WO2023120688A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2023120688A1
WO2023120688A1 PCT/JP2022/047545 JP2022047545W WO2023120688A1 WO 2023120688 A1 WO2023120688 A1 WO 2023120688A1 JP 2022047545 W JP2022047545 W JP 2022047545W WO 2023120688 A1 WO2023120688 A1 WO 2023120688A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
group
lithium
active material
Prior art date
Application number
PCT/JP2022/047545
Other languages
English (en)
French (fr)
Inventor
将之 井原
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202280085445.7A priority Critical patent/CN118369804A/zh
Priority to JP2023569562A priority patent/JPWO2023120688A1/ja
Publication of WO2023120688A1 publication Critical patent/WO2023120688A1/ja
Priority to US18/637,869 priority patent/US20240283020A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and various studies have been made on the configuration of the secondary battery.
  • Faiz Ahmed et al. ⁇ Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries'', Electrochimica Acta, 298, 2019, 709-716 Faiz Ahmed et al., ⁇ Highly conductive divalent fluorosulfonyl imide based electrolytes improving Li-ion battery performance: Additive potentiating'', Journal of Power Sources, 455, 2020, 227980
  • a secondary battery that can obtain excellent battery characteristics is desired.
  • a secondary battery includes a positive electrode, a negative electrode including a negative electrode active material layer, and an electrolytic solution including an electrolyte salt.
  • the negative electrode active material layer contains a carbon material, has a thickness of 30 ⁇ m or more and 100 ⁇ m or less, and has a volume density of 1.4 g/cm 3 or more and 2 g/cm 3 or less. is.
  • the electrolyte salt contains an imide anion, and the imide anion is a first imide anion represented by formula (1), a second imide anion represented by formula (2), and a third imide anion represented by formula (3). At least one of the imide anion and the quaternary imide anion represented by formula (4) is included.
  • Each of R3 and R4 is either a fluorine group or a fluorinated alkyl group.
  • Each of X1, X2, X3 and X4 is one of a carbonyl group, a sulfinyl group and a sulfonyl group.
  • R5 is a fluorinated alkylene group.
  • Each of Y1, Y2 and Y3 is a carbonyl group, a sulfinyl group and a sulfonyl group.
  • R6 and R7 is either a fluorine group or a fluorinated alkyl group.
  • R8 is any one of an alkylene group, a phenylene group, a fluorinated alkylene group and a fluorinated phenylene group.
  • Z1 , Z2, Z3 and Z4 are each a carbonyl group, a sulfinyl group and a sulfonyl group.
  • the negative electrode active material layer of the negative electrode contains a carbon material
  • the thickness of the negative electrode active material layer is 30 ⁇ m or more and 100 ⁇ m or less
  • the thickness of the negative electrode active material layer is The volume density is 1.4 g/cm 3 or more and 2 g/cm 3 or less
  • the electrolyte salt of the electrolytic solution contains at least one of primary imide anions, secondary imide anions, tertiary imide anions, and quaternary imide anions as imide anions. Since one type is included, excellent battery characteristics can be obtained.
  • FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1;
  • FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
  • the secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with an electrolyte along with a positive electrode and a negative electrode.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • alkali metals are lithium, sodium and potassium, and examples of alkaline earth metals are beryllium, magnesium and calcium.
  • the type of electrode reactant may be other light metals such as aluminum.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • Configuration> 1 shows a perspective configuration of a secondary battery
  • FIG. 2 shows a cross-sectional configuration of the battery element 20 shown in FIG.
  • FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other, and the cross section of the battery element 20 along the XZ plane is indicated by a broken line. In FIG. 2, only part of the battery element 20 is shown.
  • this secondary battery includes an exterior film 10, a battery element 20, a positive electrode lead 31, a negative electrode lead 32, and sealing films 41 and 42.
  • the secondary battery described here is a laminated film type secondary battery using a flexible or pliable exterior film 10 .
  • the exterior film 10 is an exterior member that houses the battery element 20, and has a sealed bag-like structure with the battery element 20 housed therein.
  • the exterior film 10 accommodates the electrolytic solution together with the positive electrode 21 and the negative electrode 22, which will be described later.
  • the exterior film 10 is a single film-like member and is folded in the folding direction F.
  • the exterior film 10 is provided with a recessed portion 10U (so-called deep drawn portion) for housing the battery element 20 .
  • the exterior film 10 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside. Outer peripheral edge portions of the fusion layer are fused together.
  • the fusible layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metal material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the configuration (number of layers) of the exterior film 10 is not particularly limited, and may be one layer, two layers, or four layers or more.
  • the sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31
  • the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32 .
  • one or both of the sealing films 41 and 42 may be omitted.
  • the sealing film 41 is a sealing member that prevents external air from entering the exterior film 10 . Further, the sealing film 41 contains a polymer compound such as polyolefin having adhesiveness to the positive electrode lead 31, and a specific example of the polymer compound is polypropylene.
  • the structure of the sealing film 42 is the same as the structure of the sealing film 41 except that it is a sealing member having adhesion to the negative electrode lead 32 . That is, the sealing film 42 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 32 .
  • the battery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown), as shown in FIGS. It is
  • This battery element 20 is a so-called wound electrode assembly. That is, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and are wound around the winding axis P while facing each other with the separator 23 interposed therebetween. Note that the winding axis P is a virtual axis extending in the Y-axis direction.
  • the three-dimensional shape of the battery element 20 is not particularly limited.
  • the shape of the cross section of the battery element 20 intersecting the winding axis P (the cross section along the XZ plane) is determined by the long axis J1 and the short axis J2. It is a defined flat shape.
  • the major axis J1 is a virtual axis that extends in the X-axis direction and has a length greater than that of the minor axis J2.
  • the cross-sectional shape of the battery element 20 is a flat, substantially elliptical shape.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided.
  • the positive electrode current collector 21A contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
  • the positive electrode active material layer 21B contains one or more of positive electrode active materials that occlude and release lithium. However, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductor.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 .
  • a method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, one or more of coating methods and the like are used.
  • the type of positive electrode active material is not particularly limited, it is specifically a lithium-containing compound.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table.
  • the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
  • oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.82Co0.14Al0.04O2 , LiNi0.33Co0.33Mn0.3 . 3 O 2 , Li 1.2Mn0.52Co0.175Ni0.1O2 , Li1.15 ( Mn0.65Ni0.22Co0.13 ) O2 and LiMn2O4 .
  • phosphoric acid compounds include LiFePO4 , LiMnPO4 , LiFe0.5Mn0.5PO4 and LiFe0.3Mn0.7PO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • synthetic rubbers include styrene-butadiene rubber, fluororubber, and ethylene propylene diene.
  • polymer compounds include polyvinylidene fluoride, polyimide and carboxymethylcellulose.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the carbon materials include graphite, carbon black, acetylene black, and ketjen black. .
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided.
  • the negative electrode current collector 22A contains a conductive material such as a metal material, and a specific example of the conductive material is copper.
  • the negative electrode active material layer 22B contains one or more of negative electrode active materials that occlude and release lithium. However, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder, a thickener, and a negative electrode conductor.
  • the negative electrode active material layer 22B is provided on both sides of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 .
  • the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
  • the negative electrode active material contains one or more of the carbon materials. This is because the crystal structure of the carbon material does not easily change during the intercalation and deintercalation of lithium, so that a high energy density can be stably obtained.
  • the carbon material also functions as a negative electrode conductor. As a result, in the negative electrode 22, a high energy density is stably obtained, and the conductivity is improved.
  • the type of carbon material is not particularly limited, but specific examples include graphitizable carbon, non-graphitizable carbon, and graphite. This graphite may be natural graphite, artificial graphite, or both.
  • the interplanar spacing of the (002) planes of the carbon material measured using the X-ray diffraction method is not particularly limited.
  • a specific example of the X-ray diffraction method is the X-ray wide-angle diffraction method.
  • the carbon material contains graphite, and the interplanar spacing of the (002) plane of graphite measured using the X-ray diffraction method is preferably 0.3372 nm or less. This is because each of the charge capacity and the discharge capacity increases.
  • the carbon material may contain one or more of pyrolytic carbons, cokes, vitreous carbon fibers, baked organic polymer compounds, activated carbon, carbon blacks, and the like.
  • the cokes are one or more of pitch coke, needle coke, petroleum coke, and the like.
  • a fired organic polymer compound is a substance obtained by firing (carbonizing) a polymer compound at an appropriate temperature. Two or more types.
  • the carbon material may be low-crystalline carbon heat-treated at about 1000° C. or less, or amorphous carbon similarly heat-treated.
  • the shape of the carbon material is not particularly limited, it is specifically one or more of fibrous, spherical, granular and scale-like.
  • the negative electrode active material layer 22B has a thickness T ( ⁇ m) and a volume density V (g/cm 3 ).
  • Each of the thickness T and the volume density V is optimized in relation to the composition (imide anion) of the electrolyte salt, which will be described later.
  • the thickness T described here is the dimension of the negative electrode active material layer 22B in the direction (Z-axis direction) in which the positive electrode 21 and the negative electrode 22 face each other with the separator 23 interposed therebetween. It is the thickness of one negative electrode active material layer 22B provided on one surface of the body 22A.
  • the thickness T is 30 ⁇ m to 100 ⁇ m
  • the volume density V is 1.4 g/cm 3 to 2 g/cm 3 . This is because when the negative electrode active material layer 22B contains a carbon material, the thickness T and the volume density V are optimized, and thus the chemical stability of the electrolytic solution is improved while ensuring the energy density. be.
  • the thickness T when the thickness T is within the above range and the volume density V is less than 1.4 g/cm 3 , the energy density decreases. Further, when the thickness T is within the above range, if the volume density V exceeds 2 g/cm 3 , the lithium ion absorption/desorption efficiency decreases, and the negative electrode active material layer 22B is impregnated with the electrolyte. decreases. On the other hand, when the thickness T is within the above range and the volume density V is 1.4 g/cm 3 to 2 g/cm 3 , the energy density increases, and the lithium ion absorption/discharge efficiency increases. This improves impregnation of the negative electrode active material layer 22B with the electrolytic solution.
  • the negative electrode 22 is recovered by disassembling the secondary battery. Subsequently, a cutting instrument such as a microtome is used to cut the negative electrode 22 in the thickness direction (Z-axis direction), thereby exposing the cross section of the negative electrode 22 .
  • an observation result is obtained by observing a cross section of the negative electrode 22 (negative electrode active material layer 22B) using an electron microscope.
  • the electron microscope can be a scanning electron microscope (SEM) and/or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the thickness T ( ⁇ m) of the negative electrode active material layer 22B is measured based on the electron micrograph.
  • 10 thicknesses T are obtained by measuring the thickness T at 10 different points.
  • the average value of ten thicknesses T is calculated.
  • the negative electrode 22 is collected by disassembling the secondary battery. Subsequently, using a cutting instrument such as a microtome, the negative electrode 22 is cut to have a predetermined length L (mm) and width W (mm).
  • the length L is the dimension of the negative electrode 22 in the X-axis direction
  • the width W is the dimension of the negative electrode 22 in the Y-axis direction.
  • the thickness T ( ⁇ m) of the negative electrode active material layer 22B is calculated according to the procedure described above.
  • the weight M1 (g) of the negative electrode 22 after cutting is measured.
  • the negative electrode current collector 22A is recovered by separating the negative electrode current collector 22A from the negative electrode active material layer 22B using the negative electrode 22 after cutting.
  • the weight M3 (g) of the negative electrode active material layer 22B is calculated by subtracting the weight M2 from the weight M1.
  • the volume density V is calculated based on the length L, width W, thickness T, and weight M3.
  • an organic solvent such as dimethyl carbonate is used instead of peeling the negative electrode current collector 22A from the negative electrode active material layer 22B.
  • the negative electrode active material layer 22B may be removed from the negative electrode 22 by dissolution.
  • the negative electrode active material and the like are removed from the negative electrode current collector 22A together with the negative electrode binder. Thereby, the negative electrode current collector 22A is recovered from the negative electrode 22 .
  • the negative electrode active material may further contain one or more of metal-based materials. This is because a high energy density can be obtained.
  • This metallic material is a general term for materials containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. Specific examples include silicon and tin.
  • the metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
  • the negative electrode binder preferably contains styrene-butadiene rubber rather than polyvinylidene fluoride.
  • the negative electrode active material contains a carbon material
  • the negative electrode binder contains styrene-butadiene rubber
  • the styrene-butadiene rubber ensures excellent binding properties, while carbon is added to the negative electrode mixture slurry described later. This is because the dispersibility of the material is improved.
  • the negative electrode active material carbon material
  • the negative electrode active materials are sufficiently bound to each other via the negative electrode binder (styrene-butadiene rubber).
  • the type of thickener is not particularly limited, but specifically includes carboxymethyl cellulose and the like.
  • the negative electrode active material layer 22B contains a negative electrode binder (styrene-butadiene rubber)
  • the viscosity of the negative electrode mixture slurry described later can be easily adjusted. Because it becomes possible. This facilitates easy and stable formation of the negative electrode active material layer 22B using a coating method.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
  • This separator 23 contains a polymer compound such as polyethylene.
  • the electrolytic solution is a liquid electrolyte.
  • the electrolyte is impregnated into each of the positive electrode 21, the negative electrode 22 and the separator 23 and contains an electrolyte salt. More specifically, the electrolytic solution contains an electrolyte salt and a solvent that disperses (ionizes) the electrolyte salt.
  • An electrolyte salt is a compound that ionizes in a solvent and contains anions and cations.
  • Anions include imide anions.
  • the imide anion includes the first imide anion represented by formula (1), the second imide anion represented by formula (2), the third imide anion represented by formula (3), and the formula ( 4) contains one or more of the quaternary imide anions represented by That is, the electrolyte salt contains a 1-imide anion as an anion.
  • the number of types of the first imide anions may be one, or two or more.
  • the fact that the number of types may be one or two or more is the same for each of the second imide anion, the tertiary imide anion, and the quaternary imide anion.
  • Each of R1 and R2 is either a fluorine group or a fluorinated alkyl group.
  • Each of W1, W2 and W3 is one of a carbonyl group, a sulfinyl group and a sulfonyl group.
  • Each of R3 and R4 is either a fluorine group or a fluorinated alkyl group.
  • Each of X1, X2, X3 and X4 is one of a carbonyl group, a sulfinyl group and a sulfonyl group.
  • R5 is a fluorinated alkylene group.
  • Each of Y1, Y2 and Y3 is a carbonyl group, a sulfinyl group and a sulfonyl group.
  • R6 and R7 is either a fluorine group or a fluorinated alkyl group.
  • R8 is any one of an alkylene group, a phenylene group, a fluorinated alkylene group and a fluorinated phenylene group.
  • Z1 , Z2, Z3 and Z4 are each a carbonyl group, a sulfinyl group and a sulfonyl group.
  • the anion contains the imide anion is as explained below.
  • a high-quality film derived from the electrolyte salt is formed on the surfaces of the positive electrode 21 and the negative electrode 22, respectively.
  • the decomposition reaction of (particularly, the solvent) is suppressed.
  • the coating film described above the movement speed of lithium ions near the surfaces of the positive electrode 21 and the negative electrode 22 is improved.
  • the movement speed of lithium ions is improved even in the electrolyte.
  • the first imide anion is a chain anion (divalent negative ion) containing two nitrogen atoms (N) and three functional groups (W1 to W3), as shown in formula (1). .
  • Each of R1 and R2 is not particularly limited as long as it is either a fluorine group (-F) or a fluorinated alkyl group. That is, each of R1 and R2 may be the same group or different groups. Accordingly, each of R1 and R2 is not a hydrogen group (--H), an alkyl group, or the like.
  • a fluorinated alkyl group is a group in which one or more hydrogen groups (-H) in an alkyl group are substituted with a fluorine group.
  • the fluorinated alkyl group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the fluorinated alkyl group is not particularly limited, it is specifically 1-10. This is because the solubility and ionization properties of the electrolyte salt containing the primary imide anion are improved.
  • fluorinated alkyl groups include a perfluoromethyl group (-CF3) and a perfluoroethyl group (-C2 F5).
  • Each of W1 to W3 is not particularly limited as long as it is any one of a carbonyl group, a sulfinyl group and a sulfonyl group. That is, each of W1 to W3 may be the same group, or may be a different group. Of course, any two of W1 to W3 may be the same group.
  • the second imide anion is a chain anion (trivalent negative ion) containing three nitrogen atoms and four functional groups (X1 to X4), as shown in formula (2).
  • Each of X1 to X4 is not particularly limited as long as it is any one of a carbonyl group, a sulfinyl group and a sulfonyl group. That is, each of X1 to X4 may be the same group or different groups. Of course, any two of X1 to X4 may be the same group, or any three of X1 to X4 may be the same group.
  • the third imide anion is a cyclic anion (divalent negative ions).
  • the fluorinated alkylene group for R5 is an alkylene group in which one or more hydrogen groups have been substituted with fluorine groups.
  • the fluorinated alkylene group may be linear or branched having one or more side chains.
  • the number of carbon atoms in the fluorinated alkylene group is not particularly limited, it is specifically 1-10. This is because the solubility and ionization properties of the electrolyte salt containing the tertiary imide anion are improved.
  • fluorinated alkylene groups include perfluoromethylene groups (--CF 2 --) and perfluoroethylene groups (--C 2 F 4 --).
  • Each of Y1 to Y3 is not particularly limited as long as it is any one of a carbonyl group, a sulfinyl group and a sulfonyl group. That is, each of Y1 to Y3 may be the same group or different groups. Of course, any two of Y1 to Y3 may be the same group.
  • the fourth imide anion is a chain anion (divalent negative ions).
  • R8 is not particularly limited as long as it is any one of an alkylene group, a phenylene group, a fluorinated alkylene group and a fluorinated phenylene group.
  • Alkylene groups can be linear or branched with one or more side chains. Although the number of carbon atoms in the alkylene group is not particularly limited, it is specifically 1-10. This is because the solubility and ionization properties of the electrolyte salt containing the quaternary imide anion are improved. Specific examples of alkylene groups include a methylene group (--CH 2 --), an ethylene group (--C 2 H 4 --) and a propylene group (--C 3 H 6 --).
  • the details regarding the fluorinated alkylene group for R8 are the same as the details regarding the fluorinated alkylene group for R5.
  • a fluorinated phenylene group is a group in which one or more hydrogen groups in a phenylene group have been replaced with fluorine groups.
  • a specific example of the fluorinated phenylene group is a monofluorophenylene group (--C 6 H 3 F--).
  • Each of Z1 to Z4 is not particularly limited as long as it is any one of a carbonyl group, a sulfinyl group and a sulfonyl group. That is, each of Z1 to Z4 may be the same group or different groups. Of course, any two of Z1 to Z4 may be the same groups, or any three of Z1 to Z4 may be the same groups.
  • Specific examples of the first imide anion include anions represented by formulas (1-1) to (1-30).
  • second imide anion examples include anions represented by formulas (2-1) to (2-22).
  • third imide anion examples include anions represented by formulas (3-1) to (3-15).
  • quaternary imide anion examples include anions represented by formulas (4-1) to (4-65).
  • the type of cation is not particularly limited. Specifically, the cation contains one or more of light metal ions. That is, the electrolyte salt contains light metal ions as cations. This is because a high voltage can be obtained.
  • the types of light metal ions are not particularly limited, but specific examples include alkali metal ions and alkaline earth metal ions. Specific examples of alkali metal ions include lithium ions, sodium ions and potassium ions. Specific examples of alkaline earth metal ions include beryllium ions, magnesium ions and calcium ions. Alternatively, light metal ions may be aluminum ions.
  • the light metal ions preferably contain lithium ions. This is because a sufficiently high voltage can be obtained.
  • the content of the electrolyte salt in the electrolytic solution is not particularly limited and can be set arbitrarily. Among them, the content of the electrolyte salt is preferably 0.2 mol/kg to 2 mol/kg. This is because high ionic conductivity can be obtained.
  • the "content of the electrolyte salt” described here is the content of the electrolyte salt relative to the solvent.
  • the electrolyte solution is recovered by disassembling the secondary battery, and then the electrolyte solution is analyzed using Inductively Coupled Plasma (ICP) emission spectrometry. analyse. Since the weight of the solvent and the weight of the electrolyte salt are thus specified, the content of the electrolyte salt is calculated.
  • ICP Inductively Coupled Plasma
  • the solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • the carbonate compounds include cyclic carbonates and chain carbonates.
  • cyclic carbonates include ethylene carbonate and propylene carbonate.
  • chain carbonates include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, ethyl trimethylacetate, methyl butyrate and ethyl butyrate.
  • Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Ethers may be 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, and the like.
  • the electrolytic solution may further contain one or more of other electrolytic salts. This is because the moving speed of lithium ions is further improved in the vicinity of the respective surfaces of the positive electrode 21 and the negative electrode 22, and the moving speed of lithium ions is further improved in the electrolyte solution.
  • the content of the other electrolyte salt in the electrolytic solution is not particularly limited and can be set arbitrarily.
  • electrolyte salt is not particularly limited, it is specifically a light metal salt such as lithium salt. However, the electrolyte salt described above is excluded from the lithium salt described here.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN ( FSO2 ) 2 ), bis(trifluoromethanesulfonyl )imidolithium (LiN(CF3SO2)2), lithium tris(trifluoromethanesulfonyl)methide (LiC(CF3SO2)3 ) , bis ( oxalato )boron lithium oxide (LiB( C2O4 ) 2 ), lithium difluorooxalatoborate ( LiBF2 ( C2O4 )), lithium difluorodi(oxalato)borate ( LiPF2 ( C2O4 ) 2 ) , tetra Lithium fluorooxalate phosphate (Li
  • the other electrolyte salt is any one of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bis(fluorosulfonyl)imide, lithium bis(oxalato)borate and lithium difluorophosphate, or It is preferable that two or more types are included. This is because the moving speed of lithium ions is sufficiently improved in the vicinity of the respective surfaces of the positive electrode 21 and the negative electrode 22, and the moving speed of lithium ions is also sufficiently improved in the electrolyte solution.
  • the electrolytic solution may further contain one or more of additives. This is because a coating film derived from the additive is formed on each surface of the positive electrode 21 and the negative electrode 22 during charging and discharging of the secondary battery, so that the decomposition reaction of the electrolytic solution is suppressed.
  • the content of the additive in the electrolytic solution is not particularly limited, and can be set arbitrarily.
  • the types of additives are not particularly limited, but specific examples include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonic acid esters, dicarboxylic acid anhydrides, disulfonic acid anhydrides, sulfuric acid esters, nitrile compounds and isocyanate compounds. and so on.
  • An unsaturated cyclic carbonate is a cyclic carbonate containing an unsaturated carbon bond (carbon-carbon double bond).
  • the number of unsaturated carbon bonds is not particularly limited, and may be one or two or more.
  • Specific examples of unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate.
  • fluorinated cyclic carbonate is a cyclic carbonate containing fluorine as a constituent element. That is, the fluorinated cyclic carbonate is a compound in which one or more hydrogen groups in the cyclic carbonate are substituted with fluorine groups.
  • fluorinated cyclic carbonates include ethylene monofluorocarbonate and ethylene difluorocarbonate.
  • the sulfonates include cyclic monosulfonates, cyclic disulfonates, chain monosulfonates and chain disulfonates.
  • cyclic monosulfonic acid esters include 1,3-propanesultone, 1-propene-1,3-sultone, 1,4-butanesultone, 2,4-butanesultone and methanesulfonic acid propargyl ester.
  • a specific example of the cyclic disulfonic acid ester is cyclodison.
  • dicarboxylic anhydride Specific examples of dicarboxylic anhydrides include succinic anhydride, glutaric anhydride and maleic anhydride.
  • disulfonic anhydride Specific examples of disulfonic anhydrides include ethanedisulfonic anhydride and propanedisulfonic anhydride.
  • sulfate ester Specific examples of sulfates include ethylene sulfate (1,3,2-dioxathiolane 2,2-dioxide).
  • a nitrile compound is a compound having one or more cyano groups (--CN).
  • nitrile compounds include octanenitrile, benzonitrile, phthalonitrile, succinonitrile, glutaronitrile, adiponitrile, sebaconitrile, 1,3,6-hexanetricarbonitrile, 3,3'-oxydipropionitrile, 3 -butoxypropionitrile, ethylene glycol bispropionitrile ether, 1,2,2,3-tetracyanopropane, tetracyanopropane, fumaronitrile, 7,7,8,8-tetracyanoquinodimethane, cyclopentanecarbonitrile , 1,3,5-cyclohexanetricarbonitrile and 1,3-bis(dicyanomethylidene)indane.
  • isocyanate compound is a compound having one or more isocyanate groups (--NCO). Specific examples of isocyanate compounds include hexamethylene diisocyanate.
  • the positive electrode lead 31 is a positive electrode terminal connected to the positive electrode current collector 21A of the positive electrode 21, as shown in FIGS.
  • the positive electrode lead 31 contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
  • the shape of the positive electrode lead 31 is not particularly limited, but specifically, the positive electrode lead 31 is either thin plate-like or mesh-like.
  • the negative electrode lead 32 is a negative electrode terminal connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS.
  • the negative electrode lead 32 contains a conductive material such as a metal material, and a specific example of the conductive material is copper.
  • the lead-out direction of the negative lead 32 is the same as the lead-out direction of the positive lead 31 .
  • Details regarding the shape of the negative electrode lead 32 are the same as those regarding the shape of the positive electrode lead 31 .
  • a paste-like positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductive agent are mixed together into a solvent.
  • the solvent may be either an aqueous solvent or an organic solvent.
  • the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A.
  • the cathode active material layer 21B is compression-molded using a roll press or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
  • a negative electrode 22 is formed by the same procedure as that of the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by putting a mixture (negative electrode mixture) in which a negative electrode active material containing a carbon material and a negative electrode binder are mixed together into a solvent. do. Details regarding the solvent are given above. Subsequently, the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A. Finally, the negative electrode active material layer 22B is compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
  • conditions such as the concentration and application amount of the negative electrode mixture slurry are adjusted in the step of forming the negative electrode active material layer 22B so that the thickness T and the volume density V satisfy the above conditions. .
  • An electrolyte salt containing an imide anion is added to the solvent.
  • another electrolyte salt may be added to the solvent, or an additive may be added to the solvent.
  • the electrolyte salt and the like are dispersed or dissolved in the solvent, so that an electrolytic solution is prepared.
  • a joining method such as welding is used to connect the positive electrode lead 31 to the positive electrode current collector 21A of the positive electrode 21, and a joining method such as welding is used to connect the negative electrode current collector 22A of the negative electrode 22 to the negative electrode.
  • Connect lead 32 a joining method such as welding is used to connect the positive electrode lead 31 to the positive electrode current collector 21A of the positive electrode 21, and a joining method such as welding is used to connect the negative electrode current collector 22A of the negative electrode 22 to the negative electrode.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown).
  • This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution.
  • the wound body is formed into a flat shape by pressing the wound body using a pressing machine or the like.
  • the exterior films 10 (bonding layer/metal layer/surface protective layer) are folded to face each other. Subsequently, by using an adhesion method such as a heat fusion method, the outer peripheral edges of two sides of the fusion layers facing each other are adhered to each other, so that the wound body is placed inside the bag-shaped exterior film 10. to accommodate.
  • the wound body is impregnated with the electrolytic solution, so that the battery element 20, which is the wound electrode body, is produced. Accordingly, since the battery element 20 is enclosed inside the bag-shaped exterior film 10, the secondary battery is assembled.
  • the secondary battery after assembly is charged and discharged.
  • Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
  • films are formed on the respective surfaces of the positive electrode 21 and the negative electrode 22, so that the state of the secondary battery is electrochemically stabilized.
  • a secondary battery is completed.
  • the negative electrode active material layer 22B of the negative electrode 22 contains a carbon material
  • the thickness T of the negative electrode active material layer 22B is 30 ⁇ m to 100 ⁇ m
  • the volume density of the negative electrode active material layer 22B is V is 1.4 g/cm 3 to 2 g/cm 3
  • the electrolyte salt of the electrolytic solution contains imide anions.
  • the thickness T and the volume density V are optimized. chemical stability is improved. As a result, the energy density is increased, the lithium ion absorption/desorption efficiency is improved, and the impregnation of the negative electrode active material layer 22B with the electrolytic solution is improved.
  • a good film derived from the electrolyte salt is formed on each surface of the positive electrode 21 and the negative electrode 22 during charging and discharging of the secondary battery, so that the decomposition reaction of the electrolyte is suppressed.
  • the movement speed of lithium ions is improved in the vicinity of the respective surfaces of the positive electrode 21 and the negative electrode 22, and the movement speed of lithium ions is also improved in the electrolyte solution.
  • the negative electrode active material layer 22B of the negative electrode 22 further contains styrene-butadiene rubber
  • the negative electrode active material carbon material
  • the negative electrode active materials are separated from each other. are sufficiently bound to each other via the negative electrode binder (styrene-butadiene rubber), a higher effect can be obtained.
  • the carbon material contains graphite and the interplanar spacing of the (002) plane of the graphite is 0.3372 nm or less, both the charge capacity and the discharge capacity are increased, so that a higher effect can be obtained. .
  • the electrolyte salt contains light metal ions as cations, a higher voltage can be obtained, and a higher effect can be obtained.
  • the light metal ions contain lithium ions, a sufficiently high voltage can be obtained, so that even higher effects can be obtained.
  • the content of the electrolyte salt in the electrolytic solution is 0.2 mol/kg to 2 mol/kg, high ionic conductivity can be obtained, and a higher effect can be obtained.
  • the electrolytic solution further contains any one of unsaturated cyclic carbonate, fluorinated cyclic carbonate, sulfonate, dicarboxylic acid anhydride, disulfonic acid anhydride, sulfate ester, nitrile compound and isocyanate compound as an additive.
  • unsaturated cyclic carbonate fluorinated cyclic carbonate, sulfonate, dicarboxylic acid anhydride, disulfonic acid anhydride, sulfate ester, nitrile compound and isocyanate compound.
  • the electrolytic solution further includes any of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bis(fluorosulfonyl)imide, lithium bis(oxalato)borate and lithium difluorophosphate as another electrolyte salt. If one type or two or more types are contained, the moving speed of lithium ions is further improved, so that a higher effect can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • the electrolyte may contain other electrolyte salts along with the electrolyte salt containing the imide anion.
  • the electrolyte contains lithium hexafluorophosphate as another electrolyte salt, and the content of the electrolyte salt in the electrolyte is appropriate in relation to the content of the other electrolyte salts in the electrolyte. It is preferable that the
  • the electrolyte salt contains cations and imide anions.
  • hexafluorophosphate ions include lithium ions and hexafluorophosphate ions.
  • the sum T (mol/kg) of the cation content C1 in the electrolyte and the lithium ion content C2 in the electrolyte is 0.7 mol/kg to 2.2 mol/kg.
  • the ratio R (mol %) of the number of moles M2 of the hexafluorophosphate ions in the electrolyte to the number of moles M1 of the imide anions in the electrolyte is 13 mol % to 6000 mol %. This is because the movement speeds of cations and lithium ions are sufficiently improved in the vicinity of the respective surfaces of the positive electrode 21 and the negative electrode 22, and the movement speeds of cations and lithium ions are also sufficiently improved in the liquid electrolyte. be.
  • the “content of cations in the electrolyte” described here is the content of the electrolyte salt of cations in the solvent, and the “content of lithium ions in the electrolyte” is the content of lithium ions in the solvent.
  • the secondary battery When calculating each of the sum T and the ratio R, the secondary battery is disassembled to collect the electrolytic solution, and then the electrolytic solution is analyzed using ICP emission spectrometry. As a result, the contents C1 and C2 and the numbers of moles M1 and M2 are specified, respectively, so that the sum T and the ratio R are calculated.
  • the electrolytic solution contains the electrolyte salt, the same effect can be obtained.
  • the electrolyte salt and another electrolyte salt lithium hexafluorophosphate
  • the total amount (sum T) of both is optimized, and the mixing ratio (ratio R ) are also optimized.
  • the movement speeds of cations and lithium ions in the vicinity of the surfaces of the positive electrode 21 and the negative electrode 22 are further improved, and the movement speeds of cations and lithium ions are further improved in the liquid electrolyte. Therefore, higher effects can be obtained.
  • a separator 23 which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that positional deviation (winding deviation) of the battery element 20 is suppressed. As a result, swelling of the secondary battery is suppressed even if a side reaction such as a decomposition reaction of the electrolytic solution occurs.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because excellent physical strength and excellent electrochemical stability can be obtained.
  • One or both of the porous membrane and the polymer compound layer may contain a plurality of insulating particles. This is because the safety (heat resistance) of the secondary battery is improved because the plurality of insulating particles promote heat dissipation when the secondary battery generates heat.
  • the insulating particles contain one or more of insulating materials such as inorganic materials and resin materials. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • a plurality of insulating particles may be added to the precursor solution.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
  • This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • a secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
  • Secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single cell or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery.
  • household electric power storage system household electric appliances and the like can be used by using electric power stored in a secondary battery, which is an electric power storage source.
  • Fig. 3 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
  • This battery pack includes a power supply 51 and a circuit board 52, as shown in FIG.
  • This circuit board 52 is connected to the power supply 51 and includes a positive terminal 53 , a negative terminal 54 and a temperature detection terminal 55 .
  • the power supply 51 includes one secondary battery.
  • the positive lead is connected to the positive terminal 53 and the negative lead is connected to the negative terminal 54 .
  • the power supply 51 can be connected to the outside through the positive terminal 53 and the negative terminal 54, and thus can be charged and discharged.
  • the circuit board 52 includes a control section 56 , a switch 57 , a PTC element 58 and a temperature detection section 59 .
  • the PTC element 58 may be omitted.
  • the control unit 56 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 56 detects and controls the use state of the power source 51 as necessary.
  • CPU central processing unit
  • memory etc.
  • the overcharge detection voltage is not particularly limited, but is specifically 4.20V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.40V ⁇ 0.1V. is.
  • the switch 57 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 51 and an external device according to instructions from the control unit 56 .
  • the switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 57 .
  • MOSFET field effect transistor
  • the temperature detection unit 59 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 51 using the temperature detection terminal 55 , and outputs the temperature measurement result to the control unit 56 .
  • the measurement result of the temperature measured by the temperature detection unit 59 is used when the control unit 56 performs charging/discharging control at the time of abnormal heat generation and when the control unit 56 performs correction processing when calculating the remaining capacity.
  • the laminate film type secondary battery (lithium ion secondary battery) shown in FIGS. 1 and 2 was produced by the following procedure.
  • a positive electrode active material LiNi 0.82 Co 0.14 Al 0.04 O 2 which is a lithium-containing compound (oxide)
  • 3 parts by mass of a positive electrode binder polyvinylidene fluoride
  • a positive electrode conductor carbon black
  • 6 parts by mass were mixed with each other to obtain a positive electrode mixture.
  • the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry.
  • a solvent N-methyl-2-pyrrolidone, which is an organic solvent
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (a strip-shaped aluminum foil having a thickness of 12 ⁇ m) using a coating device, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material.
  • a material layer 21B is formed.
  • the positive electrode active material layer 21B was compression molded using a roll press. Thus, the positive electrode 21 was produced.
  • a negative electrode active material artificial graphite that is a carbon material
  • a negative electrode binder polyvinylidene fluoride
  • the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (band-shaped copper foil having a thickness of 15 ⁇ m) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material.
  • a material layer 22B is formed.
  • the negative electrode active material layer 22B was compression molded using a roll press. Thus, the negative electrode 22 was produced.
  • the thickness T ( ⁇ m), the volume density V (g/cm 3 ), and the interplanar spacing (nm) between the (002) planes of the carbon material (artificial graphite) are as shown in Tables 1 and 2. rice field.
  • Ethylene carbonate which is a cyclic carbonate
  • ⁇ -butyrolactone which is a lactone
  • Lithium ions (Li + ) were used as cations of the electrolyte salt.
  • the anions of the electrolyte salt include the first imide anions shown in formulas (1-5), (1-6), formulas (1-21) and formulas (1-22), and formula (2-5 ), the tertiary imide anion represented by formula (3-5), and the quaternary imide anion represented by formula (4-37).
  • the electrolyte salt content (mol/kg) was as shown in Tables 1 and 2.
  • This electrolyte salt is a lithium salt containing an imide anion as an anion.
  • the positive electrode lead 31 (aluminum foil) was welded to the positive electrode collector 21A of the positive electrode 21, and the negative electrode lead 32 (copper foil) was welded to the negative electrode collector 22A.
  • the positive electrode 21 and the negative electrode 22 are laminated with each other with a separator 23 (a microporous polyethylene film having a thickness of 15 ⁇ m) interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding.
  • a circular body was produced.
  • the wound body was formed into a flat shape by pressing the wound body using a pressing machine.
  • the exterior film 10 includes a fusion layer (a polypropylene film with a thickness of 30 ⁇ m), a metal layer (aluminum foil with a thickness of 40 ⁇ m), and a surface protective layer (a nylon film with a thickness of 25 ⁇ m). Aluminum laminate films laminated in this order from the inside were used.
  • the rated capacity (mAH) of the secondary battery was as shown in Tables 1-3.
  • constant-current charging was performed at a current of 0.1C until the voltage reached 4.2V
  • constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.05C.
  • constant current discharge was performed at a current of 0.1C until the voltage reached 2.5V.
  • 0.1C is a current value that can fully discharge the battery capacity (theoretical capacity) in 10 hours
  • 0.05C is a current value that fully discharges the battery capacity in 20 hours.
  • the charging/discharging conditions were the same as the charging/discharging conditions during stabilization of the secondary battery described above.
  • the secondary battery was repeatedly charged and discharged in the same environment until the total number of cycles reached 100 cycles, thereby measuring the discharge capacity (discharge capacity at the 100th cycle).
  • the charging/discharging conditions were the same as the charging/discharging conditions during stabilization of the secondary battery described above.
  • cycle retention rate (%) (discharge capacity at 100th cycle/discharge capacity at 1st cycle) x 100 is used to calculate the cycle retention rate, which is an index for evaluating high-temperature cycle characteristics. bottom.
  • the charging/discharging conditions were the same as the charging/discharging conditions during stabilization of the secondary battery described above.
  • the secondary battery is stored in a normal temperature environment.
  • the discharge capacity discharge capacity after storage was measured by discharging the battery.
  • the charging/discharging conditions were the same as the charging/discharging conditions during stabilization of the secondary battery described above.
  • the storage retention rate (%) (discharge capacity after storage/discharge capacity before storage) x 100 was used to calculate the storage retention rate, which is an index for evaluating high-temperature storage characteristics.
  • the charging/discharging conditions were the same as the charging/discharging conditions during stabilization of the secondary battery described above.
  • the charge/discharge conditions were the same as the charge/discharge conditions during stabilization of the secondary battery described above, except that the current during discharge was changed to 1C.
  • 1C is a current value that can discharge the battery capacity in 1 hour.
  • load retention rate (discharge capacity at 100th cycle/discharge capacity at 1st cycle) x 100. bottom.
  • each of the cycle retention rate, storage retention rate, and load retention rate varied greatly depending on the configuration of the negative electrode 22 and the configuration of the electrolytic solution.
  • the thickness T is 30 ⁇ m to 100 ⁇ m
  • the volume density V is 1.4 g/cm 3 to 2 g/cm 3
  • the electrolyte salt contains an imide anion (Examples 1 to 24).
  • the cycle retention rate, storage retention rate and load retention rate all increased.
  • Examples 25 to 42> As shown in Tables 4 and 5, secondary batteries were produced in the same manner as in Example 4, except that the electrolytic solution contained either additives or other electrolyte salts. , evaluated the battery characteristics. In this case, either the additive or the other electrolyte salt was added to the solvent containing the electrolyte salt, and then the solvent was stirred.
  • Vinylene carbonate (VC), vinyl ethylene carbonate (VEC) and methylene ethylene carbonate (MEC) were used as the unsaturated cyclic carbonate.
  • fluorinated cyclic carbonate ethylene monofluorocarbonate (FEC) and ethylene difluorocarbonate (DFEC) were used.
  • FEC ethylene monofluorocarbonate
  • DFEC ethylene difluorocarbonate
  • sulfonic acid esters propanesultone (PS) and propenesultone (PRS), which are cyclic monosulfonic acid esters, and cyclodison (CD), which is a cyclic disulfonic acid ester, were used.
  • Succinic anhydride (SA) was used as the dicarboxylic anhydride.
  • PSAH Propanedisulfonic anhydride
  • DTD Ethylene sulfate
  • Succinonitrile SN
  • HMI Hexamethylene diisocyanate
  • electrolyte salts include lithium hexafluorophosphate ( LiPF6 ), lithium tetrafluoroborate ( LiBF4 ), lithium bis(fluorosulfonyl)imide (LiFSI), lithium bis(oxalato)borate (LiBOB). and lithium difluorophosphate (LiPF 2 O 2 ) were used.
  • LiPF6 lithium hexafluorophosphate
  • LiBF4 lithium tetrafluoroborate
  • LiFSI lithium bis(fluorosulfonyl)imide
  • LiBOB lithium bis(oxalato)borate
  • LiPF 2 O 2 lithium difluorophosphate
  • the contents (% by weight) of the additives and other electrolyte salts in the electrolyte were as shown in Tables 4 and 5.
  • Examples 43 to 74> As shown in Tables 6 and 7, a secondary battery was prepared in the same manner as in Example 4, except that the electrolytic solution contained another electrolyte salt (lithium hexafluorophosphate (LiPF 6 )). was produced, and the battery characteristics were evaluated.
  • the electrolytic solution contained another electrolyte salt (lithium hexafluorophosphate (LiPF 6 )). was produced, and the battery characteristics were evaluated.
  • Examples 75 to 78 and Comparative Example 13 As shown in Table 8, secondary batteries were produced in the same manner as in Examples 4, 19, 20, 23 and Comparative Example 4, except that the type of the negative electrode binder was changed. evaluated. Styrene-butadiene rubber (SBR) was used as the negative electrode binder instead of polyvinylidene fluoride.
  • SBR Styrene-butadiene rubber
  • the procedure for fabricating the negative electrode 22 is the same as in Example 4, except for the procedures described below.
  • a negative electrode active material artificial graphite that is a carbon material
  • a negative electrode binder styrene-butadiene rubber (SBR)
  • SBR styrene-butadiene rubber
  • the cycle maintenance rate both the preservation retention rate and the load retention rate decreased.
  • the negative electrode 22 contains a negative electrode active material (carbon material) and a negative electrode binder (styrene-butadiene rubber), and the electrolyte salt contains an imide anion (Examples 75 to 78), Cycle maintenance rate, preservation maintenance rate and load maintenance rate all increased.
  • the negative electrode 22 contains a carbon material, has a thickness T of 30 ⁇ m to 100 ⁇ m, a volume density V of 1.4 g/cm 3 to 2 g/cm 3 , and an electrolytic
  • the electrolyte salt of the liquid contained an imide anion
  • all of the cycle retention rate, storage retention rate and load retention rate were improved. Therefore, excellent high-temperature cycle characteristics, excellent high-temperature storage characteristics, and excellent low-temperature load characteristics were obtained in the secondary battery, and thus excellent battery characteristics could be obtained.
  • the element structure of the battery element is a wound type.
  • the element structure of the battery element is not particularly limited, it may be a laminated type or a folded type.
  • the positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween, and in the multifold type, the positive electrode and the negative electrode are folded zigzag while facing each other with the separator interposed therebetween.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極と、負極活物質層を含む負極と、電解質塩を含む電解液とを備える。負極活物質層は、炭素材料を含み、その負極活物質層の厚さは、30μm以上100μm以下であり、その負極活物質層の体積密度は、1.4g/cm3 以上2g/cm3 以下である。電解質塩は、イミドアニオンを含み、そのイミドアニオンは、式(1)で表される第1イミドアニオン、式(2)で表される第2イミドアニオン、式(3)で表される第3イミドアニオンおよび式(4)で表される第4イミドアニオンのうちの少なくとも1種を含む。

Description

二次電池
 本技術は、二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源として二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液を備えており、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、電解液がRF 1-S(=O)-NH-S(=O)-NH-S(=O)-RF 2で表されるイミド化合物を含んでいる(例えば、特許文献1参照。)。また、電解液の電解質塩がF-S(=O)-N-C(=O)-N-S(=O)-FまたはF-S(=O)-N-S(=O)-C-S(=O)-N-S(=O)-Fで表されるイミドアニオンを含んでいる(例えば、非特許文献1,2参照。)。
中国特許第102786443号明細書
 二次電池の構成に関する様々な検討がなされているが、その二次電池の電池特性は未だ十分でないため、改善の余地がある。
 優れた電池特性を得ることが可能である二次電池が望まれている。
 本技術の一実施形態の二次電池は、正極と、負極活物質層を含む負極と、電解質塩を含む電解液とを備えたものである。負極活物質層は、炭素材料を含み、その負極活物質層の厚さは、30μm以上100μm以下であり、その負極活物質層の体積密度は、1.4g/cm以上2g/cm以下である。電解質塩は、イミドアニオンを含み、そのイミドアニオンは、式(1)で表される第1イミドアニオン、式(2)で表される第2イミドアニオン、式(3)で表される第3イミドアニオンおよび式(4)で表される第4イミドアニオンのうちの少なくとも1種を含む。
Figure JPOXMLDOC01-appb-C000005
(R1およびR2のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。W1、W2およびW3のそれぞれは、カルボニル基(>C=O)、スルフィニル基(>S=O)およびスルホニル基(>S(=O))のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000006
(R3およびR4のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。X1、X2、X3およびX4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000007
(R5は、フッ素化アルキレン基である。Y1、Y2およびY3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000008
(R6およびR7のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。R8は、アルキレン基、フェニレン基、フッ素化アルキレン基およびフッ素化フェニレン基のうちのいずれかである。Z1、Z2、Z3およびZ4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
 本技術の一実施形態の二次電池によれば、負極の負極活物質層が炭素材料を含んでおり、その負極活物質層の厚さが30μm以上100μm以下であり、その負極活物質層の体積密度が1.4g/cm以上2g/cm以下であり、電解液の電解質塩がイミドアニオンとして第1イミドアニオン、第2イミドアニオン、第3イミドアニオンおよび第4イミドアニオンのうちの少なくとも1種を含んでいるので、優れた電池特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す斜視図である。 図1に示した電池素子の構成を表す断面図である。 二次電池の適用例の構成を表すブロック図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池
  1-1.構成
  1-2.動作
  1-3.製造方法
  1-4.作用および効果
 2.変形例
 3.二次電池の用途
<1.二次電池>
 まず、本技術の一実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に電解液を備えている。
 この二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属の具体例は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属の具体例は、ベリリウム、マグネシウムおよびカルシウムなどである。ただし、電極反応物質の種類は、アルミニウムなどの他の軽金属でもよい。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
<1-1.構成>
 図1は、二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、XZ面に沿った電池素子20の断面を破線で示している。図2では、電池素子20の一部だけを示している。
 この二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、正極リード31と、負極リード32と、封止フィルム41,42とを備えている。ここで説明する二次電池は、可撓性または柔軟性を有する外装フィルム10を用いたラミネートフィルム型の二次電池である。
[外装フィルムおよび封止フィルム]
 外装フィルム10は、図1に示したように、電池素子20を収納する外装部材であり、その電池素子20が内部に収納された状態において封止された袋状の構造を有している。これにより、外装フィルム10は、後述する正極21および負極22と共に電解液を収納している。
 ここでは、外装フィルム10は、1枚のフィルム状の部材であり、折り畳み方向Fに折り畳まれている。この外装フィルム10には、電池素子20を収容するための窪み部10U(いわゆる深絞り部)が設けられている。
 具体的には、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム10が折り畳まれた状態において、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。
 ただし、外装フィルム10の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。
 封止フィルム41は、外装フィルム10と正極リード31との間に挿入されていると共に、封止フィルム42は、外装フィルム10と負極リード32との間に挿入されている。ただし、封止フィルム41,42のうちの一方または双方は、省略されてもよい。
 この封止フィルム41は、外装フィルム10の内部に外気などが侵入することを防止する封止部材である。また、封止フィルム41は、正極リード31に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、その高分子化合物の具体例は、ポリプロピレンなどである。
 封止フィルム42の構成は、負極リード32に対して密着性を有する封止部材であることを除いて、封止フィルム41の構成と同様である。すなわち、封止フィルム42は、負極リード32に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。
[電池素子]
 電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子であり、外装フィルム10の内部に収納されている。
 この電池素子20は、いわゆる巻回電極体である。すなわち、正極21および負極22は、セパレータ23を介して互いに積層されていると共に、そのセパレータ23を介して互いに対向しながら巻回軸Pを中心として巻回されている。なお、巻回軸Pは、Y軸方向に延在する仮想軸である。
 電池素子20の立体的形状は、特に限定されない。ここでは、電池素子20の立体的形状は、扁平状であるため、巻回軸Pと交差する電池素子20の断面(XZ面に沿った断面)の形状は、長軸J1および短軸J2により規定される扁平形状である。この長軸J1は、X軸方向に延在すると共に短軸J2よりも大きい長さを有する仮想軸であると共に、短軸J2は、X軸方向と交差するZ軸方向に延在すると共に長軸J1よりも小さい長さを有する仮想軸である。ここでは、電池素子20の立体的形状は、扁平な円筒状であるため、その電池素子20の断面の形状は、扁平な略楕円である。
(正極)
 正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
 正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。
 正極活物質層21Bは、リチウムを吸蔵放出する正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられている。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。
 正極活物質の種類は、特に限定されないが、具体的には、リチウム含有化合物である。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.82Co0.14Al0.04、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物の具体例は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料の具体例は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
 負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、銅などである。
 負極活物質層22Bは、リチウムを吸蔵放出する負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤、増粘剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられている。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 具体的には、負極活物質は、炭素材料のうちのいずれか1種類または2種類以上を含んでいる。リチウムの吸蔵放出時において炭素材料の結晶構造は変化しにくいため、高いエネルギー密度が安定に得られるからである。また、炭素材料は、負極導電剤としても機能するからである。これにより、負極22において、高いエネルギー密度が安定に得られながら、導電性が向上する。
 炭素材料の種類は、特に限定されないが、具体的には、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。この黒鉛は、天然黒鉛でもよいし、人造黒鉛でもよいし、双方でもよい。X線回折法を用いて測定される炭素材料の(002)面の面間隔は、特に限定されない。なお、X線回折法の具体例は、X線広角回折法などである。
 中でも、炭素材料は、黒鉛を含んでおり、X線回折法を用いて測定される黒鉛の(002)面の面間隔は、0.3372nm以下であることが好ましい。充電容量および放電容量のそれぞれが増加するからである。
 なお、炭素材料は、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などのうちのいずれか1種類または2種類以上を含んでいてもよい。コークス類は、ピッチコークス、ニードルコークスおよび石油コークスなどのうちのいずれか1種類または2種類以上である。有機高分子化合物焼成体は、高分子化合物が適当な温度で焼成(炭素化)された物質であり、その高分子化合物の具体例は、フェノール樹脂およびフラン樹脂などのうちのいずれか1種類または2種類以上である。この他、炭素材料は、約1000℃以下で熱処理された低結晶性炭素でもよいし、同様に熱処理された非晶質炭素でもよい。炭素材料の形状は、特に限定されないが、具体的には、繊維状、球状、粒状および鱗片状のうちのいずれか1種類または2種類以上である。
 ここで、負極活物質層22Bは、厚さT(μm)および体積密度V(g/cm)を有している。厚さTおよび体積密度Vのそれぞれは、後述する電解質塩の構成(イミドアニオン)との関係において適正化されている。ここで説明する厚さTは、正極21と負極22とがセパレータ23を介して互いに対向する方向(Z軸方向)における負極活物質層22Bの寸法であり、より具体的には、負極集電体22Aの一面に設けられている1つの負極活物質層22Bの厚さである。
 具体的には、厚さTは、30μm~100μmであると共に、体積密度Vは、1.4g/cm~2g/cmである。負極活物質層22Bが炭素材料を含んでいる場合において、厚さTおよび体積密度Vのそれぞれが適正化されるため、エネルギー密度が担保されながら、電解液の化学的安定性が向上するからである。
 詳細には、厚さTが上記した範囲内である場合において、体積密度Vが1.4g/cmよりも小さくなると、エネルギー密度が低下する。また、厚さTが上記した範囲内である場合において、体積密度Vが2g/cmよりも大きくなると、リチウムイオンの吸蔵放出効率が低下すると共に、負極活物質層22Bに対する電解液の含浸性が低下する。これに対して、厚さTが上記した範囲内である場合において、体積密度Vが1.4g/cm~2g/cmであると、エネルギー密度が増加し、リチウムイオンの吸蔵放出効率が向上し、負極活物質層22Bに対する電解液の含浸性が向上する。
 厚さTおよび体積密度Vのそれぞれを算出する手順は、以下で説明する通りである。
 厚さTを算出する場合には、最初に、二次電池を解体することにより、負極22を回収する。続いて、ミクロトームなどの切断器具を用いて、厚さ方向(Z軸方向)において負極22を切断することにより、その負極22の断面を露出させる。
 続いて、電子顕微鏡を用いて負極22の断面(負極活物質層22B)を観察することにより、観察結果(電子顕微鏡写真)を得る。電子顕微鏡としては、走査型電子顕微鏡(SEM)および透過型電子顕微鏡(TEM)のうちの一方または双方を使用可能である。観察倍率は、任意に設定可能である。
 続いて、電子顕微鏡写真に基づいて、負極活物質層22Bの厚さT(μm)を測定する。この場合には、互いに異なる10箇所において厚さTを測定することにより、10個の厚さTを得る。最後に、10個の厚さTの平均値を算出する。
 体積密度Vを特定する場合には、最初に、二次電池を解体することにより、負極22を回収する。続いて、ミクロトームなどの切断器具を用いて、所定の長さL(mm)および幅W(mm)となるように負極22を切断する。この長さLは、X軸方向における負極22の寸法であると共に、幅Wは、Y軸方向における負極22の寸法である。また、上記した手順により、負極活物質層22Bの厚さT(μm)を算出する。
 続いて、切断後の負極22の重量M1(g)を測定する。続いて、切断後の負極22を用いて、負極活物質層22Bから負極集電体22Aを剥離させることにより、その負極集電体22Aを回収する。続いて、回収された負極集電体22Aの重量M2(g)を測定したのち、重量M1から重量M2を差し引くことにより、負極活物質層22Bの重量M3(g)を算出する。最後に、長さL、幅Wおよび厚さTと、重量M3とに基づいて、体積密度Vを算出する。
 なお、負極結着剤を含んでいる負極22から負極集電体22Aを回収する場合には、負極活物質層22Bから負極集電体22Aを剥離させる代わりに、炭酸ジメチルなどの有機溶剤を用いて負極22から負極活物質層22Bを溶解除去してもよい。この場合には、有機溶剤により負極活物質層22B中の負極結着剤が溶解されるため、その負極結着剤と一緒に負極活物質などが負極集電体22Aから除去される。これにより、負極22から負極集電体22Aが回収される。
 なお、負極活物質は、さらに、金属系材料のうちのいずれか1種類または2種類以上を含んでいてもよい。高いエネルギー密度が得られるからである。
 この金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称であり、その金属元素および半金属元素の具体例は、ケイ素およびスズなどである。なお、金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。
 負極結着剤に関する詳細は、正極結着剤に関する詳細と同様であると共に、負極導電剤に関する詳細は、正極導電剤に関する詳細と同様である。
 中でも、負極結着剤は、ポリフッ化ビニリデンよりもスチレンブタジエンゴムを含んでいることが好ましい。負極活物質が炭素材料を含んでいる場合において、負極結着剤がスチレンブタジエンゴムを含んでいると、スチレンブタジエンゴムにより優れた結着性が担保されながら、後述する負極合剤スラリー中において炭素材料の分散性が向上するからである。これにより、負極活物質層22Bの内部において、負極活物質(炭素材料)が十分に分散されながら、その負極活物質同士が負極結着剤(スチレンブタジエンゴム)を介して互いに十分に結着される。
 増粘剤の種類は、特に限定されないが、具体的には、カルボキシメチルセルロースなどである。負極活物質層22Bが負極結着剤(スチレンブタジエンゴム)を含んでいる場合において、その負極活物質層22Bが増粘剤を含んでいると、後述する負極合剤スラリーの粘度を容易に調整可能になるからである。これにより、塗布法を用いて負極活物質層22Bを容易かつ安定に形成しやすくなる。
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、液状の電解質である。この電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、電解質塩を含んでいる。より具体的には、電解液は、電解質塩と共に、その電解質塩を分散(電離)させる溶媒を含んでいる。
 電解質塩は、溶媒中において電離する化合物であり、アニオンおよびカチオンを含んでいる。
 アニオンは、イミドアニオンを含んでいる。具体的には、イミドアニオンは、式(1)で表される第1イミドアニオン、式(2)で表される第2イミドアニオン、式(3)で表される第3イミドアニオンおよび式(4)で表される第4イミドアニオンのうちのいずれか1種類または2種類以上を含んでいる。すなわち、電解質塩は、アニオンとして1イミドアニオンを含んでいる。
 ただし、第1イミドアニオンの種類は、1種類だけでもよいし、2種類以上でもよい。このように種類が1種類でも2種類以上でもよいことは、第2イミドアニオン、第3イミドアニオンおよび第4イミドアニオンのそれぞれに関しても同様である。
Figure JPOXMLDOC01-appb-C000009
(R1およびR2のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。W1、W2およびW3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000010
(R3およびR4のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。X1、X2、X3およびX4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000011
(R5は、フッ素化アルキレン基である。Y1、Y2およびY3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000012
(R6およびR7のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。R8は、アルキレン基、フェニレン基、フッ素化アルキレン基およびフッ素化フェニレン基のうちのいずれかである。Z1、Z2、Z3およびZ4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
 アニオンがイミドアニオンを含んでいる理由は、以下で説明する通りである。第1に、二次電池の充放電時において、電解質塩に由来する良質な被膜が正極21および負極22のそれぞれの表面に形成されるため、その正極21および負極22のそれぞれの表面における電解液(特に、溶媒)の分解反応が抑制される。第2に、上記した被膜を利用して、正極21および負極22のそれぞれの表面近傍においてリチウムイオンの移動速度が向上する。第3に、電解液の液中においても、リチウムイオンの移動速度が向上する。
 第1イミドアニオンは、式(1)に示したように、2個の窒素原子(N)および3個の官能基(W1~W3)を含む鎖状のアニオン(2価のマイナスイオン)である。
 R1およびR2のそれぞれは、フッ素基(-F)およびフッ素化アルキル基のうちのいずれかであれば、特に限定されない。すなわち、R1およびR2のそれぞれは、互いに同じ基でもよいし、互いに異なる基でもよい。これにより、R1およびR2のそれぞれは、水素基(-H)およびアルキル基などではない。
 フッ素化アルキル基は、アルキル基のうちの1個または2個以上の水素基(-H)がフッ素基により置換された基である。ただし、フッ素化アルキル基は、直鎖状でもよいし、1本または2本以上の側鎖を有する分岐状でもよい。
 フッ素化アルキル基の炭素数は、特に限定されないが、具体的には、1~10である。第1イミドアニオンを含む電解質塩の溶解性および電離性が向上するからである。
 フッ素化アルキル基の具体例は、パーフルオロメチル基(-CF3 )およびパーフルオロエチル基(-C2 F5 )などである。
 W1~W3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかであれば、特に限定されない。すなわち、W1~W3のそれぞれは、互いに同じ基でもよいし、互いに異なる基でもよい。もちろん、W1~W3のうちの任意の2つだけが互いに同じ基でもよい。
 第2イミドアニオンは、式(2)に示したように、3個の窒素原子および4個の官能基(X1~X4)を含む鎖状のアニオン(3価のマイナスイオン)である。
 R3およびR4のそれぞれに関する詳細は、R1およびR2のそれぞれに関する詳細と同様である。
 X1~X4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかであれば、特に限定されない。すなわち、X1~X4のそれぞれは、互いに同じ基でもよいし、互いに異なる基でもよい。もちろん、X1~X4のうちの任意の2つだけが互いに同じ基でもよいし、X1~X4のうちの任意の3つだけが互いに同じ基でもよい。
 第3イミドアニオンは、式(3)に示したように、2個の窒素原子、3個の官能基(Y1~Y3)および1個の接続基(R5)を含む環状のアニオン(2価のマイナスイオン)である。
 R5であるフッ素化アルキレン基は、アルキレン基のうちの1個または2個以上の水素基がフッ素基により置換された基である。ただし、フッ素化アルキレン基は、直鎖状でもよいし、1本または2本以上の側鎖を有する分岐状でもよい。
 フッ素化アルキレン基の炭素数は、特に限定されないが、具体的には、1~10である。第3イミドアニオンを含む電解質塩の溶解性および電離性が向上するからである。
 フッ素化アルキレン基の具体例は、パーフルオロメチレン基(-CF-)およびパーフルオロエチレン基(-C-)などである。
 Y1~Y3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかであれば、特に限定されない。すなわち、Y1~Y3のそれぞれは、互いに同じ基でもよいし、互いに異なる基でもよい。もちろん、Y1~Y3のうちの任意の2つだけが互いに同じ基でもよい。
 第4イミドアニオンは、式(4)に示したように、2個の窒素原子、4個の官能基(Z1~Z4)および1個の接続基(R8)を含む鎖状のアニオン(2価のマイナスイオン)である。
 R6およびR7のそれぞれに関する詳細は、R1およびR2のそれぞれに関する詳細と同様である。
 R8は、アルキレン基、フェニレン基、フッ素化アルキレン基およびフッ素化フェニレン基のうちのいずれかであれば、特に限定されない。
 アルキレン基は、直鎖状でもよいし、1本または2本以上の側鎖を有する分岐状でもよい。アルキレン基の炭素数は、特に限定されないが、具体的には、1~10である。第4イミドアニオンを含む電解質塩の溶解性および電離性が向上するからである。アルキレン基の具体例は、メチレン基(-CH-)、エチレン基(-C-)およびプロピレン基(-C-)などである。
 R8であるフッ素化アルキレン基に関する詳細は、R5であるフッ素化アルキレン基に関する詳細と同様である。
 フッ素化フェニレン基は、フェニレン基のうちの1個または2個以上の水素基がフッ素基により置換された基である。フッ素化フェニレン基の具体例は、モノフルオロフェニレン基(-CF-)などである。
 Z1~Z4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかであれば、特に限定されない。すなわち、Z1~Z4のそれぞれは、互いに同じ基でもよいし、互いに異なる基でもよい。もちろん、Z1~Z4のうちの任意の2つだけが互いに同じ基でもよいし、Z1~Z4のうちの任意の3つだけが互いに同じ基でもよい。
(アニオンの具体例)
 第1イミドアニオンの具体例は、式(1-1)~式(1-30)のそれぞれで表されるアニオンなどである。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 第2イミドアニオンの具体例は、式(2-1)~式(2-22)のそれぞれで表されるアニオンなどである。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 第3イミドアニオンの具体例は、式(3-1)~式(3-15)のそれぞれで表されるアニオンなどである。
Figure JPOXMLDOC01-appb-C000018
 第4イミドアニオンの具体例は、式(4-1)~式(4-65)のそれぞれで表されるアニオンなどである。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
(カチオン)
 カチオンの種類は、特に限定されない。具体的には、カチオンは、軽金属イオンのうちのいずれか1種類または2種類以上を含んでいる。すなわち、電解質塩は、カチオンとして軽金属イオンを含んでいる。高い電圧が得られるからである。
 軽金属イオンの種類は、特に限定されないが、具体的には、アルカリ金属イオンおよびアルカリ土類金属イオンなどである。アルカリ金属イオンの具体例は、リチウムイオン、ナトリウムイオンおよびカリウムイオンなどである。アルカリ土類金属イオンの具体例は、ベリリウムイオン、マグネシウムイオンおよびカルシウムイオンなどである。この他、軽金属イオンは、アルミニウムイオンなどでもよい。
 中でも、軽金属イオンは、リチウムイオンを含んでいることが好ましい。十分に高い電圧が得られるからである。
(含有量)
 電解液における電解質塩の含有量は、特に限定されないため、任意に設定可能である。中でも、電解質塩の含有量は、0.2mol/kg~2mol/kgであることが好ましい。高いイオン伝導性が得られるからである。ここで説明する「電解質塩の含有量」とは、溶媒に対する電解質塩の含有量である。
 電解質塩の含有量を特定する場合には、二次電池を解体することにより、電解液を回収したのち、高周波誘導結合プラズマ(Inductively Coupled Plasma(ICP))発光分光分析法を用いて電解液を分析する。これにより、溶媒の重量および電解質塩の重量のそれぞれが特定されるため、その電解質塩の含有量が算出される。
[溶媒]
 溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。
 カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、トリメチル酢酸エチル、酪酸メチルおよび酪酸エチルなどである。
 ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。
 なお、エーテル類は、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどでもよい。
[他の電解質塩]
 なお、電解液は、さらに、他の電解質塩のうちのいずれか1種類または2種類以上を含んでいてもよい。正極21および負極22のそれぞれの表面近傍においてリチウムイオンの移動速度がより向上すると共に、電解液の液中においてもリチウムイオンの移動速度がより向上するからである。電解液における他の電解質塩の含有量は、特に限定されないため、任意に設定可能である。
 他の電解質塩の種類は、特に限定されないが、具体的には、リチウム塩などの軽金属塩である。ただし、上記した電解質塩は、ここで説明するリチウム塩から除かれる。
 リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)、ビス(オキサラト)ホウ酸リチウム(LiB(C)、ジフルオロオキサラトホウ酸リチウム(LiBF(C))、ジフルオロジ(オキサラト)ホウ酸リチウム(LiPF(C)、テトラフルオロオキサラトリン酸リチウム(LiPF(C))、モノフルオロリン酸リチウム(LiPFO)およびジフルオロリン酸リチウム(LiPF)などである。
 中でも、他の電解質塩は、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(オキサラト)ホウ酸リチウムおよびジフルオロリン酸リチウムのうちのいずれか1種類または2種類以上を含んでいることが好ましい。正極21および負極22のそれぞれの表面近傍においてリチウムイオンの移動速度が十分に向上すると共に、電解液の液中においてもリチウムイオンの移動速度が十分に向上するからである。
[添加剤]
 また、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の充放電時において、添加剤に由来する被膜が正極21および負極22のそれぞれの表面に形成されるため、電解液の分解反応が抑制されるからである。なお、電解液における添加剤の含有量は、特に限定されないため、任意に設定可能である。
 添加剤の種類は、特に限定されないが、具体的には、不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、ジカルボン酸無水物、ジスルホン酸無水物、硫酸エステル、ニトリル化合物およびイソシアネート化合物などである。
(不飽和環状炭酸エステル)
 不飽和環状炭酸エステルは、不飽和炭素結合(炭素間二重結合)を含む環状炭酸エステルである。不飽和炭素結合の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。
(フッ素化環状炭酸エステル)
 フッ素化環状炭酸エステルは、フッ素を構成元素として含む環状炭酸エステルである。すなわち、フッ素化環状炭酸エステルは、環状炭酸エステルのうちの1個または2個以上の水素基がフッ素基により置換された化合物である。フッ素化環状炭酸エステルの具体例は、モノフルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。
(スルホン酸エステル)
 スルホン酸エステルは、環状モノスルホン酸エステル、環状ジスルホン酸エステル、鎖状モノスルホン酸エステルおよび鎖状ジスルホン酸エステルなどである。環状モノスルホン酸エステルの具体例は、1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1,4-ブタンスルトン、2,4-ブタンスルトンおよびメタンスルホン酸プロパルギルエステルなどである。環状ジスルホン酸エステルの具体例は、シクロジソンなどである。
(ジカルボン酸無水物)
 ジカルボン酸無水物の具体例は、無水コハク酸、無水グルタル酸および無水マレイン酸などである。
(ジスルホン酸無水物)
 ジスルホン酸無水物の具体例は、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。
(硫酸エステル)
 硫酸エステルの具体例は、エチレンスルファート(1,3,2-ジオキサチオラン 2,2-ジオキシド)などである。
(ニトリル化合物)
 ニトリル化合物は、1個または2個以上のシアノ基(-CN)を有する化合物である。ニトリル化合物の具体例は、オクタンニトリル、ベンゾニトリル、フタロニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、セバコニトリル、1,3,6-ヘキサントリカルボニトリル、3,3’-オキシジプロピオニトリル、3-ブトキシプロピオニトリル、エチレングリコールビスプロピオニトリルエーテル、1,2,2,3-テトラシアノプロパン、テトラシアノプロパン、フマロニトリル、7,7,8,8-テトラシアノキノジメタン、シクロペンタンカルボニトリル、1,3,5-シクロヘキサントリカルボニトリルおよび1,3-ビス(ジシアノメチリデン)インダンなどである。
(イソシアネート化合物)
 イソシアネート化合物は、1個または2個以上のイソシアネート基(-NCO)を有する化合物である。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。
[正極リードおよび負極リード]
 正極リード31は、図1および図2に示したように、正極21の正極集電体21Aに接続されている正極端子であり、外装フィルム10の内部から外部に導出されている。この正極リード31は、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。正極リード31の形状は、特に限定されないが、具体的には、正極リード31は、薄板状および網目状などのうちのいずれかである。
 負極リード32は、図1および図2に示したように、負極22の負極集電体22Aに接続されている負極端子であり、外装フィルム10の内部から外部に導出されている。この負極リード32は、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、銅などである。ここでは、負極リード32の導出方向は、正極リード31の導出方向と同様の方向である。なお、負極リード32の形状に関する詳細は、正極リード31の形状に関する詳細と同様である。
<1-2.動作>
 二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。一方、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-3.製造方法>
 二次電池を製造する場合には、以下で説明する一例の手順により、正極21および負極22のそれぞれを作製すると共に、電解液を調製したのち、その正極21および負極22と共に電解液を用いて二次電池を組み立てると共に、その二次電池の安定化処理を行う。
[正極の作製]
 最初に、正極活物質と、正極結着剤と、正極導電剤とが互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。なお、溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成形する。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成形を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極22を形成する。具体的には、最初に、炭素材料を含む負極活物質と、負極結着剤とが互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。溶媒に関する詳細は、上記した通りである。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。最後に、負極活物質層22Bを圧縮成形する。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
 この負極22を作製する場合には、厚さTおよび体積密度Vが上記した条件を満たすように、負極活物質層22Bの形成工程において負極合剤スラリーの濃度および塗布量などの条件を調整する。
[電解液の調製]
 イミドアニオンを含む電解質塩を溶媒に投入する。この場合には、溶媒にさらに他の電解質塩を添加してもよいし、溶媒にさらに添加剤を添加してもよい。これにより、溶媒中において電解質塩などが分散または溶解されるため、電解液が調製される。
[二次電池の組み立て]
 最初に、溶接法などの接合法を用いて、正極21の正極集電体21Aに正極リード31を接続させると共に、溶接法などの接合法を用いて、負極22の負極集電体22Aに負極リード32を接続させる。
 続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体(図示せず)を作製する。この巻回体は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、プレス機などを用いて巻回体を押圧することにより、扁平形状となるように巻回体を成形する。
 続いて、窪み部10Uの内部に巻回体を収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させる。続いて、熱融着法などの接着法を用いて、互いに対向する融着層のうちの2辺の外周縁部同士を互いに接着させることにより、袋状の外装フィルム10の内部に巻回体を収納する。
 最後に、袋状の外装フィルム10の内部に電解液を注入したのち、熱融着法などの接着法を用いて互いに対向する融着層のうちの残りの1辺の外周縁部同士を互いに接着させる。この場合には、外装フィルム10と正極リード31との間に封止フィルム41を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42を挿入する。
 これにより、巻回体に電解液が含浸されるため、巻回電極体である電池素子20が作製される。よって、袋状の外装フィルム10の内部に電池素子20が封入されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。よって、二次電池が完成する。
<1-4.作用および効果>
 この二次電池によれば、負極22の負極活物質層22Bが炭素材料を含んでおり、その負極活物質層22Bの厚さTが30μm~100μmであり、その負極活物質層22Bの体積密度Vが1.4g/cm~2g/cmであり、電解液の電解質塩がイミドアニオンを含んでいる。
 この場合には、上記したように、負極活物質層22Bが炭素材料を含んでいる場合において、厚さTおよび体積密度Vのそれぞれが適正化されるため、エネルギー密度が担保されながら、電解液の化学的安定性が向上する。これにより、エネルギー密度が増加し、リチウムイオンの吸蔵放出効率が向上し、負極活物質層22Bに対する電解液の含浸性が向上する。
 しかも、上記したように、二次電池の充放電時において電解質塩に由来する良質な被膜が正極21および負極22のそれぞれの表面に形成されるため、電解液の分解反応が抑制される。また、正極21および負極22のそれぞれの表面近傍においてリチウムイオンの移動速度が向上すると共に、電解液の液中においてもリチウムイオンの移動速度が向上する。
 よって、優れた電池特性を得ることができる。
 特に、負極22の負極活物質層22Bがさらにスチレンブタジエンゴムを含んでいれば、その負極活物質層22Bの内部において、負極活物質(炭素材料)が十分に分散されながら、その負極活物質同士が負極結着剤(スチレンブタジエンゴム)を介して互いに十分に結着されるため、より高い効果を得ることができる。
 また、炭素材料が黒鉛を含んでおり、その黒鉛の(002)面の面間隔が0.3372nm以下であれば、充電容量および放電容量のそれぞれが増加するため、より高い効果を得ることができる。
 また、電解質塩がカチオンとして軽金属イオンを含んでいれば、高い電圧が得られるため、より高い効果を得ることができる。この場合には、軽金属イオンがリチウムイオンを含んでいれば、十分に高い電圧が得られるため、さらに高い効果を得ることができる。
 また、電解液における電解質塩の含有量が0.2mol/kg~2mol/kgであれば、高いイオン伝導性が得られるため、より高い効果を得ることができる。
 また、電解液がさらに添加剤として不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、ジカルボン酸無水物、ジスルホン酸無水物、硫酸エステル、ニトリル化合物およびイソシアネート化合物のうちのいずれか1種類または2種類以上を含んでいれば、その電解液の分解反応が抑制されるため、より高い効果を得ることができる。
 また、電解液がさらに他の電解質塩として六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(オキサラト)ホウ酸リチウムおよびジフルオロリン酸リチウムのうちのいずれか1種類または2種類以上を含んでいれば、リチウムイオンの移動速度がより向上するため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
<2.変形例>
 二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。
[変形例1]
 上記したように、電解液は、イミドアニオンを含む電解質塩と共に、他の電解質塩を含んでいてもよい。
 中でも、電解液は、他の電解質塩として六フッ化リン酸リチウムを含んでいると共に、その電解液における電解質塩の含有量は、その電解液における他の電解質塩の含有量との関係において適正化されていることが好ましい。
 具体的には、電解質塩は、カチオンおよびイミドアニオンを含んでいる。また、六フッ化リン酸イオンは、リチウムイオンおよび六フッ化リン酸イオンを含んでいる。
 この場合において、電解液におけるカチオンの含有量C1と、その電解液におけるリチウムイオンの含有量C2との和T(mol/kg)は、0.7mol/kg~2.2mol/kgである。また、電解液におけるイミドアニオンのモル数M1に対する、その電解液における六フッ化リン酸イオンのモル数M2の割合R(mol%)は、13mol%~6000mol%である。正極21および負極22のそれぞれの表面近傍においてカチオンおよびリチウムイオンのそれぞれの移動速度が十分に向上すると共に、電解液の液中においてもカチオンおよびリチウムイオンのそれぞれの移動速度が十分に向上するからである。
 ここで説明した「電解液におけるカチオンの含有量」は、溶媒に対するカチオンの電解質塩の含有量であると共に、「電解液におけるリチウムイオンの含有量」は、溶媒に対するリチウムイオンの含有量である。なお、和Tは、T=C1+C2という計算式に基づいて算出されると共に、割合Rは、R=(M2/M1)×100という計算式に基づいて算出される。
 和Tおよび割合Rのそれぞれを算出する場合には、二次電池を解体することにより、電解液を回収したのち、ICP発光分光分析法を用いて電解液を分析する。これにより、含有量C1,C2およびモル数M1,M2のそれぞれが特定されるため、和Tおよび割合Rのそれぞれが算出される。
 この場合においても、電解液が電解質塩を含んでいるため、同様の効果を得ることができる。この場合には、特に、電解質塩と他の電解質塩(六フッ化リン酸リチウム)とを併用した場合において、両者の総量(和T)が適正化されると共に、両者の混合比(割合R)も適正化される。これにより、正極21および負極22のそれぞれの表面近傍においてカチオンおよびリチウムイオンのそれぞれの移動速度がさらに向上すると共に、電解液の液中においてもカチオンおよびリチウムイオンのそれぞれの移動速度がさらに向上する。よって、より高い効果を得ることができる。
[変形例2]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(巻きずれ)が抑制されるからである。これにより、電解液の分解反応などの副反応が発生しても、二次電池の膨れが抑制される。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。優れた物理的強度および優れた電気化学的安定性が得られるからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱を促進させるため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機材料および樹脂材料などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでいる。無機材料の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどである。樹脂材料の具体例は、アクリル樹脂およびスチレン樹脂などである。
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。
[変形例3]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。
<3.二次電池の用途>
 二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、駆動用電源として二次電池を用いて作動(走行)する車両であり、その二次電池以外の他の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
 図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図3に示したように、電源51と、回路基板52とを備えている。この回路基板52は、電源51に接続されていると共に、正極端子53、負極端子54および温度検出端子55を含んでいる。
 電源51は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子53に接続されていると共に、負極リードが負極端子54に接続されている。この電源51は、正極端子53および負極端子54を介して外部と接続可能であるため、充放電可能である。回路基板52は、制御部56と、スイッチ57と、PTC素子58と、温度検出部59とを含んでいる。ただし、PTC素子58は、省略されてもよい。
 制御部56は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部56は、必要に応じて電源51の使用状態の検出および制御を行う。
 なお、制御部56は、電源51(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ57を切断することにより、電源51の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.20V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.40V±0.1Vである。
 スイッチ57は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部56の指示に応じて電源51と外部機器との接続の有無を切り換える。このスイッチ57は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ57のON抵抗に基づいて検出される。
 温度検出部59は、サーミスタなどの温度検出素子を含んでおり、温度検出端子55を用いて電源51の温度を測定すると共に、その温度の測定結果を制御部56に出力する。温度検出部59により測定される温度の測定結果は、異常発熱時において制御部56が充放電制御を行う場合および残容量の算出時において制御部56が補正処理を行う場合などに用いられる。
 本技術の実施例に関して説明する。
<実施例1~24および比較例1~12>
 以下で説明するように、二次電池を作製したのち、その二次電池の電池特性を評価した。
[二次電池の作製]
 以下の手順により、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を作製した。
(正極の作製)
 最初に、正極活物質(リチウム含有化合物(酸化物)であるLiNi0.82Co0.14Al0.04)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(カーボンブラック)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(厚さ=12μmである帯状のアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成形した。これにより、正極21が作製された。
(負極の作製)
 最初に、負極活物質(炭素材料である人造黒鉛)93質量部と、負極結着剤(ポリフッ化ビニリデン)7質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(厚さ=15μmである帯状の銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成形した。これにより、負極22が作製された。
 厚さT(μm)と、体積密度V(g/cm)と、炭素材料(人造黒鉛)の(002)面の面間隔(nm)とは、表1および表2に示した通りであった。
(電解液の調製)
 最初に、溶媒に電解質塩を添加したのち、その溶媒を攪拌した。
 溶媒としては、環状炭酸エステルである炭酸エチレンと、ラクトンであるγ-ブチロラクトンとを用いた。この場合には、溶媒の混合比(重量比)を炭酸エチレン:γ-ブチロラクトン=30:70とした。
 電解質塩のカチオンとしては、リチウムイオン(Li)を用いた。電解質塩のアニオンとしては、式(1-5)、式(1-6)、式(1-21)および式(1-22)のそれぞれに示した第1イミドアニオンと、式(2-5)に示した第2イミドアニオンと、式(3-5)に示した第3イミドアニオンと、式(4-37)に示した第4イミドアニオンとを用いた。電解質塩の含有量(mol/kg)は、表1および表2に示した通りであった。
 これにより、電解質塩を含む電解液が調製された。この電解質塩は、アニオンとしてイミドアニオンを含むリチウム塩である。
 なお、比較のために、表3に示したように、アニオンとして六フッ化リン酸イオン(PF6-)を用いたことを除いて同様の手順により、電解液を調製した。
(二次電池の組み立て)
 最初に、正極21の正極集電体21Aに正極リード31(アルミニウム箔)を溶接したと共に、負極22の負極集電体22Aに負極リード32(銅箔)を溶接した。
 続いて、セパレータ23(厚さ=15μmである微多孔性ポリエチレンフィルム)を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を作製した。続いて、プレス機を用いて巻回体をプレスすることにより、扁平状となるように巻回体を成形した。
 続いて、窪み部10Uに収容された巻回体を挟むように外装フィルム10(融着層/金属層/表面保護層)を折り畳んだのち、その融着層のうちの2辺の外周縁部同士を互いに熱融着させることにより、袋状の外装フィルム10の内部に巻回体を収納した。外装フィルム10としては、融着層(厚さ=30μmであるポリプロピレンフィルム)と、金属層(厚さ=40μmであるアルミニウム箔)と、表面保護層(厚さ=25μmであるナイロンフィルム)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。
 最後に、袋状の外装フィルム10の内部に電解液を注入したのち、減圧環境中において融着層のうちの残りの1辺の外周縁部同士を互いに熱融着させた。この場合には、外装フィルム10と正極リード31との間に封止フィルム41(厚さ=5μmであるポリプロピレンフィルム)を挿入したと共に、外装フィルム10と負極リード32との間に封止フィルム42(厚さ=5μmであるポリプロピレンフィルム)を挿入した。これにより、巻回体に電解液が含浸されたため、電池素子20が作製された。
 よって、外装フィルム10の内部に電池素子が封入されたため、二次電池が組み立てられた。二次電池の定格容量(mAH)は、表1~表3に示した通りであった。
(二次電池の安定化)
 常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が2.5Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。
 これにより、正極21および負極22のそれぞれの表面に被膜が形成されたため、二次電池の状態が電気化学的に安定化した。よって、ラミネートフィルム型の二次電池が完成した。
[電池特性の評価]
 電池特性を評価したところ、表1~表3に示した結果が得られた。ここでは、高温サイクル特性、高温保存特性および低温負荷特性を評価した。
(高温サイクル特性)
 最初に、高温環境中(温度=60℃)において二次電池を充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
 続いて、同環境中においてサイクル数の総数が100サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(100サイクル目の放電容量)を測定した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
 最後に、サイクル維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、高温サイクル特性を評価するための指標であるサイクル維持率を算出した。
(高温保存特性)
 最初に、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、放電容量(保存前の放電容量)を測定した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
 続いて、同環境中において二次電池を充電させることにより、高温環境中(温度=80℃)において充電状態の二次電池を保存(保存時間=10日間)したのち、常温環境中において二次電池を放電させることにより、放電容量(保存後の放電容量)を測定した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
 最後に、保存維持率(%)=(保存後の放電容量/保存前の放電容量)×100という計算式に基づいて、高温保存特性を評価するための指標である保存維持率を算出した。
(低温負荷特性)
 最初に、常温環境中(温度=23℃)において二次電池を1サイクル充放電させることにより、放電容量(1サイクル目の放電容量)を測定した。充放電条件は、上記した二次電池の安定化時の充放電条件と同様にした。
 続いて、低温環境中(温度=-10℃)においてサイクル数の総数が100サイクルに到達するまで二次電池を繰り返して充放電させることにより、放電容量(100サイクル目の放電容量)を測定した。充放電条件は、放電時の電流を1Cに変更したことを除いて、上記した二次電池の安定化時の充放電条件と同様にした。1Cとは、電池容量を1時間で放電しきる電流値である。
 最後に、負荷維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、低温負荷特性を評価するための指標である負荷維持率を算出した。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
[考察]
 表1~表3に示したように、サイクル維持率、保存維持率および負荷維持率のそれぞれは、負極22の構成および電解液の構成に応じて大きく変動した。
 具体的には、負極22の負極活物質として炭素材料を用いた二次電池では、以下で説明する傾向が得られた。
 厚さTが30μm~100μmであると共に体積密度Vが1.4g/cm~2g/cmであっても、電解質塩がイミドアニオンを含んでいない場合(比較例1~12)には、サイクル維持率、保存維持率および負荷維持率がいずれも減少した。
 これに対して、厚さTが30μm~100μmであると共に体積密度Vが1.4g/cm~2g/cmであり、電解質塩がイミドアニオンを含んでいる場合(実施例1~24)には、サイクル維持率、保存維持率および負荷維持率がいずれも増加した。
 特に、電解質塩がイミドアニオンを含んでいる場合(実施例1~24)には、以下で説明する傾向も得られた。第1に、(002)面の面間隔が0.3372nm以下であると、サイクル維持率、保存維持率および負荷維持率のそれぞれがより増加した。第2に、電解質塩がカチオンとして軽金属イオン(リチウムイオン)を含んでいると、サイクル維持率、保存維持率および負荷維持率のそれぞれが十分に高くなった。第3に、電解質塩の含有量が溶媒に対して0.2mol/kg~2mol/kgであると、サイクル維持率、保存維持率および負荷維持率のそれぞれが十分に高くなった。
<実施例25~42>
 表4および表5に示したように、電解液に添加剤および他の電解質塩のうちのいずれかを含有させたことを除いて実施例4と同様の手順により、二次電池を作製したのち、電池特性を評価した。この場合には、電解質塩を含む溶媒に添加剤および他の電解質塩のうちのいずれかを添加したのち、その溶媒を攪拌した。
 添加剤に関する詳細は、以下で説明する通りである。不飽和環状炭酸エステルとしては、炭酸ビニレン(VC)、炭酸ビニルエチレン(VEC)および炭酸メチレンエチレン(MEC)を用いた。フッ素化環状炭酸エステルとしては、モノフルオロ炭酸エチレン(FEC)およびジフルオロ炭酸エチレン(DFEC)を用いた。スルホン酸エステルとしては、環状モノスルホン酸エステルであるプロパンスルトン(PS)およびプロペンスルトン(PRS)と、環状ジスルホン酸エステルであるシクロジソン(CD)とを用いた。ジカルボン酸無水物としては、無水コハク酸(SA)を用いた。ジスルホン酸無水物としては、無水プロパンジスルホン酸(PSAH)を用いた。硫酸エステルとしては、エチレンスルファート(DTD)を用いた。ニトリル化合物としては、スクシノニトリル(SN)を用いた。イソシアネート化合物としては、ヘキサメチレンジイソシアネート(HMI)を用いた。
 他の電解質塩としては、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、ビス(フルオロスルホニル)イミドリチウム(LiFSI)、ビス(オキサラト)ホウ酸リチウム(LiBOB)およびジフルオロリン酸リチウム(LiPF)を用いた。
 電解液における添加剤および他の電解質塩のそれぞれの含有量(重量%)は、表4および表5に示した通りであった。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 表1および表4に示したように、電解液が添加剤を含んでいる場合(実施例25~37)には、電解液が添加剤を含んでいない場合(実施例4)と比較して、サイクル維持率および保存維持率のうちのいずれか1つ以上がより増加した。
 また、表1および表5に示したように、電解液が他の電解質塩を含んでいる場合(実施例38~42)には、電解液が他の電解質塩を含んでいない場合(実施例4)と比較して、サイクル維持率および保存維持率のうちのいずれか1つ以上がより増加した。
<実施例43~74>
 表6および表7に示したように、電解液に他の電解質塩(六フッ化リン酸リチウム(LiPF))を含有させたことを除いて実施例4と同様の手順により、二次電池を作製したのち、電池特性を評価した。
 この場合には、溶媒に電解質塩と共に他の電解質塩を添加したのち、その溶媒を攪拌した。電解質塩の含有量(mol/kg)と、他の電解質塩の含有量(mol/kg)と、和T(mol/kg)と、割合R(mol%)とは、表6および表7に示した通りであった。
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
 表6および表7に示したように、和Tが0.7mol/kg~2.2mol/kgであると共に割合Rが13mol%~6000mol%という2つの条件が満たされている場合(実施例47など)には、その2つの条件が満たされていない場合(実施例43など)と比較して、サイクル維持率、保存維持率および負荷維持率のそれぞれがより増加した。
<実施例75~78および比較例13>
 表8に示したように、負極結着剤の種類を変更したことを除いて実施例4,19,20,23および比較例4と同様の手順により、二次電池を作製したのち、電池特性を評価した。この負極結着剤としては、ポリフッ化ビニリデンの代わりにスチレンブタジエンゴム(SBR)を用いた。
 負極22の作製手順は、以下で説明する手順を除いて、実施例4と同様である。負極合剤を得る場合には、負極活物質(炭素材料である人造黒鉛)96.5質量部と、負極結着剤(スチレンブタジエンゴム(SBR))1.5質量部と、増粘剤(カルボキシメチルセルロース)2質量部とを互いに混合させた。
Figure JPOXMLDOC01-appb-T000033
 表8に示したように、負極結着剤の種類を変更しても、表1~表3の結果と同様の傾向が得られた。
 すなわち、負極22が負極活物質(炭素材料)および負極結着剤(スチレンブタジエンゴム)を含んでいても、電解質塩がイミドアニオンを含んでいない場合(比較例13)には、サイクル維持率、保存維持率および負荷維持率がいずれも減少した。
 これに対して、負極22が負極活物質(炭素材料)および負極結着剤(スチレンブタジエンゴム)を含んでおり、電解質塩がイミドアニオンを含んでいる場合(実施例75~78)には、サイクル維持率、保存維持率および負荷維持率がいずれも増加した。
 特に、負極結着剤としてスチレンブタジエンゴムを用いた場合(実施例75~78)には、負極結着剤としてポリフッ化ビニリデンを用いた場合(実施例4,19,20,23)と比較して、サイクル維持率および保存維持率のうちのいずれか1つ以上がより増加した。
[まとめ]
 表1~表8に示した結果から、負極22が炭素材料を含んでおり、厚さTが30μm~100μmであり、体積密度Vが1.4g/cm~2g/cmであり、電解液の電解質塩がイミドアニオンを含んでいると、サイクル維持率、保存維持率および負荷維持率がいずれも改善された。よって、二次電池において優れた高温サイクル特性、優れた高温保存特性および優れた低温負荷特性が得られたため、優れた電池特性を得ることができた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、電池素子の素子構造が巻回型である場合に関して説明した。しかしながら、電池素子の素子構造は、特に限定されないため、積層型および九十九折り型などでもよい。積層型では、正極および負極がセパレータを介して交互に積層されていると共に、九十九折り型では、正極および負極がセパレータを介して互いに対向しながらジグザグに折り畳まれている。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (10)

  1.  正極と、
     負極活物質層を含む負極と、
     電解質塩を含む電解液と
     を備え、
     前記負極活物質層は、炭素材料を含み、
     前記負極活物質層の厚さは、30μm以上100μm以下であり、
     前記負極活物質層の体積密度は、1.4g/cm以上2g/cm以下であり、
     前記電解質塩は、イミドアニオンを含み、前記イミドアニオンは、式(1)で表される第1イミドアニオン、式(2)で表される第2イミドアニオン、式(3)で表される第3イミドアニオンおよび式(4)で表される第4イミドアニオンのうちの少なくとも1種を含む、
     二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1およびR2のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。W1、W2およびW3のそれぞれは、カルボニル基(>C=O)、スルフィニル基(>S=O)およびスルホニル基(>S(=O))のうちのいずれかである。)
    Figure JPOXMLDOC01-appb-C000002
    (R3およびR4のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。X1、X2、X3およびX4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
    Figure JPOXMLDOC01-appb-C000003
    (R5は、フッ素化アルキレン基である。Y1、Y2およびY3のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
    Figure JPOXMLDOC01-appb-C000004
    (R6およびR7のそれぞれは、フッ素基およびフッ素化アルキル基のうちのいずれかである。R8は、アルキレン基、フェニレン基、フッ素化アルキレン基およびフッ素化フェニレン基のうちのいずれかである。Z1、Z2、Z3およびZ4のそれぞれは、カルボニル基、スルフィニル基およびスルホニル基のうちのいずれかである。)
  2.  前記負極は、さらに、スチレンブタジエンゴムを含む、
     請求項1記載の二次電池。
  3.  前記炭素材料は、黒鉛を含み、
     X線回折法を用いて測定される前記黒鉛の(002)面の面間隔は、0.3372nm以下である、
     請求項1または請求項2に記載の二次電池。
  4.  前記電解質塩は、カチオンとして軽金属イオンを含む、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
  5.  前記軽金属イオンは、リチウムイオンを含む、
     請求項4記載の二次電池。
  6.  前記電解液における前記電解質塩の含有量は、0.2mol/kg以上2mol/kg以下である、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  前記電解液は、さらに、六フッ化リン酸リチウムを含み、
     前記電解質塩は、カチオンおよび前記イミドアニオンを含み、
     前記六フッ化リン酸リチウムは、リチウムイオンおよび六フッ化リン酸イオンを含み、
     前記電解液における前記カチオンの含有量と、前記電解液における前記リチウムイオンの含有量との和は、0.7mol/kg以上2.2mol/kg以下であり、
     前記電解液における前記イミドアニオンのモル数に対する、前記電解液における前記六フッ化リン酸イオンのモル数の割合は、13mol%以上6000mol%以下である、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  8.  前記電解液は、さらに、不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、ジカルボン酸酸無水物、ジスルホン酸無水物、硫酸エステル、ニトリル化合物およびイソシアネート化合物のうちの少なくとも1種を含む、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  前記電解液は、さらに、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、ビス(フルオロスルホニル)イミドリチウム、ビス(オキサラト)ホウ酸リチウムおよびジフルオロリン酸リチウムのうちの少なくとも1種を含む、
     請求項1ないし請求項8のいずれか1項に記載の二次電池。
  10.  リチウムイオン二次電池である、
     請求項1ないし請求項9のいずれか1項に記載の二次電池。
PCT/JP2022/047545 2021-12-24 2022-12-23 二次電池 WO2023120688A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280085445.7A CN118369804A (zh) 2021-12-24 2022-12-23 二次电池
JP2023569562A JPWO2023120688A1 (ja) 2021-12-24 2022-12-23
US18/637,869 US20240283020A1 (en) 2021-12-24 2024-04-17 Secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-210396 2021-12-24
JP2021210396 2021-12-24
JP2021-210397 2021-12-24
JP2021210397 2021-12-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/637,869 Continuation US20240283020A1 (en) 2021-12-24 2024-04-17 Secondary battery

Publications (1)

Publication Number Publication Date
WO2023120688A1 true WO2023120688A1 (ja) 2023-06-29

Family

ID=86902790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047545 WO2023120688A1 (ja) 2021-12-24 2022-12-23 二次電池

Country Status (3)

Country Link
US (1) US20240283020A1 (ja)
JP (1) JPWO2023120688A1 (ja)
WO (1) WO2023120688A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222582A (ja) * 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2014516201A (ja) * 2011-06-07 2014-07-07 スリーエム イノベイティブ プロパティズ カンパニー フルオロカーボン電解質添加剤を含むリチウムイオン電気化学電池
WO2015041167A1 (ja) * 2013-09-20 2015-03-26 日立マクセル株式会社 非水二次電池
JP2017220380A (ja) * 2016-06-08 2017-12-14 日産自動車株式会社 非水電解質二次電池
CN112349962A (zh) * 2019-08-08 2021-02-09 宁德时代新能源科技股份有限公司 锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014516201A (ja) * 2011-06-07 2014-07-07 スリーエム イノベイティブ プロパティズ カンパニー フルオロカーボン電解質添加剤を含むリチウムイオン電気化学電池
JP2013222582A (ja) * 2012-04-16 2013-10-28 Sony Corp 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2015041167A1 (ja) * 2013-09-20 2015-03-26 日立マクセル株式会社 非水二次電池
JP2017220380A (ja) * 2016-06-08 2017-12-14 日産自動車株式会社 非水電解質二次電池
CN112349962A (zh) * 2019-08-08 2021-02-09 宁德时代新能源科技股份有限公司 锂离子电池

Also Published As

Publication number Publication date
JPWO2023120688A1 (ja) 2023-06-29
US20240283020A1 (en) 2024-08-22

Similar Documents

Publication Publication Date Title
WO2022196266A1 (ja) 二次電池
JP7408223B2 (ja) 二次電池用電解液添加剤、それを含むリチウム二次電池用非水電解液およびリチウム二次電池
WO2020213268A1 (ja) 非水電解液、不揮発性電解質、二次電池
WO2023120688A1 (ja) 二次電池
WO2023162429A1 (ja) 二次電池用電解液および二次電池
WO2023162431A1 (ja) 二次電池用電解液および二次電池
WO2023119946A1 (ja) 二次電池用電解液および二次電池
WO2023119948A1 (ja) 二次電池
WO2023162430A1 (ja) 二次電池用電解液および二次電池
WO2023162852A1 (ja) 二次電池用電解液および二次電池
WO2023162432A1 (ja) 二次電池
WO2023119945A1 (ja) 二次電池用電解液および二次電池
WO2023119949A1 (ja) 二次電池
WO2022196238A1 (ja) 二次電池用電解液および二次電池
WO2023189709A1 (ja) 二次電池用電解液および二次電池
WO2023120687A1 (ja) 二次電池
WO2022163139A1 (ja) 二次電池
WO2023112576A1 (ja) 二次電池用正極および二次電池
WO2023162428A1 (ja) 二次電池
WO2024195306A1 (ja) 二次電池
WO2024190050A1 (ja) 二次電池用電解液および二次電池
WO2022172718A1 (ja) 二次電池
WO2022209058A1 (ja) 二次電池
JP7302731B2 (ja) 二次電池
JP7201074B2 (ja) 二次電池用電解液および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911390

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569562

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE