed so that the D value is 0.4 or less.
  • nonaqueous solvent related to the electrolytic solution EC and other nonaqueous solvents other than DMC, EMC, and DEC may be used together.
  • Other non-aqueous solvents that can be used together include, for example, cyclic carbonates such as propylene carbonate and butylene carbonate; chain carbonates such as methylpropyl carbonate (MPC); chain esters such as methyl propionate; ⁇ -butyrolactone, and the like.
  • Cyclic esters chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrahydrofuran; acetonitrile, propionitrile, methoxypropionitrile Nitrites such as; sulfites such as ethylene glycol sulfite; and the like.
  • chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme, tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran, 2-methyltetrahydrofuran
  • acetonitrile, propionitrile, methoxypropionitrile Nitrites such as
  • sulfites such as ethylene glycol
  • the total content of EC, DMC, EMC and DEC in the total amount of 100% by volume of the nonaqueous solvent is preferably 95% by volume or less. Therefore, when using non-aqueous solvents other than EC, DMC, EMC, and DEC, it is preferable to use them in a range where the total content of EC, DMC, EMC, and DEC satisfies the above values.
  • the lithium salt related to the electrolytic solution is not particularly limited as long as it is dissociated in a non-aqueous solvent to form Li + ions and hardly causes a side reaction such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .
  • the lithium salt concentration in the electrolytic solution is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
  • the electrolytic solution used for the non-aqueous secondary battery contains a cyclic sulfonate ester.
  • the type of the cyclic sulfonic acid ester used in the present invention is not particularly limited as long as it has a structure having a sulfonic acid ester structure in a part of the cyclic structure.
  • Specific examples of the cyclic sulfonate ester used in the present invention include 1,3-propane sultone, 1,4-butane sultone, 2,4-butane sultone, 1,3-butane sultone and the like. Among these, it is preferable to use 1,3-propane sultone.
  • the positive electrode and the electrolytic solution come into contact and react to generate gas.
  • a battery using an electrolytic solution containing a cyclic sulfonate ester especially 1,3-propane sultone
  • charging and discharging are performed.
  • a film derived from the cyclic sulfonic acid ester is formed on the surface of the positive electrode, and this film suppresses the reaction between the positive electrode and the electrolytic solution, thereby further improving the storage characteristics of the battery.
  • the content of the cyclic sulfonic acid ester in the electrolytic solution used for the non-aqueous secondary battery is preferably 0.3% by mass or more from the viewpoint of ensuring the above-described effects by the use.
  • the content of 1,3-propane sultone in the electrolytic solution used for the non-aqueous secondary battery is preferably 3.0% by mass or less.
  • the electrolyte solution used for the nonaqueous secondary battery contains vinylene carbonate (VC).
  • VC forms a film on the surface of the negative electrode by charging and discharging the battery, and this suppresses the reaction between the negative electrode and the electrolytic solution, thereby further improving the charge / discharge cycle characteristics of the battery.
  • the content of VC in the electrolytic solution used for the non-aqueous secondary battery is preferably 1% by mass or more from the viewpoint of ensuring the above-described effects by use.
  • gas is generated when VC forms a film on the negative electrode surface. Therefore, if the amount of VC in the electrolyte is too large, the effect of improving the storage characteristics of the battery may be reduced. Therefore, the content of VC in the electrolytic solution used for the non-aqueous secondary battery is preferably 10% by mass or less.
  • the above-mentioned electrolyte solution includes acid anhydride, sulfonate ester, dinitrile, diphenyl disulfide, cyclohexylbenzene.
  • Additives including these derivatives
  • biphenyl, fluorobenzene, and t-butylbenzene can also be added as appropriate.
  • a gelled gel may be used for the non-aqueous secondary battery of the present invention by adding a gelling agent such as a known polymer to the electrolyte solution.
  • Examples of the form of the lithium ion battery of the present invention include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can.
  • the lithium ion secondary battery of the present invention can be a soft package battery using a laminate film deposited with a metal as an outer package.
  • a constant current value of 1 ItA is 4.2 V.
  • the battery is charged with a current, subsequently charged with a constant voltage of 4.2 V until the current value becomes 0.04 ItA, and then discharged until the current value of 1 ItA becomes 2.5 V.
  • the capacity after the first charge / discharge is 2. Even if it is designed to have a very large capacity such as 5 Ah or more, the charge / discharge load characteristics can be improved in a wide temperature range of 0 to 50 ° C.
  • the conductivity at 25 ° C. of the non-aqueous electrolyte shown in this example is a value measured using an electric conductivity meter “CM-31P” and an electric conductivity cell “CT27112B” manufactured by Toa DKK Corporation.
  • Example 1 Preparation of positive electrode> 94% by mass of Li 1.0 Ni 0.5 Co 0.2 Mn 0.3 O 2 as a positive electrode material (positive electrode active material) (content in the total solid content; the same shall apply hereinafter) and acetylene as a conductive auxiliary agent 4% by mass of black, 2% by mass of PVDF as a binder, and dehydrated NMP were mixed to obtain a positive electrode mixture-containing slurry.
  • the positive electrode mixture-containing slurry is applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 15 ⁇ m, and then vacuum-dried at 120 ° C. for 12 hours to form a positive electrode mixture layer on both surfaces of the aluminum foil. Formed. When the positive electrode mixture layer was formed, a part of the aluminum foil was left to be an exposed portion. Thereafter, calendering is performed to adjust the thickness and density of the positive electrode mixture layer, and then the exposed portion of the current collector and the portion where the positive electrode mixture layer is formed are cut into a shape of 65 mm ⁇ 90 mm, A positive electrode was obtained.
  • the positive electrode mixture layer of the obtained positive electrode had a thickness per side of 50 ⁇ m, a porosity of 30%, and a density of 3.0 g / cm 3 .
  • the negative electrode mixture layer of the obtained negative electrode had a thickness of 59 ⁇ m per side, a porosity of 30%, and a density of 1.5 g / cm 3 .
  • ⁇ Preparation of separator> Add 5 kg of ion-exchanged water and 0.5 kg of a dispersant (aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass%) to 5 kg of boehmite with an average particle diameter D of 50% of 1 ⁇ m. Dispersion was prepared by crushing for 10 hours with a ball mill at times / minute. The treated dispersion was vacuum-dried at 120 ° C. and observed with a scanning electron microscope (SEM). As a result, the boehmite was almost plate-shaped.
  • a dispersant aqueous polycarboxylic acid ammonium salt, solid content concentration 40 mass
  • PE microporous separator for non-aqueous secondary battery [Porous layer (I): Thickness 12 ⁇ m, porosity 40%, average pore diameter 0.08 ⁇ m, PE melting point 135 ° C.] corona discharge treatment (discharge amount) 40 W ⁇ min / m 2 ), and a porous layer (II) forming slurry is applied to the treated surface by a micro gravure coater and dried to form a porous layer (II) having a thickness of 4 ⁇ m.
  • a mold separator was obtained.
  • the mass per unit area of the porous layer (II) in this separator is 5.5 g / m 2
  • the boehmite volume content is 95% by volume
  • the porosity is 45%.
  • the temperament was 100 sec / 100 ml.
  • An electrolyte solution was prepared by dissolving 1,3-propane sultone in an amount of 0.5 mass% and VC in an amount of 2.0 mass%.
  • the electric conductivity of this electrolytic solution was 9.8 mS / cm, the kinematic viscosity of the mixed solvent used in the electrolytic solution was 2.48 cSt, and the D value was 0.25.
  • ⁇ Battery assembly> The 13 positive electrodes and 14 negative electrodes were stacked with the separator interposed therebetween to form a laminated electrode body.
  • the separator was disposed so that the porous layer (II) faced the positive electrode.
  • the laminated electrode body was sandwiched between two aluminum laminate films (95 mm ⁇ 70 mm), three sides of both laminated films placed above and below the laminated electrode body were heat sealed, and vacuum-dried at 60 ° C. for 1 day. Later, the non-aqueous electrolyte was injected from the remaining one side of both laminate films. Thereafter, the remaining one side of both laminate films was vacuum heat sealed to obtain the nonaqueous secondary battery having the structure shown in FIG. 3 with the appearance shown in FIG.
  • FIG. 2 is a plan view schematically showing a non-aqueous secondary battery
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • the nonaqueous secondary battery 100 includes a laminated electrode body 2 constituted by laminating 13 positive electrodes and 14 negative electrodes with a separator interposed in a laminated film outer package 200 constituted by two laminated films, A non-aqueous electrolyte solution (not shown) is accommodated, and the laminate film outer package 200 is sealed by thermally fusing the upper and lower laminate films at the outer peripheral portion thereof.
  • FIG. 3 in order to avoid complication of the drawing, each layer constituting the laminate film outer package 200 and each positive electrode, each negative electrode and each separator constituting the laminated electrode body are shown separately. Not.
  • Each positive electrode constituting the laminated electrode body 2 is connected to the positive electrode external terminal 11 by a current collecting tab in the battery 100.
  • each negative electrode constituting the laminated electrode body 2 is also connected to the battery 100. In the inside, it connects with the negative electrode external terminal 21 by the current collection tab.
  • the positive electrode external terminal 11 and the negative electrode external terminal 21 are drawn out to the outside of the laminate film exterior body 200 so that they can be connected to an external device or the like.
  • An electrolytic solution was prepared by dissolving 1,3-propane sultone in an amount of 0.5 mass% and VC in an amount of 3.0 mass%.
  • An electrolytic solution was prepared in the same manner as in Example 1 except that the solvent ratio was changed from the electrolytic solution prepared in Example 1.
  • the electric conductivity of the electrolytic solution was 9.9 mS / cm, the kinematic viscosity of the mixed solvent used in the electrolytic solution was 3.4 cSt, and the D value was 0.34.
  • a nonaqueous secondary battery was produced in the same manner as in Example 1 except that the above electrolytic solution was used.
  • An electrolytic solution was prepared by dissolving 1,3-propane sultone in an amount of 0.5 mass% and VC in an amount of 3.0 mass%.
  • the electric conductivity of this electrolytic solution was 9.93 mS / cm, the kinematic viscosity of the mixed solvent used in the electrolytic solution was 3.48 cSt, and the D value was 0.35.
  • a non-aqueous secondary battery was produced in the same manner as in Example 1 except that the electrolytic solution was used, and the laminated separator was changed to one having a thickness of 20 ⁇ m and an air permeability of 180 sec / 100 ml. did.
  • Example 4 A nonaqueous secondary battery was produced in the same manner as in Example 3 except that the laminated separator was changed to a thickness of 16 ⁇ m and an air permeability of 200 sec / 100 ml.
  • Example 5 SiO (volume average particle size 5.0 ⁇ m) is heated to about 1000 ° C. in a boiling bed reactor, and the heated particles are brought into contact with a mixed gas of 25 ° C. composed of methane and nitrogen gas, and CVD is performed at 1000 ° C. for 60 minutes. Processed.
  • carbon hereinafter also referred to as “CVD carbon” generated by pyrolyzing the mixed gas is deposited on the composite particles to form a coating layer, and a composite of SiO and a carbon material (carbon-coated SiO) Got.
  • a negative electrode mixture-containing slurry was prepared by mixing 93% by mass of graphite, 1% by mass of CMC as a binder, 1% by mass of SBR, and water.
  • Example 2 a negative electrode was produced in the same manner as in Example 1 except that the above slurry was used, and a nonaqueous secondary battery was produced in the same manner as in Example 2 except that this negative electrode was used.
  • Comparative Example 1 A positive electrode was produced in the same manner as in Example 1 except that the porosity of the positive electrode mixture layer was changed to 20% and the density of the positive electrode mixture layer was changed to 3.4 g / cm 3 by changing the pressure during the calendar process. did. Further, the negative electrode mixture layer was changed to the negative electrode mixture layer in the same manner as in Example 1 except that the porosity of the negative electrode mixture layer was changed to 20% and the density of the negative electrode mixture layer was changed to 1.7 g / cm 3. Was made. And the non-aqueous secondary battery was produced like Example 1 except having used the said positive electrode and the said negative electrode.
  • Comparative Example 2 A positive electrode was produced in the same manner as in Example 1 except that the porosity of the positive electrode mixture layer was changed to 40% and the density of the positive electrode mixture layer was changed to 2.6 g / cm 3 by changing the pressure during the calendar process. did. Further, the negative electrode mixture layer was changed to a negative pressure mixture layer in the same manner as in Example 1 except that the porosity of the negative electrode mixture layer was changed to 40% and the density of the negative electrode mixture layer was changed to 1.3 g / cm 3. Was made. And the non-aqueous secondary battery was produced like Example 1 except having used the said positive electrode and the said negative electrode.
  • An electrolytic solution was prepared by dissolving 1,3-propane sultone and VC in an amount of 3.0% by mass.
  • the electrical conductivity of this electrolytic solution was 6.0 mS / cm, the kinematic viscosity of the mixed solvent used in the electrolytic solution was 10.8 cSt, and the D value was 1.8.
  • a nonaqueous secondary battery was produced in the same manner as in Example 1 except that the above electrolytic solution was used.
  • Comparative Example 4 A nonaqueous secondary battery was produced in the same manner as in Example 1 except that the laminated separator was changed to one having a thickness of 20 ⁇ m and an air permeability of 400 sec / 100 ml.
  • each discharge condition of 1 ItA, 2 ItA, 5 ItA, 10 ItA, 15 ItA, 20 ItA The discharge time from SOC 100% (battery voltage 4.2V state where constant current charge and constant voltage charge has been completed) to SOC 0% (battery voltage state 2.5V) and the operation time until the SOC actually reaches 0% was divided by the theoretical operating time of each discharge amount (3600 seconds for 1C, 360 seconds for 10C), and the obtained value was expressed as a percentage to obtain the operating time rate. That is, it can be said that the higher the operating time rate, the better the charge / discharge load characteristics of the battery.
  • Table 1 Table 1, Table 2, and FIG. 4 show the configurations and evaluation results of the non-aqueous secondary batteries of Examples and Comparative Examples.
  • Examples 1 to 5 in which the structure of the electrode body, the porosity of the positive electrode mixture layer and the negative electrode mixture layer, the air permeability of the separator, and the D value are appropriate for the electrolyte solution The non-aqueous secondary battery was high even under high-current discharge conditions such that the operating time rate during charge / discharge load characteristic evaluation exceeded 10 ItA, and had excellent charge / discharge load characteristics.
  • the batteries of Comparative Examples 1 to 4 show a good operating time rate under the 1 ItA discharge condition at a low rate (low current value), but the operating time rate rapidly increases under a discharge condition exceeding 10 ItA. Declined.
  • the porosity of the positive electrode mixture layer and the negative electrode mixture layer is smaller than that of the battery of Example 1, the resistance of the mixture layer increases at a high rate (high current value). The operating time rate has decreased.
  • a positive electrode having a higher porosity of the positive electrode mixture layer than that of the battery of Example 1 is used, and a sufficient conductive path cannot be secured in the positive electrode mixture layer. Not only that, the operating time rate decreased even in the low rate region.
  • the electrolyte solution used had a high D value, and the viscosity of the non-aqueous solvent, that is, the viscosity of the electrolyte solution was too high, so that a sufficient conductive path could not be secured in the battery, and at high rate.
  • the operating time rate has decreased.
  • the separator since the separator had a high air permeability and a large resistance value, the operating time rate at the high rate was lowered.
  • the volume energy density was improved by 5% and the weight energy density was improved by 10%.
  • the non-aqueous secondary battery of the present invention has a high capacity and excellent charge / discharge load characteristics. Taking advantage of these characteristics, the lithium ion secondary battery, which has been conventionally known, is used for power supplies of portable devices such as mobile phones. It can be preferably used for various applications to which a nonaqueous secondary battery such as a secondary battery is applied.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 高容量であり、かつ大電流での充放電負荷特性に優れた非水二次電池を提供する。 積層電極体、または複数の正極集電タブと複数の負極集電タブとを備えた巻回電極体を有しており、正極合剤層の空隙率が25%~35%であり、負極合剤層の空隙率が25~40%であり、セパレータの透気度が250sec/100ml以下であり、非水溶媒としてジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートよりなる群から選択される少なくとも1種と、エチレンカーボネートとを含有しており、非水溶媒全量中におけるエチレンカーボネートの含有量が10~35体積%であり、かつ下記式(1)で表されるD値が0.4以下である電解液を有しており、10ItAを超えるいずれかの電流値において、稼働時間率が75%以上である非水二次電池である。 D値 = 非水溶媒の導電度(cSt)/電解液の電気伝導度(mS/cm) (1)

Description

非水二次電池
 本発明は、大電流での充放電を可能にする非水二次電池に関し、更に詳細には、10ItAを超える大電流での放電特性の良好で、かつ高容量な非水二次電池に関するものである。
 リチウムイオン二次電池などの非水二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。携帯機器の高性能化に伴ってリチウムイオン二次電池の高容量化が更に進む傾向にあり、エネルギー密度を更に向上させるための研究・開発が進められている。
 一方、最近では非水二次電池の高性能化に伴い、非水二次電池が携帯機器の電源以外の電源としても用いられ始めた。例えば、自動車用やバイク用の電源、ロボットなどの移動体用の電源などに非水二次電池が用いられ始めた。非水二次電池を自動車用やバイク用の電源、ロボットなどの移動体用の電源などに用いる場合には、高容量化を図りつつ、かつ10ItAを超えるような大電流での充放電負荷特性も満足する必要がある。
 自動車用やバイク用の電源、ロボットなどの移動体用の電源などに用いられる非水二次電池の高容量化を図る対策の一つとして、例えば特許文献1のように、正極にMn系材料よりも理論容量の大きく、かつ安定なNiCoMo系三元材料を正極活物質として用いる方法がある。また、負極に採用されている黒鉛などの炭素質材料に代えて、シリコン(Si)、スズ(Sn)など、より多くのリチウム(イオン)を吸蔵・放出可能な材料が注目されており、とりわけ、Siの超微粒子がSiO中に分散した構造を持つSiOは、負荷特性に優れるなどの特徴も併せ持つことが報告されている(特許文献2、3)。
 更に、非水二次電池の大電流での充放電負荷特性の向上を図るに当たっては、特許文献4のように正極および負極の合剤層(活物質含有層)を薄くすることが有利である。
特許第4137635号公報 特開2004-047404号公報 特開2005-259697号公報 特開2006-277990号公報
 しかし、特許文献4に記載されているような厚みの正極および負極を用いた場合、電池内への活物質の量が少なくなってしまうことから、実用的な容量を確保することが困難である。そして、特許文献1に記載の正極活物質を使用して、正極や負極を特許文献4に記載のような厚みにしたとしても、電池の内容積に占める集電体やセパレータなどの、充放電に寄与しない部材の相対量が増えるため、正極や負極における活物質の相対量は増えず、電池の単位体積当たりの容量を高めることは困難である。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、高容量であり、かつ大電流での充放電負荷特性に優れた非水二次電池を提供することにある。
 前記目的を達成し得た本発明の非水二次電池は、正極、負極およびセパレータを有する電極体、並びに非水溶媒にリチウム塩を溶解してなる電解液を備えた非水二次電池であって、前記電極体は、前記正極と前記負極とを、前記セパレータを介在させつつ積層した積層電極体、または、前記正極と前記負極とを、前記セパレータを介して渦巻状に巻回してなり、かつ前記電極体の一方の端面において前記正極から突出した複数の正極集電タブと、前記電極体の一方の端面において前記負極から突出した複数の負極集電タブとを備えた巻回電極体であり、前記正極は、正極活物質を含有する正極合剤層を有しており、前記正極合剤層の空隙率が25%~35%であり、前記負極は、負極活物質を含有する負極合剤層を有しており、前記負極合剤層の空隙率が25~40%であり、前記セパレータの透気度が250sec/100ml以下であり、前記電解液は、前記非水溶媒として、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートよりなる群から選択される少なくとも1種と、エチレンカーボネートとを含有しており、前記非水溶媒全量中におけるエチレンカーボネートの含有量が10~35体積%であり、かつ下記式(1)で表されるD値が0.4以下であり、充電深度100%の状態から充電深度0%の状態になるまで電流値a(ItA)で放電を行ったときの実稼働時間と、前記電流値aで放電を行ったときの理論稼働時間との比から求められる稼働時間率が、前記電流値aが10ItAを超えるいずれかの電流値において、75%以上であることを特徴とするものである。
 D値=非水溶媒の動粘度(cSt)/電解液の電気伝導度(mS/cm) (1)
 本発明によれば、高容量であり、かつ大電流での充放電負荷特性に優れた非水二次電池を提供することができる。
本発明の非水二次電池に係る巻回電極体の一例を模式的に表す斜視図である。 本発明の非水二次電池の一例を模式的に表す平面図である。 図2のI-I線断面図である。 本発明の実施例および比較例の非水二次電池の評価結果を示すグラフである。
 一般的な電極反応においては、電極面積あたりの充放電電流が小さくなり、かつ電極の合剤層が薄くなると反応速度が向上することが知られており、特に電極の合剤層が厚くなると反応性の低下が顕著となる。よって、非水二次電池の充放電負荷特性を高めるには、高容量化は難しいものの、電極の合剤層を薄くすることが通常である。
 本発明では、正極、負極およびセパレータで構成される電極体の構造、正極合剤層および負極合剤層の空隙率、セパレータの透気度、および電解液に係るD値を最適化することで、正負極の合剤層を、通常の非水二次電池と同等程度としても、常温下、高温下、低温下のいずれにおいても優れた充放電負荷特性を発揮でき、かつ高容量の非水二次電池の提供を可能とした。
 本発明の非水二次電池は、前記の通り、充放電負荷特性に優れているが、具体的には、充電深度(SOC)100%の状態から充電深度0%の状態になるまで電流値a(ItA)で放電を行ったときの実稼働時間と、前記電流値aで放電を行ったときの理論稼働時間との比から求められる稼働時間率が、前記電流値aが10ItAを超えるいずれかの電流値において、75%以上である。
 前記稼働時間率を測定するための電流値aでの放電は、23℃の環境下において、1ItA(1C)の電流値で4.2Vまで定電流充電を行い、引き続いて4.2Vの定電圧で電流値が0.05ItA(0.05C)になるまで充電を行い、その後に、前記電流値aの定電流で、電圧が2.5Vになるまで放電を行う条件で実施される。よって、前記の「充電深度100%」とは、前記の定電流充電および定電圧充電が完了して電池電圧が4.2Vになった状態を意味しており、前記の「充電深度0%」とは、電流値aで定電流放電を行って、電池電圧が2.5Vになった状態を意味している。
 本発明の非水二次電池に係る正極は、正極活物質を含有する正極合剤層を有するものであり、例えば、正極合剤層が、集電体の片面または両面に形成されたものである。
 正極活物質には、下記一般組成式(2)で表されるリチウム含有複合酸化物を使用することが好ましい。
 Li1+yMO (2)
 前記一般組成式(2)中、-0.15≦y≦0.15であり、かつ、Mは、少なくともNi、CoおよびMnを含む3種以上の元素群を表し、Mを構成する各元素中で、Ni、CoおよびMnの割合(mol%)を、それぞれa、bおよびcとしたときに、25≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70である。
 前記一般組成式(2)で表されるリチウム含有複合酸化物は、充電時の作動電圧が低く、電池の充放電負荷特性を高める上で有利に作用する。また、前記一般組成式(2)で表されるリチウム含有複合酸化物は、熱安定性や高電位状態での安定性が高く、これを使用することで非水二次電池の安全性や各種電池特性を高めることができる。
 前記リチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、リチウム含有複合酸化物の容量向上を図る観点から、25mol%以上であり、48mol%以上であることが好ましい。ただし、元素群M中のNiの割合が多すぎると、例えば、CoやMnの量が減って、これらによる効果が小さくなる虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Niの割合aは、90mol%以下であり、70mol%以下であることが好ましく、52mol%以下であることがより好ましい。
 また、Coは前記リチウム含有複合酸化物の容量に寄与し、正極合剤層における充填密度向上にも作用する一方で、多すぎるとコスト増大や安全性低下を引き起こす虞もある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Coの割合bは、5mol%以上(好ましくは18mol%以上)35mol%以下(より好ましくは22mol%以下)である。
 また、前記リチウム含有複合酸化物においては、前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Mnの割合cは、5mol%以上(好ましくは28mol%以上)35mol%以下(好ましくは32mol%以下)である。前記リチウム含有複合酸化物に前記のような量でMnを含有させ、結晶格子中に必ずMnを存在させることによって、前記リチウム含有複合酸化物の熱的安定性を高めることができ、より安全性の高い電池を構成することが可能となる。
 更に、前記リチウム含有複合酸化物において、Coを含有させることによって、電池の充放電でのLiのドープおよび脱ドープに伴うMnの価数変動を抑制し、Mnの平均価数を4価近傍の値に安定させ、充放電の可逆性をより高めることができる。よって、このようなリチウム含有複合酸化物を使用することで、より充放電サイクル特性に優れた電池を構成することが可能となる。
 また、前記リチウム含有複合酸化物において、CoとMnとを併用することによる前記の効果を良好に確保する観点から、前記一般組成式(2)における元素群Mの全元素数を100mol%としたとき、Coの割合bとMnの割合cとの和b+cは、10mol%以上70mol%以下(好ましくは50mol%以下)である。
 なお、前記リチウム含有複合酸化物を表す前記一般組成式(2)における元素群Mは、Ni、CoおよびMn以外の元素を含んでいてもよく、例えば、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Mg、Ag、Tl、Nb、B、P、Zr、Ca、Sr、Baなどの元素を含んでいても構わない。ただし、前記リチウム含有複合酸化物において、Ni、CoおよびMnを含有させることによる前記の効果を十分に得るためには、元素群Mの全元素数を100mol%としたときの、Ni、CoおよびMn以外の元素の割合(mol%)の合計をfで表すと、fは、15mol%以下であることが好ましく、3mol%以下であることがより好ましい。
 例えば、前記リチウム含有複合酸化物において、結晶格子中にAlを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高い非水二次電池を構成することが可能となる。また、Alがリチウム含有複合酸化物粒子の粒界や表面に存在することで、その経時安定性や電解液との副反応を抑制することができ、より長寿命の非水二次電池を構成することが可能となる。
 ただし、Alは充放電容量に関与することができないため、前記リチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Alの割合は10mol%以下であることが好ましい。なお、Alを含有させることによる前記の効果をより良好に確保するには、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Alの割合は0.02mol%以上であることが好ましい。
 前記リチウム含有複合酸化物において、結晶格子中にMgを存在させると、リチウム含有複合酸化物の結晶構造を安定化させることができ、その熱的安定性を向上させ得るため、より安全性の高い非水二次電池を構成することが可能となる。また、非水二次電池の充放電でのLiのドープおよび脱ドープによって前記リチウム含有複合酸化物の相転移が起こる際、MgがLiサイトに転位することによって不可逆反応を緩和し、前記リチウム含有複合酸化物の結晶構造の可逆性を高めることができるため、より充放電サイクル寿命の長い非水二次電池を構成することができるようになる。特に、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、1+y<0として、リチウム含有複合酸化物をLi欠損な結晶構造とした場合には、Liの代わりにMgがLiサイトに入る形でリチウム含有複合酸化物を形成し、安定な化合物とすることができる。
 ただし、Mgは充放電容量への関与が小さいため、前記リチウム含有複合酸化物中の含有量を多くすると、容量低下を引き起こす虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Mgの割合は10mol%以下であることが好ましい。なお、Mgを含有させることによる前記の効果をより良好に確保するには、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Mgの割合は0.02mol%以上であることが好ましい。
 前記リチウム含有複合酸化物において粒子中にTiを含有させると、LiNiO型の結晶構造において、酸素欠損などの結晶の欠陥部に配置されて結晶構造を安定化させるため、前記リチウム含有複合酸化物の反応の可逆性が高まり、より充放電サイクル特性に優れた非水二次電池を構成できるようになる。前記の効果を良好に確保するためには、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Tiの割合は、0.01mol%以上であることが好ましく、0.1mol%以上とすることがより好ましい。ただし、Tiの含有量が多くなると、Tiは充放電に関与しないために容量低下を引き起こしたり、LiTiOなどの異相を形成しやすくなったりして、特性低下を招く虞がある。よって、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群Mの全元素数を100mol%としたときに、Tiの割合は、10mol%以下であることが好ましく、5mol%以下であることがより好ましく、2mol%以下であることが更に好ましい。
 また、前記リチウム含有複合酸化物が、前記一般組成式(2)における元素群Mとして、Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる少なくとも1種の元素M’を含有している場合には、それぞれ下記の効果を確保することができる点で好ましい。
 前記リチウム含有複合酸化物がGeを含有している場合には、Liが脱離した後の複合酸化物の結晶構造が安定化するため、充放電での反応の可逆性を高めることができ、より安全性が高く、また、より充放電サイクル特性に優れる非水二次電池を構成することが可能となる。特に、リチウム含有複合酸化物の粒子表面や粒界にGeが存在する場合には、界面でのLiの脱離・挿入における結晶構造の乱れが抑制され、充放電サイクル特性の向上に大きく寄与することができる。
 また、前記リチウム含有複合酸化物がCa、Sr、Baなどのアルカリ土類金属を含有している場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料(後述する正極合剤含有組成物)としたときの経時安定性が向上し、非水二次電池の有する電解液との不可逆な反応を抑制することができる。更に、これらの元素が、前記リチウム含有複合酸化物の粒子表面や粒界に存在することで、電池内のCOガスをトラップできるため、より貯蔵性に優れ長寿命の非水二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Ca、Sr、Baなどのアルカリ土類金属の添加がより有効である。
 前記リチウム含有複合酸化物にBを含有させた場合にも、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、大気中の水分や、正極合剤層の形成に用いるバインダ、電池の有する電解液との不可逆な反応を抑制することができる。このため、正極合剤層を形成するための塗料としたときの経時安定性が向上し、電池内でのガス発生を抑制することができ、より貯蔵性に優れ長寿命の非水二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物のようにMnを含有するリチウム含有複合酸化物では、一次粒子が成長し難くなる傾向があるため、Bの添加がより有効である。
 前記リチウム含有複合酸化物にZrを含有させた場合には、前記リチウム含有複合酸化物の粒子の粒界や表面にZrが存在することにより、前記リチウム含有複合酸化物の電気化学特性を損なうことなく、その表面活性を抑制するため、より貯蔵性に優れ長寿命の非水二次電池を構成することが可能となる。
 前記リチウム含有複合酸化物にGaを含有させた場合には、一次粒子の成長が促進されて前記リチウム含有複合酸化物の結晶性が向上するため、活性点を低減することができ、正極合剤層を形成するための塗料としたときの経時安定性が向上し、電解液との不可逆な反応を抑制することができる。また、前記リチウム含有複合酸化物の結晶構造内にGaを固溶することにより、結晶格子の層間隔を拡張し、Liの挿入および脱離による格子の膨張収縮の割合を低減することができる。このため、結晶構造の可逆性を高めることができ、より充放電サイクル寿命の高い非水二次電池を構成することが可能となる。特に、前記リチウム含有複合酸化物がMnを含有する場合には、一次粒子が成長し難くなる傾向があるため、Gaの添加がより有効である。
 前記Ge、Ca、Sr、Ba、B、ZrおよびGaより選ばれる元素M’の効果を得られやすくするためには、その割合は、元素群Mの全元素中で0.1mol%以上であることが好ましい。また、これら元素M’の元素群Mの全元素中における割合は、10mol%以下であることが好ましい。
 元素群MにおけるNi、CoおよびMn以外の元素は、前記リチウム含有複合酸化物中に均一に分布していてもよく、また、粒子表面などに偏析していてもよい。
 また、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群M中のCoの割合bとMnの割合cとの関係がb>cである場合には、前記リチウム含有複合酸化物の粒子の成長を促して、正極(その正極合剤層)での充填密度が高く、より可逆性の高いリチウム含有複合酸化物とすることができ、かかる正極を用いた電池の容量の更なる向上が期待できる。
 他方、前記リチウム含有複合酸化物を表す前記一般組成式(2)において、元素群M中のCoの割合bとMnの割合cとの関係がb≦cである場合には、より熱安定性の高いリチウム含有複合酸化物とすることができ、これを用いた電池の安全性の更なる向上が期待できる。
 前記の組成を有するリチウム含有複合酸化物は、その真密度が4.55~4.95g/cmと大きな値になり、高い体積エネルギー密度を有する材料となる。なお、Mnを一定範囲で含むリチウム含有複合酸化物の真密度は、その組成により大きく変化するが、前記のような狭い組成範囲では構造が安定化され、均一性を高めることができるため、例えばLiCoOの真密度に近い大きな値となるものと考えられる。また、リチウム含有複合酸化物の質量当たりの容量を大きくすることができ、可逆性に優れた材料とすることができる。
 前記リチウム含有複合酸化物は、特に化学量論比に近い組成のときに、その真密度が大きくなるが、具体的には、前記一般組成式(2)において、-0.15≦y≦0.15とすることが好ましく、yの値をこのように調整することで、真密度および可逆性を高めることができる。yは、-0.05以上0.05以下であることがより好ましく、この場合には、リチウム含有複合酸化物の真密度を4.6g/cm以上と、より高い値にすることができる。
 正極活物質として使用するリチウム含有複合酸化物の組成分析は、ICP(Inductive Coupled Plasma)法を用いて以下のように行うことができる。まず、測定対象となるリチウム含有複合酸化物を0.2g採取して100mL容器に入れる。その後、純水5mL、王水2mL、純水10mLを順に加えて加熱溶解し、冷却後、さらに25倍に希釈してICP(JARRELASH社製「ICP-757」)にて組成を分析する(検量線法)。そして、この分析で得られた結果から、リチウム含有複合酸化物の組成式を導くことができる。
 前記一般組成式(2)で表されるリチウム含有複合酸化物は、Li含有化合物(水酸化リチウム・一水和物など)、Ni含有化合物(硫酸ニッケルなど)、Co含有化合物(硫酸コバルトなど)、Mn含有化合物(硫酸マンガンなど)、および元素群Mに含まれるその他の元素を含有する化合物(硫酸アルミニウム、硫酸マグネシウムなど)を混合し、焼成するなどして製造することができる。また、より高い純度で前記リチウム含有複合酸化物を合成するには、元素群Mに含まれる複数の元素を含む複合化合物(水酸化物、酸化物など)とLi含有化合物とを混合し、焼成することが好ましい。
 焼成条件は、例えば、800~1050℃で1~24時間とすることができるが、一旦焼成温度よりも低い温度(例えば、250~850℃)まで加熱し、その温度で保持することにより予備加熱を行い、その後に焼成温度まで昇温して反応を進行させることが好ましい。予備加熱の時間については特に制限はないが、通常、0.5~30時間程度とすればよい。また、焼成時の雰囲気は、酸素を含む雰囲気(すなわち、大気中)、不活性ガス(アルゴン、ヘリウム、窒素など)と酸素ガスとの混合雰囲気、酸素ガス雰囲気などとすることができるが、その際の酸素濃度(体積基準)は、15%以上であることが好ましく、18%以上であることが好ましい。
 本発明の非水二次電池においては、正極活物質に、前記一般組成式(2)で表されるリチウム含有複合酸化物のみを用いてもよく、前記一般組成式(2)で表されるリチウム含有複合酸化物と共に、その他の正極活物質を使用してもよい。
 前記一般組成式(2)で表されるリチウム含有複合酸化物と併用し得る他の正極活物質としては、例えば、LiCoOなどのリチウムコバルト酸化物;LiMnO、LiMnOなどのリチウムマンガン酸化物;LiNiOなどのリチウムニッケル酸化物;LiMn、Li4/3Ti5/3などのスピネル構造のリチウム含有複合酸化物;LiFePOなどのオリビン構造のリチウム含有複合酸化物;前記の酸化物を基本組成とし各種元素で置換した酸化物;などのリチウム含有複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
 なお、本発明の非水二次電池においては、正極活物質の全量中、前記一般組成式(2)で表されるリチウム含有複合酸化物の含有量を、85質量%以上とすることが好ましく、100質量%〔すなわち、前記一般組成式(2)で表されるリチウム含有複合酸化物のみを使用する〕とすることが特に好ましい。
 正極合剤層には、通常、正極活物質以外に、導電助剤およびバインダを含有させる。正極合剤層に係る導電助剤としては、例えば、天然黒鉛(鱗片状黒鉛など)、人造黒鉛などの黒鉛(黒鉛質炭素材料);アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカ-ボンブラック;炭素繊維;などの炭素材料などが挙げられる。また、正極合剤層に係るバインダには、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)などを用いることができる。
 正極は、例えば、正極活物質、導電助剤およびバインダなどを、N-メチル-2-ピロリドン(NMP)や水などの溶剤に分散させたペースト状やスラリー状の正極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、正極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。
 また、正極は、非水二次電池内の他の部材と電気的に接続するための集電タブを有している。正極の集電タブは、例えば、集電体に正極合剤層を形成しない露出部を設けて、それを集電タブとして利用したり、集電体の露出部に、厚みが50~300μmの金属箔(アルミニウム箔、ニッケル箔など)からなる集電タブを溶接したりして形成することができる。
 正極の集電体は、従来から知られているリチウムイオン二次電池の正極に使用されているものと同様のものが使用でき、例えば、厚みが10~30μmのアルミニウム箔が好ましい。
 正極合剤層の組成としては、例えば、正極活物質の量が60~95質量%であることが好ましく、バインダの量が1~15質量%であることが好ましく、導電助剤の量が3~20質量%であることが好ましい。
 正極合剤層の空隙率は、25%以上35%以下である。正極合剤層の空隙率を前記のように制限することで、正極合剤層内にある程度の空隙を持たせて、電解液のパスラインを確保できるため、非水二次電池の充放電負荷特性を高めることが可能となる。
 本明細書でいう合剤層(正極合剤層および負極合剤層)の空隙率は、集電体上に形成された正極合剤層および負極合剤層について、一般的に、水銀圧入法による細孔分布測定を行うことにより算出可能である。
 正極合剤層の密度は、3.25g/cm以下であることが好ましく、3.20g/cm以下であることがより好ましい。正極合剤層の密度を前記のように制限することで、正極合剤層内にある程度の空隙を持たせて、電解液のパスラインを確保できるため、非水二次電池の充放電負荷特性および充放電サイクル特性をより高めることが可能となる。
 また、正極の容量低下を抑える観点からは、正極合剤層の密度は、2.5g/cm以上であることが好ましく、2.8g/cm以上であることがより好ましい。
 本明細書でいう合剤層(正極合剤層および負極合剤層)の密度は、以下の方法により測定される値である。電極(正極または負極)を所定面積に切り取り、その質量を最小目盛0.1mgの電子天秤を用いて測定し、集電体の質量を差し引いて合剤層の質量を算出する。一方、電極の全厚を最小目盛1μmのマイクロメーターで10点測定し、これらの測定値から集電体の厚みを差し引いた値の平均値と、面積とから、合剤層の体積を算出する。そして、前記合剤層の質量を前記体積で割ることにより合剤層の密度を算出する。
 本発明の非水二次電池に係る負極は、負極活物質を含有する負極合剤層を有するものであり、例えば、負極合剤層が、集電体の片面または両面に形成されたものである。
 負極活物質には、天然黒鉛(鱗片状黒鉛)、人造黒鉛、膨張黒鉛などの黒鉛を使用することが好ましい。
 負極活物質には、黒鉛のみを使用してもよいが、黒鉛と他の負極活物質とを併用してもよい。黒鉛と併用し得る他の負極活物質としては、例えば、ピッチを焼かして得られるコークスなどの易黒鉛化性炭素質材料;フルフリルアルコール樹脂(PFA)やポリパラフェニレン(PPP)およびフェノール樹脂を低温焼成して得られる非晶質炭素などの難黒鉛化性炭素質材料;などの炭素材料が挙げられる。また、炭素材料の他に、リチウムやリチウム含有化合物も負極活物質として黒鉛と併用することができる。リチウム含有化合物としては、Li-Alなどのリチウム合金や、Si、Snなどのリチウムとの合金化が可能な元素を含む合金が挙げられる。更にSn酸化物やSi酸化物などの酸化物系材料も黒鉛と併用することができる。
 前記の負極活物質の中でも、特に電池の高容量化を図るには、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である。以下、当該材料を「SiO」という)を用いることが好ましい。
 SiOは、Siの微結晶または非晶質相を含んでいてもよく、この場合、SiとOの原子比は、Siの微結晶または非晶質相のSiを含めた比率となる。すなわち、SiOには、非晶質のSiOマトリックス中にSi(例えば、微結晶Si)が分散した構造のものが含まれ、この非晶質のSiOと、その中に分散しているSiを合わせて、前記の原子比xが0.5≦x≦1.5を満足していればよい。例えば、非晶質のSiOマトリックス中にSiが分散した構造で、SiOとSiのモル比が1:1の材料の場合、x=1であるので、構造式としてはSiOで表記される。このような構造の材料の場合、例えば、X線回折分析では、Si(微結晶Si)の存在に起因するピークが観察されない場合もあるが、透過型電子顕微鏡で観察すると、微細なSiの存在が確認できる。
 なお、SiOは導電性が低いことから、例えば、SiOの表面を炭素で被覆して用いてもよく、これにより負極における導電ネットワークを、より良好に形成することができる。
 SiOの表面を被覆するための炭素には、例えば、低結晶性炭素、カーボンナノチューブ、気相成長炭素繊維などを使用することができる。
 なお、炭化水素系ガスを気相中で加熱し、炭化水素系ガスの熱分解により生じた炭素を、SiO粒子の表面上に堆積する方法〔気相成長(CVD)法〕で、SiOの表面を炭素で被覆すると、炭化水素系ガスがSiO粒子の隅々にまで行き渡り、粒子の表面や表面の空孔内に、導電性を有する炭素を含む薄くて均一な皮膜(炭素被覆層)を形成できることから、少量の炭素によってSiO粒子に均一性よく導電性を付与できる。
 CVD法で使用する炭化水素系ガスの液体ソースとしては、トルエン、ベンゼン、キシレン、メシチレンなどを用いることができるが、取り扱いやすいトルエンが特に好ましい。これらを気化させる(例えば、窒素ガスでバブリングする)ことにより炭化水素系ガスを得ることができる。また、メタンガスやエチレンガス、アセチレンガスなどを用いることもできる。
 CVD法の処理温度としては、例えば、600~1200℃であることが好ましい。また、CVD法に供するSiOは、公知の手法で造粒した造粒体(複合粒子)であることが好ましい。
 SiOの表面を炭素で被覆する場合、炭素の量は、SiO:100質量部に対して、5質量部以上であることが好ましく、10質量部以上であることがより好ましく、また、95質量部以下であることが好ましく、90質量部以下であることがより好ましい。
 なお、SiOは、他の高容量負極材料と同様に電池の充放電に伴う体積変化が大きいため、負極活物質には、SiOと黒鉛とを併用することが好ましい。これにより、SiOの使用による高容量化を図りつつ、電池の充放電に伴う負極の膨張収縮を抑えて、充放電サイクル特性をより高く維持することが可能となる。
 負極活物質にSiOと黒鉛とを併用する場合、SiOxと黒鉛との合計を100質量%としたときのSiOの比率は、SiOの使用による高容量化効果を良好に確保する観点から2質量%以上とすることが好ましく、また、SiOによる負極の膨張収縮を抑制する観点から20質量%以下とすることが好ましい。
 なお、本発明の非水二次電池においては、負極活物質の全量中、黒鉛の含有量を80質量%以上とすることが好ましい。
 負極合剤層には、通常、負極活物質以外にバインダを含有させる。負極合剤層に係るバインダとしては、正極合剤層に係るものとして先に例示した各種バインダと同じものが挙げられる。
 また、負極合剤層には、必要に応じて導電助剤を含有させることもできる。負極合剤層に係る導電助剤としては、正極合剤層に係るものとして先に例示した各種導電助剤と同じものが挙げられる。
 負極は、例えば、負極活物質およびバインダ、更には必要に応じて導電助剤などを、水やNMPなどの溶剤に分散させたペースト状やスラリー状の負極合剤含有組成物を調製し(ただし、バインダは溶剤に溶解していてもよい)、これを集電体の片面または両面に塗布し、乾燥した後に、必要に応じてカレンダー処理を施す工程を経て製造される。ただし、負極は、前記の製造方法で製造されたものに限定される訳ではなく、他の方法で製造したものであってもよい。
 また、負極は、非水二次電池内の他の部材と電気的に接続するための集電タブを有している。負極の集電タブは、例えば、集電体に負極合剤層を形成しない露出部を設けて、それを集電タブとして利用したり、集電体の露出部に、厚みが50~300μmの金属箔(ニッケル箔など)からなる集電タブを溶接したりして形成することができる。
 負極の集電体には、例えば、銅、ステンレス鋼、ニッケル、チタンまたはそれらの合金などからなる箔、パンチドメタル、エキスパンドメタル、網などを用い得るが、通常、厚みが5~30μmの銅箔が好適に用いられる。
 負極合剤層の組成としては、例えば、負極活物質の含有量が70~99質量%であることが好ましく、バインダの含有量が1~30質量%であることが好ましい。また、導電助剤を使用する場合には、負極合剤層における導電助剤の含有量は、1~20質量%であることが好ましい。
 負極合剤層の空隙率は、25%以上40%以下である。負極合剤層の空隙率を前記のように制限することで、負極合剤層内にある程度の空隙を持たせて、電解液のパスラインを確保できるため、非水二次電池の充放電負荷特性を高めることが可能となる。
 負極合剤層の密度は、1.55g/cm以下であることが好ましい。負極合剤層の密度を前記のように制限することで、負極合剤層内にある程度の空隙を持たせて、電解液のパスラインを確保できるため、非水二次電池の充放電負荷特性および充放電サイクル特性をより高めることが可能となる。
 また、負極の容量低下を抑える観点からは、負極合剤層の密度は、1.3g/cm以上であることが好ましい。
 本発明においては、正極合剤層および負極合剤層をある程度厚くしても優れた充放電負荷特性を確保できるが、正極合剤層または負極合剤層があまりに厚すぎると、電池の充放電負荷特性向上効果が小さくなる虞がある。よって、正極合剤層の厚みと負極合剤層の厚みとの和(電池内でセパレータを挟んで対向している正極合剤層と負極合剤層との厚みの和)は250μm以下であることが好ましく、200μm以下であることがより好ましい。また、正極合剤層と負極合剤層の厚みの和は、120μm以上であることが好ましい。
 なお、正極合剤層の厚み(集電体の両面に正極合剤層が形成されている場合には、片面あたりの厚み)は50~100μmであることが好ましく、また、負極合剤層の厚み(集電体の両面に負極合剤層が形成されている場合には、片面あたりの厚み)は70~130μmであることが好ましい。
 前記の正極と前記の負極とは、セパレータを介して積層した積層体(積層電極体)や、この積層体を渦巻状に巻回した巻回体(巻回電極体)の形態で、本発明の非水二次電池に使用される。
 積層電極体の場合、複数枚の正極と複数枚の負極とを、複数枚のセパレータを介して積層して形成する方法が採用できる。また、この他にも、帯状のセパレータ(下側セパレータ)の片面上に一定間隔で正極を複数個配置し、各正極の上に、各正極の形状に合わせて切断したセパレータ(上側セパレータ)を載せ、上側セパレータの周縁部(正極の集電タブが引き出されていない部分の周縁部)を熱融着などして袋状としたセパレータの部分で各正極を包んだ後、下側セパレータの正極とは面していない箇所で、つづら折りに折り畳み、折り畳んだセパレータの、袋状の部分に正極を内包した箇所同士の間や最外部に負極を配置することで、積層電極体を形成することもできる。
 更に、下側セパレータに帯状のセパレータを使用すると共に、上側セパレータにも帯状のセパレータを使用し、下側セパレータの片面上に一定間隔で正極を複数個配置し、その正極配置面に上側セパレータを載せ、各正極の周縁部近傍(正極の集電タブが引き出されていない部分の周縁部近傍)で、下側セパレータと上側セパレータとを熱融着などして袋状としたセパレータの部分に各正極を包んだ後、下側セパレータおよび上側セパレータの正極とは面していない箇所で、つづら折りに折り畳み、折り畳んだセパレータの、袋状の部分に正極を内包した箇所同士の間や最外部に負極を配置することでも、積層電極体を形成することができる。
 本発明の非水二次電池に係る電極体が積層電極体の場合には、複数の正極や複数の負極を有する積層電極体の場合でも、各正極および各負極のそれぞれが集電タブを有しているために、一つの集電タブで集電を担う電極(正極および負極)の面積が比較的小さい。よって、積層電極体を有する電池の場合には、直流抵抗が小さくなるため、充放電負荷特性を高めることが可能となる。
 他方、巻回電極体の場合には、一方の端面において前記正極から突出した複数の正極集電タブと、電極体の一方の端面において前記負極から突出した複数の負極集電タブとを有するようにする。
 図1に、本発明の非水二次電池に係る巻回電極体の一例を模式的に表す斜視図を示す。巻回電極体1は、一方の端面(図中上側の端面)において正極から突出した複数の正極集電タブ10と、同端面において負極から突出した複数の負極集電タブ20とを有している。
 巻回電極体を構成する正極および負極は、通常、帯状の長尺のものが使用されるが、このような正極および負極が、それぞれ1つの集電タブしか有していない場合には、1つの集電タブで集電を担う電極の面積が、積層電極体に係る電極の各集電タブに比べて大きく、直流抵抗が大きくなりやすい。よって、巻回電極体の場合には、これを構成する正極および負極に、それぞれ複数の集電タブを設けることで、電池の直流抵抗を小さくして、充放電負荷特性を向上させる。
 巻回電極体における正極の集電タブおよび負極の集電タブの数は、例えば、3以上であればよく、また、それらの上限としては、巻回数の2倍とすればよい。
 本発明の非水二次電池に係るセパレータとしては、強度が十分で、かつ非水電解質を多く保持できるものがよく、厚さが5~50μmで開口率が30~70%の、ポリエチレン(PE)やポリプロピレン(PP)などのポリオレフィン製の微多孔膜を用いることができる。セパレータを構成する微多孔膜は、例えば、PEのみを使用したものやPPのみを使用したものであってもよく、エチレン-プロピレン共重合体を含んでいてもよく、また、PE製の微多孔膜とPP製の微多孔膜との積層体であってもよい。
 また、非水二次電池に係るセパレータには、透気度が250sec/100ml以下のものを用いることが好ましい。前記の透気度を有するものであれば、電解液のパスラインを確保できるため、非水二次電池の充放電負荷特性および充放電サイクル特性を高めることが可能となる。また、透気度が小さくなりすぎるとセパレータとしての機械的強度が低下し内的、外的要因による電池安全性が悪化することから、透気度が90sec/100ml以上のものが好ましい。
 本明細書でいうセパレータの透気度は、JIS P 8117に準拠した方法で測定され、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値である。
 また、非水二次電池に係るセパレータには、融点が140℃以下の樹脂を主体とする多孔質層(I)と、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とから構成された積層型のセパレータを使用することができる。ここで、「融点」とはJIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味し、「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。
 前記積層型のセパレータに係る多孔質層(I)は、主にシャットダウン機能を確保するためのものであり、非水二次電池が多孔質層(I)の主体となる成分である樹脂の融点以上に達したときには、多孔質層(I)に係る樹脂が溶融してセパレータの空孔を塞ぎ、電気化学反応の進行を抑制するシャットダウンを生じる。
 多孔質層(I)の主成分となる融点が140℃以下の樹脂としては、例えばPEが挙げられ、その形態としては、非水二次電池に用いられる微多孔膜や、不織布などの基材にPEの粒子を塗布したものが挙げられる。ここで、多孔質層(I)の全構成成分中において、主体となる融点が140℃以下の樹脂の体積は、50体積%以上であり、70体積%以上であることがより好ましい。多孔質層(I)を前記PEの微多孔膜で形成する場合は100体積%となる。
 前記積層型のセパレータに係る多孔質層(II)は、非水二次電池の内部温度が上昇した際にも正極と負極との直接の接触による短絡を防止する機能を備えたものであり、150℃以下の温度で溶融しない樹脂または耐熱温度が150℃以上の無機フィラーによって、その機能を確保している。すなわち、電池が高温となった場合には、喩え多孔質層(I)が収縮しても、収縮し難い多孔質層(II)によって、セパレータが熱収縮した場合に発生し得る正負極の直接の接触による短絡を防止することがでる。また、この耐熱性の多孔質層(II)がセパレータの骨格として作用するため、多孔質層(I)の熱収縮、すなわちセパレータ全体の熱収縮自体も抑制できる。
 多孔質層(II)を150℃以下の温度で溶融しない樹脂を主体として形成する場合、その形態としては、例えば、150℃以下の温度で溶融しない樹脂で形成された微多孔膜(例えば前述のPP製の電池用微多孔膜)を多孔質層(I)に積層させる形態、150℃以下の温度で溶融しない樹脂の微粒子を含む多孔質層(II)形成用の組成物(塗液)を多孔質層(I)に塗布して、150℃以下の温度で溶融しない樹脂の微粒子を含む多孔質層(II)を積層させる塗布積層型の形態が挙げられる。
 150℃以下の温度で溶融しない樹脂の微粒子を構成する樹脂としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子;PP、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリテトラフルオロエチレン、ポリアクリロニトリル、アラミド、ポリアセタールなどの耐熱性高分子;が挙げられる。
 150℃以下の温度で溶融しない樹脂の微粒子の平均粒子径は、例えば、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、10μm以下であることが好ましく、2μm以下であることがより好ましい。
 本明細書でいう微粒子(150℃以下の温度で溶融しない樹脂の微粒子、耐熱温度が150℃以上の無機フィラー)の平均粒子径は、レーザー散乱粒度分布計(例えば、堀場製作所製「LA-920」)を用い、負極活物質を溶解しない媒体に分散させて測定した体積基準の積算分率における50%での粒径(D50%)である。
 前記150℃以下の温度で溶融しない樹脂の微粒子の量は、多孔質層(II)に主体として含まれるものであるため、多孔質層(II)の構成成分の全体積(空孔部分を除く全体積)中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましく、また、99体積%以下であることが好ましい。
 多孔質層(II)を耐熱温度が150℃以上の無機フィラーを主体として形成する場合には、耐熱温度が150℃以上の無機フィラーを含む多孔質層(II)形成用の組成物(塗液)を多孔質層(I)に塗布して、耐熱温度が150℃以上の無機フィラーを含む多孔質層(II)を積層させる塗布積層型の形態が挙げられる。
 多孔質層(II)に係る無機フィラーは、耐熱温度が150℃以上で、非水二次電池の有する非水電解質に対して安定であり、更に非水二次電池の作動電圧範囲において酸化還元され難い電気化学的に安定なものであればよいが、分散などの点から微粒子であることが好ましく、また、アルミナ、シリカ、ベーマイトが好ましい。アルミナ、シリカ、ベーマイトは、耐酸化性が高く、粒径や形状を所望の数値などに調整することが可能であるため、多孔質層(II)の空孔率を精度よく制御することが容易となる。なお、耐熱温度が150℃以上の無機フィラーは、例えば前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。また、耐熱温度が150℃以上の無機フィラーと、前記の150℃以下の温度で溶融しない樹脂の微粒子とを併用しても差し支えない。
 多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの形状については特に制限はなく、略球状(真球状を含む)、略楕円体状(楕円体状を含む)、板状などの各種形状のものを使用できる。
 また、多孔質層(II)に係る耐熱温度が150℃以上の無機フィラーの平均粒子径(板状フィラーおよび他形状フィラーの平均粒子径。以下同じ。)は、小さすぎるとイオンの透過性が低下することから、0.3μm以上であることが好ましく、0.5μm以上であることがより好ましい。また、耐熱温度が150℃以上の無機フィラーが大きすぎると、電気特性が劣化しやすくなることから、その平均粒子径は、5μm以下であることが好ましく、2μm以下であることがより好ましい。
 多孔質層(II)における耐熱温度が150℃以上の無機フィラーは、多孔質層(II)に主体として含まれるものであるため、多孔質層(II)における量は、多孔質層(II)の構成成分の全体積(空孔部分を除く全体積)中、50体積%以上であり、70体積%以上であることが好ましく、80体積%以上であることがより好ましく、90体積%以上であることが更に好ましく、また、99体積%以下であることが好ましい。多孔質層(II)中の無機フィラーを前記のように高含有量とすることで、非水二次電池が高温となった際にも、セパレータ全体の熱収縮を良好に抑制することができ、正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。
 なお、耐熱温度が150℃以上の無機フィラーと150℃以下の温度で溶融しない樹脂の微粒子とを併用する場合には、これらの両者が合わさって多孔質層(II)の主体をなしていればよく、具体的には、これらの合計量を、多孔質層(II)の構成成分の全体積(空孔部分を除く全体積)中、50体積%以上とすればよく、また、70体積%以上とすることが好ましく、80体積%以上とすることがより好ましく、90体積%以上とすることが更に好ましく、また、99体積%以下であることが好ましい。これにより、多孔質層(II)中の無機フィラーを前記のように高含有量とした場合と同様の効果を確保することができる。
 多孔質層(II)には、150℃以下の温度で溶融しない樹脂の微粒子同士または耐熱温度が150℃以上の無機フィラー同士を結着したり、多孔質層(II)と多孔質層(I)との一体化したりするなどのために、有機バインダを含有させることが好ましい。有機バインダとしては、エチレン-酢酸ビニル共重合体(EVA、酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、SBR、CMC、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。
 前記塗布積層型のセパレータは、例えば、150℃以下の温度で溶融しない樹脂の微粒子または耐熱温度が150℃以上の無機フィラーなどを含有する多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を、多孔質層(I)を構成するための微多孔膜の表面に塗布し、所定の温度に乾燥して多孔質層(II)を形成することにより製造することができる。
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の微粒子または耐熱温度が150℃以上の無機フィラーの他、必要に応じて有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、有機バインダについては溶媒に溶解させることもできる。多孔質層(II)形成用組成物に用いられる溶媒は、無機フィラーなどを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般的な有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)を適宜加えて界面張力を制御することもできる。
 多孔質層(II)形成用組成物は、150℃以下の温度で溶融しない樹脂の微粒子または耐熱温度が150℃以上の無機フィラー、および有機バインダなどを含む固形分含量を、例えば10~80質量%とすることが好ましい。
 前記積層型のセパレータにおいて、多孔質層(I)と多孔質層(II)とは、それぞれ1層ずつである必要はなく、複数の層がセパレータ中にあってもよい。例えば、多孔質層(II)の両面に多孔質層(I)を配置した構成としたり、多孔質層(I)の両面に多孔質層(II)を配置した構成としたりしてもよい。ただし、層数を増やすことで、セパレータの厚みを増やして電池の内部抵抗の増加やエネルギー密度の低下を招く虞があるので、層数を多くしすぎるのは好ましくなく、前記積層型のセパレータ中の多孔質層(I)と多孔質層(II)との合計層数は5層以下であることが好ましい。
 非水二次電池に係るセパレータ(ポリオレフィン製の微多孔膜からなるセパレータや、前記積層型のセパレータ)の厚みは、10~30μmであることがより好ましい。
 また、前記積層型のセパレータにおいては、多孔質層(II)の厚み〔セパレータが多孔質層(II)を複数有する場合は、その総厚み〕は、多孔質層(II)による前記の各作用をより有効に発揮させる観点から、3μm以上であることが好ましい。ただし、多孔質層(II)が厚すぎると、電池のエネルギー密度の低下を引き起こすなどの虞があることから、多孔質層(II)の厚みは、8μm以下であることが好ましい。
 更に、前記積層型のセパレータにおいては、多孔質層(I)の厚み〔セパレータが多孔質層(I)を複数有する場合は、その総厚み。以下同じ。〕は、多孔質層(I)の使用による前記作用(特にシャットダウン作用)をより有効に発揮させる観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。ただし、多孔質層(I)が厚すぎると、電池のエネルギー密度の低下を引き起こす虞があることに加えて、多孔質層(I)が熱収縮しようとする力が大きくなり、セパレータ全体の熱収縮を抑える作用が小さくなる虞がある。そのため、多孔質層(I)の厚みは、25μm以下であることが好ましく、20μm以下であることがより好ましく、14μm以下であることが更に好ましい。
 セパレータ全体の空孔率としては、電解液の保液量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。セパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(3)式を用いて各成分iについての総和を求めることにより計算できる。
  P ={1-(m/t)/(Σa・ρ)}×100 (3)
ここで、前記式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)、である。
 また、前記積層型のセパレータの場合、前記(3)式において、mを多孔質層(I)の単位面積あたりの質量(g/cm)とし、tを多孔質層(I)の厚み(cm)とすることで、前記(2)式を用いて多孔質層(I)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(I)の空孔率は、30~70%であることが好ましい。
 更に、前記積層型のセパレータの場合、前記(3)式において、mを多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを多孔質層(II)の厚み(cm)とすることで、前記(2)式を用いて多孔質層(II)の空孔率:P(%)を求めることもできる。この方法により求められる多孔質層(II)の空孔率は、20~60%であることが好ましい。
 本発明の非水二次電池に係る電解液には、非水溶媒にリチウム塩を溶解させた溶液(非水電解液)であって、前記式(1)で表されるD値が0.4以下のものが使用される。
 一般に、非水溶媒の動粘度(cSt)が限りなく小さく、電解液の電気伝導度(mS/cm)が大きいほど理想状態の電解液に近づくため、D値(cSt/mS/cm)をコントロールすることが重要である。非水溶媒の種類により粘度は異なり、また、リチウム塩濃度を大きくすると、電気伝導度は大きくなるが、それに比例して粘度も大きくなるため、非水溶媒の組み合わせとリチウム塩濃度とのバランスを調整することにより、前記式(1)で表されるD値をコントロールする。
 電解液に係る非水溶媒の動粘度は、5.0cSt以下であることが好ましく、4.0cSt以下であることがより好ましく、また、2.4cSt以上であることが好ましい。
 本明細書でいう非水溶媒の動粘度は、以下の方法により測定される値である。キャノン-フェンスケ粘度計を用い、恒温層に静置した非水電解液の温度が25℃に達したら、測定を開始する。管を吸引して測時球の上標線より5~10mm上まで液面を上げた後に、自然流下させて液面が測時球の上下標線間を通過するために要する時間(落下秒数)を測定する。同様の測定を3回以上繰り返し行い、2回の流出時間が0.2%以内で一致したときは、その平均値を用い、下記式を用いて動粘度を算出する。
 動粘度(cSt) = 落下秒数×粘度計定数
 電解液の電気伝導度は、8.0mS/cm以上であることが好ましく、また、12.0mS/cm以下であることがより好ましく、9.0mS/cm以下であることがより好ましい。
 電解液に係る非水溶媒には、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、およびジエチルカーボネート(DEC)から選択される少なくとも1種と、エチレンカーボネート(EC)とを共に使用する。ECを含む複数の溶媒の併用によってD値を0.4以下にすることで、電解液のリチウムイオン伝導度を良好にしつつ、その粘度を低く抑えることができるため、広い温度範囲での電池の充放電負荷特性を高めることができる。
 電解液に係る非水溶媒の全量100体積%中の、ECの含有量は10体積%以上35体積%以下であり、D値が0.4以下となるように残りの非水溶媒の混合量を調整することですることで、非水二次電池の広い温度範囲での充放電負荷特性を高めることが可能となる。
 電解液に係る非水溶媒には、ECおよびDMC、EMC、DEC以外の他の非水溶媒を共に使用してもよい。共に使用し得る他の非水溶媒としては、例えば、プロピレンカーボネート、ブチレンカーボネートなどの環状カーボネート;メチルプロピルカーボネート(MPC)などの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられる。
 ただし、非水溶媒中のEC、DMC、EMCおよびDEC以外の他の非水溶媒の割合が多くなり過ぎると、EC、DMC、EMCおよびDECを使用することによる前記の効果が小さくなる虞がある。よって、非水溶媒の全量100体積%中の、EC、DMC、EMCおよびDECとの合計含有量は、95体積%以下であることが好ましい。よって、EC、DMC、EMCおよびDEC以外の他の非水溶媒を使用する場合には、EC、DMC、EMCおよびDECの合計含有量が前記の値を満たす範囲で使用することが好ましい。
 電解液に係るリチウム塩としては、非水溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
 電解液におけるリチウム塩濃度は、0.5~1.5mol/lであることが好ましく、0.9~1.25mol/lであることがより好ましい。
 非水二次電池に使用する電解液は、環状スルホン酸エステルを含有していることが好ましい。本発明で使用する環状スルホン酸エステルは、環状構造の一部にスルホン酸エステル構造を有する構造であれば、特にその種類は限定されない。本発明で使用する環状スルホン酸エステルの具体例として、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-ブタンスルトンなどを挙げることができる。これらの中でも、1,3-プロパンスルトンを使用することが好ましい。電池内においては、正極と電解液とが接触することで反応してガスを発生させるが、環状スルホン酸エステル(特に1,3-プロパンスルトン)を含有する電解液を用いた電池では、充放電によって正極表面に環状スルホン酸エステル由来の皮膜が形成され、この皮膜が、正極と電解液との反応を抑制するため、電池の貯蔵特性がより向上する。
 非水二次電池に使用する電解液中の環状スルホン酸エステルの含有量は、その使用による前記の効果を良好に確保する観点から、0.3質量%以上であることが好ましい。ただし、電解液中の環状スルホン酸エステルの量が多すぎると、正極表面に形成される皮膜が厚くなり過ぎて抵抗を高めてしまう虞がある。よって、非水二次電池に使用する電解液中の1,3-プロパンスルトンの含有量は、3.0質量%以下であることが好ましい。
 また、非水二次電池に使用する電解液は、ビニレンカーボネート(VC)を含有していることが好ましい。VCは電池の充放電によって負極表面に皮膜を形成し、これが負極と電解液との反応を抑制するため、電池の充放電サイクル特性がより向上する。
 非水二次電池に使用する電解液中のVCの含有量は、その使用による前記の効果を良好に確保する観点から、1質量%以上であることが好ましい。ただし、VCが負極表面で皮膜形成する際にガスが発生するため、電解液中のVCの量が多すぎると、電池の貯蔵特性向上効果が小さくなる虞がある。よって、非水二次電池に使用する電解液中のVCの含有量は、10質量%以下であることが好ましい。
 また、前記の電解液には、電池の充放電サイクル特性や貯蔵特性の更なる改善、過充電防止などの安全性を向上させる目的で、無水酸、スルホン酸エステル、ジニトリル、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤(これらの誘導体も含む)を適宜加えることもできる。
 また、前記の電解液に公知のポリマーなどのゲル化剤を添加してゲル状としたもの(ゲル状電解質)を、本発明の非水二次電池に使用してもよい。
 本発明のリチウムイオン電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、本発明のリチウムイオン二次電池を、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 従来では、非水二次電池の充放電負荷特性を高めるにあたり、その容量をある程度犠牲にすることが通常であったが、本発明では、例えば、1ItAの電流値で4.2Vになるまで定電流で充電し、引き続いて4.2Vの定電圧で電流値が0.04ItAになるまで充電した後に、1ItAの電流値で2.5Vになるまで放電を行う初回充放電後の容量が2.5Ah以上というように、非常に大きな容量となるように設計しても、0~50℃といった広い温度範囲で充放電負荷特性を高めることができる。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。なお、本実施例で示す非水電解液の25℃の伝導度は、東亜ディーケーケー社製の電気伝導度計「CM-31P」および電気伝導度セル「CT27112B」を用いて測定した値である。
実施例1
<正極の作製>
 正極材料(正極活物質)としてLi1.0Ni0.5Co0.2Mn0.3を94質量%(固形分全量中の含有量。以下同じ。)と、導電助剤としてアセチレンブラック4質量%と、バインダとしてPVDF2質量%と、脱水NMPとを混合して、正極合剤含有スラリーを得た。
 前記の正極合剤含有スラリーを、厚みが15μmのアルミニウム箔(正極集電体)の両面に塗布した後、120℃で12時間の真空乾燥を行って、アルミニウム箔の両面に正極合剤層を形成した。正極合剤層の形成の際には、アルミニウム箔の一部を残して露出部とした。その後、カレンダー処理を行って正極合剤層の厚みおよび密度を調節してから、集電体の露出部を含み、かつ正極合剤層を形成した部分が65mm×90mmの形状に切断して、正極を得た。得られた正極の正極合剤層は、片面あたりの厚みが50μmであり、空隙率は30%、密度が3.0g/cmであった。
<負極の作製>
 負極活物質である数平均粒子径が20μmの黒鉛:97.5質量部と、バインダであるSBR:1.5質量部と、増粘剤であるCMC:1質量部とに、水を加えて混合し、負極合剤含有ペーストを調製した。この負極合剤含有ペーストを厚みが10μmの銅箔の両面に塗布した後、120℃で12時間の真空乾燥を行って、銅箔の両面に負極合剤層を形成した。負極合剤層の形成の際には、銅箔の一部を残して露出部とした。その後、カレンダー処理を行って負極合剤層の厚みおよび密度を調節してから、集電体の露出部を含み、かつ負極合剤層を形成した部分が67mm×92mmの形状に切断して、負極を得た。得られた負極の負極合剤層は、片面あたりの厚みが59μmであり、空隙率が30%、密度が1.5g/cmであった。
<セパレータの作製>
 平均粒子径D50%が1μmのベーマイト5kgに、イオン交換水5kgと、分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで10時間解砕処理をして分散液を調製した。処理後の分散液を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状はほぼ板状であった。
 前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー〔多孔質層(II)形成用スラリー、固形分比率50質量%〕を調製した。
 非水二次電池用PE製微多孔質セパレータ〔多孔質層(I):厚み12μm、空孔率40%、平均孔径0.08μm、PEの融点135℃〕の片面にコロナ放電処理(放電量40W・min/m)を施し、この処理面に多孔質層(II)形成用スラリーをマイクログラビアコーターによって塗布し、乾燥して厚みが4μmの多孔質層(II)を形成して、積層型のセパレータを得た。このセパレータにおける多孔質層(II)の単位面積あたりの質量は5.5g/mで、ベーマイトの体積含有率は95体積%であり、空孔率は45%であり、積層型セパレータの透気度は100sec/100mlであった。
<電解液の調製>
 ECとDECとEMCとDMCとをEC:EMC:DMC=1:1:1(体積比)の比率で混合した混合溶媒に、LiPFを1.2mol/lの濃度で溶解させ、更に、0.5質量%となる量の1,3-プロパンスルトンと2.0質量%となる量のVCとを溶解させて、電解液を調製した。この電解液の電気伝導度は9.8mS/cmで、電解液に用いた前記混合溶媒の動粘度は2.48cStであり、D値は0.25であった。
<電池の組み立て>
 前記の正極13枚と前記の負極14枚とを、前記のセパレータを介して重ねて積層電極体とした。なお、前記の積層電極体においては、多孔質層(II)が正極と対向するようにセパレータを配置した。
 前記の積層電極体を2枚のアルミニウムラミネートフィルム(95mm×70mm)で挟み、積層電極体の上下に配置した両ラミネートフィルムの3辺を熱封止し、60℃で1日真空乾燥を行った後に、両ラミネートフィルムの残りの1辺から前記の非水電解液を注入した。その後、両ラミネートフィルムの残りの1辺を真空熱封止して、図2に示す外観で、図3に示す構造の非水二次電池を得た。
 ここで、図2および図3について説明すると、図2は非水二次電池を模式的に表す平面図であり、図3は、図2のA-A線断面図である。非水二次電池100は、2枚のラミネートフィルムで構成したラミネートフィルム外装体200内に、13枚の正極と14枚の負極とをセパレータを介して積層して構成した積層電極体2と、非水電解液(図示しない)とを収容しており、ラミネートフィルム外装体200は、その外周部において、上下のラミネートフィルムを熱融着することにより封止されている。なお、図3では、図面が煩雑になることを避けるために、ラミネートフィルム外装体200を構成している各層、並びに積層電極体を構成している各正極、各負極および各セパレータを区別して示していない。
 積層電極体2を構成する各正極は、電池100内で集電タブによって正極外部端子11と接続しており、また、図示していないが、積層電極体2を構成する各負極も、電池100内で集電タブによって負極外部端子21と接続している。そして、正極外部端子11および負極外部端子21は、外部の機器などと接続可能なように、片端側がラミネートフィルム外装体200の外側に引き出されている。
実施例2
 ECとDECとEMCとDMCとをEC:EMC:DMC=30:20:50(体積比)の比率で混合した混合溶媒に、LiPFを1.4mol/lの濃度で溶解させ、更に、0.5質量%となる量の1,3-プロパンスルトンと3.0質量%となる量のVCとを溶解させて、電解液を調製した。実施例1で調整した電解液から溶媒比を変更した以外は、実施例1と同様にして電解液を調製した。この電解液の電気伝導度は9.9mS/cmで、電解液に用いた前記混合溶媒の動粘度は3.4cStであり、D値は0.34であった。
 そして、前記の電解液を用いた以外は、実施例1と同様にして非水二次電池を作製した。
実施例3
 ECとDECとEMCとDMCとをEC:EMC:DMC=30:20:50(体積比)の比率で混合した混合溶媒に、LiPFを1.2mol/lの濃度で溶解させ、更に、0.5質量%となる量の1,3-プロパンスルトンと3.0質量%となる量のVCとを溶解させて、電解液を調製した。この電解液の電気伝導度は9.93mS/cmで、電解液に用いた前記混合溶媒の動粘度は3.48cStであり、D値は0.35であった。
 そして、前記の電解液を使用し、かつ積層型セパレータを、厚みが20μmで、透気度が180sec/100mlのものに変更した以外は、実施例1と同様にして非水二次電池を作製した。
実施例4
 積層型セパレータを、厚みが16μmで、透気度が200sec/100mlのものに変更した以外は、実施例3と同様にして非水二次電池を作製した。
実施例5
 SiO(体積平均粒径5.0μm)を沸騰床反応器中で約1000℃に加熱し、加熱された粒子にメタンと窒素ガスからなる25℃の混合ガスを接触させ、1000℃で60分間CVD処理を行った。このようにして前記混合ガスが熱分解して生じた炭素(以下「CVD炭素」ともいう)を複合粒子に堆積させて被覆層を形成し、SiOと炭素材料との複合体(炭素被覆SiO)を得た。
 被覆層形成前後の質量変化から前記SiOと炭素材料との複合体の組成を算出したところ、SiO:CVD炭素=85:15(質量比)であった。
 次に、前記のSiOと炭素材料との複合体と、数平均粒子径が20μmの黒鉛とを用いて、前記炭素被覆SiOを5質量%(固形分全量中の含有量、以下同じ)と、黒鉛93質量%と、バインダとしてCMC1質量%と、SBR1質量%と、更に水とを混合して負極合剤含有スラリーを調製した。
 そして、前記のスラリーを用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例2と同様にして非水二次電池を作製した。
比較例1
 カレンダー処理時の圧力を変えることで、正極合剤層の空隙率を20%とし、正極合剤層の密度を3.4g/cmとした以外は、実施例1と同様にして正極を作製した。また、カレンダー処理時の圧力を変えることで、負極合剤層の空隙率を20%とし、負極合剤層の密度を1.7g/cmとした以外は、実施例1と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして非水二次電池を作製した。
比較例2
 カレンダー処理時の圧力を変えることで、正極合剤層の空隙率を40%とし、正極合剤層の密度を2.6g/cmとした以外は、実施例1と同様にして正極を作製した。また、カレンダー処理時の圧力を変えることで、負極合剤層の空隙率を40%とし、負極合剤層の密度を1.3g/cmとした以外は、実施例1と同様にして負極を作製した。そして、前記の正極と前記の負極とを用いた以外は、実施例1と同様にして非水二次電池を作製した。
比較例3
 ECとDECとをEC:DEC=20:80(体積比)の比率で混合した混合溶媒に、LiPFを1.2mol/lの濃度で溶解させ、更に、0.5質量%となる量の1,3-プロパンスルトンと3.0質量%となる量のVCとを溶解させて、電解液を調製した。この電解液の電気伝導度は6.0mS/cmで、電解液に用いた前記混合溶媒の動粘度は10.8cStであり、D値は1.8であった。
 そして、前記の電解液を用いた以外は、実施例1と同様にして非水二次電池を作製した。
比較例4
 積層型セパレータを、厚みが20μmで、透気度が400sec/100mlのものに変更した以外は、実施例1と同様にして非水二次電池を作製した。
 実施例および比較例の各非水二次電池について、以下の評価を行った。
<充放電負荷特性評価>
 実施例および比較例の各非水二次電池について、23℃の温度下で、1ItAの電流値で4.2Vまで定電流充電を行い、引き続いて4.2Vの定電圧で電流値が0.05ItAになるまで充電を行い、1ItAでのCCCV充電容量を得た。その後に、1ItAで2.5Vになるまで放電を行った。
 次に、各非水二次電池について、1ItAでのCCCV充電容量測定時と同じ条件で定電流充電および定電圧充電を行った後に、1ItA、2ItA、5ItA、10ItA、15ItA、20ItAの各放電条件で、SOC100%(定電流充電および定電圧充電が完了した電池電圧4.2Vの状態)からSOC0%(電池電圧2.5Vの状態)まで放電を行い、実際にSOC0%となるまでの稼働時間を、各放電量の理論上の稼働時間(1Cなら3600秒、10Cなら360秒)で除し、得られた値を百分率で表して、稼働時間率を求めた。すなわち、前記の稼働時間率が高いほど、電池の充放電負荷特性が優れているといえる。
 実施例および比較例の各非水二次電池の構成および評価結果を表1、表2および図4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2内の「-」は、稼働時間率が20%以下であることを意味している。
 表1、表2および図4に示す通り、電極体の構造、正極合剤層および負極合剤層の空隙率、セパレータの透気度、並びに電解液にD値が適正な実施例1~5の非水二次電池は、充放電負荷特性評価時の稼働時間率が10ItAを超えるような大電流の放電条件でも高く、優れた充放電負荷特性を有していた。
 これに対し、比較例1~4の電池は、低レート(低電流値)である1ItAの放電条件では良好な稼働時間率を示すものの、10ItAを超えるような放電条件では稼働時間率が急激に低下した。比較例1の電池では、実施例1の電池に比べて正極合剤層および負極合剤層の空隙率が小さいため、高レート(高電流値)のときには合剤層の抵抗が増加して、稼働時間率が低下した。また、比較例2の電池では、実施例1の電池よりも正極合剤層の空隙率が大きい正極を用いており、正極合剤層内での導電パスが十分に確保できないため、高レート時のみならず低レート領域でも稼働時間率が低下した。比較例3の電池では使用した電解液のD値が高く、非水溶媒の粘度、すなわち電解液の粘度が大きすぎるために、電池内での導電パスが十分に確保できず、高レート時の稼働時間率が低下した。比較例4の電池では、セパレータの透気度が高く抵抗値が大きいために、高レート時の稼働時間率が低下した。
 これらの実施例、比較例の結果から、電極体の構造に加えて、電極、セパレータ、電解液の構成部材それぞれで、高レート時の抵抗を増大させる要因をなくすようにすることが、非水二次電池の充放電負荷特性を高める上で重要であるといえる。
<エネルギー密度比較>
 負極にSiOを使用した際のエネルギー密度を検証するため、実施例2および実施例5の各非水二次電池について、設計段階での電池の体積および重量を用いて、体積エネルギー密度と重量エネルギー密度とを求めた。その評価結果を表3に示す。なお、表3では、電池の体積エネルギー密度および重量エネルギー密度を、実施例2の電池の値を100%とした場合の相対値で示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す通り、負極活物質のうちの5質量%をSiO(炭素被覆SiO)とした負極を用いた実施例5の電池は、負極活物質に黒鉛のみを使用した実施例2の電池に比べて、体積エネルギー密度が5%、重量エネルギー密度が10%向上した。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の非水二次電池は、高容量で充放電負荷特性に優れており、こうした特性を生かして、携帯電話などの携帯機器の電源用途をはじめとして、従来から知られているリチウムイオン二次電池などの非水二次電池が適用されている各種用途に好ましく用いることができる。
 1   巻回電極体
 2   積層電極体
 10  正極集電タブ
 20  負極集電タブ
100  非水二次電池
 

Claims (11)

  1.  正極、負極およびセパレータを有する電極体、並びに非水溶媒にリチウム塩を溶解してなる電解液を備えた非水二次電池であって、
     前記電極体は、前記正極と前記負極とを、前記セパレータを介在させつつ積層した積層電極体、または、前記正極と前記負極とを、前記セパレータを介して渦巻状に巻回してなり、かつ前記電極体の一方の端面において前記正極から突出した複数の正極集電タブと、前記電極体の一方の端面において前記負極から突出した複数の負極集電タブとを備えた巻回電極体であり、
     前記正極は、正極活物質を含有する正極合剤層を有しており、前記正極合剤層の空隙率が25%~35%であり、
     前記負極は、負極活物質を含有する負極合剤層を有しており、前記負極合剤層の空隙率が25~40%であり、
     前記セパレータの透気度が250sec/100ml以下であり、
     前記電解液は、前記非水溶媒として、ジメチルカーボネート、エチルメチルカーボネートおよびジエチルカーボネートよりなる群から選択される少なくとも1種と、エチレンカーボネートとを含有しており、前記非水溶媒全量中におけるエチレンカーボネートの含有量が10~35体積%であり、かつ下記式(1)で表されるD値が0.4以下であり、
     充電深度100%の状態から充電深度0%の状態になるまで電流値a(ItA)で放電を行ったときの実稼働時間と、前記電流値aで放電を行ったときの理論稼働時間との比から求められる稼働時間率が、前記電流値aが10ItAを超えるいずれかの電流値において、75%以上であることを特徴とする非水二次電池。
     D値 = 非水溶媒の導電度(cSt)/電解液の電気伝導度(mS/cm) (1)
  2.  容量が2.5Ah以上である請求項1に記載の非水二次電池。
  3.  前記正極の正極合剤層は、下記一般組成式(2)
      Li1+yMO (2)
    〔前記一般組成式(2)中、-0.15≦y≦0.15であり、かつ、Mは、少なくともNi、CoおよびMnを含む3種以上の元素群を表し、Mを構成する各元素中で、Ni、CoおよびMnの割合(mol%)を、それぞれa、bおよびcとしたときに、25≦a≦90、5≦b≦35、5≦c≦35および10≦b+c≦70である。〕で表されるリチウム含有複合酸化物を前記正極活物質として含有しており、
     前記正極合剤層は、密度が3.25g/cm以下であり、
     前記負極の負極合剤層は、黒鉛を前記負極活物質として含有しており、
     前記負極合剤層は、密度が1.55g/cm以下である請求項1または2に記載の非水二次電池。
  4.  前記正極合剤層の厚みと前記負極合剤層の厚みとの和が、200μm以下である請求項1~3のいずれかに記載の非水二次電池。
  5.  前記一般組成式(2)において、48≦a≦52、18≦b≦22および28≦c≦32である請求項3または4に記載の非水二次電池。
  6.  前記一般組成式(2)における元素群Mは、Ti、Cr、Fe、Cu、Zn、Al、Ge、Sn、Mg、Ag、Tl、Nb、B、P、Zr、Ca、SrまたはBaを更に含有している請求項3~5のいずれかに記載の非水二次電池。
  7.  前記電解液は、1,3-プロパンスルトンを含有している請求項1~6のいずれかに記載の非水二次電池。
  8.  前記電解液として、1,3-プロパンスルトンの含有量が0.3~3.0質量%のものを使用した請求項7に記載の非水二次電池。
  9.  前記電解液は、ビニレンカーボネートを含有している請求項1~8のいずれかに記載の非水二次電池。
  10.  前記セパレータは、融点が140℃以下の樹脂を主体とする多孔質層(I)と、150℃以下の温度で溶融しない樹脂、または耐熱温度が150℃以上の無機フィラーを主体として含む多孔質層(II)とを有している請求項1~9のいずれかに記載の非水二次電池。
  11.  前記負極の負極合剤層は、SiとOとを構成元素に含む材料(ただし、Siに対するOの原子比xは、0.5≦x≦1.5である)および黒鉛を前記負極活物質として含有しており、
     前記SiとOとを構成元素に含む材料は、炭素材料と複合体を形成しており、
     前記負極合剤層において、SiとOとを構成元素に含む材料と黒鉛との合計を100質量%としたとき、SiとOとを構成元素に含む材料の比率が2~20質量%である請求項1~10のいずれかに記載の非水二次電池。
     
PCT/JP2014/074215 2013-09-20 2014-09-12 非水二次電池 WO2015041167A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013194733 2013-09-20
JP2013-194733 2013-09-20
JP2013-250050 2013-12-03
JP2013250050 2013-12-03

Publications (1)

Publication Number Publication Date
WO2015041167A1 true WO2015041167A1 (ja) 2015-03-26

Family

ID=52688817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074215 WO2015041167A1 (ja) 2013-09-20 2014-09-12 非水二次電池

Country Status (1)

Country Link
WO (1) WO2015041167A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151983A1 (ja) * 2015-03-26 2016-09-29 三洋電機株式会社 非水電解質二次電池
JP2017069002A (ja) * 2015-09-29 2017-04-06 株式会社Gsユアサ 蓄電素子
WO2017158724A1 (ja) * 2016-03-15 2017-09-21 株式会社 東芝 非水電解質電池及びバッテリーシステム
JP2019102428A (ja) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 電池
JP2020057473A (ja) * 2018-09-28 2020-04-09 日産自動車株式会社 リチウムイオン二次電池
WO2020129411A1 (ja) * 2018-12-18 2020-06-25 日本碍子株式会社 リチウム二次電池
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery
WO2023120688A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池
CN117239355A (zh) * 2023-11-14 2023-12-15 宁德时代新能源科技股份有限公司 二次电池和用电装置
WO2024073960A1 (zh) * 2022-10-08 2024-04-11 厦门海辰储能科技股份有限公司 电池、电池包及用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (ja) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004047404A (ja) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2005259680A (ja) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2008066278A (ja) * 2006-06-30 2008-03-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
WO2011077542A1 (ja) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 非水電解液型リチウムイオン二次電池及び車両
JP2012079604A (ja) * 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
WO2013094004A1 (ja) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 リチウム二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001223029A (ja) * 2000-02-09 2001-08-17 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004047404A (ja) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd 導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材
JP2005259680A (ja) * 2004-02-10 2005-09-22 Mitsubishi Chemicals Corp 非水系電解液二次電池
JP2008066278A (ja) * 2006-06-30 2008-03-21 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極
WO2011077542A1 (ja) * 2009-12-25 2011-06-30 トヨタ自動車株式会社 非水電解液型リチウムイオン二次電池及び車両
JP2012079604A (ja) * 2010-10-05 2012-04-19 Shin Kobe Electric Mach Co Ltd リチウムイオン電池
WO2013094004A1 (ja) * 2011-12-19 2013-06-27 トヨタ自動車株式会社 リチウム二次電池

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016151983A1 (ja) * 2015-03-26 2018-01-18 三洋電機株式会社 非水電解質二次電池
WO2016151983A1 (ja) * 2015-03-26 2016-09-29 三洋電機株式会社 非水電解質二次電池
JP2017069002A (ja) * 2015-09-29 2017-04-06 株式会社Gsユアサ 蓄電素子
US10468679B2 (en) 2016-03-15 2019-11-05 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery including positive electrode including lithium nickel cobalt manganese composite oxide and negative electrode including spinel type lithium titanate, and nonaqueous electrolyte
CN107534142A (zh) * 2016-03-15 2018-01-02 株式会社东芝 非水电解质电池及电池系统
JP6243059B1 (ja) * 2016-03-15 2017-12-06 株式会社東芝 非水電解質電池及びバッテリーシステム
AU2016318213B2 (en) * 2016-03-15 2018-09-13 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery system
CN107534142B (zh) * 2016-03-15 2020-08-11 株式会社东芝 非水电解质电池及电池系统
WO2017158724A1 (ja) * 2016-03-15 2017-09-21 株式会社 東芝 非水電解質電池及びバッテリーシステム
US10658673B2 (en) 2017-12-05 2020-05-19 Contemporary Amperex Technology Co., Limited Battery
JP2019102428A (ja) * 2017-12-05 2019-06-24 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 電池
US10749184B2 (en) 2017-12-05 2020-08-18 Contemporary Amperex Technology Co., Limited Battery
JP2020057473A (ja) * 2018-09-28 2020-04-09 日産自動車株式会社 リチウムイオン二次電池
JP7040388B2 (ja) 2018-09-28 2022-03-23 日産自動車株式会社 リチウムイオン二次電池
WO2020129411A1 (ja) * 2018-12-18 2020-06-25 日本碍子株式会社 リチウム二次電池
WO2023120688A1 (ja) * 2021-12-24 2023-06-29 株式会社村田製作所 二次電池
WO2024073960A1 (zh) * 2022-10-08 2024-04-11 厦门海辰储能科技股份有限公司 电池、电池包及用电设备
CN117239355A (zh) * 2023-11-14 2023-12-15 宁德时代新能源科技股份有限公司 二次电池和用电装置
CN117239355B (zh) * 2023-11-14 2024-04-09 宁德时代新能源科技股份有限公司 二次电池和用电装置

Similar Documents

Publication Publication Date Title
WO2015111710A1 (ja) 非水二次電池
JP4868556B2 (ja) リチウム二次電池
WO2015041167A1 (ja) 非水二次電池
JP6253411B2 (ja) リチウム二次電池
KR101485382B1 (ko) 리튬 이차 전지
WO2018179817A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6652121B2 (ja) 非水電解質二次電池
WO2018047656A1 (ja) リチウムイオン二次電池およびその製造方法
JP2013222612A (ja) 非水二次電池
JP2011243558A (ja) リチウム二次電池用正極およびリチウム二次電池
JP6734059B2 (ja) 非水電解質二次電池
WO2013038939A1 (ja) リチウム二次電池パック、並びにそれを用いた電子機器、充電システム及び充電方法
JP2016085949A (ja) リチウム二次電池
JP2012003997A (ja) 非水電解液二次電池
JP2015195195A (ja) 非水電解質二次電池
JP2013118069A (ja) リチウム二次電池
JP5793411B2 (ja) リチウム二次電池
WO2022138451A1 (ja) 電極、非水電解質電池及び電池パック
JP5566825B2 (ja) リチウム二次電池
JP6063705B2 (ja) 非水電解質二次電池
JP6123674B2 (ja) リチウム二次電池及びこれを用いた車両
JP2015133193A (ja) 非水電解質二次電池
JP2014022245A (ja) リチウムイオン二次電池およびその製造方法
JP5978024B2 (ja) 非水二次電池
WO2015037522A1 (ja) 非水二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14845153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14845153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP