WO2015033515A1 - 半導体モジュール及びインバータ装置 - Google Patents

半導体モジュール及びインバータ装置 Download PDF

Info

Publication number
WO2015033515A1
WO2015033515A1 PCT/JP2014/004027 JP2014004027W WO2015033515A1 WO 2015033515 A1 WO2015033515 A1 WO 2015033515A1 JP 2014004027 W JP2014004027 W JP 2014004027W WO 2015033515 A1 WO2015033515 A1 WO 2015033515A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat sink
convex
semiconductor module
step portion
bonding layer
Prior art date
Application number
PCT/JP2014/004027
Other languages
English (en)
French (fr)
Inventor
隆行 山田
範之 別芝
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480041510.1A priority Critical patent/CN105408997B/zh
Priority to JP2015535298A priority patent/JP6045709B2/ja
Priority to US14/911,661 priority patent/US9812377B2/en
Priority to DE112014004043.6T priority patent/DE112014004043B4/de
Priority to KR1020167005865A priority patent/KR101827186B1/ko
Publication of WO2015033515A1 publication Critical patent/WO2015033515A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates

Definitions

  • the present invention relates to a semiconductor module that forms a circuit using a ceramic circuit board having a conductor layer, and an inverter device using the semiconductor module.
  • a ceramic circuit board on which a semiconductor element is mounted is bonded to a heat sink via a bonding layer such as solder, and then the thermal stress is applied to the end of the bonding layer when the temperature is returned from the high temperature during bonding to room temperature.
  • the resulting strain concentration occurs.
  • the heat sink is provided with a convex portion having an area smaller than the bonding area with the bonding layer (see, for example, Patent Document 1). With this configuration, the strain concentration is reduced by increasing the thickness of the end portion of the bonding layer where the strain concentration occurs.
  • the present invention has been made to solve the above-described problems, and is to obtain a semiconductor module with improved reliability.
  • the semiconductor module according to the present invention has a first conductor layer on a first surface of a ceramic substrate, and a second conductor layer on a second surface opposite to the first surface of the ceramic substrate.
  • a ceramic circuit board, a semiconductor element mounted on the first conductor layer, a third surface and a fourth surface opposite to the third surface, and the second conductor layer and the third surface A heat sink whose surface is bonded via a bonding layer; a fin provided on the fourth surface of the heat sink; and a refrigerant flow path housing fixed around the end of the heat sink so as to wrap the fin.
  • the third surface of the heat sink is provided at the convex portion having a convex plane having an area smaller than the bonding area with the bonding layer, and at the end of the convex portion, and the heat sink thickness of the corresponding portion is convex.
  • a first step portion that is thinner than the thickness of the heat sink of the portion corresponding to the portion, and the first step portion A second stepped portion that is thinner than a portion corresponding to the first stepped portion, and the bonding layer includes the convex portion of the heatsink and the first stepped portion. It joins with a level
  • the inverter device according to the present invention is configured using the semiconductor module according to the present invention.
  • the present invention it is possible to relieve the stress applied to the end portion of the bonding layer when the refrigerant channel housing and the heat sink are fixed. Thereby, a semiconductor module and an inverter device with improved reliability can be obtained.
  • FIG. 1A is a cross-sectional view of the semiconductor module 100 according to the present embodiment.
  • FIG. 1B is a view of the semiconductor module 100 shown in FIG.
  • FIG. 1A is a cross-sectional view taken along the line AA in FIG.
  • the ceramic substrate 1 has a first conductor layer 2 on one side as a first side and a second side as a second side opposite to the first side.
  • a second conductor layer 3 is provided.
  • the ceramic base 1, the first conductor layer 2, and the second conductor layer 3 are collectively referred to as a ceramic circuit board 30.
  • a semiconductor element 4 is mounted on the first conductor layer 2 of the ceramic circuit board 30.
  • 1A and 1B show an example in which four semiconductor elements 4 are mounted.
  • a heat sink 10a is joined to the second conductor layer 3 of the ceramic circuit board 30 via a joining layer 5 that melts at a high temperature such as solder and solidifies when returned to room temperature.
  • the heat sink 10a has a third surface in contact with the bonding layer 5 and a fourth surface opposite to the third surface.
  • the planar portion of the convex portion 11 is referred to as a convex plane 15.
  • the convex portion 11 includes a quadrangular convex plane 15 and a first step wall surface 16 perpendicular to the convex plane 15 at the end.
  • the convex portion 11 is located inside the bonding layer 5, and as a result, the area of the convex plane 15 is the bonding area between the bonding layer 5 and the third surface of the heat sink 10a. Smaller than.
  • the first step portion 12 is a surface provided around the end of the convex portion 11, and the thickness of the heat sink 10 a at the first step portion 12 is the thickness of the heat sink 10 a at the convex portion 11. Thinner than thickness.
  • the first step portion 12 is a surface provided around the end of the convex portion 11, and the thickness of the heat sink 10 a corresponding to the first step portion 12 is the convex portion. 11 is thinner than the thickness of the heat sink 10a in the portion corresponding to 11.
  • the second step portion 13 is a surface provided around the end portion of the first step portion 12 with a second step wall surface 17 being another step wall surface parallel to the first step wall surface 16 interposed therebetween. The thickness of the heat sink 10a at the second step portion 13 is thinner than the thickness of the heat sink 10a at the first step portion 12.
  • the second step portion 13 is a surface provided around the end portion of the first step portion 12 with the second step wall surface 17 interposed therebetween, and is a portion corresponding to the second step portion 13.
  • the thickness of the heat sink 10a is further thinner than the thickness of the heat sink 10a corresponding to the first step portion 12.
  • the second step wall surface 17 described above exists between the surface of the first step portion 12 and the surface of the second step portion 13. That is, the second step wall surface 17 is connected to the end portion of the first step portion 12, and the second step portion 13 is connected to the end portion of the second step wall surface 17.
  • the bonding layer 5 is bonded to the convex portion 11 and the first step portion 12.
  • the peripheral edge portion 19 is sandwiched between the first step wall surface 16 and the third step wall surface 18 parallel to the second step wall surface 17 around the end of the second step portion 13. Is provided.
  • the peripheral edge 19 is on the same surface as the convex flat surface 15, and the thickness of the heat sink 10 a corresponding to the peripheral edge 19 is the same as the thickness of the heat sink 10 a corresponding to the convex 11. That is, the heat sink 10a according to the present embodiment cuts the first groove corresponding to the first step portion 12 and the second groove corresponding to the second step portion 13 on an Al plate having a predetermined thickness. Formed by taking out.
  • the depth of the second groove corresponding to the second step portion 13 is deeper than the depth of the first groove corresponding to the first step portion 12.
  • the thickness of the heat sink 10a at the portion corresponding to the peripheral portion 19 is the same as the thickness of the heat sink 10a at the portion corresponding to the convex portion 11, but the portion of the heat sink 10a at the portion corresponding to the second step portion 13 is used. It may be thicker than the thickness, and may be thinner than the thickness of the heat sink 10a corresponding to the convex portion 11.
  • a cooling fin 14 is provided on the fourth surface of the heat sink 10a.
  • the water jacket 20 which is a coolant channel housing that forms a coolant channel inside, wraps the fins 14 in order to bring the fins 14 into contact with the coolant that is the coolant. It is fixed.
  • the water jacket 20 is provided with an inlet 21 and an outlet 22 for the coolant, and the flow of the coolant is indicated by arrows in FIG.
  • the coolant entering from the inlet 21 passes through the water jacket 20 and exits from the outlet 22.
  • the heat generated in the ceramic circuit board 30 is transferred to the heat sink 10a and is transferred from the fins 14 of the heat sink 10a to the refrigerant, whereby the ceramic circuit board 30 is cooled.
  • the coolant flowing through the water jacket 20 that is the coolant channel housing is a coolant, and water, antifreeze, or the like is used.
  • a broken line A is a line indicating the position of the end portion (first step wall surface 16) of the convex plane 15 of the convex portion 11.
  • a broken line B is a line indicating the position of the end portion of the second conductor layer 3.
  • the broken line C is a line indicating the position of the end portion (second step wall surface 17) of the first step portion 12.
  • the broken line D is a line indicating the position of the end portion of the second step portion 13. Therefore, as apparent from FIG.
  • the end portion (broken line B) of the second conductor layer 3 is located outside the end portion (broken line A) of the convex plane 15 of the convex portion 11 and the second portion.
  • the end portion (dashed line C) of the surface of the first stepped portion 12 is further outside the end portion (dashed line C) of the first stepped portion 12 than the end portion (broken line B).
  • the end (broken line A) of the convex plane 15 of the convex portion 11 is 1 mm smaller from both ends (broken line C) of the first step portion 12 on both sides in the X-axis direction and the Y-axis direction. It is said.
  • the height of the convex portion 11 is 1 mm from the surface of the first step portion 12.
  • the surface of the second step portion 13 provided at the end portion (dashed line C) of the surface of the first step portion 12 has both end portions of the first step portion 12 on both sides in the X-axis direction and the Y-axis direction. It is assumed that the distance is increased by 1 mm outward from (broken line C).
  • the height of the step wall surface between the first step portion 12 and the second step portion 13 is 1 mm.
  • the distance to the end portion (dashed line D) of the two step portions 13 is the same 1 mm, but it is not always necessary to have the same size.
  • the distance from the end portion (dashed line C) of the first step portion 12 to the end portion (dashed line D) of the second step portion 13 is that the bonding layer 5 does not exist, so that the water jacket 20 and the heat sink 10a are fixed.
  • the distance may be smaller than the distance from the end of the convex portion 11 (broken line A) to the end of the first step portion 12 (broken line C).
  • the convex flat surface 15 of the convex-shaped part 11 is smaller, and the stress relaxation effect becomes high by making the convex-shaped part 11 higher.
  • the distance from the second step wall surface 17 to the end of the second stepped portion 13 is larger, and the height of the second step wall surface 17 is increased, so that the stress relaxation effect is enhanced.
  • FIG. 2A shows a view of the heat sink 10a of the semiconductor module 100 according to the present embodiment as viewed from above.
  • FIG. 2B is a cross-sectional view taken along the line BB in FIG.
  • FIG. 2C shows a cross-sectional view taken along the line CC of FIG.
  • an arc shape is used. This is because the effect of relaxing the stress is increased by increasing the thickness of the corner portion of the bonding layer 5 where the stress is most concentrated because the bonding distance is long.
  • the convex portion 11, the first step portion 12, and the second step portion 13 are manufactured by cutting, but the first step portion 12 and the first step portion 12 are formed by a method such as molding with a mold and two-layer bonding. There is no problem even if the two step portions 13 are formed.
  • Al is used as the material of the heat sink 10a, but a material such as Cu or Al—SiC may be used.
  • a material such as Cu or Al—SiC may be used.
  • Ni plating is applied on the heat sink 10a after the first step portion 12 is formed by cutting or the like to improve solder wettability.
  • the second step portion 13 may be formed by cutting or the like. Since the second step portion 13 formed by cutting or the like after Ni plating has poor solder wettability, the shape of the bonding layer 5 can be controlled more easily, and the bonding layer 5 having a good shape is formed. be able to.
  • solder As a material of the bonding layer 5, a case where solder is used as an example and is supplied to the third surface of the heat sink 10a by screen printing will be described in detail below. It does not limit regarding a supply method, The supply by a dispenser, an inkjet, or a solder sheet may be sufficient. In the present embodiment, the supply amount is adjusted so that the solder height after the solder bonding is performed becomes an average of 0.3 mm. Needless to say, the material of the bonding layer 5 is not limited to solder as long as it can be melted when heated to high temperature and solidified and bonded when returned to room temperature. The member used for the bonding layer 5 may not be solder, for example, Ag paste or conductive adhesive.
  • the lead-free solder when used as the solder material for the bonding layer 5, the lead-free solder has a high melting point, and strain applied to the end of the bonding layer 5 when the temperature is returned to room temperature after bonding increases. By using, a further stress relaxation effect can be obtained.
  • the strain concentration generated at the end of the bonding layer 5 when the temperature is returned to room temperature is the linear expansion coefficient of the ceramic circuit board 30 and the heat sink.
  • the bonding layer 5 is bonded to the convex portion 11 and the first step portion 12 of the heat sink 10a. To do.
  • the bonding layer 5 is not bonded to the second step portion 13.
  • the thickness of the bonding layer 5 at the position corresponding to the first step portion 12 of the heat sink 10a is larger than the thickness of the bonding layer 5 at the position corresponding to the convex plane 15 of the convex portion 11 of the heat sink 10a. It is configured to be thick. With this configuration, an effect of increasing the reliability of the bonding layer 5 works. In particular, the stress relief effect is obtained by making the corner portion of the first step portion 12 into an arc shape.
  • solder When solder is used for the bonding layer 5, Cu is used for the first conductor layer 2 and the second conductor layer 3, and Al is used for the heat sink 10a, Cu used for the first conductor layer 2 and the second conductor layer 3 is used.
  • the thermal conductivity of is about 400 W / mK, which is higher than the thermal conductivity of Al used for the heat sink 10a (about 200 W / mK).
  • the thermal conductivity of the solder that becomes the bonding layer 5 is usually about 50 W / mK, which is smaller than the thermal conductivity of Cu and Al. Therefore, although the bonding layer 5 is a metal, if the thickness is large, there is a problem that the thermal resistance from the semiconductor element 4 to the heat sink 10a is increased.
  • the temperature near the first step portion 12 around the heat sink 10a is higher than the vicinity of the convex portion 11 of the heat sink 10a, and the temperature tends to decrease. . Therefore, in order to lower the temperature of the entire bonding layer 5 more uniformly, as described above, the thickness of the bonding layer 5 at a position corresponding to the convex plane 15 of the convex portion 11 of the heat sink 10a that becomes high temperature is set. It is desirable that the heat sink 10a is configured to be thinner than the thickness of the bonding layer 5 at a position corresponding to the first step portion 12 of the heat sink 10a.
  • the ceramic circuit board 30 on which the semiconductor element 4 is mounted is connected to the third surface of the heat sink 10a to which solder is supplied. After mounting on top, solder reflow is performed to heat up to 250 ° C. and soldering is performed.
  • the fillet of the bonding layer 5 after the bonding with the solder is held on the surface of the first step portion 12, and the second step portion 13. Solder does not flow out on the surface. Therefore, it is not necessary to use a solder resist or the like when joining the ceramic circuit board 30 and the heat sink 10a, and the manufacturing process is facilitated.
  • the angle formed by the surface of the first step portion 12 and the second step wall surface 17 is 90 degrees. That is, the contact angle of the bonding layer 5 is added by 90 degrees at the end portion of the first step portion 12 as compared with the surface of the first step portion 12. Thereby, the solder does not flow out to the second step portion 13 until the contact angle of the bonding layer 5 reaches the contact angle +90 degrees at the end portion of the first step portion 12, and the fillet of the bonding layer 5 is It is held at the end of the first step portion 12.
  • the contact angle between the bonding layer 5 and the heat sink 10a is 30 degrees or more, if the bonding layer 5 is spread by wetting, wetting spreads by 30 degrees or more on the surface of the first step portion 12.
  • the end of the first step 12 is not 120 degrees or more, it cannot spread over the end of the first step 12.
  • step-difference part 12 and the 2nd step wall surface 17 comprise is 90 degree
  • the smoother the shape of the fillet of the bonding layer 5 can prevent the amount of strain of the bonding layer 5 from locally increasing. Therefore, according to the present embodiment, since the bonding layer 5 having a stable shape can be formed automatically, the period during which the reliability of the semiconductor module 100 can be guaranteed can be extended.
  • FIG. 3 is a cross-sectional view showing another example of the joined state of the ceramic circuit board 30 and the heat sink 10a according to the present embodiment.
  • the bonding state between the ceramic circuit board 30 and the heat sink 10a is most preferably a state in which the bonding layer 5 extends to the end of the first step portion 12 as shown in FIG.
  • the bonding layer 5 may not spread to the end of the first step portion 12 as shown in FIG.
  • the bonding layer 5 may extend beyond the first step portion 12 to the second step wall surface 17 or the second step portion 13. Also in this case, there is no problem as long as the solder does not spread over the entire second step portion 13, and the effect of the present invention can be obtained.
  • FIG. 4 is a cross-sectional view of an inverter device 40 incorporating the semiconductor module 100 according to the present embodiment.
  • the inverter module 40 is formed by the semiconductor module 100 of the present embodiment being sealed with the mold resin 51 integrally with the control substrate 50.
  • FIG. 5 shows a cross-sectional view of a modified example of the semiconductor module 101 in the case of having a plurality of ceramic circuit boards 30a, 30b, and 30c on which the semiconductor element 4 is mounted.
  • FIG. 5 shows an example in which four semiconductor elements 4 are mounted on one ceramic circuit board 30a, 30b, 30c, as in FIGS. 1 (a) and 1 (b).
  • three ceramic circuit boards 30a, 30b, and 30c are joined adjacent to the same heat sink 10b.
  • the arrows in FIG. 5 indicate the flow of the coolant as in FIG. In the heat sink 10b shown in FIG.
  • convex portions 11a, 11b, and 11c are provided so as to correspond to the ceramic circuit boards 30a, 30b, and 30c, and the first portions corresponding to the periphery of the convex portions 11a, 11b, and 11c.
  • One step portion 12a, 12b, 12c and second step portion 13a, 13b, 13c are provided. That is, the heat sink 10b is formed by cutting out a first groove corresponding to the first step portion 12 and a second groove corresponding to the second step portion 13 on an Al plate having a predetermined thickness. .
  • a peripheral edge 19 is provided in the periphery of the end of the step 13a corresponding to the ceramic circuit board 30a, the periphery of the end of the step 13b corresponding to the ceramic circuit board 30b, and the periphery of the end of the step 13c corresponding to the ceramic circuit board 30c. That is, a peripheral edge portion 19 having the same plane as the convex portions 11a, 11b, and 11c is provided between the second step portion 13a corresponding to the ceramic circuit board 30a and the second step portion 13b corresponding to the ceramic circuit board 30b. A peripheral edge portion 19 is provided between the second step portion 13b corresponding to the ceramic circuit board 30b and the second step portion 13bc corresponding to the ceramic circuit board 30c.
  • the heat sink 10b is greatly warped due to the large number of the ceramic circuit boards 30a, 30b, and 30c.
  • the compressive stress generated at the end of the bonding layer 5 is Since it is absorbed by the second step portions 13a, 13b, and 13c, the reliability of the semiconductor module 101 can be improved.
  • the semiconductor module shown in the first embodiment of the present invention has the first conductor layer on the first surface of the ceramic base, and the second side opposite to the first surface of the ceramic base.
  • a ceramic circuit board having a second conductor layer on the surface, a semiconductor element mounted on the first conductor layer, a third surface and a fourth surface opposite to the third surface,
  • a third surface of the heat sink is provided at a convex portion having a convex plane having an area smaller than a bonding area with the bonding layer, and an end portion of the convex portion, and corresponds to the third surface of the heat sink.
  • the thickness of the heat sink in the portion is smaller than the thickness of the heat sink in the portion corresponding to the convex portion.
  • a bonding layer having a stepped portion and a second stepped portion provided at an end of the first stepped portion, wherein the thickness of the heat sink of the corresponding portion is thinner than the portion corresponding to the first stepped portion; Is joined at the convex portion of the heat sink and the first stepped portion.
  • FIG. FIG. 6A shows a view of the heat sink 10c of the present embodiment as viewed from above.
  • FIG. 6B is a cross-sectional view taken along the line DD of FIG.
  • FIG. 6C shows a cross-sectional view taken along line EE of FIG.
  • the first step portion 12 and the second step portion 13 are provided outside the four sides of the quadrangular convex plane 15 of the convex portion 11.
  • the first step portion 12, the second step portion 13, and the peripheral portion 19 are outside the two sides facing each other among the four sides of the quadrangular convex plane 15 of the convex portion 11.
  • the heat sink 10c is a first plate corresponding to the first stepped portion 12 only on the outer side of the two opposite sides of the four sides of the rectangular convex plane 15 of the convex portion 11 on the Al plate having a predetermined thickness. And a second groove corresponding to the second step portion 13 are formed.
  • the first step portion 12, the second step portion 13 and the peripheral portion 19 are provided outside the two opposing sides parallel to the Y-axis direction of the quadrangular convex plane 15, and the X-axis direction is provided.
  • the semiconductor module of the present embodiment is the same as the semiconductor module 100 of the first embodiment except for the structure of the heat sink 10c.
  • the semiconductor module having the heat sink 10c has two sides of the convex plane 15 extending in a direction orthogonal to the direction in which the warpage increases when the ceramic circuit board 30 on which the semiconductor element 4 is mounted is joined at a high temperature and then returned to room temperature.
  • the first step portion 12, the second step portion 13, and the peripheral portion 19 are provided only on the outer sides of the two opposite sides of the four sides of the quadrangular convex plane 15 of the convex portion 11. Therefore, the heat sink 10c can be formed by extrusion molding. Therefore, according to the semiconductor module of the present embodiment, an effect that manufacture and assembly are facilitated can be obtained.
  • the first step portion and the second step portion are formed only on the outer sides of the two opposite sides of the four sides of the convex surface of the quadrangular convex portion. Is done. Thereby, the reliability of the semiconductor module having the heat sink can be further improved. Moreover, since the semiconductor module shown in this Embodiment 2 can form a heat sink by extrusion molding, the effect that manufacture and an assembly of a semiconductor module become easy is acquired.
  • FIG. 7A shows a view of the heat sink 10d of the present embodiment as viewed from above.
  • FIG. 7B is a cross-sectional view taken along the line FF in FIG.
  • FIG. 7C shows a cross-sectional view taken along the line GG in FIG.
  • the first step portion 12 and the second step portion 13 are provided only on the outer sides of two opposite sides of the four sides of the quadrangular convex plane 15 of the convex portion 11, and It is not provided outside the two opposing sides.
  • the heat sink 10d is a first plate corresponding to the first step portion 12 only on the outer side of two opposite sides of the four sides of the quadrangular convex plane 15 of the convex portion 11 on the Al plate having a predetermined thickness. And a second groove corresponding to the second step portion 13 are formed.
  • FIG. 6 shows an example in which the first stepped portion 12 and the second stepped portion 13 are provided outside two opposing sides of the quadrangular convex plane 15 that are parallel to each other in the Y-axis direction.
  • the heat sink 10d of the present embodiment is different from the heat sink 10c shown in the second embodiment in that the peripheral edge portion 19 is not provided outside the end portion of the second step portion 13.
  • Other structures are the same as those of the semiconductor module shown in the second embodiment.
  • the ceramic circuit board 30 on which the semiconductor element 4 is mounted is bonded at a high temperature and then the direction perpendicular to the direction in which the warpage increases when the temperature is returned to the normal temperature, as in the second embodiment.
  • the heat sink 10d can be formed by extrusion. Therefore, according to the semiconductor module of the present embodiment, it is possible to obtain an effect that the semiconductor module can be easily manufactured and assembled.
  • the first step portion and the second step portion are only on the outer sides of the two opposite sides of the four sides of the quadrangular convex plane of the convex portion 11. It is formed. Thereby, the reliability of the semiconductor module having the heat sink can be further improved. Moreover, since the semiconductor module shown in this Embodiment 3 can form a heat sink by extrusion molding, the effect that manufacture and an assembly of a semiconductor module become easy is acquired.
  • the heat sink 10d shown in the third embodiment is different from the heat sink 10c shown in the second embodiment in that the peripheral edge portion 19 is not provided outside the end of the second stepped portion 13.
  • the peripheral edge portion 19 may not be provided outside the second stepped portion 13.
  • the refrigerant flowing in the refrigerant flow path housing is a cooling liquid, but it is not necessarily a liquid and may be a gas such as air.

Abstract

 本発明は、セラミック回路基板30をはんだ等の接合層5を介してヒートシンク10aに接合する際に発生する反りを矯正する際に接合層5に加わる歪集中を緩和でき、信頼性保証期間が長くなるパワー半導体モジュールを得ることを目的とする。 本発明に係る半導体モジュール100においては、ヒートシンク10aは、凸平面15が接合層5との接合面積よりも小さい面積を有する凸状部11と、凸状部11の端部に設けられ、対応する部分のヒートシンク10aの厚さが凸状部11に対応する部分のヒートシンク10aの厚さよりも薄い第1の段差部12と、第1の段差部12の端部に設けられ、対応する部分のヒートシンク10aの厚さが第1の段差部12に対応する部分よりもさらに薄い第2の段差部13とを有し、接合層が、ヒートシンクの凸状部11及び第1の段差部12とで接合する。

Description

半導体モジュール及びインバータ装置
 この発明は、導体層を有するセラミック回路基板を用いて回路を構成する半導体モジュール、ならびに半導体モジュールを用いたインバータ装置に関するものである。
 従来の半導体モジュールでは、半導体素子が実装されたセラミック回路基板をはんだ等の接合層を介してヒートシンクに接合した後、接合時の高温から常温に戻した際に接合層の端部に熱応力に起因した歪集中が生じる。この歪集中を緩和するために、ヒートシンクには、接合層との接合面積よりも小さい面積を有する凸状部が設けられている(例えば、特許文献1参照)。この構成により、歪集中が起こる接合層の端部を厚くすることで、歪集中を緩和するようにしていた。
特開平11-265976号公報
 しかしながら、従来の半導体モジュールにおいては、接合層の端部で生じる歪集中は緩和されたものの、接合時の高温から常温に戻すと、依然として線膨張係数の差から半導体モジュール全体としてヒートシンクの反りが発生する。ヒートシンクが反っていると、その後工程において冷媒流路用の筐体をヒートシンクの端部に固着する際に、ヒートシンクの反りを矯正する必要がある。冷媒流路用の筐体とヒートシンクとの固着時にヒートシンクの反りを矯正しようとすると、セラミック回路基板とヒートシンク間の接合層の端部に歪集中が生じ、信頼性保障期間が短くなるという問題があった。
 この発明は、上述のような課題を解決するためになされたもので、信頼性が向上した半導体モジュールを得ることである。
 この発明に係る半導体モジュールは、セラミック基材の第1の面に第1の導体層を有し、セラミック基材の第1の面とは反対側の第2の面に第2の導体層を有するセラミック回路基板と、第1の導体層に実装された半導体素子と、第3の面と第3の面の反対側の第4の面とを有し、第2の導体層と第3の面が接合層を介して接合されたヒートシンクと、ヒートシンクの第4の面に設けられたフィンと、フィンを包み込むように、ヒートシンクの端部の周囲に固着された冷媒流路筐体とを備え、ヒートシンクの第3の面は、凸平面が接合層との接合面積よりも小さい面積を有する凸状部と、凸状部の端部に設けられ、対応する部分のヒートシンクの厚さが凸状部に対応する部分のヒートシンクの厚さよりも薄い第1の段差部と、第1の段差部の端部に設けられ、対応する部分のヒートシンクの厚さが第1の段差部に対応する部分よりもさらに薄い第2の段差部とを有し、接合層は、ヒートシンクの凸状部及び第1の段差部とで接合することを特徴とするものである。
 また、この発明に係るインバータ装置は、この発明に係る半導体モジュールを用いて構成したものである。
 この発明は、冷媒流路筐体とヒートシンクとを固着する際に、接合層の端部に加わる応力を緩和することが可能である。これにより、信頼性が向上した半導体モジュール及びインバータ装置を得ることができる。
この発明の実施の形態1に係る半導体モジュールを示す図である。 この発明の実施の形態1に係る半導体モジュールのヒートシンクを示す図である。 この発明の実施の形態1に係る半導体モジュールのセラミック回路基板とヒートシンクを示す図である。 この発明の実施の形態1に係る半導体モジュールを用いたインバータ装置を示す図である。 この発明の実施の形態1に係る変形例である複数のセラミック回路基板を有する半導体モジュールを示す図である。 この発明の実施の形態2に係る半導体モジュールのヒートシンクを示す図である。 この発明の実施の形態3に係る半導体モジュールのヒートシンクを示す図である。
実施の形態1.
 図1(a)は、本実施の形態に係る半導体モジュール100の断面図である。図1(b)は、図1(a)に示す半導体モジュール100を上から見た図である。また、図1(a)は、図1(b)のA-Aでの断面図となっている。図1に示すように、セラミック基材1は、第1の面としての一方の面に第1の導体層2が、第1の面と反対側の第2の面としてのもう一方の面に第2の導体層3が設けられている。以下では、セラミック基材1、第1の導体層2及び第2の導体層3を併せてセラミック回路基板30と呼ぶ。このセラミック回路基板30の第1の導体層2上には、半導体素子4が実装されている。図1(a)及び図1(b)では、半導体素子4が4つ実装されている例を図示している。
 セラミック回路基板30の第2の導体層3には、例えば、はんだ等の高温で溶解し常温に戻すと固化する接合層5を介してヒートシンク10aが接合されている。ヒートシンク10aは、接合層5と接している第3の面と、第3の面の反対側の第4の面とを有している。接合層5と接している側であるヒートシンク10aの第3の面には、凸状部11、第1の段差部12、第2の段差部13及び周縁部19が設けられている。
 凸状部11の平面部分を、凸平面15と呼ぶこととする。凸状部11は、四角形の凸平面15と端部の凸平面15に垂直な第1段壁面16とから成っている。図1から明らかなように、凸状部11は、接合層5よりも内側となっており、その結果、凸平面15の面積は、接合層5とヒートシンク10aの第3の面との接合面積よりも小さい。第1の段差部12は、凸状部11の端部の周囲に設けられた面であって、第1の段差部12でのヒートシンク10aの厚さは、凸状部11でのヒートシンク10aの厚さよりも薄い。言い換えると、第1の段差部12は、凸状部11の端部の周囲に設けられた面であって、第1の段差部12に対応する部分のヒートシンク10aの厚さは、凸状部11に対応する部分のヒートシンク10aの厚さよりも薄い。第2の段差部13は、第1の段差部12の端部の周囲に第1段壁面16と平行なもう1つの段壁面である第2段壁面17を挟んで設けられた面であって、第2の段差部13でのヒートシンク10aの厚さは、第1の段差部12でのヒートシンク10aの厚さよりもさらに薄い。言い換えると、第2の段差部13は、第1の段差部12の端部の周囲に第2段壁面17を挟んで設けられた面であって、第2の段差部13に対応する部分のヒートシンク10aの厚さは、第1の段差部12に対応する部分のヒートシンク10aの厚さよりもさらに薄い。また、第1の段差部12の面と第2の段差部13の面との間には、先に述べた第2段壁面17がある。すなわち、第1の段差部12の端部には第2段壁面17が繋がり、さらに第2段壁面17の端部に第2の段差部13が繋がっている。ここで、接合層5は、凸状部11及び第1の段差部12に接合している。
 本実施の形態の形態に係るヒートシンク10aにおいては、第2の段差部13の端部の周囲に第1段壁面16及び第2段壁面17と平行な第3段壁面18を挟んで周縁部19が設けられている。周縁部19は、凸平面15と同じ面上にあり、周縁部19に対応する部分のヒートシンク10aの厚さは、凸状部11に対応する部分のヒートシンク10aの厚さと同一である。すなわち、本実地の形態に係るヒートシンク10aは、所定の厚さのAlの板に第1の段差部12に対応する第1の溝と第2の段差部13に対応する第2の溝を削り出すことによって形成される。従って、第2の段差部13に対応する第2の溝の深さは、第1の段差部12に対応する第1の溝の深さより深い。なお、周縁部19に対応する部分のヒートシンク10aの厚さは、凸状部11に対応する部分のヒートシンク10aの厚さと同一としたが、第2の段差部13に対応する部分のヒートシンク10aの厚さより厚ければよく、凸状部11に対応する部分のヒートシンク10aの厚さより薄くてもよい。
 ヒートシンク10aの第4の面には、冷却用のフィン14が設けられている。ヒートシンク10aの端部の周囲には、フィン14を冷媒である冷却液に接触させるため、内部に冷媒の流路を形成する冷媒流路筐体であるウォータージャケット20が、フィン14を包み込むように固着されている。ウォータージャケット20には、冷却液の入口21及び出口22が設けてあり、図1(a)では冷却液の流れを矢印で示している。入口21から入った冷却液は、ウォータージャケット20内を通って、出口22から出る。セラミック回路基板30で発生した熱が、ヒートシンク10aに伝わり、ヒートシンク10aのフィン14から冷媒に伝わることによって、セラミック回路基板30が冷却される。本実施の形態に係る半導体モジュール100においては、冷媒流路筐体であるウォータージャケット20を流れる冷媒は、冷却液であって、水または不凍液等が用いられる。
 次に、図1(a)の破線A、破線B、破線C及び破線Dについて説明する。破線Aは、凸状部11の凸平面15の端部(第1段壁面16)の位置を示す線である。破線Bは、第2の導体層3の端部の位置を示す線である。破線Cは、第1の段差部12の端部(第2段壁面17)の位置を示す線である。破線Dは、第2の段差部13の端部の位置を示す線である。したがって、図1(a)から明らかなように、凸状部11の凸平面15の端部(破線A)よりも外側に第2の導体層3の端部(破線B)が、且つ第2の導体層3の端部(破線B)よりも外側に第1の段差部12の面の端部(破線C)が、さらに第1の段差部12の端部(破線C)よりも外側に第2の段差部13の端部(破線D)がある。
 本実施の形態における、凸状部11、第1の段差部12及び第2の段差部13の寸法の一例について説明する。凸状部11の凸平面15の端部(破線A)は、X軸方向及びY軸方向の各辺共に第1の段差部12の両端部(破線C)から内側にそれぞれ1mmずつ小さくしたものとしている。凸状部11の高さは、第1の段差部12の面から1mmとしている。さらに、第1の段差部12の面の端部(破線C)に設けた第2の段差部13の面は、X軸方向及びY軸方向の各辺共に第1の段差部12の両端部(破線C)から外側にそれぞれ1mmずつ大きくしたものとしている。また、第1の段差部12と第2の段差部13との間の段壁面の高さは1mmとしている。
 本実施の形態では、凸状部11の端部(破線A)から第1の段差部12の端部(破線C)までの距離及び第1の段差部12の端部(破線C)から第2の段差部13の端部(破線D)までの距離を同じ1mmとしたが、必ずしも同じ大きさにする必要はない。第1の段差部12の端部(破線C)から第2の段差部13の端部(破線D)までの距離は、接合層5が存在しないため、ウォータージャケット20とヒートシンク10aの固着時の反りの矯正による歪集中を緩和出来ればよく、凸状部11の端部(破線A)から第1の段差部12の端部(破線C)までの距離より小さくしても良い。なお、凸状部11の凸平面15はより小さく、凸状部11はより高くすることで応力緩和効果は高くなる。また、第2段壁面17から第2の段差部13の端部までの距離はより大きく、第2段壁面17の高さはより高くすることで、応力緩和効果は高くなる。さらに、接合層5の端部に加わる接合後の歪集中を低減させるには、凸状部11の凸平面15の端部(破線A)と第2の導体層3の端部(破線B)の距離が大きく、第2の導体層3の端部(破線B)と第1の段差部12の端部(破線C)の距離が大きい方が良い。また、ウォータージャケット20とヒートシンク10aの固着時の反りの矯正による接合層5の端部に生じる歪集中を低減させるには、第2の段差部13でのヒートシンク10aの厚さが薄い方が良い。
 図2(a)に、本実施の形態に係る半導体モジュール100のヒートシンク10aを上から見た図を示す。図2(b)は、図2(a)のB-Bでの断面図を示す。図2(c)は、図2(a)のC-Cでの断面図を示す。図2(a)に示すように、凸状部11、第1の段差部12及び第2の段差部13の、それぞれのX軸方向の辺及びY軸方向の辺が交差するコーナー部分は、本実施の形態では円弧形状としている。これは、接合距離が長いために最も応力が集中する接合層5のコーナー部分の厚みを増やすことで応力を緩和する効果を高めるためである。
 本実施の形態では凸状部11、第1段差部12及び第2段差部13は削り出しにより作製したが、金型による成型、2層貼り合わせなどの方法により第1の段差部12及び第2の段差部13を形成してもなんら問題はない。
 本実施の形態では、ヒートシンク10aの材質としてAlを用いたが、Cu又はAl-SiCといった材質を用いても良い。ヒートシンク10aの材質としてAlを用い、接合層5の材質としてはんだを用いる場合、削り出し等によって第1段差部12を形成した後のヒートシンク10a上に、はんだの濡れ性向上のため、Niめっきを施した後、削り出し等によって第2の段差部13を形成するとよい。Niめっき後に削り出し等によって形成した第2の段差部13は、はんだの濡れ性が悪いので、接合層5の形状をより容易に制御することができ、良好な形状の接合層5を形成することができる。
 接合層5の材質として、以下では一例としてはんだを用い、ヒートシンク10aの第3の面にスクリーン印刷にて供給した場合について詳細に説明する。供給方法に関しては限定されるものではなく、ディスペンサー、インクジェット、または、はんだシートによる供給であってもよい。本実施の形態では、供給量は、はんだ接合実施後のはんだ高さが平均0.3mmとなるように調整した。また、接合層5の材質は、高温にすると溶解し、常温に戻すと固化して接合できるものであれば、はんだに限られるものではないことは言うまでもない。接合層5に用いる部材は、はんだでなくても良く、例えば、Agペーストまたは導電性接着剤でも良い。また、接合層5にはんだの材質として鉛フリーはんだを用いると、鉛フリーはんだは融点が高く、接合後、常温に戻した際の接合層5の端部に加わる歪が大きくなるので、本発明を用いることによって一層の応力緩和の効果を得られる。
 半導体素子4が実装されたセラミック回路基板30を、高温でヒートシンク10aに接合した後、常温に戻した際に接合層5の端部に生じる歪集中は、セラミック回路基板30の線膨張係数とヒートシンク10aの線膨張係数の差が大きいほど大きくなり、接合層5の厚みが小さいほど大きくなる。本実施の形態は、凸状部11と第1の段差部12及び第2の段差部13を設けたことにより、接合層5がヒートシンク10aの凸状部11及び第1の段差部12と接合する。一方、メカニズムについては後述するが、接合層5は第2の段差部13とは接合しない。その結果、ヒートシンク10aの凸状部11の凸平面15に対応する位置の接合層5の厚さよりも、ヒートシンク10aの第1の段差部12に対応する位置の接合層5の厚さの方が厚くなるように構成されている。この構成により、接合層5の信頼性を高める作用が働く。特に、第1段差部12のコーナー部分を円弧形状にすることでさらに応力緩和の効果を得ている。
 接合層5にはんだを用い、第1の導体層2及び第2の導体層3にCuを用い、ヒートシンク10aにAlを用いる場合、第1の導体層2及び第2の導体層3に用いるCuの熱伝導率はおよそ400W/mKであり、ヒートシンク10aに用いるAlの熱伝導率(およそ200W/mK)と比較して高い値を有する。それに対し、接合層5となるはんだの熱伝導率は、通常、Cu及びAlの熱伝導率よりも小さい50W/mK程度である。したがって、接合層5は金属とは言え、厚みが大きいと半導体素子4からヒートシンク10aへの熱抵抗を大きくしてしまうという問題がある。しかしながら、接合時の高温から常温に戻す工程において、ヒートシンク10aの凸状部11の付近に比べて、その周辺の第1の段差部12の付近の方が、放熱性が大きいため温度が下がりやすい。したがって、接合層5全体の温度をより均一に下げるためには、先に述べたように、高温となるヒートシンク10aの凸状部11の凸平面15に対応する位置の接合層5の厚さを、ヒートシンク10aの第1の段差部12に対応する位置の接合層5の厚さよりも薄くなるように構成した方が望ましい。以上のように構成したので、接合層5の凸状部11の付近と周囲の第1の段差部12付近との温度差が大きくなることを抑制でき、応力を緩和し、より高信頼性を実現できる。
 本実施の形態では、接合層5としてセラミック回路基板30とヒートシンク10aのはんだによる接合を実施する際に、半導体素子4を搭載したセラミック回路基板30を、はんだを供給したヒートシンク10aの第3の面上に搭載した後、はんだリフローを実施することで250℃まで加熱し、はんだによる接合を実施する。本実施の形態によると、メカニズムについては後述するが、はんだによる接合を実施した後の接合層5のフィレットは、第1の段差部12の面上で保持されており、第2の段差部13の面上には、はんだが流出しない。したがって、セラミック回路基板30とヒートシンク10aの接合の際に、ソルダレジストなどを用いる必要がなくなり、製造工程が容易になるという効果がある。
 本実施の形態によると、ヒートシンク10aにはソルダレジストを設ける必要がない理由を説明する。本実施の形態では、第1の段差部12の面と第2段壁面17が成す角は90度としている。つまり、第1の段差部12の端部では、第1の段差部12の面上と比較して接合層5の接触角が90度加算されることになる。これにより、接合層5の接触角が第1の段差部12の端部における接触角+90度になるまでは第2の段差部13まではんだが流出することがなく、接合層5のフィレットは、第1の段差部12の端部で保持される。例えば、接合層5とヒートシンク10aの接触角が30度以上になると、接合層5が濡れ広がるとした場合、第1の段差部12の面上では30度以上で濡れが広がる。これ対し、第1の段差部12の端部では120度以上にならなければ、第1の段差部12の端部を越えて濡れ広がることができない。なお、第1の段差部12の面と第2段壁面17が成す角は、90度以上とすることで、接合層5のフィレットの形状の保持に関してより高い効果が得られる。
 接合層5のフィレットの形状がなめらかな程、接合層5の歪量が局所的に大きくなる事を防止できる。したがって、本実施の形態によれば、安定した形状の接合層5を自動的に形成できるため、半導体モジュール100の信頼性を保証できる期間を長くできる。
 図3は、本実施の形態に係るセラミック回路基板30とヒートシンク10aの接合状態の別の例を示す断面図である。セラミック回路基板30とヒートシンク10aの接合状態としては、図1(a)に示すように接合層5が第1の段差部12の端部まで広がった状態が最も好ましい。しかしながら、接合層5の供給量のばらつき等によって、図3に示すように、第1の段差部12の端部まで接合層5が広がらない場合もある。第1の段差部12に全くはんだがないという事象が発生しない限り、問題はなく、本発明の効果を得ることができる。また、接合層5が第1の段差部12を越えて第2段壁面17または第2の段差部13まで広がってしまう場合もある。この場合も、第2の段差部13の全てにはんだが広がらない限り、問題はなく、本発明の効果を得ることができる。
 図4は、本実施の形態に係る半導体モジュール100を組み込んだインバータ装置40の断面図である。図4において、本実施の形態の半導体モジュール100が制御基板50と一体的にモールド樹脂51で封止することによってインバータ装置40を形成している。本実施の形態の半導体モジュール100をインバータ装置40に組み込むことによって、インバータ装置40の信頼性を向上させることが可能である。
 次に、本実施の形態の変形例を説明する。図5に、半導体素子4が実装された複数のセラミック回路基板30a、30b、30cを有する場合の半導体モジュール101の変形例の断面図を示す。図5には、図1(a)及び図1(b)と同様に、1つのセラミック回路基板30a、30b、30cには半導体素子4が4つ実装されている例を図示している。また、本実施の形態の変形例では、図5に示すように、同一のヒートシンク10bに対して隣接して3つのセラミック回路基板30a、30b、30cを接合した。図5における矢印は、図1と同様に冷却液の流れを示している。図5に示すヒートシンク10bにおいては、各セラミック回路基板30a、30b、30cに対応するように凸状部11a、11b、11cが設けられ、各凸状部11a、11b、11cの周囲に対応する第1の段差部12a、12b、12c及び第2の段差部13a、13b、13cが設けられている。すなわち、ヒートシンク10bは、所定の厚さのAlの板に第1の段差部12に対応する第1の溝と第2の段差部13に対応する第2の溝を削り出すことによって形成される。セラミック回路基板30aに対応する段差部13aの端部の周辺、セラミック回路基板30bに対応する段差部13bの端部の周辺、及びセラミック回路基板30cに対応する段差部13cの端部の周辺には、周縁部19が設けられている。すなわち、セラミック回路基板30aに対応する第2段差部13aとセラミック回路基板30bに対応する第2段差部13bとの間には、凸状部11a、11b、11cと同じ平面の周縁部19が設けられ、セラミック回路基板30bに対応する第2段差部13bとセラミック回路基板30cに対応する第2段差部13bcの間には、周縁部19が設けられている。ここで、セラミック回路基板30a、30b、30cの接合時に高温から常温に戻す際、セラミック回路基板30a、30b、30cの数が多い分、ヒートシンク10bには大きな反りが発生する。しかしながら、大きな反りが発生している状態のヒートシンク10bをウォータージャケット20に固着する際に加圧ツールで反りを矯正しながら溶接を実施したとしても、接合層5の端部に発生した圧縮応力は第2の段差部13a、13b、13cで吸収されるので、半導体モジュール101の信頼性を向上することができる。
 以上のとおり、本発明の実施の形態1に示す半導体モジュールは、セラミック基材の第1の面に第1の導体層を有し、セラミック基材の第1の面とは反対側の第2の面に第2の導体層を有するセラミック回路基板と、第1の導体層に実装された半導体素子と、第3の面と第3の面の反対側の第4の面とを有し、第2の導体層と第3の面が接合層を介して接合されたヒートシンクと、ヒートシンクの第4の面に設けられたフィンと、フィンを包み込むように、ヒートシンクの周端部に固着された冷媒流路筐体と、を備え、ヒートシンクの第3の面は、凸平面が接合層との接合面積よりも小さい面積を有する凸状部と、凸状部の端部に設けられ、対応する部分のヒートシンクの厚さが凸状部に対応する部分のヒートシンクの厚さよりも薄い第1の段差部と、第1の段差部の端部に設けられ、対応する部分のヒートシンクの厚さが第1の段差部に対応する部分よりもさらに薄い第2の段差部とを有し、接合層は、ヒートシンクの凸状部及び第1の段差部とで接合するものである。これによって、冷媒流路筐体とヒートシンクとを固着する際に、接合層の端部に加わる応力を緩和することが可能であり、信頼性が向上した半導体モジュールを得ることができる。また、本発明の実施の形態1に示す半導体モジュールを用いてインバータ装置を構成することによって、インバータ装置の信頼性を向上することができる。
実施の形態2.
 図6(a)に、本実施の形態のヒートシンク10cを上から見た図を示す。図6(b)は、図6(a)のD-Dでの断面図を示す。図6(c)は、図6(a)のE-Eでの断面図を示す。実施の形態1に示すヒートシンク10a、10bにおいては、凸状部11の四角形の凸平面15の4辺の外側に第1の段差部12及び第2の段差部13を設けた。本実施の形態に示すヒートシンク10cでは、第1の段差部12、第2の段差部13および周縁部19が、凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに設けられているが、もう一方の対向する2辺の外側には設けられていない。すなわち、ヒートシンク10cは、所定の厚さのAlの板に、凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに第1の段差部12に対応する第1の溝と第2の段差部13に対応する第2の溝を削り出すことによって形成される。図6に示すヒートシンク10cでは、四角形の凸平面15のY軸方向に平行な対向する2辺の外側に第1の段差部12、第2の段差部13及び周縁部19を設け、X軸方向に平行な対向する2辺の外側には第1の段差部12、第2の段差部13及び周縁部19を設けていない例を示している。本実施の形態の半導体モジュールは、ヒートシンク10cの構造以外は、実施の形態1の半導体モジュール100と同じである。ヒートシンク10cを有する半導体モジュールは、半導体素子4が実装されたセラミック回路基板30を高温で接合した後、常温に戻した際に反りが大きくなる方向と直交する方向に伸びる凸平面15の2辺の外側のみに第1の段差部12及び第2の段差部13を設けることで、ヒートシンク10cを有する半導体モジュールの信頼性を保証できる期間をより長くできる。
 なお、本実施の形態では、第1の段差部12、第2の段差部13及び周縁部19を凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに設けたため、押出し成形によりヒートシンク10cを形成することができる。したがって、本実施の形態の半導体モジュールによると、製造、組立が容易になるという効果が得られる。
 以上のとおり、本実施の形態2に示す半導体モジュールは、第1の段差部及び第2の段差部は、凸状部の四角形の凸平面の4辺のうち対向する2辺の外側のみに形成される。これによって、ヒートシンクを有する半導体モジュールの信頼性をより向上することができる。また、本実施の形態2に示す半導体モジュールは、押出し成形によってヒートシンクを形成することができるので、半導体モジュールの製造、組立が容易になるという効果が得られる。
実施の形態3.
 図7(a)に、本実施の形態のヒートシンク10dを上から見た図を示す。図7(b)は、図7(a)のF-Fでの断面図を示す。図7(c)は、図7(a)のG-Gでの断面図を示す。本実施の形態のヒートシンク10dでは、第1の段差部12及び第2の段差部13を、凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに設け、もう一方の対向する2辺の外側には設けていない。すなわち、ヒートシンク10dは、所定の厚さのAlの板に、凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに第1の段差部12に対応する第1の溝と第2の段差部13に対応する第2の溝を削り出すことによって形成される。図6は、四角形の凸平面15のY軸方向平行な対向する2辺の外側に第1の段差部12及び第2の段差部13を設けた例を示している。また、本実施の形態のヒートシンク10dは、第2の段差部13の端部の外側に周縁部19が設けられていない点が実施の形態2に示すヒートシンク10cと異なっている。その他の構造は、実施の形態2に示す半導体モジュールと同じである。ヒートシンク10dを有する半導体モジュールは、実施の形態2と同様に、半導体素子4が実装されたセラミック回路基板30を高温で接合した後、常温に戻した際に反りが大きくなる方向と直交する方向に伸びる凸平面15の2辺の外側のみに、第1の段差部12及び第2の段差部13を設けることで、ヒートシンク10dを有する半導体モジュールの信頼性を保証できる期間をより長くできる。
 なお、本実施の形態では、第1の段差部12及び第2の段差部13を凸状部11の四角形の凸平面15の4辺のうち対向する2辺の外側のみに設けたため、削り出しではなく押出し成形によりヒートシンク10dを形成することもできる。したがって、本実施の形態の半導体モジュールによると、半導体モジュールの製造、組立が容易になるという効果が得られる。
 以上のとおり、本実施の形態3に示す半導体モジュールは、第1の段差部及び第2の段差部は、凸状部11の四角形の凸平面の4辺のうち対向する2辺の外側のみに形成される。これによって、ヒートシンクを有する半導体モジュールの信頼性をより向上することができる。また、本実施の形態3に示す半導体モジュールは、押出し成形によってヒートシンクを形成することができるので、半導体モジュールの製造、組立が容易になるという効果が得られる。
 なお、本実施の形態3に示すヒートシンク10dにおいては、第2の段差部13の端部の外側に周縁部19が設けられていない点が実施の形態2に示すヒートシンク10cと異なっている。実施の形態1に示すヒートシンク10aまたはヒートシンク10bにおいても、第2の段差部13の外側に周縁部19を設けない構成としてもよい。
 また、実施の形態1~3に示す半導体モジュールにおいては、冷媒流路筐体内を流れる冷媒は、冷却液としたが、必ずしも液体である必要はなく、空気等の気体であってもよい。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 1 セラミック基材、2 第1の導体層、3 第2の導体層、4 半導体素子、
10a ヒートシンク、10b ヒートシンク、10c ヒートシンク、10d ヒートシンク、11 凸状部、11a 凸状部、11b 凸状部、11c 凸状部、12 第1の段差部、12a 第1の段差部、12b 第1の段差部、12c 第1の段差部、13 第2の段差部、13a 第2の段差部、13b 第2の段差部、13c 第2の段差部、14 フィン、15 凸平面、16 第1段壁面、17 第2段壁面、18 第3段壁面、19 周縁部、20 ウォータージャケット、30 セラミック回路基板、30a セラミック回路基板、30b セラミック回路基板、30c セラミック回路基板、40 インバータ装置、50 制御基板、51 モールド樹脂、100 半導体モジュール、101 半導体モジュール。

Claims (7)

  1.  セラミック基材の第1の面に第1の導体層を有し、前記セラミック基材の前記第1の面とは反対側の第2の面に第2の導体層を有するセラミック回路基板と、
     前記第1の導体層に実装された半導体素子と、
     第3の面と前記第3の面の反対側の第4の面とを有し、前記第2の導体層と前記第3の面が接合層を介して接合されたヒートシンクと、
     前記ヒートシンクの前記第4の面に設けられたフィンと、
     前記フィンを包み込むように、前記ヒートシンクの周端部に固着された冷媒流路筐体と、
     を備え、
     前記ヒートシンクの前記第3の面は、
     凸平面が前記接合層との接合面積よりも小さい面積を有する凸状部と、
     前記凸状部の端部に設けられ、対応する部分の前記ヒートシンクの厚さが前記凸状部に対応する部分の前記ヒートシンクの厚さよりも薄い第1の段差部と、
     前記第1の段差部の端部に設けられ、対応する部分の前記ヒートシンクの厚さが前記第1の段差部に対応する部分よりもさらに薄い第2の段差部と
     を有し、
     前記接合層は、前記ヒートシンクの前記凸状部及び前記第1の段差部とで接合することを特徴とする半導体モジュール。
  2.  前記凸状部の前記凸平面のコーナー部分及び前記第1の段差部のコーナー部分を円弧形状とすること
     を特徴とする請求項1に記載の半導体モジュール。
  3.  前記第1の段差部及び前記第2の段差部は、前記凸状部の四角形の前記凸平面の4辺のうち対向する2辺の外側のみに形成することを特徴とする請求項1に記載の半導体モジュール。
  4.  前記第1の段差部と前記第2の段差部との間の第2の段壁面は、前記第1の段差部の面との成す角度が90度以上であることを特徴とする請求項1から請求項3のいずれか1項に記載の半導体モジュール。
  5.  前記凸状部の前記凸平面の端部よりも外側に前記第2の導体層の端部が配置され、且つ前記第2の導体層の端部よりも外側に前記第1の段差部の面の端部が配置され、さらに前記第1の段差部の面の端部よりも外側に前記第2の段差部の面の端部が配置されたことを特徴とする請求項1から4のいずれか1項に記載の半導体モジュール。
  6.  前記第2の段差部の端部に、対応する部分の前記ヒートシンクの厚さが前記凸状部対応する部分と同一である周縁部を設けたことを特徴とする請求項1から請求項5のいずれか1項に記載の半導体モジュール。
  7.  請求項1から請求項6のいずれか1項に記載の半導体モジュールを用いて構成したことを特徴とするインバータ装置。
PCT/JP2014/004027 2013-09-04 2014-07-31 半導体モジュール及びインバータ装置 WO2015033515A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480041510.1A CN105408997B (zh) 2013-09-04 2014-07-31 半导体模块以及逆变器装置
JP2015535298A JP6045709B2 (ja) 2013-09-04 2014-07-31 半導体モジュール及びインバータ装置
US14/911,661 US9812377B2 (en) 2013-09-04 2014-07-31 Semiconductor module and inverter device
DE112014004043.6T DE112014004043B4 (de) 2013-09-04 2014-07-31 Halbleiter-Modul und Inverter-Einheit
KR1020167005865A KR101827186B1 (ko) 2013-09-04 2014-07-31 반도체 모듈 및 인버터 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013183224 2013-09-04
JP2013-183224 2013-09-04

Publications (1)

Publication Number Publication Date
WO2015033515A1 true WO2015033515A1 (ja) 2015-03-12

Family

ID=52628018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004027 WO2015033515A1 (ja) 2013-09-04 2014-07-31 半導体モジュール及びインバータ装置

Country Status (6)

Country Link
US (1) US9812377B2 (ja)
JP (1) JP6045709B2 (ja)
KR (1) KR101827186B1 (ja)
CN (1) CN105408997B (ja)
DE (1) DE112014004043B4 (ja)
WO (1) WO2015033515A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046166A (ja) * 2016-09-15 2018-03-22 富士電機株式会社 半導体装置及び半導体装置の製造方法
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置
JP7237434B1 (ja) 2021-10-27 2023-03-13 三菱電機株式会社 半導体装置
JP7460868B2 (ja) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド 溶接技術に基づいて設計された電子コンバータ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6421050B2 (ja) 2015-02-09 2018-11-07 株式会社ジェイデバイス 半導体装置
FR3042886B1 (fr) * 2015-10-26 2018-05-11 Calyos Sa Equipement informatique avec bloc d'alimentation electrique refroidi
JP6929788B2 (ja) * 2015-12-04 2021-09-01 ローム株式会社 パワーモジュール装置、および電気自動車またはハイブリッドカー
JP6645590B2 (ja) * 2016-12-20 2020-02-14 富士電機株式会社 半導体モジュール
DE102018106176B4 (de) * 2018-03-16 2021-11-18 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitereinrichtung mit einer Metallplatte und mit einem auf der Metallplatte angeordneten Substrat
US10665525B2 (en) 2018-05-01 2020-05-26 Semiconductor Components Industries, Llc Heat transfer for power modules
US10900412B2 (en) * 2018-05-31 2021-01-26 Borg Warner Inc. Electronics assembly having a heat sink and an electrical insulator directly bonded to the heat sink
CN114424351A (zh) * 2019-09-25 2022-04-29 京瓷株式会社 电子部件搭载用基体以及电子装置
US11355418B2 (en) * 2019-09-29 2022-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Package structure and manufacturing method thereof
CN113645799A (zh) * 2020-04-27 2021-11-12 富泰华工业(深圳)有限公司 用于电子装置的散热结构及电子装置
DE102020132689B4 (de) 2020-12-08 2022-06-30 Semikron Elektronik Gmbh & Co. Kg Leistungselektronisches System mit einer Schalteinrichtung und mit einer Flüssigkeitskühleinrichtung
KR20230016833A (ko) * 2021-07-27 2023-02-03 주식회사 아모센스 히트싱크 일체형 세라믹 기판 및 그 제조방법
US20230071588A1 (en) * 2021-09-07 2023-03-09 Inventec (Pudong) Technology Corporation Heat dissipation system and electronic device
US11910578B2 (en) * 2021-09-23 2024-02-20 Contitech Techno-Chemie Gmbh Vehicle electronics cooling systems and methods
KR20240038268A (ko) * 2022-09-16 2024-03-25 주식회사 아모그린텍 히트싱크 일체형 파워모듈용 기판 및 그 제조방법
KR20240041536A (ko) * 2022-09-23 2024-04-01 주식회사 아모그린텍 히트싱크 일체형 파워모듈용 기판 및 그 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189845A (ja) * 1996-12-25 1998-07-21 Denso Corp 半導体素子の放熱装置
JP2005353945A (ja) * 2004-06-14 2005-12-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2006140402A (ja) * 2004-11-15 2006-06-01 Toshiba Corp 半導体集積回路装置
JP2007012725A (ja) * 2005-06-29 2007-01-18 Fuji Electric Device Technology Co Ltd 半導体装置
JP2008294282A (ja) * 2007-05-25 2008-12-04 Showa Denko Kk 半導体装置及び半導体装置の製造方法
JP2009070907A (ja) * 2007-09-11 2009-04-02 Toyota Motor Corp 半導体装置
JP2009094264A (ja) * 2007-10-09 2009-04-30 Hitachi Metals Ltd 回路基板、半導体モジュール、半導体モジュールの設計方法
JP2009188164A (ja) * 2008-02-06 2009-08-20 Nippon Inter Electronics Corp 半導体装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415025A (en) * 1981-08-10 1983-11-15 International Business Machines Corporation Thermal conduction element for semiconductor devices
US5006924A (en) * 1989-12-29 1991-04-09 International Business Machines Corporation Heat sink for utilization with high density integrated circuit substrates
US5847929A (en) * 1996-06-28 1998-12-08 International Business Machines Corporation Attaching heat sinks directly to flip chips and ceramic chip carriers
JPH11265976A (ja) 1998-03-18 1999-09-28 Mitsubishi Electric Corp パワー半導体モジュールおよびその製造方法
JP3518434B2 (ja) * 1999-08-11 2004-04-12 株式会社日立製作所 マルチチップモジュールの冷却装置
US6992382B2 (en) * 2003-12-29 2006-01-31 Intel Corporation Integrated micro channels and manifold/plenum using separate silicon or low-cost polycrystalline silicon
JP4046703B2 (ja) * 2004-03-04 2008-02-13 三菱電機株式会社 ヒートシンク
US7204298B2 (en) * 2004-11-24 2007-04-17 Lucent Technologies Inc. Techniques for microchannel cooling
US7365981B2 (en) * 2005-06-28 2008-04-29 Delphi Technologies, Inc. Fluid-cooled electronic system
JP5588956B2 (ja) * 2011-11-30 2014-09-10 株式会社 日立パワーデバイス パワー半導体装置
JP2013123016A (ja) * 2011-12-12 2013-06-20 Denso Corp 半導体装置
CN104011853B (zh) * 2011-12-26 2016-11-09 三菱电机株式会社 电力用半导体装置及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189845A (ja) * 1996-12-25 1998-07-21 Denso Corp 半導体素子の放熱装置
JP2005353945A (ja) * 2004-06-14 2005-12-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP2006140402A (ja) * 2004-11-15 2006-06-01 Toshiba Corp 半導体集積回路装置
JP2007012725A (ja) * 2005-06-29 2007-01-18 Fuji Electric Device Technology Co Ltd 半導体装置
JP2008294282A (ja) * 2007-05-25 2008-12-04 Showa Denko Kk 半導体装置及び半導体装置の製造方法
JP2009070907A (ja) * 2007-09-11 2009-04-02 Toyota Motor Corp 半導体装置
JP2009094264A (ja) * 2007-10-09 2009-04-30 Hitachi Metals Ltd 回路基板、半導体モジュール、半導体モジュールの設計方法
JP2009188164A (ja) * 2008-02-06 2009-08-20 Nippon Inter Electronics Corp 半導体装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046166A (ja) * 2016-09-15 2018-03-22 富士電機株式会社 半導体装置及び半導体装置の製造方法
WO2020105407A1 (ja) * 2018-11-21 2020-05-28 日立オートモティブシステムズ株式会社 パワー半導体装置
JP2020088074A (ja) * 2018-11-21 2020-06-04 日立オートモティブシステムズ株式会社 パワー半導体装置
JP7141316B2 (ja) 2018-11-21 2022-09-22 日立Astemo株式会社 パワー半導体装置
US11967584B2 (en) 2018-11-21 2024-04-23 Hitachi Astemo, Ltd. Power semiconductor device
JP7460868B2 (ja) 2019-03-04 2024-04-03 ヒタチ・エナジー・リミテッド 溶接技術に基づいて設計された電子コンバータ
JP7237434B1 (ja) 2021-10-27 2023-03-13 三菱電機株式会社 半導体装置
JP2023064901A (ja) * 2021-10-27 2023-05-12 三菱電機株式会社 半導体装置

Also Published As

Publication number Publication date
US20160197028A1 (en) 2016-07-07
DE112014004043T5 (de) 2016-08-04
KR20160041991A (ko) 2016-04-18
DE112014004043B4 (de) 2020-07-09
JPWO2015033515A1 (ja) 2017-03-02
US9812377B2 (en) 2017-11-07
JP6045709B2 (ja) 2016-12-14
CN105408997B (zh) 2018-05-08
CN105408997A (zh) 2016-03-16
KR101827186B1 (ko) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6045709B2 (ja) 半導体モジュール及びインバータ装置
JP5956608B2 (ja) 熱電モジュール
JP2008294284A (ja) 半導体装置
JP2007335663A (ja) 半導体モジュール
JPWO2018146933A1 (ja) 半導体装置及び半導体装置の製造方法
JP6350364B2 (ja) 接続構造体
KR101803668B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP6391527B2 (ja) パワー半導体モジュール
JP2013201289A (ja) 半導体装置
JPWO2016158020A1 (ja) 半導体モジュール
JP6048238B2 (ja) 電子装置
JP2008277654A (ja) ヒートシンク付パワーモジュール用基板及びパワーモジュール
JP2012191021A (ja) 半導体モジュール
JP6183166B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法
JP2010062490A (ja) 半導体装置
JP6139331B2 (ja) パワーモジュール
JP2007012725A (ja) 半導体装置
JP6316219B2 (ja) パワー半導体モジュール
JP4535004B2 (ja) 両面冷却型半導体装置
JP5987634B2 (ja) パワー半導体モジュール
JP6625496B2 (ja) 電子制御装置
JP6127852B2 (ja) ヒートシンク付パワーモジュール用基板及びその製造方法
JP2019161081A (ja) 電力変換装置及び電力変換装置の製造方法
JP2013149643A (ja) 半導体装置
JP2014072314A (ja) 半導体装置、及び半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041510.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015535298

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911661

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167005865

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120140040436

Country of ref document: DE

Ref document number: 112014004043

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14841955

Country of ref document: EP

Kind code of ref document: A1