WO2022172718A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2022172718A1
WO2022172718A1 PCT/JP2022/001935 JP2022001935W WO2022172718A1 WO 2022172718 A1 WO2022172718 A1 WO 2022172718A1 JP 2022001935 W JP2022001935 W JP 2022001935W WO 2022172718 A1 WO2022172718 A1 WO 2022172718A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sulfur
negative electrode
containing compound
secondary battery
Prior art date
Application number
PCT/JP2022/001935
Other languages
English (en)
French (fr)
Inventor
ニデイ ジェン
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022172718A1 publication Critical patent/WO2022172718A1/ja
Priority to US18/215,562 priority Critical patent/US20230343965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution, and various studies have been made on the configuration of the secondary battery.
  • the positive electrode active material contains lithium cobaltate having a specific composition and the negative electrode active material contains artificial graphite having specific physical properties
  • Propane sultone and a sulfide compound are contained in the non-aqueous electrolyte (see Patent Document 1, for example).
  • a non-aqueous electrolyte contains a disulfide compound in order to obtain excellent cycle characteristics (see, for example, Patent Document 2).
  • the electrolyte contains a sultone and an acid anhydride (see, for example, Patent Document 3).
  • a compound represented by (XSO 2 )(X′SO 2 )N ⁇ Li + (each of X and X′ is a fluorine atom or the like) is contained in the non-aqueous electrolyte in order to obtain excellent cycle characteristics at high temperatures.
  • the abundance ratio of S atoms is 0.5% or more (see, for example, Patent Document 4).
  • the electrolyte contains lithium ethanedisulfonate or the like (see, for example, Patent Document 5).
  • a secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution.
  • This negative electrode includes a negative electrode active material layer and a coating that coats the surface of the negative electrode active material layer, and the coating contains sulfur and oxygen as constituent elements.
  • a first peak derived from SO 2- and a second peak derived from S- are detected, and the intensity of the first peak is The intensity ratio of the second peak is 0.100 or more and 0.250 or less.
  • the negative electrode includes a coating that coats the surface of the negative electrode active material layer, the coating includes sulfur and oxygen as constituent elements, and time-of-flight secondary ion mass spectrometry is performed.
  • a first peak derived from SO 2- and a second peak derived from S- were detected in negative ion analysis of the film using , and the ratio of the intensity of the second peak to the intensity of the first peak was 0.100. Since it is 0.250 or less, excellent battery capacity characteristics, swelling characteristics and electrical resistance characteristics can be obtained.
  • FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1;
  • FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
  • Secondary battery (first embodiment) 1-1. Configuration 1-2. Physical properties 1-3. Operation 1-4. Manufacturing method 1-5. Action and effect 2 . Secondary battery (second embodiment) 2-1. Configuration 2-2. Physical properties 2-3. Operation 2-4. Manufacturing method 2-5. Action and effect 3. Modification 4. Applications of secondary batteries
  • the secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with a positive electrode, a negative electrode, and an electrolytic solution, which is a liquid electrolyte.
  • the charge capacity of the negative electrode is preferably larger than the discharge capacity of the positive electrode in order to prevent electrode reactants from depositing on the surface of the negative electrode during charging. That is, the electrochemical capacity per unit area of the negative electrode is preferably larger than the electrochemical capacity per unit area of the positive electrode.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • Alkali metals include lithium, sodium and potassium
  • alkaline earth metals include beryllium, magnesium and calcium.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • Configuration> 1 shows a perspective configuration of a secondary battery
  • FIG. 2 shows a cross-sectional configuration of the battery element 20 shown in FIG.
  • FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other, and the cross section of the battery element 20 along the XZ plane is indicated by a broken line.
  • FIG. 2 only part of the battery element 20 is enlarged.
  • this secondary battery includes an exterior film 10, a battery element 20, a positive electrode lead 31, a negative electrode lead 32, and sealing films 41 and 42.
  • the secondary battery described here is a laminated film type secondary battery using a flexible (or flexible) exterior film 10 .
  • the exterior film 10 is a flexible exterior member that houses the battery element 20, and is sealed while the battery element 20 is housed inside. That is, the exterior film 10 has a bag-like structure, and accommodates an electrolytic solution together with a positive electrode 21 and a negative electrode 22, which will be described later.
  • the exterior film 10 is a single film-like member that can be folded in the direction F.
  • the exterior film 10 is provided with a recessed portion 10U (so-called deep drawn portion) for housing the battery element 20 .
  • the exterior film 10 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order from the inside. Outer peripheral edge portions of the fusion layer are fused together.
  • the fusible layer contains a polymer compound such as polypropylene.
  • the metal layer contains a metal material such as aluminum.
  • the surface protective layer contains a polymer compound such as nylon.
  • the configuration (number of layers) of the exterior film 10 is not particularly limited, and may be one layer, two layers, or four layers or more. Moreover, when the exterior film 10 is a multi-layer laminated film, the material of each layer can be selected arbitrarily.
  • the sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31
  • the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32 .
  • one or both of the sealing films 41 and 42 may be omitted.
  • the sealing film 41 is a sealing member that prevents outside air from entering the exterior film 10 . Further, the sealing film 41 contains a polymer compound such as polyolefin having adhesiveness to the positive electrode lead 31, and the polyolefin is polypropylene or the like.
  • the structure of the sealing film 42 is the same as the structure of the sealing film 41 except that it is a sealing member having adhesion to the negative electrode lead 32 . That is, the sealing film 42 contains a high molecular compound such as polyolefin having adhesiveness to the negative electrode lead 32 .
  • the battery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown), as shown in FIGS. It is
  • the battery element 20 is a so-called wound electrode body. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and the positive electrode 21, the negative electrode 22, and the separator are stacked around a virtual axis (winding axis P) extending in the Y-axis direction. 23 is wound. Thus, the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 interposed therebetween.
  • the three-dimensional shape of the battery element 20 is not particularly limited.
  • the shape of the cross section of the battery element 20 intersecting the winding axis P (the cross section along the XZ plane) is defined by the long axis J1 and the short axis J2.
  • the major axis J1 is a virtual axis that extends in the X-axis direction and has a length greater than that of the minor axis J2.
  • the cross-sectional shape of the battery element 20 is a flat, substantially elliptical shape.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided, and supports the positive electrode active material layer 21B.
  • This positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A, and contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium.
  • the cathode active material layer 21B may be provided only on one side of the cathode current collector 21A.
  • the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • a method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, one or more of coating methods and the like are used.
  • the type of positive electrode active material is not particularly limited, it is specifically a lithium-containing compound.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements, but specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table.
  • the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
  • oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.8Co0.15Al0.05O2 , LiNi0.33Co0.33Mn0.33Mn0.33O2 .
  • 1.2Mn0.52Co0.175Ni0.1O2 Li1.15 ( Mn0.65Ni0.22Co0.13 ) O2 and LiMn2O4 .
  • _ _ Specific examples of phosphoric acid compounds include LiFePO4 , LiMnPO4 , LiFe0.5Mn0.5PO4 and LiFe0.3Mn0.7PO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • Synthetic rubbers include styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and the carbon materials include graphite, carbon black, acetylene black, and ketjen black.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A, a negative electrode active material layer 22B and a coating 22C.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided, and supports the negative electrode active material layer 22B.
  • This negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A, and contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor.
  • the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
  • the type of negative electrode active material is not particularly limited, but specifically, one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained.
  • carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • a metallic material is a material containing one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium as constituent elements, specifically silicon and tin. One or both of them are included as constituent elements.
  • This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases.
  • Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
  • each of the negative electrode binder and the negative electrode conductive agent is the same as those of the positive electrode binder and the positive electrode conductive agent.
  • the coating 22C covers the surface of the negative electrode active material layer 22B.
  • the coating 22C may cover the entire surface of the negative electrode active material layer 22B, or may cover only a part of the surface of the negative electrode active material layer 22B. In the latter case, a plurality of coatings 22C separated from each other may cover the surface of the negative electrode active material layer 22B.
  • FIG. 2 shows the case where the film 22C covers the entire surface of the negative electrode active material layer 22B.
  • the coating 22C is formed on the surface of the negative electrode active material layer 22B using stabilization treatment (first charge/discharge treatment) of the assembled secondary battery in the manufacturing process of the secondary battery. , sulfur and oxygen as constituent elements.
  • the electrolytic solution contains the first sulfur-containing compound and the second sulfur-containing compound.
  • the first sulfur-containing compound and the second sulfur-containing compound contained in the electrolytic solution decompose and react, respectively.
  • 2 Contains sulfur and oxygen derived from a sulfur-containing compound as constituent elements.
  • Each of the first sulfur-containing compound and the second sulfur-containing compound is a compound containing sulfur as a constituent element, and is a substance that serves as a sulfur supply source. Details of each of the first sulfur-containing compound and the second sulfur-containing compound will be described later.
  • predetermined physical property conditions are satisfied for the film 22C in order to improve battery capacity characteristics, swelling characteristics, and electrical resistance characteristics. Details of the physical properties of the coating 22C will be described later.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
  • This separator 23 contains a polymer compound such as polyethylene.
  • the electrolyte is impregnated in each of the positive electrode 21, the negative electrode 22 and the separator 23 and contains a solvent and an electrolyte salt.
  • the solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is the so-called non-aqueous electrolytic solution.
  • Non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • the carbonate compounds include cyclic carbonates and chain carbonates.
  • Specific examples of the cyclic carbonate include ethylene carbonate and propylene carbonate
  • specific examples of the chain carbonate include dimethyl carbonate, diethyl carbonate and methylethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
  • Specific examples of chain carboxylic acid esters include ethyl acetate, propyl acetate, ethyl propionate, propyl propionate and ethyl trimethylacetate.
  • Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Ethers may be 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc., in addition to the lactone compounds described above.
  • non-aqueous solvent may contain one or more of unsaturated cyclic carbonates, halogenated carbonates, phosphoric esters, acid anhydrides, nitrile compounds and isocyanate compounds. This is because the chemical stability of the electrolytic solution is improved.
  • unsaturated cyclic carbonates include vinylene carbonate (1,3-dioxol-2-one), vinylethylene carbonate (4-vinyl-1,3-dioxolan-2-one) and methyleneethylene carbonate (4-methylene -1,3-dioxolan-2-one).
  • halogenated carbonate include ethylene fluorocarbonate (4-fluoro-1,3-dioxolan-2-one) and ethylene difluorocarbonate (4,5-difluoro-1,3-dioxolan-2-one).
  • phosphate esters include trimethyl phosphate and triethyl phosphate.
  • the acid anhydrides include cyclic dicarboxylic anhydrides and cyclic carboxylic sulfonic anhydrides.
  • cyclic dicarboxylic anhydrides include succinic anhydride, glutaric anhydride and maleic anhydride.
  • cyclic carboxylic sulfonic anhydrides include sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • nitrile compounds include acetonitrile, succinonitrile and adiponitrile.
  • isocyanate compounds include hexamethylene diisocyanate.
  • the electrolyte salt contains one or more of light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN (FSO2) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN( CF3SO2 ) 2 ) , lithium tris(trifluoromethanesulfonyl)methide (LiC(CF3SO2)3 ) and bis ( oxalato)boron.
  • lithium oxide LiB(C 2 O 4 ) 2 ).
  • the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the electrolytic solution may contain the first sulfur-containing compound and the second sulfur-containing compound.
  • the first sulfur-containing compound contains one or more of the compounds represented by formulas (1) to (11).
  • the second sulfur-containing compound includes one or both of the compounds represented by formula (12) and formula (13).
  • the electrolytic solution contains the first sulfur-containing compound and the second sulfur-containing compound together is that the first sulfur-containing compound and the second sulfur-containing compound decompose and This is because the coating 22C containing sulfur and oxygen as constituent elements is likely to be formed on the surface of the negative electrode active material layer 22B due to the reaction. Further, even if part of the coating 22C decomposes during charging and discharging, the coating 22C is additionally formed due to decomposition and reaction of the first sulfur-containing compound and the second sulfur-containing compound during subsequent charging and discharging. This is because it becomes easier to
  • R1 is either an alkyl group or a hydroxyalkyl group.
  • R2 is either a hydrogen group or an alkyl group.
  • Each of R3-R6 is one of a hydrogen group, an alkyl group, an alkoxy group, a halogenated alkyl group and a halogenated alkoxy group.
  • X is an alkylene group.
  • Each of R7 and R8 is a hydrogen group, an alkyl group, an alkenyl group, an alkoxy group, a halogenated alkyl group, a halogenated alkenyl group, or a halogenated alkoxy group.
  • Y is an alkylene group.
  • Each of R9 and R10 is either a hydrogen group, an alkyl group or an alkenyl group. However, R9 and R10 may be bonded together.
  • Each of R11 and R12 is either a hydrogen group or an alkyl group.
  • R13 is an alkylene group. However, R11 and R12 may be bonded together.
  • Each of R14 and R15 is either a hydrogen group or an alkyl group.
  • R16 is an alkylene group. However, R14 and R15 may be bonded together.
  • Each of R17 and R18 is either a hydrogen group or an alkyl group.
  • R19 is an alkylene group. However, R17 and R18 may be bonded together.
  • Each of R20 and R21 is either a hydrogen group or an alkyl group.
  • R22 is an alkylene group. However, R20 and R21 may be bonded together.
  • Each of R23 and R24 is either a hydrogen group or an alkyl group.
  • R25 is an alkylene group. However, R23 and R24 may be bonded together.
  • Each of R26 and R27 is either a hydrogen group or an alkyl group.
  • R28 is an alkylene group. However, R26 and R27 may be bonded together.
  • Each of R29 and R30 is either a hydrogen group, an alkyl group or a hydroxyalkyl group.
  • Each of Z and W is either an alkylene group or an alkenylene group.
  • each of the first sulfur-containing compound and the second sulfur-containing compound is a substance that serves as a sulfur supply source (a compound containing sulfur as a constituent element).
  • the first sulfur-containing compound may be of one type or two or more types
  • the second sulfur-containing compound may be of one type or two or more types.
  • R1 is not particularly limited as long as it is either an alkyl group or a hydroxyalkyl group.
  • R2 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • the alkyl group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the alkyl group is not particularly limited. Specific examples of alkyl groups include methyl, ethyl, propyl and butyl groups.
  • a hydroxyalkyl group is a group in which the terminal hydrogen group of the alkyl group described above is substituted with a hydroxyl group (--OH).
  • hydroxyalkyl groups include hydroxymethyl, hydroxyethyl, hydroxypropyl and hydroxybutyl groups.
  • the compound represented by formula (2) which is the second type of first sulfur-containing compound, is a cyclic compound having a propanesultone (1,3-propanesultone) type structure.
  • R3 to R6 is not particularly limited as long as it is a hydrogen group, an alkyl group, an alkoxy group, a halogenated alkyl group or a halogenated alkoxy group.
  • X is not particularly limited as long as it is an alkylene group.
  • the alkoxy group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the alkoxy group is not particularly limited. Specific examples of alkoxy groups include methoxy, ethoxy, propoxy and butoxy groups.
  • a halogenated alkyl group is a group in which one or more hydrogen groups in the alkyl group described above are substituted with a halogen group.
  • a halogenated alkoxy group is a group in which one or more hydrogen groups in the alkoxy group described above are substituted with a halogen group.
  • halogen group is not particularly limited, but specific examples include a fluorine group, a chlorine group, a bromine group and an iodine group.
  • the alkylene group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the alkylene group is not particularly limited. Specific examples of alkylene groups include methylene, ethylene, propylene and butylene groups.
  • the compound represented by formula (3) which is the third type of first sulfur-containing compound, is a cyclic compound having a propene sultone (1-propene 1,3-sultone) type structure.
  • R7 and R8 is not particularly limited as long as it is a hydrogen group, an alkyl group, an alkenyl group, an alkoxy group, a halogenated alkyl group, a halogenated alkenyl group or a halogenated alkoxy group. Details regarding each of the alkyl group, alkoxy group, halogenated alkyl group and halogenated alkoxy group are as described above.
  • Y is not particularly limited as long as it is an alkylene group.
  • the alkenyl group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the alkenyl group is not particularly limited.
  • Specific examples of alkenyl groups include vinyl groups and allyl groups.
  • a halogenated alkenyl group is a group in which one or more hydrogen groups in the alkenyl group described above are substituted with a halogen group, and the details of the halogen group are as described above.
  • Each of R9 and R10 is not particularly limited as long as it is a hydrogen group, an alkyl group or an alkenyl group. However, R9 and R10 may be linked together as described above.
  • the compound represented by formula (5) which is the fifth type of first sulfur-containing compound, is a linear or cyclic compound having two symmetrical sulfo-type groups.
  • Each of R11 and R12 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R13 is not particularly limited as long as it is an alkylene group. However, R11 and R12 may be bonded together as described above.
  • the compound represented by formula (6) which is the sixth type of first sulfur-containing compound, is a linear or cyclic compound having two left-right asymmetric sulfo-type groups.
  • Each of R14 and R15 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R16 is not particularly limited as long as it is an alkylene group. However, R14 and R15 may be bonded together as described above.
  • Each of R17 and R18 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R19 is not particularly limited as long as it is an alkylene group. However, R17 and R18 may be bonded together as described above.
  • the compound represented by formula (8) which is the eighth type of first sulfur-containing compound, is a chain or cyclic compound having one sulfate-type group and one sulfo-type group.
  • Each of R20 and R21 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R22 is not particularly limited as long as it is an alkylene group. However, R20 and R21 may be bonded together as described above.
  • the compound represented by formula (9), which is the ninth type of first sulfur-containing compound, is a chain or cyclic compound having two sulfate-type groups.
  • Each of R23 and R24 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R25 is not particularly limited as long as it is an alkylene group. However, R23 and R24 may be bonded together as described above.
  • the compound represented by formula (10), which is the tenth first sulfur-containing compound, is a chain or cyclic compound having two symmetrical sulfo-type groups.
  • Each of R26 and R27 is not particularly limited as long as it is either a hydrogen group or an alkyl group.
  • R28 is not particularly limited as long as it is an alkylene group. However, R26 and R27 may be bonded together as described above.
  • the compound represented by formula (11), which is the 11th type of first sulfur-containing compound, is a chain compound having one sulfate group.
  • Each of R29 and R30 is not particularly limited as long as it is a hydrogen group, an alkyl group or a hydroxyalkyl group.
  • the compound represented by formula (12), which is the first type of second sulfur-containing compound, is a cyclic compound having a disulfonic anhydride type structure.
  • Z is not particularly limited as long as it is either an alkylene group or an alkenylene group.
  • the alkenylene group may be linear or branched with one or more side chains.
  • the number of carbon atoms in the alkenylene group is not particularly limited. Specific examples of alkenylene groups include vinylene groups and arylene groups.
  • the compound represented by formula (13), which is the second type of second sulfur-containing compound, is a cyclic compound having a disulfuric anhydride type structure.
  • W is not particularly limited as long as it is either an alkylene group or an alkenylene group. Details regarding alkenylene groups are given above.
  • first sulfur-containing compound and the second sulfur-containing compound are as follows. This is because the film 22C is easily formed sufficiently on the surface of the negative electrode active material layer 22B.
  • Specific examples of the compound represented by Formula (1), which is the first sulfur-containing compound of the first type, include compounds represented by Formula (1-1) and Formula (1-2).
  • Specific examples of the compound represented by formula (2), which is the second type of first sulfur-containing compound, include compounds represented by formulas (2-1) to (2-5).
  • Specific examples of the compound represented by formula (3), which is the third type of first sulfur-containing compound, include compounds represented by formulas (3-1) to (3-7).
  • Specific examples of the compound represented by Formula (6), which is the sixth type of first sulfur-containing compound, include compounds represented by Formulas (6-1) to (6-8).
  • Specific examples of the compound represented by formula (11), which is the 11th type of first sulfur-containing compound, include compounds represented by formulas (11-1) and (11-2), respectively.
  • Specific examples of the compound represented by formula (12), which is the first type of second sulfur-containing compound, include compounds represented by formulas (12-1) to (12-8).
  • the content of the first sulfur-containing compound in the electrolytic solution is not particularly limited, it is specifically 0.001% by weight to 2.0% by weight. This is because the film 22C is easily formed sufficiently on the surface of the negative electrode active material layer 22B.
  • the content of the second sulfur-containing compound in the electrolytic solution is not particularly limited, but is specifically 0.001% by weight to 2.0% by weight. This is because the film 22C is easily formed sufficiently on the surface of the negative electrode active material layer 22B.
  • the positive electrode lead 31 is a positive electrode wiring connected to the battery element 20 (positive electrode 21), as shown in FIG.
  • the positive electrode lead 31 contains a conductive material such as aluminum, and the shape of the positive electrode lead 31 is either a thin plate shape, a mesh shape, or the like.
  • the negative lead 32 is a negative wiring connected to the battery element 20 (negative electrode 22), as shown in FIG.
  • the negative electrode lead 32 is led out from the inside of the exterior film 10 to the outside in the same direction as the lead-out direction of the positive electrode lead 31 .
  • the negative electrode lead 32 contains a conductive material such as copper, and the details regarding the shape of the negative electrode lead 32 are the same as the details regarding the shape of the positive electrode lead 31 .
  • the film 22C containing sulfur and oxygen as constituent elements satisfies predetermined physical property conditions in order to improve the electrical capacity characteristics, the swelling characteristics, and the electrical resistance characteristics.
  • the first peak derived from SO 2- and the second peak derived from S is detected.
  • the value of the intensity ratio R is a value rounded off to the fourth decimal place.
  • the intensity ratio R is adjusted so that the intensities I1 and I2 change by changing the conditions during the secondary battery stabilization treatment, so that the intensity ratio R becomes a desired value. It is possible.
  • the conditions for stabilizing the secondary battery include environmental temperature and charging current.
  • the secondary battery operates as described below.
  • lithium is released from the positive electrode 21 and absorbed into the negative electrode 22 via the electrolyte.
  • lithium is released from the negative electrode 22 of the battery element 20 and absorbed into the positive electrode 21 through the electrolyte.
  • Lithium is intercalated and deintercalated in an ionic state during charging and discharging.
  • a secondary battery is manufactured according to the procedure described below. In this case, as will be described later, after a secondary battery is assembled using the positive electrode 21, the negative electrode precursor, and the electrolytic solution, the secondary battery is subjected to stabilization treatment.
  • a positive electrode mixture is formed by mixing a positive electrode active material, and, if necessary, a positive electrode binder, a positive electrode conductive agent, and the like with each other.
  • a paste-like positive electrode mixture slurry is prepared by putting the positive electrode mixture into the solvent.
  • This solvent may be an aqueous solvent or a non-aqueous solvent (organic solvent).
  • the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A. After that, the cathode active material layer 21B may be compression-molded using a roll press machine or the like.
  • the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times.
  • the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
  • the negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by the same procedure as the manufacturing procedure of the positive electrode 21 described above. Specifically, first, the negative electrode active material and, if necessary, a negative electrode binder, a negative electrode conductive agent, and the like are mixed with each other to form a negative electrode mixture, and then the negative electrode mixture is added to the solvent. to prepare a pasty negative electrode mixture slurry. Details regarding the solvent are given above. Subsequently, the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A. After that, the negative electrode active material layer 22B may be compression molded. As a result, the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A, so that a negative electrode precursor (not shown) is produced.
  • the secondary battery is subjected to stabilization treatment.
  • a coating 22C containing sulfur and oxygen as constituent elements is formed on the surface of the negative electrode active material layer 22B. Accordingly, since the negative electrode active material layer 22B and the film 22C are formed on both surfaces of the negative electrode current collector 22A, the negative electrode 22 is manufactured.
  • the positive electrode lead 31 is connected to the positive electrode 21 (positive electrode current collector 21A) using a welding method or the like, and the negative electrode lead 32 is connected to the negative electrode 22 (negative electrode current collector 22A) using a welding method or the like.
  • the positive electrode 21, the negative electrode precursor and the separator 23 are wound to form a wound body (not shown).
  • This wound body includes a negative electrode precursor instead of the negative electrode 22, and the positive electrode 21, the negative electrode precursor, and the separator 23 are not impregnated with the electrolytic solution, respectively. It has a similar configuration. Subsequently, by pressing the wound body using a pressing machine or the like, the wound body is formed into a flat shape.
  • the exterior films 10 (bonding layer/metal layer/surface protective layer) are folded to face each other. Subsequently, by using a heat-sealing method or the like to fuse the outer peripheral edges of two sides of the exterior film 10 (fusion layer) facing each other, the inside of the bag-shaped exterior film 10 Store the roll.
  • the secondary battery after assembly is charged and discharged.
  • the first sulfur-containing compound and the second sulfur-containing compound contained in the electrolytic solution are each decomposed and reacted, so that the coating 22C containing sulfur and oxygen as constituent elements is formed on the surface of the negative electrode active material layer 22B. It is formed.
  • the negative electrode 22 is manufactured by forming the negative electrode active material layer 22B and the coating 22C on both surfaces of the negative electrode current collector 22A, and thus the battery element 20 is manufactured.
  • the state of the secondary battery is electrochemically stabilized, so that the secondary battery using the exterior film 10, that is, the laminated film type secondary battery is completed.
  • the environmental temperature is set sufficiently high and the current during charging is increased in order to form a good film 22C that is thin but has high durability. Make it small enough.
  • the ambient temperature is 40° C. to 60° C.
  • the charging current is 0.02C to 0.05C.
  • the intensity ratio R changes according to conditions such as the environmental temperature during stabilization of the secondary battery and the current during charging, and therefore can be controlled based on these conditions.
  • the coating 22C was formed on the surface of the negative electrode active material layer 22B
  • the coating 22C was formed on the surface of the negative electrode active material layer 22B
  • Each of the first sulfur-containing compound and the second sulfur-containing compound may or may not remain in the electrolyte.
  • the negative electrode 22 includes the coating 22C that covers the surface of the negative electrode active material layer 22B, the coating 22C contains sulfur and oxygen as constituent elements, and the intensity ratio R is between 0.100 and 0.250.
  • the intensity ratio R is optimized, that is, the balance between the amount of components derived from SO 2 ⁇ and the amount of components derived from S ⁇ in the coating 22C is optimized.
  • a thin but highly durable film 22C is formed on the surface of the negative electrode active material layer 22B.
  • the strength ratio R when the strength ratio R is less than 0.100, the strength ratio R becomes too small, so that the lithium absorption/desorption is ensured and the decomposition reaction of the electrolyte is suppressed.
  • the electrical resistance of material layer 22B increases.
  • the intensity ratio R is 0.100 or more, the electrical resistance of the negative electrode active material layer 22B decreases while the absorption and release of lithium is ensured and the decomposition reaction of the electrolytic solution is suppressed.
  • the intensity ratio R is greater than 0.250, the intensity ratio R becomes too large, so that the electrical resistance of the negative electrode active material layer 22B increases, but the intercalation/deintercalation of lithium is inhibited and the electrolyte is decomposed. reaction becomes pronounced.
  • the intensity ratio R is 0.250 or less, the electrical resistance of the negative electrode active material layer 22B is reduced, while the intercalation and deintercalation of lithium is ensured and the decomposition reaction of the electrolytic solution is suppressed.
  • the coating 22C containing sulfur and oxygen as constituent elements is easily formed on the surface of the negative electrode active material layer 22B.
  • a higher effect can be obtained.
  • the electrolytic solution contains both the first sulfur-containing compound and the second sulfur-containing compound even after the stabilization treatment of the secondary battery (after the formation of the coating 22C), after the stabilization treatment Since the coating 22C is easily formed additionally during charge/discharge, a higher effect can be obtained.
  • the content of the first sulfur-containing compound in the electrolytic solution is 0.001% by weight to 2.0% by weight
  • the content of the second sulfur-containing compound in the electrolytic solution is 0.001% by weight to 2.0% by weight. If the content is 0.0% by weight, the film 22C is easily formed on the surface of the negative electrode active material layer 22B, so that a higher effect can be obtained.
  • the secondary battery includes the flexible exterior film 10
  • swelling of the secondary battery can be effectively suppressed even when the exterior film 10, which is inherently prone to swelling due to its easy deformation, is used. Therefore, a higher effect can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • the secondary battery of the second embodiment has the same configuration as the secondary battery of the first embodiment, except that the method of forming the coating 22C and the composition of the coating 22C are different, as described below. It has a configuration of In the following, reference will be made to FIGS. 1 and 2 from time to time.
  • the coating 22C of the second embodiment is formed using a coating method in the manufacturing process of the negative electrode 22, and contains sulfur and oxygen as constituent elements.
  • the coating 22C may contain a tertiary sulfur-containing compound and a quaternary sulfur-containing compound.
  • This tertiary sulfur-containing compound includes one or both of the compounds represented by formula (14) and formula (15).
  • the quaternary sulfur-containing compound includes a compound represented by Formula (16).
  • the coating 22C includes both the tertiary sulfur-containing compound and the quaternary sulfur-containing compound is that in the first embodiment, the electrolytic solution includes both the first sulfur-containing compound and the second sulfur-containing compound. Same reason.
  • the coating 22C containing sulfur and oxygen as constituent elements becomes the negative electrode active material layer 22B. This is because it is likely to be formed on the surface of the Further, even if part of the coating 22C decomposes during charging and discharging, the coating 22C is additionally formed due to the decomposition and reaction of the third sulfur-containing compound and the fourth sulfur-containing compound during subsequent charging and discharging. This is because it becomes easier to
  • Each of R21 and R22 is a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group.
  • M is an alkali metal element.
  • Each of R23 and R24 is either a hydrogen group, an alkyl group or a halogenated alkyl group.
  • Each of R25 and R26 is a hydrogen group, an alkyl group or a halogenated alkyl group.
  • Each of the tertiary sulfur-containing compound and the quaternary sulfur-containing compound is, similarly to each of the first sulfur-containing compound and the second sulfur-containing compound, a substance serving as a sulfur supply source (a compound containing sulfur as a constituent element). is.
  • the kind of the tertiary sulfur-containing compound may be one kind or two or more kinds, and the kind of the third sulfur-containing compound may be one kind or two or more kinds.
  • R21 and R22 is not particularly limited as long as it is a hydrogen group, a halogen group, an alkyl group or a halogenated alkyl group. Details regarding each of the halogen group, the alkyl group and the halogenated alkyl group are as described above.
  • M is not particularly limited as long as it is an alkali metal element, and specific examples thereof include lithium, sodium and potassium.
  • R23 and R24 is not particularly limited as long as it is a hydrogen group, an alkyl group or a halogenated alkyl group. Details regarding each of the alkyl groups and halogenated alkyl groups are provided above.
  • the compound represented by formula (16), which is a quaternary sulfur-containing compound, is a cyclic compound having a dithiophenyl type structure (--C 6 H 4 --S--S--C 6 H 4 --).
  • R25 and R26 is not particularly limited as long as it is a hydrogen group, an alkyl group or a halogenated alkyl group. Details regarding each of the alkyl groups and halogenated alkyl groups are provided above.
  • R25 is bonded to one of the two benzene rings, and R26 is bonded to the other benzene ring.
  • R25 may be bonded to any position (carbon atom) of one benzene ring, and R26 may be bonded to any position (carbon atom) of the other benzene ring.
  • the tertiary sulfur-containing compound contains the compound represented by the formula (14), so the coating 22C is composed of the compound represented by the formula (14), which is the tertiary sulfur-containing compound, and the quaternary sulfur-containing compound. It preferably contains a compound represented by formula (16). This is because the film 22C is more likely to be formed on the surface of the negative electrode active material layer 22B.
  • tertiary sulfur-containing compound and the quaternary sulfur-containing compound are as follows. This is because the film 22C is easily formed sufficiently on the surface of the negative electrode active material layer 22B.
  • the respective contents of the third sulfur-containing compound and the fourth sulfur-containing compound in the coating 22C are not particularly limited and can be set arbitrarily.
  • the strength ratio R varies depending on the mixing ratio (weight ratio) between the third sulfur-containing compound and the fourth sulfur-containing compound, etc., so that the strengths I1 and I2 change. It is possible to adjust the intensity ratio R so that
  • the operation of the secondary battery of the second embodiment is similar to that of the secondary battery of the first embodiment. That is, during charging, lithium is intercalated and deintercalated in the battery element 20 (positive electrode 21 and negative electrode 22) in an ion state.
  • the method of manufacturing the secondary battery of the second embodiment is the same as the method of manufacturing the secondary battery of the first embodiment, except that the manufacturing procedure of the negative electrode 22 is different, as described below.
  • the negative electrode active material layers 22B are formed on both sides of the negative electrode current collector 22A according to the procedure described above.
  • the type of solvent is not particularly limited as long as it can dissolve each of the tertiary sulfur-containing compound and the quaternary sulfur-containing compound, but specifically, one of a non-aqueous solvent (organic solvent) and an aqueous solvent, or Both.
  • the coating solution is dried.
  • the coating 22C containing sulfur and oxygen as constituent elements is formed on the surface of the negative electrode active material layer 22B, so that the negative electrode 22 is manufactured.
  • the mixing ratio (weight ratio) of the third sulfur-containing compound and the fourth sulfur-containing compound in the coating 22C that is, the ratio of the third sulfur-containing compound and the fourth sulfur-containing compound in the coating solution
  • the mixing ratio (weight ratio) of the solvent and the tertiary sulfur-containing compound and the quaternary sulfur-containing compound in the coating solution (3) the solvent used to prepare the coating solution ( By changing the mixing ratio (weight ratio) of (organic solvent and aqueous solvent), (4) the drying temperature of the coating solution, etc., each of the intensities I1 and I2 changes, so the intensity ratio R can be adjusted.
  • the drying temperature of the coating solution is 50°C to 90°C.
  • the negative electrode 22 includes the film 22C, and the film 22C contains sulfur and oxygen as constituent elements, and the strength is The ratio R is 0.100-0.250. Therefore, for the reasons described above, excellent battery capacity characteristics, swelling characteristics, and electrical resistance characteristics can be obtained.
  • the coating 22C contains both the third sulfur-containing compound and the fourth sulfur-containing compound, the coating 22C containing sulfur and oxygen as constituent elements is easily formed on the surface of the negative electrode active material layer 22B. A higher effect can be obtained.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer disposed on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so positional deviation of the battery element 20 (displacement of winding of the positive electrode 21, the negative electrode 22, and the separator) is suppressed. As a result, swelling of the secondary battery is suppressed even if a decomposition reaction or the like of the electrolytic solution occurs.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the plurality of insulating particles dissipate heat when the secondary battery generates heat, thereby improving the safety (heat resistance) of the secondary battery.
  • the insulating particles are inorganic particles, resin particles, and the like. Specific examples of inorganic particles are particles such as aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin particles are particles of acrylic resins, styrene resins, and the like.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • a plurality of insulating particles may be added to the precursor solution.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
  • This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
  • the electrolyte layer contains a polymer compound together with the electrolyte solution, and the electrolyte solution is held by the polymer compound in the electrolyte layer. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • a secondary battery used as a power source is a main power source or an auxiliary power source for electronic devices, electric vehicles, and the like.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
  • Secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single cell or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery.
  • electric power stored in a secondary battery which is an electric power storage source, can be used to use electric appliances for home use.
  • Fig. 3 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
  • This battery pack includes a power supply 51 and a circuit board 52, as shown in FIG.
  • This circuit board 52 is connected to the power supply 51 and includes a positive terminal 53 , a negative terminal 54 and a temperature detection terminal 55 .
  • the power supply 51 includes one secondary battery.
  • the positive lead is connected to the positive terminal 53 and the negative lead is connected to the negative terminal 54 .
  • the power supply 51 can be connected to the outside through the positive terminal 53 and the negative terminal 54, and thus can be charged and discharged.
  • the circuit board 52 includes a control section 56 , a switch 57 , a thermal resistance element (PTC element) 58 and a temperature detection section 59 .
  • the PTC element 58 may be omitted.
  • the control unit 56 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 56 detects and controls the use state of the power source 51 as necessary.
  • CPU central processing unit
  • memory etc.
  • the control unit 56 cuts off the switch 57 so that the charging current does not flow through the current path of the power supply 51.
  • the overcharge detection voltage and the overdischarge detection voltage are not particularly limited.
  • the overcharge detection voltage is 4.2V ⁇ 0.05V and the overdischarge detection voltage is 2.4V ⁇ 0.1V.
  • the switch 57 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 51 and an external device according to instructions from the control unit 56 .
  • the switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 57 .
  • MOSFET field effect transistor
  • the temperature detection unit 59 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 51 using the temperature detection terminal 55 , and outputs the temperature measurement result to the control unit 56 .
  • the measurement result of the temperature measured by the temperature detection unit 59 is used when the control unit 56 performs charging/discharging control at the time of abnormal heat generation and when the control unit 56 performs correction processing when calculating the remaining capacity.
  • a laminated film type secondary battery (lithium ion secondary battery) shown in FIGS. 1 and 2 was manufactured by the procedure described below.
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (a strip-shaped aluminum foil having a thickness of 15 ⁇ m) using a coating device, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material.
  • a material layer 21B is formed.
  • the positive electrode active material layer 21B was compression-molded using a roll press. Thus, the positive electrode 21 was produced.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (band-shaped copper foil having a thickness of 15 ⁇ m) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material.
  • a material layer 22B is formed.
  • the negative electrode active material layer 22B was compression molded using a roll press.
  • a negative electrode precursor was produced.
  • the secondary battery was subjected to stabilization treatment (first charge/discharge treatment).
  • the coating 22C containing sulfur and oxygen as constituent elements was formed on the surface of the negative electrode active material layer 22B, and thus the negative electrode 22 was produced.
  • Solvents include cyclic carbonate (ethylene carbonate and propylene carbonate), chain carbonate (diethyl carbonate), chain carboxylate (propyl propionate), unsaturated cyclic carbonate (vinylene carbonate), and nitrile. A compound (succinonitrile) was used.
  • the amount was 1.2 mol/kg with respect to the solvent.
  • the positive electrode lead 31 (aluminum wire) was welded to the positive electrode 21 (positive electrode current collector 21A), and the negative electrode lead 32 (copper wire) was welded to the negative electrode precursor (negative electrode current collector 22A).
  • the positive electrode 21, the negative electrode precursor and the separator 23 are wound. , to produce a roll.
  • the wound body was molded into a flat shape by pressing the wound body using a pressing machine.
  • the exterior film 10 includes a fusion layer (a polypropylene film with a thickness of 30 ⁇ m), a metal layer (aluminum foil with a thickness of 40 ⁇ m), and a surface protective layer (a nylon film with a thickness of 25 ⁇ m). Aluminum laminate films laminated in this order from the inside were used.
  • the coating 22C containing sulfur and oxygen as constituent elements was formed on the surface of the negative electrode active material layer 22B, and thus the negative electrode 22 was produced.
  • the battery element 20 was produced and the state of the battery element 20 was electrochemically stabilized, thus completing a laminate film type secondary battery.
  • the coating 22C containing sulfur and oxygen as constituent elements was not formed on the surface of the negative electrode active material layer 22B.
  • a negative electrode 22 not including the coating 22C was produced.
  • the secondary battery was disassembled to recover the electrolytic solution, and then the electrolytic solution was analyzed using high-frequency inductively coupled plasma (ICP) emission spectrometry.
  • the content (weight) of the first sulfur-containing compound and the content (% by weight) of the second sulfur-containing compound in the electrolytic solution were as shown in Table 1.
  • the conditions during the stabilization treatment of the secondary battery are changed to obtain the first peak intensity I1 and While changing each of the intensities I2 of the second peaks, the intensity ratio R was changed.
  • the charging conditions were the same as the charging conditions during the secondary battery stabilization process described above.
  • the secondary battery was discharged at a constant current of 0.1 C for 5 hours to adjust the charge depth of the secondary battery to 50%.
  • the secondary battery was subjected to constant current discharge for 1 second at a discharge current of 1.0 C, and the voltage change amount ⁇ V before and after the constant current discharge was measured. .
  • the electrolytic solution contains one or both of the first sulfur-containing compound and the second sulfur-containing compound (Examples 1 to 21 and Comparative Examples 2 to 10), the film 22C is formed. Therefore, the intensity ratio R could be calculated. In this case, each of the discharge capacity, the swelling rate and the electrical resistance varied greatly depending on the strength ratio R as described above.
  • Examples 22 to 28 and Comparative Examples 11 to 15 A secondary battery was manufactured by the same procedure except that the coating 22C was formed using a coating method instead of forming the coating 22C using the stabilization treatment of the secondary battery, and then the secondary battery was manufactured. were evaluated.
  • stirring the solvent to prepare a coating solution.
  • the types of the tertiary sulfur-containing compounds and the types of the quaternary sulfur-containing compounds are as shown in Table 2.
  • a coating solution was applied to the surface of the negative electrode active material layer 22B using a spin coating method, and then the coating solution was vacuum-dried to form a film 22C.
  • Each type of the tertiary sulfur-containing compound and the quaternary sulfur-containing compound is as shown in Table 4.
  • the negative electrode 22 not including the coating 22C was fabricated by the same procedure except that the coating 22C was not formed because the coating solution was not applied to the surface of the negative electrode active material layer 22B. did.
  • a negative electrode containing the coating 22C was prepared by the same procedure except that a coating solution containing only one of the tertiary sulfur-containing compound and the quaternary sulfur-containing compound was used. 22 was made. Each type of the tertiary sulfur-containing compound and the quaternary sulfur-containing compound is as shown in Table 4.
  • the strength ratio R was changed by changing the mixing ratio (weight ratio) of the third sulfur-containing compound and the fourth sulfur-containing compound when preparing the coating solution. .
  • the negative electrode 22 contains the coating 22C, the coating 22C contains sulfur and oxygen as constituent elements, and the strength ratio R is 0.100 to 0.250. , discharge capacity, swelling rate and electrical resistance were all improved. Therefore, excellent battery capacity characteristics, swelling characteristics and electrical resistance characteristics could be obtained.
  • the battery structure of the secondary battery is a laminated film type.
  • the battery structure of the secondary battery is not particularly limited, and may be cylindrical, rectangular, coin-shaped, button-shaped, or the like.
  • the element structure of the battery element is a wound type.
  • the element structure of the battery element is not particularly limited, it may be a laminated type in which the positive electrode and the negative electrode are laminated, or a 99-fold type in which the positive electrode and the negative electrode are folded in a zigzag pattern.
  • the electrode reactant is lithium has been described, but the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極および負極と共に電解液を備える。この負極は、負極活物質層と、その負極活物質層の表面を被覆する被膜とを含み、その被膜は、硫黄および酸素を構成元素として含む。飛行時間型二次イオン質量分析法を用いた被膜の負イオン分析において、SO2-に由来する第1ピークと、S- に由来する第2ピークとが検出され、その第1ピークの強度に対する第2ピークの強度の比は、0.100以上0.250以下である。

Description

二次電池
 本技術は、二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を得ることが可能である電源として、二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液を備えており、その二次電池の構成に関しては、様々な検討がなされている。
 具体的には、優れたサイクル特性などを得るために、正極活物質が特定の組成を有するコバルト酸リチウムを含んでいると共に負極活物質が特定の物性を有する人造黒鉛を含んでいる場合において、非水電解液にプロパンスルトンおよびスルフィド化合物が含有されている(例えば、特許文献1参照。)。同様に、優れたサイクル特性などを得るために、非水電解液にジスルフィド化合物が含有されている(例えば、特許文献2参照。)。
 サイクル特性を向上させるために、飛行時間型二次イオン質量分析法を用いた負極(被膜)の分析において特定の組成(Cn+1 S)を有する正二次イオンのピークが検出されており、電解質にスルトンおよび酸無水物が含有されている(例えば、特許文献3参照。)。優れた高温下のサイクル特性を得るために、(XSO)(X’SO)NLi(XおよびX’のそれぞれはフッ素原子など)で表される化合物が非水電解液に含有されており、XPSを用いた負極の表面分析においてS原子の存在比が0.5%以上である(例えば、特許文献4参照)。サイクル特性を向上させるために、電解液にエタンジスルホン酸リチウムなどが含有されている(例えば、特許文献5参照。)。
特開2003-077534号公報 特開2002-134167号公報 特開2010-010080号公報 特開2013-145732号公報 特開2009-021229号公報
 二次電池の電池特性に関する様々な検討がなされているが、その二次電池の電池容量特性、膨れ特性および電気抵抗特性のそれぞれは未だ十分でないため、改善の余地がある。
 よって、優れた電池容量特性、膨れ特性および電気抵抗特性を得ることが可能である二次電池が望まれている。
 本技術の一実施形態の二次電池は、正極および負極と共に電解液を備えたものである。この負極は、負極活物質層と、その負極活物質層の表面を被覆する被膜とを含み、その被膜は、硫黄および酸素を構成元素として含む。飛行時間型二次イオン質量分析法を用いた被膜の負イオン分析において、SO2-に由来する第1ピークと、Sに由来する第2ピークとが検出され、その第1ピークの強度に対する第2ピークの強度の比は、0.100以上0.250以下である。
 本技術の一実施形態の二次電池によれば、負極が負極活物質層の表面を被覆する被膜を含み、その被膜が硫黄および酸素を構成元素として含み、飛行時間型二次イオン質量分析法を用いた被膜の負イオン分析においてSO2-に由来する第1ピークとSに由来する第2ピークとが検出され、その第1ピークの強度に対する第2ピークの強度の比が0.100以上0.250以下であるので、優れた電池容量特性、膨れ特性および電気抵抗特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の第1実施形態における二次電池の構成を表す斜視図である。 図1に示した電池素子の構成を表す断面図である。 二次電池の適用例の構成を表すブロック図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(第1実施形態)
  1-1.構成
  1-2.物性
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.二次電池(第2実施形態)
  2-1.構成
  2-2.物性
  2-3.動作
  2-4.製造方法
  2-5.作用および効果
 3.変形例
 4.二次電池の用途
<1.二次電池(第1実施形態)>
 まず、本技術の第1実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に、液状の電解質である電解液を備えている。この二次電池では、充電途中において負極の表面に電極反応物質が析出することを防止するために、その負極の充電容量が正極の放電容量よりも大きいことが好ましい。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きいことが好ましい。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵および放出される。
<1-1.構成>
 図1は、二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。
 ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、XZ面に沿った電池素子20の断面を破線で示している。図2では、電池素子20の一部だけを拡大している。
 この二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、正極リード31および負極リード32と、封止フィルム41,42とを備えている。ここで説明する二次電池は、可撓性(または柔軟性)を有する外装フィルム10を用いたラミネートフィルム型の二次電池である。
[外装フィルムおよび封止フィルム]
 外装フィルム10は、図1に示したように、電池素子20を収納する可撓性の外装部材であり、その電池素子20が内部に収納された状態において封止されている。すなわち、外装フィルム10は、袋状の構造を有しており、後述する正極21および負極22と共に電解液を収納している。
 ここでは、外装フィルム10は、1枚のフィルム状の部材であり、方向Fに向かって折り畳み可能である。外装フィルム10には、電池素子20を収容するための窪み部10U(いわゆる深絞り部)が設けられている。
 具体的には、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム10が折り畳まれた状態では、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。
 ただし、外装フィルム10の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。また、外装フィルム10が多層のラミネートフィルムである場合、各層の材質は任意に選択可能である。
 封止フィルム41は、外装フィルム10と正極リード31との間に挿入されていると共に、封止フィルム42は、外装フィルム10と負極リード32との間に挿入されている。ただし、封止フィルム41,42のうちの一方または双方は、省略されてもよい。
 この封止フィルム41は、外装フィルム10の内部に外気などが侵入することを防止する封止部材である。また、封止フィルム41は、正極リード31に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、そのポリオレフィンは、ポリプロピレンなどである。
 封止フィルム42の構成は、負極リード32に対して密着性を有する封止部材であることを除いて、封止フィルム41の構成と同様である。すなわち、封止フィルム42は、負極リード32に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。
[電池素子]
 電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子であり、外装フィルム10の内部に収納されている。
 ここでは、電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、正極21および負極22がセパレータ23を介して互いに積層されていると共に、Y軸方向に延在する仮想軸(巻回軸P)を中心として正極21、負極22およびセパレータ23が巻回されている。これにより、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されている。
 電池素子20の立体的形状は、特に限定されない。ここでは、電池素子20は、扁平状であるため、巻回軸Pと交差する電池素子20の断面(XZ面に沿った断面)の形状は、長軸J1および短軸J2により規定される扁平形状である。この長軸J1は、X軸方向に延在すると共に短軸J2よりも大きい長さを有する仮想軸であると共に、短軸J2は、X軸方向と交差するZ軸方向に延在すると共に長軸J1よりも小さい長さを有する仮想軸である。ここでは、電池素子20の立体的形状は、扁平な円筒状であるため、その電池素子20の断面の形状は、扁平な略楕円形状である。
(正極)
 正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
 正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有しており、その正極活物質層21Bを支持している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられており、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極集電体21Aの片面だけに設けられていてもよい。また、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。
 正極活物質の種類は、特に限定されないが、具体的には、リチウム含有化合物などである。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 、Li1.15(Mn0.65Ni0.22Co0.13)OおよびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極22は、図2に示したように、負極集電体22A、負極活物質層22Bおよび被膜22Cを含んでいる。
 負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有しており、その負極活物質層22Bを支持している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられており、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極集電体22Aの片面だけに設けられていてもよい。また、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 負極活物質の種類は、特に限定されないが、具体的には、炭素材料および金属系材料のうちの一方または双方などである。高いエネルギー密度が得られるからである。炭素材料の具体例は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、具体的には、ケイ素およびスズのうちの一方または双方などを構成元素として含んでいる。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。
 負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
 被膜22Cは、負極活物質層22Bの表面を被覆している。この場合において、被膜22Cは、負極活物質層22Bの表面のうちの全体を被覆していてもよいし、その負極活物質層22Bの表面のうちの一部だけを被覆していてもよい。後者の場合には、互いに離隔された複数の被膜22Cが負極活物質層22Bの表面を被覆していてもよい。図2では、被膜22Cが負極活物質層22Bの表面のうちの全体を被覆している場合を示している。
 この被膜22Cは、後述するように、二次電池の製造工程において、組み立て後の二次電池の安定化処理(最初の充放電処理)を用いて負極活物質層22Bの表面に形成されており、硫黄および酸素を構成元素として含んでいる。
 ここでは、後述するように、電解液は、第1硫黄含有化合物および第2硫黄含有化合物を含んでいる。これにより、上記した安定化処理時において、電解液中に含まれている第1硫黄含有化合物および第2硫黄含有化合物のそれぞれが分解および反応するため、被膜22Cは、第1硫黄含有化合物および第2硫黄含有化合物に由来する硫黄および酸素を構成元素として含んでいる。この第1硫黄含有化合物および第2硫黄含有化合物のそれぞれは、硫黄を構成元素として含む化合物であり、硫黄の供給源となる物質である。第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの詳細に関しては、後述する。
 この二次電池では、電池容量特性、膨れ特性および電気抵抗特性のそれぞれを向上させるために、被膜22Cに関して所定の物性条件が満たされている。この被膜22Cの物性の詳細に関しては、後述する。
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、溶媒および電解質塩を含んでいる。
 溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。
 非水溶媒は、エステル類およびエーテル類などを含んでおり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などを含んでいる。
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどであると共に、鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸メチルエチルなどである。カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸エチル、酢酸プロピル、プロピオン酸エチル、プロピオン酸プロピルおよびトリメチル酢酸エチルなどである。ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。なお、エーテル類は、上記したラクトン系化合物の他、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどでもよい。
 また、非水溶媒は、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などのうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の化学的安定性が向上するからである。
 不飽和環状炭酸エステルの具体例は、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)および炭酸メチレンエチレン(4-メチレン-1,3-ジオキソラン-2-オン)などである。ハロゲン化炭酸エステルの具体例は、フルオロ炭酸エチレン(4-フルオロ-1,3-ジオキソラン-2-オン)およびジフルオロ炭酸エチレン(4,5-ジフルオロ-1,3-ジオキソラン-2-オン)などである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。
 酸無水物は、環状ジカルボン酸無水物および環状カルボン酸スルホン酸無水物などである。環状ジカルボン酸無水物の具体例は、無水コハク酸、無水グルタル酸および無水マレイン酸などである。環状カルボン酸スルホン酸無水物の具体例は、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。
 ニトリル化合物の具体例は、アセトニトリル、スクシノニトリルおよびアジポニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。
 電解質塩は、リチウム塩などの軽金属塩のうちのいずれか1種類または2種類以上を含んでいる。リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)およびビス(オキサラト)ホウ酸リチウム(LiB(C)などである。
 電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
 なお、電解液は、第1硫黄含有化合物および第2硫黄含有化合物を含んでいてもよい。この第1硫黄含有化合物は、式(1)~式(11)のそれぞれで表される化合物のうちのいずれか1種類または2種類以上を含んでいる。また、第2硫黄含有化合物は、式(12)および式(13)のそれぞれで表される化合物のうちの一方または双方を含んでいる。
 電解液が第1硫黄含有化合物と第2硫黄含有化合物とを一緒に含んでいるのは、二次電池の安定化処理時において、第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの分解および反応に起因して、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されやすくなるからである。また、充放電時において被膜22Cの一部が分解しても、その後の充放電時において第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの分解および反応に起因して、被膜22Cが追加形成されやすくなるからである。
Figure JPOXMLDOC01-appb-C000005
(R1は、アルキル基およびヒドロキシアルキル基のうちのいずれかである。R2は、水素基およびアルキル基のうちのいずれかである。
 R3~R6のそれぞれは、水素基、アルキル基、アルコキシ基、ハロゲン化アルキル基およびハロゲン化アルコキシ基のうちのいずれかである。Xは、アルキレン基である。
 R7およびR8のそれぞれは、水素基、アルキル基、アルケニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルケニル基およびハロゲン化アルコキシ基のうちのいずれかである。Yは、アルキレン基である。
 R9およびR10のそれぞれは、水素基、アルキル基およびアルケニル基のうちのいずれかである。ただし、R9およびR10は、互いに結合されていてもよい。
 R11およびR12のそれぞれは、水素基およびアルキル基のうちのいずれかである。R13は、アルキレン基である。ただし、R11およびR12は、互いに結合されていてもよい。
 R14およびR15のそれぞれは、水素基およびアルキル基のうちのいずれかである。R16は、アルキレン基である。ただし、R14およびR15は、互いに結合されていてもよい。
 R17およびR18のそれぞれは、水素基およびアルキル基のうちのいずれかである。R19は、アルキレン基である。ただし、R17およびR18は、互いに結合されていてもよい。
 R20およびR21のそれぞれは、水素基およびアルキル基のうちのいずれかである。R22は、アルキレン基である。ただし、R20およびR21は、互いに結合されていてもよい。
 R23およびR24のそれぞれは、水素基およびアルキル基のうちのいずれかである。R25は、アルキレン基である。ただし、R23およびR24は、互いに結合されていてもよい。
 R26およびR27のそれぞれは、水素基およびアルキル基のうちのいずれかである。R28は、アルキレン基である。ただし、R26およびR27は、互いに結合されていてもよい。
 R29およびR30のそれぞれは、水素基、アルキル基およびヒドロキシアルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000006
(ZおよびWのそれぞれは、アルキレン基およびアルケニレン基のうちのいずれかである。)
 第1硫黄含有化合物および第2硫黄含有化合物のそれぞれは、上記したように、硫黄の供給源となる物質(硫黄を構成元素として含む化合物)である。第1硫黄含有化合物の種類は、1種類だけでもよいし、2種類以上でもよいと共に、第2硫黄含有化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
 1種類目の第1硫黄含有化合物である式(1)に示した化合物は、1個のスルホ型基(-S(=O)-O-)を有する鎖状の化合物である。R1は、アルキル基およびヒドロキシアルキル基のうちのいずれかであれば、特に限定されない。R2は、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。
 アルキル基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルキル基の炭素数は、特に限定されない。アルキル基の具体例は、メチル基、エチル基、プロピル基およびブチル基などである。
ヒドロキシアルキル基は、上記したアルキル基のうちの末端の水素基が水酸基(-OH)により置換された基である。ヒドロキシアルキル基の具体例は、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基およびヒドロキシブチル基などである。
 2種類目の第1硫黄含有化合物である式(2)に示した化合物は、プロパンスルトン(1,3-プロパンスルトン)型の構造を有する環状の化合物である。R3~R6のそれぞれは、水素基、アルキル基、アルコキシ基、ハロゲン化アルキル基およびハロゲン化アルコキシ基のうちのいずれかであれば、特に限定されない。Xは、アルキレン基であれば、特に限定されない。
 アルコキシ基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルコキシ基の炭素数は、特に限定されない。アルコキシ基の具体例は、メトキシ基、エトキシ基、プロポキシ基およびブトキシ基などである。
 ハロゲン化アルキル基は、上記したアルキル基のうちの1個または2個以上の水素基がハロゲン基により置換された基である。ハロゲン化アルコキシ基は、上記したアルコキシ基のうちの1個または2個以上の水素基がハロゲン基により置換された基である。
 ハロゲン基の種類は、特に限定されないが、具体的には、フッ素基、塩素基、臭素基およびヨウ素基などである。
 アルキレン基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルキレン基の炭素数は、特に限定されない。アルキレン基の具体例は、メチレン基、エチレン基、プロピレン基およびブチレン基などである。
 3種類目の第1硫黄含有化合物である式(3)に示した化合物は、プロペンスルトン(1-プロペン1,3-スルトン)型の構造を有する環状の化合物である。R7およびR8のそれぞれは、水素基、アルキル基、アルケニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルケニル基およびハロゲン化アルコキシ基のうちのいずれかであれば、特に限定されない。アルキル基、アルコキシ基、ハロゲン化アルキル基およびハロゲン化アルコキシ基のそれぞれに関する詳細は、上記した通りである。Yは、アルキレン基であれば、特に限定されない。
 アルケニル基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルケニル基の炭素数は、特に限定されない。アルケニル基の具体例は、ビニル基およびアリル基などである。ハロゲン化アルケニル基は、上記したアルケニル基のうちの1個または2個以上の水素基がハロゲン基により置換された基であり、そのハロゲン基に関する詳細は、上記した通りである。
 4種類目の第1硫黄含有化合物である式(4)に示した化合物は、1個のスルホ型基および1個のカルボニル基(-C(=O)-)を有する鎖状または環状の化合物である。R9およびR10のそれぞれは、水素基、アルキル基およびアルケニル基のうちのいずれかであれば、特に限定されない。ただし、R9およびR10は、上記したように、互いに結合されていてもよい。
 5種類目の第1硫黄含有化合物である式(5)に示した化合物は、左右対称である2個のスルホ型基を有する鎖状または環状の化合物である。R11およびR12のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R13は、アルキレン基であれば、特に限定されない。ただし、R11およびR12は、上記したように、互いに結合されていてもよい。
 6種類目の第1硫黄含有化合物である式(6)に示した化合物は、左右非対称である2個のスルホ型基を有する鎖状または環状の化合物である。R14およびR15のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R16は、アルキレン基であれば、特に限定されない。ただし、R14およびR15は、上記したように、互いに結合されていてもよい。
 7種類目の第1硫黄含有化合物である式(7)に示した化合物は、1個の硫酸型基(-O-S(=O)-O-)および1個のスルホ型基を有する鎖状または環状の化合物である。R17およびR18のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R19は、アルキレン基であれば、特に限定されない。ただし、R17およびR18は、上記したように、互いに結合されていてもよい。
 8種類目の第1硫黄含有化合物である式(8)に示した化合物は、1個の硫酸型基および1個のスルホ型基を有する鎖状または環状の化合物である。R20およびR21のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R22は、アルキレン基であれば、特に限定されない。ただし、R20およびR21は、上記したように、互いに結合されていてもよい。
 9種類目の第1硫黄含有化合物である式(9)に示した化合物は、2個の硫酸型基を有する鎖状または環状の化合物である。R23およびR24のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R25は、アルキレン基であれば、特に限定されない。ただし、R23およびR24は、上記したように、互いに結合されていてもよい。
 10種類目の第1硫黄含有化合物である式(10)に示した化合物は、左右対称である2個のスルホ型基を有する鎖状または環状の化合物である。R26およびR27のそれぞれは、水素基およびアルキル基のうちのいずれかであれば、特に限定されない。R28は、アルキレン基であれば、特に限定されない。ただし、R26およびR27は、上記したように、互いに結合されていてもよい。
 11種類目の第1硫黄含有化合物である式(11)に示した化合物は、1個の硫酸型基を有する鎖状の化合物である。R29およびR30のそれぞれは、水素基、アルキル基おおよびヒドロキシアルキル基のうちのいずれかであれば、特に限定されない。
 1種類目の第2硫黄含有化合物である式(12)に示した化合物は、ジスルホン酸無水物型の構造を有する環状の化合物である。Zは、アルキレン基およびアルケニレン基のうちのいずれかであれば、特に限定されない。
 アルケニレン基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルケニレン基の炭素数は、特に限定されない。アルケニレン基の具体例は、ビニレン基およびアリレン基などである。
 2種類目の第2硫黄含有化合物である式(13)に示した化合物は、ジ硫酸無水物型の構造を有する環状の化合物である。Wは、アルキレン基およびアルケニレン基のうちのいずれかであれば、特に限定されない。アルケニレン基に関する詳細は、上記した通りである。
 第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの具体例は、以下の通りである。負極活物質層22Bの表面に被膜22Cが十分に形成されやすくなるからである。
 1種類目の第1硫黄含有化合物である式(1)に示した化合物の具体例は、式(1-1)および式(1-2)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000007
 2種類目の第1硫黄含有化合物である式(2)に示した化合物の具体例は、式(2-1)~式(2-5)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000008
 3種類目の第1硫黄含有化合物である式(3)に示した化合物の具体例は、式(3-1)~式(3-7)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000009
 4種類目の第1硫黄含有化合物である式(4)に示した化合物の具体例は、式(4-1)~式(4-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000010
 5種類目の第1硫黄含有化合物である式(5)に示した化合物の具体例は、式(5-1)~式(5-7)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000011
 6種類目の第1硫黄含有化合物である式(6)に示した化合物の具体例は、式(6-1)~式(6-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000012
 7種類目の第1硫黄含有化合物である式(7)に示した化合物の具体例は、式(7-1)~式(7-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000013
 8種類目の第1硫黄含有化合物である式(8)に示した化合物の具体例は、式(8-1)~式(8-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000014
 9種類目の第1硫黄含有化合物である式(9)に示した化合物の具体例は、式(9-1)~式(9-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000015
 10種類目の第1硫黄含有化合物である式(10)に示した化合物の具体例は、式(10-1)~式(10-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000016
 11種類目の第1硫黄含有化合物である式(11)に示した化合物の具体例は、式(11-1)および式(11-2)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000017
 1種類目の第2硫黄含有化合物である式(12)に示した化合物の具体例は、式(12-1)~式(12-8)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000018
 2種類目の第2硫黄含有化合物である式(13)に示した化合物の具体例は、式(13-1)~式(13-5)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000019
 電解液中における第1硫黄含有化合物の含有量は、特に限定されないが、具体的には、0.001重量%~2.0重量%である。負極活物質層22Bの表面に被膜22Cが十分に形成されやすくなるからである。
 電解液中における第2硫黄含有化合物の含有量は、特に限定されないが、具体的には、0.001重量%~2.0重量%である。負極活物質層22Bの表面に被膜22Cが十分に形成されやすくなるからである。
[正極リードおよび負極リード]
 正極リード31は、図1に示したように、電池素子20(正極21)に接続された正極配線であり、外装フィルム10の内部から外部に導出されている。この正極リード31は、アルミニウムなどの導電性材料を含んでおり、その正極リード31の形状は、薄板状および網目状などのうちのいずれかである。
 負極リード32は、図1に示したように、電池素子20(負極22)に接続された負極配線である。ここでは、負極リード32は、正極リード31の導出方向と同様の方向に向かって外装フィルム10の内部から外部に導出されている。この負極リード32は、銅などの導電性材料を含んでおり、その負極リード32の形状に関する詳細は、正極リード31の形状に関する詳細と同様である。
<1-2.物性>
 この二次電池では、上記したように、電気容量特性、膨れ特性および電気抵抗特性のそれぞれを向上させるために、硫黄および酸素を構成元素として含んでいる被膜22Cに関して所定の物性条件が満たされている。
 具体的には、飛行時間型二次イオン質量分析法(TOF-SIMS)を用いた被膜22Cの負イオン分析において、SO2-に由来する第1ピークと、Sに由来する第2ピークとが検出される。この際、第1ピークの強度I1に対する第2ピークの強度I2の比である強度比R(=I2/I1)は、0.100~0.250である。ただし、強度比Rの値は、小数点第四位の値を四捨五入した値とする。
 上記した物性条件(強度比R=0.100~0.250)が満たされているのは、硫黄および酸素を構成元素として含んでいる被膜22Cの組成が適正化されるため、その被膜22Cの密度が適正に増加するからである。これにより、薄くても高い耐久性を有する良好な被膜22Cが負極活物質層22Bの表面に形成されるため、負極22(負極活物質層22B)において電気抵抗の上昇が抑制されると共にリチウムの吸蔵放出が担保されながら、その負極22の表面における電解液の分解反応が抑制される。
 なお、TOF-SIMSを用いた被膜22Cの負イオン分析を行う場合には、ION-TOF社製のTOF-SIMS分析装置 TOF-SIMS5などを用いることができる。分析条件は、一次イオン種=Bi3+、一次イオン加速電圧=25kV、ピーク幅=15.2ns、一次イオン電流=~0.3pA、スキャン範囲=200μm×200μmとする。
 この強度比Rは、後述するように、二次電池の安定化処理時の条件を変更することにより、強度I1,I2のそれぞれが変化するため、所望の値となるように強度比Rを調整可能である。この二次電池の安定化処理時の条件は、環境温度および充電時の電流などである。
<1-3.動作>
 二次電池は、以下で説明するように動作する。充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。また、放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの充放電時には、リチウムがイオン状態で吸蔵および放出される。
<1-4.製造方法>
 以下で説明する手順により、二次電池を製造する。この場合には、後述するように、正極21、負極前駆体および電解液を用いて二次電池を組み立てたのち、その二次電池の安定化処理を行う。
[正極の作製]
 最初に、正極活物質と、必要に応じて正極結着剤および正極導電剤などとを互いに混合させることにより、正極合剤とする。続いて、溶媒に正極合剤を投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、非水溶媒(有機溶剤)でもよい。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。具体的には、最初に、負極活物質と、必要に応じて負極結着剤および負極導電剤などとを互いに混合させることにより、負極合剤としたのち、溶媒に負極合剤を投入することにより、ペースト状の負極合剤スラリーを調製する。溶媒に関する詳細は、上記した通りである。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極前駆体(図示せず)が作製される。
 最後に、後述するように、負極前駆体を用いて二次電池を組み立てたのち、その二次電池の安定化処理を行う。これにより、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成される。よって、負極集電体22Aの両面に負極活物質層22Bおよび被膜22Cが形成されるため、負極22が作製される。
[電解液の調製]
 溶媒に電解質塩を投入したのち、その溶媒に第1硫黄含有化合物および第2硫黄含有化合物を添加する。これにより、溶媒中において電解質塩、第1硫黄含有化合物および第2硫黄含有化合物のそれぞれが分散または溶解されるため、電解液が調製される。
[二次電池の組み立て]
 最初に、溶接法などを用いて正極21(正極集電体21A)に正極リード31を接続させると共に、溶接法などを用いて負極22(負極集電体22A)に負極リード32を接続させる。
 続いて、セパレータ23を介して正極21および負極前駆体を互いに積層させたのち、その正極21、負極前駆体およびセパレータ23を巻回させることにより、巻回体(図示せず)を作製する。この巻回体は、負極22の代わりに負極前駆体を備えていると共に、正極21、負極前駆体およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、プレス機などを用いて巻回体を押圧することにより、その巻回体を扁平形状となるように成型する。
 続いて、窪み部10Uの内部に巻回体を収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させる。続いて、熱融着法などを用いて、互いに対向する外装フィルム10(融着層)のうちの2辺の外周縁部同士を互いに融着させることにより、袋状の外装フィルム10の内部に巻回体を収納する。
 最後に、袋状の外装フィルム10の内部に電解液を注入したのち、熱融着法などを用いて外装フィルム10(融着層)のうちの残りの1辺の外周縁部同士を互いに融着させる。この場合には、外装フィルム10と正極リード31との間に封止フィルム41を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42を挿入する。これにより、巻回体に電解液が含浸されると共に、その巻回体が袋状の外装フィルム10の内部に封入されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。これにより、電解液中に含まれている第1硫黄含有化合物および第2硫黄含有化合物のそれぞれが分解および反応するため、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成される。よって、負極集電体22Aの両面に負極活物質層22Bおよび被膜22Cが形成されることにより、負極22が作製されるため、電池素子20が作製される。
 これにより、二次電池の状態が電気化学的に安定化するため、外装フィルム10を用いた二次電池、すなわちラミネートフィルム型の二次電池が完成する。
 この二次電池の安定化時、すなわち二次電池の充放電時には、薄くても高い耐久性を有する良好な被膜22Cを形成するために、環境温度を十分に高くすると共に、充電時の電流を十分に小さくする。具体的には、環境温度は、40℃~60℃であると共に、充電時の電流は、0.02C~0.05Cである。1Cは、電池容量(理論容量)を1時間で放電しきる電流値である。このため、0.02Cは、電池容量を50(=1/0.02)時間で放電しきる電流値であると共に、0.05Cは、電池容量を20(=1/0.05)時間で放電しきる電流値である。なお、強度比Rは、上記したように、二次電池の安定化時における環境温度および充電時の電流などの条件に応じて変化するため、それらの条件に基づいて制御可能である。
 なお、二次電池の安定化処理が完了したのち、すなわち負極22が作製された(負極活物質層22Bの表面に被膜22Cが形成された)のち、その被膜22Cを形成するために用いられた第1硫黄含有化合物および第2硫黄含有化合物のそれぞれは、電解液中に残存していてもよいし、電解液中に残存していなくてもよい。
<1-5.作用および効果>
 第1実施形態の二次電池によれば、負極22が負極活物質層22Bの表面を被覆する被膜22Cを含んでおり、その被膜22Cが硫黄および酸素を構成元素として含んでおり、強度比Rが0.100~0.250である。
 この場合には、強度比Rが適正化され、すなわち被膜22C中においてSO2-に由来する成分の存在量とSに由来する成分の存在量とのバランスが適正化されるため、上記したように、薄くても高い耐久性を有する良好な被膜22Cが負極活物質層22Bの表面に形成される。これにより、負極22(負極活物質層22B)において電気抵抗の上昇が抑制されると共にリチウムの吸蔵放出が担保されながら、その負極22の表面における電解液の分解反応が抑制される。
 より具体的には、強度比Rが0.100よりも小さくなると、その強度比Rが小さくなりすぎるため、リチウムの吸蔵放出が担保されると共に電解液の分解反応が抑制されるが、負極活物質層22Bの電気抵抗が増加する。しかしながら、強度比Rが0.100以上になると、リチウムの吸蔵放出が担保されると共に電解液の分解反応が抑制されながら、負極活物質層22Bの電気抵抗が減少する。
 一方、強度比Rが0.250よりも大きくなると、その強度比Rが大きくなりすぎるため、負極活物質層22Bの電気抵抗が増加するが、リチウムの吸蔵放出が阻害されると共に電解液の分解反応が顕著になる。しかしながら、強度比Rが0.250以下になると、負極活物質層22Bの電気抵抗が減少しながら、リチウムの吸蔵放出が担保されると共に電解液の分解反応が抑制される。
 よって、電解液の分解反応(ガスの発生)に起因する二次電池の膨れが抑制されながら、リチウムが円滑に吸蔵放出されると共に電気抵抗が減少するため、優れた電池容量特性、膨れ特性および電気抵抗特性を得ることができる。
 特に、電解液が第1硫黄含有化合物と第2硫黄含有化合物とを一緒に含んでいれば、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されやすくなるため、より高い効果を得ることができる。この場合には、二次電池の安定化処理後(被膜22Cの形成後)においても電解液が第1硫黄含有化合物および第2硫黄含有化合物の双方を含んでいれば、その安定化処理後の充放電時において被膜22Cが追加形成されやすくなるため、さらに高い効果を得ることができる。
 また、電解液中における第1硫黄含有化合物の含有量が0.001重量%~2.0重量%であると共に、電解液中における第2硫黄含有化合物の含有量が0.001重量%~2.0重量%であれば、負極活物質層22Bの表面に被膜22Cが十分に形成されやすくなるため、より高い効果を得ることができる。
 また、二次電池が可撓性の外装フィルム10を備えていれば、変形しやすいことに起因して本質的に膨れやすい外装フィルム10を用いても二次電池の膨れが効果的に抑制されるため、より高い効果を得ることができる。
 また、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵および放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
<2.二次電池(第2実施形態)>
 次に、本技術の第2実施形態の二次電池に関して説明する。
<2-1.構成>
 第2実施形態の二次電池は、以下で説明するように、被膜22Cの形成方法が異なると共に、その被膜22Cの組成が異なることを除いて、第1実施形態の二次電池の構成と同様の構成を有している。以下では、随時、図1および図2を参照する。
 第2実施形態の被膜22Cは、後述するように、負極22の作製工程において塗布法を用いて形成されており、硫黄および酸素を構成元素として含んでいる。
 ここでは、被膜22Cは、第3硫黄含有化合物および第4硫黄含有化合物を含んでいてもよい。この第3硫黄含有化合物は、式(14)および式(15)のそれぞれで表される化合物のうちの一方または双方を含んでいる。また、第4硫黄含有化合物は、式(16)で表される化合物を含んでいる。
 被膜22Cが第3硫黄含有化合物と第4硫黄含有化合物とを一緒に含んでいる理由は、第1実施形態において電解液が第1硫黄含有化合物と第2硫黄含有化合物とを一緒に含んでいる理由と同様である。
 すなわち、二次電池の安定化処理時において、第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの分解および反応に起因して、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されやすくなるからである。また、充放電時において被膜22Cの一部が分解しても、その後の充放電時において第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの分解および反応に起因して、被膜22Cが追加形成されやすくなるからである。
Figure JPOXMLDOC01-appb-C000020
(R21およびR22のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。Mは、アルカリ金属元素である。
 R23およびR24のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。)
Figure JPOXMLDOC01-appb-C000021
(R25およびR26のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。)
 第3硫黄含有化合物および第4硫黄含有化合物のそれぞれは、上記した第1硫黄含有化合物および第2硫黄含有化合物のそれぞれと同様に、硫黄の供給源となる物質(硫黄を構成元素として含む化合物)である。第3硫黄含有化合物の種類は、1種類だけでもよいし、2種類以上でもよいと共に、第3硫黄含有化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
 1種類目の第3硫黄含有化合物である式(14)に示した化合物は、ジスルホニルイミド型の構造(-S(=O)-N-S(=O)-)を有する鎖状の金属塩である。R21およびR22のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかであれば、特に限定されない。ハロゲン基、アルキル基およびハロゲン化アルキル基のそれぞれに関する詳細は、上記した通りである。Mは、アルカリ金属元素であれば、特に限定されないが、具体的には、リチウム、ナトリウムおよびカリウムなどである。
 2種類目の第3硫黄含有化合物である式(15)に示した化合物は、スルホンアミドイミド型の構造(>N-S(=O)-NH)を有する鎖状の化合物である。R23およびR24のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかであれば、特に限定されない。アルキル基およびハロゲン化アルキル基のそれぞれに関する詳細は、上記した通りである。
 第4硫黄含有化合物である式(16)に示した化合物は、ジチオフェニル型の構造(-C-S-S-C-)を有する環状の化合物である。R25およびR26のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかであれば、特に限定されない。アルキル基およびハロゲン化アルキル基のそれぞれに関する詳細は、上記した通りである。
 式(16)から明らかなように、R25は、2個のベンゼン環のうちの一方のベンゼン環に結合されていると共に、R26は他方のベンゼン環に結合されている。この場合において、R25は、一方のベンゼン環のうちのいずれの位置(炭素原子)に結合されていてもよいし、R26は、他方のベンゼン環のうちのいずれの位置(炭素原子)に結合されていてもよい。
 中でも、第3硫黄含有化合物は、式(14)に示した化合物を含んでいるため、被膜22Cは、第3硫黄含有化合物である式(14)に示した化合物と、第4硫黄含有化合物である式(16)に示した化合物とを含んでいることが好ましい。負極活物質層22Bの表面に被膜22Cがより形成されやすくなるからである。
 第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの具体例は、以下の通りである。負極活物質層22Bの表面に被膜22Cが十分に形成されやすくなるからである。
 1種類目の第3硫黄含有化合物である式(14)に示した化合物の具体例は、式(14-1)~式(14-3)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000022
 2種類目の第3硫黄含有化合物である式(15)に示した化合物の具体例は、式(15-1)~式(15-3)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000023
 第4硫黄含有化合物である式(16)に示した化合物の具体例は、式(16-1)および式(16-2)のそれぞれで表される化合物などである。
Figure JPOXMLDOC01-appb-C000024
 被膜22C中における第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの含有量は、特に限定されないため、任意に設定可能である。
<2-2.物性>
 第2実施形態の二次電池では、第1実施形態の二次電池と同様に、電池容量特性、膨れ特性および電気抵抗特性のそれぞれを向上させるために、被膜22Cに関して所定の物性条件が満たされている。すなわち、TOF-SIMSを用いた被膜22Cの負イオン分析において、強度比Rは0.1~0.25である。
 この強度比Rは、後述するように、第3硫黄含有化合物と第4硫黄含有化合物との混合比(重量比)などを変更することにより、強度I1,I2のそれぞれが変化するため、所望の値となるように強度比Rを調整可能である。
<2-3.動作>
 第2実施形態の二次電池の動作は、第1実施形態の二次電池の動作と同様である。すなわち、充電時には、電池素子20(正極21および負極22)においてリチウムがイオン状態で吸蔵放出される。
<2-4.製造方法>
 第2実施形態の二次電池の製造方法は、以下で説明するように、負極22の作製手順が異なることを除いて、第1実施形態の二次電池の製造方法と同様である。
 負極22を作製する場合には、最初に、上記した手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。
 続いて、溶媒に第3硫黄含有化合物および第4硫黄含有化合物を投入したのち、その溶媒を撹拌する。これにより、溶媒中において第3硫黄含有化合物および第4硫黄含有化合物のそれぞれが分散または溶解されるため、塗布溶液が調製される。溶媒の種類は、第3硫黄含有化合物および第4硫黄含有化合物のそれぞれを溶解可能であれば、特に限定されないが、具体的には、非水溶媒(有機溶剤)および水性溶媒のうちの一方または双方である。
 最後に、負極活物質層22Bの表面に塗布溶液を塗布したのち、その塗布溶液を乾燥させる。これにより、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されるため、負極22が作製される。
 この場合には、(1)被膜22C中における第3硫黄含有化合物と第4硫黄含有化合物との混合比(重量比)、すなわち塗布溶液中における第3硫黄含有化合物と第4硫黄含有化合物との混合比(重量比)、(2)塗布溶液中における溶媒と第3硫黄含有化合物および第4硫黄含有化合物との混合比(重量比)、(3)塗布溶液を調製するために用いられる溶媒(有機溶剤および水性溶媒)の混合比(重量比)、(4)塗布溶液の乾燥温度などを変更することにより、強度I1,I2のそれぞれが変化するため、強度比Rを調整可能である。
 一例を挙げると、第3硫黄含有化合物と第4硫黄含有化合物との混合比(重量比)は、第3硫黄含有化合物:第4硫黄含有化合物=1:31~1:3である。溶媒(有機溶剤および水性溶媒)の混合比(重量比)は、有機溶剤:水性溶媒=10:90~90:10である。塗布溶液の乾燥温度は、50℃~90℃である。
<2-5.作用および効果>
 第2実施形態の二次電池によれば、第1実施形態の二次電池と同様に、負極22が被膜22Cを含んでおり、その被膜22Cが硫黄および酸素を構成元素として含んでおり、強度比Rが0.100~0.250である。よって、上記した理由により、優れた電池容量特性、膨れ特性および電気抵抗特性を得ることができる。
 特に、被膜22Cが第3硫黄含有化合物と第4硫黄含有化合物とを一緒に含んでいれば、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されやすくなるため、より高い効果を得ることができる。
 第2実施形態の二次電池に関する他の作用および効果は、第1実施形態の二次電池に関する他の作用および効果と同様である。
<3.変形例>
 二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。
[変形例1]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、多孔質膜であるセパレータ23の代わりに、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に配置された高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(正極21、負極22およびセパレータのそれぞれの巻きずれ)が抑制されるからである。これにより、電解液の分解反応などが発生しても、二次電池の膨れが抑制される。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機粒子および樹脂粒子などである。無機粒子の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどの粒子である。樹脂粒子の具体例は、アクリル樹脂およびスチレン樹脂などの粒子である。
 積層型のセパレータを作製する場合には、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、前駆溶液に複数の絶縁性粒子を添加してもよい。
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。
[変形例2]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、電解液の代わりに、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解質層中では、電解液が高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および有機溶剤などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。
<4.二次電池の用途>
 次に、上記した二次電池の用途(適用例)に関して説明する。
 二次電池の用途は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源または補助電源である。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、その二次電池以外の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して家庭用の電気製品などを使用可能である。
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
 図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図3に示したように、電源51と、回路基板52とを備えている。この回路基板52は、電源51に接続されていると共に、正極端子53、負極端子54および温度検出端子55を含んでいる。
 電源51は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子53に接続されていると共に、負極リードが負極端子54に接続されている。この電源51は、正極端子53および負極端子54を介して外部と接続可能であるため、充放電可能である。回路基板52は、制御部56と、スイッチ57と、熱感抵抗素子(PTC素子)58と、温度検出部59とを含んでいる。ただし、PTC素子58は省略されてもよい。
 制御部56は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部56は、必要に応じて電源51の使用状態の検出および制御を行う。
 なお、制御部56は、電源51(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ57を切断することにより、電源51の電流経路に充電電流が流れないようにする。過充電検出電圧および過放電検出電圧は、特に限定されない。一例を挙げると、過充電検出電圧は、4.2V±0.05Vであると共に、過放電検出電圧は、2.4V±0.1Vである。
 スイッチ57は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部56の指示に応じて電源51と外部機器との接続の有無を切り換える。このスイッチ57は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ57のON抵抗に基づいて検出される。
 温度検出部59は、サーミスタなどの温度検出素子を含んでおり、温度検出端子55を用いて電源51の温度を測定すると共に、その温度の測定結果を制御部56に出力する。温度検出部59により測定される温度の測定結果は、異常発熱時において制御部56が充放電制御を行う場合および残容量の算出時において制御部56が補正処理を行う場合などに用いられる。
 本技術の実施例に関して説明する。
<実施例1~21および比較例1~10>
 二次電池を製造したのち、その二次電池の電池特性を評価した。
[二次電池の製造]
 以下で説明する手順により、図1および図2に示したラミネートフィルム型の二次電池(リチウムイオン二次電池)を製造した。
(正極の作製)
 最初に、正極活物質(コバルト酸リチウム(LiCoO))96質量部と、正極結着剤(ポリフッ化ビニリデン)2質量部と、正極導電剤(黒鉛)2質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(厚さ=15μmである帯状のアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。これにより、正極21が作製された。
(負極の作製)
 最初に、負極活物質(メソカーボンマイクロビーズ(MCMB))95.7質量部と、負極結着剤(カルボキシメチルセルロース)2.3質量部と、正極導電剤(黒鉛)2質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(厚さ=15μmである帯状の銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。続いて、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。これにより、負極前駆体が作製された。最後に、後述するように、負極前駆体を用いて二次電池を組み立てたのち、その二次電池の安定化処理(最初の充放電処理)を行った。これにより、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されたため、負極22が作製された。
(電解液の調製)
 溶媒に電解質塩(六フッ化リン酸リチウム(LiPF))を投入したのち、その溶媒を撹拌した。溶媒としては、環状炭酸エステル(炭酸エチレンおよび炭酸プロピレン)と、鎖状炭酸エステル(炭酸ジエチル)と、鎖状カルボン酸エステル(プロピオン酸プロピル)と、不飽和環状炭酸エステル(炭酸ビニレン)と、ニトリル化合物(スクシノニトリル)とを用いた。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸プロピレン:炭酸ジエチル:プロピオン酸プロピル:炭酸ビニレン:スクシノニトリル=20:10:20:29:1:5、電解質塩の含有量を溶媒に対して1.2mol/kgとした。
 続いて、電解質塩が含まれている溶媒に第1硫黄含有化合物および第2硫黄含有化合物を添加したのち、その溶媒を攪拌した。第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの種類は、表1および表2に示した通りである。これにより、電解液が調製された。
 なお、比較のために、第1硫黄含有化合物および第2硫黄含有化合物の双方を用いなかったことを除いて同様の手順により、電解液を調製した。また、比較のために、第1硫黄含有化合物および第2硫黄含有化合物のうちのいずれか一方だけを用いたことを除いて同様の手順により、電解液を調製した。第1硫黄含有化合物および第2硫黄含有化合物のそれぞれの種類は、表3に示した通りである。
(二次電池の組み立て)
 最初に、正極21(正極集電体21A)に正極リード31(アルミニウム線)を溶接したと共に、負極前駆体(負極集電体22A)に負極リード32(銅線)を溶接した。
 続いて、セパレータ23(厚さ=25μmである微孔性ポリエチレンフィルム)を介して正極21および負極前駆体を互いに積層させたのち、その正極21、負極前駆体およびセパレータ23を巻回させることにより、巻回体を作製した。続いて、プレス機を用いて巻回体をプレスすることにより、その巻回体を扁平形状となるように成型した。
 続いて、窪み部10Uの内部に収容された巻回体を挟むように外装フィルム10(融着層/金属層/表面保護層)を折り畳んだのち、その外装フィルム10(融着層)のうちの2辺の外周縁部同士を互いに熱融着させることにより、袋状の外装フィルム10の内部に巻回体を収納した。外装フィルム10としては、融着層(厚さ=30μmであるポリプロピレンフィルム)と、金属層(厚さ=40μmであるアルミニウム箔)と、表面保護層(厚さ=25μmであるナイロンフィルム)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。
 最後に、袋状の外装フィルム10の内部に電解液を注入したのち、減圧環境中において外装フィルム10(融着層)のうちの残りの1辺の外周縁部同士を互いに熱融着させた。この場合には、外装フィルム10と正極リード31との間に封止フィルム41(厚さ=5μmであるポリプロピレンフィルム)を挿入したと共に、外装フィルム10と負極リード32との間に封止フィルム42(厚さ=5μmであるポリプロピレンフィルム)を挿入した。これにより、巻回体に電解液が含浸されたと共に、袋状の外装フィルム10の内部に巻回体が封入されたため、二次電池が組み立てられた。
(二次電池の安定化)
 所定の温度の環境中において、組み立て後の二次電池を1サイクル充放電させた。充電時には、所定の電流で電圧が4.4Vに到達するまで定電流充電したのち、その4.4Vの電圧で電流が0.005Cに到達するまで定電圧充電した。放電時には、0.5Cの電流で電圧が3.0Vに到達するまで定電流放電した。環境中の温度(環境温度(℃))および充電時の電流(充電電流(C))のそれぞれは、表1~表3に示した通りである。充電電流=1Cは、電池容量(理論容量)を1時間で放電しきる電流値であるため、充電電流=0.005Cは、電池容量を200(=1/0.005)時間で放電しきる電流値である。
 これにより、上記したように、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されたため、負極22が作製された。よって、電池素子20が作製されると共に、その電池素子20の状態が電気化学的に安定化されたため、ラミネートフィルム型の二次電池が完成した。
 なお、電解液が第1硫黄含有化合物および第2硫黄含有化合物の双方を含んでいない場合には、硫黄および酸素を構成元素として含む被膜22Cが負極活物質層22Bの表面に形成されなかったため、その被膜22Cを含んでいない負極22が作製された。
 二次電池の完成後、その二次電池を解体することにより、電解液を回収したのち、高周波誘導結合プラズマ(ICP)発光分光分析法を用いて電解液を分析したところ、電解液中における第1硫黄含有化合物の含有量(重量)および電解液中における第2硫黄含有化合物の含有量(重量%)は、表1に示した通りであった。
 なお、二次電池を作製する場合には、その二次電池の安定化処理時の条件、より具体的には、環境温度および充電電流のそれぞれを変更することにより、第1ピークの強度I1および第2ピークの強度I2のそれぞれを変化させると共に、強度比Rを変化させた。
[電池特性の評価]
 二次電池の電池特性(電池容量特性、膨れ特性および電気抵抗特性)を評価したところ、表1~表3に示した結果が得られた。
(電池容量特性)
 常温環境中(温度=23℃)において二次電池を充放電させることにより、電池容量を評価するための指標である放電容量(mAh/g)を測定した。充放電条件は、上記した二次電池の安定化処理時の充電条件と同様にした。
(膨れ特性)
 最初に、常温環境中(温度=23℃)において二次電池を充放電させたのち、その二次電池の厚さ(保存前の厚さ)を測定した。充放電条件は、上記した二次電池の安定化処理時の充放電条件と同様にした。続いて、二次電池を充電させることにより、高温環境中(温度=60℃)において充電状態の二次電池を保存(保存時間=1週間)したのち、その充電状態の二次電池の厚さ(保存後の厚さ)を測定した。充電条件は、上記した二次電池の安定化処理時の充電条件と同様にした。0.5Cとは、電池容量を2時間で放電しきる電流値である。最後に、膨れ率(%)=[(保存後の厚さ-保存前の厚さ)/保存前の厚さ]×100という計算式に基づいて、膨れ特性を評価するための指標である膨れ率を算出した。
(電気抵抗特性)
 最初に、常温環境中(温度=23℃)において二次電池を充電させた。充電条件は、上記した二次電池の安定化処理時の充電条件と同様にした。続いて、0.1Cの放電電流で二次電池を5時間定電流放電させることにより、その二次電池の充電深度を50%となるように調整した。放電電流=0.1Cは、電池容量を10(=1/0.1)時間で放電しきる電流値である。続いて、50%となるように充電深度を調整した直後、1.0Cの放電電流で二次電池を1秒間定電流放電させることにより、その定電流放電の前後における電圧変化量ΔVを測定した。放電電流=1.0Cは、電池容量を1(=1/1.0)時間で放電しきる電流値である。最後に、電気抵抗(mΩ)=電圧変化量ΔV/放電電流(=1.0C)という計算式に基づいて、電気抵抗特性を評価するための指標である電気抵抗を算出した。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
[考察]
 表1~表3に示したように、放電容量、膨れ率および電気抵抗のそれぞれは、強度比Rに応じて大きく変動した。
 具体的には、電解液が第1硫黄含有化合物および第2硫黄含有化合物の双方を含んでいない場合(比較例1)には、被膜22Cが形成されなかったため、強度比Rを算出することができなかった。これにより、放電容量が減少した共に、膨れ率および電気抵抗のそれぞれも増加した。
 これに対して、電解液が第1硫黄含有化合物および第2硫黄含有化合物のうちの一方または双方を含んでいる場合(実施例1~21および比較例2~10)には、被膜22Cが形成されため、強度比Rを算出することができた。この場合において、放電容量、膨れ率および電気抵抗のそれぞれは、上記したように、強度比Rに応じて大きく変動した。
 すなわち、強度比Rが適正条件(強度比R=0.100~0.250)を満たしていない場合(比較例2~10)には、放電容量、膨れ率および電気抵抗のうちのいずれかの特性値が向上すると残りの特性値が悪化するというトレードオフの関係が発生したため、放電容量、膨れ率および電気抵抗の全てが向上しなかった。
 しかしながら、強度比Rが適正条件を満たしている場合(実施例1~21)には、上記したトレードオフの関係が打破されたため、放電容量、膨れ率および電気抵抗の全てが向上した。
<実施例22~28および比較例11~15>
 二次電池の安定化処理を利用して被膜22Cを形成した代わりに、塗布法を用いて被膜22Cを形成したことを除いて同様の手順により、二次電池を製造したのち、その二次電池の電池特性を評価した。
 負極22を作製する場合には、負極集電体22Aの両面に負極活物質層22Bを形成したのち、溶媒(有機溶剤であるN-メチル-2-ピロリドンと水性溶媒である純水との混合物,混合比(重量比)=50:50)に第3硫黄含有化合物および第4硫黄含有化合物を投入したのち、その溶媒を撹拌することにより、塗布溶液を調製した。第3硫黄含有化合物の種類および第4硫黄含有化合物の種類は、表2に示した通りである。続いて、スピンコート法を用いて負極活物質層22Bの表面に塗布溶液を塗布したのち、その塗布溶液を真空乾燥させることにより、被膜22Cを形成した。第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの種類は、表4に示した通りである。
 なお、比較のために、負極活物質層22Bの表面に塗布溶液を塗布しなかったため、被膜22Cを形成しなかったことを除いて同様の手順により、その被膜22Cを含んでいない負極22を作製した。また、比較のために、第3硫黄含有化合物および第4硫黄含有化合物のうちのいずれか一方だけを含んでいる塗布溶液を用いたことを除いて同様の手順により、被膜22Cを含んでいる負極22を作製した。第3硫黄含有化合物および第4硫黄含有化合物のそれぞれの種類は、表4に示した通りである。
 なお、二次電池を作製する場合には、塗布溶液の調製時において第3硫黄含有化合物と第4硫黄含有化合物との混合比(重量比)を変更することにより、強度比Rを変化させた。
Figure JPOXMLDOC01-appb-T000028
 表4に示したように、塗布法を用いて被膜22Cを形成した場合においても、表1~表3に示した結果と同様の結果が得られた。
 すなわち、負極22が被膜22Cを含んでいると共に強度比Rが適正条件(強度比R=0.100~0.250)を満たしている場合(実施例22~28)には、負極22が被膜22Cを含んでいない場合(比較例11)および負極22が被膜22Cを含んでいても強度比Rが適正条件を満たしていない場合(比較例12~15)とは異なり、放電容量、膨れ率および電気抵抗の全てが向上した。
[まとめ]
 表1~表4に示した結果から、負極22が被膜22Cを含んでおり、その被膜22Cが硫黄および酸素を構成元素として含んでおり、強度比Rが0.100~0.250であると、放電容量、膨れ率および電気抵抗の全てが向上した。よって、優れた電池容量特性、膨れ特性および電気抵抗特性を得ることができた。
 以上、いくつかの実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、各実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 具体的には、二次電池の電池構造がラミネートフィルム型である場合に関して説明した。しかしながら、二次電池の電池構造は、特に限定されないため、円筒型、角型、コイン型およびボタン型などでもよい。
 また、電池素子の素子構造が巻回型である場合に関して説明した。しかしながら、電池素子の素子構造は、特に限定されないため、正極および負極が積層された積層型でもよいし、正極および負極がジグザグに折り畳まれた九十九折り型でもよい。
 さらに、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (6)

  1.  正極および負極と共に電解液を備え、
     前記負極は、負極活物質層と、前記負極活物質層の表面を被覆する被膜とを含み、
     前記被膜は、硫黄および酸素を構成元素として含み、
     飛行時間型二次イオン質量分析法を用いた前記被膜の負イオン分析において、SO2-に由来する第1ピークと、Sに由来する第2ピークとが検出され、
     前記第1ピークの強度に対する前記第2ピークの強度の比は、0.100以上0.250以下である、
     二次電池。
  2.  前記電解液は、第1硫黄含有化合物および第2硫黄含有化合物を含み、
     前記第1硫黄含有化合物は、式(1)~式(11)のそれぞれで表される化合物のうちの少なくとも1種を含み、
     前記第2硫黄含有化合物は、式(12)および式(13)のそれぞれで表される化合物のうちの少なくとも一方を含む、
     請求項1記載の二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1は、アルキル基およびヒドロキシアルキル基のうちのいずれかである。R2は、水素基およびアルキル基のうちのいずれかである。
     R3~R6のそれぞれは、水素基、アルキル基、アルコキシ基、ハロゲン化アルキル基およびハロゲン化アルコキシ基のうちのいずれかである。Xは、アルキレン基である。
     R7およびR8のそれぞれは、水素基、アルキル基、アルケニル基、アルコキシ基、ハロゲン化アルキル基、ハロゲン化アルケニル基およびハロゲン化アルコキシ基のうちのいずれかである。Yは、アルキレン基である。
     R9およびR10のそれぞれは、水素基、アルキル基およびアルケニル基のうちのいずれかである。ただし、R9およびR10は、互いに結合されていてもよい。
     R11およびR12のそれぞれは、水素基およびアルキル基のうちのいずれかである。R13は、アルキレン基である。ただし、R11およびR12は、互いに結合されていてもよい。
     R14およびR15のそれぞれは、水素基およびアルキル基のうちのいずれかである。R16は、アルキレン基である。ただし、R14およびR15は、互いに結合されていてもよい。
     R17およびR18のそれぞれは、水素基およびアルキル基のうちのいずれかである。R19は、アルキレン基である。ただし、R17およびR18は、互いに結合されていてもよい。
     R20およびR21のそれぞれは、水素基およびアルキル基のうちのいずれかである。R22は、アルキレン基である。ただし、R20およびR21は、互いに結合されていてもよい。
     R23およびR24のそれぞれは、水素基およびアルキル基のうちのいずれかである。R25は、アルキレン基である。ただし、R23およびR24は、互いに結合されていてもよい。
     R26およびR27のそれぞれは、水素基およびアルキル基のうちのいずれかである。R28は、アルキレン基である。ただし、R26およびR27は、互いに結合されていてもよい。
     R29およびR30のそれぞれは、水素基、アルキル基およびヒドロキシアルキル基のうちのいずれかである。)
    Figure JPOXMLDOC01-appb-C000002
    (ZおよびWのそれぞれは、アルキレン基およびアルケニレン基のうちのいずれかである。)
  3.  前記電解液中における前記第1硫黄含有化合物の含有量は、0.001重量%以上2.0重量%以下であり、
     前記電解液中における前記第2硫黄含有化合物の含有量は、0.001重量%以上2.0重量%以下である、
     請求項2記載の二次電池。
  4.  前記被膜は、第3硫黄含有化合物および第4硫黄含有化合物を含み、
     前記第3硫黄含有化合物は、式(14)および式(15)のそれぞれで表される化合物のうちの少なくとも一方を含み、
     前記第4硫黄含有化合物は、式(16)で表される化合物を含む、
     請求項1記載の二次電池。
    Figure JPOXMLDOC01-appb-C000003
    (R21およびR22のそれぞれは、水素基、ハロゲン基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。Mは、アルカリ金属元素である。
     R23およびR24のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。)
    Figure JPOXMLDOC01-appb-C000004
    (R25およびR26のそれぞれは、水素基、アルキル基およびハロゲン化アルキル基のうちのいずれかである。)
  5.  さらに、前記正極、前記負極および前記電解液を収納する可撓性の外装部材を備えた、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  リチウムイオン二次電池である、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
PCT/JP2022/001935 2021-02-09 2022-01-20 二次電池 WO2022172718A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/215,562 US20230343965A1 (en) 2021-02-09 2023-06-28 Secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-019148 2021-02-09
JP2021019148 2021-02-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/215,562 Continuation US20230343965A1 (en) 2021-02-09 2023-06-28 Secondary battery

Publications (1)

Publication Number Publication Date
WO2022172718A1 true WO2022172718A1 (ja) 2022-08-18

Family

ID=82838745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001935 WO2022172718A1 (ja) 2021-02-09 2022-01-20 二次電池

Country Status (2)

Country Link
US (1) US20230343965A1 (ja)
WO (1) WO2022172718A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135382A (ja) * 2006-10-26 2008-06-12 Sony Corp 負極およびその製造方法、ならびに二次電池
JP2010501982A (ja) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド 非水電解液及びこれを用いた二次電池
JP2010506373A (ja) * 2006-10-09 2010-02-25 エルジー・ケム・リミテッド 非水電解液及びこれを用いた二次電池
WO2016021596A1 (ja) * 2014-08-07 2016-02-11 日本電気株式会社 リチウム二次電池およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501982A (ja) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド 非水電解液及びこれを用いた二次電池
JP5350243B2 (ja) * 2006-08-25 2013-11-27 エルジー・ケム・リミテッド 非水電解液及びこれを用いた二次電池
JP2010506373A (ja) * 2006-10-09 2010-02-25 エルジー・ケム・リミテッド 非水電解液及びこれを用いた二次電池
JP2008135382A (ja) * 2006-10-26 2008-06-12 Sony Corp 負極およびその製造方法、ならびに二次電池
WO2016021596A1 (ja) * 2014-08-07 2016-02-11 日本電気株式会社 リチウム二次電池およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FIEDLER CARSTEN, LUERSSEN BJOERN, ROHNKE MARCUS, SANN JOACHIM, JANEK JUERGEN: "XPS and SIMS Analysis of Solid Electrolyte Interphases on Lithium Formed by Ether-Based Electrolytes", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 164, no. 14, 1 January 2017 (2017-01-01), pages A3742 - A3749, XP055960430, ISSN: 0013-4651, DOI: 10.1149/2.0851714jes *
OTA, H. AKAI, T. NAMITA, H. YAMAGUCHI, S. NOMURA, M.: "XAFS and TOF-SIMS analysis of SEI layers on electrodes", JOURNAL OF POWER SOURCES, vol. 119-121, 1 June 2003 (2003-06-01), AMSTERDAM, NL, pages 567 - 571, XP004430232, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(03)00291-X *
SHIGA TOHRU, KATO YUICHI, INOUE MASAE, TAKAHASHI NAOKO, HASE YOKO: "Anode Material Associated with Polymeric Networking of Triflate Ions Formed on Mg", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 7, 19 February 2015 (2015-02-19), US , pages 3488 - 3494, XP055960414, ISSN: 1932-7447, DOI: 10.1021/jp5114015 *
SIMON FABIAN J., HANAUER MATTHIAS, HENSS ANJA, RICHTER FELIX H., JANEK JÜRGEN: "Properties of the Interphase Formed between Argyrodite-Type Li 6 PS 5 Cl and Polymer-Based PEO 10 :LiTFSI", APPLIED MATERIALS & INTERFACES, vol. 11, no. 45, 13 November 2019 (2019-11-13), US , pages 42186 - 42196, XP055960426, ISSN: 1944-8244, DOI: 10.1021/acsami.9b14506 *

Also Published As

Publication number Publication date
US20230343965A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP5141582B2 (ja) 非水電解質二次電池
WO2023063008A1 (ja) 二次電池
WO2022172718A1 (ja) 二次電池
WO2022196238A1 (ja) 二次電池用電解液および二次電池
WO2022196266A1 (ja) 二次電池
WO2023119946A1 (ja) 二次電池用電解液および二次電池
WO2023119948A1 (ja) 二次電池
WO2023162429A1 (ja) 二次電池用電解液および二次電池
WO2023119945A1 (ja) 二次電池用電解液および二次電池
WO2023120688A1 (ja) 二次電池
WO2023162852A1 (ja) 二次電池用電解液および二次電池
WO2023162428A1 (ja) 二次電池
WO2023189709A1 (ja) 二次電池用電解液および二次電池
JP7302731B2 (ja) 二次電池
WO2023162431A1 (ja) 二次電池用電解液および二次電池
WO2023162432A1 (ja) 二次電池
WO2022065160A1 (ja) 二次電池用電解液および二次電池
WO2023017685A1 (ja) 二次電池用電解液および二次電池
WO2023112576A1 (ja) 二次電池用正極および二次電池
JP7380898B2 (ja) 二次電池
WO2022163139A1 (ja) 二次電池
WO2023162430A1 (ja) 二次電池用電解液および二次電池
JP7435727B2 (ja) 二次電池用電解液および二次電池
WO2022163138A1 (ja) 二次電池用電解液および二次電池
WO2022209058A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752549

Country of ref document: EP

Kind code of ref document: A1