WO2015029681A1 - アルミニウム材の陽極酸化処理方法 - Google Patents

アルミニウム材の陽極酸化処理方法 Download PDF

Info

Publication number
WO2015029681A1
WO2015029681A1 PCT/JP2014/070014 JP2014070014W WO2015029681A1 WO 2015029681 A1 WO2015029681 A1 WO 2015029681A1 JP 2014070014 W JP2014070014 W JP 2014070014W WO 2015029681 A1 WO2015029681 A1 WO 2015029681A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment
anodizing
aluminum material
aluminum
film
Prior art date
Application number
PCT/JP2014/070014
Other languages
English (en)
French (fr)
Inventor
雄輔 関
海老原 健
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020167004018A priority Critical patent/KR101697468B1/ko
Priority to US14/910,325 priority patent/US20160177465A1/en
Priority to CN201480047505.1A priority patent/CN105492664A/zh
Priority to JP2015534102A priority patent/JP5928664B2/ja
Publication of WO2015029681A1 publication Critical patent/WO2015029681A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/02Light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/16Pretreatment, e.g. desmutting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/18Polishing of light metals
    • C25F3/20Polishing of light metals of aluminium

Definitions

  • the present invention relates to an anodizing method for an aluminum material in which an aluminum material made of aluminum or an aluminum alloy is anodized under a predetermined voltage in a treatment bath made of a polybasic acid aqueous solution, and a porous anodic oxide film is formed on the surface.
  • the present invention relates to an anodizing method for an aluminum material that can suppress the occurrence of crystal grain patterns as a result of anodizing as much as possible.
  • the aluminum material since the aluminum itself is easily attacked by acid, alkali, etc., in order to impart corrosion resistance, wear resistance, etc., the aluminum material is energized as an anode in the electrolyte solution, and aluminum oxide (Al An anodizing treatment for forming a 2 O 3 ) film (anodized film) is generally performed.
  • an anodic oxidation treatment using an acid aqueous solution such as sulfuric acid, oxalic acid, phosphoric acid or the like as an electrolyte
  • an anodic oxidation film called a porous film is formed by this anodization treatment.
  • a barrier layer corresponding to the treatment voltage is first generated, and then a large number of holes are generated in the barrier layer, and the large number of holes grow to form a porous layer.
  • the pattern (crystal grain pattern) caused by the crystal grains existing in the material is usually not visible with the naked eye. Due to the difference in orientation, it appears as a crystal grain pattern.
  • Patent Document 1 Housing members such as door knobs and fences, bicycle members such as handles and cranks, vehicle members such as riding door frames and inner panels, decorations such as accessories and watches, etc.
  • Housing members such as door knobs and fences, bicycle members such as handles and cranks, vehicle members such as riding door frames and inner panels, decorations such as accessories and watches, etc.
  • members, members for optical products such as reflectors and cameras, printing rolls, etc.
  • the appearance and uniformity thereof may be emphasized. If such a crystal grain pattern is prominent, the appearance will be poor. May be judged.
  • the problem of the crystal grain pattern in the aluminum material after the anodic oxidation treatment becomes more obvious when the aluminum purity (Al purity) in the aluminum material is high, and the surface of the aluminum material is burnished. Even when the mirror surface treatment is performed by a mirror surface processing means such as cutting, buffing, electrolytic polishing, chemical polishing, or the like.
  • the cooling rate can be adjusted at the time of casting the aluminum material before the anodizing treatment.
  • the size of the crystal grains present in the aluminum material is made smaller than the size (about 100 ⁇ m) that can be visually confirmed, thereby making the crystal grain pattern apparently inconspicuous A method is conceivable.
  • the method of processing aluminum is limited, so there is a limit to reducing the size of the crystal grains.
  • the aluminum material is a material with high Al purity, or heat treatment is performed during its manufacture. In the required material, it is technically difficult to reduce the size of the crystal grains to 100 ⁇ m or less, and even if the size of the crystal grains can be reduced, the crystal grains in the aluminum material When the agglomerates are aggregated, they may appear in the same manner as one large crystal grain, and it is difficult to obtain a uniform appearance.
  • Patent Document 2 there is a tatami-shaped streak called streak that is likely to occur during chemical etching due to a difference in crystal grain orientation, and rough processing unevenness called surface quality unevenness.
  • a preliminary electrochemical roughening of 1 to 300 C / dm 2 of electricity is performed using (1) desmut treatment and (2) alternating current of a predetermined frequency in aqueous hydrochloric acid prior to the anodizing treatment.
  • Surface treatment was improved by performing surface treatment, (3) electrochemical roughening treatment in hydrochloric acid aqueous solution, and (4) desmutting treatment in a predetermined amount of etching treatment and / or hydrochloric acid aqueous solution.
  • the preliminary electrochemical roughening treatment performed in this method is an etching treatment in which aluminum is electrochemically dissolved and roughened in a monobasic acid, and is porous by anodizing treatment. It does not form an anodic oxide film.
  • the present inventors have found that the aluminum metal (Al) / barrier layer (Al 2 O) in the aluminum material after the anodic oxidation treatment. It was found that the shape at the interface of 3 ) was different for each crystal grain with different orientation. That is, according to the study by the present inventors, in the anodizing treatment, a barrier layer is first formed at the initial stage of film formation, and then holes begin to open in the formed film, but there are differences in orientation of crystal grains.
  • the present inventors made as many pores as possible generated at the interface of the aluminum metal (Al) / barrier layer (Al 2 O 3 ) as uniform as possible regardless of the crystal orientation.
  • anodizing treatment is performed in advance to a predetermined electric quantity at a low voltage, thereby preliminarily forming the surface of the aluminum material.
  • a porous layer having holes with a uniform shape can be formed in the subsequent anodizing treatment at the target voltage.
  • the present inventors have found that it is possible to prevent the crystal grain pattern from becoming apparent in the aluminum material as much as possible.
  • an object of the present invention is to form a porous porous anodic oxide film at a treatment voltage of 10 V or more without making a crystal grain pattern as manifest as possible to an aluminum material made of aluminum or an aluminum alloy.
  • An object of the present invention is to provide a method for anodizing an aluminum material.
  • an aluminum material made of aluminum or an aluminum alloy is anodized under a treatment condition of a target voltage of 10 V or more in a treatment bath made of a polybasic acid aqueous solution, and a porous anodic oxide film is formed on the surface of the aluminum material.
  • the anodizing treatment method for the aluminum material is a pretreatment of the anodizing treatment, and the anode is treated until the amount of electricity reaches 0.05 C / cm 2 or more under the treatment condition of a voltage of 6 V or less in the treatment bath made of polybasic acid aqueous solution.
  • An aluminum material anodizing method characterized by performing an oxidation treatment to form a porous pre-coating on the surface of the aluminum material.
  • the aluminum material made of aluminum or an aluminum alloy to be anodized is not particularly limited, and is anodized under a treatment condition of a target voltage of 10 V or more in a treatment bath made of a polybasic acid aqueous solution.
  • a porous type anodic oxide film is formed on the surface, the crystal grain pattern becomes obvious due to the crystal grains present in the aluminum material.
  • the Al purity is high and exists in the material. Examples thereof include a material having a high Al purity in which the crystal grain size is 100 ⁇ m or more and the crystal grain pattern is easily manifested, for example, a high-purity aluminum material having a purity of 99.99% or more.
  • the surface of the aluminum material is easily mirror-finished by a mirror-finishing means such as buffing, electrolytic polishing, cutting, and chemical polishing, the surface of the aluminum material is easily manifested.
  • a mirror-finishing means such as buffing, electrolytic polishing, cutting, and chemical polishing
  • the “target voltage” as the treatment condition of the anodizing treatment is, for example, a corrosion resistant film on the surface of an aluminum material using a treatment bath comprising a 10-20 wt% -sulfuric acid aqueous solution as a polybasic acid aqueous solution,
  • a DC voltage of about 10 to 20 V is usually applied, and a treatment bath comprising a 0.01 to 4 wt% oxalic acid aqueous solution as a polybasic acid aqueous solution is used.
  • a corrosion-resistant film, an abrasion-resistant film, a decorative film, etc. are formed on the surface of an aluminum material, a DC voltage of about 10 to 600 V is usually applied.
  • a predetermined treatment bath is used for a predetermined purpose. This means the voltage applied during the anodizing process performed in the above.
  • the size of the crystal grains present in the aluminum material is determined by, for example, polishing the surface of the aluminum material (for example, buffing) to obtain a cross section, and then adding a corrosive liquid (for example, a tucker liquid) to the cross section. And the surface of the sample cross-section is dissolved so that the crystal grains can be seen visually, and then the cross-section is photographed with a microscope or an inverted microscope.
  • polishing the surface of the aluminum material for example, buffing
  • a corrosive liquid for example, a tucker liquid
  • a line of a certain length (for example, 50 mm, 20 mm) is drawn, the number of crystal grains on the line segment is counted, and the line segment length (L) is divided by the number of crystal grains (N) to obtain L / The value of N is obtained, and the obtained value of L / N is used as the size (length) of crystal grains, which is generally referred to as “cutting method”.
  • the amount of electricity becomes 0.05 C / cm 2 or more under the treatment conditions of a voltage of 6 V or less in the treatment bath made of a polybasic acid aqueous solution.
  • An anodizing treatment is performed to form a pre-coating on the surface of the aluminum material.
  • the polybasic acid constituting the treatment bath usually, mineral acids such as sulfuric acid, phosphoric acid and chromic acid, and organic acids such as oxalic acid, tartaric acid and malonic acid can be mentioned, preferably the treatment rate.
  • Sulfuric acid, phosphoric acid and the like, and the polybasic acid concentration of the treatment bath using these polybasic acids may be the same as that used in normal anodizing treatment,
  • sulfuric acid it is 10% by weight or more and 20% by weight or less, preferably 14% by weight or more and 18% by weight or less.
  • the pre-film formed In this pretreatment, if the amount of electricity during the pretreatment is less than 0.05 C / cm 2 even if the voltage is maintained at 6 V or less, the pre-film formed In some cases, a large number of fine and uniform holes may not be formed, and it may not be possible to prevent the appearance of crystal grain patterns when anodizing is performed at a target voltage of 10 V or higher.
  • there is no particular lower limit on the voltage during the pretreatment but if the voltage is 1 V or less throughout the pretreatment, it may take a long time to form the pre-coating.
  • the film thickness of the pre-coating becomes more than several ⁇ m in the amount of electricity exceeds example 5C / cm 2
  • the treatment time is lost, which is not preferable.
  • a constant voltage of 6 V or less may be applied from the beginning to the end of the pretreatment, and gradually in a range of 6 V or less from the beginning to the end of the pretreatment. Further, it may be gradually lowered in the range of 6 V or less from the beginning to the end of the pretreatment, and the pretreatment time is about 0.05C during the pretreatment. / cm and up to 2 is reached, further, the treatment temperature during the pre-treatment, like a normal anodic oxidation treatment, for example in the case of sulfuric acid may range from 5 ° C. or higher 35 ° C. or less.
  • the pre-film formed by the pretreatment of the present invention has a large number of holes and is fine, and the shape of the holes is uniform as a whole, compared with the anodized film formed by anodizing treatment at the target voltage.
  • the film thickness varies depending on the type and concentration of the polybasic acid in the polybasic acid aqueous solution used as the treatment bath. For example, when a 15 wt% -sulfuric acid aqueous solution is used as the polybasic acid aqueous solution, the film thickness is approximately 25 nm or more. is there.
  • the pre-film formed by the above pretreatment has a smaller number of holes and a larger number than the anodic oxide film formed by anodization treatment at the target voltage. Since the unevenness at the Al) / aluminum oxide (Al 2 O 3 ) interface is kept low, and the number of holes is large and the unevenness is kept low, the shape and size of the holes formed in this pre-coating are crystalline. Regardless of the grain orientation, it becomes constant and uniform, and an anodic oxide film with relatively uniform holes can be formed in the subsequent anodization treatment at the target voltage (10 V or more). It can suppress as much as possible that the crystal grain pattern becomes obvious.
  • the anodizing treatment at a voltage of 10 V or higher performed after the pretreatment can be carried out in the same manner as the conventional anodizing treatment for forming a porous anodic oxide film, and is used as a treatment bath.
  • the acid aqueous solution and the treatment conditions may be the same as those of the conventional anodizing treatment, and it has a relatively uniform hole in the anodizing treatment at the target voltage (10 V or more) and forms a uniform anodized film without crystal grain patterns. can do.
  • the treatment bath used in the pretreatment and the treatment bath used in the anodizing treatment may be the same polybasic acid aqueous solution or different polybasic acid aqueous solutions.
  • the polybasic acid concentration of the polybasic acid aqueous solution may be the same or different. In the pretreatment and the anodizing treatment, using the same kind and the same concentration of the polybasic acid aqueous solution has an advantage that the treatment bath does not need to be replaced when the anodizing treatment is shifted from the pretreatment.
  • a pre-film formed by pretreatment is performed during or after the anodizing treatment, if necessary.
  • the pre-film removal treatment performed during the anodizing treatment for example, when anodizing the aluminum material after the pretreatment, the amount of electricity applied during the pretreatment is usually 50 times or more
  • a method of removing the porous pre-coating film formed during the pretreatment by dissolving it in an anodizing treatment bath by performing an anodizing treatment of preferably 80 times or more can be exemplified. In this method, if the amount of electricity in the anodizing treatment is lower than 50 times, the pre-coating is not sufficiently dissolved in the anodizing treatment, and the porous pre-coating remains undissolved on the surface and may remain. .
  • the porous pre-film remaining on the surface during the anodizing treatment is performed by immersing the anodized aluminum material in an aqueous solution of acid or alkali.
  • a method of chemically dissolving and removing can be exemplified.
  • the target pore diameter is uniform when viewed from the surface.
  • a film in which porous holes are uniformly opened from the bottom to the top of the hole that is, a film similar to the film whose structure is processed only by the target voltage (normal anodizing treatment).
  • the pre-coating that dissolves the porous pre-coating formed on the pre-treated aluminum material under the treatment conditions in which 10% or more of the wall thickness remains.
  • a test sample substantially the same as the pre-treated aluminum material is prepared, and the pre-coating of the pre-coating is performed using this test sample.
  • An example is a method in which a treatment condition in which the inter-hole wall thickness remains 10% or more is obtained, and the pre-treated aluminum material is treated under this pre-determined treatment condition.
  • the porous pre-coating In the partial dissolution treatment of the porous pre-coating, if the inter-pore wall thickness of the pre-coating is dissolved to less than 10% of the inter-hole wall thickness when the pre-coating is formed in the pretreatment, the porous pre-coating becomes brittle. In some cases, the base material at a part of the substrate is exposed during the subsequent anodic oxidation treatment, and anodization occurs preferentially from the exposed part of the base material, so that a uniform anodic oxide film may not be formed.
  • a porous porous anodic oxide film is formed on an aluminum material made of aluminum or an aluminum alloy at a processing voltage of 10 V or more without making the crystal grain pattern as manifest as possible. It can be used for applications such as housing members, bicycle members, vehicle members, decorative members, optical product members, printing rolls, etc. where the crystal grain pattern is not visible and the appearance uniformity is important.
  • the anodized aluminum material can be easily manufactured industrially.
  • FIG. 1 shows an SEM photograph (upper photo) in which the upper cross section of the test piece obtained in Example 1 was observed at a magnification of 3,000, and the upper cross section of the anodized film of the same test piece at a magnification of 50,000. It is the SEM photograph (lower photograph) observed by magnification.
  • FIG. 2 was obtained in Example 14 by interrupting the anodizing treatment 1 minute after the start of anodizing of the pretreated aluminum material obtained by forming a pre-coating in the pretreatment. It is the SEM photograph which observed the cross-section upper part of the reference test piece at a magnification of 100,000 times.
  • Examples 1 to 20 As the aluminum material, an Al purity plate material or a type of plate material shown in Table 1 is used, and an aluminum piece having a size of 50 mm ⁇ 50 mm ⁇ 10 mm is cut out from these plate materials, and the surface roughness Rt ⁇ 200 nm by the mirror finishing means shown in Table 1.
  • the aluminum piece after the mirror treatment was subjected to a pretreatment to form a porous pre-film under the polybasic acid aqueous solution and treatment conditions shown in Table 1, and the polybasic acid aqueous solution shown in Table 1 Anodization was performed at the target voltage under the treatment conditions, and the aluminum pieces (test pieces) after the anodization treatment of Examples 1 to 19 were obtained by washing with water and drying.
  • FIG. 1 the upper photograph is an SEM photograph obtained by observing the cross-sectional upper part of the test piece obtained in Example 1 at a magnification of 3,000 times by SEM, and the lower photograph is the same as in Example 1. It is the SEM photograph which observed the cross-sectional upper part of the anodized film of the obtained test piece at a magnification of 50,000 times, and the pre-coating disappeared during the anodizing, and a uniform porous anodic oxide film was formed. ing.
  • FIG. 2 is a reference test obtained in Example 14 by interrupting the anodizing treatment for one minute after the start of the anodizing treatment on the aluminum material after the pretreatment obtained by forming a pre-coating by the pretreatment. It is the SEM photograph which observed the cross-section upper part by the magnification of 100,000 times by SEM about a piece, and a residual pre film is observed on the upper surface of a porous type anodic oxide film. In addition, in the test piece obtained in Example 14 in which the anodizing treatment was performed under the condition of a treating time of 45 minutes, the remaining pre-coating film on the upper surface of the anodizing film was not observed.
  • Example 21 In the same manner as in Examples 1 to 20 above, after forming a porous pre-film in a treatment bath of 15 wt% -sulfuric acid (18 ° C.) as a pretreatment under the conditions of a voltage of 5 V and an electric quantity of 0.1 C / cm 2. In the same 15wt% -sulfuric acid (18 ° C) treatment bath as anodizing treatment, porous anodizing under conditions of voltage 15V and electric quantity 6C / cm 2 (equivalent to coating thickness 3 ⁇ m) (pre-film removal treatment condition) A film was formed to obtain an aluminum piece (test piece) after the anodizing treatment of Example 21.
  • the obtained test pieces were evaluated for crystal grain patterns by surface observation in the same manner as in Examples 1 to 20. The results are shown in Table 1. Moreover, when the cross section of the obtained test piece was observed by SEM, it was confirmed that the pre-coating did not remain on the upper part of the film, and the film structure was confirmed to be uniform. There was no significant difference in appearance from Example 1 where the pre-film remained.
  • Example 22 In the same manner as in Examples 1 to 20 above, after forming a porous pre-film in a treatment bath of 15 wt% -sulfuric acid (18 ° C.) as a pretreatment under the conditions of a voltage of 5 V and an electric quantity of 0.1 C / cm 2. In the same 15 wt% -sulfuric acid (18 ° C.) treatment bath as the anodizing treatment, a porous anodized film was formed under the conditions of a voltage of 15 V and an electric quantity of 2 C / cm 2 . After the amount of electricity reached 2 C / cm 2 , the sample was continuously immersed in the same bath for 15 minutes (pre-film removal treatment), then taken out, and the aluminum piece after the anodizing treatment of Example 22 (test piece) )
  • the obtained test pieces were evaluated for crystal grain patterns by surface observation in the same manner as in Examples 1 to 20. The results are shown in Table 1. Moreover, when the film
  • Example 23 In the same manner as in Examples 1 to 20 above, the same mirror-finished aluminum pieces were subjected to the same pre-treatment as the same pretreatment in a 15 wt% sulfuric acid (18 ° C.) treatment bath with a voltage of 5 V and an electric charge of 0.1 C. Two pieces of pre-treated aluminum pieces on which a porous pre-film was formed under the conditions of / cm 2 were prepared.
  • One of the obtained pretreated aluminum pieces was used as a test sample, and this test sample was immersed in a 10 wt% -phosphoric acid aqueous solution (20 ° C) for 2 minutes (partial dissolution treatment of the pre-coating film), and the surface was observed with an electron microscope. As a result, it was confirmed that the thickness of the inter-hole wall of the pre-coating was reduced to 15% with respect to the pre-treated aluminum piece without partial dissolution treatment.
  • test pieces were evaluated for crystal grain patterns by surface observation in the same manner as in Examples 1 to 20. The results are shown in Table 1. Also, when the cross section of the test piece after the anodizing treatment was confirmed with an electron microscope, the pre-coating confirmed with the test piece of Example 1 was not observed on the upper part of the film, and the film structure was confirmed to be uniform. It was done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 アルミニウム又はアルミニウム合金からなるアルミニウム材に対して、結晶粒模様を可及的に顕在化させることなく、処理電圧10V以上でポーラス型の陽極酸化皮膜を形成することができるアルミニウム材の陽極酸化処理方法を提供する。 アルミニウム材を多塩基酸水溶液からなる処理浴中目的電圧10V以上の処理条件で陽極酸化処理し、前記アルミニウム材の表面に陽極酸化皮膜を形成するアルミニウム材の陽極酸化処理方法であり、前記陽極酸化処理の前処理として、多塩基酸水溶液からなる処理浴中電圧6V以下の処理条件で電気量が0.05C/cm2以上となるまで陽極酸化処理を行い、前記アルミニウム材の表面にプレ皮膜を形成させることを特徴とするアルミニウム材の陽極酸化処理方法である。

Description

アルミニウム材の陽極酸化処理方法
 この発明は、アルミニウム又はアルミニウム合金からなるアルミニウム材を多塩基酸水溶液からなる処理浴中で所定の電圧下に陽極酸化処理し、表面に多孔性陽極酸化皮膜を形成するアルミニウム材の陽極酸化処理方法に関するものであり、特に、陽極酸化処理により結晶粒模様が顕在化するのを可及的に抑制することができるアルミニウム材の陽極酸化処理方法に関する。
 アルミニウム材については、アルミニウム自体が酸やアルカリ等に侵され易いことから、耐食性や耐摩耗性等を付与するために、電解質溶液中でアルミニウム材を陽極として通電し、その表面に酸化アルミニウム(Al2O3)の皮膜(陽極酸化皮膜)を形成する陽極酸化処理が広く一般的に行われている。そして、例えば電解質として硫酸、シュウ酸、リン酸等の酸水溶液を用いる陽極酸化処理においては、この陽極酸化処理によりポーラス型皮膜と呼ばれる陽極酸化皮膜が形成されるが、このポーラス型皮膜は、バリア層と称される内側(アルミニウム側)の緻密な皮膜と、その外側に形成されて多数の孔を有し、ポーラス層と称される多孔性の皮膜とで構成されており、陽極酸化処理の初期に先ず処理電圧に応じたバリア層が生成し、その後にバリア層に多数の孔が発生し、これら多数の孔が成長してポーラス層が形成される。
 そして、陽極酸化処理前のアルミニウム材においては、通常、材料中に存在する結晶粒に起因する模様(結晶粒模様)を肉眼では視認できないが、上記の陽極酸化処理を行うと、主として結晶粒の方位の違いにより、結晶粒模様として顕在化する。
 この陽極酸化処理後のアルミニウム材における結晶粒模様については、これを装飾性の高いものとして把握し、敢えて結晶方位の違いを鮮明に出して光の反射による結晶粒模様を顕在化させる技術も提案されているが(例えば、特許文献1参照)、例えばドアノブやフェンス等の住宅用部材、ハンドルやクランク等の自転車用部材、乗車ドア枠やインナーパネル等の車両用部材、アクセサリーや時計等の装飾部材、反射鏡やカメラ等の光学製品用部材、印刷用ロール等の用途においては、その外観やその均一性が重視される場合があり、このような結晶粒模様が顕著であると外観不良と判断される場合がある。
 この陽極酸化処理後のアルミニウム材における結晶粒模様の問題は、アルミニウム材におけるアルミニウム純度(Al純度)が高い場合に結晶粒のサイズが大きくなってより顕在化し、また、アルミニウム材の表面がバニッシング加工等の切削加工、バフ研磨、電解研磨、化学研磨等の鏡面加工手段により鏡面処理されている場合にもより顕在化する。
 そこで、上記のような陽極酸化処理後のアルミニウム材の表面における結晶粒模様を目視で視認できなくするための方法としては、陽極酸化処理前のアルミニウム材の鋳造時に、その冷却速度を調節したり、あるいは、冷間鍛造等の加工を施すことにより、アルミニウム材中に存在する結晶粒の大きさを目視で確認できるサイズ(凡そ100μm)より小さくし、これによって見掛け上結晶粒模様を目立たなくする方法が考えられる。
 しかしながら、製品によってはアルミニウムの加工方法が限定されることから結晶粒の大きさを小さくすることには限界があり、また、特にアルミニウム材がAl純度の高い材料であったり、その製造時に熱処理が必要となる材料では、結晶粒の大きさを100μm以下に小さくすることが技術的に困難であり、また、仮に結晶粒の大きさを小さくすることができても、アルミニウム材の中で結晶粒が凝集した場合には、外観では一つの大きな結晶粒と同様に見えてしまうことがあり、均一な外観を得るには困難が伴う。
 ところで、特許文献2においては、結晶粒の方位差に起因して化学的エッチングの際に発生し易いストリークと称される畳目状の筋や面質むらと称されるざらつき状の処理むらを防止するために、陽極酸化処理に先駆けて(1)デスマット処理と、(2)塩酸水溶液中で所定の周波数の交流を用いて行う電気量1~300C/dm2の予備的な電気化学的粗面化処理と、(3)塩酸水溶液中で行う電気化学的粗面化処理と、(4)所定量のエッチング処理及び/又は塩酸水溶液中で行うデスマット処理とを行い、表面形状の改良された平版印刷板用アルミニウム支持体を製造することが提案されている。しかしながら、この方法で行われている予備的な電気化学的粗面化処理は、一塩基酸中で電気化学的にアルミニウムを溶解して粗面化するエッチング処理であって陽極酸化処理によりポーラス型の陽極酸化皮膜を形成するものではない。
特開2005-097,735号公報 特開2001-011,699号公報
 そこで、本発明者らは、陽極酸化処理によって結晶粒模様が顕在化する原因について詳細に調査検討を重ねた結果、陽極酸化処理後のアルミニウム材においてアルミニウム金属(Al)/バリア層(Al2O3)の界面での形状が方位の異なる結晶粒毎に異なることを突き止めた。すなわち、本発明者らの検討によれば、陽極酸化処理において、皮膜形成の初期に先ずバリア層が形成され、その後に形成された皮膜に孔が開き始めるが、結晶粒に方位の違いが存在すると、この結晶粒の方位の違いに起因して孔の発生時に差異が生じ、これに起因してアルミニウム金属(Al)/バリア層(Al2O3)の界面で生成した多数の孔に形状や凹凸おいて微細な違いが形成され、この形成された多数の孔における微細な違いが、その後に多数の孔が成長して形成されるポーラス層においても反映される。そして、このようにして形成された陽極酸化皮膜の多数の孔における微細な違いは、その差が極めて僅かではあっても、表面に光を当てた際に強調され、結晶粒模様として顕在化し、陽極酸化処理後のアルミニウム材において均一な外観が形成されない原因となる。
 そして、本発明者らは、この検討結果を踏まえ、結晶粒の方位に関係なくアルミニウム金属(Al)/バリア層(Al2O3)の界面で発生する多数の孔を可及的に一様にするための方法について更に検討を重ねた結果、10V以上の目的電圧での陽極酸化処理に先駆けて、予め低電圧で所定の電気量まで陽極酸化処理を行い、これによってアルミニウム材の表面に予め細かで均一な多数の孔を有するプレ皮膜を形成させておくことにより、その後の目的電圧での陽極酸化処理において均一な形状の孔を有するポーラス層を形成することができ、陽極酸化処理後のアルミニウム材において結晶粒模様が顕在化するのを可及的に防止できることを見出し、本発明を完成した。
 従って、本発明の目的は、アルミニウム又はアルミニウム合金からなるアルミニウム材に対して、結晶粒模様を可及的に顕在化させることなく、処理電圧10V以上でポーラス型の多孔性陽極酸化皮膜を形成することができるアルミニウム材の陽極酸化処理方法を提供することにある。
 すなわち、本発明は、アルミニウム又はアルミニウム合金からなるアルミニウム材を多塩基酸水溶液からなる処理浴中目的電圧10V以上の処理条件で陽極酸化処理し、前記アルミニウム材の表面に多孔性陽極酸化皮膜を形成するアルミニウム材の陽極酸化処理方法であり、前記陽極酸化処理の前処理として、多塩基酸水溶液からなる処理浴中電圧6V以下の処理条件で電気量が0.05C/cm2以上となるまで陽極酸化処理を行い、前記アルミニウム材の表面に多孔性プレ皮膜を形成させることを特徴とするアルミニウム材の陽極酸化処理方法である。
 本発明において、陽極酸化処理の対象となるアルミニウム又はアルミニウム合金からなるアルミニウム材については、特に制限はなく、多塩基酸水溶液からなる処理浴中目的電圧10V以上の処理条件で陽極酸化処理し、表面にポーラス型の陽極酸化皮膜を形成した際に、アルミニウム材に存在する結晶粒に起因して結晶粒模様が顕在化するようなものが対象になり、特にAl純度が高くて材料中に存在する結晶粒の大きさが100μm以上であり、結晶粒模様が顕在化し易いAl純度の高い材質のもの、例えば純度99.99%以上の高純度アルミニウム材料等を例示することができる。また、このアルミニウム材については、その表面がバフ研磨、電解研磨、切削加工、及び化学研磨等の鏡面加工手段で鏡面処理されている場合においても結晶粒模様が顕在化し易いので、本発明はこのように表面が鏡面処理されたアルミニウム材についても効果的である。
 なお、本発明において、陽極酸化処理の処理条件としての「目的電圧」とは、例えば、多塩基酸水溶液として10~20wt%-硫酸水溶液からなる処理浴を用いてアルミニウム材の表面に耐食皮膜、染色用皮膜、装飾用皮膜等を形成する場合には通常10~20V程度の直流電圧が印加され、また、多塩基酸水溶液として0.01~4wt%-シュウ酸水溶液からなる処理浴を用いてアルミニウム材の表面に耐食皮膜、耐摩耗性皮膜、装飾用皮膜等を形成する場合には通常10~600V程度の直流電圧が印加されるが、このように所定の目的で所定の処理浴を用いて行われる陽極酸化処理の際に印加される電圧のことをいう。
 また、本発明において、アルミニウム材に存在する結晶粒の大きさは、例えば、アルミニウム材の表面を研磨(例えば、バフ研磨)して断面を出した後、この断面に腐食液(例えば、タッカー液や水酸化ナトリウム液等)を塗布し、試料断面の表面を溶解して結晶粒が目視で見えるようにし、その後に断面をマイクロスコープや倒立顕微鏡で撮影し、得られた撮影画面上に例えば3本程度の一定長さ(例えば、50mm、20mm)の線を引き、その線分上の結晶粒の数を数え、線分長さ(L)を結晶粒の数(N)で割ってL/Nの値を求め、得られたL/Nの値を結晶粒の大きさ(長さ)とするものであり、一般に「切断法」と称されるものである。
 本発明において、目的電圧での陽極酸化処理に先駆けて行われる前処理においては、多塩基酸水溶液からなる処理浴中電圧6V以下の処理条件で電気量が0.05C/cm2以上となるまで陽極酸化処理を行い、前記アルミニウム材の表面にプレ皮膜を形成させる。
 ここで、処理浴を構成する多塩基酸としては、通常、硫酸、リン酸、クロム酸等の鉱酸や、シュウ酸、酒石酸、マロン酸等の有機酸を挙げることができ、好ましくは処理速度の速い硫酸、リン酸等であり、これらの多塩基酸を用いた処理浴(多塩基酸水溶液)の多塩基酸濃度としては、通常の陽極酸化処理で用いられている場合と同様でよく、例えば硫酸の場合には、10重量%以上20重量%以下、好ましくは14重量%以上18重量%以下である。
 また、本発明の前処理においては、電圧を6V以下に維持し、また、電気量が0.05C/cm2以上となるまで陽極酸化処理を行う必要があり、電圧が6Vを超えて高くなると、結晶粒の方位の違いに起因して生じる孔の開き始めの違いを抑制することが難しくなり、結果としてその後に10V以上の目的電圧で陽極酸化処理を行った際に、結晶粒模様が顕在化してくる場合があり、また、この前処理において、電圧を6V以下に維持しても、前処理の間における電気量が0.05C/cm2に満たない場合には、形成されたプレ皮膜に細かくて均一な多数の孔が形成されない場合があり、その後に10V以上の目的電圧で陽極酸化処理を行った際に、結晶粒模様が顕在化してくるのを防止できない場合がある。ここで、前処理時の電圧については、特に下限はないが、前処理の全体を通して電圧が1V以下であると、プレ皮膜の形成に多大な時間がかかる場合がある。また、電気量についても、特に上限はないが、電気量を大幅に増やしても効果はほぼ同じであり、例えば5C/cm2を超える電気量ではプレ皮膜の膜厚が数μm以上になる場合があり、後工程でプレ皮膜を除去する場合には処理時間のロスとなって好ましくない。
 ここで、本発明の前処理の間における電圧については、前処理の初めから終りまで6V以下の一定の電圧を印加してもよく、また、前処理の初めから終りまで6V以下の範囲で徐々に上昇させてもよく、更に、前処理の初めから終りまで6V以下の範囲で徐々に降下させてもよく、また、前処理の処理時間については、前処理の間における電気量が0.05C/cm2に達するまでであり、更に、前処理の際の処理温度については、通常の陽極酸化処理と同様に、例えば硫酸の場合には、5℃以上35℃以下の範囲でよい。
 本発明の前処理で形成されるプレ皮膜は、目的電圧での陽極酸化処理により形成される陽極酸化皮膜に比べて、孔の数が多くて細かく、孔の形状が全体に均一であり、また、その膜厚は、処理浴として使用される多塩基酸水溶液の多塩基酸の種類やその濃度等により異なるが、例えば多塩基酸水溶液として15wt%-硫酸水溶液を用いた場合、概ね25nm以上である。
 本発明において、上記の前処理で形成されるプレ皮膜は、目的電圧での陽極酸化処理により形成される陽極酸化皮膜に比べて、その孔が細かくなって数が多くなり、また、アルミニウム金属(Al)/酸化アルミニウム(Al2O3)界面での凹凸が低く抑えられ、更に、孔数が多くて凹凸が低く抑えられることから、このプレ皮膜に形成された孔の形状や大きさは結晶粒の方位によらず一定で均一になり、その後の目的電圧(10V以上)での陽極酸化処理において比較的均一な孔を有する陽極酸化皮膜を形成することができ、結晶粒の方位の違いに起因して結晶粒模様が顕在化するのを可及的に抑制することができる。
 本発明において、前処理後に行われる電圧10V以上での陽極酸化処理については、ポーラス型の陽極酸化皮膜を形成する従来の陽極酸化処理と同様に実施することができ、処理浴として使用する多塩基酸水溶液や処理条件についても従来の陽極酸化処理と同様でよく、目的電圧(10V以上)での陽極酸化処理において比較的均一な孔を有し、結晶粒模様の無い均一な陽極酸化皮膜を形成することができる。
 また、本発明において、上記の前処理で使用する処理浴と陽極酸化処理で使用する処理浴については、同じ多塩基酸の水溶液であってもよく、また、異なる多塩基酸の水溶液であってもよく、更に、多塩基酸水溶液の多塩基酸濃度についても同じであっても、また、異なっていてもよい。前処理と陽極酸化処理において、同じ種類で同じ濃度の多塩基酸水溶液を用いれば、前処理から陽極酸化処理に移行する際に処理浴の交換が不要になるという利点があり、また、例えば目的電圧(10V以上)での陽極酸化処理において処理浴として処理速度の比較的遅い多塩基酸水溶液を使用する必要がある場合、異なる種類及び/又は異なる濃度の多塩基酸水溶液を用い、その際に前処理の処理浴として処理速度の速い多塩基酸水溶液を用いることにより、全体の処理時間を短縮することができる。
 更に、本発明においては、アルミニウム材に対して目的電圧(10V以上)での陽極酸化処理を行うに際し、必要に応じて、陽極酸化処理の処理中又は処理後に、前処理で形成されたプレ皮膜を除去するプレ皮膜除去処理を行ってもよい。
 ここで、前記陽極酸化処理の処理中に実施されるプレ皮膜除去処理としては、例えば、前処理後のアルミニウム材の陽極酸化処理の際に、前処理時に適用した電気量の通常50倍以上、好ましくは80倍以上の陽極酸化処理を行うことにより、前処理時に形成された多孔性プレ皮膜を陽極酸化処理の処理浴中に溶解させて除去する方法を例示することができる。この方法において、陽極酸化処理の際の電気量が50倍より低いと、陽極酸化処理でのプレ皮膜の溶解が不十分であって、表面に多孔性プレ皮膜が溶け残り、残存する場合がある。
 また、前記陽極酸化処理後に実施されるプレ皮膜除去処理としては、例えば、陽極酸化処理後のアルミニウム材を酸又はアルカリの水溶液中に浸漬し、陽極酸化処理時に表面に残留した多孔性プレ皮膜を化学的に溶解させて除去する方法を例示することができる。
 このように、陽極酸化処理の処理中又は処理後のプレ皮膜除去処理により、前処理で形成された多孔性プレ皮膜を除去することにより、表面から見た時に目的とする孔径が一様であって、孔の下部から上部まで一様にポーラス孔が開いている皮膜を得ることができる、つまり、皮膜の構造が目的電圧のみで処理したもの(通常の陽極酸化処理)と同様の皮膜を得られるという利点が生じる。
 更に、前記前処理後のアルミニウム材の陽極酸化処理するに際し、この前処理後のアルミニウム材に形成された多孔性プレ皮膜を、その壁厚の10%以上が残存する処理条件で溶解するプレ皮膜の一部溶解処理を行ってもよく、このプレ皮膜の一部溶解処理としては、例えば、前処理後のアルミニウム材と実質的に同じテストサンプルを作成し、このテストサンプルを用いてプレ皮膜の孔間壁厚が10%以上残存する処理条件を求め、この予め求められた処理条件で前処理後のアルミニウム材を処理する方法を例示することができる。このように、予めプレ皮膜の一部溶解処理を行ってプレ皮膜の孔間壁厚を調整することにより、表面にプレ皮膜が残らずポーラス層が一様に形成された多孔性陽極酸化皮膜を得ることができる。
 この多孔性プレ皮膜の一部溶解処理において、プレ皮膜の孔間壁厚を前処理でプレ皮膜が形成された時の孔間壁厚の10%未満まで溶解すると、多孔性プレ皮膜が脆くなり過ぎ、その後の陽極酸化処理の際に一部の箇所の素地が露出し、この素地が露出した箇所から優先的に陽極酸化が発生して均一な陽極酸化皮膜が形成されない場合がある。
 本発明の方法によれば、アルミニウム又はアルミニウム合金からなるアルミニウム材に対して、結晶粒模様を可及的に顕在化させることなく、処理電圧10V以上でポーラス型の多孔性陽極酸化皮膜を形成することができるので、結晶粒模様が視認されず外観の均一性が重視されるような住宅用部材、自転車用部材、車両用部材、装飾部材、光学製品用部材、印刷用ロール等の用途で使用される陽極酸化処理アルミニウム材を工業的に容易に製造することができる。
図1は、実施例1で得られた試験片の断面上部を倍率3,000倍で観察したSEM写真(上方の写真)、及び、同じ試験片の陽極酸化皮膜の断面上部を倍率50,000倍で観察したSEM写真(下方の写真)である。
図2は、実施例14において、前処理でプレ皮膜を形成して得られた前処理後のアルミニウム材を陽極酸化処理するに際し、その開始後1分で陽極酸化処理を中断して得られた参考試験片の断面上部を倍率100,000倍で観察したSEM写真である。
 以下、実施例及び比較例に基づいて、本発明の好適な実施の形態をより具体的に説明する。
〔実施例1~20〕
 アルミニウム材として表1に示すAl純度の板材又は種類の板材を用い、これらの板材から50mm×50mm×10mmの大きさのアルミ片を切り出し、表1に示す鏡面加工手段で表面粗さRt<200nmまで鏡面処理し、得られた鏡面処理後のアルミ片について、表1に示す多塩基酸水溶液及び処理条件で多孔性プレ皮膜を形成する前処理を行うと共に、表1に示す多塩基酸水溶液及び処理条件で目的電圧での陽極酸化処理を行い、更に、水洗し乾燥して各実施例1~19の陽極酸化処理後のアルミ片(試験片)を得た。
〔表面観察による結晶粒模様の評価〕
 各実施例1~20で得られた試験片について、照度1,500Lux以上2,500Lux以下の蛍光灯下で目視観察をしたときに結晶粒模様が見えるものを×とし、また、照度1,500Lux以上2,500Lux以下の蛍光灯下で目視観察をしたときに結晶粒模様が見えないものを○とし、更に、照度15,000Lux以上20,000Lux以下のビデオライト下で目視観察をしたときに結晶粒模様が見えないものを◎とする表面観察を行い、各試験片における結晶粒模様の評価を行った。
 結果を表1に示す。
〔SEM観察によるプレ皮膜と陽極酸化皮膜の状態〕
 図1において、上方の写真は、SEMにより、実施例1で得られた試験片の断面上部を倍率3,000倍で観察したSEM写真であり、また、下方の写真は、同じ実施例1で得られた試験片の陽極酸化皮膜の断面上部を倍率50,000倍で観察したSEM写真であり、プレ皮膜は陽極処理の際に溶解してなくなり、一様なポーラス型陽極酸化皮膜が形成されている。
 図2は、実施例14において、前処理でプレ皮膜を形成して得られた前処理後のアルミニウム材を、陽極酸化処理の開始後1分で陽極酸化処理を中断して得られた参考試験片について、SEMにより、その断面上部を倍率100,000倍で観察したSEM写真であり、ポーラス型陽極酸化皮膜の上面に残存プレ皮膜が観察される。なお、陽極酸化処理を処理時間45分の条件で行った実施例14で得られた試験片においては、陽極酸化皮膜上面の残存プレ皮膜は観察されなかった。
〔実施例21〕
 上記の実施例1~20と同様に、前処理として15wt%-硫酸(18℃)の処理浴中、電圧5V及び電気量0.1C/cm2の条件で多孔性プレ皮膜を形成させた後、陽極酸化処理として同じ15wt%-硫酸(18℃)の処理浴中、電圧15V及び電気量6C/cm2(皮膜厚さ3μm相当)の条件(プレ皮膜除去処理の条件)で多孔性陽極酸化皮膜を形成し、実施例21の陽極酸化処理後のアルミ片(試験片)を得た。
 得られた試験片について、実施例1~20と同様にして表面観察による結晶粒模様の評価を行った。結果を表1に示す。
 また、得られた試験片の断面をSEMで観察したところ、皮膜上部にプレ皮膜が残存していないことが確認され、また、皮膜構造が一様であることが確認された。プレ皮膜が残っている実施例1に対し、外観に大きな差は認められなかった。
〔実施例22〕
 上記の実施例1~20と同様に、前処理として15wt%-硫酸(18℃)の処理浴中、電圧5V及び電気量0.1C/cm2の条件で多孔性プレ皮膜を形成させた後、陽極酸化処理として同じ15wt%-硫酸(18℃)の処理浴中、電圧15V及び電気量2C/cm2の条件で多孔性陽極酸化皮膜を形成した。電気量が2C/cm2に達したあと、引き続き同一浴中に15分間サンプルを浸漬させたままにし(プレ皮膜除去処理)、その後取り出し、実施例22の陽極酸化処理後のアルミ片(試験片)を得た。
 得られた試験片について、実施例1~20と同様にして表面観察による結晶粒模様の評価を行った。結果を表1に示す。
 また、得られた試験片の皮膜断面をSEMで観察したところ、皮膜上部にプレ皮膜が残存していないことが確認され、また、皮膜構造が一様であることが確認された。外観は、プレ皮膜除去処理を行っていない場合とほとんど同様であった。
〔実施例23〕
 上記の実施例1~20と同様に、同じ鏡面処理を行った鏡面処理後のアルミ片について、同じ前処理として15wt%-硫酸(18℃)の処理浴中、電圧5V及び電気量0.1C/cm2の条件で多孔性プレ皮膜を形成させた2片の前処理後のアルミ片を調製した。
 得られた前処理後のアルミ片の一方をテストサンプルとし、このテストサンプルを10wt%-リン酸水溶液(20℃)に2分間浸漬させ(プレ皮膜の一部溶解処理)、電子顕微鏡で表面観察をしたところ、一部溶解処理無しの前処理後のアルミ片に対して、プレ皮膜の孔間壁厚が15%に減少していることを確認した。
 次に、一部溶解処理無しの前処理後のアルミ片に対して、上記と全く同じ条件でプレ皮膜の一部溶解処理を行った後、プレ皮膜の孔間壁厚を確認することなく、陽極酸化処理として15wt%-硫酸(18℃)中、電圧15V及び電気量2C/cm2の条件で多孔性陽極酸化皮膜を形成し、実施例23の陽極酸化処理後のアルミ片(試験片)を得た。
 得られた試験片について、実施例1~20と同様にして表面観察による結晶粒模様の評価を行った。結果を表1に示す。
 また、陽極酸化処理後の試験片の皮膜断面を電子顕微鏡で確認したところ、皮膜上部に実施例1の試験片で確認されたプレ皮膜は認められず、皮膜構造が一様であることが確認された。
〔比較例1~10〕
 アルミニウム材として表2に示すAl純度の板材又は種類の板材を用い、これらの板材から50mm×50mm×10mmの大きさのアルミ片を切り出し、表2に示す鏡面加工手段(パフ研磨)で表面粗さRt<200nmまで鏡面処理し、得られた鏡面処理後のアルミ片について、表2に示す処理条件でプレ皮膜を形成する前処理を行うと共に、表2に示す処理条件で目的電圧での陽極酸化処理を行い、更に、水洗し乾燥して各比較例1~10の陽極酸化処理後のアルミ片(試験片)を得た。
〔表面観察による結晶粒模様の評価〕
 各比較例1~10で得られた試験片について、上記の各実施例の場合と同様に、表面観察による結晶粒模様の評価を行った。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (12)

  1.  アルミニウム又はアルミニウム合金からなるアルミニウム材を多塩基酸水溶液からなる処理浴中目的電圧10V以上の処理条件で陽極酸化処理し、前記アルミニウム材の表面に多孔性陽極酸化皮膜を形成するアルミニウム材の陽極酸化処理方法であり、
     前記陽極酸化処理の前処理として、多塩基酸水溶液からなる処理浴中電圧6V以下の処理条件で電気量が0.05C/cm2以上となるまで陽極酸化処理を行い、前記アルミニウム材の表面に多孔性プレ皮膜を形成させることを特徴とするアルミニウム材の陽極酸化処理方法。
  2.  前記アルミニウム材は、材料中に存在する結晶粒の大きさが100μm以上である請求項1に記載のアルミニウム材の陽極酸化処理方法。
  3.  前記アルミニウム材は、その表面が鏡面処理されている請求項1又は2に記載のアルミニウム材の陽極酸化処理方法。
  4.  前記鏡面処理が、バフ研磨、電解研磨、切削加工、及び化学研磨から選ばれたいずれかの鏡面加工で行われる請求項3に記載のアルミニウム材の陽極酸化処理方法。
  5.  前記前処理で使用する処理浴と陽極酸化処理で使用する処理浴とが同じ多塩基酸の水溶液である請求項1~4のいずれかに記載のアルミニウム材の陽極酸化処理方法。
  6.  前記前処理で使用する処理浴と陽極酸化処理で使用する処理浴とが異なる多塩基酸の水溶液である請求項1~4のいずれかに記載のアルミニウム材の陽極酸化処理方法。
  7.  前記アルミニウム材の陽極酸化処理を行うに際し、前記前処理で形成された多孔性プレ皮膜を除去するプレ皮膜除去処理を行う請求項1~6のいずれかに記載のアルミニウム材の陽極酸化処理方法。
  8.  前記プレ皮膜除去処理は、前記陽極酸化処理の処理中又は処理後に実施される請求項7に記載のアルミニウム材の陽極酸化処理方法。
  9.  前記陽極酸化処理の処理中に実施されるプレ皮膜除去処理は、前処理後のアルミニウム材の陽極酸化処理の際に、前処理時に適用した電気量の50倍以上の陽極酸化処理を行うことにより、前処理時に形成された多孔性プレ皮膜を陽極酸化処理の処理浴中に溶解させて除去する請求項8に記載のアルミニウム材の陽極酸化処理方法。
  10.  前記陽極酸化処理後に実施されるプレ皮膜除去処理は、陽極酸化処理後のアルミニウム材を酸又はアルカリの水溶液中に浸漬し、陽極酸化処理時に表面に残留した多孔性プレ皮膜を化学的に溶解させて除去する請求項8に記載のアルミニウム材の陽極酸化処理方法。
  11.  前記前処理後のアルミニウム材の陽極酸化処理するに際し、この前処理後のアルミニウム材に形成された多孔性プレ皮膜をその壁厚の10%以上が残存する処理条件で溶解するプレ皮膜の一部溶解処理を行う請求項1~6のいずれかに記載のアルミニウム材の陽極酸化処理方法。
  12.  前記多孔性プレ皮膜の一部溶解処理は、前処理後のアルミニウム材と実質的に同じテストサンプルを作成し、このテストサンプルを用いてプレ皮膜の孔間壁厚が10%以上残存する処理条件を求め、この予め求められた処理条件で前処理後のアルミニウム材を処理する請求項11に記載のアルミニウム材の陽極酸化処理方法。
PCT/JP2014/070014 2013-08-29 2014-07-30 アルミニウム材の陽極酸化処理方法 WO2015029681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167004018A KR101697468B1 (ko) 2013-08-29 2014-07-30 알루미늄재의 양극 산화 처리 방법
US14/910,325 US20160177465A1 (en) 2013-08-29 2014-07-30 Aluminum-material anodization method
CN201480047505.1A CN105492664A (zh) 2013-08-29 2014-07-30 铝材的阳极氧化处理方法
JP2015534102A JP5928664B2 (ja) 2013-08-29 2014-07-30 アルミニウム材の陽極酸化処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177641 2013-08-29
JP2013-177641 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015029681A1 true WO2015029681A1 (ja) 2015-03-05

Family

ID=52586255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070014 WO2015029681A1 (ja) 2013-08-29 2014-07-30 アルミニウム材の陽極酸化処理方法

Country Status (6)

Country Link
US (1) US20160177465A1 (ja)
JP (1) JP5928664B2 (ja)
KR (1) KR101697468B1 (ja)
CN (1) CN105492664A (ja)
TW (1) TW201527602A (ja)
WO (1) WO2015029681A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011699A (ja) * 1999-06-24 2001-01-16 Fuji Photo Film Co Ltd 平版印刷版用アルミニウム支持体の製造方法
JP2005200740A (ja) * 2004-01-19 2005-07-28 Tostem Corp 耐摩耗性に優れたアルミニウム部材の製造法およびアルミニウム部材

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1518712B1 (en) * 2001-07-23 2007-01-10 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor
JP4858668B2 (ja) 2003-08-27 2012-01-18 電化皮膜工業株式会社 アルミニウム及びアルミニウム合金の製造方法
JP4603402B2 (ja) * 2005-03-31 2010-12-22 富士フイルム株式会社 微細構造体およびその製造方法
EP1715085B1 (en) * 2005-04-18 2013-04-03 FUJIFILM Corporation Method for producing anodized structure
JP4656405B2 (ja) * 2005-06-20 2011-03-23 アルバック九州株式会社 アルミニウム又はその合金の表面処理方法
JP5463052B2 (ja) * 2009-02-17 2014-04-09 富士フイルム株式会社 金属部材
JP5325610B2 (ja) * 2009-03-02 2013-10-23 日本パーカライジング株式会社 金属表面処理用組成物、これを用いた金属表面処理方法およびこれらを用いた金属表面処理皮膜
KR101235350B1 (ko) * 2010-08-11 2013-02-20 (주)제이스 금속 모재의 표면 처리 방법
CN102044662B (zh) * 2010-10-13 2013-01-23 太原理工大学 一种尖晶石型钛酸锂纳米线阵列的制备方法
CN103243370B (zh) * 2013-04-25 2015-12-23 东华大学 一种两步阳极氧化法制备有序大孔阳极氧化铝薄膜的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001011699A (ja) * 1999-06-24 2001-01-16 Fuji Photo Film Co Ltd 平版印刷版用アルミニウム支持体の製造方法
JP2005200740A (ja) * 2004-01-19 2005-07-28 Tostem Corp 耐摩耗性に優れたアルミニウム部材の製造法およびアルミニウム部材

Also Published As

Publication number Publication date
KR20160048074A (ko) 2016-05-03
TW201527602A (zh) 2015-07-16
JPWO2015029681A1 (ja) 2017-03-02
CN105492664A (zh) 2016-04-13
KR101697468B1 (ko) 2017-01-17
JP5928664B2 (ja) 2016-06-01
US20160177465A1 (en) 2016-06-23

Similar Documents

Publication Publication Date Title
KR20160002702A (ko) 알루미늄 필름의 접착을 개선시키는 방법
JP5995144B2 (ja) アルミニウム系部材の修復方法、修復処理液、アルミニウム系材料およびその製造方法
JP2015229786A (ja) アルミニウム又はアルミニウム合金に皮膜を形成する方法、それに用いる前処理液、およびそれに得られる部材
JP5928664B2 (ja) アルミニウム材の陽極酸化処理方法
EP3059335B1 (en) Surface modifiers for ionic liquid aluminum electroplating solutions, processes for electroplating aluminum therefrom, and methods for producing an aluminum coating using the same
JP4333947B2 (ja) 粗面化された表面を備えたアルミニウム合金シート
JP6237885B2 (ja) 表面処理アルミニウム材及び亜鉛添加アルミニウム合金
JP6078851B2 (ja) アルミニウム材の電解研磨処理方法
KR102143590B1 (ko) 열충격에 강한 피막 형성을 위한 아노다이징 표면 처리 공정
CN110117809B (zh) 氧化膜制备方法
JP5149591B2 (ja) 表面処理アルミニウム材料の製造方法
RU2260078C1 (ru) Способ получения защитных покрытий на поверхности изделий из магния и сплавов на его основе
JP5928066B2 (ja) アルミニウム押出し形材及びその表面処理方法
JP5014782B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
TWI471431B (zh) 鋁製品及其製備方法
JP5074145B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
JP5014781B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
JP5073287B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
JP2002256490A (ja) アルミニウム材の表面処理方法
JP2005200740A (ja) 耐摩耗性に優れたアルミニウム部材の製造法およびアルミニウム部材
JP6200064B2 (ja) 型基材のリサイクル方法
JP5073288B2 (ja) 表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置
JP2010095774A (ja) 真空機器用表面処理アルミニウム材の製造方法
JP2011122219A (ja) 真空機器向け表面処理アルミニウム材の製造方法
JP2005015842A (ja) エッチング処理均一性に優れたアルミニウム合金押出材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047505.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534102

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14910325

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167004018

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839118

Country of ref document: EP

Kind code of ref document: A1