WO2015019590A1 - 抵抗器およびその製造方法 - Google Patents

抵抗器およびその製造方法 Download PDF

Info

Publication number
WO2015019590A1
WO2015019590A1 PCT/JP2014/004043 JP2014004043W WO2015019590A1 WO 2015019590 A1 WO2015019590 A1 WO 2015019590A1 JP 2014004043 W JP2014004043 W JP 2014004043W WO 2015019590 A1 WO2015019590 A1 WO 2015019590A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
electrode
strip
shaped
insulating film
Prior art date
Application number
PCT/JP2014/004043
Other languages
English (en)
French (fr)
Inventor
清二 津田
祥吾 中山
井関 健
和俊 松村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2015530696A priority Critical patent/JP6476417B2/ja
Priority to CN201480043722.3A priority patent/CN105453192B/zh
Publication of WO2015019590A1 publication Critical patent/WO2015019590A1/ja
Priority to US14/997,459 priority patent/US9959957B2/en
Priority to US15/935,326 priority patent/US10373744B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/003Apparatus or processes specially adapted for manufacturing resistors using lithography, e.g. photolithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/28Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals
    • H01C17/281Apparatus or processes specially adapted for manufacturing resistors adapted for applying terminals by thick film techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/003Thick film resistors

Definitions

  • the present invention relates to a small and low-resistance resistor used for detecting a current value of various electronic devices and a method for manufacturing the same.
  • this type of conventional resistor includes a resistor 1 made of a plate-shaped metal, a protective film 2 formed on the center of one surface of the resistor 1, and a protective film 2.
  • the electrode 3 is formed by plating on both ends of one surface of the resistor 1 and the plating layer 4 is formed so as to cover the electrode 3.
  • the electrode 3 and the plating layer 4 overlap so that a part of the electrode 3 and the plating layer 4 is in direct contact with the edge of the protective film 2.
  • another protective film 2 a is formed on the other surface of the resistor 1.
  • the protective film 2 is formed at the center of one surface of the resistor 1, the protective film 2 is plated as a plating resist to form the electrode 3.
  • Patent Document 1 is known as prior art document information related to the invention of this application.
  • a first resistor according to the present invention includes a resistor composed of a plate-shaped metal, a protective film formed on the first surface of the resistor, and the first surface of the resistor spaced apart by sandwiching the protective film.
  • the electrodes are formed by printing a paste containing a resin and a metal powder contained in the resin.
  • a first manufacturing method of a resistor of the present invention includes a step of forming a plurality of electrodes by printing a paste containing metal powder at intervals on an upper surface of a resistor composed of metal, and an upper surface of the resistor And forming a protective film so as to cover the upper surfaces of the plurality of electrodes, and polishing the plurality of protective films until the plurality of electrodes are exposed.
  • the second manufacturing method of the resistor according to the present invention includes a step of forming a plurality of strip electrodes by printing a paste containing metal powder at intervals on the surface of a sheet-like resistor composed of metal, and a sheet Forming a strip-shaped groove intersecting with the plurality of strip-shaped electrodes in the strip-shaped resistor. Further, a step of forming a first insulating film between two adjacent ones of the plurality of strip-shaped electrodes and forming a second insulating film so as to fill the groove, and forming the sheet-like resistor into the grooves and the plurality of strip-shaped electrodes And cutting it into pieces.
  • the second resistor of the present invention prints a paste containing a resistor composed of a plate-like metal, and resin and metal powder contained in the resin at both ends of the first surface of the resistor.
  • the third method for manufacturing a resistor according to the present invention includes a step of forming a resist on the upper surface of a sheet-like resistor made of metal, and a step of forming a plurality of strip-shaped gaps in the resist. Furthermore, a metal paste is printed in a plurality of gaps to form a strip-shaped electrode on the upper surface of the sheet-shaped resistor, to remove the resist, and to cover a part of the sheet-shaped resistor exposed from the electrode Forming an insulating film.
  • the resistor and the manufacturing method thereof according to the present invention can prevent the connection reliability between the resistor and the electrode from deteriorating, improve the productivity, and further improve the resistance accuracy.
  • the perspective view of the resistor in Embodiment 1 of this invention 2-2 sectional view of FIG.
  • the perspective view when mounting the resistor in Embodiment 1 The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • FIG. The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • FIG. The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • FIG. The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • FIG. The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • the back view which shows the manufacturing method of the resistor in Embodiment 1 The perspective view which shows the manufacturing method of the resistor in Embodiment 1.
  • Top view showing a method of manufacturing a resistor in the second embodiment
  • the back view which shows the manufacturing method of the resistor in Embodiment 2 Top view showing a method of manufacturing a resistor in the second embodiment Top view showing a method of manufacturing a resistor in the second embodiment Top view showing a method of manufacturing a resistor in the second embodiment Top view showing a method of manufacturing a resistor in the second embodiment Top view showing a method of manufacturing a resistor in the second embodiment Top view showing a method of manufacturing a resistor in the second embodiment Sectional view taken along line 9-9 in FIG. 8B
  • the side view which shows the manufacturing method of the resistor in Embodiment 3 of this invention.
  • the side view which shows the manufacturing method of the resistor in Embodiment 3 The side view which shows the manufacturing method of the resistor in Embodiment 3 The side view which shows the manufacturing method of the resistor in Embodiment 3 The side view which shows the manufacturing method of the resistor in Embodiment 3 The side view which shows the manufacturing method of the resistor in Embodiment 3 The side view which shows the manufacturing method of the resistor in Embodiment 3
  • the side view which shows the manufacturing method of the resistor in Embodiment 3 Top view showing a method for manufacturing a resistor in the third embodiment Top view showing a method for manufacturing a resistor in the third embodiment Top view showing a method for manufacturing a resistor in the third embodiment Top view showing a method for manufacturing a resistor in the third embodiment Top view showing a method for manufacturing a resistor in the third embodiment Top view showing a method for manufacturing a resistor in the third embodiment 15 is a sectional view taken along line 16-16 in FIG. Side view of the resistor in the third embodiment Cross section of conventional resist
  • FIG. 1 is a perspective view of a resistor according to Embodiment 1 of the present invention
  • FIG. 2 is a sectional view taken along line 2-2 of FIG.
  • the resistor according to the first embodiment of the present invention includes a resistor 11 made of a plate-like metal and a protective film 12 formed at the center of the upper surface of the resistor 11. And a pair of electrodes 13 formed on both ends of the upper surface of the resistor 11 and a plating layer 14 formed so as to cover the electrodes 13.
  • the electrode 13 is comprised by printing the metal paste comprised with the solvent, resin, and the metal powder contained in resin.
  • the resistor 11 is made of a metal containing Cu such as plate-like CuNi and CuMn.
  • the protective film 12 is formed on at least the central portion of the upper surface (first surface) of the resistor 11, and is formed by applying and drying an epoxy resin or a silicon resin.
  • the electrodes 13 are spaced apart with the protective film 12 in between, and are formed at both ends of the long side on the upper surface of the resistor 11. Further, the resistor 11 is formed so as to be exposed on the long side surface and not to be exposed on the short side surface of the resistor 11.
  • the electrode 13 is formed by printing and drying a metal paste containing Cu as a main component and containing no glass frit, followed by baking at 800 ° C. to 900 ° C. in a nitrogen atmosphere.
  • the upper surface of the protective film 12 in the vicinity of the electrode 13 and the upper surface of the electrode 13 are flush with each other. Thereby, since only the plating layer 14 protrudes from the upper surface of the protective film 12, the thickness of the product can be reduced.
  • the electrode 13 does not overlap the edge of the protective film 12, and the protective film 12 is provided at all locations on the upper surface of the resistor 11 where the electrode 13 is not formed.
  • the electrode 13 may be exposed also on the side surface on the short side of the resistor 11. Further, the electrode 13 may be formed on both ends of the short side instead of the long side on the upper surface of the resistor 11, and may not be exposed on both the long side and the short side of the resistor 11. Good. Furthermore, in FIG. 1 and FIG. 2, the electrode 13 has a rectangular parallelepiped shape, but it may be tapered or stepped so that the distance between the electrodes 13 increases upward.
  • the plating layer 14 is formed so as to cover the upper surface of the electrode 13 as necessary, and is constituted by nickel plating or tin plating.
  • the mounting substrate is mounted with the electrode 13 and the plating layer 14 side facing downward, but in this embodiment, for convenience, the electrode 13 of the resistor 11 is mounted.
  • the side on which the plating layer 14 is formed will be described as being upward.
  • a plurality of electrodes 13 are formed on a sheet-like resistor 11a in which a Cu-containing alloy such as CuNi or CuMn, or a metal is formed in a plate shape or a foil shape.
  • the electrode 13 is printed with a metal paste mainly composed of Cu powder not containing glass frit on the surface of the sheet-like resistor 11a and dried. Then, the metal paste is formed by firing at 800 ° C. to 900 ° C. in a nitrogen atmosphere. Note that printing may be repeated a plurality of times until the electrode 13 has a predetermined thickness.
  • the sheet resistor 11a is formed of a metal made of an alloy containing CuNi or CuMn Cu, and the metal constituting the electrode 13 is the same metal as the material constituting the sheet resistor 11a, that is, Cu.
  • the metal constituting the electrode 13 is the same metal as the material constituting the sheet resistor 11a, that is, Cu.
  • Cu in the paste and Cu in the alloy containing Cu are diffused and diffusion-bonded at the portion where both are in contact, thereby making it possible to firmly bond the electrode 13 and the sheet-like resistor 11a. is there. This also applies to Embodiments 2 and 3 described later.
  • a protective film 12 is integrally formed on the entire upper surface of the electrode 13 and the entire upper surface of the sheet-like resistor 11a where the electrode 13 is not formed.
  • the protective film 12 is formed by applying an epoxy resin or a silicon resin, and drying and curing. 4B, the protective film 12 directly formed on the upper surface of the sheet-like resistor 11a is thicker than the electrode 13, but the protective film 12 directly formed on the upper surface of the sheet-like resistor 11a is thinner than the electrode 13. May be. At this time, the protective film 12 is formed on the entire upper surface of the electrode 13, and the protective film 12 is integrally formed so as not to be interrupted, so that the periphery of the electrode 13 is covered with the protective film 12.
  • the protective film 12 is polished until the electrode 13 is exposed using a back grinding method, a polishing method, or a file.
  • the thickness of the exposed electrode 13 and the thickness of the protective film 12 on the upper surface of the polished sheet resistor 11a are made substantially equal, that is, the upper surface of the electrode 13 and the upper surface of the protective film 12 in the vicinity of the electrode 13 are faced. Make it one. A part of the surface of the electrode 13 may be polished.
  • the protective film 12 can be reliably formed between the electrodes 13 by the above method, there is a gap between the electrode 13 and the protective film 12 or the filling of the protective film 12 is insufficient. Adhesion to the electrode 13 can be prevented, whereby the resistance value can be stabilized.
  • nickel plating and tin plating are sequentially performed on the upper surface of the electrode 13 to form a plating layer 14.
  • a material that prevents oxidation of the flux and the electrode 13 may be applied.
  • the central portion of the plurality of electrodes 13 arranged in the horizontal direction is cut in the horizontal direction (cut by X-rays), and the protective film 12 positioned between the adjacent electrodes 13.
  • the central part is cut in the vertical direction (cut along the Y line) into individual pieces as shown in FIG. 5B. Further, this cutting is performed by a method such as laser, dicing, or pressing, and deburring is performed after cutting as necessary.
  • a recess 16 that does not penetrate the back surface of the individual resistor 15 is formed by a method such as sandblasting or cutting, and trimmed.
  • the trimming may be performed by cutting the resistor 11 so that the width or length of the resistor 11 is shortened or by polishing the entire upper surface of the resistor 11. Further, trimming may be performed by cutting out a part of the resistor 11 located between the electrodes 13.
  • a back surface insulating film 12a is formed on the back surface of the piece-like resistor 15 to obtain a piece-like resistor as shown in FIG. 5E.
  • the individual resistor 15 becomes the resistor 11 of the finished product (FIG. 1).
  • the back insulating film 12a may be formed simultaneously with the protective film 12.
  • FIG. 5C is a rear view
  • FIGS. 5D and 5E are perspective views as seen from the lower surface (rear surface) of the resistor 11
  • FIGS. 4A to 5B are perspective views as seen from the upper surface of the resistor 11.
  • FIG. Show. 4A to 5E show the case where there are two electrodes 13 in the horizontal direction and four electrodes in the vertical direction, but other numbers may be used.
  • the electrode 13 is configured by printing and baking a paste containing metal (Cu).
  • Cu in the paste that constitutes the electrode 13 and Cu that constitutes the resistor 11 are diffused, so that Cu is joined at a portion where they are in contact with each other.
  • the electrode 13 and the resistor 11 can be firmly joined, even if the connection area between the resistor 11 and the electrode 13 is reduced for miniaturization, the connection reliability between the resistor 11 and the electrode 13 is deteriorated. The effect that it can prevent is acquired.
  • the same metal as the metal composing the electrode 13 is contained in the alloy material composing the resistor 11 so that diffusion easily proceeds.
  • the electrode 3 is formed by plating, a part of the electrode 3 is overlapped so as to be in direct contact with the edge of the protective film 2, thereby Since the effective length t2 of the resistor that determines the resistance value is longer than the interval t1 between the three, if the length of the resistor is shortened for the purpose of downsizing, the resistance value is increased as the effective length t2 of the resistor is long. It cannot be lowered.
  • the electrode 13 is formed by printing and the upper surface of the electrode 13 and the upper surface of the protective film 12 are flush with each other, the resistance of the resistor that determines the distance between the electrodes 13 and the resistance value is effective. It becomes equal to the length, and the resistance value can be lowered even if the size is reduced.
  • the electrode 13 As a method of forming the electrode 13, it is conceivable to use a cladding method, but it is difficult to maintain the dimensional accuracy by processing such as cutting in a small product, and it is difficult to produce with high yield. In this embodiment, since the electrode 13 is formed by printing, processing such as cutting is unnecessary, and dimensional accuracy can be improved.
  • the protective film 12 may be formed so as to cover the side surface of the electrode 13. Thereby, since it can prevent more effectively that the mounting solder adheres to the electrode 13, resistance value can be stabilized more.
  • the electrode 13 is formed by printing and baking, and therefore, it can be manufactured at a lower cost than when plating or cladding is used.
  • the electrode 13 is baked at 800 ° C. to 900 ° C.
  • nanoparticles are used as the material of the electrode 13, it can be baked at a lower temperature.
  • a sheet-like resistor 11a in which a metal made of CuNi, NiCr, CuMn, or the like is configured in a plate shape or a foil shape is prepared.
  • a metal paste mainly composed of Cu that does not contain glass frit is printed in a band at regular intervals on the upper surface (first surface) of the sheet-like resistor 11a and dried. Then, the metal paste is fired at 800 ° C. to 900 ° C. in a nitrogen atmosphere to form a plurality of strip-shaped electrodes 13. In addition, you may use the paste which has Ag as a main component as a paste.
  • a back surface insulating film (protective film) made of an epoxy resin is formed on the back surface of the sheet-like resistor 11a, that is, the entire surface opposite to the surface on which the plurality of strip electrodes 13 are formed. 12a is formed.
  • FIG. 6C shows a rear view
  • FIGS. 6A, 6B, and 7A to 8B show top views.
  • the plurality of strip electrodes 13 are arranged so as to be on the lower side (rear surface side).
  • FIG. 6A, FIG. 6B, and FIGS. The figure which turned 13 up is shown.
  • a plurality of strip-shaped grooves 17 are formed by dicing the sheet-like resistor 11 a on which the strip-shaped electrodes 13 are formed in a direction orthogonal to the plurality of strip-shaped electrodes 13.
  • the plurality of grooves 17 are provided at equal intervals and penetrate the sheet resistor 11a and the back surface insulating film 12a. Note that the back insulating film 12a may be formed after the plurality of grooves 17 are formed.
  • a first insulating film 18 is formed in a strip shape between adjacent strip electrodes 13, and a second insulating film 19 is formed so as to fill the groove 17.
  • the first insulating film 18 and the second insulating film 19 become the protective film 12 made of an epoxy resin.
  • the first insulating film 18 is formed after the mask is used and the second insulating film 19 is formed. Note that the first insulating film 18 may be formed first or simultaneously.
  • first insulating film 18 covers the end of the strip electrode 13 and the second insulating film 19 is provided so as to completely fill the inside of the groove 17.
  • trimming resistance value correction
  • Trimming is performed linearly from the groove 17 toward the center of the resistor 11 while measuring the resistance value between the adjacent strip electrodes 13 so that each piece of resistor has a predetermined resistance value. This is done by forming a trimming groove (not shown). At this time, one end of the sheet-like resistor 11a is cut and the groove 17 is exposed at one end of the sheet-like resistor 11a so that there is no other portion where the current when the resistance value is measured flows in parallel. Like that.
  • the back surface insulating film 12a made of an epoxy resin is formed on the back surface of the sheet-like resistor 11a after the plurality of grooves 17 are formed, the plurality of grooves 17 are filled with the epoxy resin simultaneously with the formation of the back surface insulating film 12a. be able to. Therefore, it is not necessary to form the second insulating film 19, which is advantageous in terms of cost and productivity.
  • the sheet-like resistor 11a is cut at the center (line B) of the groove 17 filled with the second insulating film 19 by dicing, laser, or a cutting blade. Furthermore, the center part (C line) of the strip electrode 13 is cut by dicing, laser, or a cutting blade in a direction orthogonal to the groove 17 to obtain the individual resistor 15 shown in FIG. 8A.
  • the electrode 13 is formed on the short side of the resistor 15.
  • the center line of the groove 17 is cut along the B line so as to be divided when viewed from above, so that the second insulating film 19 remains on both sides of the dividing line.
  • end electrodes, copper plating, nickel plating, and tin plating are formed on both ends of the piece-like resistor 15, and external electrodes 20 are provided.
  • FIG. 9 shows a cross-sectional view taken along line 9-9 of the resistor shown in FIG. 8B obtained as described above
  • FIG. 10 shows a perspective view thereof. 9 and 10 show a mounting state in which the upper surface of the sheet-like resistor 11a shown in FIGS. 6A to 7C is directed downward (mounting surface side). Furthermore, in FIGS. 6A to 7C, the strip-like electrode 13 represents three, but may be other than three.
  • the sheet-like resistor 11a shown in FIGS. 6A to 7C is divided into individual pieces, so that individual piece-like resistors 15 are formed.
  • the piece-like resistor 15 becomes the resistor 11 in the finished product, and the strip-like electrodes 13 are divided at both ends of the upper surface of the resistor 11 to form a pair of electrodes 13.
  • the external electrode 20 formed on both ends of the resistor 11 and connected to the resistor 11 and the electrode 13, the back surface insulating film 12 a formed on the back surface of the resistor 11, and the top surface of the resistor 11 are formed.
  • a resistor including the first insulating film 18 and the second insulating film 19 formed on the side surface (second surface orthogonal to the first surface) of the resistor 11 and the electrode 13 is obtained.
  • cut marks generated as a result of the above-described dicing, laser, and cutting with a cutting blade are formed on the surface of the second insulating film 19.
  • the cutting trace appears as a melt obtained by melting the resin by heat, and in the case of dicing, it appears as a streak.
  • the second insulating film 19 by cutting the second insulating film 19, it is possible to define the cutting position, thereby making the dimension between the inner surface of the groove 17 and the cutting position constant. Therefore, the accuracy of the dimension between the inner surface of the groove 17 and the cutting position, that is, the thickness of the second insulating film 19 is improved. As a result, the dimensional accuracy of a product in which cutting marks are formed on the surface of the second insulating film 19 is improved.
  • the second insulating film 19 when an attempt is made to apply and form the second insulating film 19 on the side surface to each of the individual resistors 15, the second insulating film 19 has a shape due to conditions such as temperature and surface tension. The thickness dimension varies due to the change.
  • a plurality of strip-shaped grooves 17 are formed in the sheet-like resistor 11a, the second insulating film 19 is formed so as to fill the grooves 17, and then the grooves 17 is cut into a single piece. Therefore, the second insulating film 19 can be formed in a sheet-like state before being divided into the piece-shaped resistors 15, thereby eliminating the need to form the second insulating films 19 one by one. Get better. As a result, the effect that productivity can be improved is obtained.
  • the second insulating film 19 filled in the groove 17 of the sheet-like resistor 11a, the second insulating film 19 can be provided on all the individual resistors 15 at the same time. Then, the second insulating film 19 separated by cutting along the B line in FIG. 7C is formed on the side surfaces of the individual resistor 15 and the electrode 13 on both sides of the cut portion.
  • the periphery of the paste becomes thin due to surface tension during baking. For this reason, as shown in FIG. 11, the thickness of the side portion 13 a of the strip-shaped electrode 13 facing each other in the piece-shaped resistor 15 is thinner than the other portions, and thereby the first strip-shaped electrode 13 between the adjacent strip-shaped electrodes 13 is formed.
  • the space above the portion where the insulating film 18 is formed is wider from the bottom. Therefore, the first insulating film 18 easily flows between the adjacent strip electrodes 13, and the first insulating film 18 can be formed between the strip electrodes 13 without any gap.
  • the thickness of the plurality of strip electrodes 13 is substantially constant. For this reason, the space above the portion where the first insulating film 18 between the adjacent strip electrodes 13 is formed does not increase from below. As a result, there is a possibility that a gap is generated between the first insulating film 18 and the strip electrode 13, and the air in the gap expands due to heat generation during use, causing the first insulating film 18 to peel off.
  • Embodiment 3 (Embodiment 3)
  • the manufacturing method of the resistor in Embodiment 3 of this invention is demonstrated, referring drawings.
  • a photoresist resist 21 is adhered to the entire upper surface of a sheet-like resistor 11a in which a metal made of an alloy containing Cu such as CuNi and CuMn is formed in a plate shape or a foil shape. .
  • an exposure mask having a plurality of strip-shaped openings 22a is arranged above the resist 21, and exposure is performed by irradiating ultraviolet rays or the like from above.
  • the band shape means a band shape when viewed from above, and does not mean a shape viewed from the side.
  • the resist 21 irradiated with ultraviolet rays through the opening 22a is removed, the removed portions become a plurality of strip-shaped gaps 22, and the resist 21 not irradiated with ultraviolet rays remains.
  • no gap 22 is formed in the remaining portion. That is, the resist 21 below the portion where the plurality of strip-shaped openings 22a is formed is removed, and the resist 21 below the portion where the plurality of strip-shaped openings 22a are not formed is left.
  • the shape of the gap 22 is substantially the same as the shape of the opening 22a.
  • size and position of the clearance gap 22 are determined according to the desired resistance value and the magnitude
  • a paste 13b mainly containing Cu not containing glass frit is printed on the upper surface of the sheet-like resistor 11a in the plurality of strip-shaped gaps 22 from which the resist 21 has been removed, and then dried. To do.
  • the remaining resist 21 is peeled off, and then the paste 13b is baked at 800 ° C. to 900 ° C. in a nitrogen atmosphere to form a plurality of strip-like electrodes 13.
  • both side portions 13a of the electrode 13 are substantially perpendicular to the sheet-like resistor 11a.
  • the electrode 13 covering the resist 21 is simultaneously peeled by peeling the resist 21.
  • a back surface insulating film (protective film) 12a made of an epoxy resin is formed on the lower surface of the sheet-like resistor 11a, that is, the entire surface opposite to the surface on which the plurality of strip electrodes 13 are formed. 12A to 12E and FIGS. 13B to 14C).
  • FIG. 13B a sheet-like resistor 11a having a plurality of strip-like electrodes 13 provided on the upper surface at predetermined intervals is formed.
  • 12A to 12E and 13A are side views
  • FIGS. 13B to 14C are top views.
  • FIGS. 12 to 14 show the case where there are three strip-like electrodes 13, but the number may be other than three.
  • a plurality of strip-shaped grooves 17 are formed by dicing the sheet-like resistor 11 a on which the strip-shaped electrodes 13 are formed in a direction orthogonal to the plurality of strip-shaped electrodes 13.
  • the plurality of grooves 17 are provided at equal intervals and penetrate the sheet resistor 11a and the back surface insulating film 12a. Further, the groove 17 does not extend to at least one end portion of the sheet-like resistor 11a so that the sheet-like resistor 11a is not divided into a plurality of pieces.
  • the back insulating film 12a may be formed after the plurality of grooves 17 are formed.
  • an insulating film (protective film) 12 made of an epoxy resin is formed between the adjacent strip-shaped electrodes 13 in a strip shape. At this time, the insulating film 12 is also formed inside the groove 17 so that a part of the insulating film 12 covers the side surface of the strip-shaped electrode 13.
  • trimming resistance value correction
  • Trimming is performed in a straight line from the groove 17 toward the center of the resistor 11 while measuring the resistance value between the adjacent electrodes 13 so that each resistor in a piece shape has a predetermined resistance value. This is done by forming a groove (not shown).
  • the sheet-shaped resistor 11 a is cut and divided at the center (line E) of the groove 17 by dicing, laser, or a cutting blade, and is further strip-shaped in a direction perpendicular to the groove 17.
  • the center portion (F line) of the electrode 13 is cut and divided by dicing, laser, or a cutting blade to obtain a piece-like resistor 15 shown in FIG. 14C.
  • end electrodes, copper plating, nickel plating, and tin plating are formed on both ends of the individual resistor 15, and external electrodes 20 are provided.
  • FIG. 16 a cross-sectional view taken along the line 16-16 of the resistor shown in FIG. 15 obtained as described above is shown in FIG. 16, and a side view thereof is shown in FIG. 16 and 17 show the mounting state in which the surface of the sheet-like resistor 11a where the electrode 13 is not formed is the mounting surface, but the surface where the electrode 13 is formed is used as the mounting surface as in the prior art. Also good.
  • the sheet-like resistor 11a is cut into pieces and divided to form the piece-like resistor 15.
  • the individual resistor 15 becomes the resistor 11 in the finished product, and a pair of electrodes 13 formed by dividing the strip-like electrode 13 at both ends of the upper surface of the resistor 11 and both ends of the resistor 11.
  • a resistor is obtained.
  • the electrode 13 is formed on the short side of the resistor 11, the electrode 13 may be formed on the long side of the resistor 11 in the second and third embodiments as in the first embodiment.
  • an exposure mask having a plurality of strip-shaped openings 22a is arranged above the resist 21, and exposure is performed from the exposure mask to form a plurality of strip-shaped openings.
  • the resist 21 below the portion where the portion 22a is formed is removed.
  • a plurality of strip-shaped gaps 22 for forming the electrodes 13 are formed in the resist 21 so that the resist 21 below the portion where the plurality of strip-shaped openings 22a are not formed remains.
  • the linearity of the side part 13a of the electrode 13 improves, and it can prevent that the space
  • the formation position and shape of the electrodes 13 are stable, even if the size of the resistor 11 is shortened and the length of the resistor 11 is shortened, the distance between the electrodes 13 is not shortened. Therefore, it is possible to prevent a short circuit between the electrodes 13 and the external electrodes 20 in one resistor.
  • the formation position and shape of the electrode 13 vary depending on conditions.
  • the formation position and shape of the electrode 13 can be defined by the opening 22a of the exposure mask, so that the formation position and shape of the electrode 13 are stabilized, and as a result, the distance between the electrodes 13 is increased. Will not be shortened. Furthermore, since the distance between the electrodes 13 can be easily adjusted, the resistance value accuracy can be easily improved.
  • the insulating film 12 is formed after the electrode 13 is formed, a part of the electrode 13 does not overlap the insulating film 12.
  • the insulating film 12 is also formed inside the groove 17, the insulating film 12 is formed on the top surface and both side surfaces of the resistor 11, and the back surface insulating film 12 a is formed on the back surface of the resistor 11. . Thereby, since the circumference
  • the surface of the sheet-like resistor 11a may be roughened in advance by a method such as sand blasting, plating, or chemical treatment.
  • the surface of the sheet-like resistor 11 a where the gap 22 is provided is roughened.
  • the portion where the electrode 13 is formed is roughened.
  • the surface of the sheet-like resistor 11a on which the electrode 13 on the lower surface of the remaining resist 21 is not formed is not roughened, the remaining resist 21 is easily peeled off. In this case, the surface roughness of the resistor 11 where the electrode 13 is formed is rougher than the surface roughness of the resistor 11 where the electrode 13 is not formed.
  • the electrode 13 by printing is commonly used in general chip resistors, which is advantageous in terms of cost and productivity.
  • the resistor 11 (15, the sheet-like resistor 11a) and the electrode 13 are made of metal, a very low resistance value of 1 to 10 m ⁇ can be obtained.
  • an insulating substrate is not used, the thickness of the entire resistor can be reduced.
  • the thickness of the resistor 11 (sheet-like resistor 11a) is 50 to 500 ⁇ m, and the thickness of the electrode 13 is 10 to 100 ⁇ m.
  • the electrodes 13 can be formed without exposure as in the second embodiment. is there.
  • the electrode 13 does not overlap the protective film 12 as in the first embodiment.
  • the resistor and the manufacturing method thereof according to the present invention have an effect that the connection reliability between the resistor and the electrode can be prevented from being deteriorated, and are particularly small in size used for detecting a current value of various electronic devices. This is useful for low resistance resistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Details Of Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

 抵抗器は、抵抗体と、保護膜と、電極と、めっき層とを備える。抵抗体は板状の金属で構成され、保護膜は抵抗体の上面の中央部に形成され、めっき層は電極を覆うように形成されている。電極は、保護膜を挟んで離間し、抵抗体の上面の両端部に形成され、金属を含有するペーストを印刷することによって構成されている。

Description

抵抗器およびその製造方法
 本発明は、各種電子機器の電流値検出等に使用される小型で低抵抗値の抵抗器およびその製造方法に関する。
 従来のこの種の抵抗器は、図18に示すように、板状の金属で構成された抵抗体1と、抵抗体1の一面の中央部に形成された保護膜2と、保護膜2を挟んで離間し、抵抗体1の一面の両端部にめっきで構成された電極3と、電極3を覆うように形成されためっき層4とを備えている。そして、電極3、めっき層4の一部が保護膜2の縁部と直接接触するようにオーバーラップしている。さらに、抵抗体1の他の面に他の保護膜2aを形成している。
 また、抵抗体1の一面の中央部に保護膜2を形成した後、保護膜2をめっきレジストとしてめっきし、電極3を形成するようにしている。
 なお、この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2007-49207号公報
 本発明の第1の抵抗器は、板状の金属で構成された抵抗体と、抵抗体の第1面に形成された保護膜と、保護膜を挟んで離間し、抵抗体の第1面の両端部に形成された電極とを備え、電極は樹脂と樹脂に含まれた金属粉とを含有するペーストを印刷することによって構成している。
 本発明の抵抗器の第1の製造方法は、金属で構成された抵抗体の上面に間隔をあけて金属粉を含有するペーストを印刷して複数の電極を形成するステップと、抵抗体の上面と複数の電極の上面とを覆うように保護膜を形成するステップと、複数の電極が露出するまで複数の保護膜を研磨するステップとを備えている。
 本発明の抵抗器の第2の製造方法は、金属で構成されたシート状抵抗体の表面に間隔をあけて金属粉を含有するペーストを印刷して複数の帯状電極を形成するステップと、シート状抵抗体に複数の帯状電極と交わる帯状の溝を形成するステップとを備える。さらに、複数の帯状電極のうち隣り合う2つの間に第1の絶縁膜を形成するとともに溝を埋めるように第2の絶縁膜を形成するステップと、シート状抵抗体を溝と複数の帯状電極において切断して個片状に分割するステップとを備えている。
 本発明の第2の抵抗器は、板状の金属で構成された抵抗体と、抵抗体の第1面の両端部に樹脂と樹脂に含まれた金属粉とを含有するペーストを印刷することによって形成された電極と、抵抗体の第1面に形成された第1の絶縁膜と、抵抗体の第1面と直交する第2面に形成された第2の絶縁膜とを備え、第2の絶縁膜の表面には切断痕が形成されている。
 本発明の抵抗器の第3の製造方法は、金属で構成されたシート状抵抗体の上面にレジストを形成するステップと、レジストに複数の帯状の隙間を形成するステップとを備える。さらに、複数の隙間に金属ペーストを印刷することによってシート状抵抗体の上面に帯状の電極を形成するステップと、レジストを剥離するステップと、電極から露出したシート状抵抗体の一部を覆うように絶縁膜を形成するステップとを備える。さらに、電極および絶縁膜を有するシート状抵抗体を個片状に切断するステップとを備え、レジストに複数の帯状の隙間を形成する際は、レジストの上方に複数の帯状の開口部を有する露光用マスクを配置、露光して、レジストを帯状に除去するようにしている。
 本発明の抵抗器およびその製造方法により、抵抗体と電極の接続信頼性が劣化するのを防止でき、かつ生産性を向上させることができ、さらに、抵抗値精度を向上させることができる。
本発明の実施の形態1における抵抗器の斜視図 図1の2-2線断面図 実施の形態1における抵抗器を実装するときの斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す裏面図 実施の形態1における抵抗器の製造方法を示す斜視図 実施の形態1における抵抗器の製造方法を示す斜視図 本発明の実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す裏面図 実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す上面図 実施の形態2における抵抗器の製造方法を示す上面図 図8Bの9-9線断面図 実施の形態2における抵抗器の斜視図 実施の形態2における抵抗器の主要部の側面図 本発明の実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す側面図 実施の形態3における抵抗器の製造方法を示す上面図 実施の形態3における抵抗器の製造方法を示す上面図 実施の形態3における抵抗器の製造方法を示す上面図 実施の形態3における抵抗器の製造方法を示す上面図 実施の形態3における抵抗器の製造方法を示す上面図 実施の形態3における抵抗器の製造方法を示す上面図 図15の16-16線断面図 実施の形態3における抵抗器の側面図 従来の抵抗器の断面図
 本発明の実施の形態の説明に先立ち、図18を参照して説明した従来の抵抗器における課題を説明する。この抵抗器において、電極3の一部が保護膜2の縁部と直接接触するようにオーバーラップしているため、電極3同士の間隔t1よりも抵抗値を決定する抵抗体1の有効長t2が長くなる。これにより、小型化のために抵抗体1の長さを短くした場合でも電極3同士の間隔t1より有効長t2がある程度長い状態となるため、抵抗体1と電極3の接続面積が小さくなる。この結果、抵抗体1と電極3の接続信頼性が低下する可能性がある。
 以下、上記の課題を解決し、抵抗体と電極の接続信頼性が低下するのを防止できる、本発明の実施の形態による抵抗器について図面を参照しながら説明する。なお各実施の形態において、先行する実施の形態と同様の構成をなすものには同じ符号を付し、詳細な説明を省略する場合がある。
 (実施の形態1)
 図1は本発明の実施の形態1における抵抗器の斜視図、図2は図1の2-2線断面図である。
 本発明の実施の形態1における抵抗器は、図1、図2に示すように、板状の金属で構成された抵抗体11と、抵抗体11の上面の中央部に形成された保護膜12と、保護膜12を挟んで離間し、抵抗体11の上面の両端部に形成された一対の電極13と、電極13を覆うように形成されためっき層14とを有している。
 そして、電極13は、溶剤と樹脂と樹脂に含まれた金属粉とで構成された金属ペーストを印刷することによって構成されている。
 上記構成において、抵抗体11は、板状のCuNi、CuMn等のCuを含有する金属で構成されている。
 また、保護膜12は、抵抗体11の上面(第1面)の少なくとも中央部に形成され、エポキシ樹脂またはシリコン樹脂を塗布、乾燥することにより形成されている。
 さらに、電極13は、保護膜12を挟んで離間し、抵抗体11の上面における長辺の両端部に形成されている。また、抵抗体11の長辺側の側面に露出し、かつ抵抗体11の短辺側の側面には露出しないように形成されている。そして、電極13は、ガラスフリットを含有しないCuを主成分とした金属ペーストを印刷、乾燥し、窒素雰囲気中で800℃~900℃で焼成して形成する。
 このとき、少なくとも電極13近傍の保護膜12の上面と電極13の上面とは面一になっている。これにより、めっき層14のみが保護膜12の上面から突出することになるため、製品の薄型化を実現することができる。そして、電極13は、保護膜12の縁部にオーバーラップしておらず、さらに、抵抗体11の上面における電極13が形成されていない箇所すべてに保護膜12が設けられる。
 なお、電極13は、抵抗体11の短辺側の側面にも露出するようにしてもよい。また、電極13は、抵抗体11の上面における長辺ではなく短辺の両端部に形成してもよく、抵抗体11の長辺側および短辺側の両方の側面に露出しないようにしてもよい。さらに、図1、図2では、電極13は、直方体の形状をしているが、上方に向かって電極13同士の間隔が広がるようなテーパ状、階段状であってもよい。
 そして、めっき層14は、必要に応じ、電極13の上面を覆うように形成され、ニッケルめっき、すずめっきで構成される。
 ここで、実装基板へは、図3に示すように、電極13、めっき層14が形成された側を下方に向けて実装されるが、本実施の形態では、便宜上、抵抗体11の電極13、めっき層14が形成された側を上方として説明する。
 以下、本発明の実施の形態1における抵抗器の製造方法について図面を参照しながら説明する。
 まず、図4Aに示すように、CuNi、CuMn等のCuを含有する合金、金属を板状または箔状に構成したシート状抵抗体11aに複数の電極13を形成する。
 このとき、印刷用マスクを用い、縦方向に一定間隔で形成し、かつ横方向にも一定間隔で形成する。電極13は、シート状抵抗体11aの表面にガラスフリットを含有しないCu粉を主成分とした金属ペーストを印刷し、乾燥する。そして、金属ペーストを窒素雰囲気中で800℃~900℃で焼成して形成する。なお、電極13が所定の膜厚になるまで複数回繰り返して印刷してもよい。
 このとき、CuNiまたはCuMnのCuを含む合金からなる金属でシート状抵抗体11aを形成し、電極13を構成する金属を、シート状抵抗体11aを構成する材料と同じ金属、すなわちCuとする。なぜなら、ペースト中のCuと、Cuを含む合金中のCuが拡散することによって、両者が接している部分で拡散接合し、これにより、電極13とシート状抵抗体11aを強固に接合できるからである。このことは、後述する実施の形態2、実施の形態3でも同様である。
 次に、図4Bに示すように、電極13の上面の全面、および電極13が形成されていない部分のシート状抵抗体11aの上面の全面に保護膜12を一体的に形成する。保護膜12は、エポキシ樹脂またはシリコン樹脂を塗布し、乾燥、硬化することにより形成する。なお、図4Bではシート状抵抗体11aの上面に直接形成される保護膜12を電極13より厚くしているが、シート状抵抗体11aの上面に直接形成される保護膜12を電極13より薄くしてもよい。このとき、電極13の上面の全面に保護膜12を形成し、かつ保護膜12を途切れないように一体的に形成して、電極13の周囲が保護膜12で覆われるようにする。
 次に、図4Cに示すように、バックグラインド工法、ポリッシング工法やヤスリを用いて電極13が露出するまで保護膜12を研磨する。このとき、露出した電極13の厚みと、研磨されたシート状抵抗体11aの上面の保護膜12の厚みを略等しくする、すなわち、電極13の上面と電極13近傍の保護膜12の上面を面一にする。なお、電極13の表面の一部を研磨してもよい。
 上記の方法により、電極13同士の間に確実に保護膜12を形成できるため、電極13と保護膜12の間に隙間ができたり、保護膜12の充填が不足したりして実装用はんだが電極13に付着するのを防ぐことができ、これにより、抵抗値を安定させることができる。
 次に、図4Dに示すように、電極13の上面に、ニッケルめっき、すずめっきを順に行い、めっき層14を形成する。上述したように電極13の上面と保護膜12の上面を面一にすると、めっき層14のみが保護膜12の上面から突出する。なお、めっき層14の代わりに、フラックスや電極13の酸化を防止する材料を塗布してもよい。
 次に、図5Aに示すように、横方向に並んでいる複数の電極13の中央部を横方向に切断(X線で切断)するとともに、隣り合う電極13同士の間に位置する保護膜12の中央部を縦方向に切断(Y線で切断)し、図5Bに示すように個片状にする。また、この切断は、レーザ、ダイシング、プレス等の方法により行い、必要に応じて切断後にバリ取りをする。
 次に、図5Cに示すように、必要に応じて、個片状の抵抗体15の裏面に貫通しない凹部16をサンドブラスト、切削等の方法により形成し、トリミングする。なお、トリミングは抵抗体11の幅や長さを短くするように切断したり、抵抗体11の上面の全面を研磨したりして行ってもよい。さらに、電極13間に位置する抵抗体11の一部を切り欠くことによりトリミングしてもよい。
 最後に、図5Dに示すように、必要に応じて、個片状の抵抗体15の裏面に裏面絶縁膜12aを形成し、図5Eに示すような個片状の抵抗器を得る。個片状の抵抗体15は完成品(図1)の抵抗体11となる。なお、裏面絶縁膜12aは保護膜12と同時に形成してもよい。
 ここで、図5Cは裏面図、図5D、図5Eは抵抗体11の下面(裏面)から見た斜視図を示しており、図4A~図5Bは抵抗体11の上面から見た斜視図を示している。なお、図4A~図5Eでは、電極13が横方向2つ、縦方向4つの場合を表しているが、これ以外の数であってもよい。
 本発明の実施の形態1における抵抗器においては、電極13を金属(Cu)を含有するペーストを印刷、焼成することによって構成している。この構成により、電極13を構成するペースト中のCuと抵抗体11を構成するCuが拡散することによって、両者が接している部分でCu同士が接合する。これにより、電極13と抵抗体11を強固に接合できるため、小型化のために抵抗体11と電極13の接続面積が小さくなっても、抵抗体11と電極13の接続信頼性が劣化するのを防止できるという効果が得られる。
 このとき、電極13の一部が保護膜12の縁部と直接接触するようにオーバーラップして抵抗体11と電極13の接続面積がより小さくなっても、電極13と抵抗体11の接合が強固であるため、抵抗体11と電極13の接続信頼性が劣化することはない。
 また、電極13を構成する金属と同一の金属を、抵抗体11を構成する合金材料に含有させることによって、容易に拡散が進行するため、好ましい。
 ここで、図18に示す従来の抵抗器では、電極3をめっきで形成しているため、電極3の一部が保護膜2の縁部と直接接触するようにオーバーラップし、これにより、電極3同士の間隔t1よりも抵抗値を決定する抵抗体の有効長t2が長くなるため、小型化のために抵抗体の長さを短くすると、抵抗体の有効長t2が長い分、抵抗値を低くすることができない。これに対し、本実施の形態では、電極13を印刷で形成し電極13の上面と保護膜12の上面を面一にしているため、電極13同士の間隔と抵抗値を決定する抵抗体の有効長とは等しくなり、小型化しても抵抗値を低くすることが可能となる。
 さらに、電極13の形成方法としては、他にクラッド工法を用いることも考えられるが、小型品では、切削等の加工で寸法精度を維持するのが困難であり、歩留まり良く生産することが難しいが、本実施の形態では、電極13を印刷で形成しているため、切削等の加工が不要で、寸法精度を良くすることができる。
 なお、保護膜12を電極13の側面を覆うように形成してもよい。これにより、実装用はんだが電極13に付着するのをより効果的に防ぐことができるため、抵抗値をより安定させることができる。
 また、本実施の形態の工法では、電極13を印刷、焼成することによって形成しているため、めっきやクラッドを用いた場合より、安価に製造することができる。
 さらに、上記した本発明の実施の形態1では、電極13を800℃~900℃で焼成しているが、電極13の材料としてナノ粒子を用いれば、より低温で焼成することができる。
 (実施の形態2)
 以下、本発明の実施の形態2における抵抗器の製造方法について図面を参照しながら説明する。
 まず、図6Aに示すように、CuNi、NiCr、CuMn等からなる金属を板状または箔状に構成したシート状抵抗体11aを用意する。
 次に、図6Bに示すように、シート状抵抗体11aの上面(第1面)に一定間隔で帯状にガラスフリットを含有しないCuを主成分とした金属ペーストを印刷し、乾燥する。そして、金属ペーストを窒素雰囲気中で800℃~900℃で焼成して複数の帯状の電極13を形成する。なお、ペーストとしてAgを主成分としたペーストを使用してもよい。
 このときも、帯状電極13を構成する金属を、シート状抵抗体11aの材料に合わせるのが好ましい。
 次に、図6Cに示すように、シート状抵抗体11aの裏面、すなわち複数の帯状電極13が形成された面と対向する面の全面に、エポキシ樹脂で構成された裏面絶縁膜(保護膜)12aを形成する。
 なお、図6Cは裏面図を示し、図6A、図6B、図7A~図8Bは上面図を示す。さらに、実装時は複数の帯状電極13が下側(裏面側)になるように配置するが、説明を簡単にするために、図6A、図6B、および図7A~図8Bでは複数の帯状電極13を上側にした図を示す。
 次に、図7Aに示すように、帯状電極13が形成されたシート状抵抗体11aを、複数の帯状電極13と直交する方向にダイシングすることによって、帯状の溝17を複数形成する。また、複数の溝17は等間隔に設け、かつシート状抵抗体11aおよび裏面絶縁膜12aを貫通する。なお、複数の溝17を形成した後に、裏面絶縁膜12aを形成してもよい。
 次に、図7Bに示すように、隣り合う帯状電極13間に第1の絶縁膜18を帯状に形成し、さらに、溝17を埋めるように第2の絶縁膜19を形成する。第1の絶縁膜18、第2の絶縁膜19は、エポキシ樹脂で構成される保護膜12となる。
 このとき、マスクを使用し、そして、第2の絶縁膜19を形成した後に第1の絶縁膜18を形成する。なお、第1の絶縁膜18を先に形成してもよいし、同時に形成してもよい。
 さらに、第1の絶縁膜18の一部が帯状電極13の端部を覆うようにし、第2の絶縁膜19は溝17の内部を完全に充填するように設ける。
 そして、第1の絶縁膜18、第2の絶縁膜19を形成する前に、必要に応じてトリミング(抵抗値修正)する。トリミングは、個片状となる各抵抗体が所定の抵抗値になるように、隣り合う帯状電極13間の抵抗値を測定しながら、溝17から抵抗体11の中心部に向かって直線状にトリミング溝(図示せず)を形成することにより行う。このとき、抵抗値測定時の電流が並列に流れる箇所が他にないようにするために、シート状抵抗体11aの一端部を切断して溝17がシート状抵抗体11aの一端部に露出するようにする。
 また、複数の溝17を形成した後、シート状抵抗体11aの裏面にエポキシ樹脂からなる裏面絶縁膜12aを形成すれば、裏面絶縁膜12aの形成と同時に複数の溝17にエポキシ樹脂を充填することができる。そのため、第2の絶縁膜19の形成が不要となり、コスト、生産性の点で有利となる。
 次に、図7Cに示すように、シート状抵抗体11aを、第2の絶縁膜19が充填された溝17の中央部(B線)をダイシングやレーザ、切断刃によって切断する。さらに、溝17と直交する方向に帯状電極13の中央部(C線)をダイシングやレーザ、切断刃によって切断して、図8Aに示す個片状の抵抗体15を得る。また、電極13は抵抗体15の短辺に形成されている。
 このとき、上面視にて溝17の中心線を分割するようにB線で切断し、この分割線の両側に第2の絶縁膜19が残るようにする。
 最後に、図8Bに示すように、個片状の抵抗体15の両端部に、端面電極、銅めっき、ニッケルめっき、すずめっきを形成し、外部電極20を設ける。
 ここで、上記のようにして得られた図8Bに示す抵抗器の9-9線断面図を図9に、斜視図を図10に示す。なお、図9、図10は、図6A~図7Cのシート状抵抗体11aの上面を下側(実装面側)に向けた実装状態を示す。さらに、図6A~図7Cでは、帯状の電極13が3つのものを表しているが、3つ以外であってもよい。
 図9、図10において、図6A~図7Cのシート状抵抗体11aは個片状に分割されることによって、個片状の抵抗体15が形成されている。そして、個片状の抵抗体15は完成品での抵抗体11となり、抵抗体11の上面の両端部に帯状電極13が分割されて一対の電極13が形成される。この結果、抵抗体11の両端部に形成され抵抗体11、電極13と接続される外部電極20と、抵抗体11の裏面に形成された裏面絶縁膜12aと、抵抗体11の上面に形成された第1の絶縁膜18と、抵抗体11および電極13の側面(第1面と直交する第2面)に形成された第2の絶縁膜19とを備えた抵抗器が得られる。
 また、第2の絶縁膜19の表面には、上述したダイシング、レーザ、切断刃による切断の結果生じた切断痕が形成されている。切断痕は、レーザの場合は樹脂が熱で溶融した溶融物として、ダイシングの場合はスジとして現れる。
 このように、第2の絶縁膜19を切断することによって、切断位置を規定することができ、これにより、溝17の内面と切断位置との間の寸法を一定にすることができる。そのため、溝17の内面と切断位置との間の寸法、すなわち第2の絶縁膜19の厚みの精度が良くなる。この結果、第2の絶縁膜19の表面に切断痕が形成された製品の寸法精度は良くなる。一方、個片状の抵抗体15のそれぞれ1個ずつに側面の第2の絶縁膜19を塗布して形成しようとした場合、第2の絶縁膜19は、温度等の条件や表面張力による形状変化によって、厚み寸法がばらついてしまう。
 本発明の実施の形態2における抵抗器の製造方法においては、シート状抵抗体11aに帯状の複数の溝17を形成し、溝17を埋めるように第2の絶縁膜19を形成した後、溝17の中央部で切断して個片状にするようにしている。そのため、個片状の抵抗体15に分割する前のシート状の状態で第2の絶縁膜19を形成することができ、これにより、第2の絶縁膜19を1個ずつ形成しなくてもよくなる。この結果、生産性を向上させることができるという効果が得られる。
 すなわち、シート状抵抗体11aの溝17に充填された第2の絶縁膜19を形成することによって、全ての個片状の抵抗体15に同時に第2の絶縁膜19を設けることができる。そして、図7CにおけるB線での切断によって分離された第2の絶縁膜19が、切断部の両側にある個片状の抵抗体15、電極13の側面に形成される。
 また、複数の帯状電極13を、金属を含有するペーストを印刷、焼成することによって形成すれば、焼成時にペーストの周囲が表面張力で薄くなる。このため、図11に示すように、個片状の抵抗体15において互いに向かい合う帯状電極13の側部13aの厚みが他の部分より薄くなり、これにより、隣り合う帯状電極13間の第1の絶縁膜18が形成される部分の上方が下方より間隔が広がる。したがって、隣り合う帯状電極13間に第1の絶縁膜18が流れ込み易くなり、第1の絶縁膜18を帯状電極13間に隙間無く形成することができる。一方、クラッド、溶接、めっきにより複数の帯状電極13を形成した場合は、複数の帯状電極13の厚みが略一定になる。このため、隣り合う帯状電極13間の第1の絶縁膜18が形成される部分の上方が下方より間隔が広がることはない。これにより、第1の絶縁膜18と帯状電極13の間に隙間が生じ、そして使用時の発熱によって隙間の空気が膨張して第1の絶縁膜18の剥がれが生じる可能性がある。
 (実施の形態3)
 以下、本発明の実施の形態3における抵抗器の製造方法について図面を参照しながら説明する。
 まず、図12Aに示すように、CuNi、CuMn等のCuを含む合金からなる金属を板状または箔状に構成したシート状抵抗体11aの上面の全面に、フォトレジスト用のレジスト21を接着させる。
 次に、図12Bに示すように、レジスト21の上方に複数の帯状の開口部22aを有する露光用マスクを配置し、上方から紫外線などを照射して露光する。ここで、帯状とは、上方からみて帯状であるという意味で、側面から見た形状を意味するものではない。
 その結果、図12Cに示すように、開口部22aを介して紫外線が照射されたレジスト21は除去され、除去された部分が複数の帯状の隙間22となり、かつ紫外線が照射されないレジスト21は残存して、残存した部分には隙間22は形成されない。すなわち、複数の帯状の開口部22aが形成された部分の下方のレジスト21を除去し、複数の帯状の開口部22aが形成されていない部分の下方のレジスト21を残存させる。隙間22の形状は開口部22aの形状と略同一である。そして、隙間22の大きさや位置は、要望される抵抗値や抵抗器の大きさに応じて決定される。
 次に、図12Dに示すように、レジスト21が除去された複数の帯状の隙間22においてシート状抵抗体11aの上面に、ガラスフリットを含有しないCuを主成分としたペースト13bを印刷し、乾燥する。
 次に、図12Eに示すように、残存するレジスト21を剥離し、その後、ペースト13bを窒素雰囲気中で800℃~900℃で焼成して複数の帯状の電極13を形成する。そして、側面から見て電極13の両側部13aはシート状抵抗体11aに対して略直角になっている。
 このとき、電極13の一部が残存しているレジスト21を覆うように形成されていても、レジスト21を剥離することによって、レジスト21を覆う電極13も同時に剥離される。
 そしてまた、電極13を構成する金属を、シート状抵抗体11aの材料に合わせるのが好ましい。
 なお、同様の方法で、シート状抵抗体11aの下面に裏面電極を形成してもよい。
 次に、図13Aに示すように、シート状抵抗体11aの下面、すなわち複数の帯状電極13が形成された面と対向する面の全面に、エポキシ樹脂からなる裏面絶縁膜(保護膜)12a(図12A~図12E、図13B~図14Cでは図示せず)を形成する。
 上記した方法により、図13Bに示すように、上面に複数の帯状の電極13が所定間隔で設けられたシート状抵抗体11aが形成される。なお、図12A~図12E、図13Aでは側面図、図13B~図14Cは上面図を示す。さらに、図12~図14では、帯状の電極13が3つの場合を表しているが、3つ以外であってもよい。
 次に、図13Cに示すように、帯状電極13が形成されたシート状抵抗体11aを、複数の帯状電極13と直交する方向にダイシングすることによって、帯状の溝17を複数形成する。また、複数の溝17は等間隔に設け、かつシート状抵抗体11aおよび裏面絶縁膜12aを貫通する。さらに、溝17は、シート状抵抗体11aが複数に分断されないように、少なくともシート状抵抗体11aの一端部までは延びないようにする。なお、複数の溝17を形成した後に、裏面絶縁膜12aを形成してもよい。
 次に、図14Aに示すように、隣り合う帯状の電極13間にエポキシ樹脂で構成された絶縁膜(保護膜)12を帯状に形成する。このとき、溝17の内部にも絶縁膜12を形成し、絶縁膜12の一部が帯状の電極13の側面を覆うようにする。
 そして、絶縁膜12を形成する前に、必要に応じてトリミング(抵抗値修正)する。トリミングは、個片状となる各抵抗体が所定の抵抗値になるように、隣り合う電極13間の抵抗値を測定しながら、溝17から抵抗体11の中心部に向かって直線状にトリミング溝(図示せず)を形成することにより行う。
 次に、図14Bに示すように、シート状抵抗体11aを、溝17の中央部(E線)をダイシングやレーザ、切断刃によって切断、分割し、さらに、溝17と直交する方向に帯状の電極13の中央部(F線)をダイシングやレーザ、切断刃によって切断、分割して、図14Cに示す個片状の抵抗体15を得る。
 最後に、図15に示すように、個片状の抵抗体15の両端部に、端面電極、銅めっき、ニッケルめっき、すずめっきを形成し、外部電極20を設ける。
 ここで、上記のようにして得られた図15に示す抵抗器の16-16線断面図を図16に、側面図を図17に示す。なお、図16、図17では、シート状抵抗体11aの電極13が形成されていない面を実装面とした実装状態を示すが、従来のように、電極13が形成された面を実装面としてもよい。
 図16、図17において、シート状抵抗体11aは個片状に切断し分割されることによって、個片状の抵抗体15が形成されている。そして、個片状の抵抗体15は完成品では抵抗体11となり、抵抗体11の上面の両端部に帯状の電極13が分割されて形成された一対の電極13と、抵抗体11の両端部に形成され抵抗体11、電極13と接続される外部電極20と、抵抗体11の裏面に形成された裏面絶縁膜12aと、抵抗体11の上面および側面に形成された絶縁膜12とを備えた抵抗器が得られる。また、電極13は抵抗体11の短辺に形成されているが、実施の形態2、3でも、実施の形態1と同様に電極13を抵抗体11の長辺に形成してもよい。さらに、電極13は側面から見てL字状になるように構成してもよい。
 本発明の実施の形態3における抵抗器の製造方法においては、レジスト21の上方に複数の帯状の開口部22aを有する露光用マスクを配置し、露光用マスクから露光して、複数の帯状の開口部22aが形成された部分の下方のレジスト21を除去する。そして、複数の帯状の開口部22aが形成されていない部分の下方のレジスト21を残存するようにして、レジスト21に電極13形成用の複数の帯状の隙間22を形成している。このため、電極13の側部13aの直線性が向上し、これにより、電極13同士の間隔がばらつくことを防止できる。この結果、抵抗値精度を向上させることができるという効果が得られる。
 さらに、電極13の形成位置と形状が安定するため、小形になって抵抗体11の長さが短くなっても、電極13同士の間隔が短くなることはない。したがって、1つの抵抗器における電極13同士、外部電極20同士で短絡することを防止することができる。
 すなわち、電極13をめっきや露光用マスクを用いない印刷で形成する場合は、条件によって電極13の形成位置や形状が変動する。これに対し、本実施の形態では、電極13の形成位置や形状を、露光用マスクの開口部22aで規定できるため、電極13の形成位置や形状が安定し、この結果、電極13同士の間隔が短くなることはない。さらに、電極13同士の間隔を簡単に調整できるため、容易に抵抗値精度を向上させることができる。
 また、電極13を形成した後に絶縁膜12を形成しているため、電極13の一部が絶縁膜12にオーバーラップすることもない。
 そして、溝17の内部にも絶縁膜12が形成されるため、絶縁膜12は抵抗体11の上面および両側面に形成され、また、抵抗体11の裏面には裏面絶縁膜12aが形成される。これにより、抵抗体11の周囲を絶縁膜12、裏面絶縁膜12aで覆っているため、絶縁膜12、裏面絶縁膜12aが剥がれるのを防止できる。
 なお、電極13とシート状抵抗体11aとの密着性を向上させるために、サンドブラスト、めっき、化学的処理等の方法により予めシート状抵抗体11aの表面を粗面化してもよい。また、紫外線を照射しレジスト21の一部を除去して隙間22を形成した後、電極13を形成する前に、シート状抵抗体11aの隙間22が設けられた箇所に粗面化を行えば、電極13を形成する箇所は粗面化される。しかし、残存したレジスト21の下面の電極13が形成されないシート状抵抗体11aの表面は粗面化されないため、残存したレジスト21を剥離し易くなる。この場合、電極13が形成される箇所の抵抗体11の表面粗さは、電極13が形成されない箇所の抵抗体11の表面粗さより粗くなっている。
 さらに、本発明の実施の形態1~3において、電極13を印刷で形成することは、一般のチップ抵抗器で普通に用いられていることであるため、コスト、生産性の面で有利となる。そして、抵抗体11(15、シート状抵抗体11a)、電極13を金属で構成しているため、1~10mΩの非常に低い抵抗値を得ることができる。また、絶縁基板を用いることはないため、抵抗器全体の厚みを薄くすることができる。そしてまた、抵抗体11(シート状抵抗体11a)の厚みは50~500μm、電極13の厚みは10~100μmとなっている。
 ここで、抵抗値精度よりも隣り合う帯状電極13間に絶縁膜12の流れ込み易さをより重視する場合は、実施の形態2のように、露光することなく電極13を形成することも可能である。
 また、実施の形態2、3も、実施の形態1と同様に電極13が保護膜12上にオーバーラップすることはない。
 本発明に係る抵抗器およびその製造方法は、抵抗体と電極の接続信頼性が劣化するのを防止できるという効果を有するものであり、特に各種電子機器の電流値検出等に使用される小型で低抵抗値の抵抗器等において有用である。
11  抵抗体
11a  シート状抵抗体
12  保護膜(絶縁膜)
12a  裏面絶縁膜
13  電極(帯状電極)
14  めっき層
15  個片状の抵抗体(抵抗体)
17  溝
18  第1の絶縁膜
19  第2の絶縁膜
21  レジスト
22  隙間
22a  開口部

Claims (7)

  1. 板状の金属で構成された抵抗体と、
    前記抵抗体の第1面に形成された保護膜と、
    前記保護膜を挟んで離間し、前記抵抗体の前記第1面の両端部に形成された電極と、を備え、
    前記電極は樹脂と前記樹脂に含まれた金属粉とを含有するペーストを印刷することによって構成された、
    抵抗器。
  2. 前記抵抗体は前記電極を構成する金属と同一の金属を含有する合金で形成された、
    請求項1記載の抵抗器。
  3. 前記抵抗体の前記第1面上において、前記保護膜の厚さと前記電極の厚さが同じである、
    請求項1記載の抵抗器。
  4. 金属で構成された抵抗体の上面に間隔をあけて金属粉を含有するペーストを印刷して複数の電極を形成するステップと、
    前記抵抗体の上面と前記複数の電極の上面とを覆うように保護膜を形成するステップと、
    前記複数の電極が露出するまで前記複数の保護膜を研磨するステップと、を備えた、
    抵抗器の製造方法。
  5. 金属で構成されたシート状抵抗体の表面に間隔をあけて金属粉を含有するペーストを印刷して複数の帯状電極を形成するステップと、
    前記シート状抵抗体に前記複数の帯状電極と交わる帯状の溝を形成するステップと、
    前記複数の帯状電極のうち隣り合う2つの間に第1の絶縁膜を形成するとともに前記溝を埋めるように第2の絶縁膜を形成するステップと、
    前記シート状抵抗体を前記溝と前記複数の帯状電極において切断して個片状に分割するステップと、を備えた、
    抵抗器の製造方法。
  6. 板状の金属で構成された抵抗体と、
    前記抵抗体の第1面の両端部に樹脂と前記樹脂に含まれた金属粉とを含有するペーストを印刷することによって形成された電極と、
    前記抵抗体の第1面に形成された第1の絶縁膜と、
    前記抵抗体の第1面と直交する第2面に形成された第2の絶縁膜と、を備え、
    前記第2の絶縁膜の表面には切断痕が形成されている、
    抵抗器。
  7. 金属で構成されたシート状抵抗体の上面にレジストを形成するステップと、
    前記レジストに複数の帯状の隙間を形成するステップと、前記複数の隙間に金属ペーストを印刷することによって前記シート状抵抗体の上面に帯状の電極を形成するステップと、
    前記レジストを剥離するステップと、前記電極から露出した前記シート状抵抗体の一部を覆うように絶縁膜を形成するステップと、
    前記電極および前記絶縁膜を有する前記シート状抵抗体を個片状に切断するステップと、を備え、
    前記レジストに前記複数の帯状の隙間を形成する際は、前記レジストの上方に複数の帯状の開口部を有する露光用マスクを配置、露光して、前記レジストを帯状に除去する、
    抵抗器の製造方法。
PCT/JP2014/004043 2013-08-07 2014-08-01 抵抗器およびその製造方法 WO2015019590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015530696A JP6476417B2 (ja) 2013-08-07 2014-08-01 抵抗器の製造方法
CN201480043722.3A CN105453192B (zh) 2013-08-07 2014-08-01 电阻器及其制造方法
US14/997,459 US9959957B2 (en) 2013-08-07 2016-01-15 Resistor and method for manufacturing same
US15/935,326 US10373744B2 (en) 2013-08-07 2018-03-26 Resistor and method for manufacturing same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-163884 2013-08-07
JP2013163884 2013-08-07
JP2013193812 2013-09-19
JP2013-193812 2013-09-19
JP2014-025364 2014-02-13
JP2014025364 2014-02-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/997,459 Continuation US9959957B2 (en) 2013-08-07 2016-01-15 Resistor and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2015019590A1 true WO2015019590A1 (ja) 2015-02-12

Family

ID=52460946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004043 WO2015019590A1 (ja) 2013-08-07 2014-08-01 抵抗器およびその製造方法

Country Status (4)

Country Link
US (2) US9959957B2 (ja)
JP (1) JP6476417B2 (ja)
CN (1) CN105453192B (ja)
WO (1) WO2015019590A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219625A (ja) * 2015-05-21 2016-12-22 ローム株式会社 チップ抵抗器およびその製造方法
JP2017045861A (ja) * 2015-08-26 2017-03-02 Koa株式会社 チップ抵抗器およびチップ抵抗器の製造方法
JP2017152576A (ja) * 2016-02-25 2017-08-31 Koa株式会社 チップ抵抗器の製造方法
WO2018110288A1 (ja) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 チップ抵抗器およびその製造方法
WO2018216455A1 (ja) * 2017-05-23 2018-11-29 パナソニックIpマネジメント株式会社 金属板抵抗器およびその製造方法
JP2019087625A (ja) * 2017-11-07 2019-06-06 パナソニックIpマネジメント株式会社 チップ抵抗器およびその製造方法
WO2023100858A1 (ja) * 2021-12-01 2023-06-08 ローム株式会社 チップ抵抗器およびその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552908B2 (en) * 2015-06-16 2017-01-24 National Cheng Kung University Chip resistor device having terminal electrodes
EP3451352B1 (en) * 2017-08-28 2020-05-27 Hochschule Für Angewandte Wissenschaften München High-precision additive formation of electrical resistors
JP6562375B1 (ja) * 2017-12-01 2019-08-21 パナソニックIpマネジメント株式会社 金属板抵抗器およびその製造方法
CN109202546A (zh) * 2018-09-29 2019-01-15 信利半导体有限公司 改善柔性基板切割毛刺的方法
CN110660551B (zh) * 2019-09-20 2021-03-02 丽智电子(南通)有限公司 一种制作用于电子产品的合金板金属电阻的方法
WO2023205673A2 (en) * 2022-04-19 2023-10-26 Helion Energy, Inc. High-energy particulate resistors
CN115985601A (zh) * 2022-10-28 2023-04-18 深圳顺络电子股份有限公司 一种热敏电阻及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246206A (ja) * 2001-02-13 2002-08-30 Koa Corp チップ抵抗器及びその製造方法
JP2004186541A (ja) * 2002-12-05 2004-07-02 Rohm Co Ltd チップ抵抗器およびその製造方法
JP2004327906A (ja) * 2003-04-28 2004-11-18 Rohm Co Ltd チップ抵抗器およびその製造方法
JP2007220860A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd チップ形電子部品の製造方法
JP2007220859A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2011096814A (ja) * 2009-10-29 2011-05-12 Koa Corp チップ抵抗器の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US250635A (en) * 1881-12-06 Manufacture of glass building-blocks for sea-walls
EP0412259B1 (en) * 1989-06-16 1995-09-27 Matsushita Electric Industrial Co., Ltd. Electronic devices, method for forming end terminations thereof and paste material for forming same
EP1219693B1 (en) * 2000-02-29 2006-05-03 Matsushita Electric Industrial Co., Ltd. Conductive adhesive, apparatus for mounting electronic component, and method for mounting the same
WO2004001774A1 (ja) * 2002-06-19 2003-12-31 Rohm Co., Ltd. 低い抵抗値を有するチップ抵抗器とその製造方法
JP3860515B2 (ja) * 2002-07-24 2006-12-20 ローム株式会社 チップ抵抗器
JP3848245B2 (ja) * 2002-11-29 2006-11-22 ローム株式会社 チップ抵抗器
WO2004040592A1 (ja) 2002-10-31 2004-05-13 Rohm Co., Ltd. チップ抵抗器、その製造方法およびその製造方法に用いられるフレーム
TWM250635U (en) * 2003-04-14 2004-11-21 Bau-Yu Yang Cleaning set with waxing functions
JP4452196B2 (ja) * 2004-05-20 2010-04-21 コーア株式会社 金属板抵抗器
TWI430293B (zh) * 2006-08-10 2014-03-11 Kamaya Electric Co Ltd Production method of corner plate type chip resistor and corner plate type chip resistor
JP4460564B2 (ja) 2006-11-20 2010-05-12 ローム株式会社 チップ抵抗器
US20100236054A1 (en) * 2007-08-30 2010-09-23 Kamaya Electric Co., Ltd. Method and apparatus for manufacturing metal plate chip resistors
JP2009218552A (ja) * 2007-12-17 2009-09-24 Rohm Co Ltd チップ抵抗器およびその製造方法
JP2010196105A (ja) * 2009-02-24 2010-09-09 Mitsui Mining & Smelting Co Ltd 導電性ペースト用銅粉及び導電性ペースト
JP5882015B2 (ja) * 2011-10-05 2016-03-09 ローム株式会社 電子部品の電極構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246206A (ja) * 2001-02-13 2002-08-30 Koa Corp チップ抵抗器及びその製造方法
JP2004186541A (ja) * 2002-12-05 2004-07-02 Rohm Co Ltd チップ抵抗器およびその製造方法
JP2004327906A (ja) * 2003-04-28 2004-11-18 Rohm Co Ltd チップ抵抗器およびその製造方法
JP2007220860A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd チップ形電子部品の製造方法
JP2007220859A (ja) * 2006-02-16 2007-08-30 Matsushita Electric Ind Co Ltd 抵抗器およびその製造方法
JP2011096814A (ja) * 2009-10-29 2011-05-12 Koa Corp チップ抵抗器の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219625A (ja) * 2015-05-21 2016-12-22 ローム株式会社 チップ抵抗器およびその製造方法
JP7018251B2 (ja) 2015-05-21 2022-02-10 ローム株式会社 チップ抵抗器
JP2017045861A (ja) * 2015-08-26 2017-03-02 Koa株式会社 チップ抵抗器およびチップ抵抗器の製造方法
JP2017152576A (ja) * 2016-02-25 2017-08-31 Koa株式会社 チップ抵抗器の製造方法
WO2018110288A1 (ja) * 2016-12-16 2018-06-21 パナソニックIpマネジメント株式会社 チップ抵抗器およびその製造方法
WO2018216455A1 (ja) * 2017-05-23 2018-11-29 パナソニックIpマネジメント株式会社 金属板抵抗器およびその製造方法
JP2019087625A (ja) * 2017-11-07 2019-06-06 パナソニックIpマネジメント株式会社 チップ抵抗器およびその製造方法
JP7113202B2 (ja) 2017-11-07 2022-08-05 パナソニックIpマネジメント株式会社 チップ抵抗器およびその製造方法
WO2023100858A1 (ja) * 2021-12-01 2023-06-08 ローム株式会社 チップ抵抗器およびその製造方法

Also Published As

Publication number Publication date
CN105453192A (zh) 2016-03-30
JP6476417B2 (ja) 2019-03-06
US10373744B2 (en) 2019-08-06
CN105453192B (zh) 2018-05-18
US20160133362A1 (en) 2016-05-12
US9959957B2 (en) 2018-05-01
JPWO2015019590A1 (ja) 2017-03-02
US20180211748A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP6476417B2 (ja) 抵抗器の製造方法
JP7382451B2 (ja) チップ抵抗器
JP2009289770A (ja) 抵抗器
JP2008235445A (ja) 電子部品およびその製造法
WO2015162858A1 (ja) チップ抵抗器およびその製造方法
US20200051716A1 (en) Chip resistor and method for producing same
JP6227877B2 (ja) チップ抵抗器、およびチップ抵抗器の製造方法
US9620267B2 (en) Resistor and manufacturing method for same
JP5706186B2 (ja) チップ抵抗器およびその製造方法
JP6084091B2 (ja) チップ抵抗器の製造方法
US20160196902A1 (en) Chip resistor and mounting structure thereof
JP2007173282A (ja) 電子部品の製造方法
JP5891342B2 (ja) チップ抵抗器の製造方法
JP2007173281A (ja) 電子部品の製造方法
JP6484797B2 (ja) チップ抵抗器の製造方法
JP6629013B2 (ja) チップ抵抗器およびチップ抵抗器の製造方法
JP7270386B2 (ja) チップ状金属抵抗器及びその製造方法
JP2005108865A (ja) チップ抵抗器及びチップ抵抗器の製造方法
TWI817476B (zh) 晶片電阻器及晶片電阻器之製造方法
JP2007189122A (ja) チップ形電子部品
JP2017017198A (ja) チップ抵抗器の製造方法
JP7113202B2 (ja) チップ抵抗器およびその製造方法
JP2009088368A (ja) 低抵抗チップ抵抗器の製造方法
JP2017011041A (ja) チップ抵抗器の製造方法
JP2003272901A (ja) 厚膜抵抗器およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043722.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833807

Country of ref document: EP

Kind code of ref document: A1