WO2022163138A1 - 二次電池用電解液および二次電池 - Google Patents

二次電池用電解液および二次電池 Download PDF

Info

Publication number
WO2022163138A1
WO2022163138A1 PCT/JP2021/044940 JP2021044940W WO2022163138A1 WO 2022163138 A1 WO2022163138 A1 WO 2022163138A1 JP 2021044940 W JP2021044940 W JP 2021044940W WO 2022163138 A1 WO2022163138 A1 WO 2022163138A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
cyclic carbonate
electrolytic solution
compound
battery
Prior art date
Application number
PCT/JP2021/044940
Other languages
English (en)
French (fr)
Inventor
謙太郎 吉村
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022578100A priority Critical patent/JPWO2022163138A1/ja
Priority to CN202180092092.9A priority patent/CN116783752A/zh
Publication of WO2022163138A1 publication Critical patent/WO2022163138A1/ja
Priority to US18/226,943 priority patent/US20230369648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This technology relates to electrolyte solutions for secondary batteries and secondary batteries.
  • the secondary battery includes a positive electrode, a negative electrode, and an electrolytic solution (electrolyte solution for secondary battery), and various studies have been made on the configuration of the secondary battery.
  • a polymer solution synthesized in an electrolyte organic solvent is added with an ethylenically unsaturated bond in the molecule.
  • an electrolyte membrane is formed using a cross-linking reaction of the polymerizable compounds (see, for example, Patent Document 1).
  • the gel-like ion-conducting electrolyte contains a polymerizable compound having one or more ethylenically unsaturated bonds in the molecule.
  • an organic compound such as anthraquinone is contained in a lithium ion conductive electrolyte in order to reduce the resistance at the electrode/electrolyte interface (see, for example, Patent Document 3).
  • a secondary battery electrolyte solution includes a reactive cyclic carbonate compound containing at least one of an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, and a cyanated cyclic carbonate, and a formula ( 1) and the anthraquinone compound represented by
  • Each of R1 to R8 is hydrogen (H), an alkyl group, an alkenyl group, an aryl group, or an acid metal base, provided that any two or more of R1 to R8 are bonded to each other may have been.
  • a secondary battery of an embodiment of the present technology includes an electrolyte solution together with a positive electrode and a negative electrode, and the electrolyte solution has the same configuration as the electrolyte solution for a secondary battery of the embodiment of the present technology described above. be.
  • the secondary battery electrolyte contains a reactive cyclic carbonate compound and an anthraquinone compound, so that excellent cycle characteristics are obtained. be able to.
  • FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1;
  • FIG. 3 is a block diagram showing the configuration of an application example of a secondary battery;
  • Electrolyte solution for secondary battery First, an electrolytic solution for a secondary battery (hereinafter simply referred to as “electrolytic solution”) according to an embodiment of the present technology will be described.
  • This electrolyte is used in secondary batteries, which are electrochemical devices.
  • the electrolytic solution may be used in electrochemical devices other than secondary batteries.
  • the type of other electrochemical device is not particularly limited, but is specifically a capacitor or the like.
  • the electrolytic solution contains a reactive cyclic carbonate compound and an anthraquinone compound represented by formula (1).
  • Each of R1-R8 is one of hydrogen, an alkyl group, an alkenyl group, an aryl group and an acid metal base, provided that any two or more of R1-R8 are bound together is also good.
  • the electrolytic solution containing both the reactive cyclic carbonate compound and the anthraquinone compound is compared to the case where the electrolytic solution contains only one of the reactive cyclic carbonate compound and the anthraquinone compound. This is because a strong film is formed on the surface of the electrode during charging and discharging of a secondary battery using the electrolytic solution.
  • This "electrode” is one or both of a positive electrode 21 and a negative electrode 22, which will be described later. This suppresses the decomposition reaction of the electrolytic solution on the surface of the reactive electrode during charging and discharging, thereby suppressing the decrease in discharge capacity even if charging and discharging are repeated. The details of the reasons explained here will be described later.
  • the reactive cyclic carbonate compound is a general term for reactive cyclic carbonates, and more specifically, any one of unsaturated cyclic carbonates, fluorinated cyclic carbonates, and cyanated cyclic carbonates. or contains two or more types.
  • the type of unsaturated cyclic carbonate may be only one type, or may be two or more types. The fact that one type or two or more types may be used in this manner also applies to each type of the fluorinated cyclic carbonate and the cyanated cyclic carbonate.
  • An unsaturated cyclic carbonate is a cyclic carbonate having an unsaturated carbon bond (carbon-carbon double bond).
  • the number of unsaturated carbon bonds is not particularly limited, and may be one or two or more.
  • This unsaturated cyclic ester carbonate contains one or more of a vinylene carbonate-based compound, a vinylethylene carbonate-based compound, and a methylene ethylene carbonate-based compound.
  • a vinylene carbonate-based compound is an unsaturated cyclic carbonate having a vinylene carbonate type structure.
  • vinylene carbonate compounds include vinylene carbonate (1,3-dioxol-2-one), methyl vinylene carbonate (4-methyl-1,3-dioxol-2-one), ethyl vinylene carbonate (4-ethyl- 1,3-dioxol-2-one), 4,5-dimethyl-1,3-dioxol-2-one, 4,5-diethyl-1,3-dioxol-2-one, 4-fluoro-1,3 -dioxol-2-one and 4-trifluoromethyl-1,3-dioxol-2-one.
  • a vinyl ethylene carbonate-based compound is an unsaturated cyclic ester carbonate having a vinyl ethylene carbonate type structure.
  • vinyl ethylene carbonate compounds include vinyl ethylene carbonate (4-vinyl-1,3-dioxolan-2-one), 4-methyl-4-vinyl-1,3-dioxolan-2-one, 4-ethyl -4-vinyl-1,3-dioxolan-2-one, 4-n-propyl-4-vinyl-1,3-dioxolan-2-one, 5-methyl-4-vinyl-1,3-dioxolan-2 -one, 4,4-divinyl-1,3-dioxolan-2-one and 4,5-divinyl-1,3-dioxolan-2-one.
  • a methylene ethylene carbonate-based compound is an unsaturated cyclic ester carbonate having a methylene ethylene carbonate type structure.
  • Specific examples of methylene ethylene carbonate compounds include methylene ethylene carbonate (4-methylene-1,3-dioxolan-2-one), 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one and 4 , 4-diethyl-5-methylene-1,3-dioxolane-2-one.
  • the methylene ethylene carbonate compound a compound having only one methylene group was exemplified, but the methylene ethylene carbonate compound may have two or more methylene groups.
  • a cyclic carbonate having an unsaturated carbon bond does not correspond to either a fluorinated cyclic carbonate or a cyanated cyclic carbonate, but rather to an unsaturated cyclic carbonate.
  • a fluorinated cyclic carbonate is a cyclic carbonate containing fluorine as a constituent element.
  • the number of fluorine atoms is not particularly limited, and may be one or two or more. That is, the fluorinated cyclic carbonate is a compound in which one or more hydrogen atoms in the cyclic carbonate are replaced with fluorine.
  • fluorinated cyclic carbonates include fluoroethylene carbonate (4-fluoro-1,3-dioxolan-2-one) and difluoroethylene carbonate (4,5-difluoro-1,3-dioxolan-2-one). is.
  • a cyclic carbonate containing fluorine as a constituent element does not correspond to either an unsaturated cyclic carbonate or a cyanated cyclic carbonate, but corresponds to a fluorinated cyclic carbonate.
  • a cyanated cyclic carbonate is a cyclic carbonate having a cyano group.
  • the number of cyano groups is not particularly limited, and may be one or two or more. That is, the cyanated cyclic carbonate is a compound in which one or more hydrogen atoms in the cyclic carbonate are substituted with cyano groups.
  • cyanated cyclic carbonate examples include ethylene cyanocarbonate (4-cyano-1,3-dioxolan-2-one) and ethylene dicyanocarbonate (4,5-dicyano-1,3-dioxolan-2-one). is.
  • a cyclic carbonate having a cyano group does not correspond to either an unsaturated cyclic carbonate or a fluorinated cyclic carbonate, but corresponds to a cyanated cyclic carbonate.
  • the content of the reactive cyclic carbonate compound in the electrolytic solution is not particularly limited, it is preferably 0.5% by weight to 10% by weight. This is because a sufficiently strong film can be easily formed on the surface of the electrode.
  • the content of the reactive cyclic carbonate compound described here is the sum of the content of the unsaturated cyclic carbonate, the content of the fluorinated cyclic carbonate, and the content of the cyanated cyclic carbonate.
  • the content of the reactive cyclic carbonate compound is the content of unsaturated cyclic carbonate.
  • the content of the reactive cyclic carbonate compound is the same as the content of the unsaturated cyclic carbonate and the fluorinated cyclic carbonate. It is the sum with the content of the cyclic carbonate.
  • the content of the reactive cyclic carbonate compound is It is the sum of the content of the ester, the content of the fluorinated cyclic carbonate, and the content of the cyanated cyclic carbonate.
  • the anthraquinone compound is either an anthraquinone or an anthraquinone derivative as shown in formula (1).
  • the kind of anthraquinone compound may be only one kind, or may be two or more kinds.
  • R1 to R8 is not particularly limited as long as it is hydrogen, an alkyl group, an alkenyl group, an aryl group, or an acid metal base, as described above.
  • Alkyl groups may also be linear or branched with one or more side chains. Specific examples of alkyl groups include methyl, ethyl, propyl and butyl groups.
  • the number of carbon atoms in the alkenyl group is not particularly limited. Also, the alkenyl group may be linear or branched. Specific examples of alkenyl groups include vinyl groups and allyl groups.
  • the number of carbon atoms in the aryl group is not particularly limited.
  • Specific examples of aryl groups include phenyl and naphthyl groups.
  • An acid metal base is a metal salt of an acid having a structure capable of binding to carbon by substituting one hydrogen in the hydrocarbon skeleton.
  • the type of acid is not particularly limited, but specific examples include sulfonic acid, sulfamic acid and carboxylic acid.
  • the type of metal salt is not particularly limited, but specifically alkali metal salts such as lithium salt, sodium salt and potassium salt. That is, the type of the acid metal base is not particularly limited, but specific examples include an alkali metal sulfonate base, an alkali metal sulfamate base and an alkali metal carboxylate base.
  • alkali metal sulfonate bases include lithium sulfate base (--SO 3 Li), sodium sulfate base (--SO 3 Na) and potassium sulfate base (--SO 3 K).
  • alkali metal sulfamate bases include lithium sulfamate base (--NHSO 3 Li), sodium sulfamate base (--NHSO 3 Na) and potassium sulfamate base (--NHSO 3 K).
  • alkali metal carboxylate bases include lithium carboxylate base (--CO 2 Li), sodium carboxylate base (--CO 2 Na) and potassium carboxylate base (--CO 2 K).
  • the acid metal base is preferably an alkali metal sulfonate base. This is because a sufficiently strong film can be easily formed on the surface of the electrode.
  • any one or two or more of R1 to R8 are preferably electron-donating groups. That is, any one or more of R1 to R8 are preferably any one of the above alkyl group, alkenyl group, aryl group and acid metal base. This is because the anthraquinone compound is easily dispersed or dissolved in the electrolytic solution, so that a stronger film is easily formed on the surface of the electrode.
  • anthraquinone compounds include anthraquinone, 2-methylanthraquinone, 2,3-dimethylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-vinylanthraquinone, 2-phenylanthraquinone, 1,2-benzanthraquinone and dipotassium anthraquinone-1,8-disulfonate.
  • the content of the anthraquinone compound in the electrolytic solution is not particularly limited, but is preferably 0.01% by weight to 1% by weight. This is because a sufficiently strong coating is formed on the surface of the electrode.
  • the electrolytic solution may further contain a solvent.
  • This solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
  • Non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
  • the carbonate compounds include cyclic carbonates and chain carbonates.
  • cyclic carbonates include ethylene carbonate and propylene carbonate.
  • chain carbonates include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
  • the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
  • chain carboxylic acid esters include methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate and ethyl trimethylacetate.
  • Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
  • the ethers may be 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, etc., in addition to the lactone compounds described above.
  • the nonaqueous solvent preferably contains a high dielectric constant solvent having a relative dielectric constant of 20 or more at a temperature within the range of -30°C or higher and lower than 60°C. This is because a high battery capacity can be obtained in a secondary battery using an electrolytic solution.
  • This high dielectric constant solvent is a cyclic compound such as the cyclic carbonate and lactone described above.
  • the chain compounds such as chain carbonates and chain carboxylates are low dielectric constant solvents having a lower relative dielectric constant than the high dielectric constant solvent.
  • the high dielectric constant solvent contains lactone
  • the ratio R of the weight W2 of the lactone to the weight W1 of the high dielectric constant solvent is preferably 30% to 100% by weight. This is because, even when the secondary battery using the electrolytic solution is charged and discharged, the decrease in discharge capacity is suppressed and the generation of gas due to the decomposition reaction of the electrolytic solution is also suppressed.
  • the electrolytic solution may further contain an electrolyte salt.
  • This electrolyte salt is a light metal salt such as a lithium salt.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN (FSO2) 2 ), lithium bis(trifluoromethanesulfonyl)imide (LiN( CF3SO2 ) 2 ) , lithium tris(trifluoromethanesulfonyl)methide (LiC(CF3SO2)3 ) and bis ( oxalato)boron.
  • lithium oxide LiB(C 2 O 4 ) 2 ).
  • the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the electrolytic solution may further contain one or more of additives.
  • the additive is one or more of sulfonate, sulfate, sulfite, dicarboxylic acid anhydride, disulfonic acid anhydride, and sulfonic acid carboxylic acid anhydride. This is because, in a secondary battery using an electrolytic solution, the decomposition reaction of the electrolytic solution is suppressed.
  • the content of the sulfonate ester in the electrolytic solution is not particularly limited and can be set arbitrarily.
  • the fact that the content can be arbitrarily set in this way also applies to each of the sulfate ester, the sulfite ester, the dicarboxylic anhydride, the disulfonic anhydride, and the sulfonic carboxylic anhydride.
  • sulfonic acid esters include 1,3-propanesultone, 1-propene-1,3-sultone, 1,4-butanesultone, 2,4-butanesultone and methanesulfonic acid propargyl ester.
  • sulfate esters include 1,3,2-dioxathiolane 2,2-dioxide, 1,3,2-dioxathiane 2,2-dioxide, 4-methylsulfonyloxymethyl-2,2-dioxo-1,3, 2-dioxathiolane and the like.
  • sulfites include 1,3-propanesultone, 1-propene-1,3-sultone, 1,4-butanesultone, 2,4-butanesultone and methanesulfonic acid propargyl ester.
  • sulfite esters include 1,3,2-dioxathiolane 2-oxide and 4-methyl-1,3,2-dioxathiolane 2-oxide.
  • dicarboxylic anhydrides include 1,4-dioxane-2,6-dione, succinic anhydride and glutaric anhydride.
  • disulfonic anhydride examples include 1,2-ethanedisulfonic anhydride, 1,3-propanedisulfonic anhydride and hexafluoro-1,3-propanedisulfonic anhydride.
  • sulfonic acid carboxylic anhydrides include 2-sulfobenzoic anhydride and 2,2-dioxoxathiolan-5-one.
  • the additive is a nitrile compound. This is because even if the secondary battery using the electrolytic solution is repeatedly charged and discharged, the decrease in discharge capacity is suppressed and the generation of gas due to the decomposition reaction of the electrolytic solution is also suppressed.
  • the content of the nitrile compound in the electrolytic solution is not particularly limited and can be set arbitrarily.
  • This nitrile compound is a compound having one or more cyano groups (--CN).
  • nitrile compounds include octanenitrile, benzonitrile, phthalonitrile, succinonitrile, glutaronitrile, adiponitrile, sebaconitrile, 1,3,6-hexanetricarbonitrile, 3,3'-oxydipropionitrile, 3 -butoxypropionitrile, ethylene glycol bispropionitrile ether, 1,2,2,3-tetracyanopropane, tetracyanopropane, fumaronitrile, 7,7,8,8-tetracyanoquinodimethane, cyclopentanecarbonitrile , 1,3,5-cyclohexanetricarbonitrile and 1,3-bis(dicyanomethylidene)indane.
  • This electrolytic solution contains both a reactive cyclic carbonate compound and anthraquinone.
  • charging of the secondary battery using the electrolytic solution is more efficient than the case where the electrolytic solution contains only one of the reactive cyclic carbonate compound and the anthraquinone compound.
  • a strong coating is formed on the surface of the electrode during discharge.
  • the synergistic action of the reactive cyclic carbonate compound and anthraquinone forms a film derived from both on the surface of the electrode, and the electrochemical reaction of the film is strength is significantly improved.
  • the film is formed by the reaction between the reactive cyclic carbonate compound and anthraquinone even if the electrolytic solution does not contain a photopolymerization initiator and a thermal polymerization initiator.
  • the surface of the electrode is protected by the coating, and the coating is easily maintained even after repeated charging and discharging, so that the decomposition reaction of the electrolytic solution is suppressed on the surface of the reactive electrode. Therefore, even if the secondary battery is repeatedly charged and discharged, the decrease in discharge capacity is suppressed, so that the secondary battery using the electrolytic solution can have excellent cycle characteristics.
  • the acid metal base is an alkali metal sulfonate base
  • a sufficiently strong film is likely to be formed on the surface of the electrode, so a higher effect can be obtained.
  • R1 to R8 in formula (1) relating to the anthraquinone compound are electron-donating groups, a sufficiently strong film is likely to be formed on the surface of the electrode, resulting in a higher effect. can be obtained.
  • the content of the reactive cyclic carbonate compound in the electrolytic solution is 0.5 wt% to 10 wt%, and the content of the anthraquinone compound in the electrolytic solution is 0.01 wt% to 1 wt%.
  • the electrolyte contains lactone, which is a high dielectric constant solvent, and the ratio R is 30% by weight to 100% by weight
  • the discharge capacity is secured even if the secondary battery is repeatedly charged and discharged.
  • Generation of gas due to the decomposition reaction of the electrolytic solution is suppressed. Therefore, safety is improved while the cycle characteristics are ensured, and a higher effect can be obtained.
  • the electrolytic solution contains one or more of sulfonate, sulfate, sulfite, dicarboxylic acid anhydride, disulfonic acid anhydride and sulfonic acid carboxylic acid anhydride, secondary Even if the charging and discharging of the battery are repeated, the decomposition reaction of the electrolytic solution is further suppressed, so that a higher effect can be obtained.
  • the electrolyte contains a nitrile compound, even if the secondary battery is repeatedly charged and discharged, the discharge capacity is guaranteed and the generation of gas due to the decomposition reaction of the electrolyte is suppressed. Therefore, safety is improved while the cycle characteristics are ensured, and a higher effect can be obtained.
  • the secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of electrode reactants, and is equipped with a positive electrode, a negative electrode, and an electrolytic solution, which is a liquid electrolyte.
  • the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent electrode reactants from depositing on the surface of the negative electrode during charging.
  • the type of electrode reactant is not particularly limited, but specifically light metals such as alkali metals and alkaline earth metals.
  • Alkali metals include lithium, sodium and potassium
  • alkaline earth metals include beryllium, magnesium and calcium.
  • lithium ion secondary battery A secondary battery whose battery capacity is obtained by utilizing the absorption and release of lithium is a so-called lithium ion secondary battery.
  • lithium ion secondary battery lithium is intercalated and deintercalated in an ionic state.
  • Configuration> 1 shows the cross-sectional structure of a secondary battery
  • FIG. 2 shows the cross-sectional structure of the battery element 20 shown in FIG. However, in FIG. 2, only part of the battery element 20 is shown.
  • this secondary battery mainly includes a battery can 11, a pair of insulating plates 12 and 13, a battery element 20, a positive lead 25, and a negative lead 26. ing.
  • the secondary battery described here is a cylindrical secondary battery in which a battery element 20 is housed inside a cylindrical battery can 11 .
  • the battery can 11 is a housing member for housing the battery element 20 and the like, as shown in FIG.
  • the battery can 11 has a hollow structure with one end closed and the other end open, and is made of any one of metallic materials such as iron, aluminum, iron alloys and aluminum alloys. Includes one or more types.
  • the surface of the battery can 11 may be plated with a metal material such as nickel.
  • the insulating plates 12 and 13 are arranged so as to face each other with the battery element 20 interposed therebetween. Thereby, the battery element 20 is sandwiched between the insulating plates 12 and 13 .
  • a battery lid 14 , a safety valve mechanism 15 and a thermal resistance element (PTC element) 16 are crimped via a gasket 17 to the open end of the battery can 11 .
  • the battery lid 14 includes a material similar to that of the battery can 11 .
  • Safety valve mechanism 15 and PTC element 16 are provided inside battery lid 14 , and safety valve mechanism 15 is electrically connected to battery lid 14 via PTC element 16 .
  • the gasket 17 contains an insulating material, and the surface of the gasket 17 may be coated with asphalt or the like.
  • the disk plate 15A is reversed, thereby disconnecting the electrical connection between the battery lid 14 and the battery element 20. be.
  • the electrical resistance of the PTC element 16 increases as the temperature rises.
  • the battery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown).
  • This battery element 20 is a so-called wound electrode body. That is, in the battery element 20, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and the positive electrode 21, the negative electrode 22 and the separator 23 are wound. Thus, the positive electrode 21 and the negative electrode 22 are wound while facing each other with the separator 23 interposed therebetween.
  • a center pin 24 is inserted into a winding space 20C provided at the center of winding of the battery element 20 . However, the center pin 24 may be omitted.
  • the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
  • the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided.
  • This positive electrode current collector 21A contains a conductive material such as a metal material, and the metal material is aluminum or the like.
  • the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A, and contains one or more of positive electrode active materials capable of intercalating and deintercalating lithium.
  • the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 .
  • the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • a method for forming the positive electrode active material layer 21B is not particularly limited, but specifically, one or more of coating methods and the like are used.
  • the type of positive electrode active material is not particularly limited, it is specifically a lithium-containing compound.
  • This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
  • the type of the other element is not particularly limited as long as it is an element other than lithium and transition metal elements. Specifically, the other element is an element belonging to Groups 2 to 15 in the long period periodic table. be.
  • the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
  • oxides include LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 .
  • phosphoric acid compounds include LiFePO4 , LiMnPO4 and LiFe0.5Mn0.5PO4 .
  • the positive electrode binder contains one or more of synthetic rubber and polymer compounds.
  • Synthetic rubbers include styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • Polymer compounds include polyvinylidene fluoride, polyimide and carboxymethyl cellulose.
  • the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and the carbon materials include graphite, carbon black, acetylene black, and ketjen black.
  • the conductive material may be a metal material, a polymer compound, or the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
  • the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided.
  • This negative electrode current collector 22A contains a conductive material such as a metal material, and the metal material is copper or the like.
  • the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A, and contains one or more of negative electrode active materials capable of intercalating and deintercalating lithium.
  • the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 .
  • the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor.
  • the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, any one of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method, a firing method (sintering method), or the like, or Two or more types.
  • the type of negative electrode active material is not particularly limited, but specifically, one or both of a carbon material and a metal-based material. This is because a high energy density can be obtained.
  • Carbon materials include graphitizable carbon, non-graphitizable carbon and graphite (natural graphite and artificial graphite).
  • a metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , one or both of silicon and tin, and the like. This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
  • each of the negative electrode binder and the negative electrode conductive agent is the same as those of the positive electrode binder and the positive electrode conductive agent.
  • the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
  • This separator 23 contains a polymer compound such as polyethylene.
  • the electrolytic solution is impregnated in each of the positive electrode 21, the negative electrode 22, and the separator 23, and has the structure described above. That is, the electrolyte solution contains both the reactive cyclic carbonate and the anthraquinone compound.
  • the positive electrode lead 25 is connected to the positive electrode current collector 21A of the positive electrode 21, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as aluminum. there is This positive electrode lead 25 is electrically connected to the battery cover 14 via the safety valve mechanism 15 .
  • the negative electrode lead 26 is connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS. 1 and 2, and contains one or more of conductive materials such as nickel. there is This negative electrode lead 26 is electrically connected to the battery can 11 .
  • a pasty positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent.
  • This solvent may be an aqueous solvent or an organic solvent.
  • the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A.
  • the cathode active material layer 21B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
  • a negative electrode 22 is formed by the same procedure as that of the positive electrode 21 described above. Specifically, first, a paste-like negative electrode mixture slurry is prepared by putting a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed together into a solvent. Subsequently, the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the anode current collector 22A. After that, the negative electrode active material layer 22B may be compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
  • the positive electrode lead 25 is connected to the positive electrode current collector 21A of the positive electrode 21 by welding or the like, and the negative electrode lead 26 is connected to the negative electrode current collector 22A of the negative electrode 22 by welding or the like.
  • the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown) having a winding space 20C.
  • This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution.
  • the center pin 24 is inserted into the winding space 20C of the wound body.
  • the wound body is housed together with the insulating plates 12 and 13 inside the battery can 11 having an open end.
  • the positive electrode lead 25 is connected to the safety valve mechanism 15 by welding or the like
  • the negative electrode lead 26 is connected to the battery can 11 by welding or the like.
  • the wound body is impregnated with the electrolytic solution.
  • each of the positive electrode 21, the negative electrode 22 and the separator 23 is impregnated with the electrolytic solution, so that the battery element 20 is produced.
  • the safety valve mechanism 15 and the PTC element 16 are fixed to the open end of the battery can 11, and the battery element 20 is sealed inside the battery can 11, thereby assembling the secondary battery. .
  • the secondary battery after assembly is charged and discharged.
  • Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
  • films are formed on the respective surfaces of the positive electrode 21 and the negative electrode 22, so that the state of the secondary battery is electrochemically stabilized.
  • the synergistic action of the reactive cyclic carbonate compound and the anthraquinone compound results in the formation of a good film derived from both.
  • a secondary battery is completed.
  • the electrolytic solution having the structure described above is provided.
  • a strong film is formed on the surface of each of the positive electrode 21 and the negative electrode 22, so that the decomposition reaction of the electrolytic solution is suppressed even if charging and discharging are repeated. Therefore, excellent cycle characteristics can be obtained.
  • the secondary battery is a lithium-ion secondary battery
  • a sufficient battery capacity can be stably obtained by utilizing the absorption and release of lithium, so a higher effect can be obtained.
  • the type of battery structure is not particularly limited, and may be a laminate film type, a square type, a coin type, a button type, or the like.
  • a separator 23 which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
  • a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that positional deviation (winding deviation) of the battery element 20 is suppressed. As a result, the secondary battery is less likely to swell even if a decomposition reaction or the like occurs in the electrolytic solution.
  • the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. This is because polyvinylidene fluoride or the like has excellent physical strength and is electrochemically stable.
  • One or both of the porous film and the polymer compound layer may contain one or more of a plurality of insulating particles. This is because the plurality of insulating particles dissipate heat when the secondary battery generates heat, thereby improving the safety (heat resistance) of the secondary battery.
  • the insulating particles contain one or both of an inorganic material and a resin material. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
  • the precursor solution is applied to one or both sides of the porous membrane.
  • a plurality of insulating particles may be added to the precursor solution.
  • the laminated separator described above is not limited to a cylindrical secondary battery, and can also be applied to a laminated film secondary battery or the like.
  • the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
  • This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
  • the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
  • the composition of the electrolytic solution is as described above.
  • Polymer compounds include polyvinylidene fluoride and the like.
  • the electrolyte layer described above is not limited to a cylindrical secondary battery, and can be applied to a laminate film type secondary battery or the like.
  • a secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
  • a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
  • An auxiliary power supply is a power supply that is used in place of the main power supply or that is switched from the main power supply.
  • Secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). It is a power storage system such as a home or industrial battery system that stores power in preparation for emergencies. In these uses, one secondary battery may be used, or a plurality of secondary batteries may be used.
  • the battery pack may use a single cell or an assembled battery.
  • An electric vehicle is a vehicle that operates (runs) using a secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source other than the secondary battery.
  • electric power stored in a secondary battery which is an electric power storage source, can be used to use electric appliances for home use.
  • Fig. 3 shows the block configuration of the battery pack.
  • the battery pack described here is a battery pack (a so-called soft pack) using one secondary battery, and is mounted in an electronic device such as a smart phone.
  • This battery pack includes a power supply 51 and a circuit board 52, as shown in FIG.
  • This circuit board 52 is connected to the power supply 51 and includes a positive terminal 53 , a negative terminal 54 and a temperature detection terminal 55 .
  • the power supply 51 includes one secondary battery.
  • the positive lead is connected to the positive terminal 53 and the negative lead is connected to the negative terminal 54 .
  • the power supply 51 can be connected to the outside through the positive terminal 53 and the negative terminal 54, and thus can be charged and discharged.
  • the circuit board 52 includes a control section 56 , a switch 57 , a PTC element 58 and a temperature detection section 59 .
  • the PTC element 58 may be omitted.
  • the control unit 56 includes a central processing unit (CPU), memory, etc., and controls the operation of the entire battery pack. This control unit 56 detects and controls the use state of the power source 51 as necessary.
  • CPU central processing unit
  • memory etc.
  • the overcharge detection voltage is not particularly limited, but is specifically 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.4V ⁇ 0.1V. is.
  • the switch 57 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 51 and an external device according to instructions from the control unit 56 .
  • the switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and the charge/discharge current is detected based on the ON resistance of the switch 57 .
  • MOSFET field effect transistor
  • the temperature detection unit 59 includes a temperature detection element such as a thermistor, measures the temperature of the power supply 51 using the temperature detection terminal 55 , and outputs the temperature measurement result to the control unit 56 .
  • the measurement result of the temperature measured by the temperature detection unit 59 is used when the control unit 56 performs charging/discharging control at the time of abnormal heat generation and when the control unit 56 performs correction processing when calculating the remaining capacity.
  • the cylindrical lithium-ion secondary battery shown in FIGS. 1 and 2 was produced by the following procedure.
  • a positive electrode active material LiCoO 2 that is a lithium-containing compound (oxide)
  • 3 parts by mass of a positive electrode binder polyvinylidene fluoride
  • 6 parts by mass of a positive electrode conductive agent graphite
  • a positive electrode mixture was obtained.
  • the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry.
  • a solvent N-methyl-2-pyrrolidone, which is an organic solvent
  • the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (a strip-shaped aluminum foil having a thickness of 12 ⁇ m) using a coating device, and then the positive electrode mixture slurry is dried to obtain a positive electrode active material.
  • a material layer 21B is formed.
  • the positive electrode active material layer 21B was compression-molded using a roll press. Thus, the positive electrode 21 was produced.
  • a negative electrode active material artificial graphite that is a carbon material
  • a negative electrode binder polyvinylidene fluoride
  • the negative electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (band-shaped copper foil having a thickness of 15 ⁇ m) using a coating device, and then the negative electrode mixture slurry is dried to obtain a negative electrode active material.
  • a material layer 22B is formed.
  • the negative electrode active material layer 22B was compression molded using a roll press. Thus, the negative electrode 22 was produced.
  • the reactive cyclic carbonate compound an unsaturated cyclic carbonate, a fluorinated cyclic carbonate, and a cyanated cyclic carbonate were used.
  • the type of reactive cyclic carbonate compound and the content (% by weight) of the reactive cyclic carbonate compound in the electrolyte, and the type of anthraquinone compound and the content (% by weight) of the anthraquinone compound in the electrolyte are shown in Table 1 and Table 2.
  • an electrolytic solution was prepared by the same procedure except that neither the reactive cyclic carbonate compound nor the anthraquinone compound was used. Further, an electrolytic solution was prepared by the same procedure except that only one of the reactive cyclic carbonate compound and the anthraquinone compound was used.
  • the positive electrode lead 25 made of aluminum was welded to the positive electrode current collector 21A of the positive electrode 21 and the negative electrode lead 26 made of copper was welded to the negative electrode current collector 22A of the negative electrode 22 .
  • the positive electrode 21 and the negative electrode 22 are laminated with each other with a separator 23 (a microporous polyethylene film having a thickness of 15 ⁇ m) interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding.
  • a wound body having a winding space 20C was produced.
  • the center pin 24 was inserted into the winding space 20C of the wound body.
  • the insulating plates 12 and 13 were accommodated together with the wound body inside the battery can 11 having an open end.
  • the positive electrode lead 25 was welded to the safety valve mechanism 15 and the negative electrode lead 26 was welded to the battery can 11 .
  • an electrolytic solution was injected into the inside of the battery can 11 .
  • the wound body was impregnated with the electrolytic solution, and the battery element 20 was produced.
  • the open end of the battery can 11 was crimped via the gasket 17. Since the battery can 11 was thereby sealed, the secondary battery was assembled.
  • constant-current charging was performed at a current of 0.1C until the voltage reached 4.2V
  • constant-voltage charging was performed at the voltage of 4.2V until the current reached 0.05C.
  • constant current discharge was performed at a current of 0.1C until the voltage reached 3.0V.
  • 0.1C is a current value that can fully discharge the battery capacity (theoretical capacity) in 10 hours
  • 0.05C is a current value that fully discharges the battery capacity in 20 hours.
  • the discharge capacity (first cycle discharge capacity) was measured by discharging the secondary battery in the same environment.
  • constant current discharge was performed at a current of 3C until the voltage reached 3.0V.
  • 3C is a current value that can discharge the battery capacity in 10/3 hours.
  • the secondary battery was repeatedly charged and discharged in the same environment until the number of cycles reached 100, thereby measuring the discharge capacity (discharge capacity at the 100th cycle).
  • the charging/discharging conditions for the second and subsequent cycles were the same as the charging/discharging conditions for the first cycle.
  • capacity retention rate (%) (discharge capacity at 100th cycle/discharge capacity at 1st cycle) x 100. .
  • the capacity retention rate increased by about 18%
  • the capacity retention rate increases by about 9%
  • the reason why the capacity retention ratio increased dramatically when the reactive cyclic carbonate compound and the anthraquinone compound were used in combination was that the decomposition reaction of the electrolytic solution was caused by the synergistic action of the reactive cyclic carbonate compound and anthraquinone. It is thought that this is because it was significantly suppressed.
  • the electrolyte contained both a reactive cyclic carbonate compound and an anthraquinone compound.
  • the capacity retention rate was further increased.
  • the anthraquinone compound had an electron-donating group
  • the capacity retention rate was sufficiently increased.
  • the content of the reactive cyclic carbonate compound in the electrolytic solution was 0.5% by weight to 10% by weight
  • the capacity retention rate was further increased.
  • the content of the anthraquinone compound in the electrolytic solution was 0.01% by weight to 1.0% by weight, the capacity retention rate was further increased.
  • Examples 2-1 to 2-20> As shown in Table 3, secondary batteries were produced in the same manner as in Examples 1-2, 1-7, and 1-12, except that the electrolytic solution contained an additive.
  • the battery characteristics (cycle characteristics) of the following batteries were evaluated.
  • sulfonate, sulfate, sulfite, dicarboxylic acid anhydride, disulfonic acid anhydride and sulfonic acid carboxylic acid anhydride were used as additives.
  • Table 3 shows the types of additives and the content (% by weight) of the additives in the electrolytic solution.
  • sulfonic acid esters include 1,3-propanesultone (PS), 1-propene-1,3-sultone (PRS), 1,4-butanesultone (BS1), and 2,4-butanesultone (BS2). and methanesulfonic acid propargyl ester (MSP) were used.
  • PS 1,3-propanesultone
  • PRS 1-propene-1,3-sultone
  • BS1 1,4-butanesultone
  • BS2 2,4-butanesultone
  • MSP methanesulfonic acid propargyl ester
  • 1,3,2-dioxathiolane 2,2-dioxide (OTO), 1,3,2-dioxathiane 2,2-dioxide (OTA) and 4-methylsulfonyloxymethyl-2,2-dioxo-1 , 3,2-dioxathiolane (SOTO) was used.
  • DTO 1,3,2-dioxathiolane 2-oxide
  • MDTO 4-methyl-1,3,2-dioxathiolane 2-oxide
  • DOD 1,4-dioxane-2,6-dione
  • SA succinic anhydride
  • GA glutaric anhydride
  • ESA 1,2-ethanedisulfonic anhydride
  • PSA 1,3-propanedisulfonic anhydride
  • FPSA hexafluoro-1,3-propanedisulfonic anhydride
  • SBA 2-sulfobenzoic anhydride
  • DOTO 2,2-dioxoxathiolan-5-one
  • Examples 3-1 to 3-20> As shown in Table 4, secondary batteries were produced in the same manner as in Examples 1-2, 1-7, and 1-12, except that the electrolytic solution contained a nitrile compound as an additive. , evaluated the battery characteristics (cycle characteristics and safety) of the secondary battery.
  • Nitrile compounds include octanenitrile (ON), benzonitrile (BN), phthalonitrile (PN), succinonitrile (SN), glutaronitrile (GN), adiponitrile (AN), sebaconitrile (SBN), 1,3 ,6-hexanetricarbonitrile (HCN), 3,3′-oxydipropionitrile (OPN), 3-butoxypropionitrile (BPN), ethylene glycol bispropionitrile ether (EPN), 1,2,2 ,3-tetracyanopropane (TCP), tetracyanoethylene (TCE), fumaronitrile (FN), 7,7,8,8-tetracyanoquinodimethane (TCQ), cyclopentanecarbonitrile (CPCN), 1,3 ,5-cyclohexanetricarbonitrile (CHCN) and 1,3-bis
  • the increase in the internal pressure of the battery can 11 means that the decomposition reaction of the electrolytic solution occurred inside the battery can 11, and gas was generated due to the decomposition reaction of the electrolytic solution.
  • the operation of the safety valve mechanism 15 indicates that the electrical connection between the battery lid 14 and the battery element 20 has been cut.
  • the type of solvent, the mixing ratio of the solvent (content (% by weight)) and the ratio R (% by weight) are as shown in Table 5.
  • propylene carbonate (PC) which is a high dielectric constant solvent (cyclic carbonate)
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • PrPr Propyl propionate
  • the ratio R was varied by varying the type of solvent and the mixing ratio of the solvents.
  • the type of element structure is not particularly limited.
  • the device structure may be a stacked type in which electrodes (positive and negative electrodes) are stacked, a zigzag type in which electrodes are folded in a zigzag pattern, or other configurations.
  • the electrode reactant is lithium has been described, but the type of the electrode reactant is not particularly limited.
  • the electrode reactants may be other alkali metals such as sodium and potassium, or alkaline earth metals such as beryllium, magnesium and calcium, as described above.
  • the electrode reactant may be other light metals such as aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

二次電池は、正極および負極と共に電解液を備え、その電解液は、不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのうちの少なくとも1種を含む反応性環状炭酸エステル化合物と、式(1)で表されるアントラキノン化合物とを含む。

Description

二次電池用電解液および二次電池
 本技術は、二次電池用電解液および二次電池に関する。
 携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度を有する電源として二次電池の開発が進められている。この二次電池は、正極および負極と共に電解液(二次電池用電解液)を備えており、その二次電池の構成などに関しては、様々な検討がなされている。
 具体的には、優れたイオン伝導性を有する電気化学的デバイス用の高分子電解質ワニスを得るために、電解液有機溶媒中において合成された高分子溶液に、エチレン性不飽和結合を分子内に1個以上有する重合性化合物が配合されることにより、その重合性化合物の架橋反応を利用して電解質膜が形成されている(例えば、特許文献1参照。)。高い機械的強度などを有する電気化学的デバイス用のゲル状イオン伝導性電解質を得るために、そのゲル状イオン伝導性電解質に、エチレン性不飽和結合を分子内に1個以上有する重合性化合物が含有されている(例えば、特許文献2参照。)。リチウム二次電池において電極/電解質界面の抵抗を低減させるために、リチウムイオン導電性の電解質にアントラキノンなどの有機化合物が含有されている(例えば、特許文献3参照。)。
特許第4858741号明細書 特開2002-042869号公報 特開2019-200880号公報
 二次電池の電池特性に関する様々な検討がなされているが、その二次電池のサイクル特性は未だ十分でないため、改善の余地がある。
 よって、優れたサイクル特性を得ることが可能である二次電池用電解液および二次電池が望まれている。
 本技術の一実施形態の二次電池用電解液は、不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのうちの少なくとも1種を含む反応性環状炭酸エステル化合物と、式(1)で表されるアントラキノン化合物とを含むものである。
Figure JPOXMLDOC01-appb-C000003
(R1~R8のそれぞれは、水素(H)、アルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかである。ただし、R1~R8のうちの任意の2つ以上は、互いに結合されていてもよい。)
 本技術の一実施形態の二次電池は、正極および負極と共に電解液を備え、その電解液が上記した本技術の一実施形態の二次電池用電解液の構成と同様の構成を有するものである。
 なお、反応性環状炭酸エステル化合物(不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステル)、アントラキノン化合物および酸金属塩基のそれぞれの詳細(定義)に関しては、後述する。
 本技術の一実施形態の二次電池用電解液または二次電池によれば、その二次電池用電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物を含んでいるので、優れたサイクル特性を得ることができる。
 なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
本技術の一実施形態における二次電池の構成を表す断面図である。 図1に示した電池素子の構成を表す断面図である。 二次電池の適用例の構成を表すブロック図である。
 以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池用電解液
  1-1.構成
  1-2.製造方法
  1-3.作用および効果
 2.二次電池
  2-1.構成
  2-2.動作
  2-3.製造方法
  2-4.作用および効果
 3.変形例
 4.二次電池の用途
<1.二次電池用電解液>
 まず、本技術の一実施形態の二次電池用電解液(以下、単に「電解液」と呼称する。)に関して説明する。
 この電解液は、電気化学デバイスである二次電池に用いられる。ただし、電解液は、二次電池以外の他の電気化学デバイスに用いられてもよい。他の電気化学デバイスの種類は、特に限定されないが、具体的には、キャパシタなどである。
<1-1.構成>
 電解液は、反応性環状炭酸エステル化合物と、式(1)で表されるアントラキノン化合物とを含んでいる。
Figure JPOXMLDOC01-appb-C000004
(R1~R8のそれぞれは、水素、アルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかである。ただし、R1~R8のうちの任意の2つ以上は、互いに結合されていてもよい。)
 電解液が反応性環状炭酸エステル化合物とアントラキノン化合物とを一緒に含んでいるのは、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物のうちのいずれか一方だけを含んでいる場合と比較して、その電解液を用いた二次電池の充放電時において電極の表面に強固な被膜が形成されるからである。この「電極」とは、後述する正極21および負極22のうちの一方または双方である。これにより、充放電時において反応性の電極の表面における電解液の分解反応が抑制されるため、充放電を繰り返しても放電容量の減少が抑制される。ここで説明した理由の詳細に関しては、後述する。
[反応性環状炭酸エステル化合物]
 反応性環状炭酸エステル化合物は、反応性を有する環状炭酸エステルの総称であり、より具体的には、不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのうちのいずれか1種類または2種類以上を含んでいる。
 なお、不飽和環状炭酸エステルの種類は、1種類だけでもよいし、2種類以上でもよい。このように種類が1種類だけでも2種類以上でもよいことは、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのそれぞれの種類に関しても同様である。
(不飽和環状炭酸エステル)
 不飽和環状炭酸エステルは、不飽和炭素結合(炭素間二重結合)を有する環状炭酸エステルである。不飽和炭素結合の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。
 この不飽和環状炭酸エステルは、炭酸ビニレン系化合物、炭酸ビニルエチレン系化合物および炭酸メチレンエチレン系化合物のうちのいずれか1種類または2種類以上を含んでいる。
 炭酸ビニレン系化合物は、炭酸ビニレン型の構造を有する不飽和環状炭酸エステルである。炭酸ビニレン系化合物の具体例は、炭酸ビニレン(1,3-ジオキソール-2-オン)、炭酸メチルビニレン(4-メチル-1,3-ジオキソール-2-オン)、炭酸エチルビニレン(4-エチル-1,3-ジオキソール-2-オン)、4,5-ジメチル-1,3-ジオキソール-2-オン、4,5-ジエチル-1,3-ジオキソール-2-オン、4-フルオロ-1,3-ジオキソール-2-オンおよび4-トリフルオロメチル-1,3-ジオキソール-2-オンなどである。
 炭酸ビニルエチレン系化合物は、炭酸ビニルエチレン型の構造を有する不飽和環状炭酸エステルである。炭酸ビニルエチレン系化合物の具体例は、炭酸ビニルエチレン(4-ビニル-1,3-ジオキソラン-2-オン)、4-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4-エチル-4-ビニル-1,3-ジオキソラン-2-オン、4-n-プロピル-4-ビニル-1,3-ジオキソラン-2-オン、5-メチル-4-ビニル-1,3-ジオキソラン-2-オン、4,4-ジビニル-1,3-ジオキソラン-2-オンおよび4,5-ジビニル-1,3-ジオキソラン-2-オンなどである。
 炭酸メチレンエチレン系化合物は、炭酸メチレンエチレン型の構造を有する不飽和環状炭酸エステルである。炭酸メチレンエチレン系化合物の具体例は、炭酸メチレンエチレン(4-メチレン-1,3-ジオキソラン-2-オン)、4,4-ジメチル-5-メチレン-1,3-ジオキソラン-2-オンおよび4,4-ジエチル-5-メチレン-1,3-ジオキソラン-2-オンなどである。ここでは、炭酸メチレンエチレン系化合物として、1個のメチレン基だけを有する化合物を例示したが、その炭酸メチレンエチレン系化合物は、2個以上のメチレン基を有していてもよい。
 なお、不飽和炭素結合を有している環状炭酸エステルは、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのいずれかには該当せずに、不飽和環状炭酸エステルに該当することとする。
(フッ素化環状炭酸エステル)
 フッ素化環状炭酸エステルは、フッ素を構成元素として含む環状炭酸エステルである。フッ素の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。すなわち、フッ素化環状炭酸エステルは、環状炭酸エステルのうちの1個または2個以上の水素がフッ素により置換された化合物である。
 フッ素化環状炭酸エステルの具体例は、フルオロ炭酸エチレン(4-フルオロ-1,3-ジオキソラン-2-オン)およびジフルオロ炭酸エチレン(4,5-ジフルオロ-1,3-ジオキソラン-2-オン)などである。
 なお、フッ素を構成元素として含んでいる環状炭酸エステルは、不飽和環状炭酸エステルおよびシアノ化環状炭酸エステルのいずれかには該当せずに、フッ素化環状炭酸エステルに該当することとする。
(シアノ化環状炭酸エステル)
 シアノ化環状炭酸エステルは、シアノ基を有する環状炭酸エステルである。シアノ基の数は、特に限定されないため、1個だけでもよいし、2個以上でもよい。すなわち、シアノ化環状炭酸エステルは、環状炭酸エステルのうちの1個または2個以上の水素がシアノ基により置換された化合物である。
 シアノ化環状炭酸エステルの具体例は、シアノ炭酸エチレン(4-シアノ-1,3-ジオキソラン-2-オン)およびジシアノ炭酸エチレン(4,5-ジシアノ-1,3-ジオキソラン-2-オン)などである。
 なお、シアノ基を有している環状炭酸エステルは、不飽和環状炭酸エステルおよびフッ素化環状炭酸エステルのいずれかには該当せずに、シアノ化環状炭酸エステルに該当することとする。
(含有量)
 電解液中における反応性環状炭酸エステル化合物の含有量は、特に限定されないが、中でも、0.5重量%~10重量%であることが好ましい。十分に強固な被膜が電極の表面に形成されやすくなるからである。
 ここで説明した反応性環状炭酸エステル化合物の含有量は、不飽和環状炭酸エステルの含有量と、フッ素化環状炭酸エステルの含有量と、シアノ化環状炭酸エステルの含有量との和である。
 すなわち、一例を挙げると、以下の通りである。反応性環状炭酸エステル化合物が不飽和環状炭酸エステルだけを含んでいる場合には、その反応性環状炭酸エステル化合物の含有量は、不飽和環状炭酸エステルの含有量である。反応性環状炭酸エステル化合物が不飽和環状炭酸エステルおよびフッ素化環状炭酸エステルだけを含んでいる場合には、その反応性環状炭酸エステル化合物の含有量は、不飽和環状炭酸エステルの含有量とフッ素化環状炭酸エステルの含有量との和である。反応性環状炭酸エステル化合物が不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルの全てを含んでいる場合には、その反応性環状炭酸エステル化合物の含有量は、不飽和環状炭酸エステルの含有量とフッ素化環状炭酸エステルの含有量とシアノ化環状炭酸エステルの含有量との和である。
[アントラキノン化合物]
 アントラキノン化合物は、式(1)に示したように、アントラキノンおよびアントラキノン誘導体のうちのいずれかである。なお、アントラキノン化合物の種類は、1種類だけでもよいし、2種類以上でもよい。
 R1~R8のそれぞれは、上記したように、水素、アルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかであれば、特に限定されない。
 アルキル基の炭素数は、特に限定されない。また、アルキル基は、直鎖状でもよいし、1個または2個以上の側鎖を有する分岐状でもよい。アルキル基の具体例は、メチル基、エチル基、プロピル基およびブチル基などである。
 アルケニル基の炭素数は、特に限定されない。また、アルケニル基は、直鎖状でもよいし、分岐状でもよい。アルケニル基の具体例は、ビニル基およびアリル基などである。
 アリール基の炭素数は、特に限定されない。アリール基の具体例は、フェニル基およびナフチル基などである。
 酸金属塩基は、骨格となる炭化水素のうちの1個の水素が置換されることで炭素に結合可能である構造を有する酸の金属塩である。酸の種類は、特に限定されないが、具体的には、スルホン酸、スルファミン酸およびカルボン酸などである。金属塩の種類は、特に限定されないが、具体的には、リチウム塩、ナトリウム塩およびカリウム塩などのアルカリ金属塩である。すなわち、酸金属塩基の種類は、特に限定されないが、具体的には、スルホン酸アルカリ金属塩基、スルファミン酸アルカリ金属塩基およびカルボン酸アルカリ金属塩基などである。
 スルホン酸アルカリ金属塩基の具体例は、硫酸リチウム塩基(-SOLi)、硫酸ナトリウム塩基(-SONa)および硫酸カリウム塩基(-SOK)などである。スルファミン酸アルカリ金属塩基の具体例は、スルファミン酸リチウム塩基(-NHSOLi)、スルファミン酸ナトリウム塩基(-NHSONa)およびスルファミン酸カリウム塩基(-NHSOK)などである。カルボン酸アルカリ金属塩基の具体例は、カルボン酸リチウム塩基(-COLi)、カルボン酸ナトリウム塩基(-CONa)およびカルボン酸カリウム塩基(-COK)などである。
 中でも、酸金属塩基は、スルホン酸アルカリ金属塩基であることが好ましい。十分に強固な被膜が電極の表面に形成されやすくなるからである。
 特に、R1~R8のうちのいずれか1個または2個以上は、電子供与性基であることが好ましい。すなわち、R1~R8のうちのいずれか1個または2個以上は、上記したアルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかであることが好ましい。電解液中においてアントラキノン化合物が分散または溶解されやすくなるため、より強固な被膜が電極の表面に形成されやすくなるからである。
 アントラキノン化合物の具体例は、アントラキノン、2-メチルアントラキノン、2,3-ジメチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-ビニルアントラキノン、2-フェニルアントラキノン、1,2-ベンズアントラキノンおよびアントラキノン-1,8-ジスルホン酸二カリウムなどである。
 電解液中におけるアントラキノン化合物の含有量は、特に限定されないが、中でも、0.01重量%~1重量%であることが好ましい。十分に強固な被膜が電極の表面に形成されるからである。
[溶媒]
 なお、電解液は、さらに、溶媒を含んでいてもよい。この溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。非水溶媒は、エステル類およびエーテル類などであり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などである。
 炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。
 カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピルおよびトリメチル酢酸エチルなどである。
 ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。
 なお、エーテル類は、上記したラクトン系化合物の他、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソランおよび1,4-ジオキサンなどでもよい。
 この非水溶媒は、-30℃以上60℃未満の範囲内の温度において20以上の比誘電率を有する高誘電率溶媒を含んでいることが好ましい。電解液を用いた二次電池において、高い電池容量が得られるからである。この高誘電率溶媒は、上記した環状炭酸エステルおよびラクトンなどの環状化合物である。なお、上記した鎖状炭酸エステルおよび鎖状カルボン酸エステルなどの鎖状化合物は、高誘電率溶媒よりも小さい比誘電率を有する低誘電率溶媒である。
 中でも、高誘電率溶媒は、ラクトンを含んでおり、その高誘電率溶媒の重量W1に対するラクトンの重量W2の割合Rは、30重量%~100重量%であることが好ましい。電解液を用いた二次電池が充放電されても、放電容量の減少が抑制されると共に、電解液の分解反応に起因するガスの発生も抑制されるからである。この割合Rは、割合R(重量%)=(W2/W1)×100という計算式に基づいて算出される。
[電解質塩]
 また、電解液は、さらに、電解質塩を含んでいてもよい。この電解質塩は、リチウム塩などの軽金属塩である。リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO)、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CFSO)、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CFSO)およびビス(オキサラト)ホウ酸リチウム(LiB(C)などである。
 電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
[添加剤]
 なお、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。
 具体的には、添加剤は、スルホン酸エステル、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物のうちのいずれか1種類または2種類以上である。電解液を用いた二次電池において、その電解液の分解反応が抑制されるからである。
 電解液中におけるスルホン酸エステルの含有量は、特に限定されないため、任意に設定可能である。このように含有量が任意に設定可能であることは、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物のそれぞれに関しても同様である。
 スルホン酸エステルの具体例は、1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1,4-ブタンスルトン、2,4-ブタンスルトンおよびメタンスルホン酸プロパルギルエステルなどである。
 硫酸エステルの具体例は、1,3,2-ジオキサチオラン2,2-ジオキシド、1,3,2-ジオキサチアン2,2-ジオキシド、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオランなどである。
 亜硫酸エステルの具体例は、1,3-プロパンスルトン、1-プロペン-1,3-スルトン、1,4-ブタンスルトン、2,4-ブタンスルトンおよびメタンスルホン酸プロパルギルエステルなどである。亜硫酸エステルの具体例は、1,3,2-ジオキサチオラン2-オキシドおよび4-メチル-1,3,2-ジオキサチオラン2-オキシドなどである。
 ジカルボン酸無水物の具体例は、1,4-ジオキサン-2,6-ジオン、コハク酸無水物およびグルタル酸無水物などである。
 ジスルホン酸無水物の具体例は、1,2-エタンジスルホン酸無水物、1,3-プロパンジジスルホン酸無水物およびヘキサフルオロ1,3-プロパンジスルホン酸無水物などである。
 スルホン酸カルボン酸無水物の具体例は、2-スルホ安息香酸無水物および2,2-ジオキソオキサチオラン-5-オンなどである。
 また、添加剤は、ニトリル化合物である。電解液を用いた二次電池の充放電が繰り返されても、放電容量の減少が抑制されると共に、電解液の分解反応に起因するガスの発生も抑制されるからである。電解液中におけるニトリル化合物の含有量は、特に限定されないため、任意に設定可能である。
 このニトリル化合物は、1個または2個以上のシアノ基(-CN)を有する化合物である。ニトリル化合物の具体例は、オクタンニトリル、ベンゾニトリル、フタロニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、セバコニトリル、1,3,6-ヘキサントリカルボニトリル、3,3’-オキシジプロピオニトリル、3-ブトキシプロピオニトリル、エチレングリコールビスプロピオニトリルエーテル、1,2,2,3-テトラシアノプロパン、テトラシアノプロパン、フマロニトリル、7,7,8,8-テトラシアノキノジメタン、シクロペンタンカルボニトリル、1,3,5-シクロヘキサントリカルボニトリルおよび1,3-ビス(ジシアノメチリデン)インダンなどである。
 ただし、上記したシアノ化環状炭酸エステルは、ここで説明したニトリル化合物から除かれる。
<1-2.製造方法>
 電解液を製造する場合には、溶媒に電解質塩を添加したのち、その溶媒に反応性環状炭酸エステル化合物およびアントラキノンを添加する。これにより、溶媒中において電解質塩、反応性環状炭酸エステル化合物およびアントラキノンのそれぞれが分散または溶解されるため、電解液が調製される。
<1-3.作用および効果>
 この電解液によれば、反応性環状炭酸エステル化合物とアントラキノンとを一緒に含んでいる。
 この場合には、上記したように、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物のうちのいずれか一方だけを含んでいる場合と比較して、その電解液を用いた二次電池の充放電時において強固な被膜が電極の表面に形成される。
 具体的には、二次電池の充放電時において、反応性環状炭酸エステル化合物とアントラキノンとの相乗作用により、その両者に由来する被膜が電極の表面に形成されると共に、その被膜の電気化学的な強度が著しく向上する。この場合において、被膜は、電解液が光重合開始剤および熱重合開始剤を含んでいなくても、反応性環状炭酸エステル化合物とアントラキノンとの反応により形成される。これにより、電極の表面が被膜により保護されると共に、充放電が繰り返されても被膜が維持されやすくなるため、反応性を有する電極の表面において電解液の分解反応が抑制される。よって、二次電池の充放電が繰り返されても放電容量の減少が抑制されるため、電解液を用いた二次電池において優れたサイクル特性を得ることができる。
 特に、酸金属塩基がスルホン酸アルカリ金属塩基であれば、十分に強固な被膜が電極の表面に形成されやすくなるため、より高い効果を得ることができる。
 また、アントラキノン化合物に関する式(1)においてR1~R8のうちの1個または2個以上が電子供与性基であれば、十分に強固な被膜が電極の表面に形成されやすくなるため、より高い効果を得ることができる。
 また、電解液中における反応性環状炭酸エステル化合物の含有量が0.5重量%~10重量%であると共に、電解液中におけるアントラキノン化合物の含有量が0.01重量%~1重量%であれば、十分に強固な被膜が電極の表面に形成されるため、より高い効果を得ることができる。
 また、電解液が高誘電率溶媒であるラクトンを含んでおり、割合Rが30重量%~100重量%であれば、二次電池の充放電が繰り返されても、放電容量が担保されながら、電解液の分解反応に起因するガスの発生が抑制される。よって、サイクル特性が担保されながら安全性が向上するため、より高い効果を得ることができる。
 また、電解液がスルホン酸エステル、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物のうちのいずれか1種類または2種類以上を含んでいれば、二次電池の充放電が繰り返されても電解液の分解反応がより抑制されるため、より高い効果を得ることができる。
 また、電解液がニトリル化合物を含んでいれば、二次電池の充放電が繰り返されても、放電容量が担保されながら、電解液の分解反応に起因するガスの発生が抑制される。よって、サイクル特性が担保されながら安全性が向上するため、より高い効果を得ることができる。
<2.二次電池>
 次に、上記した電解液を用いた二次電池に関して説明する。
 ここで説明する二次電池は、電極反応物質の吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に、液状の電解質である電解液を備えている。
 この二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面に電極反応物質が析出することを防止するためである。
 電極反応物質の種類は、特に限定されないが、具体的には、アルカリ金属およびアルカリ土類金属などの軽金属である。アルカリ金属は、リチウム、ナトリウムおよびカリウムなどであると共に、アルカリ土類金属は、ベリリウム、マグネシウムおよびカルシウムなどである。
 以下では、電極反応物質がリチウムである場合を例に挙げる。リチウムの吸蔵放出を利用して電池容量が得られる二次電池は、いわゆるリチウムイオン二次電池である。このリチウムイオン二次電池では、リチウムがイオン状態で吸蔵放出される。
<2-1.構成>
 図1は、二次電池の断面構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図2では、電池素子20の一部だけを示している。
 この二次電池は、図1および図2に示したように、主に、電池缶11と、一対の絶縁板12,13と、電池素子20と、正極リード25と、負極リード26とを備えている。ここで説明する二次電池は、円筒状の電池缶11の内部に電池素子20が収納されている円筒型の二次電池である。
[電池缶など]
 電池缶11は、図1に示したように、電池素子20などを収納する収納部材である。この電池缶11は、一端部が閉塞されていると共に他端部が開放されている中空の構造を有しており、鉄、アルミニウム、鉄合金およびアルミニウム合金などの金属材料のうちのいずれか1種類または2種類以上を含んでいる。なお、電池缶11の表面には、ニッケルなどの金属材料が鍍金されていてもよい。
 絶縁板12,13は、電池素子20を介して互いに対向するように配置されている。これにより、電池素子20は、絶縁板12,13により挟まれている。
 電池缶11の開放されている一端部である開放端部には、電池蓋14、安全弁機構15および熱感抵抗素子(PTC素子)16がガスケット17を介して加締められている。これにより、電池缶11の開放端部は、電池蓋14により密閉されている。ここでは、電池蓋14は、電池缶11の形成材料と同様の材料を含んでいる。安全弁機構15およびPTC素子16のそれぞれは、電池蓋14の内側に設けられており、その安全弁機構15は、PTC素子16を介して電池蓋14と電気的に接続されている。ガスケット17は、絶縁性材料を含んでおり、そのガスケット17の表面には、アスファルトなどが塗布されていてもよい。
 この安全弁機構15では、内部短絡および加熱などに起因して電池缶11の内圧が一定以上に到達すると、ディスク板15Aが反転するため、電池蓋14と電池素子20との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、PTC素子16の電気抵抗は、温度の上昇に応じて増加する。
[電池素子]
 電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子である。
 この電池素子20は、いわゆる巻回電極体である。すなわち、電池素子20では、正極21および負極22がセパレータ23を介して互いに積層されていると共に、その正極21、負極22およびセパレータ23が巻回されている。これにより、正極21および負極22は、セパレータ23を介して互いに対向しながら巻回されている。電池素子20の巻回中心に設けられている巻回空間20Cには、センターピン24が挿入されている。ただし、センターピン24は省略されてもよい。
(正極)
 正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。
 正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その金属材料は、アルミニウムなどである。
 ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられており、リチウムを吸蔵放出可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。また、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などのうちのいずれか1種類または2種類以上である。
 正極活物質の種類は、特に限定されないが、具体的には、リチウム含有化合物などである。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、リチウムおよび遷移金属元素のそれぞれ以外の元素であれば、特に限定されないが、具体的には、他元素は、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。
 酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 およびLiMnなどである。リン酸化合物の具体例は、LiFePO、LiMnPOおよびLiFe0.5 Mn0.5 POなどである。
 正極結着剤は、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
 正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その炭素材料は、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、導電性材料は、金属材料および高分子化合物などでもよい。
(負極)
 負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。
 負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その金属材料は、銅などである。
 ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられており、リチウムを吸蔵放出可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。また、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上である。
 負極活物質の種類は、特に限定されないが、具体的には、炭素材料および金属系材料のうちの一方または双方などである。高いエネルギー密度が得られるからである。炭素材料は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛(天然黒鉛および人造黒鉛)などである。金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズのうちの一方または双方などである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSiおよびSiO(0<x≦2、または0.2<x<1.4)などである。
 負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
(セパレータ)
 セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。
(電解液)
 電解液は、正極21、負極22およびセパレータ23のそれぞれに含浸されており、上記した構成を有している。すなわち、電解液は、反応性環状炭酸エステルとアントラキノン化合物とを一緒に含んでいる。
[正極リードおよび負極リード]
 正極リード25は、図1および図2に示したように、正極21の正極集電体21Aに接続されており、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極リード25は、安全弁機構15を介して電池蓋14と電気的に接続されている。
 負極リード26は、図1および図2に示したように、負極22の負極集電体22Aに接続されており、ニッケルなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極リード26は、電池缶11と電気的に接続されている。
<2-2.動作>
 二次電池の充電時には、電池素子20において、正極21からリチウムが放出されると共に、そのリチウムが電解液を介して負極22に吸蔵される。一方、二次電池の放電時には、電池素子20において、負極22からリチウムが放出されると共に、そのリチウムが電解液を介して正極21に吸蔵される。これらの充電時および放電時には、リチウムがイオン状態で吸蔵および放出される。
<2-3.製造方法>
 二次電池を製造する場合には、以下で説明する手順により、正極21および負極22を作製したのち、その正極21および負極22と共に電解液を用いて二次電池を作製する。なお、電解液を調製する手順は、上記した通りである。
[正極の作製]
 最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。
[負極の作製]
 上記した正極21の作製手順と同様の手順により、負極22を形成する。具体的には、最初に、負極活物質、負極結着剤および負極導電剤が互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製する。続いて、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。
[二次電池の組み立て]
 最初に、溶接法などを用いて正極21の正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極22の負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回空間20Cを有する巻回体(図示せず)を形成する。この巻回体は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、巻回体の巻回空間20Cにセンターピン24を挿入する。
 続いて、絶縁板12,13により巻回体が挟まれた状態において、開放端部を有する電池缶11の内部に巻回体を絶縁板12,13と一緒に収納する。この場合には、溶接法などを用いて正極リード25を安全弁機構15に接続させると共に、溶接法などを用いて負極リード26を電池缶11に接続させる。続いて、電池缶11の内部に電解液を注入することにより、その電解液を巻回体に含浸させる。これにより、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されるため、電池素子20が作製される。
 最後に、開放端部を有する電池缶11の内部に電池蓋14、安全弁機構15およびPTC素子16を収納したのち、ガスケット17を介して電池缶11の開放端部を加締める。これにより、電池缶11の開放端部に電池蓋14、安全弁機構15およびPTC素子16が固定されると共に、その電池缶11の内部に電池素子20が封入されるため、二次電池が組み立てられる。
[二次電池の安定化]
 組み立て後の二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、二次電池の状態が電気化学的に安定化する。この場合には、上記したように、反応性環状炭酸エステル化合物とアントラキノン化合物との相乗作用により、両者に由来する良好な被膜が形成される。よって、二次電池が完成する。
<2-4.作用および効果>
 この二次電池によれば、上記した構成を有する電解液を備えている。この場合には、上記した理由により、正極21および負極22のそれぞれの表面に強固な被膜が形成されるため、充放電が繰り返されても電解液の分解反応が抑制される。よって、優れたサイクル特性を得ることができる。
 特に、二次電池がリチウムイオン二次電池であれば、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られるため、より高い効果を得ることができる。
 この二次電池に関する他の作用および効果は、上記した電解液に関する他の作用および効果と同様である。
<3.変形例>
 上記した二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。
[変形例1]
 二次電池の電池構造が円筒型である場合に関して説明した。しかしながら、ここでは具体的に図示しないが、電池構造の種類は、特に限定されないため、ラミネートフィルム型、角型、コイン型およびボタン型などでもよい。
[変形例2]
 多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。
 具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の位置ずれ(巻きずれ)が抑制されるからである。これにより、電解液の分解反応などが発生しても、二次電池が膨れにくくなる。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンなどは、物理的強度に優れていると共に、電気化学的に安定だからである。
 なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。二次電池の発熱時において複数の絶縁性粒子が放熱するため、その二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機材料および樹脂材料のうちの一方または双方を含んでいる。無機材料の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどである。樹脂材料の具体例は、アクリル樹脂およびスチレン樹脂などである。
 積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。
 この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、二次電池の安全性が向上するため、より高い効果を得ることができる。もちろん、上記した積層型のセパレータは、円筒型の二次電池に限られず、ラミネートフィルム型の二次電池などにも適用可能である。
[変形例3]
 液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、ゲル状の電解質である電解質層を用いてもよい。
 電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。
 具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
 この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムイオンが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。もちろん、上記した電解質層は、円筒型の二次電池に限られず、ラミネートフィルム型の二次電池などにも適用可能である。
<4.二次電池の用途>
 二次電池の用途(適用例)は、特に限定されない。電源として用いられる二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、主電源の代わりに用いられる電源、または主電源から切り替えられる電源である。
 二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個の二次電池が用いられてもよいし、複数個の二次電池が用いられてもよい。
 電池パックは、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、駆動用電源として二次電池を用いて作動(走行)する車両であり、その二次電池以外の他の駆動源を併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。
 ここで、二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
 図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個の二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
 この電池パックは、図3に示したように、電源51と、回路基板52とを備えている。この回路基板52は、電源51に接続されていると共に、正極端子53、負極端子54および温度検出端子55を含んでいる。
 電源51は、1個の二次電池を含んでいる。この二次電池では、正極リードが正極端子53に接続されていると共に、負極リードが負極端子54に接続されている。この電源51は、正極端子53および負極端子54を介して外部と接続可能であるため、充放電可能である。回路基板52は、制御部56と、スイッチ57と、PTC素子58と、温度検出部59とを含んでいる。ただし、PTC素子58は省略されてもよい。
 制御部56は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パック全体の動作を制御する。この制御部56は、必要に応じて電源51の使用状態の検出および制御を行う。
 なお、制御部56は、電源51(二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ57を切断することにより、電源51の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.4V±0.1Vである。
 スイッチ57は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部56の指示に応じて電源51と外部機器との接続の有無を切り換える。このスイッチ57は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充放電電流は、スイッチ57のON抵抗に基づいて検出される。
 温度検出部59は、サーミスタなどの温度検出素子を含んでおり、温度検出端子55を用いて電源51の温度を測定すると共に、その温度の測定結果を制御部56に出力する。温度検出部59により測定される温度の測定結果は、異常発熱時において制御部56が充放電制御を行う場合および残容量の算出時において制御部56が補正処理を行う場合などに用いられる。
 本技術の実施例に関して説明する。
<実験例1-1~1-36および比較例1~5>
 以下で説明するように、二次電池を作製したのち、その二次電池の電池特性を評価した。
[二次電池の作製]
 以下の手順により、図1および図2に示した円筒型のリチウムイオン二次電池を作製した。
(正極の作製)
 最初に、正極活物質(リチウム含有化合物(酸化物)であるLiCoO)91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(黒鉛)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体21A(厚さ=12μmである帯状のアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型した。これにより、正極21が作製された。
(負極の作製)
 最初に、負極活物質(炭素材料である人造黒鉛)93質量部と、負極結着剤(ポリフッ化ビニリデン)7質量部とを互いに混合させることにより、負極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体22A(厚さ=15μmである帯状の銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型した。これにより、負極22が作製された。
(電解液の調製)
 溶媒に電解質塩(リチウム塩であるLiPF)を添加したのち、その溶媒を撹拌した。溶媒としては、高誘電率溶媒(ラクトン)であるγ-ブチロラクトン(GBL)と、高誘電率溶媒(環状炭酸エステル)である炭酸エチレン(EC)と、低誘電率溶媒(鎖状炭酸エステル)である炭酸ジメチル(DMC)とを用いた。溶媒の混合比(重量比)は、GBL:EC:DMC=10:10:80とすることにより、割合R(重量%)を50重量%とした。電解質塩の含有量は、溶媒に対して1.2mol/kgとした。続いて、電解質塩が添加された溶媒に反応性環状炭酸エステル化合物およびアントラキノン化合物を添加したのち、その溶媒を撹拌した。これにより、電解液が調製された。
 反応性環状炭酸エステル化合物としては、不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのそれぞれを用いた。反応性環状炭酸エステル化合物の種類および電解液中における反応性環状炭酸エステル化合物の含有量(重量%)と、アントラキノン化合物の種類および電解液中におけるアントラキノン化合物の含有量(重量%)とは、表1および表2に示した通りである。
 表1および表2のそれぞれでは、「分類」の欄に反応性環状炭酸エステル化合物の種類を示していると共に、「電子供与性基」の欄にアントラキノン化合物に関する電子供与性基の有無を示している。「分類」の欄では、「不飽和」が不飽和環状炭酸エステル、「フッ素化」がフッ素化環状炭酸エステル、「シアノ化」がシアノ化環状炭酸エステルをそれぞれ意味している。
 なお、比較のために、反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を用いなかったことを除いて同様の手順により、電解液を調製した。また、反応性環状炭酸エステル化合物およびアントラキノン化合物のうちのいずれか一方だけを用いたことを除いて同様の手順により、電解液を調製した。
(二次電池の組み立て)
 最初に、正極21の正極集電体21Aにアルミニウム製の正極リード25を溶接したと共に、負極22の負極集電体22Aに銅製の負極リード26を溶接した。
 続いて、セパレータ23(厚さ=15μmである微多孔性ポリエチレンフィルム)を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回空間20Cを有する巻回体を作製した。続いて、巻回体の巻回空間20Cにセンターピン24を挿入した。
 続いて、開放端部を有する電池缶11の内部に巻回体と共に絶縁板12,13を収納した。この場合には、安全弁機構15に正極リード25を溶接したと共に、電池缶11に負極リード26を溶接した。続いて、電池缶11の内部に電解液を注入した。これにより、巻回体に電解液が含浸されたため、電池素子20が作製された。
 最後に、開放端部を有する電池缶11の内部に電池蓋14、安全弁機構15およびPTC素子16を収納したのち、ガスケット17を介して電池缶11の開放端部を加締めた。これにより、電池缶11が封止されたため、二次電池が組み立てられた。
(二次電池の安定化)
 常温環境中(温度=23℃)において二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.05Cとは、電池容量を20時間で放電しきる電流値である。これにより、円筒型のリチウムイオン二次電池が完成した。
[電池特性の評価]
 二次電池の電池特性(サイクル特性)を評価したところ、表1および表2に示した結果が得られた。
 サイクル特性を調べる場合には、最初に、高温環境中(温度=50℃)において二次電池を充電させたのち、同環境中において充電状態の二次電池を静置(静置時間=3時間)した。充電時には、1Cの電流で電圧が4.2Vに到達するまで定電流充電したのち、その4.2Vの電圧で電流が0.05Cに到達するまで定電圧充電した。1Cとは、電池容量を1時間で放電しきる電流値である。
 続いて、同環境中において二次電池を放電させることにより、放電容量(1サイクル目の放電容量)を測定した。放電時には、3Cの電流で電圧が3.0Vに到達するまで定電流放電した。3Cとは、電池容量を10/3時間で放電しきる電流値である。
 続いて、同環境中においてサイクル数が100回に到達するまで二次電池を繰り返して充放電させることにより、放電容量(100サイクル目の放電容量)を測定した。2サイクル目以降の充放電条件は、1サイクル目の充放電条件と同様にした。
 最後に、容量維持率(%)=(100サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、サイクル特性を評価するための指標である容量維持率を算出した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[考察]
 表1および表2に示したように、容量維持率は、電解液の組成に応じて大きく変動した。以下では、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を含んでいない場合(比較例1-1)の容量維持率を比較基準とする。
 電解液が反応性環状炭酸エステル化合物だけを含んでいる場合(比較例1-2~1-4)には、容量維持率が僅かに増加した。また、電解液がアントラキノン化合物だけを含んでいる場合(比較例1-5)には、容量維持率が僅かに増加した。
 より具体的には、電解液が反応性環状炭酸エステル化合物だけを含んでいる場合には、容量維持率が約18%増加したと共に、電解液がアントラキノン化合物だけを含んでいる場合には、容量維持率が約9%増加した。このため、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を含んでいる場合には、容量維持率が約27%(=18%+9%)増加すると予想される。
 しかしながら、実際には、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を含んでいる場合(実施例1-1~1-36)には、容量維持率が飛躍的に増加した。
 より具体的には、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を含んでいる場合には、容量維持率が最大で約56%増加した。このため、上記した予想に反して、容量維持率の増加割合(=約56%)は予想値(=約27%)のほぼ倍になった。このように反応性環状炭酸エステル化合物およびアントラキノン化合物を併用した場合において容量維持率が飛躍的に増加したのは、その反応性環状炭酸エステル化合物とアントラキノンとの相乗作用により、電解液の分解反応が著しく抑制されたからであると考えられる。
 特に、電解液が反応性環状炭酸エステル化合物およびアントラキノン化合物の双方を含んでいる場合には、以下の傾向が得られた。第1に、アントラキノン化合物が電子供与性基を有していると、容量維持率がより増加した。第2に、アントラキノン化合物が酸金属塩基としてスルホン酸アルカリ金属塩基を有していると、容量維持率が十分に増加した。第3に、電解液中における反応性環状炭酸エステル化合物の含有量が0.5重量%~10重量%であると、容量維持率がより増加した。第4に、電解液中におけるアントラキノン化合物の含有量が0.01重量%~1.0重量%であると、容量維持率がより増加した。
<実施例2-1~2-20>
 表3に示したように、電解液に添加剤を含有させたことを除いて実施例1-2,1-7,1-12と同様の手順により、二次電池を作製したのち、その二次電池の電池特性(サイクル特性)を評価した。ここでは、添加剤として、スルホン酸エステル、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物を用いた。添加剤の種類および電解液中における添加剤の含有量(重量%)は、表3に示した通りである。
 具体的には、スルホン酸エステルとして、1,3-プロパンスルトン(PS)、1-プロペン-1,3-スルトン(PRS)、1,4-ブタンスルトン(BS1)、2,4-ブタンスルトン(BS2)およびメタンスルホン酸プロパルギルエステル(MSP)を用いた。
 硫酸エステルとして、1,3,2-ジオキサチオラン2,2-ジオキシド(OTO)、1,3,2-ジオキサチアン2,2-ジオキシド(OTA)および4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン(SOTO)を用いた。
 亜硫酸エステルとして、1,3,2-ジオキサチオラン2-オキシド(DTO)および4-メチル-1,3,2-ジオキサチオラン2-オキシド(MDTO)を用いた。
 ジカルボン酸無水物として、1,4-ジオキサン-2,6-ジオン(DOD)、コハク酸無水物(SA)およびグルタル酸無水物(GA)を用いた。
 ジスルホン酸無水物として、1,2-エタンジスルホン酸無水物(ESA)、1,3-プロパンジジスルホン酸無水物(PSA)およびヘキサフルオロ1,3-プロパンジスルホン酸無水物(FPSA)を用いた。
 スルホン酸カルボン酸無水物として、2-スルホ安息香酸無水物(SBA)および2,2-ジオキソオキサチオラン-5-オン(DOTO)を用いた。
Figure JPOXMLDOC01-appb-T000007
 表3に示したように、電解液がスルホン酸エステル、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物のそれぞれを含んでいる場合(実施例2-1~2-20)には、容量維持率がより増加した。
<実施例3-1~3-20>
 表4に示したように、電解液に添加剤としてニトリル化合物を含有させたことを除いて実施例1-2,1-7,1-12と同様の手順により、二次電池を作製したのち、その二次電池の電池特性(サイクル特性および安全性)を評価した。
 ニトリル化合物の種類および電解液中におけるニトリル化合物の含有量(重量%)は、表4に示した通りである。ニトリル化合物としては、オクタンニトリル(ON)、ベンゾニトリル(BN)、フタロニトリル(PN)、スクシノニトリル(SN)、グルタロニトリル(GN)、アジポニトリル(AN)、セバコニトリル(SBN)、1,3,6-ヘキサントリカルボニトリル(HCN)、3,3’-オキシジプロピオニトリル(OPN)、3-ブトキシプロピオニトリル(BPN)、エチレングリコールビスプロピオニトリルエーテル(EGPN)、1,2,2,3-テトラシアノプロパン(TCP)、テトラシアノエチレン(TCE)、フマロニトリル(FN)、7,7,8,8-テトラシアノキノジメタン(TCQ)、シクロペンタンカルボニトリル(CPCN)、1,3,5-シクロヘキサントリカルボニトリル(CHCN)および1,3-ビス(ジシアノメチリデン)インダン(BCMI)を用いた。
 ここでは、上記したように、電池特性としてサイクル特性の他に安全性も評価した。安全性を調べる場合には、高温環境中(温度=80℃)において二次電池を保存したのち、電池缶11の内圧上昇に起因して安全弁機構15が作動するまでの時間(作動時間)を計測した。この作動時間は、安全性(ガス発生特性)を評価するための指標であり、いわゆるガス発生抑制度を表すパラメータである。すなわち、作動時間が長くなるほど安全弁機構15が作動するまでの時間が長くなるため、電池缶11の内部において電解液の分解反応に起因したガスの発生が抑制されることを意味している。なお、表4では、作動時間の値として、実施例1-8において計測された作動時間を1.0として規格化した値を示している。
 ここで、電池缶11の内圧が上昇したことは、その電池缶11の内部において電解液の分解反応が発生したため、その電解液の分解反応に起因してガスが発生したことを表している。また、安全弁機構15が作動したことは、電池蓋14と電池素子20との電気的接続が切断されたことを表している。
Figure JPOXMLDOC01-appb-T000008
 表4に示したように、電解液がニトリル化合物を含んでいる場合(実施例3-1~3-20)には、高い容量維持率が維持されながら、作動時間が長くなった。
<実施例4-1~4-15>
 表5に示したように、溶媒の組成を変更したことを除いて同様の手順により、二次電池を作製したのち、その二次電池の電池特性(サイクル特性および安全性)を評価した。
 溶媒の種類、溶媒の混合比(含有量(重量%))および割合R(重量%)は、表5に示した通りである。ここでは、新たに、高誘電率溶媒(環状炭酸エステル)である炭酸プロピレン(PC)と、低誘電率溶媒(鎖状炭酸エステル)である炭酸エチルメチル(EMC)および炭酸ジエチル(DEC)と、低誘電率溶媒(鎖状カルボン酸エステル)であるプロピオン酸プロピル(PrPr)とを用いた。この場合には、溶媒の種類および溶媒の混合比のそれぞれを変化させることにより、割合Rを変化させた。
Figure JPOXMLDOC01-appb-T000009
 表5に示したように、溶媒の組成を変更しても(実施例4-1~4-15)、高い容量維持率が得られた。この場合には、特に、電解液が高誘電率溶媒(ラクトン)を含んでおり、割合Rが30%~100%であると(実施例1-1など)、作動時間がより長くなった。
[まとめ]
 表1~表5に示した結果から、電解液が反応性環状炭酸エステル化合物アントラキノン化合物を含んでいると、高い容量維持率が得られた。よって、二次電池において優れたサイクル特性が得られた。
 以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
 電池素子の素子構造が巻回型である場合に関して説明したが、その素子構造の種類は、特に限定されない。具体的には、素子構造は、電極(正極および負極)が積層された積層型でもよいし、電極がジグザグに折り畳まれた九十九折り型でもよいし、それ以外でもよい。
 また、電極反応物質がリチウムである場合に関して説明したが、その電極反応物質の種類は、特に限定されない。具体的には、電極反応物質は、上記したように、ナトリウムおよびカリウムなどの他のアルカリ金属でもよいし、ベリリウム、マグネシウムおよびカルシウムなどのアルカリ土類金属でもよい。この他、電極反応物質は、アルミニウムなどの他の軽金属でもよい。
 本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。

Claims (9)

  1.  正極および負極と共に電解液を備え、
     前記電解液は、
     不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのうちの少なくとも1種を含む反応性環状炭酸エステル化合物と、
     式(1)で表されるアントラキノン化合物と
     を含む、二次電池。
    Figure JPOXMLDOC01-appb-C000001
    (R1~R8のそれぞれは、水素(H)、アルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかである。ただし、R1~R8のうちの任意の2つ以上は、互いに結合されていてもよい。)
  2.  前記酸金属塩基は、スルホン酸アルカリ金属塩基である、
     請求項1記載の二次電池。
  3.  前記R1~R8のうちの少なくも1つは、電子供与性基である、
     請求項1または請求項2に記載の二次電池。
  4.  前記電解液中における前記反応性環状炭酸エステル化合物の含有量は、0.5重量%以上10重量%以下であり、
     前記電解液中における前記アントラキノン化合物の含有量は、0.01重量%以上1重量%以下である、
     請求項1ないし請求項3のいずれか1項に記載の二次電池。
  5.  前記電解液は、-30℃以上60℃未満の範囲内の温度において20以上の比誘電率を有する高誘電率溶媒を含み、
     前記高誘電率溶媒は、ラクトンを含み、
     前記高誘電率溶媒の重量に対する前記ラクトンの重量の割合は、30重量%以上100重量%以下である、
     請求項1ないし請求項4のいずれか1項に記載の二次電池。
  6.  前記電解液は、さらに、スルホン酸エステル、硫酸エステル、亜硫酸エステル、ジカルボン酸無水物、ジスルホン酸無水物およびスルホン酸カルボン酸無水物のうちの少なくとも1種を含む、
     請求項1ないし請求項5のいずれか1項に記載の二次電池。
  7.  前記電解液は、さらに、ニトリル化合物を含む、
     請求項1ないし請求項6のいずれか1項に記載の二次電池。
  8.  リチウムイオン二次電池である、
     請求項1ないし請求項7のいずれか1項に記載の二次電池。
  9.  不飽和環状炭酸エステル、フッ素化環状炭酸エステルおよびシアノ化環状炭酸エステルのうちの少なくとも1種を含む反応性環状炭酸エステル化合物と、
     式(1)で表されるアントラキノン化合物と
     を含む、二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000002
    (R1~R8のそれぞれは、水素、アルキル基、アルケニル基、アリール基および酸金属塩基のうちのいずれかである。ただし、R1~R8のうちの任意の2つ以上は、互いに結合されていてもよい。)
PCT/JP2021/044940 2021-01-27 2021-12-07 二次電池用電解液および二次電池 WO2022163138A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022578100A JPWO2022163138A1 (ja) 2021-01-27 2021-12-07
CN202180092092.9A CN116783752A (zh) 2021-01-27 2021-12-07 二次电池用电解液以及二次电池
US18/226,943 US20230369648A1 (en) 2021-01-27 2023-07-27 Electrolytic solution for secondary battery, and secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-011473 2021-01-27
JP2021011473 2021-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/226,943 Continuation US20230369648A1 (en) 2021-01-27 2023-07-27 Electrolytic solution for secondary battery, and secondary battery

Publications (1)

Publication Number Publication Date
WO2022163138A1 true WO2022163138A1 (ja) 2022-08-04

Family

ID=82653187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044940 WO2022163138A1 (ja) 2021-01-27 2021-12-07 二次電池用電解液および二次電池

Country Status (4)

Country Link
US (1) US20230369648A1 (ja)
JP (1) JPWO2022163138A1 (ja)
CN (1) CN116783752A (ja)
WO (1) WO2022163138A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138707A (ja) * 2014-01-23 2015-07-30 株式会社デンソー リチウム二次電池及びその製造方法
JP2019200880A (ja) * 2018-05-15 2019-11-21 日本電信電話株式会社 リチウム二次電池
WO2020065834A1 (ja) * 2018-09-27 2020-04-02 株式会社村田製作所 リチウムイオン二次電池用電解液およびリチウムイオン二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138707A (ja) * 2014-01-23 2015-07-30 株式会社デンソー リチウム二次電池及びその製造方法
JP2019200880A (ja) * 2018-05-15 2019-11-21 日本電信電話株式会社 リチウム二次電池
WO2020065834A1 (ja) * 2018-09-27 2020-04-02 株式会社村田製作所 リチウムイオン二次電池用電解液およびリチウムイオン二次電池

Also Published As

Publication number Publication date
JPWO2022163138A1 (ja) 2022-08-04
US20230369648A1 (en) 2023-11-16
CN116783752A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
JP4012174B2 (ja) 効率的な性能を有するリチウム電池
JP5471616B2 (ja) 非水系電解液及びそれを用いた非水系電解液二次電池
KR102460957B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP6065379B2 (ja) リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR20080110160A (ko) 비수전해액 첨가제 및 이를 이용한 이차 전지
CN117954689A (zh) 非水电解液电池用电解液和使用其的非水电解液电池
WO2019065288A1 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
KR101023374B1 (ko) 비수 전해액 첨가제 및 이를 이용한 이차 전지
WO2022163138A1 (ja) 二次電池用電解液および二次電池
WO2023188949A1 (ja) 二次電池用電解液および二次電池
WO2023017685A1 (ja) 二次電池用電解液および二次電池
WO2024084734A1 (ja) 二次電池
WO2023248829A1 (ja) 二次電池用電解液および二次電池
WO2024084858A1 (ja) 二次電池用電解液および二次電池
WO2024084857A1 (ja) 二次電池用電解液および二次電池
JP7459960B2 (ja) 二次電池用電解液および二次電池
WO2022209058A1 (ja) 二次電池
WO2023119946A1 (ja) 二次電池用電解液および二次電池
WO2023119945A1 (ja) 二次電池用電解液および二次電池
WO2023119948A1 (ja) 二次電池
WO2023162431A1 (ja) 二次電池用電解液および二次電池
WO2024070821A1 (ja) 二次電池用電解液および二次電池
WO2022196238A1 (ja) 二次電池用電解液および二次電池
WO2023162429A1 (ja) 二次電池用電解液および二次電池
WO2022255018A1 (ja) 二次電池用電解液および二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21923143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022578100

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092092.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21923143

Country of ref document: EP

Kind code of ref document: A1