WO2015018143A1 - 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法 - Google Patents

先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法 Download PDF

Info

Publication number
WO2015018143A1
WO2015018143A1 PCT/CN2013/088298 CN2013088298W WO2015018143A1 WO 2015018143 A1 WO2015018143 A1 WO 2015018143A1 CN 2013088298 W CN2013088298 W CN 2013088298W WO 2015018143 A1 WO2015018143 A1 WO 2015018143A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoresist film
chip
metal substrate
metal
pin
Prior art date
Application number
PCT/CN2013/088298
Other languages
English (en)
French (fr)
Inventor
张友海
张凯
廖小景
王亚琴
王孙艳
Original Assignee
江苏长电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏长电科技股份有限公司 filed Critical 江苏长电科技股份有限公司
Priority to DE112013007308.0T priority Critical patent/DE112013007308B4/de
Priority to US14/901,451 priority patent/US9627303B2/en
Publication of WO2015018143A1 publication Critical patent/WO2015018143A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4821Flat leads, e.g. lead frames with or without insulating supports
    • H01L21/4825Connection or disconnection of other leads to or from flat leads, e.g. wires, bumps, other flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4857Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0655Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/0651Wire or wire-like electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the invention relates to a structure and a process for flip-chip three-dimensional system-level metal circuit boards with a pre-etched and post-sealed chip. It belongs to the field of semiconductor packaging technology. Background technique
  • the basic manufacturing method of the conventional metal lead frame has the following methods: under the bottom or from the bottom to the punching, the lead frame can form a base island carrying the chip in the metal piece, and the inner lead and the external PCB for signal transmission.
  • the external pins are connected, and then some areas of the inner bow I and/or the island are coated with metal plating to form a truly usable bow frame (see Figures 70-72).
  • Another way is based on method one or method two, on the base island with the chip carrier, the inner pin of the signal transmission, the outer pin connected to the external PCB, and the inner pin and (or In some areas of the base island, the back surface of the lead frame formed by coating the metal plating layer is further coated with a high-temperature adhesive film resistant to 260 degrees Celsius, which becomes a lead frame for packaging which can be used in a four-sided leadless package and a reduced package volume. (See Figure 75).
  • Another way is to use method 1 or method 2, the base island with chip carrier, the inner pin of signal transmission, the outer pin connected to the external PCB, and the inner bow I and/or
  • the lead frame formed by the metal plating coating is pre-encapsulated in some areas of the island, and the metal piece is punched Cut or chemically etched areas filled with thermoset epoxy, making it a pre-filled leadframe that can be used in four-sided leadless packages, shrink molded volume, and copper bond capability packages (see Figure 76). ).
  • Mechanical punching is to use the upper and lower cutters to form a vertical section from top to bottom or from bottom to top, so it is impossible to perform other functions or embedded objects inside the lead frame.
  • the system object is integrated in the metal lead. Box itself
  • Mechanical stamping is to use the upper and lower cutters to press the edge of the metal sheet to each other to extend along the metal region, and the length of the metal region to be extruded is at most the thickness of the lead frame.
  • the thickness of the lead frame exceeds 80% or more, the metal region 4 which is extruded by the extrusion is prone to problems such as warpage, cracking, cracking, irregular shape, and surface holes, and the ultra-thin lead frame is more likely to be generated.
  • the above problem see Figure 77 ⁇ Figure 78).
  • the relevant object is placed in the area (especially the lead frame that requires ultra-thin thickness) (see Figure 79 ⁇ Figure) 80).
  • the subtractive etch can use a half-etching technique to etch the space that needs to be buried in the object, but the biggest disadvantage is that the depth of the etched depth and the flatness of the etched plane are difficult to control.
  • the structural strength of the lead frame will become quite soft, which will directly affect the working conditions required for subsequent re-buried objects (such as pick-and-place, transportation, high temperature, The difficulty of high pressure and thermal stress shrinkage).
  • the lead frame of the chemical etching technology can only present the outer or inner leg of the front and back of the lead frame, and it is impossible to realize the system-level metal lead frame of the multi-layer three-dimensional metal circuit. Summary of the invention
  • a method for flip-chip back-mounting a three-dimensional system-level metal circuit board comprising the following steps:
  • Step one taking a metal substrate
  • Step 2 Pre-plating a copper layer on the surface of the metal substrate
  • Step 3 Applying a photoresist film
  • a photoresist film capable of being exposed and developed is attached to the front surface and the back surface of the metal substrate on which the pre-plated micro copper layer is completed;
  • Step 4 removing a part of the photoresist film on the back surface of the metal substrate
  • Step five plating metal circuit layer
  • step 4 a metal wiring layer is plated in a region where a portion of the photoresist film is removed from the back surface of the metal substrate;
  • Step six paste the photoresist film operation
  • Step 7 Remove a part of the photoresist film on the back side of the metal substrate
  • step 6 Performing pattern exposure, developing and removing part of the pattern photoresist film on the back surface of the metal substrate on which the photoresist film is applied in step 6 by using an exposure developing device to expose a region pattern of the back surface of the metal substrate which needs to be electroplated;
  • Step 8 Electroplating a highly conductive metal circuit layer
  • Step IX Removing the photoresist film
  • Step 12 Applying a photoresist film
  • a photoresist film which can be exposed and developed is attached to the front and back surfaces of the metal substrate of the step 11;
  • Step 13 Remove a portion of the photoresist film on the front side of the metal substrate.
  • the surface of the metal substrate on which the photoresist film is applied in step 12 is subjected to pattern exposure, development and removal of a portion of the patterned photoresist film by exposing the developing device to expose a region pattern which needs to be etched on the front surface of the metal substrate;
  • Step 16 Remove a portion of the photoresist film on the front side of the metal substrate
  • step 16 a metal pillar is plated in a region where a portion of the photoresist film is removed from the front surface of the metal substrate;
  • Step 18 remove the photoresist film
  • step 18 After the completion of step 18, the base island and the upper part of the pin are flipped by the underfill pad; Step 20, Encapsulation
  • the front side of the metal substrate in the step 19 is plastically sealed with a molding compound; Step 21, epoxy surface grinding
  • step 20 After the epoxy resin molding of step 20 is completed, the surface of the epoxy resin is ground;
  • Step 22 plating an anti-oxidation metal layer or coating an antioxidant (OSP)
  • the metal exposed on the surface of the metal substrate after the completion of the step 21 is subjected to electroplating of an anti-oxidation metal layer or an emulsion (OSP).
  • OSP emulsion
  • step fifteen moves to between step four and step five.
  • a pre-etched and post-chip flip chip three-dimensional system-level metal circuit board structure comprising a metal substrate frame, in which a base island and a pin are disposed in the metal substrate frame, on the front or back of the base island and the pin A chip is mounted by an underfill, and a conductive pillar is disposed on the front or back of the pin, a region around the island, a region between the island and the pin, a region between the pin and the pin, The base island and the upper portion of the pin, the base island and the lower portion of the pin, and the chip and the conductive post are both encapsulated with a molding compound, and the molding compound is flush with the top of the conductive post, and the metal substrate frame is cited.
  • the surface of the foot and the conductive post exposed molding compound is coated with an anti-oxidation layer or coated with an antioxidant.
  • a pre-etched and post-sealed chip flip-chip three-dimensional system-level metal circuit board structure comprising a metal substrate frame and a chip, wherein a pin is disposed in the metal substrate frame, and the chip is flipped over by the underfill
  • a conductive post is disposed on the front or back of the pin, and the area between the pin and the pin, the area above the pin, the area under the pin, and the chip and the conductive post are all encapsulated.
  • OSP anti-oxidation layer or an emulsion
  • the pin and the pin are connected to the passive device through a conductive bonding substance, and the passive device can be connected between the front surface of the pin and the front surface of the pin, or across the front surface of the pin and the electrostatic discharge ⁇ Between the front faces, or between the front surface of the electrostatic discharge port and the front surface of the island, an electrostatic discharge port is disposed between the base island and the pin, and between the front surface of the chip and the front surface of the electrostatic discharge port Connected by metal wires.
  • the conductive pillar has a plurality of turns.
  • a second chip is disposed on the front side of the chip through a conductive or non-conductive bonding material, and the front surface of the second chip and the lead are connected by a metal wire.
  • a second conductive pillar is disposed on the front side or the back surface of the pin, and the second conductive chip is mounted on the second conductive pillar through the conductive material, and the second conductive pillar and the second chip are located inside the molding compound.
  • a second conductive post is disposed on the front side or the back side of the pin, and a passive device is mounted on the second conductive post, and the second conductive post and the passive device are inside the molding compound.
  • a method for pre-etching and post-chip flipping a three-dimensional system-level metal circuit board comprising the following steps:
  • Step one taking a metal substrate
  • Step 2 Pre-plating a copper layer on the surface of the metal substrate
  • Step 3 Applying a photoresist film
  • Step 30 paste the photoresist film operation
  • the three-dimensional metal circuit composite substrate can be secondarily packaged in addition to the embedded function of the object itself, and fully integrates the system functions.
  • the three-dimensional metal circuit composite substrate can be superimposed with different unit packages or system-level packages on the periphery of the package in addition to the embedded function of the embedded object, which fully realizes the dual-system or multi-system-level packaging technology capability. .
  • FIG. 23 is a schematic diagram of Embodiment 1 of a three-dimensional system-level metal circuit board structure of a pre-etched and post-chip flip chip according to the present invention.
  • FIG. 24 is a schematic diagram of Embodiment 2 of a three-dimensional system-level metal circuit board structure of a pre-etched and post-chip flip chip according to the present invention.
  • Fig. 26 is a schematic view showing the fourth embodiment of the flip-chip three-dimensional system-level metal circuit board structure of the pre-etched and post-sealed chip of the present invention.
  • Embodiment 6 is a schematic view showing Embodiment 6 of a three-dimensional system-level metal circuit board structure of a pre-etched and post-chip flip chip according to the present invention.
  • Embodiment 7 of the pre-etched and post-sealed chip flip-chip three-dimensional system-level metal circuit board structure are process flow diagrams of Embodiment 7 of the pre-etched and post-sealed chip flip-chip three-dimensional system-level metal circuit board structure.
  • Fig. 69 is a schematic view showing the seventh embodiment of the flip-chip three-dimensional system-level metal circuit board structure of the pre-etched and post-sealed chip of the present invention.
  • Fig. 70 is a schematic view showing the punching process in the basic manufacturing process of the conventional metal lead frame.
  • Figure 71 is a schematic view of a strip metal sheet in a basic fabrication process of a conventional metal lead frame.
  • Figure 72 is a schematic illustration of the front lead frame in the basic fabrication process of a conventional metal lead frame.
  • Figure 73 is a schematic view showing a cross section of a conventional metal lead frame subjected to exposure, development, windowing, etching, and the like.
  • Figure 75 is a cross-sectional view showing the structure of a QFN in the basic fabrication process of a conventional metal lead frame.
  • Figure 76 is a schematic view of a pre-filled lead frame in a basic fabrication process of a conventional metal lead frame.
  • Figure 78 is a schematic view showing the crack, break, and warpage caused by the extrusion of the upper and lower cutters to form the extended metal region in the basic manufacturing process of the conventional metal lead frame.
  • Fig. 80 is a schematic view showing the difficulty in embedding an object in the basic manufacturing process of the conventional metal lead frame by forming the upper and lower cutters to form an object which is less than 80% of the thickness of the lead frame.
  • Figure 82 is a schematic diagram of a three-dimensional metal circuit substrate applied to a multi-chip module (MCM) package.
  • Figure 83 is a plan view of Figure 82.
  • Metal substrate frame 1 base island 2, pin 3, underfill 4, chip 5, metal wire 6, conductive pillar 7, molding compound 8, anti-oxidation layer or batch of antioxidant 9, passive device 10, electrostatic discharge 11.
  • the invention relates to a pre-etched and post-sealed chip flip-chip three-dimensional system-level metal circuit board structure and process method: 3 ⁇ 4 mouth.
  • Embodiment 1 Single-layer line single-chip flip-chip single-turn pin
  • FIG. 23 is a schematic structural view of a first embodiment of a three-dimensional system-level metal circuit board structure of a pre-etched and post-sealed chip, comprising a metal substrate frame 1 in which a base island 2 and a lead are disposed in the metal substrate frame 1
  • the front side of the pin 3 is provided with a conductive pillar 7 on the front side of the pin 3, and the periphery of the base island 2 and the base island.
  • the outer molding material is encapsulated with a molding compound 8 which is flush with the top of the conductive column 7, and the surface of the metal substrate 1, the base island 2, the lead 3 and the conductive pillar 7 exposing the molding compound 8 is plated with an anti-corrosion material.
  • Step one taking a metal substrate
  • a metal substrate of suitable thickness is used.
  • the purpose of the plate is to use a metal material, and the material of the metal material may be copper, iron, plated, stainless steel, aluminum or A metal substance or a non-all metal substance that can achieve a conductive function.
  • Step 2 Pre-plating a copper layer on the surface of the metal substrate
  • a micro-copper layer is pre-plated on the surface of the metal substrate, and the thickness of the micro-copper layer is 2 to 10 micrometers, which can be thinned or thickened according to functional requirements, mainly for enabling the circuit layer and the metal substrate during subsequent circuit fabrication.
  • the plating can be performed by chemical deposition or electrolytic plating.
  • Step 3 Applying a photoresist film
  • Step 4 removing a part of the photoresist film on the back surface of the metal substrate
  • Step five plating metal circuit layer
  • a metal wiring layer is plated in a region where a part of the photoresist film is removed from the back surface of the metal substrate, and the metal wiring layer material may be copper, aluminum, nickel, silver, gold, copper silver, nickel gold, nickel palladium gold. (usually 5 ⁇ 20 microns, the thickness of the plating can be changed according to different characteristics), etc.
  • the metal wiring layer material may be copper, aluminum, nickel, silver, gold, copper silver, nickel gold, nickel palladium gold.
  • other conductive metal materials can be used, not limited to copper, aluminum, nickel, silver, gold, copper.
  • Metal materials such as silver, nickel gold, nickel palladium and gold may be electroplated or electrolytically plated.
  • Step six paste the photoresist film operation
  • a photoresist film which can be exposed and developed is attached to the back surface of the metal substrate, and the photoresist film may be a dry photoresist film or a wet photoresist film.
  • the surface of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development, and removal of a portion of the patterned photoresist film by exposing the surface of the metal substrate to expose the area pattern of the subsequent plating.
  • Step 8 Electroplating a highly conductive metal circuit layer
  • a high-conductivity metal circuit layer is plated in a region where a part of the photoresist film is removed from the back surface of the metal substrate, and the material of the high-conductivity metal circuit layer may be copper, aluminum, nickel, silver, gold, copper, silver or nickel gold.
  • nickel palladium gold and other materials of course, other conductive metal materials can be used, not limited to copper, aluminum, nickel, silver, gold, copper silver, nickel gold, nickel palladium and other metal materials, electroplating can make chemical deposition Or electrolytic plating.
  • Step IX Removing the photoresist film
  • the surface of the metal circuit layer and the high-conductivity metal circuit layer on the back surface of the metal substrate is protected by an epoxy resin material.
  • the epoxy resin material can be selected according to the product characteristics with or without a filler.
  • the plastic sealing method can be adopted. Mold filling method, spraying equipment spraying method, film coating method or brushing method.
  • the surface of the epoxy resin is polished after the completion of the epoxy resin molding, in order to expose the highly conductive metal wiring layer for the outer leg function to the surface of the molding body and to control the thickness of the epoxy resin.
  • Step 12 Applying a photoresist film
  • a photoresist film which can be exposed and developed is attached to the front and back surfaces of the metal substrate which is completed in step 11.
  • the photoresist film may be a dry photoresist film or a wet photoresist film.
  • Step 13 Remove a portion of the photoresist film on the front side of the metal substrate.
  • the front surface of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development and removal of a portion of the pattern photoresist film by the exposure developing device to expose a region pattern which is subsequently etched on the front surface of the metal substrate.
  • the region in which the front side of the metal substrate is exposed and developed in step 13 is chemically etched, and chemically etched up to the metal wiring layer.
  • the etching solution may be copper chloride or ferric chloride or a chemically etchable syrup.
  • Step fifteen paste the photoresist film operation
  • a photoresist film which can be exposed and exposed is attached to the front and back surfaces of the metal substrate in step 14.
  • the photoresist film may be a dry photoresist film or a wet photoresist film.
  • Step 16 Remove a portion of the photoresist film on the front side of the metal substrate
  • a metal pillar is plated in a portion of the front surface of the metal substrate from which a portion of the photoresist film is removed.
  • the material of the metal pillar may be copper, aluminum, nickel, silver, gold, copper silver, nickel gold, nickel palladium gold.
  • Other materials, of course, other conductive metal materials can be used, not limited to copper, aluminum, nickel, silver, gold, copper silver, nickel gold, nickel palladium and other metal materials, plating methods can be chemical deposition or electrolytic plating the way.
  • Step 18 remove the photoresist film
  • the photoresist film on the surface of the metal substrate is removed.
  • the method of removing the photoresist film can be softened by chemical syrup and washed by high-pressure water to remove the photoresist film.
  • the filling method can be applied to the base island and the pin and then flipped on the chip or the bottom filling can be applied to the front side of the chip and then flipped on the base island and the front side of the pin.
  • the front side of the metal substrate in the step 19 is plastically sealed by a molding compound
  • the plastic sealing method may be a mold filling method, a spraying device spraying method or a film coating method
  • the molding material may be a filler material or no. Epoxy resin for filler materials.
  • the metal exposed on the surface of the metal substrate after the completion of step 21 is electroplated with an anti-oxidation metal layer to prevent metal oxidation such as gold, nickel gold, nickel palladium gold, tin or coated antioxidant (OSP). .
  • an anti-oxidation metal layer to prevent metal oxidation such as gold, nickel gold, nickel palladium gold, tin or coated antioxidant (OSP).
  • Embodiment 3 differs from Embodiment 1 in the following: 3
  • the front side is filled with a plurality of chips 5 through the underfill 4 .
  • Embodiment 4 Single-turn stack multi-chip flip-up
  • FIG. 26 is a schematic structural view of a fourth embodiment of a flip-chip three-dimensional system-level metal circuit board structure according to the present invention.
  • the fourth embodiment is different from the first embodiment in that: the back surface of the chip 5 is electrically conductive or The non-conductive bonding substance 15 is provided with a second chip 12, and the front surface of the second chip 12 and the lead 3 are connected by a metal wire 6.
  • Embodiment 5 Single-turn stacking multi-chip flipping
  • FIG. 27 is a schematic structural diagram of Embodiment 5 of a flip-chip three-dimensional system-level metal circuit board structure according to the present invention.
  • the difference between Embodiment 5 and Embodiment 1 is that:
  • the second conductive pillar 13 is provided with a second chip 12 on the second conductive pillar 13 through the conductive material 14, and the second conductive pillar 13 and the second chip 12 are inside the molding compound 8.
  • Embodiment 6 is different from Embodiment 1 in that: the metal circuit board structure has no base island. 2.
  • the chip 5 is flipped between the front side of the lead 3 and the front side of the lead 3 through the underfill 4.
  • Embodiment 7 Multi-layer line single-chip flip-chip single-turn pin
  • Embodiment 7 is a schematic structural diagram of Embodiment 7 of a three-dimensional system-level metal circuit board structure of a pre-etched and post-sealed chip flip-chip according to the present invention.
  • Embodiment 7 differs from Embodiment 1 in that: the base island 2 or pin 3 Including a multi-layer metal circuit layer, two adjacent metal circuit layers are connected by conductive pillars, and the back of the base island 2 and the lead 3 are back-mounted with the chip 5 through the underfill 4, on the back of the pin 3 A conductive column 7 is provided.
  • Step one taking a metal substrate
  • the purpose of the plate is to use a metal material, and the material of the metal material may be copper, iron, plated, stainless steel, aluminum or A metal substance or a non-metal substance that can achieve a conductive function.
  • Step 2 Pre-plating a copper layer on the surface of the metal substrate
  • a micro-copper layer is pre-plated on the surface of the metal substrate, and the thickness of the micro-copper layer is 2 to 10 micrometers, which can be thinned or thickened according to functional requirements, mainly for enabling the circuit layer and the metal substrate in the subsequent circuit fabrication.
  • the plating can be performed by chemical deposition or electrolytic plating.
  • Step 4 removing a part of the photoresist film on the front side of the metal substrate
  • the front side of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development, and removal of a portion of the pattern resist film by the exposure developing device to expose the area pattern of the front surface of the metal substrate which needs to be plated.
  • Step five electroplating the first metal circuit layer
  • the fourth step a portion of the photoresist film is removed from the front surface of the metal substrate, and the first metal circuit layer is plated with copper, aluminum, nickel, silver, gold, copper, silver, and nickel.
  • Nickel-palladium gold usually 5 ⁇ 20 microns, which can change the thickness of plating according to different characteristics, etc.
  • other conductive metal materials can be used, which are not limited to copper, aluminum, nickel, silver, gold, copper and silver.
  • Metal materials such as nickel gold and nickel palladium may be electroplated or electrolytically plated.
  • step 6 the front surface of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development, and removal of a portion of the pattern photoresist film by exposing the surface of the metal substrate to expose the area pattern of the metal substrate.
  • Step eight electroplating the second metal circuit layer
  • Step IX Removing the photoresist film
  • the photoresist film on the surface of the metal substrate is removed, and the purpose is to carry out the non-conductive adhesive for the subsequent process.
  • Membrane operation the method of removing the photoresist film can be softened by chemical syrup and washed by high-pressure water to remove the photoresist film.
  • Step 10 pressing the non-conductive film operation
  • a non-conductive film is pressed on the front surface of the metal substrate (the area having the circuit layer), and the purpose is to insulate the first metal circuit layer from the third metal circuit layer and press the non-conductive film. It can be pressed by conventional rolling equipment or under vacuum to prevent air residue during the pressing process.
  • the non-conductive film is mainly thermosetting epoxy resin, and the epoxy resin can be used according to product characteristics. There is no filler or a non-conductive film with a filler. The color of the epoxy resin can be dyed according to the characteristics of the product.
  • Step XI grinding the surface of the non-conductive film
  • surface grinding is performed after the non-conductive film is pressed, in order to expose the second metal wiring layer, maintain the flatness of the non-conductive film and the second metal wiring layer, and control the thickness of the non-conductive film.
  • Step 12 Non-conductive film surface metallization pretreatment
  • the surface of the non-conductive film is subjected to metallization pretreatment, and a metallized polymer material is adhered on the surface thereof, so as to be a catalyst conversion which can be plated by the subsequent metal material, and the metallized polymer material can be attached.
  • Spraying, plasma oscillating, roughening, etc. can be dried again;
  • Step XIII sticking photoresist film operation
  • a photoresist film capable of exposure and development is attached to the front and back surfaces of the metal substrate to protect the subsequent plating process of the third metal circuit layer, and the photoresist film may be a dry photoresist film. It may be a wet photoresist film.
  • the front surface of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development and removal of a portion of the pattern photoresist film by the exposure developing device to expose the area pattern of the front surface of the metal substrate which needs to be etched.
  • Step fifteen etching operation
  • the etching operation is performed in the area after the photoresist film is opened in step 14.
  • the metal area other than the metal line to be preserved is corroded, and the etching method may be a process of copper chloride or ferric chloride or a chemical which can be chemically etched.
  • Step 16 Remove the photoresist film on the front side of the metal substrate
  • the photoresist film on the front side of the metal substrate is removed to expose a pattern of metal regions to be subsequently plated.
  • Step 17 Electroplating the third metal circuit layer
  • the third metal circuit layer is plated on the front side of the metal substrate in step 16.
  • the material of the third metal circuit layer may be copper, nickel gold, nickel palladium gold, silver, gold or tin metal. It may be chemical deposition plus electrolytic plating or all of the required thicknesses by chemical deposition.
  • Step 18 Applying a photoresist film
  • a photoresist film which can be exposed and developed is attached to the front surface of the metal substrate in step 17 for the purpose of fabricating a subsequent metal wiring layer.
  • the photoresist film may be a dry photoresist film or a wet photoresist film. .
  • Step 19 Removing a portion of the photoresist film on the front side of the metal substrate
  • the front surface of the metal substrate on which the photoresist film is applied is subjected to pattern exposure, development, and removal of a portion of the pattern resist film by the exposure developing device to expose the area pattern of the front surface of the metal substrate which needs to be plated.
  • Step 20 electroplating the fourth metal circuit layer
  • the fourth metal wiring layer is plated in the region of the front surface of the metal substrate from which the photoresist film is removed as a conductive pillar for connecting the third metal wiring layer and the fifth metal wiring layer, and the metal wiring layer.
  • the material can be copper, nickel gold, nickel palladium gold, silver, gold or tin metal.
  • the plating method can be chemical deposition or electrolytic plating.
  • the surface of the epoxy resin is ground after the epoxy resin is sealed in step 40.
  • the purpose is to expose the metal pillar to the surface of the molding body and control the thickness of the epoxy resin.
  • Step 40 Plating the oxidation resistant metal layer or coating the antioxidant (OSP)
  • the exposed metal on the surface of the metal substrate after the completion of the step 41 is electroplated with an anti-oxidation metal layer to prevent metal oxidation such as gold, nickel gold, nickel palladium gold, tin or coated antioxidant (OSP). .
  • an anti-oxidation metal layer to prevent metal oxidation such as gold, nickel gold, nickel palladium gold, tin or coated antioxidant (OSP).

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Lead Frames For Integrated Circuits (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

提供一种先蚀后封芯片倒装三维系统级金属线路板结构,所述结构包括金属基板框(1),在所述金属基板框(1)内设置有基岛(2)和引脚(3),所述基岛(2)和引脚(3)正面倒装有芯片(5),在所述引脚(3)正面设置有导电柱子(7),所述基岛(2)外围的区域、基岛(2)和引脚(3)之间的区域、引脚(3)与引脚(3)之间的区域、基岛(2)和引脚(3)上部的区域、基岛(2)和引脚(3)下部的区域以及芯片(5)和导电柱子(7)外均包封有塑封料(8),所述塑封料(8)与导电柱子(7)的顶部齐平,在所述金属基板(1)、基岛(2)、引脚(3)和导电柱子(7)露出塑封料(8)的表面镀有抗氧化层(9)。所述结构能够解决传统金属引线框无法埋入物件而限制金属引线框的功能性和应用性能。还提供了一种先蚀后封芯片倒装三维系统级金属线路板的工艺方法。

Description

先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法 本申请要求于 2013 年 08 月 06 日提交中国专利局、 申请号为 201310340428.6、发明名称为"先蚀后封芯片倒装三维系统级金属线路板结 构及工艺方法 "的中国专利申请的优先权,其全部内容通过引用结合在本申 请中。 技术领域
本发明涉及一种先蚀后封芯片倒装三维系统级金属线路板结构及工艺 方法。 属于半导体封装技术领域。 背景技术
传统金属引线框架的基本制作工艺方法有以下方式: 下或是由下而上进行沖切, 促使引线框架能在金属片内形成有承载芯片的 基岛以及信号传输用的内引脚与外界 PCB连接的外引脚, 之后再进行内 弓 I脚及 (或)基岛的某些区域进行金属电镀层被覆而形成真正可以使用的弓 I 线框架(参见图 70~图 72 )。
2)取一金属片利用化学蚀刻的技术进行曝光、显影、开窗、化学蚀刻, 促使引线框架能在金属片内形成有承载芯片的基岛以及信号传输用的内 引脚与外界 PCB连接的外引脚, 之后再进行内引脚及 (或)基岛的某些区域 进行金属电镀层被覆而形成真正可以使用的引线框架(参见图 73~图 74 )。
3) 另一种方式就是以方法一或是方法二为基础,在已经附有芯片承载 的基岛、信号传输的内引脚、与外界 PCB连接的外引脚以及在内引脚及 (或) 基岛的某些区域进行金属电镀层被覆形成的引线框背面再贴上一层可抗 260摄氏度的高温胶膜, 成为可以使用在四面无引脚封装以及缩小塑封体 积的封装用的引线框(参见图 75 )。
4.) 另一种方式就是以方法一或是方法二, 将附有芯片承载的基岛、 信号传输的内引脚、 与外界 PCB连接的外引脚以及在内弓 I脚及 (或)基岛的 某些区域进行金属电镀层被覆所形成的引线框进行预包封, 在金属片被沖 切或是被化学蚀刻的区域填充热固型环氧树脂填充, 使其成为可以使用在 四面无引脚封装、 缩小塑封体积以及铜线键合能力封装用的预填料型引线 框 (参见图 76 )。
传统工艺方法的缺点:
1)机械沖切式引线框:
a. 机械沖切是利用上下刀具由上而下或是由下而上进行沖切形成垂 直断面, 所以完全无法在引线框内部再进行其它功能或物件埋入的利用如 系统对象集成在金属引线框本身
b. 机械沖压是利用上下刀具将金属片边缘进行相互挤压而沿伸出金 属区域, 而被挤压所沿伸出的金属区域长度最多只能是引线框厚度的
80%。 如果超过引线框厚度 80%以上时, 其被挤压所延伸出的金属区域 4艮 容易发生翘曲、 隐裂、 断裂、 不规则形状以及表面孔洞等问题, 而超薄引 线框更是容易产生以上问题(参见图 77~图 78 )。
c 机械沖压所沿伸出的金属区域长度如果比引线框厚度少于 80%以 区域内再放入相关对象 (尤其是厚度需要超薄的引线框更是无法做到) (参 见图 79 ~图 80 )。
2)化学蚀刻技术方式引线框:
a. 减法蚀刻可以采用半蚀刻技术将需要埋入物件的空间蚀刻出来,但 是最大的缺点就是独刻深度尺寸与蚀刻后平面的平整度较难控制。
b. 金属板完成很多需要埋入物件的半蚀刻区域后,引线框的结构强度 会变得相当的软, 会直接影响到后续再埋入对象所需要工作条件 (如取放、 运输、 高温、 高压以及热应力收缩)的难度。
c 化学蚀刻技术方式的引线框顶多只能呈现出引线框正面与背面的 外脚或是内脚型态 , 完全无法承现出多层三维金属线路的系统级金属引 线框。 发明内容
本发明的目的在于克服上述不足, 提供一种先蚀后封芯片倒装三维系 统级金属线路板结构及工艺方法, 它能够解决传统金属引线框无法埋入物 件而限制金属 ^ )线框的功能性和应用性能。
本发明的目的是这样实现的: 一种先蚀后封芯片倒装三维系统级金属 线路板的工艺方法, 所述方法包括如下步骤:
步骤一、 取金属基板
步骤二、 金属基板表面预镀微铜层
步骤三、 贴光阻膜作业
在完成预镀微铜层的金属基板正面及背面分别贴上可进行曝光显影 的光阻膜;
步骤四、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板背面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要进 行电镀的区域图形;
步骤五、 电镀金属线路层
在步骤四中金属基板背面去除部分光阻膜的区域内电镀上金属线路 层;
步骤六、 贴光阻膜作业
在步骤五中金属基板背面贴上可进行曝光显影的光阻膜;
步骤七、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板背面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要进 行电镀的区域图形;
步骤八、 电镀高导电金属线路层
在步骤七中金属基板背面去除部分光阻膜的区域内电镀上高导电金 属线路层;
步骤九、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十、 环氧树脂塑封 在金属基板背面的金属线路层表面利用环氧树脂材料进行塑封保护; 步骤十一、 环氧树脂表面研磨
在完成环氧树脂塑封后进行环氧树脂表面研磨;
步骤十二、 贴光阻膜作业
在完成步骤十一的金属基板正面和背面贴上可进行曝光显影的光阻 膜;
步骤十三、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十二完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行蚀刻的区域图形;
步骤十四、 化学蚀刻
将步骤十三中金属基板正面完成曝光显影的区域进行化学蚀刻; 步骤十五、 贴光阻膜作业
在完成步骤十四的金属基板正面和背面贴上可进行曝光显影的光阻 膜;
步骤十六、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十五完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行电镀的区域图形;
步骤十七、 电镀金属柱子
在步骤十六中金属基板正面去除部分光阻膜的区域内电镀上金属柱 子;
步骤十八、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十九、 装片
在完成步骤十八后的基岛和引脚上部通过底部填充胶倒装芯片; 步骤二十、 包封
将步骤十九中的金属基板正面采用塑封料进行塑封; 步骤二十一、 环氧树脂表面研磨
在完成步骤二十的环氧树脂塑封后进行环氧树脂表面研磨;
步骤二十二、 电镀抗氧化金属层或批覆抗氧化剂(OSP)
在完成步骤二十一后的金属基板表面棵露在外的金属进行电镀抗氧 化金属层或批覆抗氧化剂(OSP)。
所述步骤十五移动至步骤四和步骤五之间进行。
一种先蚀后封芯片倒装三维系统级金属线路板结构, 它包括金属基板 框, 在所述金属基板框内设置有基岛和引脚, 在所述基岛和引脚的正面或 背面通过底部填充胶倒装有芯片,在所述引脚正面或背面设置有导电柱子, 所述基岛外围的区域、 基岛和引脚之间的区域、 引脚与引脚之间的区域、 基岛和引脚上部的区域、 基岛和引脚下部的区域以及芯片和导电柱子外均 包封有塑封料, 所述塑封料与导电柱子的顶部齐平, 在所述金属基板框、 引脚和导电柱子露出塑封料的表面镀有抗氧化层或被覆抗氧化剂。
一种先蚀后封芯片倒装三维系统级金属线路板结构, 它包括金属基板 框和芯片, 在所述金属基板框内设置内设置有引脚, 所述芯片通过底部填 充胶倒装于引脚正面或背面, 在所述引脚正面或背面设置有导电柱子, 所 述引脚与引脚之间的区域、 引脚上部的区域、 引脚下部的区域以及芯片和 导电柱子外均包封有塑封料, 所述塑封料与导电柱子的顶部齐平, 在所述 金属基板、 引脚和导电柱子露出塑封料的表面镀有抗氧化层或批覆抗氧化 剂(OSP)。
所述引脚与引脚之间通过导电粘结物质跨接无源器件, 所述无源器件 可以跨接于引脚正面与引脚正面之间, 或跨接于引脚正面与静电释放圏的 正面之间, 或跨接于静电释放圏的正面与基岛的正面之间, 在所述基岛与 引脚的之间设置有静电释放圏, 所述芯片正面与静电释放圏正面之间通过 金属线相连。
所述导电柱子有多圏。
在所述芯片正面通过导电或不导电粘结物质设置有第二芯片, 所述第 二芯片正面与引脚之间通过金属线相连。 在所述引脚正面或背面设置有第二导电柱子, 在所述第二导电柱子通 过导电物质上倒装有第二芯片, 所述第二导电柱子和第二芯片处于塑封料 的内部。
在所述引脚正面或背面设置有第二导电柱子, 在所述第二导电柱子上 装有无源器件, 所述第二导电柱子和无源器件处于塑封料的内部。
一种先蚀后封芯片倒装三维系统级金属线路板的工艺方法, 所述方法 包括如下步骤:
步骤一、 取金属基板
步骤二、 金属基板表面预镀微铜层
步骤三、 贴光阻膜作业
在完成预镀微铜层的金属基板正面及背面分别贴上可进行曝光显影 的光阻膜;
步骤四、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板正面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要进 行电镀的区域图形;
步骤五、 电镀第一金属线路层
在步骤四中金属基板正面去除部分光阻膜的区域内电镀上第一金属 线路层;
步骤六、 贴光阻膜作业
在步骤五中金属基板正面贴上可进行曝光显影的光阻膜;
步骤七、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板正面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要进 行电镀的区域图形;
步骤八、 电镀第二金属线路层
在步骤七中金属基板正面去除部分光阻膜的区域内电镀上第二金属 线路层作为用以连接第一金属线路层与第三金属线路层的导电柱子; 步骤九、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十、 贴压不导电胶膜作业
在金属基板正面贴压一层不导电胶膜;
步骤十一、 研磨不导电胶膜表面
在完成不导电胶膜贴压后进行表面研磨;
步骤十二、 不导电胶膜表面金属化预处理
对不导电胶膜表面进行金属化预处理;
步骤十三、 贴光阻膜作业
在步骤十二中金属基板正面和背面贴上可进行曝光显影的光阻膜; 步骤十四、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十三完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行蚀刻的区域图形; 步骤十五、 蚀刻作业
在步骤十四完成光阻膜开窗后的区域进行蚀刻作业;
步骤十六、 金属基板正面去除光阻膜
去除金属基板正面的光阻膜, 以露出后续需要进行被电镀的金属区域 图形;
步骤十七、 电镀第三金属线路层
在步骤十六的金属基板正面进行第三金属线路层的电镀工作; 步骤十八、 贴光阻膜作业
在步骤十七的金属基板正面贴上可进行曝光显影的光阻膜; 步骤十九、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十八完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行电镀的区域图形;
步骤二十、 电镀第四金属线路层
在步骤十九中金属基板正面去除部分光阻膜的区域内电镀上第四金 属线路层作为用以连接第三金属线路层与第五金属线路层的导电柱子; 步骤二十一、 去除光阻膜
去除金属基板表面的光阻膜;
步骤二十二、 贴压不导电胶膜作业
在金属基板正面贴压一层不导电胶膜;
步骤二十三、 研磨不导电胶膜表面
在完成不导电胶膜贴压后进行表面研磨;
步骤二十四、 不导电胶膜表面金属化预处理
对不导电胶膜表面进行金属化预处理;
步骤二十五、 贴光阻膜作业
在步骤二十四中金属基板正面和背面贴上可进行曝光显影的光阻膜; 步骤二十六、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤二十五完成贴光阻膜作业的金属基板正面 进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需 要进行蚀刻的区域图形; 步骤二十七、 蚀刻作业
在步骤二十六完成光阻膜开窗后的区域进行蚀刻作业;
步骤二十八、 金属基板正面去除光阻膜
去除金属基板正面的光阻膜;
步骤二十九、 电镀第五金属线路层
在步骤二十八的金属基板正面进行第五金属线路层的电镀工作, 第五 金属线路层电镀完成后即在金属基板上形成相应的基岛和引脚;
步骤三十、 贴光阻膜作业
在步骤二十九中金属基板正面贴上可进行曝光显影的光阻膜; 步骤三十一、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三十完成贴光阻膜作业的金属基板背面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要 进行蚀刻的区域图形;
步骤三十二、 化学蚀刻 将步骤三十一中金属基板背面完成曝光显影的区域进行化学蚀刻, 化 学蚀刻直至金属线路层为止;
步骤三十三、 贴光阻膜作业
在步骤三十二中完成化学蚀刻的金属基板背面贴上可进行曝光显影 的光阻膜;
步骤三十四、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三十三完成贴光阻膜作业的金属基板背面 进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需 要进行电镀的区域图形;
步骤三十五、 电镀金属柱子
在步骤三十四中金属基板背面去除部分光阻膜的区域内电镀上金属 柱子;
步骤三十六、 去除光阻膜
去除金属基板表面的光阻膜;
步骤三十七、 装片
在完成步骤三十六的基岛和引脚上通过底部填充胶倒装芯片; 步骤三十八、 包封
将步骤三十七中的金属基板背面采用环氧树脂 (俗称塑封料)进行塑 封;
步骤三十九、 环氧树脂表面研磨
在完成步骤三十八的环氧树脂塑封后进行环氧树脂表面研磨; 步骤四十、 电镀抗氧化金属层或批覆抗氧化剂(OSP)
在完成步骤三十九后的金属基板表面棵露在外的金属进行电镀抗氧 化金属层或批覆抗氧化剂(OSP)。
所述步骤六到步骤十七可重复操作, 形成更多层的金属线路层。
与现有技术相比, 本发明具有以下有益效果:
1 ) 目前金属引线框均采用机械沖切或是化学蚀刻方式, 无法制做出 多层金属线路层,而沖切式金属引线框中间的夹层中无法埋入任何的对象, 而本发明的三维金属线路复合式基板可以在基板中间的夹层中埋入对象。
2 )三维金属线路复合式基板中的夹层可以因为导热或是散热需要而 在需要的位置或是区域内埋入导热或是散热对象, 成为一个热性能系统级 的金属引线框。 (参见图 81 )
3 )三维金属线路复合式基板中的夹层可以因为系统与功能的需要而 在需要的位置或是区域内埋入主动元件或是组件或是被动的组件, 成为一 个系统级的金属引线框。
4 )从三维金属线路复合式基板成品的外观完全看不出来内部夹层已 埋入了因系统或是功能需要的对象,尤其是硅材的芯片埋入连 X光都无法 检视, 充分达到系统与功能的隐密性及保护性。
5 )三维金属线路复合式基板成品本身就富含了各种的组件, 如果不 再进行后续第二次封装的其况下, 只要将三维金属线路复合式基板依照每 一格单元切开, 本身就可成为一个超薄的封装体。
6 ) 三维金属线路复合式基板除了本身内含对象的埋入功能之外还可 以进行二次封装, 充分的达到系统功能的整合。
7 )三维金属线路复合式基板除了本身内含对象的埋入功能之外还可 以在封装体外围再叠加不同的单元封装或是系统级封装, 充分达到双系统 或是多系统级的封装技术能力。
8) 三维金属线路基板可以应用于多芯片模组(MCM )封装(参见图 82和图 83 ) , 且三维金属线路基板比常规的 MCM基板底材成本低、 韧性 大。 附图说明
相信通过以下结合附图对本发明具体实施方式的说明, 能够使人们更 好地了解本发明上述的特点、 优点和目的, 其中:
图 1~图 22为本发明先蚀后封芯片倒装三维系统级金属线路板工艺方 法的各工序示意图。
图 23为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 1 的示意图。 图 24为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 2 的示意图。
图 25为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 3 的示意图。
图 26为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 4 的示意图。
图 27为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 5 的示意图。
图 28为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 6 的示意图。
图 29 ~图 68 为本发明先蚀后封芯片倒装三维系统级金属线路板结构 实施例 7的工艺流程图。
图 69为本发明先蚀后封芯片倒装三维系统级金属线路板结构实施例 7 的示意图。
图 70为传统金属引线框架的基本制作工艺方法中的沖切示意图。 图 71 为传统金属引线框架的基本制作工艺方法中条型金属片的示意 图。
图 72 为传统金属引线框架的基本制作工艺方法中正面引线框的示意 图。
图 73为传统金属引线框架经过曝光、显影、 开窗、 蚀刻等的基本制作 工艺方法中剖面的示意图。
图 74 为传统金属引线框架的基本制作工艺方法中正面引线框的示意 图。
图 75为传统金属引线框架的基本制作工艺方法中 QFN的剖面结构示 意图。
图 76 为传统金属引线框架的基本制作工艺方法中预填料型引线框的 示意图。
图 77 为传统金属引线框架的基本制作工艺方法中上下刀具挤压形成 延伸金属区域的示意图。
图 78 为传统金属引线框架的基本制作工艺方法中上下刀具挤压形成 延伸金属区域所产生的隐裂、 断裂、 翘曲的示意图。
图 79 为传统金属引线框架的基本制作工艺方法中上下刀具挤压形成 沿伸金属区域长度不足引线框厚度 80%的示意图。
图 80 为传统金属引线框架的基本制作工艺方法中上下刀具挤压形成 沿伸金属区域长度不足引线框厚度的 80%所产生埋入对象困难的示意图。
图 81 为三维金属线路复合式基板中的夹层可以因为导热或是散热需 要而在需要的位置或是区域内埋入导热或是散热对象的示意图。
图 82为三维金属线路基板应用于多芯片模组(MCM )封装的示意图。 图 83为图 82的俯视图。
其中:
金属基板框 1、 基岛 2、 引脚 3、 底部填充胶 4、 芯片 5、 金属线 6、 导电柱子 7、 塑封料 8、 抗氧化层或批覆抗氧化剂 9、 无源器件 10、 静电 释放圏 11、 第二芯片 12、 第二导电柱子 13、 导电物质 14、 导电或不导电 粘结物质 15。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进 行详细地描述。 应当理解, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没 有做出创造性劳动的前提下所获得的所有其他实施例, 都属于本发明保护 的范围。 本发明一种先蚀后封芯片倒装三维系统级金属线路板结构及工艺 方法: ¾口下。
实施例 1 : 单层线路单芯片倒装单圏引脚
参见图 23 ,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 1的结构示意图, 它包括金属基板框 1 , 在所述金属基板框 1 内设置 有基岛 2和引脚 3 , 所述基岛 2和引脚 3正面通过底部填充胶 4倒装有芯 片 5 , 在所述引脚 3正面设置有导电柱子 7, 所述基岛 2外围的区域、基岛 2和引脚 3之间的区域、 引脚 3与引脚 3之间的区域、 基岛 2和引脚 3上 部的区域、 基岛 2和引脚 3下部的区域以及芯片 5和导电柱子 7外均包封 有塑封料 8, 所述塑封料 8与导电柱子 7的顶部齐平, 在所述金属基板 1、 基岛 2、 引脚 3和导电柱子 7露出塑封料 8的表面镀有抗氧化层或批覆抗 氧化剂(OSP)9。
其工艺方法如下:
步骤一、 取金属基板
参见图 1 , 取一片厚度合适的金属基板, 此板材使用的目的只是为线 要是以金属材料为主,而金属材料的材质可以是铜材、 铁材、 镀辞材、 不 锈钢材、 铝材或可以达到导电功能的金属物质或非全金属物质等。
步骤二、 金属基板表面预镀微铜层
参见图 2, 在金属基板表面预镀微铜层, 微铜层厚度在 2~10微米,依 据功能需要也可以减薄或是增厚,主要是为了后续线路制作时使线路层与 金属基板能够紧密接合,电镀的方式可以采用化学沉积或是电解电镀。
步骤三、 贴光阻膜作业
参见图 3 , 在完成预镀微铜层的金属基板正面及背面分别贴上可进行 曝光显影的光阻膜, 以保护后续的电镀金属层工艺作业, 光阻膜可以是干 式光阻膜也可以是湿式光阻膜。
步骤四、 金属基板背面去除部分光阻膜
参见图 4, 利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板 背面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后 续需要进行电镀的区域图形。
步骤五、 电镀金属线路层
参见图 5 , 在步骤四中金属基板背面去除部分光阻膜的区域内电镀上 金属线路层, 金属线路层材料可以是铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金 (通常 5~20微米, 可以根据不同特性变换电镀的厚度)等材料, 当然 其它可以导电的金属物质都可以使用, 并不局限铜、 铝、 镍、 银、 金、 铜 银、 镍金、 镍钯金等金属材料, 电镀方式可以是化学沉积或是电解电镀方 式。
步骤六、 贴光阻膜作业
参见图 6, 在步骤五中金属基板背面贴上可进行曝光显影的光阻膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤七、 金属基板背面去除部分光阻膜
参见图 7, 利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板 背面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后 续需要进行电镀的区域图形。
步骤八、 电镀高导电金属线路层
参见图 8, 在步骤七中金属基板背面去除部分光阻膜的区域内电镀高 导电金属线路层, 高导电金属线路层的材料可以是铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等材料, 当然其它可以导电的金属物质都可以使用, 并不局限铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等金属材料, 电镀方 式可以使化学沉积或是电解电镀方式。
步骤九、 去除光阻膜
参见图 9, 去除金属基板表面的光阻膜, 去除光阻膜的方法可采用化 学药水软化并采用高压水沖洗的方式去除光阻膜。
步骤十、 环氧树脂塑封
参见图 10,在金属基板背面的金属线路层和高导电金属线路层表面利 用环氧树脂材料进行塑封保护, 环氧树脂材料可以依据产品特性选择有填 料或是没有填料的种类, 塑封方式可以采用模具灌胶方式、 喷涂设备喷涂 方式、 贴膜方式或是刷胶的方式。
步骤十一、 环氧树脂表面研磨
参见图 11 , 在完成环氧树脂塑封后进行环氧树脂表面研磨 , 目的是 使外脚功能用的高导电金属线路层露出塑封体表面以及控制环氧树脂的厚 度。
步骤十二、 贴光阻膜作业 参见图 12,在完成步骤十一的金属基板正面和背面贴上可进行曝光显 影的光阻膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤十三、 金属基板正面去除部分光阻膜
参见图 13 ,利用曝光显影设备将步骤十二完成贴光阻膜作业的金属基 板正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面 后续需要进行蚀刻的区域图形。
步骤十四、 化学蚀刻
参见图 14,将步骤十三中金属基板正面完成曝光显影的区域进行化学 蚀刻, 化学蚀刻直至金属线路层为止, 蚀刻药水可以采用氯化铜或是氯化 铁或是可以进行化学蚀刻的药水。
步骤十五、 贴光阻膜作业
参见图 15 ,在完成步骤十四的金属基板正面和背面贴上可进行曝光显 影的光阻膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤十六、 金属基板正面去除部分光阻膜
参见图 16,利用曝光显影设备将步骤十五完成贴光阻膜作业的金属基 板正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面 后续需要进行电镀的区域图形。
步骤十七、 电镀金属柱子
参见图 17,在步骤十六中金属基板正面去除部分光阻膜的区域内电镀 上金属柱子, 金属柱子的材料可以是铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等材料, 当然其它可以导电的金属物质都可以使用, 并不局限铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等金属材料, 电镀方式可以使化学 沉积或是电解电镀方式。
步骤十八、 去除光阻膜
参见图 18, 去除金属基板表面的光阻膜, 去除光阻膜的方法可采用化 学药水软化并采用高压水沖洗的方式去除光阻膜。
步骤十九、 装片
参见图 19, 在步骤十八的基岛和引脚上通过底部填充胶倒装芯片, 倒 装的方式可以将底部填充胶涂覆在基岛和引脚上再倒装上芯片或是将底部 充胶涂覆在芯片正面后倒装于基岛和引脚正面。
步骤二十、 包封
参见图 20, 将步骤十九中的金属基板正面采用塑封料进行塑封, 塑封 方式可以采用模具灌胶方式、 喷涂设备喷涂方式或是用贴膜方式, 所述塑 封料可以采用有填料物质或是无填料物质的环氧树脂。
步骤二十一、 环氧树脂表面研磨
参见图 21 , 在完成步骤二十的环氧树脂塑封后进行环氧树脂表面研 磨 , 目的是使金属柱子露出塑封体表面以及控制环氧树脂的厚度。
步骤二十二、 电镀抗氧化金属层或是被覆抗氧化剂(OSP)
参见图 22,在完成步骤二十一后的金属基板表面棵露在外的金属进行 电镀抗氧化金属层, 防止金属氧化, 如金、 镍金、 镍钯金、 锡或是被覆抗 氧化剂(OSP)。
实施例 2: 多圏单芯片倒装 +无源器件 +静电释放圏
参见图 24,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 2的结构示意图, 实施例 2与实施例 1的不同之处在于: 所述引脚 3 有多圏, 所述引脚 3与引脚 3之间通过导电粘结物质跨接无源器件 10, 在 所述基岛 2与引脚 3之间设置有静电释放圏 11 , 所述无源器件 10可以跨 接于引脚 3正面与引脚 3正面之间。
实施例 3: 单圏多基岛平铺多芯片倒装
参见图 25 ,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 3的结构示意图, 实施例 3与实施例 1的不同之处在于: 在所述基岛 2和引脚 3正面通过底部填充胶 4倒装有多个芯片 5。
实施例 4: 单圏堆叠多芯片倒正装
参见图 26,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 4的结构示意图, 实施例 4与实施例 1的不同之处在于: 在所述芯片 5背面通过导电或不导电粘结物质 15设置有第二芯片 12, 所述第二芯片 12正面与引脚 3之间通过金属线 6相连。 实施例 5: 单圏堆叠多芯片倒倒装
参见图 27,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 5的结构示意图, 实施例 5与实施例 1的不同之处在于: 在所述引脚 3正面设置有第二导电柱子 13 , 在所述第二导电柱子 13上通过导电物质 14倒装有第二芯片 12, 所述第二导电柱子 13和第二芯片 12处于塑封料 8 的内部。
实施例 6: 无基岛单芯片倒装
参见图 28,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 6的结构示意图, 实施例 6与实施例 1的不同之处在于: 所述金属线 路板结构没有基岛 2, 所述芯片 5通过底部填充胶 4倒装于引脚 3正面与 引脚 3正面之间。
实施例 7: 多层线路单芯片倒装单圏引脚
参见图 69,为本发明先蚀后封芯片倒装三维系统级金属线路板结构实 施例 7的结构示意图, 实施例 7与实施例 1的不同之处在于: 所述基岛 2 或引脚 3包括多层金属线路层, 相邻两层金属线路层之间通过导电柱子相 连接, 所述基岛 2和引脚 3背面通过底部填充胶 4倒装有芯片 5 , 在所述 引脚 3背面设置有导电柱子 7。
其工艺方法如下:
步骤一、 取金属基板
参见图 29, 取一片厚度合适的金属基板, 此板材使用的目的只是为线 要是以金属材料为主,而金属材料的材质可以是铜材、 铁材、 镀辞材、 不 锈钢材、 铝材或可以达到导电功能的金属物质或非金属物质等。
步骤二、 金属基板表面预镀微铜层
参见图 30,在金属基板表面预镀微铜层,微铜层厚度在 2~10微米,依 据功能需要也可以减薄或是增厚,主要是为了后续线路制作时使线路层与 金属基板能够紧密接合,电镀的方式可以采用化学沉积或是电解电镀。
步骤三、 贴光阻膜作业 参见图 31 ,在完成预镀微铜层的金属基板正面及背面分别贴上可进行 曝光显影的光阻膜, 以保护后续的电镀金属层工艺作业, 光阻膜可以是干 式光阻膜也可以是湿式光阻膜。
步骤四、 金属基板正面去除部分光阻膜
参见图 32,利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板 正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后 续需要进行电镀的区域图形。
步骤五、 电镀第一金属线路层
参见图 33 ,在步骤四中金属基板正面去除部分光阻膜的区域内电镀上 第一金属线路层, 第一金属线路层材料可以是铜、 铝、 镍、 银、 金、 铜银、 镍金、镍钯金 (通常 5~20微米,可以根据不同特性变换电镀的厚度)等材料, 当然其它可以导电的金属物质都可以使用, 并不局限铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等金属材料, 电镀方式可以是化学沉积或是电解电镀 方式。
步骤六、 贴光阻膜作业
参见图 34, 在步骤五中金属基板正面贴上可进行曝光显影的光阻膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤七、 金属基板正面去除部分光阻膜
参见图 35 ,利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板 正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后 续需要进行电镀的区域图形。
步骤八、 电镀第二金属线路层
参见图 36,在步骤七中金属基板正面去除部分光阻膜的区域内电镀上 第二金属线路层作为用以连接第一金属线路层与第三金属线路层的导电柱 子, 金属线路层的材质可采用铜、 镍金、 镍钯金、 银、 金或是锡金属, 电 镀方式可以使化学沉积或是电解电镀方式。
步骤九、 去除光阻膜
参见图 37, 去除金属基板表面的光阻膜, 目的是为后续进行不导电胶 膜作业, 去除光阻膜的方法可采用化学药水软化并采用高压水沖洗的方式 去除光阻膜。
步骤十、 贴压不导电胶膜作业
参见图 38,在金属基板正面(有线路层的区域)贴压一层不导电胶膜, 目的是要为第一金属线路层与第三金属线路层进行绝缘, 贴压不导电胶膜 的方式可以采用常规的滚压设备, 或在真空的环境下进行贴压, 以防止贴 压过程产生空气的残留, 不导电胶膜主要是热固型环氧树脂, 而环氧树脂 可以依据产品特性采用没有填料或是有填料的不导电胶膜, 环氧树脂的颜 色可以依据产品特性进行染色处理。
步骤十一、 研磨不导电胶膜表面
参见图 39, 在完成不导电胶膜贴压后进行表面研磨, 目的是要露出第 二金属线路层, 维持不导电胶膜与第二金属线路层的平整度以及控制不导 电胶膜的厚度。
步骤十二、 不导电胶膜表面金属化预处理
参见图 40, 对不导电胶膜表面进行金属化预处理, 使其表面附着上一 层金属化高分子材料, 目的是作为后续金属材料能够镀上去的触媒转换, 附着金属化高分子材料可以采用喷涂、 等离子震荡、 表面粗化等再行烘干 即可;
步骤十三、 贴光阻膜作业
参见图 41 ,在步骤十二中金属基板正面和背面贴上可进行曝光显影的 光阻膜, 以保护后续的第三金属线路层的电镀工艺作业, 光阻膜可以是干 式光阻膜也可以是湿式光阻膜。
步骤十四、 金属基板正面去除部分光阻膜
参见图 42,利用曝光显影设备将步骤十三完成贴光阻膜作业的金属基 板正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面 后续需要进行蚀刻的区域图形。
步骤十五、 蚀刻作业
参见图 43 , 在步骤十四完成光阻膜开窗后的区域进行蚀刻作业, 其目 的是将要保留的金属线路以外的金属区域腐蚀干净, 进行蚀刻的方法可以 是氯化铜或是氯化铁或是可以进行化学蚀刻的药水的工艺方式。
步骤十六、 金属基板正面去除光阻膜
参见图 44, 去除金属基板正面的光阻膜, 以露出后续需要进行被电镀 的金属区域图形。
步骤十七、 电镀第三金属线路层
参见图 45 , 在步骤十六的金属基板正面进行第三金属线路层的电镀 工作, 第三金属线路层的材质可以是铜、 镍金、 镍钯金、 银、 金或是锡金 属, 电镀方式可以是化学沉积加电解电镀或是全部使用化学沉积方式镀出 需要的厚度。
步骤十八、 贴光阻膜作业
参见图 46 , 在步骤十七的金属基板正面贴上可进行曝光显影的光阻 膜, 目的是为后续金属线路层的制作, 光阻膜可以是干式光阻膜也可以是 湿式光阻膜。
步骤十九、 金属基板正面去除部分光阻膜
参见图 47,利用曝光显影设备将步骤十八完成贴光阻膜作业的金属基 板正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面 后续需要进行电镀的区域图形。
步骤二十、 电镀第四金属线路层
参见图 48,在步骤十九中金属基板正面去除部分光阻膜的区域内电镀 上第四金属线路层作为用以连接第三金属线路层与第五金属线路层的导电 柱子, 金属线路层的材质可采用铜、 镍金、 镍钯金、 银、 金或是锡金属, 电镀方式可以使化学沉积或是电解电镀方式。
步骤二十一、 去除光阻膜
参见图 49, 去除金属基板表面的光阻膜, 目的是为后续进行不导电胶 膜作业, 去除光阻膜的方法可采用化学药水软化并采用高压水沖洗的方式 去除光阻膜。
步骤二十二、 贴压不导电胶膜作业 参见图 50,在金属基板正面(有线路层的区域)贴压一层不导电胶膜, 目的是要为第三金属线路层与第五金属线路层进行绝缘, 贴压不导电胶膜 的方式可以采用常规的滚压设备, 或在真空的环境下进行贴压, 以防止贴 压过程产生空气的残留, 不导电胶膜主要是热固型环氧树脂, 而环氧树脂 可以依据产品特性采用没有填料或是有填料的不导电胶膜, 环氧树脂的颜 色可以依据产品特性进行染色处理。
步骤二十三、 研磨不导电胶膜表面
参见图 51 , 在完成不导电胶膜贴压后进行表面研磨, 目的是要露出第 四金属线路层, 维持不导电胶膜与第四金属线路层的平整度以及控制不导 电胶膜的厚度。
步骤二十四、 不导电胶膜表面金属化预处理
参见图 52, 对不导电胶膜表面进行金属化预处理, 使其表面附着上一 层金属化高分子材料, 目的是作为后续金属材料能够镀上去的触媒转换, 附着金属化高分子材料可以采用喷涂、 等离子震荡、 表面粗化等再行烘干 即可;
步骤二十五、 贴光阻膜作业
参见图 53 ,在步骤二十四中金属基板正面和背面贴上可进行曝光显影 的光阻膜, 以保护后续的第五金属线路层的电镀工艺作业, 光阻膜可以是 干式光阻膜也可以是湿式光阻膜。
步骤二十六、 金属基板正面去除部分光阻膜
参见图 54,利用曝光显影设备将步骤二十五完成贴光阻膜作业的金属 基板正面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正 面后续需要进行蚀刻的区域图形。
步骤二十七、 蚀刻作业
参见图 55 , 在步骤二十六完成光阻膜开窗后的区域进行蚀刻作业, 其 目的是将要保留的金属线路以外的金属区域腐蚀干净, 进行蚀刻的方法可 以是氯化铜或是氯化铁或是可以进行化学蚀刻的药水的工艺方式。
步骤二十八、 金属基板正面去除光阻膜 参见图 56, 去除金属基板正面的光阻膜, 以露出后续需要进行被电镀 的金属区域图形。
步骤二十九、 电镀第五金属线路层
参见图 57, 在步骤二十八的金属基板正面进行第五金属线路层的电 镀工作, 第五金属线路层电镀完成后即在金属基板上形成相应的基岛和引 脚, 第五金属线路层的材质可以是铜、 镍金、 镍钯金、 银、 金或是锡金属, 电镀方式可以是化学沉积加电解电镀或是全部使用化学沉积方式镀出需要 的厚度。
步骤三十、 贴光阻膜作业
参见图 58,在步骤二十九中金属基板正面贴上可进行曝光显影的光阻 膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤三十一、 金属基板背面去除部分光阻膜
参见图 59,利用曝光显影设备将步骤三十完成贴光阻膜作业的金属基 板背面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面 后续需要进行蚀刻的区域图形。
步骤三十二、 化学蚀刻
参见图 60,将步骤三十一中金属基板背面完成曝光显影的区域进行化 学蚀刻, 化学蚀刻直至金属线路层为止, 蚀刻药水可以采用氯化铜或是氯 化铁或是可以进行化学蚀刻的药水。
步骤三十三、 贴光阻膜作业
参见图 61 ,在步骤三十二中完成化学蚀刻的金属基板背面贴上可进行 曝光显影的光阻膜, 光阻膜可以是干式光阻膜也可以是湿式光阻膜。
步骤三十四、 金属基板背面去除部分光阻膜
参见图 62,利用曝光显影设备将步骤三十三完成贴光阻膜作业的金属 基板背面进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背 面后续需要进行电镀的区域图形。
步骤三十五、 电镀金属柱子
参见图 63 ,在步骤三十四中金属基板背面去除部分光阻膜的区域内电 镀上金属柱子, 金属柱子的材料可以是铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等材料, 当然其它可以导电的金属物质都可以使用, 并不局限铜、 铝、 镍、 银、 金、 铜银、 镍金、 镍钯金等金属材料, 电镀方式可以使化学 沉积或是电解电镀方式。
步骤三十六、 去除光阻膜
参见图 64, 去除金属基板表面的光阻膜, 可采用化学药水软化并采用 高压水喷除的方式去除光阻膜。
步骤三十七、 装片
参见图 65 , 在步骤三十六的基岛和引脚背面通过底部填充胶倒装芯 片。
步骤三十八、 包封
参见图 66, 将步骤三十七中的金属基板背面采用塑封料进行塑封, 塑 封方式可以采用模具灌胶方式、 喷涂设备喷涂方式、 用贴膜方式或是刷胶 的方式, 所述塑封料可以采用有填料物质或是无填料物质的环氧树脂。
步骤三十九、 环氧树脂表面研磨
参见图 67 , 在完成步骤四十的环氧树脂塑封后进行环氧树脂表面研 磨, 目的是使金属柱子露出塑封体表面以及控制环氧树脂的厚度。
步骤四十、 电镀抗氧化金属层或是被覆抗氧化剂(OSP)
参见图 68,在完成步骤四十一后的金属基板表面棵露在外的金属进行 电镀抗氧化金属层, 防止金属氧化, 如金、 镍金、 镍钯金、 锡或是被覆抗 氧化剂(OSP)。

Claims

权 利 要 求
1、 一种先蚀后封芯片倒装三维系统级金属线路板的工艺方法, 所述 方法包括如下步骤:
步骤一、 取金属基板
步骤二、 金属基板表面预镀微铜层
步骤三、 贴光阻膜作业
在完成预镀微铜层的金属基板正面及背面分别贴上可进行曝光显影 的光阻膜;
步骤四、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板背面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要进 行电镀的区域图形;
步骤五、 电镀金属线路层
在步骤四中金属基板背面去除部分光阻膜的区域内电镀上金属线路 层;
步骤六、 贴光阻膜作业
在步骤五中金属基板背面贴上可进行曝光显影的光阻膜;
步骤七、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板背面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要进 行电镀的区域图形;
步骤八、 电镀高导电金属线路层
在步骤七中金属基板背面去除部分光阻膜的区域内电镀上高导电金 属线路层;
步骤九、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十、 环氧树脂塑封
在金属基板背面的金属线路层表面利用环氧树脂材料进行塑封保护; 步骤十一、 环氧树脂表面研磨
在完成环氧树脂塑封后进行环氧树脂表面研磨;
步骤十二、 贴光阻膜作业
在完成步骤十一的金属基板正面和背面贴上可进行曝光显影的光阻 膜;
步骤十三、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十二完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行蚀刻的区域图形;
步骤十四、 化学蚀刻
将步骤十三中金属基板正面完成曝光显影的区域进行化学蚀刻; 步骤十五、 贴光阻膜作业
在完成步骤十四的金属基板正面和背面贴上可进行曝光显影的光阻 膜;
步骤十六、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十五完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行电镀的区域图形;
步骤十七、 电镀金属柱子
在步骤十六中金属基板正面去除部分光阻膜的区域内电镀上金属柱 子;
步骤十八、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十九、 装片
在完成步骤十八的基岛和引脚上通过底部填充胶倒装芯片; 步骤二十、 包封
将步骤十九中的金属基板正面采用塑封料进行塑封;
步骤二十一、 环氧树脂表面研磨 在完成步骤二十的环氧树脂塑封后进行环氧树脂表面研磨;
步骤二十二、 电镀抗氧化金属层或被覆抗氧化剂
在完成步骤二十一后的金属基板表面棵露在外的金属进行电镀抗氧 化金属层或被覆抗氧化剂。
2、 一种由权利要求 1 制成的先蚀后封芯片倒装三维系统级金属线路 板结构, 其特征在于它包括金属基板框(1), 在所述金属基板框(1 ) 内 设置有基岛 (2)和引脚(3), 在所述基岛 (2)和引脚(3) 的正面或背 面通过底部填充胶(4)倒装有芯片 (5), 在所述引脚(3)正面或背面设 置有导电柱子 (7), 所述基岛 (2) 外围的区域、 基岛 (2)和引脚(3) 之间的区域、 引脚(3)与引脚(3)之间的区域、 基岛 (2)和引脚(3) 上部的区域、 基岛 (2)和引脚(3) 下部的区域以及芯片 (5) 和导电柱 子 (7)外均包封有塑封料(8), 所述塑封料(8) 与导电柱子 (7) 的顶 部齐平, 在所述金属基板框(1)、 引脚(3)和导电柱子(7)露出塑封料 (8) 的表面镀有抗氧化层或被覆抗氧化剂 (9)。
3、 一种由权利要求 1 制成的先蚀后封芯片倒装三维系统级金属线路 板结构, 其特征在于它包括金属基板框(1 ) 和芯片 (5), 在所述金属基 板框(1) 内设置有引脚(3), 所述芯片 (5)通过底部填充胶(4)倒装 于引脚(3)正面或背面,在所述引脚(3)正面或背面设置有导电柱子(7), 所述引脚(3)与引脚(3)之间的区域、 引脚(3)上部的区域、 引脚(3) 下部的区域以及芯片 (5)和导电柱子(7)外均包封有塑封料(8), 所述 塑封料(8)与导电柱子(7) 的顶部齐平, 在所述金属基板框(1)、 引脚 (3)和导电柱子 (7) 露出塑封料(8) 的表面镀有抗氧化层或被覆抗氧 化剂 (9)。
4、 根据权利要求 2或 3提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于所述引脚(3)与引脚(3)之间通过导电粘结 物质跨接无源器件(10), 所述无源器件(10)可以跨接于引脚(3)正面 与引脚(3) 正面之间。
5、 根据权利要求 2或 3提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于所述导电柱子 (7)有多圏。
6、 根据权利要求 4提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于所述导电柱子(7)有多圏。
7、 根据权利要求 2提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于所述引脚(3)与引脚(3)之间通过导电粘结物质 跨接无源器件(10), 所述无源器件(10)可以跨接于引脚(3)正面与引 脚(3) 正面之间, 也可以跨接于引脚(3) 背面与引脚(3) 背面之间。
8、 根据权利要求 2或 7提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于在所述基岛 (1)与引脚(2) 的之间设置有静 电释放圏 (11), 所述芯片 (6)正面与静电释放圏 (11 )正面之间通过金 属线 (6)相连。
9、 根据权利要求 7提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于所述导电柱子(7)有多圏。
10、 根据权利要求 8提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于所述导电柱子(7)有多圏。
11、 根据权利要求 2或 7提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于在所述基岛 (2)和引脚(3)上通过底部填充 胶(4)倒装有多个芯片 (5)。
12、 根据权利要求 8提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述基岛( 2 )和引脚( 3 )上通过底部填充胶( 4 ) 倒装有多个芯片 (5) 。
13、 根据权利要求 9提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述基岛( 2 )和引脚( 3 )上通过底部填充胶( 4 ) 倒装有多个芯片 (5) 。
14、根据权利要求 10提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述基岛( 2 )和引脚( 3 )上通过底部填充胶( 4 ) 倒装有多个芯片 (5) 。
15、 根据权利要求 2或 7提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于在所述芯片 (5)正面通过导电或不导电粘结 物质 (4)设置有第二芯片 (12) , 所述第二芯片 (12) 正面与引脚(3) 之间通过金属线(6)相连。
16、 根据权利要求 8提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述芯片 (5) 正面通过导电或不导电粘结物质
(4)设置有第二芯片 (12) , 所述第二芯片 (12) 正面与引脚(3)之间 通过金属线 (6)相连。
17、 根据权利要求 9提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述芯片 (5) 正面通过导电或不导电粘结物质 (4)设置有第二芯片 (12) , 所述第二芯片 (12) 正面与引脚(3)之间 通过金属线 (6)相连。
18、 根据权利要求 10提供的一种先蚀后封芯片倒装三维系统级金属 线路板结构, 其特征在于在所述芯片 (5)正面通过导电或不导电粘结物 质 (4)设置有第二芯片 (12) , 所述第二芯片 (12)正面与引脚(3)之 间通过金属线(6)相连。
19、 根据权利要求 2或 7提供的一种先蚀后封芯片倒装三维系统级金 属线路板结构, 其特征在于在所述引脚(3)正面或背面设置有第二导电 柱子 (13), 在所述第二导电柱子 (13)上倒装有第二芯片 (12) , 所述 第二导电柱子(13)和第二芯片 (12)处于塑封料(8) 的内部。
20、 根据权利要求 8提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述引脚 (3) 正面或背面设置有第二导电柱子 (13) , 在所述第二导电柱子 (13)上倒装有第二芯片 (12) , 所述第二 导电柱子(13)和第二芯片 (12)处于塑封料(8) 的内部。
21、 根据权利要求 9提供的一种先蚀后封芯片倒装三维系统级金属线 路板结构, 其特征在于在所述引脚(3) 正面或背面设置有第二导电柱子
( 13), 在所述第二导电柱子 (13)上倒装有第二芯片 (12) , 所述第二 导电柱子(13)和第二芯片 (12)处于塑封料(8) 的内部。
22、 根据权利要求 10提供的一种先蚀后封芯片倒装三维系统级金属 线路板结构, 其特征在于在所述引脚(3 )正面或背面设置有第二导电柱 子(13 ), 在所述第二导电柱子(13 )上倒装有第二芯片 (12 ), 所述第二 导电柱子(13 )和第二芯片 (12 )处于塑封料(8 ) 的内部。
23、 根据权利要求 10提供的一种先蚀后封芯片倒装三维系统级金属 线路板结构, 其特征在于在所述引脚(3 )正面或背面设置有第二导电柱 子(13 ), 在所述第二导电柱子(13 )上装有无源器件(10 ), 所述第二导 电柱子(13 )和无源器件(10 )处于塑封料(8 ) 的内部。
24、 一种先蚀后封芯片倒装三维系统级金属线路板的工艺方法, 其特 征在于所述方法包括如下步骤:
步骤一、 取金属基板
步骤二、 金属基板表面预镀微铜层
步骤三、 贴光阻膜作业
在完成预镀微铜层的金属基板正面及背面分别贴上可进行曝光显影 的光阻膜;
步骤四、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤三完成贴光阻膜作业的金属基板正面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要进 行电镀的区域图形;
步骤五、 电镀第一金属线路层
在步骤四中金属基板正面去除部分光阻膜的区域内电镀上第一金属 线路层;
步骤六、 贴光阻膜作业
在步骤五中金属基板正面贴上可进行曝光显影的光阻膜;
步骤七、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤六完成贴光阻膜作业的金属基板正面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要进 行电镀的区域图形;
步骤八、 电镀第二金属线路层 在步骤七中金属基板正面去除部分光阻膜的区域内电镀上第二金属线 路层作为用以连接第一金属线路层与第三金属线路层的导电柱子;
步骤九、 去除光阻膜
去除金属基板表面的光阻膜;
步骤十、 贴压不导电胶膜作业
在金属基板正面贴压一层不导电胶膜;
步骤十一、 研磨不导电胶膜表面
在完成不导电胶膜贴压后进行表面研磨;
步骤十二、 不导电胶膜表面金属化预处理
对不导电胶膜表面进行金属化预处理;
步骤十三、 贴光阻膜作业
在步骤十二中金属基板正面和背面贴上可进行曝光显影的光阻膜; 步骤十四、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤十三完成贴光阻膜作业的金属基板正面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要进 行蚀刻的区域图形;
步骤十五、 蚀刻作业
在步骤十四完成光阻膜开窗后的区域进行蚀刻作业;
步骤十六、 金属基板正面去除光阻膜
去除金属基板正面的光阻膜, 以露出后续需要进行被电镀的金属区域 图形;
步骤十七、 电镀第三金属线路层
在步骤十六的金属基板正面进行第三金属线路层的电镀工作; 步骤十八、 贴光阻膜作业
在步骤十七的金属基板正面贴上可进行曝光显影的光阻膜; 步骤十九、 金属基板正面去除部分光阻膜 利用曝光显影设备将步骤十八完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行电镀的区域图形;
步骤二十、 电镀第四金属线路层
在步骤十九中金属基板正面去除部分光阻膜的区域内电镀上第四金 属线路层作为用以连接第三金属线路层与第五金属线路层的导电柱子; 步骤二十一、 去除光阻膜
去除金属基板表面的光阻膜;
步骤二十二、 贴压不导电胶膜作业
在金属基板正面贴压一层不导电胶膜;
步骤二十三、 研磨不导电胶膜表面
在完成不导电胶膜贴压后进行表面研磨;
步骤二十四、 不导电胶膜表面金属化预处理
对不导电胶膜表面进行金属化预处理;
步骤二十五、 贴光阻膜作业
在步骤二十四中金属基板正面和背面贴上可进行曝光显影的光阻膜; 步骤二十六、 金属基板正面去除部分光阻膜
利用曝光显影设备将步骤二十五完成贴光阻膜作业的金属基板正面进 行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板正面后续需要 进行蚀刻的区域图形;
步骤二十七、 蚀刻作业
在步骤二十六完成光阻膜开窗后的区域进行蚀刻作业;
步骤二十八、 金属基板正面去除光阻膜
去除金属基板正面的光阻膜;
步骤二十九、 电镀第五金属线路层
在步骤二十八的金属基板正面进行第五金属线路层的电镀工作, 第五 金属线路层电镀完成后即在金属基板上形成相应的基岛和引脚;
步骤三十、 贴光阻膜作业 在步骤二十九中金属基板正面贴上可进行曝光显影的光阻膜; 步骤三十一、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三十完成贴光阻膜作业的金属基板背面进行 图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需要进 行蚀刻的区域图形;
步骤三十二、 化学蚀刻
将步骤三十一中金属基板背面完成曝光显影的区域进行化学蚀刻, 化 学蚀刻直至金属线路层为止;
步骤三十三、 贴光阻膜作业
在步骤三十二中完成化学蚀刻的金属基板背面贴上可进行曝光显影的 光阻膜;
步骤三十四、 金属基板背面去除部分光阻膜
利用曝光显影设备将步骤三十三完成贴光阻膜作业的金属基板背面 进行图形曝光、 显影与去除部分图形光阻膜, 以露出金属基板背面后续需 要进行电镀的区域图形;
步骤三十五、 电镀金属柱子
在步骤三十四中金属基板背面去除部分光阻膜的区域内电镀上金属 柱子;
步骤三十六、 去除光阻膜
去除金属基板表面的光阻膜;
步骤三十七、 装片
在完成步骤三十六的基岛和引脚背面倒装芯片;
步骤三十八、 包封
将步骤三十七中的金属基板背面采用塑封料进行塑封;
步骤三十九、 环氧树脂表面研磨
在完成步骤三十八的环氧树脂塑封后进行环氧树脂表面研磨; 步骤四十、 电镀抗氧化金属层或被覆抗氧化剂
在完成步骤三十九后的金属基板表面棵露在外的金属进行电镀抗氧 化金属层或被覆抗氧化剂。
25、根据权利要求 24所述的一种先蚀后封芯片倒装三维系统级金属线 路板的工艺方法, 其特征在于所述步骤六到步骤十七可重复操作, 形成更 多层的金属线路层。
PCT/CN2013/088298 2013-08-06 2013-12-02 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法 WO2015018143A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112013007308.0T DE112013007308B4 (de) 2013-08-06 2013-12-02 Durch Ätzen vor dem Einhausen hergestellter dreidimensionaler metallischer Leiterplattenaufbau mit umgekehrt aufgesetztem Chip auf Systemebene und technologisches Verfahren
US14/901,451 US9627303B2 (en) 2013-08-06 2013-12-02 Etching-before-packaging three-dimensional system-level metal circuit board structure inversely provided with chip, and technological method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310340428.6A CN103400771B (zh) 2013-08-06 2013-08-06 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法
CN201310340428.6 2013-08-06

Publications (1)

Publication Number Publication Date
WO2015018143A1 true WO2015018143A1 (zh) 2015-02-12

Family

ID=49564371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088298 WO2015018143A1 (zh) 2013-08-06 2013-12-02 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法

Country Status (4)

Country Link
US (1) US9627303B2 (zh)
CN (1) CN103400771B (zh)
DE (1) DE112013007308B4 (zh)
WO (1) WO2015018143A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180020546A1 (en) * 2016-07-18 2018-01-18 Verily Life Sciences Llc Method of manufacturing flexible electronic circuits having conformal material coatings

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400771B (zh) * 2013-08-06 2016-06-29 江阴芯智联电子科技有限公司 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法
CN103646933B (zh) * 2013-12-05 2016-03-30 江苏长电科技股份有限公司 二次先蚀后镀金属框减法埋芯片正装凸点结构及工艺方法
CN103646930B (zh) * 2013-12-05 2016-02-24 江苏长电科技股份有限公司 二次先蚀后镀金属框减法埋芯片倒装平脚结构及工艺方法
CN103646932B (zh) * 2013-12-05 2016-03-30 江苏长电科技股份有限公司 一次先镀后蚀金属框减法埋芯片正装凸点结构及工艺方法
CN103646937B (zh) * 2013-12-05 2016-02-24 江苏长电科技股份有限公司 二次先蚀后镀金属框减法埋芯片倒装凸点结构及工艺方法
CN103646931B (zh) * 2013-12-05 2016-06-29 江苏长电科技股份有限公司 一次先镀后蚀金属框减法埋芯片倒装平脚结构及工艺方法
CN103646938B (zh) * 2013-12-05 2016-02-24 江苏长电科技股份有限公司 一次先镀后蚀金属框减法埋芯片倒装凸点结构及工艺方法
JP6620989B2 (ja) * 2015-05-25 2019-12-18 パナソニックIpマネジメント株式会社 電子部品パッケージ
CN108601209B (zh) * 2018-06-27 2024-03-22 宁波华远电子科技有限公司 一种高导热高绝缘软硬结合封装基板及其制备方法
KR102525164B1 (ko) * 2018-08-13 2023-04-24 삼성전자주식회사 인쇄회로기판 및 이를 포함하는 반도체 패키지
TWI672711B (zh) * 2019-01-10 2019-09-21 健策精密工業股份有限公司 絕緣金屬基板及其製造方法
DE102019115369A1 (de) 2019-06-06 2020-12-10 Infineon Technologies Ag Verfahren zur herstellung eines halbleiter-flip-chip-package
KR20210011276A (ko) 2019-07-22 2021-02-01 삼성전자주식회사 반도체 패키지 및 그 제조 방법
CN112133695B (zh) * 2020-09-07 2022-07-01 矽磐微电子(重庆)有限公司 系统级封装结构及其制作方法
CN113725094B (zh) * 2021-11-01 2022-02-08 深圳中科四合科技有限公司 一种多芯片混合封装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636411Y (zh) * 2003-08-01 2004-08-25 威盛电子股份有限公司 多芯片封装结构
CN2664198Y (zh) * 2003-08-18 2004-12-15 威盛电子股份有限公司 多芯片封装结构
CN102723284A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片正装单面三维线路先蚀后封制造方法及其封装结构
CN102723293A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片倒装单面三维线路先蚀后封制造方法及其封装结构
CN102723292A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片倒装双面三维线路先蚀后封制造方法及其封装结构
CN103400771A (zh) * 2013-08-06 2013-11-20 江苏长电科技股份有限公司 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3403306B2 (ja) * 1997-01-17 2003-05-06 古河電気工業株式会社 光モジュール
US6498099B1 (en) * 1998-06-10 2002-12-24 Asat Ltd. Leadless plastic chip carrier with etch back pad singulation
TW412851B (en) * 1999-05-31 2000-11-21 Siliconware Precision Industries Co Ltd Method for manufacturing BGA package having encapsulation for encapsulating a die
KR100298827B1 (ko) * 1999-07-09 2001-11-01 윤종용 재배선 기판을 사용한 웨이퍼 레벨 칩 스케일 패키지 제조방법
JP3386029B2 (ja) * 2000-02-09 2003-03-10 日本電気株式会社 フリップチップ型半導体装置及びその製造方法
US6686652B1 (en) * 2000-03-20 2004-02-03 National Semiconductor Locking lead tips and die attach pad for a leadless package apparatus and method
US6956283B1 (en) * 2000-05-16 2005-10-18 Peterson Kenneth A Encapsulants for protecting MEMS devices during post-packaging release etch
US6787388B1 (en) * 2000-09-07 2004-09-07 Stmicroelectronics, Inc. Surface mount package with integral electro-static charge dissipating ring using lead frame as ESD device
ES2383874T3 (es) * 2001-07-09 2012-06-27 Sumitomo Metal Mining Company Limited Procedimiento para la fabricación de un soporte de conexión
SG111935A1 (en) * 2002-03-04 2005-06-29 Micron Technology Inc Interposer configured to reduce the profiles of semiconductor device assemblies and packages including the same and methods
JP2003332508A (ja) * 2002-05-16 2003-11-21 Renesas Technology Corp 半導体装置及びその製造方法
US6987031B2 (en) * 2002-08-27 2006-01-17 Micron Technology, Inc. Multiple chip semiconductor package and method of fabricating same
TWI241000B (en) * 2003-01-21 2005-10-01 Siliconware Precision Industries Co Ltd Semiconductor package and fabricating method thereof
US6991961B2 (en) * 2003-06-18 2006-01-31 Medtronic, Inc. Method of forming a high-voltage/high-power die package
TWI226119B (en) * 2004-03-11 2005-01-01 Advanced Semiconductor Eng Semiconductor package
US7235877B2 (en) 2004-09-23 2007-06-26 International Rectifier Corporation Redistributed solder pads using etched lead frame
WO2006070807A1 (ja) * 2004-12-28 2006-07-06 Ngk Spark Plug Co., Ltd. 配線基板及び配線基板の製造方法
KR100653249B1 (ko) * 2005-12-07 2006-12-04 삼성전기주식회사 메탈코어, 패키지 기판 및 그 제작방법
EP2084744A2 (en) * 2006-10-27 2009-08-05 Unisem (Mauritius) Holdings Limited Partially patterned lead frames and methods of making and using the same in semiconductor packaging
TWI316749B (en) * 2006-11-17 2009-11-01 Siliconware Precision Industries Co Ltd Semiconductor package and fabrication method thereof
US8063470B1 (en) * 2008-05-22 2011-11-22 Utac Thai Limited Method and apparatus for no lead semiconductor package
JP5532570B2 (ja) * 2008-09-29 2014-06-25 凸版印刷株式会社 リードフレーム型基板とその製造方法ならびに半導体装置
KR101064755B1 (ko) * 2008-12-24 2011-09-15 엘지이노텍 주식회사 다열 리드형 리드프레임 및 이를 이용한 반도체 패키지의 제조방법
JP5407474B2 (ja) * 2009-03-25 2014-02-05 凸版印刷株式会社 半導体素子基板の製造方法
US8124447B2 (en) * 2009-04-10 2012-02-28 Advanced Semiconductor Engineering, Inc. Manufacturing method of advanced quad flat non-leaded package
US20110115069A1 (en) * 2009-11-13 2011-05-19 Serene Seoh Hian Teh Electronic device including a packaging substrate and an electrical conductor within a via and a process of forming the same
CN102456677B (zh) * 2010-10-27 2013-08-21 三星半导体(中国)研究开发有限公司 球栅阵列封装结构及其制造方法
US8735224B2 (en) * 2011-02-14 2014-05-27 Stats Chippac Ltd. Integrated circuit packaging system with routed circuit lead array and method of manufacture thereof
KR101346420B1 (ko) * 2011-12-29 2014-01-10 주식회사 네패스 반도체 패키지 및 그 제조 방법
CN102723282B (zh) * 2012-06-09 2013-10-09 江苏长电科技股份有限公司 芯片正装双面三维线路先蚀后封制造方法及其封装结构
CN103400772B (zh) * 2013-08-06 2016-08-17 江阴芯智联电子科技有限公司 先封后蚀芯片正装三维系统级金属线路板结构及工艺方法
CN103489792B (zh) * 2013-08-06 2016-02-03 江苏长电科技股份有限公司 先封后蚀三维系统级芯片倒装封装结构及工艺方法
CN103390563B (zh) * 2013-08-06 2016-03-30 江苏长电科技股份有限公司 先封后蚀芯片倒装三维系统级金属线路板结构及工艺方法
US9281258B1 (en) * 2014-10-30 2016-03-08 Semiconductor Components Industries, Llc Chip scale packages and related methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2636411Y (zh) * 2003-08-01 2004-08-25 威盛电子股份有限公司 多芯片封装结构
CN2664198Y (zh) * 2003-08-18 2004-12-15 威盛电子股份有限公司 多芯片封装结构
CN102723284A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片正装单面三维线路先蚀后封制造方法及其封装结构
CN102723293A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片倒装单面三维线路先蚀后封制造方法及其封装结构
CN102723292A (zh) * 2012-06-09 2012-10-10 江苏长电科技股份有限公司 芯片倒装双面三维线路先蚀后封制造方法及其封装结构
CN103400771A (zh) * 2013-08-06 2013-11-20 江苏长电科技股份有限公司 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180020546A1 (en) * 2016-07-18 2018-01-18 Verily Life Sciences Llc Method of manufacturing flexible electronic circuits having conformal material coatings
US10595417B2 (en) * 2016-07-18 2020-03-17 Verily Life Sciences Llc Method of manufacturing flexible electronic circuits having conformal material coatings

Also Published As

Publication number Publication date
CN103400771A (zh) 2013-11-20
DE112013007308T5 (de) 2016-05-19
DE112013007308B4 (de) 2019-10-10
US9627303B2 (en) 2017-04-18
CN103400771B (zh) 2016-06-29
US20160351482A1 (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2015018143A1 (zh) 先蚀后封芯片倒装三维系统级金属线路板结构及工艺方法
WO2015018144A1 (zh) 先蚀后封芯片正装三维系统级金属线路板结构及工艺方法
WO2015018145A1 (zh) 先封后蚀芯片倒装三维系统级金属线路板结构及工艺方法
US20160148861A1 (en) First-packaged and later-etched three-dimensional flip-chip system-in-package structure and processing method therefor
CN103824836B (zh) 半导体承载元件及半导体封装件
CN103400772B (zh) 先封后蚀芯片正装三维系统级金属线路板结构及工艺方法
TWM597984U (zh) 晶片結構
CN103400767B (zh) 先蚀后封芯片倒装凸点三维系统级金属线路板及工艺方法
TW200711061A (en) Method of manufacturing quad flat non-leaded semiconductor package
US9633985B2 (en) First-etched and later-packaged three-dimensional system-in-package normal chip stack package structure and processing method thereof
CN103400773B (zh) 先封后蚀无源器件三维系统级金属线路板结构及工艺方法
TWI506753B (zh) 無芯層封裝結構及其製造方法
TW201320276A (zh) 封裝基板及其製法
TW201705426A (zh) 樹脂密封型半導體裝置及其製造方法
CN103887256A (zh) 一种高散热芯片嵌入式电磁屏蔽封装结构及其制作方法
WO2013097580A1 (zh) 一种芯片上芯片封装及制造方法
WO2018113574A1 (zh) 一种贴装预包封金属导通三维封装结构的工艺方法
CN103400777B (zh) 先蚀后封芯片正装凸点三维系统级金属线路板及工艺方法
CN103400770A (zh) 先封后蚀芯片倒装凸点三维系统级金属线路板及工艺方法
CN103824820A (zh) 引线框区域阵列封装技术
TWI831499B (zh) 引線框結構的形成方法
CN204375727U (zh) 一种高散热芯片嵌入式重布线封装结构
CN213816140U (zh) 一种铜电极结构
TW202326876A (zh) 封裝結構的形成方法
CN103400774B (zh) 先封后蚀芯片正装凸点三维系统级金属线路板及工艺方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890963

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14901451

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013007308

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890963

Country of ref document: EP

Kind code of ref document: A1