WO2015016300A1 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
WO2015016300A1
WO2015016300A1 PCT/JP2014/070176 JP2014070176W WO2015016300A1 WO 2015016300 A1 WO2015016300 A1 WO 2015016300A1 JP 2014070176 W JP2014070176 W JP 2014070176W WO 2015016300 A1 WO2015016300 A1 WO 2015016300A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential pressure
pressure
current value
increase
amount
Prior art date
Application number
PCT/JP2014/070176
Other languages
English (en)
French (fr)
Inventor
広樹 斉藤
Original Assignee
株式会社 アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アドヴィックス filed Critical 株式会社 アドヴィックス
Priority to CN201480036706.1A priority Critical patent/CN105358393B/zh
Priority to US14/909,019 priority patent/US9714015B2/en
Publication of WO2015016300A1 publication Critical patent/WO2015016300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3655Continuously controlled electromagnetic valves

Definitions

  • the present invention relates to a vehicle braking control device that controls a differential pressure valve that is driven to adjust a differential pressure between a master cylinder and a wheel cylinder.
  • a brake actuator is provided between the master cylinder that operates in response to the brake operation by the driver and the wheel cylinder corresponding to the wheel to control the braking torque for the wheel by adjusting the hydraulic pressure in the wheel cylinder.
  • Such an actuator includes a differential pressure valve that is an electromagnetic linear valve that is driven to adjust the differential pressure between the master cylinder and the wheel cylinder, and a pump that is connected to a passage between the differential pressure valve and the wheel cylinder. Yes.
  • the opening of the differential pressure valve decreases, and the differential pressure, that is, the hydraulic pressure in the wheel cylinder increases. Yes.
  • the opening of the differential pressure valve increases, and the differential pressure, that is, the hydraulic pressure in the wheel cylinder decreases.
  • the differential pressure valve is a differential pressure valve (hereinafter referred to as “actual pressure”) actually generated between the master cylinder and the wheel cylinder when the drive current value is increased and when the drive current value is decreased. Also has a different hysteresis. That is, when the actual differential pressure is increased to the required differential pressure PR, it is assumed that the command current value is set to a predetermined current value A1 corresponding to the required differential pressure PR. Then, in this case, when the value of the drive current flowing through the differential pressure valve increases and reaches a predetermined current value A1, the actual differential pressure is increased to the vicinity of the required differential pressure PR.
  • the command current value is set to a predetermined value corresponding to the hysteresis.
  • the pressure difference is corrected and the differential pressure valve is controlled based on the corrected command current value.
  • An object of the present invention is to provide a vehicle braking control device capable of accurately controlling a differential pressure between a master cylinder and a wheel cylinder.
  • a vehicle braking control device for solving the above-described problem is a command current value for a differential pressure valve provided in a path between a master cylinder and a wheel cylinder corresponding to a wheel, which is a required value of a differential pressure by the differential pressure valve.
  • An indicated value setting unit that sets a value corresponding to the required differential pressure, and a differential pressure at the start of pressure reduction from a pressure-increasing state that increases the differential pressure by the differential pressure valve to a pressure-reducing state that decreases the differential pressure by the differential pressure valve And a decompression start time differential pressure acquisition unit.
  • the command value setting unit reduces the command current value, which is a decrease amount of the command current value with respect to the decrease amount of the required differential pressure, when the command pressure difference is included in the reduced pressure differential region.
  • the gradient is made gentler as the pressure difference at the start of decompression is smaller.
  • the required differential pressure is set to a second differential pressure smaller than the first differential pressure in a state where the differential pressure is the first differential pressure by increasing the drive current value flowing through the differential pressure valve.
  • the command current value is decreased from a value corresponding to the first differential pressure.
  • the drive current value is decreased with the change of the command current value.
  • the differential pressure by the differential pressure valve is reduced.
  • the “drive current value” is a current value that actually flows through the differential pressure valve or a value that corresponds to a current value that actually flows.
  • the pressure difference at the time when the transition from the pressure-increasing state to the pressure-reducing state is detected that is, when the pressure difference starts to decrease
  • the instruction current value for the amount of decrease in the required differential pressure is obtained.
  • the decrease gradient of the command current value which is a decrease amount, is made gentler as the pressure difference at the start of pressure reduction is smaller, and the command current value is decreased according to the decrease gradient.
  • the drive current value increases as the pressure difference at the start of pressure reduction increases.
  • the rate of decrease of the differential pressure with respect to the drop of the pressure tends to be low. That is, at the initial stage, the increase rate of the hysteresis amount, which is the difference between the differential pressure when the drive current value is increased to the command current value and the differential pressure when the drive current value is decreased to the command current value is The higher the pressure difference at the start of pressure reduction, the higher the pressure.
  • the rate of decrease in the differential pressure gradually increases, and the increasing slope of the hysteresis amount becomes gradually gentler. Thereafter, when the drive current value is further decreased, the rate of decrease in the differential pressure with respect to the decrease in the drive current value is rapidly increased, that is, the hysteresis amount is decreased.
  • the initial stage in which the rate of increase of the hysteresis amount varies depending on the pressure difference at the start of pressure reduction corresponds to the pressure difference region during pressure reduction.
  • the pressure difference at the start of pressure reduction corresponds to the upper limit value of the pressure difference region during pressure reduction
  • the boundary pressure difference corresponds to the lower limit value of the pressure difference region during pressure reduction.
  • the indicated current value decreases more steeply as described above, so that the pressure difference at the start of pressure reduction is large and the rate of decrease in the differential pressure relative to the decrease in the drive current value is low.
  • the differential pressure can be sufficiently reduced.
  • the differential pressure can be reduced to the required differential pressure.
  • the command current value is decreased with a gentler gradient than when the pressure difference at the start of pressure reduction is large. As a result, the drive current value is suppressed from becoming too small, and the occurrence of an event where the differential pressure is significantly lower than the required differential pressure can be suppressed.
  • the required differential pressure that is, the second differential pressure
  • the boundary differential pressure which is the lower limit value of the differential pressure region during pressure reduction
  • the drive current value decreases as the indicated current value decreases.
  • the rate of decrease in the differential pressure with respect to the decrease in the drive current value gradually increases. That is, due to the hysteresis characteristic of the differential pressure valve, the state shifts from a large amount to a small state with respect to a decrease in the required differential pressure.
  • the differential pressure between the master cylinder and the wheel cylinder can be controlled with high accuracy.
  • the braking control device for the vehicle sets a correction amount for correcting the command current value when the vehicle is in a decompressed state.
  • a correction amount setting unit may be provided.
  • the instruction value setting unit preferably sets the instruction current value based on a value obtained by subtracting the correction amount set by the correction amount setting unit during depressurization from the reference instruction current value when in the reduced pressure state.
  • the reduced pressure correction amount setting unit when the reduced pressure correction amount setting unit is in a reduced pressure state and the required differential pressure is included in the reduced pressure differential region, an increase in the correction amount, which is an increase in the corrected amount with respect to the reduced amount of the required differential pressure, is performed. It is preferable to make the gradient gentler as the differential pressure at the start of pressure reduction is smaller, and increase the correction amount according to the increased gradient.
  • the decompression correction amount setting unit is in a decompression state, and when the required differential pressure is smaller than the lower limit value of the decompression differential pressure region, the differential pressure by the differential pressure valve is decreasing in the decompression differential pressure region.
  • the correction amount is increased according to the increase gradient, and the pressure difference due to the differential pressure valve decreases beyond the pressure difference region during pressure reduction.
  • the amount is preferably equal to the limit value.
  • the increase gradient of the correction amount is made gentler as the pressure difference at the start of pressure reduction is smaller.
  • the correction amount is increased according to the gradient.
  • the command current value is obtained by subtracting the correction amount from the reference command current value that is the command current value corresponding to the required differential pressure.
  • the required differential pressure (that is, the second differential pressure) may be smaller than the lower limit value of the differential pressure area during pressure reduction.
  • the increase gradient of the correction amount is made gentler as the differential pressure at the start of decompression is smaller, and the correction amount increases according to the increase gradient. Is done.
  • the differential pressure due to the differential pressure valve decreases and the differential pressure becomes less than the lower limit value of the differential pressure area during pressure reduction, the correction amount is made equal to the limit value.
  • the value of the drive current flowing through the differential pressure valve becomes too low, and the occurrence of an event in which the differential pressure due to the differential pressure valve is significantly lower than the required differential pressure can be suppressed. Therefore, the occurrence of an event in which the differential pressure is significantly lower than the required differential pressure (that is, the second differential pressure) can be suppressed.
  • the vehicle braking control device may include a storage unit that stores characteristics indicating a relationship between the driving current value and the differential pressure when the driving current value is increased.
  • the instruction value setting unit increases the reference instruction current value as the required differential pressure increases, based on the characteristics stored in the storage unit.
  • the reference indicated current value can be set to the indicated current value corresponding to the changed required differential pressure based on the above characteristics.
  • the differential pressure can be appropriately controlled by decreasing the command current value from the reference command current value according to the decrease gradient of the command current value according to the pressure difference at the start of pressure reduction.
  • the limit value can be set to an appropriate value according to the differential pressure by the differential pressure valve at that time, and the command current value can be prevented from becoming too low. As a result, the occurrence of an event in which the differential pressure is significantly lower than the required differential pressure can be suppressed.
  • the command value setting unit may set a decrease gradient of the command current value according to the differential pressure region.
  • the decreasing gradient of the indicated current value is different from the first differential pressure region in the second differential pressure region on the higher pressure side than the first differential pressure region. It is preferable that it is gentler than the decreasing gradient of the indicated current value when pressure is included. According to this configuration, an increase in the control load of the braking control device can be suppressed as compared with a case where a gradient for each differential pressure at the start of pressure reduction is prepared.
  • the instruction value setting unit corrects the decreasing gradient of the instruction current value based on the flow rate of the brake fluid in the path. That is, when the flow rate is such that the hysteresis amount tends to increase, the indicated current value can be appropriately set by correcting the decreasing slope of the indicated current value according to the pressure difference at the start of pressure reduction to the steep slope side. The differential pressure can be appropriately reduced.
  • the indicated current value can be appropriately set by correcting the decreasing slope of the indicated current value according to the pressure difference at the start of pressure reduction to the gentle slope side. Occurrence of an event in which the differential pressure is significantly lower than the required differential pressure can be suppressed. Therefore, the differential pressure can be controlled with higher accuracy.
  • the instruction value setting unit corrects the decrease gradient of the instruction current value based on the temperature of the brake fluid in the path. That is, when the temperature of the brake fluid is likely to increase, the indicated current value can be appropriately set by correcting the decrease gradient of the indicated current value according to the pressure difference at the start of pressure reduction to the steep slope side. And thus the differential pressure can be reduced appropriately.
  • the differential pressure can be controlled with higher accuracy.
  • the vehicle braking control device may include a pressure increase start time differential pressure acquisition unit that acquires a pressure difference at the time of transition from the pressure reduction state to the pressure increase state as a pressure increase start time differential pressure. Then, the region between the pressure increase start differential pressure and the boundary pressure difference that is a value obtained by adding a predetermined pressure difference corresponding to the pressure increase start differential pressure to the pressure increase start differential pressure is defined as a pressure increase time differential pressure region.
  • the command value setting unit is a command current value that is an increase amount of the command current value with respect to the increase amount of the required differential pressure when the command differential pressure is in the pressure increasing state and the required differential pressure is included in the pressure differential region during pressure increase. It is preferable to make the increase gradient of the slope more gentle as the pressure difference at the start of pressure increase is smaller.
  • the required differential pressure is set to a third differential pressure larger than the second differential pressure in a state where the differential pressure is the second differential pressure by lowering the drive current value flowing through the differential pressure valve.
  • the command current value is made larger than the command current value at the time when the differential pressure was the second differential pressure. It will be.
  • the drive current value increases with the change of the command current value, but the rate of increase of the differential pressure with respect to the increase of the drive current value tends to increase as the pressure difference at the start of pressure increase becomes smaller.
  • the differential pressure can be increased smoothly to the required differential pressure (that is, the third differential pressure) by increasing the command current value in a manner corresponding to the rate of decrease in the hysteresis amount with respect to the increase in the drive current value.
  • the command current value is increased with a gradient corresponding to the pressure differential at the start of pressure increase, the command current value becomes the required differential pressure (i.e. 3), which is larger than the reference command current value corresponding to 3). Then, in this case, the value of the drive current flowing through the differential pressure valve becomes too large, and an event may occur in which the differential pressure greatly exceeds the required differential pressure (that is, the third differential pressure).
  • the command current value is increased according to the increase gradient of the command current value according to the pressure increase start differential pressure only when the required differential pressure is included in the pressure increase differential pressure region. did. As a result, it is possible to suppress the occurrence of an event in which the differential pressure significantly exceeds the required differential pressure (that is, the third differential pressure).
  • the differential pressure can be accurately controlled even in the pressure-increasing state.
  • the vehicle brake control device increases the amount of correction for correcting the command current value when it is in the pressure-increasing state.
  • a pressure correction amount setting unit may be provided.
  • the command value setting unit sets the command current value based on a value obtained by subtracting the correction amount set by the pressure increase correction amount setting unit from the reference command current value when in the pressure increasing state. Also good.
  • the pressure increase correction amount setting unit is a correction amount that is a reduction amount of the correction amount with respect to the increase amount of the required differential pressure when the pressure differential state is included and the required differential pressure is included in the pressure increase differential pressure region.
  • the decrease gradient is made gentler as the pressure difference at the start of pressure increase is smaller, and the correction amount is decreased according to the decrease gradient.
  • the correction amount setting unit at the time of pressure increase is in a pressure increasing state, and when the required differential pressure is larger than the upper limit value of the pressure difference region during pressure increase, the pressure difference due to the pressure difference valve increases in the pressure difference region during pressure increase.
  • the gradient of decrease in the correction amount is made gentler as the differential pressure at the start of pressure increase becomes smaller, the correction amount is decreased according to the decrease gradient, and the differential pressure by the differential pressure valve increases the upper limit value of the differential pressure area during pressure increase.
  • the decrease gradient of the correction amount becomes gentler as the pressure increase start pressure differential is smaller.
  • the correction amount is decreased according to the decreasing gradient. Then, by subtracting the correction amount from the reference command current value that is the command current value corresponding to the required differential pressure and setting the command current value, the command current value is changed to the value of the command current value corresponding to the pressure increase start differential pressure.
  • the required differential pressure (that is, the third differential pressure) may be larger than the upper limit value of the differential pressure area during pressure increase.
  • the decreasing gradient of the correction amount is made gentler as the pressure increase starting pressure is smaller, and is corrected according to the decreasing gradient. The amount is reduced.
  • the correction amount is made equal to “0 (zero)”.
  • the command current value is changed in order to increase the differential pressure to the required differential pressure (that is, the third differential pressure).
  • the increase rate of the differential pressure with respect to the increase of the drive current value is the hysteresis amount at the start of pressure increase, which is the hysteresis amount at the time of transition from the reduced pressure state to the increased pressure state.
  • the higher the value the higher the value. That is, the rate of decrease in the hysteresis amount with respect to the increase in the drive current value tends to decrease as the hysteresis amount at the start of pressure increase increases.
  • the differential pressure can be smoothly increased to the required differential pressure (that is, the third differential pressure) by controlling the increase in the drive current value in a manner corresponding to the rate of decrease in the hysteresis amount with respect to the increase in the drive current value. Can do.
  • the braking control device for the vehicle has shifted from the reduced pressure state to the increased pressure state, and the increased pressure start time differential pressure acquisition unit that acquires the differential pressure at the time of transition from the reduced pressure state to the increased pressure state as the increased pressure start time differential pressure.
  • a pressure increase start time hysteresis amount acquisition unit that acquires the hysteresis amount at the time as the pressure increase start hysteresis amount. Further, between the pressure increase start differential pressure and the boundary differential pressure that is the sum of the predetermined differential pressure corresponding to the pressure increase start hysteresis amount acquired by the pressure increase start hysteresis amount acquisition unit and the pressure increase start differential pressure This region is assumed to be a pressure differential region during pressure increase.
  • the command value setting unit is a command current value that is an increase amount of the command current value with respect to the increase amount of the required differential pressure when the command differential pressure is in the pressure increasing state and the required differential pressure is included in the pressure differential region during pressure increase. It is preferable that the increase gradient is made gentler as the hysteresis amount at the start of pressure increase is larger.
  • the differential pressure is smoothly directed toward the required differential pressure (that is, the third differential pressure). Can be increased.
  • the command current value is increased according to the increase gradient of the command current value according to the amount of hysteresis at the start of pressure increase, the command current value is It becomes larger than the reference command current value corresponding to the required differential pressure (that is, the third differential pressure). Then, in this case, the value of the drive current flowing through the differential pressure valve becomes too large, and an event may occur in which the differential pressure greatly exceeds the required differential pressure (that is, the third differential pressure).
  • the command current value is increased according to the increase gradient of the command current value according to the amount of hysteresis at the start of pressure increase only when the required differential pressure is included in the pressure differential region during pressure increase. I made it. As a result, it is possible to suppress the occurrence of an event in which the differential pressure significantly exceeds the required differential pressure (that is, the third differential pressure).
  • the vehicle braking control device may include a pressure increase correction amount setting unit that sets a correction amount for correcting the command current value when the vehicle is in a pressure increase state.
  • the command value setting unit sets the command current value based on a value obtained by subtracting the correction amount set by the pressure increase correction amount setting unit from the reference command current value when in the pressure increasing state. Also good.
  • the correction amount setting unit at the time of pressure increase is a correction that is a decrease amount of the correction amount with respect to the increase amount of the required differential pressure when the pressure differential state is included and the required differential pressure is included in the pressure differential region during pressure increase.
  • the amount of decrease is made gentler as the amount of hysteresis at the start of pressure increase becomes larger, and the correction amount is decreased according to the decrease gradient.
  • the correction amount setting unit at the time of pressure increase is in a pressure increasing state, and when the required differential pressure is larger than the upper limit value of the pressure difference region during pressure increase, the pressure difference due to the pressure difference valve increases in the pressure difference region during pressure increase.
  • the slope of decrease in the correction amount is made gentler as the amount of hysteresis at the start of pressure increase is increased, and the amount of correction is decreased according to the decrease gradient.
  • it exceeds it is preferable to make the correction amount equal to “0 (zero)”.
  • the decrease gradient of the correction amount is more gentle as the pressure increase start hysteresis amount is larger.
  • the correction amount is decreased according to the decreasing gradient.
  • the required differential pressure that is, the third differential pressure
  • the command current is obtained by subtracting the correction amount from the reference command current value that is the command current value corresponding to the required differential pressure.
  • the required differential pressure (that is, the third differential pressure) may be larger than the upper limit value of the differential pressure area during pressure increase.
  • the decreasing gradient of the correction amount is made gentler as the amount of hysteresis at the start of pressure increase becomes larger, and according to the decreasing gradient.
  • the correction amount is decreased.
  • the schematic block diagram which shows a part of braking device provided with ECU which is one Embodiment of the braking control apparatus of a vehicle.
  • the graph which shows an example of the relationship between the drive current value which flows into a differential pressure valve, and the actual differential pressure between the master cylinder and wheel cylinder which generate
  • the graph which shows a mode that the change aspect of a hysteresis amount changes with the magnitude
  • FIG. 5 shows a map for determining an increase gradient of a correction amount for correcting the required differential pressure and a map for determining a limit value according to the actual differential pressure when the increased pressure state is changed to the reduced pressure state.
  • FIG. 5 is an operation diagram showing a driving current value decreasing manner when a required differential pressure is corrected by a correction amount when shifting from a pressure increasing state to a pressure reducing state.
  • the graph which shows the change aspect of an actual differential pressure when it transfers to a pressure increase state again from a pressure reduction state.
  • FIG. 6 is an operation diagram showing a state in which the amount of decrease in the hysteresis amount is different when the pressure increase start time differential amount is different when the pressure increase start time differential pressure is the same when shifting from the pressure reduction state to the pressure increase state.
  • FIG. 5 is an operational diagram showing a state in which the amount of decrease in the hysteresis amount is different when the pressure increase start time differential pressure is different when the pressure increase start time hysteresis amount is the same when shifting from the pressure reduction state to the pressure increase state.
  • FIG. 1 shows a part of a braking device 11 including an electronic control device (hereinafter referred to as “ECU”) 60 which is a braking control device of the present embodiment.
  • the braking device 11 includes a hydraulic pressure generating device 20 to which a brake pedal 12 is connected, and a brake actuator 30 that automatically adjusts braking torque for a plurality of wheels provided in the vehicle. ing.
  • the brake actuator 30 is connected to a wheel cylinder of a plurality of brake mechanisms individually corresponding to each wheel.
  • the hydraulic pressure generator 20 is provided with a booster 21, a master cylinder 22 and a reservoir 23.
  • the brake fluid pressure hereinafter also referred to as “MC pressure”
  • MC pressure brake fluid pressure
  • brake fluid corresponding to the MC pressure in the master cylinder 22 is supplied into the wheel cylinder through the master cylinder 22 and the brake actuator 30.
  • the brake mechanism applies braking torque to the wheel according to the brake fluid pressure generated in the wheel cylinder (hereinafter also referred to as “WC pressure”).
  • the brake actuator 30 is provided with two systems of hydraulic circuits 311 and 312.
  • a wheel cylinder 50a for the right front wheel and a wheel cylinder 50d for the left rear wheel are connected to the first hydraulic circuit 311.
  • the second hydraulic circuit 312 is connected to a wheel cylinder for the left front wheel and a wheel cylinder for the right rear wheel.
  • the first hydraulic pressure circuit 311 is provided with a differential pressure valve 32 that is a normally open linear electromagnetic valve disposed in a path connecting the master cylinder 22 and the wheel cylinders 50a and 50d. Further, in the first hydraulic circuit 311, a path 33a for the right front wheel and a path 33d for the left rear wheel are provided between the differential pressure valve 32 and the wheel cylinders 50a and 50d.
  • the passages 33a and 33d include pressure-increasing valves 34a and 34d, which are normally open solenoid valves that are driven when regulating the increase in the WC pressure in the wheel cylinders 50a and 50d, and the pressure in the WC pressure. And pressure reducing valves 35a and 35d, which are normally closed solenoid valves that are driven in the same manner.
  • the first hydraulic circuit 311 is connected to a reservoir 36 that temporarily stores brake fluid that has flowed out of the wheel cylinders 50a and 50d through the pressure reducing valves 35a and 35d, and a pump 38 that is driven based on the rotation of the motor 37.
  • the reservoir 36 is connected to the pump 38 through the suction flow path 39, and is connected to a path between the differential pressure valve 32 and the master cylinder 22 through the master side flow path 40.
  • the pump 38 is connected to a connection portion 42 between the pressure increasing valves 34 a and 34 d and the differential pressure valve 32 through a supply flow channel 41. Then, when the motor 37 rotates, the pump 38 sucks brake fluid from the reservoir 36 and the master cylinder 22 through the suction flow path 39 and the master side flow path 40, and puts the brake liquid into the supply flow path 41. Discharge.
  • the configuration of the second hydraulic circuit 312 is substantially the same as the configuration of the first hydraulic circuit 311, and thus detailed description thereof will be omitted.
  • Various detection systems such as a brake switch SW1 for detecting whether or not the brake pedal 12 is operated and a pressure sensor SE1 for detecting MC pressure are electrically connected to the ECU 60.
  • the ECU 60 is electrically connected to a differential pressure valve 32, pressure increasing valves 34a and 34d, pressure reducing valves 35a and 35d, a motor 37, and the like that constitute the brake actuator 30.
  • the ECU 60 controls the brake actuator 30 based on information detected by various detection systems.
  • Such an ECU 60 has a microcomputer constructed by a CPU 61, a ROM 62, a RAM 63, and the like.
  • ROM 62 various programs executed by the CPU 61, a map, a threshold value, and the like are stored in advance.
  • the RAM 63 temporarily stores various information updated as appropriate.
  • the brake actuator 30 controls the braking torque for the wheels by driving the differential pressure valve 32 and the pump 38 (that is, the motor 37) to generate a differential pressure between the master cylinder 22 and the wheel cylinders 50a and 50d. can do. That is, when the drive current value Id flowing through the solenoid of the differential pressure valve 32 is increased, the opening degree of the differential pressure valve 32 is decreased and the differential pressure is increased. As a result, the WC pressure in the wheel cylinders 50a and 50d increases, and the braking torque applied to the wheels FR and RL from the braking mechanism increases. On the other hand, when the drive current value Id is decreased, the opening degree of the differential pressure valve 32 is increased and the differential pressure is decreased. As a result, the WC pressure in the wheel cylinders 50a and 50d decreases, and the braking torque applied to the wheels FR and RL from the braking mechanism decreases.
  • the differential pressure actually generated between the master cylinder 22 and the wheel cylinders 50a and 50d by driving the differential pressure valve 32 and the pump 38 is referred to as “actual differential pressure X”.
  • the differential pressure required when adjusting the braking torque for the wheels FR and RL (the required value of the differential pressure by the differential pressure valve 32) is referred to as “required differential pressure M”.
  • the “drive current value Id” is a current value that actually flows through the solenoid of the differential pressure valve 32 or a value corresponding to the current value. For this reason, when the command current value Ip for the differential pressure valve 32 is increased, the drive current value Id is increased, whereas when the command current value Ip is decreased, the drive current value Id is decreased.
  • map MAP1 used when driving the differential pressure valve 32 will be described with reference to FIG.
  • a map MAP1 indicated by a broken line in FIG. 2 is stored in advance in the ROM 62 and is a map for setting the command current value Ip according to the set required differential pressure.
  • This map MAP1 shows the relationship between the actual differential pressure X and the drive current value Id when the drive current value Id is increased to increase the actual differential pressure X.
  • the actual differential pressure X gradually increases as the drive current value Id increases. Therefore, the command current value Ip set using this map MAP1 increases as the required differential pressure M is set to a larger value.
  • the map MAP1 corresponds to a “characteristic” indicating the relationship between the drive current value Id and the actual differential pressure X when the drive current value Id is increased, and the ROM 62 that stores the map (characteristic) MAP1 “stores” Part.
  • a function indicating the relationship between the actual differential pressure X and the drive current value Id when the actual differential pressure X is increased from “0 (zero)” may be employed.
  • the command current value Ip can also be set to a value corresponding to the required differential pressure M by using such a function.
  • the function corresponds to “characteristic”.
  • the electromagnetic valve such as the differential pressure valve 32 has hysteresis. That is, between the actual differential pressure XA1 when the drive current value Id is increased to the predetermined command current value IpA and the actual differential pressure XA2 when the drive current value Id is decreased to the predetermined command current value IpA. Deviation occurs.
  • the difference between the actual differential pressure XA1 and the actual differential pressure XA2 is referred to as “hysteresis amount HY”.
  • FIG. 3 shows a case where the drive current value Id is increased to the first command current value IpB1 after the drive current value Id is increased.
  • the command current value Ip corresponding to the first required differential pressure MB1 is referred to as a first command current value IpB1
  • the value Ip is referred to as a second command current value IpB2.
  • the command current value Ip corresponding to the third request differential pressure MB3 that is larger than the second request differential pressure MB2 is referred to as a third command current value IpB3.
  • the command current values IpB1, IpB2, and IpB3 corresponding to the required differential pressures MB1, MB2, and MB3 are current values obtained by using the map MAP1.
  • the actual differential pressure X is increased from “0 (zero)” to the third requirement by increasing the drive current value Id from “0 (zero)” to the third indicated current value IpB3.
  • the drive current value Id is decreased to the first command current value IpB1 after increasing to the differential pressure MB3.
  • the actual differential pressure X at the time when the drive current value Id decreases and reaches the first command current value IpB1 is the third differential pressure X.
  • it is smaller than the required differential pressure MB3, it becomes the 13th differential pressure MB13 that is larger than the first required differential pressure MB1.
  • the actual differential pressure X is increased from “0 (zero)” to the second by increasing the drive current value Id from “0 (zero)” to the second indicated current value IpB2.
  • the drive current value Id is decreased to the first command current value IpB1 after the required differential pressure MB2 is increased.
  • the decrease rate of the actual differential pressure X with respect to the decrease in the drive current value Id is higher than when the drive current value Id is decreased from the third command current value IpB3. Therefore, the actual differential pressure X when the drive current value Id reaches the first command current value IpB1 is greater than the first required differential pressure MB1 and smaller than the thirteenth differential pressure MB13.
  • the actual differential pressure X decreases, that is, the differential pressure at the time when the drive current value Id starts to drop.
  • the magnitude of the actual differential pressure X when the drive current value Id becomes the first command current value IpB1 varies depending on the magnitude of the pressure difference XD at the start of pressure reduction.
  • the actual differential pressure X increases from “0 (zero)” to the third required differential pressure MB3
  • the actual differential pressure X is decreased to the first required differential pressure MB1.
  • the drive current value Id is lowered to the thirteenth current value IpB13 which is smaller than the first command current value IpB1.
  • the actual differential pressure X becomes substantially equal to the first required differential pressure MB1 by reducing the drive current value Id to the thirteenth current value IpB13.
  • the actual differential pressure X increases from “0 (zero)” to the second required differential pressure MB2
  • the actual differential pressure X is decreased to the first required differential pressure MB1.
  • the drive current value Id is lowered to a twelfth current value IpB12 that is smaller than the first command current value IpB1 and larger than the thirteenth current value IpB13.
  • the actual differential pressure X becomes substantially equal to the first required differential pressure MB1 by lowering the drive current value Id to the twelfth current value IpB12.
  • the increase mode of the hysteresis amount HY changes according to the pressure-reduction starting differential pressure XD. Therefore, the actual differential pressure X can be reduced to the required differential pressure M by setting the command current value Ip in consideration of the differential pressure XD at the start of pressure reduction.
  • the hysteresis amount HY is equal to another pressure difference XD12 at the start of pressure reduction XD12 where the pressure difference XD at the start of pressure reduction is smaller than the pressure difference XD11 at the start of pressure reduction. It becomes steeper and larger than in the case of XD13.
  • the hysteresis amount HY is gradually larger than when the pressure difference XD at the start of pressure reduction XD is the eleventh pressure difference XD11 at the start of pressure reduction.
  • the pressure difference XD at the start of pressure reduction becomes steeper than that when the pressure difference XD13 at the start of pressure reduction XD13 is smaller than the pressure difference XD12 at the start of pressure reduction.
  • the actual differential pressure XD11, XD12, and XD13 is the actual differential pressure XD11, XD12, and XD13.
  • the hysteresis amount HY decreases with a substantially constant gradient.
  • the correction amount Z used when calculating the correction required differential pressure MZ is calculated based on the map shown in FIG. In other words, the correction amount Z is gradually increased as the actual differential pressure X approaches the required differential pressure M when the actual differential pressure X starts to decrease from the differential pressure XD at the start of pressure reduction, that is, when the drive current value Id starts to decrease. Moreover, the increase gradient DIZ of the correction amount Z at this time becomes gentler as the pressure difference XD at the start of pressure reduction is smaller.
  • the increase gradient DIZ of the correction amount Z is “an increase amount of the correction amount Z with respect to a decrease amount of the required differential pressure M”.
  • the command current value Ip is set based on a value obtained by subtracting the correction amount Z from the changed required differential pressure M. That is, the command current value Ip is a value based on a value obtained by subtracting “the conversion correction amount obtained by converting the correction amount Z into a current value” from the “reference command current value corresponding to the changed required differential pressure M”. be able to. Therefore, when the required differential pressure M is reduced, the command current value Ip is decreased from the reference command current value according to the increasing gradient of the correction amount Z, and as a result, the drive current value Id is reduced to the command current value Ip. Together, it will descend.
  • the conversion correction amount corresponds to “a correction amount for correcting the command current value”.
  • the map shown in FIG. 5 is a map showing the relationship between the increase gradient DIZ of the correction amount Z and the pressure difference XD at the start of pressure reduction.
  • the increasing gradient DIZ substantially coincides with the changing gradient of the hysteresis amount HY in the initial state. Therefore, the increasing gradient DIZ becomes gentler as the pressure-reducing start time differential pressure XD is smaller.
  • the increase gradient DIZ may be, for example, a slope of a linear function obtained by approximating an increase mode of the hysteresis amount HY with respect to a decrease in the actual differential pressure X or a value close to the same slope.
  • differential pressure regions R11, R12, and R13 which are differential pressure start regions having different ranges, are set in advance, and the increasing gradient DIZ is set for each of the differential pressure regions R11, R12, and R13. That is, the increase gradient of the eleventh differential pressure region R11 including the eleventh pressure decrease start time differential pressure XD11 is an increase gradient DIZ1 of the hysteresis amount HY when the pressure decrease start time differential pressure XD is the eleventh pressure decrease start time differential pressure XD11. is there.
  • the increase gradient of the twelfth differential pressure region R12 including the twelfth pressure reduction start time differential pressure XD12 is an increase gradient DIZ2 of the hysteresis amount HY when the pressure reduction start time differential pressure XD is the twelfth pressure reduction start time differential pressure XD12. is there.
  • the increase gradient of the thirteenth differential pressure region R13 including the thirteenth pressure decrease start differential pressure XD13 is an increase gradient DIZ3 of the hysteresis amount HY when the pressure decrease start differential pressure XD is the thirteenth pressure decrease start differential pressure XD13. is there.
  • the increasing gradient DIZ of the twelfth differential pressure region R12 is “the second region” which is on the higher pressure side than the first region. It is gentler than the increasing gradient DIZ of the eleventh differential pressure region R11 that can be regarded as ".”
  • the correction amount Z increases as the actual differential pressure X approaches the required differential pressure M, and the correction amount Z may become too large. In this case, the correction required differential pressure MZ may become too small, and the command current value Ip set based on the correction required differential pressure MZ may become too small. If the command current value Ip becomes too small in this way, an event may occur in which the actual differential pressure X is significantly lower than the required differential pressure M.
  • a limit value Z_Lim that restricts the correction amount Z from becoming too large is provided. That is, as shown in FIG. 5, when the actual differential pressure X is equal to or greater than the specified differential pressure X_Th, the limit value Z_Lim is set to a preset upper limit value Z_max. On the other hand, when the actual differential pressure X is less than the specified differential pressure X_Th, the limit value Z_Lim is made smaller as the actual differential pressure X becomes smaller.
  • the specified differential pressure X_Th is set to a differential pressure at which the hysteresis amount HY starts to decrease rapidly or a value in the vicinity of the differential pressure.
  • the decreasing gradient of the limit value Z_Lim is slightly steeper than the decreasing gradient of the hysteresis amount HY when the actual differential pressure X is less than the specified differential pressure X_Th.
  • the above limit value Z_Lim can be converted into a current value.
  • the limit value converted into the current value in this way corresponds to the “limit value” for the command current value Ip. That is, in the present embodiment, when the required differential pressure M is changed, the command current value Ip is increased or decreased from the reference command current value in a range where the conversion correction amount corresponding to the correction amount Z does not exceed the limit value.
  • the correction amount is according to the gradient (that is, the increasing gradient of the correction amount) according to the pressure reduction start time differential pressure XD that is the differential pressure at the time of transition from the increased pressure state to the reduced pressure state.
  • Z is increased. That is, the command current value Ip is decreased according to the decrease gradient of the command current value according to the increase gradient of the correction amount.
  • the correction amount Z is made equal to the limit value Z_Lim.
  • the differential pressure when the correction amount Z reaches the limit value Z_Lim varies depending on the pressure difference XD at the start of pressure reduction, as shown in FIG.
  • the differential pressure when the correction amount Z reaches the limit value Z_Lim corresponds to the “boundary differential pressure”, and the difference between the differential pressure XD at the start of decompression and the boundary differential pressure is “according to the differential pressure XD at the start of decompression. This corresponds to “predetermined differential pressure”.
  • a region between the pressure difference XD at the start of pressure reduction and the boundary pressure difference corresponds to a “pressure difference region at the start of pressure reduction”.
  • the drive current value Id decreases.
  • the increase gradient DIZ is set to a gradient based on the pressure-reduction starting differential pressure XD by using the map shown in FIG.
  • the correction amount Z gradually increases with a gradient corresponding to the increasing gradient DIZ. Therefore, the difference between the drive current value Id and the reference drive current value IdA gradually increases as time elapses. Thereafter, when the time point t100 is reached, the correction amount Z becomes the limit value Z_Lim (in this case, the upper limit value Z_max).
  • the drive current value Id drops while the difference between the drive current value Id and the reference drive current value IdA is maintained in accordance with the limit value Z_Lim.
  • the drive current value Id is held.
  • the required differential pressure M is changed from “0 (zero)” to the first differential pressure, and then changed to a second differential pressure smaller than the first differential pressure, and then the second differential pressure. May be changed to a third differential pressure larger than that.
  • the command current value Ip corresponding to the first required differential pressure MA1 is referred to as a first command current value IpA1
  • the actual differential pressure X is smaller than the first required differential pressure MA1 due to a decrease in the actual differential pressure X.
  • the drive current value Id at the time when the second required differential pressure MA2 is reached is referred to as a second drive current value IdA2.
  • the drive current value Id when the actual differential pressure X becomes the third required differential pressure MA3 that is smaller than the second required differential pressure MA2 due to the decrease in the actual differential pressure X is referred to as a third drive current value IdA3.
  • the actual differential pressure X is reduced to the second required differential pressure MA2 by lowering the drive current value Id to the second drive current value IdA2
  • the actual differential pressure X is reduced to the second required differential pressure MA2.
  • the required differential pressure is larger than the differential pressure MA2 (in this case, the first required differential pressure MA1).
  • the drive current value Id is increased to a twelfth current value IpA12 that is smaller than the first command current value IpA1.
  • the actual differential pressure X becomes substantially equal to the first required differential pressure MA1 by increasing the drive current value Id to the twelfth current value IpA12.
  • the actual differential pressure X is reduced to the third required differential pressure MA3 by lowering the drive current value Id to the third drive current value IdA3, and then the actual differential pressure X is increased to the first required differential pressure MA1.
  • the drive current value Id is increased to a thirteenth current value IpA13 that is smaller than the first command current value IpA1 and larger than the twelfth current value IpA12.
  • the actual differential pressure X becomes substantially equal to the first required differential pressure MB1.
  • the increase mode of the actual differential pressure X includes a pressure increase start differential pressure XI that is a differential pressure at the time when the actual differential pressure X starts to increase, and an increase that is a hysteresis amount when the actual differential pressure X starts to increase. It changes depending on the hysteresis amount HYI at the start of pressure.
  • the pressure increase start time differential pressure XI that is the differential pressure at the time when the increase of the actual differential pressure X is started and the pressure increase start time hysteresis that is the hysteresis amount at the same time point. It is preferable to correct the required differential pressure M in consideration of the amount HYI.
  • the required differential pressure M is changed from the first required differential pressure MD1 to the second required differential pressure MD2 that is smaller than the first required differential pressure MD1, and then the required differential pressure M is changed.
  • the pattern is changed again from the second required differential pressure MD2 to the first required differential pressure MD1.
  • the required differential pressure M is changed from the third required differential pressure MD3 to the fourth required differential pressure MD4 that is smaller than the third required differential pressure MD3.
  • the fourth required differential pressure MD4 is changed to the first required differential pressure MD1.
  • the third required differential pressure MD3 is smaller than the first and second required differential pressures MD1 and MD2.
  • the hysteresis amount HY when the required differential pressure M is held at the second required differential pressure MD2 in the first pattern is equal to the hysteresis amount HY when the required differential pressure M is held at the fourth required differential pressure MD4 in the second pattern. It is assumed that the hysteresis amount is equal to the hysteresis amount HY.
  • the actual differential pressure X is reduced by the decrease in the drive current value Id. Is reduced.
  • the drive current value Id reaches the second command current value IpD2
  • the actual differential pressure X is held at the second required differential pressure MD2.
  • the drive current value Id starts to increase.
  • the actual differential pressure X is relatively difficult to increase in the initial state from the start of the increase of the drive current value Id.
  • the increase gradient of the actual differential pressure X which is the increase amount of the actual differential pressure X with respect to the change amount of the drive current value Id
  • the decrease amount of the hysteresis amount HY with respect to the change amount of the drive current value Id.
  • the decreasing slope of the hysteresis amount becomes relatively steep.
  • the drive current value Id increases, the hysteresis amount HY becomes “0 (zero)” before the actual differential pressure X reaches the first required differential pressure MD1.
  • the drive current value Id rises and the drive current value Id reaches the first command current value IpD1 corresponding to the first required differential pressure MD1, the actual differential pressure X becomes equal to the first required differential pressure MD1.
  • the actual differential pressure X is reduced due to the decrease in the drive current value Id.
  • the drive current value Id reaches the fourth command current value IpD4
  • the actual differential pressure X is held at the fourth required differential pressure MD4.
  • the drive current value Id starts to increase.
  • the actual differential pressure X is likely to increase as the pressure increase start time differential pressure XI is smaller than that of the first pattern.
  • the increase gradient of the actual differential pressure X becomes a steep gradient, so the decrease gradient of the hysteresis amount HY becomes gentle.
  • the hysteresis amount HY becomes “0 (zero)” before the actual differential pressure X reaches the first required differential pressure MD1.
  • the drive current value Id rises and the drive current value Id reaches the first command current value IpD1 corresponding to the first required differential pressure MD1
  • the actual differential pressure X becomes equal to the first required differential pressure MD1.
  • the required differential pressure M is changed from the first required differential pressure ME1 to the second required differential pressure ME2 that is smaller than the first required differential pressure ME1, and then the required differential pressure M is changed.
  • the second required differential pressure ME2 is changed again to the first required differential pressure ME1.
  • the required differential pressure M is changed from the third required differential pressure ME3, which is larger than the second required differential pressure ME2, to the second required differential pressure ME2, and then the required differential pressure M is changed to the first required differential pressure ME2.
  • the second required differential pressure ME2 is changed to the first required differential pressure ME1.
  • the third required differential pressure ME3 is assumed to be smaller than the first required differential pressure ME1.
  • the actual differential pressure X is reduced by the decrease in the drive current value Id. Is reduced.
  • the drive current value Id reaches the twenty-first command current value IpE21
  • the actual differential pressure X is held at the second required differential pressure ME2.
  • the hysteresis amount HY1 when the actual differential pressure X is held at the second required differential pressure ME2 is relatively large.
  • the actual differential pressure X is reduced by the decrease in the drive current value Id.
  • the drive current value Id reaches the twenty-second command current value IpE22 that is larger than the twenty-first command current value IpE21
  • the actual differential pressure X is held at the second required differential pressure ME2.
  • the hysteresis amount HY2 when the actual differential pressure X is held at the second required differential pressure ME2 is smaller than the hysteresis amount HY1 in the first pattern.
  • the actual differential pressure X is unlikely to rise. That is, since the increasing gradient of the actual differential pressure X becomes gentle, the decreasing gradient of the hysteresis amount HY is relatively steep. Also in this case, the hysteresis amount HY becomes “0 (zero)” before the actual differential pressure X reaches the first required differential pressure ME1. Thereafter, when the drive current value Id reaches the first command current value IpE1 corresponding to the first required differential pressure ME1, the actual differential pressure X becomes the first required differential pressure ME1.
  • the correction amount Z is calculated based on the differential pressure XI at the start of pressure increase, the hysteresis amount HYI at the start of pressure increase, and the actual differential pressure X at that time, and the required differential pressure is calculated.
  • a difference obtained by subtracting the correction amount Z from M is set as a correction required differential pressure MZ.
  • the command current value Ip is set to a value corresponding to the correction required differential pressure MZ using a map indicated by a broken line in FIG.
  • the actual differential pressure X is smoothly increased to the required differential pressure M by increasing the drive current value Id based on the command current value Ip.
  • the correction amount Z used when calculating the correction required differential pressure MZ is gradually reduced as the actual differential pressure X increases.
  • the decrease gradient DDZ of the correction amount Z is preferably set to be approximately the same as the decrease gradient of the hysteresis amount HY in the initial state.
  • the decrease gradient DDZ of the correction amount which is the decrease amount of the correction amount Z with respect to the increase amount of the required differential pressure M, can be set based on the pressure increase start differential pressure XI and the pressure increase start hysteresis amount HYI. For example, using the map shown in FIG.
  • the reference decrease gradient DDZB is set to a value corresponding to the pressure increase start time differential pressure XI. Further, the third correction gain G3 for correcting the reference decrease gradient DDZB is set to a value corresponding to the pressure increase start hysteresis amount HYI. Then, the decreasing gradient DDZ is obtained by substituting the set reference decreasing gradient DDZB and the third correction gain G3 into the following relational expression (formula 1).
  • DDZ DDZB ⁇ G3 (Formula 1) Note that, as described above, the decreasing gradient of the hysteresis amount HY tends to be gentler as the pressurization start hysteresis amount HYI is larger. Therefore, the third correction gain G3 is decreased as the pressure increase start hysteresis amount HYI is increased. However, the third correction gain G3 is larger than “0 (zero)”.
  • a reference decrease gradient DDZB is set for each of the differential pressure regions R21, R22, R23, which are regions of differential pressure at the start of pressure increase with different ranges.
  • the decreasing gradient of the hysteresis amount HY tends to be more gradual as the pressure increase starting differential pressure XI is larger. Therefore, the reference decreasing gradient DDZB1 corresponding to the twenty-first differential pressure region R21, which is the highest pressure region, is set to be steeper than the reference decreasing gradients DDZB2, DDZB3 corresponding to the other differential pressure regions R22, R23. Yes.
  • the reference decrease gradient DDZB2 corresponding to the 22nd differential pressure region R22 that is the second highest pressure side is gentler than the reference decrease gradient DDZB1 corresponding to the 21st differential pressure region R21, but the 23rd difference It is set to be steeper than the reference decreasing gradient DDZB3 corresponding to the pressure region R23.
  • the correction amount Z When the correction amount Z is obtained based on the decreasing gradient DDZ, the correction amount Z decreases as the actual differential pressure X approaches the required differential pressure M, and the correction amount Z is smaller than “0 (zero)”. That is, the correction amount Z may be a negative value. In this case, the correction required differential pressure MZ becomes too large, and the command current value Ip set based on the correction required differential pressure MZ may become too large. If the command current value Ip becomes too large in this way, an event may occur in which the actual differential pressure X significantly exceeds the required differential pressure M. In this regard, in the present embodiment, in order to suppress the occurrence of such an event, the correction amount Z is prevented from being less than “0 (zero)”. That is, when the correction amount Z obtained based on the decreasing gradient DDZ is a negative value, the correction amount Z is set to “0 (zero)”.
  • the correction amount Z is decreased according to the gradient (decreasing gradient of the correction amount) according to the pressure increase starting differential pressure XI and the pressure increasing start hysteresis amount HYI. That is, the command current value Ip is increased according to the increase gradient of the command current value according to the decrease gradient of the correction amount.
  • the correction amount Z reaches “0 (zero)”
  • the correction amount Z is fixed at “0 (zero)”.
  • the differential pressure when the correction amount Z reaches “0 (zero)” varies depending on the pressure increase start time differential pressure XI and the pressure increase start time hysteresis amount HYI.
  • the differential pressure when the correction amount Z reaches “0 (zero)” corresponds to the “boundary differential pressure”
  • the difference between the pressure increase starting differential pressure XI and this boundary differential pressure is the “pressure increasing start time differential. This corresponds to “a predetermined differential pressure corresponding to the pressure XI”.
  • a region between the pressure increase start time differential pressure XI and the boundary pressure difference corresponds to a “pressure increase start time differential pressure region”.
  • the change mode of the hysteresis amount HY is the flow rate of the brake fluid flowing through the hydraulic circuits 311 and 312 provided with the differential pressure valve 32, that is, the discharge amount of the brake fluid from the pump 38. It depends on Y.
  • the solid line shown in FIG. 11 shows how the hysteresis amount HY changes with respect to the change in the actual differential pressure X when the discharge amount Y is the first discharge amount Y1.
  • the broken line shown in FIG. 11 shows a change mode of the hysteresis amount HY with respect to the change of the actual differential pressure X when the discharge amount Y is the second discharge amount Y2 smaller than the first discharge amount Y1.
  • 11 indicates a change mode of the hysteresis amount HY with respect to a change in the actual differential pressure X when the discharge amount Y is the third discharge amount Y3 larger than the first discharge amount Y1.
  • the hysteresis amount HY is greater than when the discharge amount Y is the first discharge amount Y1. growing.
  • the discharge amount Y is the second discharge amount Y2
  • the actual differential pressure X is less than the eleventh differential pressure XB11
  • the hysteresis amount HY is the discharge amount Y is the first discharge amount Y1. It becomes smaller than a certain time.
  • the hysteresis amount HY is the discharge amount Y is the first discharge amount Y1. Smaller than.
  • the discharge amount Y is the third discharge amount Y3
  • the actual differential pressure X is less than the eleventh differential pressure XB11
  • the hysteresis amount HY is the discharge amount Y is the first discharge amount Y1. It will be bigger than there are.
  • the first discharge amount Y1 is a reference discharge amount. That is, the increase gradient DIZ and the decrease gradient DDZ are gradients when the discharge amount Y is the first discharge amount Y1. Therefore, when the discharge amount Y is the second discharge amount Y2 or the third discharge amount Y3, it is preferable to correct the increase gradient DIZ and the decrease gradient DDZ.
  • the change mode of the hysteresis amount HY also changes depending on the temperature TMP of the brake fluid flowing in the hydraulic circuits 311 and 312.
  • the solid line shown in FIG. 12 shows how the hysteresis amount HY changes with respect to the change in the actual differential pressure X when the temperature TMP of the brake fluid is room temperature.
  • the broken line shown in FIG. 12 has shown the change aspect of the hysteresis amount HY with respect to the change of the actual differential pressure X when the temperature TMP of brake fluid is a very low temperature.
  • the hysteresis amount HY is approximately the same regardless of the brake fluid temperature TMP. Even when the actual differential pressure X is equal to or higher than the second differential pressure XC12, the hysteresis amount HY is substantially the same regardless of the brake fluid temperature TMP. On the other hand, when the actual differential pressure X is greater than or equal to the first differential pressure XC11 and less than the second differential pressure XC12, the hysteresis amount HY increases as the brake fluid temperature TMP decreases. Therefore, when the magnitude of the hysteresis amount HY varies depending on the brake fluid temperature TMP, it is preferable to correct the increase gradient DIZ and the decrease gradient DDZ.
  • the corrected increase gradient DRI is expressed by the following relational expression (formula 2) and the corrected decrease gradient DRD can be expressed as the following relational expression (formula 3). That is, the corrected increase gradient DRI calculated in this way corresponds to the increase gradient DIZ corrected according to the discharge amount Y and the brake fluid temperature TMP, and the correction decrease gradient DRD corresponds to the discharge amount Y and the brake fluid temperature TMP. It corresponds to the decreasing gradient DDZ corrected accordingly.
  • the first correction gain G1 can be set to a value corresponding to the discharge amount Y by using a map corresponding to the diagram shown in FIG. That is, a map based on the discharge amount Y at that time (for example, a map corresponding to the broken line in FIG. 11 when the discharge amount Y is the second discharge amount Y2) is read, and the discharge amount Y is the first discharge amount.
  • a map when the amount is Y1 (that is, a map corresponding to the solid line in FIG. 11 and hereinafter also referred to as “reference discharge amount map”) is read.
  • a first hysteresis amount HY11 which is a hysteresis amount according to the actual differential pressure X at that time is obtained.
  • a second hysteresis amount HY12 that is a hysteresis amount corresponding to the actual differential pressure X at that time is obtained.
  • the second correction gain G2 can be set to a value corresponding to the brake fluid temperature TMP by using a map corresponding to the diagram shown in FIG. That is, a map based on the brake fluid temperature TMP at that time is read, and a map when the brake fluid temperature TMP is room temperature (hereinafter also referred to as a “reference fluid temperature map”) is read. Then, using a map based on the temperature TMP of the brake fluid at that time, a first hysteresis amount HY21 that is a hysteresis amount corresponding to the actual differential pressure X at that time is obtained.
  • a second hysteresis amount HY22 that is a hysteresis amount according to the actual differential pressure X at that time is obtained.
  • the second correction gain G2 is set to a value larger than “1”, and when the difference is negative, The second correction gain G2 is set to a value less than “1”.
  • the difference is “0 (zero)”, the second correction gain G2 is “1”.
  • the ECU 60 calculates the actual differential pressure X at the present time (step S11). Subsequently, the ECU 60 determines whether or not the pressure reduction determination flag FLG1 is off and the pressure increase determination flag FLG2 is on (step S12).
  • the pressure reduction determination flag FLG1 is a flag that is set to ON when the actual differential pressure X is not increased
  • the pressure increase determination flag FLG2 is a flag that is set to ON when the actual differential pressure X is not decreased. It is.
  • a state in which the pressure reduction determination flag FLG1 is off and the pressure increase determination flag FLG2 is on is referred to as a “pressure increase state”, and the pressure reduction determination flag FLG1 is on and the pressure increase determination flag FLG2 is The off state is referred to as a “depressurized state”.
  • step S12 When the pressure reduction determination flag FLG1 is off and the pressure increase determination flag FLG2 is on (step S12: YES), that is, in the pressure increase state, the ECU 60 proceeds to the next step S13.
  • step S12: NO when the pressure reduction determination flag FLG1 is on and the pressure increase determination flag FLG2 is off (step S12: NO), that is, when the pressure reduction state is set, the ECU 60 proceeds to step S19 described later.
  • step S13 the ECU 60 sets an initial value H_minA set in advance to the minimum hold value H_min.
  • the initial value H_minA is set to a maximum value of the differential pressure that can be generated by the brake actuator 30 controlled by the ECU 60 or a value larger than the maximum value.
  • the ECU 60 compares the current maximum value hold value H_max with the actual differential pressure X calculated in step S11, and sets the larger value as the latest maximum value hold value H_max (step S14). That is, the maximum value hold value H_max gradually increases as the actual differential pressure X increases when the actual differential pressure X increases.
  • the maximum value hold value H_max is also held.
  • the differential pressure decrease amount ⁇ X1 is equal to or greater than the decrease determination value ⁇ X1_Th, it can be determined that the decrease in the actual differential pressure X has started because the required differential pressure M has been changed to a small value.
  • the differential pressure decrease amount ⁇ X1 is less than the decrease determination value ⁇ X1_Th, it can be determined that the actual differential pressure X has increased or that the actual differential pressure X has not yet started decreasing.
  • step S16 If the differential pressure decrease amount ⁇ X1 is less than the decrease determination value ⁇ X1_Th (step S16: NO), the ECU 60 once ends this processing routine without executing steps S17 and S18.
  • step S16: YES when the differential pressure decrease amount ⁇ X1 is greater than or equal to the decrease determination value ⁇ X1_Th (step S16: YES), the ECU 60 turns on the pressure reduction determination flag FLG1 and turns off the pressure increase determination flag FLG2 (step S17). Then, the ECU 60 stores the current actual differential pressure X in the predetermined area of the RAM 63 as the pressure reduction start time differential pressure XD (step S18).
  • step S16 when it can be determined that the pressure-increasing state has shifted to the pressure-reducing state (step S16: YES), the actual differential pressure X at that time is acquired as the pressure-reducing starting pressure difference XD.
  • the ECU 60 also functions as a “pressure reduction start time differential pressure acquisition unit”. Thereafter, the ECU 60 once ends this processing routine.
  • step S19 the ECU 60 sets an initial value H_maxA set in advance to the maximum value hold value H_max.
  • the initial value H_maxA is set to an extremely small value, for example, “0 (zero)”.
  • the ECU 60 compares the current minimum value hold value H_min with the actual differential pressure X calculated in step S11, and sets the smaller value as the latest minimum value hold value H_min (step S20).
  • the increase determination value ⁇ X2_Th is a reference value for determining whether or not the increase in the actual differential pressure X has actually started.
  • the differential pressure increase amount ⁇ X2 is greater than or equal to the increase determination value ⁇ X2_Th, it can be determined that the increase in the actual differential pressure X has started because the required differential pressure M has been changed to a large value.
  • the differential pressure increase amount ⁇ X2 is less than the increase determination value ⁇ X2_Th, it can be determined that the actual differential pressure X has decreased or that the actual differential pressure X has not yet started to increase.
  • the increase determination value ⁇ X2_Th may be the same value as the decrease determination value ⁇ X1_Th, or may be a value different from the decrease determination value ⁇ X1_Th as long as it is a value greater than “0 (zero)”.
  • step S22: NO If the differential pressure increase amount ⁇ X2 is less than the increase determination value ⁇ X2_Th (step S22: NO), the ECU 60 once ends this processing routine without executing steps S23 and S24.
  • the ECU 60 turns off the pressure reduction determination flag FLG1 and turns on the pressure increase determination flag FLG2 (step S23). Then, the ECU 60 stores the current actual differential pressure X as a pressure increase start time differential pressure XI in a predetermined area of the RAM 63 (step S24).
  • step S22 when it can be determined that the pressure-increasing state has shifted to the pressure-increasing state (step S22: YES), the actual differential pressure X at that time is acquired as the pressure-increasing start differential pressure XI.
  • the ECU 60 also functions as a “pressure increase start time differential pressure acquisition unit”. Thereafter, the ECU 60 once ends this processing routine.
  • the ECU 60 determines whether or not the decompression determination flag FLG1 is on (step S31).
  • the pressure reduction determination flag FLG1 is on, it can be determined that the pressure increase determination flag FLG2 is off and the pressure is reduced.
  • the pressure reduction determination flag FLG1 is off, it is possible to determine that the pressure increase determination flag FLG2 is on and the pressure increase state. If the pressure reduction determination flag FLG1 is on (step S31: YES), the ECU 60 proceeds to the next step S32.
  • the pressure reduction determination flag FLG1 is off (step S31: NO)
  • the ECU 60 proceeds to step S39 described later.
  • step S32 the ECU 60 obtains the differential pressure change amount ⁇ XB by subtracting the actual differential pressure X from the pressure-reduction starting differential pressure XD. Subsequently, the ECU 60 reads the brake fluid discharge amount Y and the temperature TMP from the pump 38 (step S33).
  • a temperature sensor for detecting the temperature of the brake fluid may be provided in the hydraulic circuits 311 and 312 and the temperature detected by the temperature sensor may be employed. The temperature of the brake fluid estimated based on a detection signal from a sensor that detects an outside air temperature provided in the vehicle may be used.
  • the ECU 60 performs a calculation process of the corrected increase gradient DRI (step S34). That is, the ECU 60 uses the map shown in FIG. 5 to set the increasing gradient DIZ corresponding to the pressure-reducing start differential pressure XD. Further, the ECU 60 sets the first correction gain G1 corresponding to the discharge amount Y using the map corresponding to the diagram shown in FIG. 11, and uses the map corresponding to the diagram shown in FIG. The second correction gain G2 is set according to the above. Then, the ECU 60 obtains the corrected increase gradient DRI by substituting the set increase gradient DIZ, the first correction gain G1 and the second correction gain G2 into the relational expression (Equation 2).
  • the ECU 60 obtains a correction amount Z by multiplying the correction increasing gradient DRI calculated in step S34 by the differential pressure change amount ⁇ XB calculated in step S32 (step S35).
  • the ECU 60 acquires a limit value Z_Lim corresponding to the current actual differential pressure X (see FIG. 5).
  • the ECU 60 determines whether or not the correction amount Z calculated in step S35 is greater than or equal to the limit value Z_Lim acquired in step S37 (step S37). If the correction amount Z is less than the limit value Z_Lim (step S37: NO), the ECU 60 proceeds to step S46 described later without executing step S38.
  • the ECU 60 sets the correction amount Z as the limit value Z_Lim (step S38), and the process proceeds to the next step S46.
  • the ECU 60 also functions as a “pressure reduction correction amount setting unit” that sets a correction amount for correcting the command current value according to the pressure difference at the start of pressure reduction.
  • step S39 the ECU 60 obtains the differential pressure change amount ⁇ XA by subtracting the differential pressure XI at the start of pressure increase from the actual differential pressure X. Subsequently, the ECU 60 reads the brake fluid discharge amount Y and the temperature TMP from the pump 38 (step S40). Then, the ECU 60 performs a calculation process of the corrected decrease gradient DRD (step S41). That is, the ECU 60 uses the map shown in FIG. 10 to set the reference decrease gradient DDZB to a value corresponding to the pressure increase start differential pressure XI, and the third correction gain G3 to a value corresponding to the pressure increase start hysteresis amount HYI. To.
  • the ECU 60 obtains the decrease gradient DDZ by substituting the reference decrease gradient DDZB and the third correction gain G3 into the relational expression (Expression 1). Further, the ECU 60 sets the first correction gain G1 corresponding to the discharge amount Y using the map corresponding to the diagram shown in FIG. 11, and uses the map corresponding to the diagram shown in FIG. A second correction gain G2 is set according to TMP. Then, the ECU 60 obtains the corrected decreasing gradient DRD by substituting the set decreasing gradient DDZ, the first correction gain G1 and the second correction gain G2 into the relational expression (Equation 3).
  • the ECU 60 reads the correction amount ZA when the decrease of the actual differential pressure X is completed, that is, when the increase of the actual differential pressure X is started (step S42).
  • This correction amount ZA is a value corresponding to the “specified amount”. That is, a value obtained by converting the correction amount ZA into a current value is a specified amount.
  • the ECU 60 determines the correction amount Z by subtracting the product obtained by multiplying the correction decrease gradient DRD calculated in step S41 by the differential pressure change amount ⁇ XA calculated in step S39 from the read correction amount ZA (step S43). .
  • the correction amount Z is reduced from ZA.
  • the ECU 60 determines whether or not the calculated correction amount Z is “0 (zero)” or less (step S44). When the correction amount Z is larger than “0 (zero)” (step S44: NO), the ECU 60 proceeds to step S46 described later. On the other hand, if the correction amount Z is equal to or less than “0 (zero)” (step S44: YES), the ECU 60 sets the correction amount Z to “0 (zero)” (step S45), and the process is performed in the next step. The process proceeds to S46. That is, when the actual differential pressure X is increased, the correction amount Z is restricted from being less than “0 (zero)”. In this regard, in this embodiment, the ECU 60 reduces the correction amount Z from the correction amount ZA, which is the correction amount at the start of pressure increase, with the correction decrease gradient DRD set in step S41. Also functions.
  • step S46 the ECU 60 obtains the corrected required differential pressure MZ by subtracting the correction amount Z from the set required differential pressure M. Subsequently, the ECU 60 uses the map indicated by the broken line in FIG. 2 to set the command current value Ip to a value corresponding to the correction required differential pressure MZ calculated in step S46. (Step S47). In this regard, in the present embodiment, the ECU 60 also functions as an “instruction value setting unit”. Thereafter, the ECU 60 ends this processing routine.
  • the required differential pressure M is set to the first required differential pressure MC1.
  • the actual differential pressure X is “0 (zero)”, and the differential pressure valve 32 and the pump 38 start to be driven from the simultaneous point t1.
  • the command current value Ip is set to a value corresponding to the required differential pressure M (in this case, the first required differential pressure MC1).
  • the drive current value Id increases with the change in the command current value Ip, so that the actual differential pressure X is increased with a substantially constant gradient.
  • the correction amount Z is “0 (zero)” as shown in FIG. It has become.
  • the differential pressure increase amount ⁇ X2 gradually increases with time from the first time point t1 to the second time point t2, and from the second time point t2. It does not change until the third time point t3. Further, as shown in FIG. 15B, since the decrease in the actual differential pressure X is not required from the first time point t1 to the third time point t3, the pressure is increased, that is, the pressure increase determination flag. FLG2 is held on.
  • the required differential pressure M is changed to the second required differential pressure MC2 that is smaller than the first required differential pressure MC1.
  • the command current value Ip is set to a value corresponding to the second required differential pressure MC2.
  • This command current value Ip becomes the “reference command current value”.
  • the decrease of the drive current value Id is started with the decrease of the command current value Ip.
  • the differential pressure decrease amount ⁇ X1 which is a value obtained by subtracting the actual differential pressure X from the maximum value hold value H_max, becomes less than the decrease determination value ⁇ X1_Th (step S16: NO). Therefore, it is not determined that the decrease in the differential pressure has started, and the pressure increase state is maintained (see (a) and (b) of FIG. 15).
  • the differential pressure decrease amount ⁇ X1 becomes equal to or greater than the decrease determination value ⁇ X1_Th (step S16: YES), and the pressure increase state is shifted to the pressure decrease state. That is, the pressure increase determination flag FLG2 is turned off, and the pressure decrease determination flag FLG1 is turned on (step S17). Further, the actual differential pressure X at the fourth time point t4 is stored as the pressure reduction start time differential pressure XD (step S18). Then, after the fourth time point t4, the decrease amount of the actual differential pressure X from the pressure-reduction starting differential pressure XD is calculated as the differential pressure change amount ⁇ XB (step S32).
  • the correction amount Z is set. That is, at the fourth time point t4, using the map shown in FIG. 5, the increasing gradient DIZ is set to a value corresponding to the pressure-reduction starting differential pressure XD. Further, the first correction gain G1 is set to a value corresponding to the brake fluid discharge amount Y from the pump 38, and the second correction gain G2 is set to a value corresponding to the brake fluid temperature TMP. Then, the corrected increasing gradient DRI is obtained by substituting the increasing gradient DIZ, the first correction gain G1 and the second correction gain G2 set in this way into the relational expression (Equation 2) (step S34). .
  • the actual differential pressure X which is the differential pressure due to the differential pressure valve 32, decreases within the reduced pressure differential region. Then, at the fifth time point t5, the actual differential pressure X reaches the lower limit value of the differential pressure region during decompression. Therefore, after the fifth time point t5, the correction amount Z is equal to the limit value Z_Lim.
  • the corrected required differential pressure MZ is obtained by subtracting the correction amount Z from the required differential pressure M (that is, the second required differential pressure MC2) (step S46).
  • the command current value Ip corresponding to the correction required differential pressure MZ is set (step S47). That is, the command current value Ip is decreased from the reference command current value set at the third time point t3 with a gradient corresponding to the corrected increase gradient DRI.
  • the actual differential pressure X is smoothly reduced toward the required differential pressure M (that is, the second required differential pressure MC2) due to the decrease in the drive current value Id accompanying the decrease in the command current value Ip.
  • the actual differential pressure X reaches the required differential pressure M (that is, the second required differential pressure MC2), and the actual differential pressure X is held ((a) in FIG. 15). reference).
  • the pressure reduction determination flag FLG1 is kept on ((b in FIG. 15). )reference).
  • the required differential pressure M is changed to a third required differential pressure MC3 that is larger than the second required differential pressure MC2.
  • the command current value Ip is set to a value corresponding to the third required differential pressure MC3.
  • This command current value Ip becomes the “reference command current value”.
  • the increase of the drive current value Id is started with the increase of the command current value Ip.
  • the differential pressure increase amount ⁇ X2 which is a value obtained by subtracting the minimum value hold value H_min from the actual differential pressure X, becomes less than the increase determination value ⁇ X2_Th (step S22: NO). Therefore, it is not determined that the increase in the differential pressure has started, and the reduced pressure state is maintained (see (a) and (b) of FIG. 15).
  • the differential pressure increase amount ⁇ X2 becomes equal to or higher than the pressure increase determination value ⁇ X2_Th (step S22: YES), and the pressure reduction state is shifted to the pressure increase state. That is, the pressure reduction determination flag FLG1 is turned off, and the pressure increase determination flag FLG2 is turned on (step S23). Further, the actual differential pressure X at the eighth time point t8 is stored as the pressure increase start time differential pressure XI (step S24). Then, after the eighth time point t8, the increase amount of the actual differential pressure X from the pressure increase start time differential pressure XI is calculated as the differential pressure change amount ⁇ XA (step S39).
  • the state after the eighth time point t8 is a state in which the increase in the actual differential pressure X is started again.
  • the pressure increase start hysteresis amount HYI is larger than “0 (zero)”. Therefore, in the present embodiment, at the eighth time point t8, the decrease gradient DDZ corresponding to the pressure increase start time differential pressure XI and the pressure increase start time hysteresis amount HYI is set by using the relational expression (Expression 1). .
  • a corrected decrease gradient DRD is obtained (step S41).
  • the correction amount Z is obtained by subtracting the product of the correction decrease gradient DRD and the differential pressure change amount ⁇ XA from the correction amount ZA at the eighth time point t8. (Step S43). That is, the correction amount Z gradually decreases based on the correction decrease gradient DRD.
  • the correction amount Z is larger than “0 (zero)” (step S44: NO)
  • the correction required differential pressure MZ is obtained by subtracting the correction amount Z from the required differential pressure M (step S46).
  • the command current value Ip corresponding to the correction required differential pressure MZ is set. That is, the command current value Ip is increased from the reference command current value set at the eighth time point t8 with a gradient corresponding to the corrected decrease gradient DRD.
  • the drive current value Id increases with the change of the command current value Ip.
  • step S44 YES
  • the correction amount Z is held at “0 (zero)”.
  • the corrected required differential pressure MZ matches the required differential pressure M (in this case, the third required differential pressure MC3)
  • the command current value Ip becomes the required differential pressure M (that is, the third required differential pressure).
  • the value depends on the pressure MC3). That is, from the eighth time point t8 to the time point when the correction amount Z becomes “0 (zero)”, the actual differential pressure X, which is the differential pressure by the differential pressure valve 32, increases in the differential pressure region during pressure increase.
  • the correction amount Z becomes “0 (zero)”
  • the actual differential pressure X reaches the upper limit value of the pressure differential region during pressure increase. That is, when the actual differential pressure X increases outside the differential pressure range during pressure increase, the correction amount Z is maintained at “0 (zero)”.
  • the actual differential pressure X increases with a substantially constant gradient from the eighth time point t8. Then, at the ninth time point t9, the actual differential pressure X reaches the required differential pressure M (that is, the third required differential pressure MC3).
  • the required differential pressure M is changed from the third required differential pressure MC3 to “0 (zero)”. That is, the required differential pressure M is reduced. Then, the command current value Ip is set to a value corresponding to “0 (zero)”. This command current value Ip becomes the “reference command current value”. Then, with the decrease in the command current value Ip, the drive current value Id is decreased and the actual differential pressure X starts to decrease from the ninth time point t9. Then, at the tenth time point t10, the differential pressure decrease amount ⁇ X1 becomes equal to or greater than the decrease determination value ⁇ X1_Th, and the pressure increase state is shifted to the pressure decrease state (see FIG. 15B).
  • a corrected increase gradient DRI is obtained based on the pressure reduction start time differential pressure XD stored at the tenth time point t10 (step S34), and the correction amount Z is calculated based on the corrected increase gradient DRI and the differential pressure change amount ⁇ XB. It is obtained (step S35).
  • the correction amount Z gradually increases as the actual differential pressure X approaches the required differential pressure M (that is, “0 (zero)”). However, since the product obtained by multiplying the correction increasing gradient DRI by the differential pressure change amount ⁇ XB at the eleventh time point t11 becomes the limit value Z_Lim (here, the upper limit value Z_max) (step S37: YES), the correction amount Z is The limit value Z_Lim is set (step S38).
  • the correction required differential pressure MZ is obtained by subtracting the correction amount Z from the required differential pressure M (step S46).
  • the drive current value Id drops. Be controlled.
  • the command current value Ip at this time is decreased with a gradient corresponding to the corrected increase gradient DRI calculated at the tenth time point t10.
  • the limit value Z_Lim decreases as the actual differential pressure X decreases, as indicated by the alternate long and short dash line in FIG. That is, the correction amount Z decreases as the limit value Z_Lim decreases.
  • the thirteenth time point t13 the actual differential pressure X becomes the required differential pressure M (that is, “0 (zero)”), and the differential pressure control is terminated. That is, the drive of the pump 38 is stopped.
  • the effect shown below can be acquired.
  • the command current value Ip for the differential pressure valve 32 is set based on the pressure-reducing starting differential pressure XD. That is, because of the influence of hysteresis, the command current value Ip is made smaller as the pressure difference XD at the start of pressure reduction is larger.
  • the actual differential pressure X is set to the required differential pressure by setting the command current value Ip based on the pressure decrease start pressure difference XD. It can be suitably reduced to M.
  • the limit value Z_Lim can be set to an appropriate value according to the actual differential pressure X at that time, and the correction amount Z can be suitably restricted from becoming too large. Therefore, when the actual differential pressure X is decreased, the occurrence of an event in which the actual differential pressure X is significantly lower than the required differential pressure M can be suppressed, and consequently the actual differential pressure X can be controlled with high accuracy.
  • the increasing gradient DIZ (DIZ1 to DIZ3) corresponding to the pressure difference XD at the start of pressure reduction is obtained, and the correction amount Z is calculated based on the increasing gradient DIZ.
  • the correction amount Z can be increased with a slope commensurate with the change mode of the hysteresis amount HY at that time.
  • the command current value Ip can be decreased with a gradient that matches the change mode of the hysteresis amount HY at that time.
  • the actual differential pressure X can be smoothly reduced toward the required differential pressure M, that is, the actual differential pressure X can be decreased to the required differential pressure M with a substantially constant gradient. Therefore, the braking torque for the wheels FR and RL can be gradually reduced.
  • the corrected increase gradient DRI is calculated by correcting the increase gradient DIZ set according to the pressure difference XD at the start of pressure reduction by the brake fluid discharge amount Y from the pump 38 at that time.
  • a correction amount Z is calculated based on the correction increasing gradient DRI, and the correction required differential pressure MZ and the command current value Ip are set based on the correction amount Z.
  • the actual differential pressure X can be controlled with higher accuracy by determining the reduction mode of the command current value Ip in consideration of the brake fluid discharge amount Y at that time.
  • the corrected increase gradient DRI is calculated by correcting the increase gradient DIZ set according to the pressure difference XD at the start of pressure reduction by the temperature TMP of the brake fluid at that time.
  • a correction amount Z is calculated based on the correction increasing gradient DRI, and the correction required differential pressure MZ and the command current value Ip are set based on the correction amount Z.
  • the actual differential pressure X can be controlled with higher accuracy by determining the decrease mode of the command current value Ip in consideration of the temperature TMP of the brake fluid at that time.
  • the pressure increase starting hysteresis amount HYI may be larger than “0 (zero)”.
  • the differential pressure XI at the start of pressure increase is also larger than “0 (zero)”
  • the actual differential pressure X is requested by controlling the increase mode of the command current value Ip based on the differential pressure XI at the start of pressure increase.
  • the pressure can be increased smoothly up to the differential pressure M. That is, in the present embodiment, the corrected decrease gradient DRD is obtained based on the pressure increase start time differential pressure XI, and the differential pressure change amount ⁇ XA is calculated from the correction amount ZA when the increase of the differential pressure X is started to the corrected decrease gradient DRD.
  • the correction amount Z is obtained by subtracting the product multiplied. Based on the correction amount Z, the correction required differential pressure MZ and the command current value Ip are set. That is, the command current value Ip can be increased with an increase gradient corresponding to the pressure increase start time differential pressure XI. As a result, the actual differential pressure X is smoothly increased to the required differential pressure M. Therefore, when the actual differential pressure X is increased, the actual differential pressure X is preferably increased to the required differential pressure M by setting the corrected required differential pressure MZ and the command current value Ip in consideration of the pressure increase starting differential pressure XI. Can do.
  • the corrected decrease gradient DRD is obtained in consideration of the hysteresis amount HYI at the start of pressure increase.
  • the correction amount Z is obtained based on the correction decreasing gradient DRD, and the correction required differential pressure MZ and the command current value Ip are set based on the correction amount Z.
  • the actual differential pressure X when the actual differential pressure X is increased is determined by determining the increase mode of the command current value Ip in consideration of the pressure increase start hysteresis amount HYI in addition to the pressure increase start differential pressure XI. The controllability can be further improved.
  • the corrected decrease gradient DRD is obtained in consideration of the brake fluid discharge amount Y from the pump 38 at that time. Then, the correction amount Z is calculated based on the correction decreasing gradient DRD, and the actual differential pressure X is controlled with higher accuracy by setting the correction required differential pressure MZ and the command current value Ip based on the correction amount Z. can do.
  • the corrected decrease gradient DRD is obtained in consideration of the brake fluid temperature TMP at that time.
  • the correction amount Z is calculated based on the correction decreasing gradient DRD, and the actual differential pressure X is controlled with higher accuracy by setting the correction required differential pressure MZ and the command current value Ip based on the correction amount Z. can do.
  • the correction amount Z is restricted from being less than “0 (zero)”. Therefore, it can be regulated that the corrected required differential pressure MZ is larger than the required differential pressure M. As a result, the occurrence of an event in which the actual differential pressure X significantly exceeds the required differential pressure M can be suppressed.
  • the above embodiment may be changed to another embodiment as described below. If the generation mode and the change mode of the hysteresis amount HY do not change much depending on the brake fluid temperature TMP, the correction decreasing gradient DRD may be obtained without considering the brake fluid temperature TMP. Even in this case, by obtaining the correction decrease gradient DRD in consideration of the pressure increase start hysteresis amount HYI and the pressure increase start differential pressure XI, the same effects as the above (9) and (10) can be obtained. Can do.
  • the correction decrease gradient DRD is set to the brake fluid discharge amount Y from the pump 38. You may make it ask
  • the corrected decrease gradient DRD may be obtained without considering the pressure difference XI at the start of pressure increase. Even in this case, the same effect as the above (10) can be obtained.
  • the corrected decrease gradient DRD is set to a gentler gradient as the pressure increase start hysteresis amount HYI is larger regardless of the magnitude of the pressure increase start differential pressure XI.
  • the command current value Ip is reduced by decreasing the correction amount Z based on the correction decreasing gradient DRD.
  • the pressure increase start time hysteresis amount HYI can be increased with a gradient. As a result, the actual differential pressure X can be smoothly increased from the required differential pressure before the change to the vicinity of the required differential pressure after the change.
  • the pressure increase time differential region is a boundary pressure difference that is the sum of a pressure increase start pressure difference XI and a predetermined pressure difference corresponding to the pressure increase start hysteresis amount HYI and the pressure increase start time differential pressure XI. It is the area between. Then, when the changed required differential pressure M reaches the upper limit value of the differential pressure range during pressure increase, the correction amount Z becomes “0 (zero)”.
  • the hysteresis at the start of pressure increase is performed until the actual differential pressure X reaches the upper limit value of the differential pressure region during pressure increase.
  • the correction amount Z is decreased based on the correction decreasing gradient DRD corresponding to the amount HYI. Then, the correction amount Z becomes “0 (zero)” when the actual differential pressure X reaches the upper limit value of the differential pressure range during pressure increase. Thereafter, when the actual differential pressure X rises outside the differential pressure region during pressure increase, the correction amount Z is held at “0 (zero)”. Thereby, the command current value Ip is suppressed from becoming larger than the reference command current value corresponding to the required differential pressure M, and the occurrence of an event in which the actual differential pressure X significantly exceeds the required differential pressure M can be suppressed. it can.
  • the correction decrease gradient DRD may be obtained without considering the pressure increase start time hysteresis amount HYI. Even in this case, the same effect as the above (9) can be obtained.
  • the corrected decrease gradient DRD is set to a gentler gradient as the pressure increase start differential pressure XI is smaller irrespective of the pressure increase start hysteresis amount HYI.
  • the command current value Ip is reduced by decreasing the correction amount Z based on the correction decreasing gradient DRD.
  • the pressure can be increased with a gradient corresponding to the pressure difference XI at the start of pressure increase.
  • the actual differential pressure X can be smoothly increased from the required differential pressure before the change to the vicinity of the required differential pressure after the change.
  • the pressure increase time differential region is defined as a pressure increase start time differential pressure XI and a boundary differential pressure that is the sum of the pressure increase start time differential pressure XI and the pressure increase start time differential pressure XI. It is an area. Then, when the changed required differential pressure M reaches the upper limit value of the differential pressure range during pressure increase, the correction amount Z becomes “0 (zero)”.
  • the correction amount Z is decreased based on the correction decreasing gradient DRD corresponding to XI. Then, the correction amount Z becomes “0 (zero)” when the actual differential pressure X reaches the upper limit value of the differential pressure range during pressure increase. Thereafter, when the actual differential pressure X rises outside the differential pressure region during pressure increase, the correction amount Z is held at “0 (zero)”. Thereby, the command current value Ip is suppressed from becoming larger than the reference command current value corresponding to the required differential pressure M, and the occurrence of an event in which the actual differential pressure X significantly exceeds the required differential pressure M can be suppressed. it can.
  • the corrected increase gradient DRI may be obtained without considering the brake fluid temperature TMP. Even in this case, by obtaining the corrected increase gradient DRI in consideration of the pressure difference XD at the start of pressure reduction, the same effects as the above (1) to (6) can be obtained.
  • the corrected increase gradient DRI is set to the discharge amount Y of the brake fluid from the pump 38. You may make it ask
  • the decrease gradient DDZ may be set by another method different from the setting method in the above embodiment.
  • the decrease gradient when the pressure increase start time differential pressure XI is the first differential pressure is set as the specified decrease gradient.
  • the correction gain is set to a value larger than “1”
  • the decrease gradient DDZ is obtained by multiplying the correction gain by the specified decrease gradient. It may be.
  • the correction gain is set to a value smaller than “1” and larger than “0 (zero)”, and the correction gain is decreased by a specified amount.
  • the decreasing gradient DDZ may be obtained by multiplying the gradient. Even in this case, the same effect as the above (9) can be obtained.
  • the increase gradient DIZ may be set by another method different from the setting method in the above embodiment, as long as the pressure difference XD at the start of pressure reduction can be made gentler.
  • the increase gradient when the pressure difference XD at the start of pressure reduction is the first differential pressure is set as the specified increase gradient.
  • the correction gain is set to a value smaller than “1” (for example, 0.9), and this correction gain is multiplied by the specified increase gradient.
  • the increase gradient DIZ may be obtained.
  • the correction gain is set to a value larger than “1” (for example, 1.2), and this correction gain is multiplied by the specified increase gradient.
  • the increase gradient DIZ may be obtained. Even in this case, the same effect as the above (5) can be obtained.
  • the characteristic stored in the ROM 62 functioning as a storage unit is a map showing the relationship between the drive current value Id and the actual differential pressure X when the actual differential pressure X is reduced from a certain differential pressure to “0 (zero)” or It may be a function. Further, the characteristics are a map or function indicating the relationship between the drive current value Id and the actual differential pressure X when the actual differential pressure X is decreased from a certain differential pressure to “0 (zero)”, and the actual differential pressure X is expressed by “ It may be a map or a function indicating a characteristic between the driving current value Id and the map or function indicating the relationship between the actual differential pressure X when increasing from “0 (zero)”.
  • the correction amount Z for reducing the actual differential pressure X other methods than the above embodiment may be adopted.
  • the larger the differential pressure XD at the start of pressure reduction the larger the first correction amount is set, the second correction amount is set according to the brake fluid discharge amount Y from the pump 38, and the brake fluid temperature TMP is set.
  • a third correction amount is set. The sum of the first correction amount, the second correction amount, and the third correction amount may be used as the correction amount Z. Even in this case, the same effect as the above (1) can be obtained.
  • the indicated value setting unit may correct the increasing gradient of the indicated current value based on the flow rate of the brake fluid in the path where the differential pressure valve is provided.
  • the amount of hysteresis can also vary depending on the flow rate of brake fluid in the above path. Therefore, by correcting the increase gradient of the command current value based on the flow rate of the brake fluid in the above path, the increase gradient can be brought close to the decrease gradient of the hysteresis amount at that time. Therefore, according to the above configuration, the controllability of the differential pressure when the differential pressure is increased can be further improved by increasing the command current value based on such an increase gradient.
  • the indicated value setting unit may correct the increasing gradient of the indicated current value based on the temperature of the brake fluid in the path where the differential pressure valve is provided.
  • the amount of hysteresis can also change depending on the temperature of the brake fluid in the above path. Therefore, by correcting the increase gradient of the command current value based on the temperature of the brake fluid, the increase gradient can be brought close to the decrease gradient of the hysteresis amount at that time. Therefore, according to the above configuration, the controllability of the differential pressure when the differential pressure is increased can be further improved by increasing the command current value based on such an increase gradient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Regulating Braking Force (AREA)

Abstract

 車両の制動制御装置は、マスタシリンダとホイールシリンダとの間の経路に設けられる差圧弁に対する指示電流値を、要求差圧に応じた値に設定する指示値設定部と、前記差圧弁による差圧を増大させる増圧状態から前記差圧弁による差圧を減少させる減圧状態に移行した時点の差圧を減圧開始時差圧として取得する減圧開始時差圧取得部と、を備える。減圧開始時差圧と、同減圧開始時差圧から同減圧開始時差圧に応じた所定差圧を減じた値である境界差圧との間の領域を、減圧時差圧領域とする。指示値設定部は、前記減圧状態であって、且つ前記要求差圧が前記減圧時差圧領域内に含まれるときには、前記要求差圧の減少量に対する指示電流値の減少量である指示電流値の減少勾配を、前記減圧開始時差圧が小さいほど緩やかな勾配にする。

Description

車両の制動制御装置
 本発明は、マスタシリンダとホイールシリンダとの差圧を調整すべく駆動する差圧弁を制御する車両の制動制御装置に関する。
 運転者によるブレーキ操作に応じて動作するマスタシリンダと車輪に対応するホイールシリンダとの間には、同ホイールシリンダ内の液圧を調整することにより、車輪に対する制動トルクを制御するブレーキアクチュエータが設けられている。こうしたアクチュエータは、マスタシリンダとホイールシリンダとの差圧を調整すべく駆動する電磁式のリニア弁である差圧弁と、同差圧弁とホイールシリンダとの間の通路に接続されるポンプとを備えている。そして、ポンプからブレーキ液が吐出されている状態で差圧弁に流れる駆動電流値が大きくなると、差圧弁の開度が低くなり、差圧、すなわちホイールシリンダ内の液圧が増大するようになっている。一方、ポンプからブレーキ液が吐出されている状態で駆動電流値が小さくなると、差圧弁の開度が高くなり、差圧、すなわちホイールシリンダ内の液圧が減少するようになっている。
 ところで、図16に示すように、差圧弁は、駆動電流値を上昇させる場合と駆動電流値を降下させる場合とで、マスタシリンダとホイールシリンダとの間に実際に生じる差圧(以下、「実差圧」ともいう。)が異なるヒステリシスを有している。すなわち、実差圧を要求差圧PRまで増大させるときに、指示電流値が、要求差圧PRに応じた所定電流値A1に設定されたとする。すると、この場合、差圧弁に流れる駆動電流値が上昇して所定電流値A1に達すると、実差圧が要求差圧PR近傍まで増大される。しかしながら、実差圧を要求差圧PRまで減少させる場合、駆動電流値が降下して所定電流値A1に達しても、実差圧が十分に減少されず、実差圧と要求差圧PRとの間に乖離が生じてしまう。なお、駆動電流値Idが上昇して所定電流値A1に達したときの実差圧(この場合、要求差圧PR)と、駆動電流値Idが降下して所定電流値A1に達したときの実差圧との差分を、「ヒステリシス量HY」ということもある。
 この点、特許文献1に記載の制動制御装置では、差圧が要求差圧よりも大きい状態から差圧を同要求差圧まで減少させる場合、指示電流値を上記ヒステリシスに応じた所定の値で補正し、補正後の指示電流値に基づいて差圧弁を制御するようにしている。
特開2000-127929号公報
 ところで、近年においては、ブレーキアクチュエータに対して自動ブレーキや自動速度調整などのような多様な要求がある。そして、こうした要求に応えるためには、車輪に対する制動トルク、すなわちマスタシリンダとホイールシリンダとの差圧をより高精度に制御することが望まれている。
 本発明の目的は、マスタシリンダとホイールシリンダとの差圧を、精度良く制御することができる車両の制動制御装置を提供することにある。
 上記課題を解決するための車両の制動制御装置は、マスタシリンダと車輪に対応するホイールシリンダとの間の経路に設けられる差圧弁に対する指示電流値を、同差圧弁による差圧の要求値である要求差圧に応じた値に設定する指示値設定部と、差圧弁による差圧を増大させる増圧状態から差圧弁による差圧を減少させる減圧状態に移行した時点の差圧を減圧開始時差圧として取得する減圧開始時差圧取得部と、を備えている。そして、同減圧開始時差圧取得部によって取得された減圧開始時差圧と、「同減圧開始時差圧」から「同減圧開始時差圧に応じた所定差圧」を減じた値である境界差圧との間の領域を、減圧時差圧領域としたとする。この場合、指示値設定部は、減圧状態であって、且つ要求差圧が減圧時差圧領域内に含まれるときには、要求差圧の減少量に対する指示電流値の減少量である指示電流値の減少勾配を、減圧開始時差圧が小さいほど緩やかな勾配にする。
 差圧弁に流す駆動電流値を上昇させることにより差圧が第1の差圧である状態で、要求差圧が第1の差圧よりも小さい第2の差圧に設定されたとする。この場合、指示電流値は、第1の差圧に応じた値から減少される。すると、差圧を要求差圧(すなわち、第2の差圧)まで減少させるため、指示電流値の変更に伴って駆動電流値が降下される。これにより、差圧弁による差圧が小さくされる。なお、ここでいう「駆動電流値」とは、差圧弁に実際に流れる電流値、又は実際に流れる電流値に相当する値である。
 このように増圧状態から減圧状態に移行した場合、上記構成では、増圧状態から減圧状態への移行が検知された時点、すなわち差圧の減少が開始される時点の差圧が減圧開始時差圧として取得される。そして、減圧状態であること、及び要求差圧(すなわち、第2の差圧)が上記減圧時差圧領域内に含まれることの双方が成立する場合、要求差圧の減少量に対する指示電流値の減少量である指示電流値の減少勾配が、減圧開始時差圧が小さいほど緩やかな勾配とされ、同減少勾配に従って指示電流値が減少される。
 ここで、要求差圧が同等である場合、第1の差圧に応じた指示電流値からの駆動電流値の低下が開始される初期段階では、減圧開始時差圧が大きいときほど、駆動電流値の降下に対する差圧の減少率が低くなりやすい。すなわち、上記初期段階では、駆動電流値を指示電流値まで上昇させたときにおける差圧と、駆動電流値を指示電流値まで降下させたときにおける差圧との差分であるヒステリシス量の増大率は、減圧開始時差圧が大きいほど高くなりやすい。そして、駆動電流値の降下開始からしばらくすると、上記差圧の減少率が次第に高くなり、上記ヒステリシス量の増加勾配が次第に緩やかになる。その後、駆動電流値がさらに小さくなると、駆動電流値の低下に対する差圧の減少率が急激に高くなる、すなわち上記ヒステリシス量が小さくなる。
 なお、ヒステリシス量の増大率が減圧開始時差圧の大きさによって変わる上記初期段階が上記減圧時差圧領域に相当する。そのため、減圧開始時差圧が減圧時差圧領域の上限値に相当し、上記境界差圧が減圧時差圧領域の下限値に相当する。
 そこで、減圧状態では、上記のように減圧開始時差圧が大きいほど指示電流値を急勾配で減少させることにより、減圧開始時差圧が大きく、駆動電流値の降下に対する差圧の減少率が低い場合であっても、駆動電流値が小さくなりやすいため、差圧を十分に減少させることができる。その結果、差圧を要求差圧まで減少させることができる。その一方で、減圧開始時差圧が小さく、駆動電流値の降下に対する差圧の減少率が比較的高い場合、指示電流値は、減圧開始時差圧が大きい場合よりも緩やかな勾配で減少される。その結果、駆動電流値が小さくなり過ぎることが抑制され、差圧が要求差圧を大幅に下回る事象の発生を抑制することができる。
 ただし、上述したように、要求差圧(すなわち、第2の差圧)が減圧時差圧領域の下限値である上記境界差圧よりも小さい場合、指示電流値の減少に伴う駆動電流値の降下開始からしばらくすると、駆動電流値の降下に対する差圧の減少率が次第に高くなる。すなわち、差圧弁のヒステリシスの特性上、要求差圧の減少に対する指示電流値の減少量が大きい状態から小さい状態に移行する。そして、このように差圧の減少率が高くなっても、減圧開始時差圧に応じた上記指示電流値の減少勾配で指示電流値を減少させたとすると、指示電流値が低くなり過ぎ、差圧が要求差圧(すなわち、第2の差圧)を大幅に下回ってしまうことがある。そこで、上記構成では、減圧状態では、要求差圧(すなわち、第2の差圧)が減圧時差圧領域内に含まれるときに限って、減圧開始時差圧に応じた上記指示電流値の減少勾配で指示電流値を減少させるようにした。その結果、差圧が要求差圧(すなわち、第2の差圧)を大幅に下回る事象の発生を抑制することができる。
 したがって、マスタシリンダとホイールシリンダとの差圧を、精度良く制御することができるようになる。
 また、要求差圧に応じた指示電流値を基準指示電流値とした場合、上記車両の制動制御装置は、減圧状態であるときに、指示電流値を補正するための補正量を設定する減圧時補正量設定部を備えてもよい。そして、指示値設定部は、減圧状態であるときには、基準指示電流値から減圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定することが好ましい。この場合、減圧時補正量設定部は、減圧状態であって、且つ要求差圧が減圧時差圧領域内に含まれるときには、要求差圧の減少量に対する補正量の増大量である補正量の増大勾配を減圧開始時差圧が小さいほど緩やかな勾配にし、同増大勾配に従って補正量を増大させることが好ましい。また、減圧時補正量設定部は、減圧状態であって、且つ要求差圧が減圧時差圧領域の下限値よりも小さい場合、差圧弁による差圧が減圧時差圧領域内で減少しているときには、上記補正量の増大勾配を減圧開始時差圧が小さいほど緩やかな勾配にし、同増大勾配に従って補正量を増大させ、差圧弁による差圧が減圧時差圧領域を超えて減少しているときには、補正量を制限値と等しくすることが好ましい。
 上記構成によれば、減圧状態であって、且つ要求差圧が減圧時差圧領域内に含まれるときでは、補正量の増大勾配が、減圧開始時差圧が小さいほど緩やかな勾配にされ、同増大勾配に従って補正量が増大される。そして、要求差圧(すなわち、第2の差圧)が減圧時差圧領域内に含まれるときには、同要求差圧に応じた指示電流値である基準指示電流値から補正量を減じて指示電流値を設定することにより、指示電流値を、減圧開始時差圧に応じた上記指示電流値の減少勾配に従って減少させる構成を実現させることができる。
 また、要求差圧(すなわち、第2の差圧)が減圧時差圧領域の下限値よりも小さいこともある。この場合、減圧時差圧領域内で差圧弁による差圧が減少している状態では、補正量の増大勾配が、減圧開始時差圧が小さいほど緩やかな勾配にされ、同増大勾配に従って補正量が増大される。そして、差圧弁による差圧が減少し、同差圧が減圧時差圧領域の下限値未満になると、補正量は制限値と等しくされる。このように補正量が大きくなりすぎることを抑制することにより、指示電流値が低くなりすぎることが抑制される。その結果、差圧弁に流れる駆動電流値が低くなりすぎ、差圧弁による差圧が要求差圧を大幅に下回る事象の発生を抑制することができる。したがって、差圧が要求差圧(すなわち、第2の差圧)を大幅に下回る事象の発生を抑制することができるようになる。
 また、上記車両の制動制御装置は、駆動電流値を上昇させるときにおける同駆動電流値と差圧との関係を示す特性を記憶する記憶部を備えるようにしてもよい。この場合、指示値設定部は、記憶部に記憶されている特性に基づき、上記基準指示電流値を、要求差圧が大きいほど大きくすることが好ましい。この構成によれば、要求差圧を変更した場合、上記特性に基づき、基準指示電流値を、変更後の要求差圧に応じた指示電流値に設定することができる。そして、減圧開始時差圧に応じた上記指示電流値の減少勾配に従って指示電流値をこうした基準指示電流値から減少させることにより、差圧を適切に制御することができるようになる。
 なお、差圧が小さい場合、駆動電流値の降下に対する差圧の減少率が高いため、駆動電流値の降下に対するヒステリシス量の減少率が高くなる。そこで、差圧弁による差圧が規定差圧以上であるときには、駆動電流値の降下に対する差圧の減少率が低いため、上記制限値を上限値とし、差圧弁による差圧が規定差圧未満であるときには、駆動電流値の降下に対する差圧の減少率が高いため、差圧が小さいほど上記制限値を小さくすることが好ましい。この構成によれば、制限値を、そのときの差圧弁による差圧に応じた適切な値に設定することができ、指示電流値が低くなり過ぎることを抑制することができる。その結果、差圧が要求差圧を大幅に下回る事象の発生を抑制することができるようになる。
 また、上記車両の制動制御装置において、指示値設定部は、差圧領域に応じて指示電流値の減少勾配を設定するようにしてもよい。この場合、減圧開始時差圧が第1の差圧領域に含まれる場合の指示電流値の減少勾配は、同第1の差圧領域よりも高圧側となる第2の差圧領域に減圧開始時差圧が含まれる場合の指示電流値の減少勾配よりも緩やかであることが好ましい。この構成によれば、減圧開始時差圧毎の勾配を用意する場合と比較して、制動制御装置の制御負荷の増大を抑制することができる。
 また、差圧を減少させる場合、ヒステリシス量の変化態様は、差圧弁が設けられている経路内におけるブレーキ液の流量によっても変化しうる。そこで、指示値設定部は、指示電流値の減少勾配を、上記経路内におけるブレーキ液の流量に基づいて補正することが好ましい。すなわち、ヒステリシス量が大きくなりやすい流量であるときには、減圧開始時差圧に応じた上記指示電流値の減少勾配を急勾配側に補正することにより、指示電流値を適切に設定することができ、ひいては差圧を適切に減少させることができる。一方、ヒステリシス量が大きくなりにくい流量であるときには、減圧開始時差圧に応じた上記指示電流値の減少勾配を緩勾配側に補正することにより、指示電流値を適切に設定することができ、ひいては差圧が要求差圧を大幅に下回る事象の発生を抑制することができる。したがって、差圧をより高精度に制御することができるようになる。
 また、差圧を減少させる場合、ヒステリシス量の変化態様は、差圧弁が設けられている経路内におけるブレーキ液の温度によっても変化しうる。そこで、指示値設定部は、指示電流値の減少勾配を、上記経路内におけるブレーキ液の温度に基づいて補正することが好ましい。すなわち、ヒステリシス量が大きくなりやすいブレーキ液の温度であるときには、減圧開始時差圧に応じた上記指示電流値の減少勾配を急勾配側に補正することにより、指示電流値を適切に設定することができ、ひいては差圧を適切に減少させることができる。一方、ヒステリシス量が大きくなりにくいブレーキ液の温度であるときには、減圧開始時差圧に応じた上記指示電流値の減少勾配を緩勾配側に補正することにより、指示電流値を適切に設定することができ、ひいては差圧が要求差圧を大幅に下回る事象の発生を抑制することができる。したがって、差圧をより高精度に制御することができるようになる。
 ところで、要求差圧が第1の差圧から第2の差圧に変更され、その後、要求差圧が第2の要求差圧よりも大きい第3の差圧に変更されることがある。そこで、上記車両の制動制御装置は、減圧状態から増圧状態に移行した時点の差圧を増圧開始時差圧として取得する増圧開始時差圧取得部を備えるようにしてもよい。そして、増圧開始時差圧と、同増圧開始時差圧に同増圧開始時差圧に応じた所定差圧を加算した値である境界差圧との間の領域を増圧時差圧領域としたとする。この場合、指示値設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときには、要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配を、増圧開始時差圧が小さいほど緩やかな勾配にすることが好ましい。
 差圧弁に流す駆動電流値を降下させることにより差圧が第2の差圧である状態で、要求差圧が第2の差圧よりも大きい第3の差圧に設定されたとする。この場合、差圧を要求差圧(すなわち、第3の差圧)まで増大させるために、指示電流値は、差圧が第2の差圧であった時点の指示電流値よりも大きくされることとなる。すると、指示電流値の変更に伴って駆動電流値が上昇されることとなるが、駆動電流値の上昇に対する差圧の増大率は、増圧開始時差圧が小さいときほど高くなりやすい。すなわち、駆動電流値の上昇に対するヒステリシス量の減少率は、増圧開始時差圧が小さいときほど低くなりやすい。そのため、駆動電流値の上昇に対するヒステリシス量の減少率に応じた態様で指示電流値を増大させることにより、差圧を要求差圧(すなわち、第3の差圧)まで円滑に上昇させることができる。
 そこで、上記構成では、増圧状態であること、及び要求差圧(すなわち、第3の差圧)が増圧時差圧領域内に含まれることの双方が成立する場合、こうした駆動電流値の上昇に対するヒステリシス量の減少率に合わせて、要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配が、増圧開始時差圧が小さいほど緩やかな勾配にされ、同増大勾配に従って指示電流値が増大される。すると、差圧弁に流れる駆動電流値は、指示電流値の増大に合わせて上昇することとなる。この場合、駆動電流値の上昇態様は、駆動電流値の上昇に対するヒステリシス量の減少率に応じた態様となる。そのため、このように増圧開始時差圧に応じた上記指示電流値の増大勾配に従って指示電流値を増大させることにより、差圧を要求差圧(すなわち、第3の差圧)に向けて円滑に増大させることができる。
 ただし、要求差圧が増圧時差圧領域の上限値よりも大きい場合でも、指示電流値を増圧開始時差圧に応じた勾配で増大させると、指示電流値が、要求差圧(すなわち、第3の差圧)に応じた基準指示電流値よりも大きくなる。すると、この場合、差圧弁に流れる駆動電流値が大きくなり過ぎ、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象が発生するおそれがある。この点、上記構成では、要求差圧が増圧時差圧領域内に含まれるときに限って、指示電流値を、増圧開始時差圧に応じた上記指示電流値の増大勾配に従って増大させるようにした。その結果、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象の発生を抑制することができる。
 したがって、増圧状態でも差圧を精度良く制御することができるようになる。
 なお、要求差圧に応じた指示電流値を基準指示電流値とした場合、上記車両の制動制御装置は、増圧状態であるときに、指示電流値を補正するための補正量を設定する増圧時補正量設定部を備えるようにしてもよい。この場合、指示値設定部は、増圧状態であるときには、基準指示電流値から増圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定するようにしてもよい。そして、増圧時補正量設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときには、要求差圧の増大量に対する補正量の減少量である補正量の減少勾配を増圧開始時差圧が小さいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させることが好ましい。また、増圧時補正量設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域の上限値よりも大きい場合、差圧弁による差圧が増圧時差圧領域内で増大しているときには、上記補正量の減少勾配を増圧開始時差圧が小さいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、差圧弁による差圧が増圧時差圧領域の上限値を超えているときには、補正量を「0(零)」と等しくすることが好ましい。
 上記構成によれば、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときでは、上記補正量の減少勾配が、増圧開始時差圧が小さいほど緩やかな勾配にされ、同減少勾配に従って補正量が減少される。そして、要求差圧に応じた指示電流値である基準指示電流値から補正量を減じて指示電流値を設定することにより、指示電流値を、増圧開始時差圧に応じた上記指示電流値の増大勾配で増大させる構成を実現させることができる。
 また、要求差圧(すなわち、第3の差圧)が増圧時差圧領域の上限値よりも大きいこともある。この場合、増圧時差圧領域内で差圧弁による差圧が増大している状態では、上記補正量の減少勾配が、増圧開始時差圧が小さいほど緩やかな勾配にされ、同減少勾配に従って補正量が減少される。そして、差圧弁による差圧が増大し、同差圧が増圧時差圧領域の上限値を超えると、補正量は「0(零)」と等しくされる。これにより、指示電流値が基準指示電流値よりも大きくなり、駆動電流値が大きくなりすぎることを抑制できる。したがって、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象の発生を抑制することができるようになる。
 また、要求差圧が第2の差圧から第3の差圧に変更された場合、差圧を要求差圧(すなわち、第3の差圧)まで増大させるために、指示電流値の変更に伴って駆動電流値の上昇が開始されることとなるが、駆動電流値の上昇に対する差圧の増大率は、減圧状態から増圧状態への移行時点のヒステリシス量である増圧開始時ヒステリシス量が大きいときほど高くなりやすい。すなわち、駆動電流値の上昇に対するヒステリシス量の減少率は、増圧開始時ヒステリシス量が大きいときほど低くなりやすい。そのため、駆動電流値の上昇に対するヒステリシス量の減少率に応じた態様で駆動電流値の上昇を制御することにより、差圧を要求差圧(すなわち、第3の差圧)まで円滑に上昇させることができる。
 そこで、上記車両の制動制御装置は、減圧状態から増圧状態に移行した時点の差圧を増圧開始時差圧として取得する増圧開始時差圧取得部と、減圧状態から増圧状態に移行した時点のヒステリシス量を増圧開始時ヒステリシス量として取得する増圧開始時ヒステリシス量取得部と、を備えるようにしてもよい。そして、増圧開始時差圧と、増圧開始時ヒステリシス量取得部によって取得された増圧開始時ヒステリシス量に応じた所定差圧と増圧開始時差圧との和である境界差圧との間の領域を増圧時差圧領域としたとする。この場合、指示値設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときには、要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配を、増圧開始時ヒステリシス量が大きいほど緩やかな勾配にすることが好ましい。
 そこで、上記構成では、増圧状態であること、及び要求差圧(すなわち、第3の差圧)が増圧時差圧領域内に含まれることの双方が成立する場合、こうした駆動電流値の上昇に対するヒステリシス量の減少率に合わせて、要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配が、増圧開始時ヒステリシス量が大きいほど緩やかな勾配にされ、同増大勾配に従って指示電流値が増大される。この場合、駆動電流値の上昇態様は、駆動電流値の上昇に対するヒステリシス量の減少率に応じた態様となる。そのため、このように増圧開始時ヒステリシス量に応じた上記指示電流値の増大勾配に従って指示電流値を増大させることにより、差圧を要求差圧(すなわち、第3の差圧)に向けて円滑に増大させることができる。
 ただし、要求差圧が増圧時差圧領域の上限値よりも大きい場合でも、指示電流値を増圧開始時ヒステリシス量に応じた上記指示電流値の増大勾配に従って増大させると、指示電流値が、要求差圧(すなわち、第3の差圧)に応じた基準指示電流値よりも大きくなる。すると、この場合、差圧弁に流れる駆動電流値が大きくなり過ぎ、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象が発生するおそれがある。この点、上記構成では、要求差圧が増圧時差圧領域内に含まれるときに限って、指示電流値を、増圧開始時ヒステリシス量に応じた上記指示電流値の増大勾配に従って増大させるようにした。その結果、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象の発生を抑制することができる。
 したがって、増圧状態でも差圧を精度良く制御することができるようになる。
 なお、上記車両の制動制御装置は、増圧状態であるときに、指示電流値を補正するための補正量を設定する増圧時補正量設定部を備えるようにしてもよい。そして、指示値設定部は、増圧状態であるときには、上記基準指示電流値から増圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定するようにしてもよい。この場合、増圧時補正量設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときには、要求差圧の増大量に対する補正量の減少量である補正量の減少勾配を増圧開始時ヒステリシス量が大きいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させることが好ましい。また、増圧時補正量設定部は、増圧状態であって、且つ要求差圧が増圧時差圧領域の上限値よりも大きい場合、差圧弁による差圧が増圧時差圧領域内で増大しているときには、上記補正量の減少勾配を増圧開始時ヒステリシス量が大きいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、差圧弁による差圧が増圧時差圧領域の上限値を超えているときには、補正量を「0(零)」と等しくすることが好ましい。
 上記構成によれば、増圧状態であって、且つ要求差圧が増圧時差圧領域内に含まれるときでは、上記補正量の減少勾配が、増圧開始時ヒステリシス量が大きいほど緩やかな勾配にされ、同減少勾配に従って補正量が減少される。そして、要求差圧(すなわち、第3の差圧)が増圧時差圧領域内に含まれるときには、同要求差圧に応じた指示電流値である基準指示電流値から補正量を減じて指示電流値を設定することにより、指示電流値を、増圧開始時ヒステリシス量に応じた上記指示電流値の増大勾配に従って増大させる構成を実現させることができる。
 また、要求差圧(すなわち、第3の差圧)が増圧時差圧領域の上限値よりも大きいこともある。この場合、増圧時差圧領域内で差圧弁による差圧が上昇している状態では、上記補正量の減少勾配が、増圧開始時ヒステリシス量が大きいほど緩やかな勾配にされ、同減少勾配に従って補正量が減少される。そして、差圧弁による差圧が上昇し、同差圧が増圧時差圧領域の上限値を超えると、補正量は「0(零)」と等しくされる。これにより、指示電流値が基準指示電流値よりも大きくなり、駆動電流値が大きくなりすぎることを抑制できる。したがって、差圧が要求差圧(すなわち、第3の差圧)を大幅に上回る事象の発生を抑制することができるようになる。
車両の制動制御装置の一実施形態であるECUを備える制動装置の一部を示す概略構成図。 差圧弁に流れる駆動電流値と、同差圧弁の駆動によって発生するマスタシリンダとホイールシリンダとの間の実差圧との関係の一例を示すグラフ。 増圧状態から減圧状態に移行する際に、減圧開始時差圧の大きさによって、ヒステリシス量の変化態様が変わる様子を示すグラフ。 増圧状態から減圧状態に移行する際における実差圧とヒステリシス量との関係を減圧開始時差圧毎に示すグラフ。 増圧状態から減圧状態に移行した場合において、要求差圧を補正するための補正量の増大勾配を決定するためのマップと、実差圧に応じて制限値を決定するためのマップとを示す図。 増圧状態から減圧状態に移行する際に、要求差圧を補正量で補正した場合における駆動電流値の降下態様を示す作用図。 減圧状態から増圧状態に再び移行する際における実差圧の変化態様を示すグラフ。 減圧状態から増圧状態に移行する際に、増圧開始時差圧は同等であるものの、増圧開始時ヒステリシス量が異なる場合にはヒステリシス量の減少態様が異なる様子を示す作用図。 減圧状態から増圧状態に移行する際に、増圧開始時ヒステリシス量は同等であるものの、増圧開始時差圧が異なる場合にはヒステリシス量の減少態様が異なる様子を示す作用図。 減圧状態から増圧状態に移行した場合において、要求差圧を補正するための補正量の減少勾配を決定するためのマップを示す図。 ブレーキ液の流量に応じて、発生するヒステリシス量が変化する様子を示す図。 ブレーキ液の温度に応じて、発生するヒステリシス量が変化する様子を示す図。 差圧の増大開始及び減少開始を判定するために、制動制御装置の一実施形態であるECUが実行する処理ルーチンを説明するフローチャート。 指示電流値を設定するために、同ECUが実行する処理ルーチンを説明するフローチャート。 要求差圧の変更によって実差圧が変化する際のタイミングチャートであって、(a)は実差圧の推移を示し、(b)は増圧状態であるか減圧状態であるかの推移を示し、(c)は差圧変化量の推移を示し、(d)は補正量の推移を示す。 電磁弁のヒステリシスを説明するグラフ。
 以下、車両の制動制御装置を具体化した一実施形態を図1~図15に従って説明する。
 図1には、本実施形態の制動制御装置である電子制御装置(以下、「ECU」という。)60を備える制動装置11の一部が図示されている。図1に示すように、制動装置11は、ブレーキペダル12が連結される液圧発生装置20と、車両に設けられている複数の車輪に対する制動トルクを個別に自動調整するブレーキアクチュエータ30とを備えている。そして、ブレーキアクチュエータ30には、車輪毎に個別対応する複数のブレーキ機構のホイールシリンダが接続されている。
 液圧発生装置20には、ブースタ21、マスタシリンダ22及びリザーバ23が設けられている。運転者がブレーキペダル12を操作する場合、運転者によるブレーキペダル12の操作力がブースタ21によって倍力され、倍力された操作力に応じたブレーキ液圧(以下、「MC圧」ともいう。)がマスタシリンダ22内に発生する。そして、リザーバ23からは、マスタシリンダ22内のMC圧に応じたブレーキ液がマスタシリンダ22及びブレーキアクチュエータ30を通じてホイールシリンダ内に供給される。すると、ブレーキ機構は、ホイールシリンダ内に発生したブレーキ液圧(以下、「WC圧」ともいう。)に応じた制動トルクを車輪に付与する。
 ブレーキアクチュエータ30には、2系統の液圧回路311,312が設けられている。第1の液圧回路311には、右前輪用のホイールシリンダ50a及び左後輪用のホイールシリンダ50dが接続されている。また、第2の液圧回路312には、左前輪用のホイールシリンダ及び右後輪用のホイールシリンダが接続されている。
 第1の液圧回路311には、マスタシリンダ22とホイールシリンダ50a,50dとを接続する経路に配置される常開型のリニア電磁弁である差圧弁32が設けられている。また、第1の液圧回路311において差圧弁32とホイールシリンダ50a,50dとの間には、右前輪用の経路33a及び左後輪用の経路33dが設けられている。そして、これら経路33a,33dには、ホイールシリンダ50a,50d内のWC圧の増圧を規制する際に駆動する常開型の電磁弁である増圧弁34a,34dと、WC圧を減圧させる際に駆動する常閉型の電磁弁である減圧弁35a,35dとが設けられている。
 また、第1の液圧回路311には、ホイールシリンダ50a,50dから減圧弁35a,35dを通じて流出したブレーキ液を一時貯留するリザーバ36と、モータ37の回転に基づき駆動するポンプ38とが接続されている。リザーバ36は、吸入用流路39を通じてポンプ38に接続されるとともに、マスタ側流路40を通じて差圧弁32とマスタシリンダ22との間の経路に接続されている。また、ポンプ38は、供給用流路41を介して増圧弁34a,34dと差圧弁32との間の接続部位42に接続されている。そして、ポンプ38は、モータ37が回転する場合に、リザーバ36及びマスタシリンダ22から吸入用流路39及びマスタ側流路40を通じてブレーキ液を吸引し、該ブレーキ液を供給用流路41内に吐出する。
 なお、第2の液圧回路312の構成については、第1の液圧回路311の構成と略同等であるため、その詳細な説明を割愛するものとする。
 ECU60には、ブレーキペダル12の操作の有無を検知するブレーキスイッチSW1、及びMC圧を検出する圧力センサSE1などの各種検出系が電気的に接続されている。また、ECU60には、ブレーキアクチュエータ30を構成する差圧弁32、増圧弁34a,34d、減圧弁35a,35d及びモータ37などが電気的に接続されている。そして、ECU60は、各種検出系によって検出された情報に基づき、ブレーキアクチュエータ30を制御する。
 こうしたECU60は、CPU61、ROM62及びRAM63などで構築されているマイクロコンピュータを有している。ROM62には、CPU61が実行する各種のプログラム、マップ及び閾値などが予め記憶されている。また、RAM63には、適宜更新される各種情報などが一時記憶される。
 ところで、ブレーキアクチュエータ30は、差圧弁32及びポンプ38(すなわち、モータ37)を駆動させてマスタシリンダ22とホイールシリンダ50a,50dとの間に差圧を発生させることにより、車輪に対する制動トルクを制御することができる。すなわち、差圧弁32のソレノイドに流す駆動電流値Idを大きくすると、差圧弁32の開度が小さくなり、差圧が大きくなる。その結果、ホイールシリンダ50a,50d内のWC圧が高くなり、制動機構から車輪FR,RLに付与される制動トルクが大きくなる。一方、駆動電流値Idを小さくすると、差圧弁32の開度が大きくなり、差圧が小さくなる。その結果、ホイールシリンダ50a,50d内のWC圧が低くなり、制動機構から車輪FR,RLに付与される制動トルクが小さくなる。
 なお、以降の明細書においては、こうした差圧弁32及びポンプ38の駆動によってマスタシリンダ22とホイールシリンダ50a,50dとの間に実際に生じる差圧のことを、「実差圧X」という。また、車輪FR,RLに対する制動トルクを調整する場合において要求される差圧(差圧弁32による差圧の要求値)のことを、「要求差圧M」というものとする。また、「駆動電流値Id」とは、差圧弁32のソレノイドに実際に流れる電流値又は同電流値に応じた値である。そのため、差圧弁32に対する指示電流値Ipが大きくされる場合には駆動電流値Idが大きくなる一方、指示電流値Ipが小さくされる場合には駆動電流値Idが小さくなる。
 次に、図2を参照して、差圧弁32を駆動させる際に用いられるマップMAP1について説明する。
 図2に破線で示すマップMAP1は、ROM62に予め記憶されており、設定されている要求差圧に応じて指示電流値Ipを設定するためのマップである。このマップMAP1は、実差圧Xを増大させるべく駆動電流値Idを上昇させる際における実差圧Xと駆動電流値Idとの関係を示している。図2に破線で示すように、実差圧Xは、駆動電流値Idが大きくなるにつれて次第に大きくなる。そのため、要求差圧Mが大きい値に設定されているときほど、このマップMAP1に用いて設定される指示電流値Ipは大きくなる。したがって、マップMAP1が、駆動電流値Idを上昇させる際における駆動電流値Idと実差圧Xとの関係を示す「特性」に相当し、同マップ(特性)MAP1を記憶するROM62が、「記憶部」に相当する。
 なお、マップMAP1の代わりに、実差圧Xを「0(零)」から増大させる際における実差圧Xと駆動電流値Idとの関係を示す関数を採用してもよい。こうした関数を用いることによっても、指示電流値Ipを要求差圧Mに応じた値に設定することもできる。この場合、同関数が、「特性」に相当することとなる。
 ところで、図2に実線で示すように、差圧弁32などの電磁弁にあっては、ヒステリシスを有している。すなわち、駆動電流値Idを所定の指示電流値IpAまで上昇させたときにおける実差圧XA1と、駆動電流値Idを所定の指示電流値IpAまで降下させたときにおける実差圧XA2との間に乖離が生じる。こうした実差圧XA1と実差圧XA2との差分を、「ヒステリシス量HY」という。
 図3には、駆動電流値Idを上昇させた後に駆動電流値Idを第1の指示電流値IpB1まで降下させる場合が図示されている。ここでは、第1の要求差圧MB1に応じた指示電流値Ipを第1の指示電流値IpB1といい、第1の要求差圧MB1よりも大きい第2の要求差圧MB2に応じた指示電流値Ipを第2の指示電流値IpB2という。また、第2の要求差圧MB2よりも大きい第3の要求差圧MB3に応じた指示電流値Ipを第3の指示電流値IpB3というものとする。なお、要求差圧MB1,MB2,MB3に応じた指示電流値IpB1,IpB2,IpB3とは、上記マップMAP1を用いることにより求めた電流値のことである。
 図3に実線で示すように、駆動電流値Idを「0(零)」から第3の指示電流値IpB3まで上昇させることにより、実差圧Xが「0(零)」から第3の要求差圧MB3まで増大した後、駆動電流値Idを第1の指示電流値IpB1まで降下させたとする。この場合、駆動電流値Idの降下に対する実差圧Xの減少率が低いため、駆動電流値Idが降下して第1の指示電流値IpB1に達した時点における実差圧Xは、第3の要求差圧MB3よりも小さいものの、第1の要求差圧MB1よりも大きい第13の差圧MB13となる。
 一方、図3に破線で示すように、駆動電流値Idを「0(零)」から第2の指示電流値IpB2まで上昇させることにより、実差圧Xが「0(零)」から第2の要求差圧MB2まで増大した後、駆動電流値Idを第1の指示電流値IpB1まで降下させたとする。この場合、駆動電流値Idを第3の指示電流値IpB3から降下させる場合よりは駆動電流値Idの降下に対する実差圧Xの減少率が高い。そのため、駆動電流値Idが第1の指示電流値IpB1に達した時点における実差圧Xは、第1の要求差圧MB1よりも大きく且つ第13の差圧MB13よりも小さい第12の差圧MB12となる。すなわち、駆動電流値Idが降下して第1の指示電流値IpB1に達した場合であっても、実差圧Xの減少、すなわち駆動電流値Idの降下が開始された時点の差圧である減圧開始時差圧XDの大きさによって、駆動電流値Idが第1の指示電流値IpB1になった時点の実差圧Xの大きさが変わる。
 また、図3に実線で示すように、実差圧Xが「0(零)」から第3の要求差圧MB3まで増大した後、実差圧Xを第1の要求差圧MB1まで減少させる場合、駆動電流値Idは、第1の指示電流値IpB1よりも小さい第13の電流値IpB13まで降下される。言い換えると、駆動電流値Idを第13の電流値IpB13まで降下させることにより、実差圧Xが第1の要求差圧MB1とほぼ等しくなる。
 一方、図3に破線で示すように、実差圧Xが「0(零)」から第2の要求差圧MB2まで増大した後、実差圧Xを第1の要求差圧MB1まで減少させる場合、駆動電流値Idは、第1の指示電流値IpB1よりも小さく且つ第13の電流値IpB13よりも大きい第12の電流値IpB12まで降下される。言い換えると、駆動電流値Idを第12の電流値IpB12まで降下させることにより、実差圧Xが第1の要求差圧MB1とほぼ等しくなる。
 すなわち、駆動電流値Idを降下させることにより、実差圧Xを要求差圧Mまで減少させる場合、ヒステリシス量HYの増大態様が減圧開始時差圧XDに応じて変わる。そのため、減圧開始時差圧XDを加味して指示電流値Ipを設定することにより、実差圧Xを要求差圧Mまで減少させることが可能となる。
 次に、図4を参照して、駆動電流値Idの降下によって実差圧Xが減少するときにおけるヒステリシス量HYの変化態様について説明する。
 図4に示すように、実差圧Xの減少が開始された直後の初期状態においては、減圧開始時差圧XDが小さい場合ほど、駆動電流値Idの降下に対する実差圧Xの減少率が高いため、駆動電流値Idの降下に対してヒステリシス量HYが概ね緩やかに増大される。例えば、減圧開始時差圧XDが第11の減圧開始時差圧XD11である場合、ヒステリシス量HYは、減圧開始時差圧XDが第11の減圧開始時差圧XD11よりも小さい他の減圧開始時差圧XD12,XD13である場合よりも急勾配で大きくなる。同様に、減圧開始時差圧XDが第12の減圧開始時差圧XD12である場合、ヒステリシス量HYは、減圧開始時差圧XDが第11の減圧開始時差圧XD11である場合よりも緩やかに大きくなるものの、減圧開始時差圧XDが第12の減圧開始時差圧XD12よりも小さい第13の減圧開始時差圧XD13である場合よりも急勾配で大きくなる。
 また、実差圧Xが小さくなり、実差圧Xが「0(零)」に近づくと、減圧開始時差圧XDが何れの減圧開始時差圧XD11,XD12,XD13であっても、実差圧Xの減少に対してヒステリシス量HYがほぼ一定勾配で減少されるようになる。
 次に、こうしたヒステリシス量HYの変化態様を踏まえた、実差圧Xを要求差圧Mまで減少させる場合の制御方法について説明する。
 実差圧Xを要求差圧Mまで減少させる場合、ヒステリシス量HYに応じた補正量Zが演算され、要求差圧Mから補正量Zを減じた差が補正要求差圧MZとされる。そして、指示電流値Ipは、図2に破線で示すマップを用い、補正要求差圧MZに応じた値に設定される。そして、こうした指示電流値Ipに基づいて駆動電流値Idを降下させることにより、実差圧Xが円滑に要求差圧Mまで減少される。
 補正要求差圧MZを演算する際に用いられる補正量Zは、図5に示すマップに基づき演算される。すなわち、補正量Zは、減圧開始時差圧XDからの実差圧Xの減少、すなわち駆動電流値Idの降下が開始され、実差圧Xが要求差圧Mに近づくにつれて次第に大きくされる。しかも、このときの補正量Zの増大勾配DIZは、減圧開始時差圧XDが小さいときほど緩やかになる。なお、この補正量Zの増大勾配DIZは、「要求差圧Mの減少量に対する補正量Zの増大量」である。
 なお、図2に示すマップを用いて要求差圧Mに応じた値に設定された指示電流値のことを「基準指示電流値」としたとする。そして、要求差圧Mが小さくされた場合、変更後の要求差圧Mから補正量Zを減じた値に基づき、指示電流値Ipが設定される。すなわち、指示電流値Ipは、「変更後の要求差圧Mに応じた基準指示電流値」から「補正量Zを電流値に変換した変換補正量」を減じた値に基づいた値であるということができる。そのため、要求差圧Mが小さくされた場合、指示電流値Ipは、補正量Zの増大勾配に従って基準指示電流値から減少され、結果として、駆動電流値Idは、こうした指示電流値Ipの減少に合わせて降下することとなる。なお、本実施形態では、上記変換補正量が、「指示電流値を補正するための補正量」に相当する。
 次に、図5に示すマップについて説明する。なお、図5に示す破線は、図4で示した実差圧Xの減少に対するヒステリシス量HYの変化態様を示している。
 図5に示すマップは、補正量Zの増大勾配DIZと減圧開始時差圧XDとの関係を示すマップである。図5に示すように、増大勾配DIZは、上記初期状態におけるヒステリシス量HYの変化勾配とほぼ一致している。そのため、増大勾配DIZは、減圧開始時差圧XDが小さいときほど緩やかになっている。なお、増大勾配DIZは、例えば、実差圧Xの減少に対するヒステリシス量HYの増大態様を近似することにより求めた一次関数の傾き又は同傾きに近い値であってもよい。
 本実施形態では、範囲の異なる減圧開始時差圧の領域である差圧領域R11,R12,R13が予め設定されており、増大勾配DIZは差圧領域R11,R12,R13毎に設定されている。すなわち、第11の減圧開始時差圧XD11を含む第11の差圧領域R11の増大勾配は、減圧開始時差圧XDが第11の減圧開始時差圧XD11であるときにおけるヒステリシス量HYの増大勾配DIZ1である。また、第12の減圧開始時差圧XD12を含む第12の差圧領域R12の増大勾配は、減圧開始時差圧XDが第12の減圧開始時差圧XD12であるときにおけるヒステリシス量HYの増大勾配DIZ2である。また、第13の減圧開始時差圧XD13を含む第13の差圧領域R13の増大勾配は、減圧開始時差圧XDが第13の減圧開始時差圧XD13であるときにおけるヒステリシス量HYの増大勾配DIZ3である。すなわち、第12の差圧領域R12を「第1の領域」と見なした場合、第12の差圧領域R12の増大勾配DIZは、第1の領域よりも高圧側となる「第2の領域」と見なすことのできる第11の差圧領域R11の増大勾配DIZよりも緩やかになっている。
 なお、こうした増大勾配DIZに基づいて補正量Zを求めた場合、実差圧Xが要求差圧Mに近づくにつれて補正量Zが大きくなり、補正量Zが大きくなり過ぎることがある。この場合、補正要求差圧MZが小さくなり過ぎ、この補正要求差圧MZに基づいて設定される指示電流値Ipが小さくなり過ぎることがある。このように指示電流値Ipが小さくなり過ぎると、実差圧Xが要求差圧Mを大幅に下回る事象が発生するおそれがある。
 この点、本実施形態では、こうした事象の発生を抑制するために、補正量Zが大きくなり過ぎることを規制する制限値Z_Limが設けられている。すなわち、図5に示すように、実差圧Xが規定差圧X_Th以上である場合、制限値Z_Limは予め設定されている上限値Z_maxに設定される。一方、実差圧Xが規定差圧X_Th未満である場合、制限値Z_Limは、実差圧Xが小さくなるにつれて小さくされる。なお、規定差圧X_Thは、ヒステリシス量HYが急激に減少し始める差圧又は同差圧近傍の値に設定されている。しかも、実差圧Xが規定差圧X_Th未満であるときのヒステリシス量HYの減少勾配よりも、制限値Z_Limの減少勾配が僅かに急勾配となっている。
 また、上記の制限値Z_Limは、電流値に変換することができる。そして、このように電流値に変換された制限値が、指示電流値Ipに対する「制限値」に相当する。すなわち、本実施形態では、要求差圧Mが変更された場合、補正量Zに応じた上記変換補正量が制限値を超えない範囲で、指示電流値Ipが基準指示電流値から増大又は減少される。
 また、要求差圧が小さくされる減圧状態では、増圧状態から減圧状態への移行時点における差圧である減圧開始時差圧XDに応じた勾配(すなわち、上記補正量の増大勾配)に従って補正量Zが増大される。すなわち、上記補正量の増大勾配に準じた指示電流値の減少勾配に従って指示電流値Ipが減少される。そして、補正量Zが制限値Z_Limに達したときには、補正量Zが制限値Z_Limと等しくされる。このように補正量Zが制限値Z_Limに達する時点の差圧は、図5に示すように、減圧開始時差圧XDによって異なる。したがって、補正量Zが制限値Z_Limに達する時点の差圧が、「境界差圧」に相当し、減圧開始時差圧XDとこの境界差圧との差が、「減圧開始時差圧XDに応じた所定差圧」に相当する。また、減圧開始時差圧XDと境界差圧との間の領域が、「減圧開始時差圧領域」に相当する。
 次に、図6を参照して、実差圧Xを要求差圧Mまで減少させる際の駆動電流値Idの変化態様について説明する。なお、図6に示す破線は、要求差圧Mを補正しない場合の駆動電流値である基準駆動電流値IdAの変化態様を示している。
 図6に示すように、要求差圧Mが小さい値に変更されると、駆動電流値Idが降下するようになる。このとき、増大勾配DIZは、図5に示すマップを用いることにより、減圧開始時差圧XDに基づいた勾配に設定される。そして、補正量Zは、こうした増大勾配DIZに応じた勾配で次第に大きくなる。そのため、駆動電流値Idと基準駆動電流値IdAとの差分は、時間が経過するに連れて次第に大きくなる。その後、時点t100に達すると、補正量Zが制限値Z_Lim(この場合、上限値Z_max)になる。そのため、時点t100以降では、駆動電流値Idと基準駆動電流値IdAとの差分が制限値Z_Limに応じた差を保った状態で駆動電流値Idが降下するようになる。そして、実差圧Xが要求差圧Mまで減少されると、駆動電流値Idが保持される。
 ところで、要求差圧Mは、「0(零)」から第1の差圧に変更された後に、第1の差圧よりも小さい第2の差圧に変更され、その後、第2の差圧よりも大きい第3の差圧に変更されることがある。
 次に、図7を参照して、実差圧Xの減少終了後に、実差圧Xを第1の要求差圧MA1まで増大させる際の実差圧Xの変化態様について説明する。ここでは、第1の要求差圧MA1に応じた指示電流値Ipを第1の指示電流値IpA1といい、実差圧Xの減少によって実差圧Xが第1の要求差圧MA1よりも小さい第2の要求差圧MA2になった時点における駆動電流値Idを第2の駆動電流値IdA2という。また、実差圧Xの減少によって実差圧Xが第2の要求差圧MA2よりも小さい第3の要求差圧MA3になった時点における駆動電流値Idを第3の駆動電流値IdA3というものとする。
 図7に示すように、駆動電流値Idを第2の駆動電流値IdA2まで降下させることにより実差圧Xが第2の要求差圧MA2まで減少した後に、実差圧Xを第2の要求差圧MA2よりも大きい要求差圧(この場合、第1の要求差圧MA1)まで増大させたとする。この場合、駆動電流値Idは、第1の指示電流値IpA1よりも小さい第12の電流値IpA12まで上昇される。言い換えると、駆動電流値Idを第12の電流値IpA12まで上昇させることにより、実差圧Xが第1の要求差圧MA1とほぼ等しくなる。
 一方、駆動電流値Idを第3の駆動電流値IdA3まで降下させることにより実差圧Xが第3の要求差圧MA3まで減少した後、実差圧Xを第1の要求差圧MA1まで上昇させたとする。この場合、駆動電流値Idは、第1の指示電流値IpA1よりも小さく且つ第12の電流値IpA12よりも大きい第13の電流値IpA13まで上昇される。言い換えると、駆動電流値Idを第13の電流値IpA13まで上昇させることにより、実差圧Xが第1の要求差圧MB1とほぼ等しくなる。
 上記のようにヒステリシスが発生している状態(すなわち、ヒステリシス量HYが「0(零)」ではない状態)で実差圧Xを要求差圧Mまで増大させる場合、駆動電流値Idの上昇に対する実差圧Xの増大態様は、実差圧Xの増大が開始される時点の差圧である増圧開始時差圧XI、及び実差圧Xの増大が開始される時点のヒステリシス量である増圧開始時ヒステリシス量HYIによって変わる。そのため、このように実差圧Xを再度増大させる場合、実差圧Xの増大が開始される時点の差圧である増圧開始時差圧XI及び同時点のヒステリシス量である増圧開始時ヒステリシス量HYIを加味し、要求差圧Mを補正することが好ましい。
 次に、図8を参照して、増圧開始時差圧XIの大きさによって、実差圧Xの増大態様が変わる様子を説明する。ここでは、2つのパターンについて説明する。
 すなわち、第1のパターンは、要求差圧Mが第1の要求差圧MD1から同第1の要求差圧MD1よりも小さい第2の要求差圧MD2に変更され、その後、要求差圧Mが第2の要求差圧MD2から第1の要求差圧MD1に再び変更されるパターンである。また、第2のパターンは、要求差圧Mが第3の要求差圧MD3から同第3の要求差圧MD3よりも小さい第4の要求差圧MD4に変更され、その後、要求差圧Mが第4の要求差圧MD4から第1の要求差圧MD1に変更されるパターンである。
 なお、第3の要求差圧MD3は、第1及び第2の要求差圧MD1,MD2よりも小さいものとする。また、第1のパターンにおいて要求差圧Mが第2の要求差圧MD2で保持されているときのヒステリシス量HYは、第2のパターンにおいて要求差圧Mが第4の要求差圧MD4で保持されているときのヒステリシス量HYと等しいものとする。
 図8に示すように、第1のパターンにおいて、要求差圧Mが第1の要求差圧MD1から第2の要求差圧MD2に変更されると、駆動電流値Idの降下によって実差圧Xが減少される。そして、駆動電流値Idが第2の指示電流値IpD2に達すると、実差圧Xが第2の要求差圧MD2で保持される。その後、要求差圧Mが第1の要求差圧MD1に変更されると、駆動電流値Idの上昇が開始される。このとき、駆動電流値Idの上昇開始時点からの初期状態では、実差圧Xが比較的上昇しにくい。すなわち、駆動電流値Idの変化量に対する実差圧Xの増大量である実差圧Xの増大勾配が比較的緩やかになるため、駆動電流値Idの変化量に対するヒステリシス量HYの減少量であるヒステリシス量の減少勾配が比較的急勾配になる。この場合、駆動電流値Idが上昇すると、実差圧Xが第1の要求差圧MD1に達する前に、ヒステリシス量HYが「0(零)」になる。その後も駆動電流値Idが上昇し、同駆動電流値Idが第1の要求差圧MD1に応じた第1の指示電流値IpD1に達すると、実差圧Xが第1の要求差圧MD1となる。
 一方、第2のパターンにおいて、要求差圧Mが第3の要求差圧MD3から第4の要求差圧MD4に変更されると、駆動電流値Idの降下によって実差圧Xが減少される。そして、駆動電流値Idが第4の指示電流値IpD4に達すると、実差圧Xが第4の要求差圧MD4で保持される。その後、要求差圧Mが第1の要求差圧MD1に変更されると、駆動電流値Idの上昇が開始される。このとき、駆動電流値Idの上昇開始の直後にあっては、第1のパターンと比較して、増圧開始時差圧XIが小さい分、実差圧Xが上昇しやすい。すなわち、第1のパターンと比較して、実差圧Xの増大勾配が急勾配になるため、ヒステリシス量HYの減少勾配は緩やかになる。この場合も、駆動電流値Idが上昇すると、実差圧Xが第1の要求差圧MD1に達する前に、ヒステリシス量HYが「0(零)」になる。その後も駆動電流値Idが上昇し、同駆動電流値Idが第1の要求差圧MD1に応じた第1の指示電流値IpD1に達すると、実差圧Xが第1の要求差圧MD1となる。
 すなわち、増圧開始時ヒステリシス量HYIの大きさが同等であるという条件下にあっては、増圧開始時差圧XIが小さいときほど、初期状態では実差圧Xが増大されやすく、ヒステリシス量HYが減少されにくい。
 次に、図9を参照して、増圧開始時ヒステリシス量HYIの大きさによって、実差圧Xの増大態様が変わる様子を説明する。ここでは、2つのパターンについて説明する。
 すなわち、第1のパターンは、要求差圧Mが第1の要求差圧ME1から同第1の要求差圧ME1よりも小さい第2の要求差圧ME2に変更され、その後、要求差圧Mが第2の要求差圧ME2から第1の要求差圧ME1に再び変更されるパターンである。また、第2のパターンは、要求差圧Mが第2の要求差圧ME2よりも大きい第3の要求差圧ME3から第2の要求差圧ME2に変更され、その後、要求差圧Mが第2の要求差圧ME2から第1の要求差圧ME1に変更されるパターンである。なお、第3の要求差圧ME3は、第1の要求差圧ME1よりも小さいものとする。
 図9に示すように、第1のパターンにおいて、要求差圧Mが第1の要求差圧ME1から第2の要求差圧ME2に変更されると、駆動電流値Idの降下によって実差圧Xが減少される。そして、駆動電流値Idが第21の指示電流値IpE21に達すると、実差圧Xが第2の要求差圧ME2で保持される。この場合、実差圧Xが第2の要求差圧ME2で保持されている時点のヒステリシス量HY1は比較的大きい。その後、要求差圧Mが第1の要求差圧ME1に変更されると、駆動電流値Idの上昇が開始される。このとき、駆動電流値Idの上昇開始時点からの初期状態では、増圧開始時ヒステリシス量HYI(=HY1)が比較的大きいため、実差圧Xが比較的上昇しやすい。すなわち、実差圧Xの増大勾配が比較的急勾配となるため、ヒステリシス量HYの減少勾配が比較的緩やかになる。この場合、実差圧Xが第1の要求差圧ME1に達する前に、ヒステリシス量HYが「0(零)」になる。その後に駆動電流値Idが、第1の要求差圧ME1に応じた第1の指示電流値IpE1に達すると、実差圧Xが第1の要求差圧ME1となる。
 一方、第2のパターンにおいて、要求差圧Mが第3の要求差圧ME3から第2の要求差圧ME2に変更されると、駆動電流値Idの降下によって実差圧Xが減少される。そして、駆動電流値Idが第21の指示電流値IpE21よりも大きい第22の指示電流値IpE22に達すると、実差圧Xが第2の要求差圧ME2で保持される。この場合、実差圧Xが第2の要求差圧ME2で保持されている時点のヒステリシス量HY2は、第1のパターンにおけるヒステリシス量HY1よりも小さい。その後、要求差圧Mが第1の要求差圧ME1に変更されると、駆動電流値Idの上昇が開始される。このとき、駆動電流値Idの上昇開始時点からの初期状態では、増圧開始時ヒステリシス量HYI(=HY2)が第1のパターンにおける増圧開始時ヒステリシス量HYI(=HY1)よりも小さいため、実差圧Xが上昇しにくい。すなわち、実差圧Xの増大勾配が緩やかになるため、ヒステリシス量HYの減少勾配が比較的急勾配となる。この場合も、実差圧Xが第1の要求差圧ME1に達する前に、ヒステリシス量HYが「0(零)」になる。その後に駆動電流値Idが、第1の要求差圧ME1に応じた第1の指示電流値IpE1に達すると、実差圧Xが第1の要求差圧ME1となる。
 すなわち、増圧開始時差圧XIの大きさが同等であるという条件下にあっては、増圧開始時ヒステリシス量HYIが小さいときほど、初期状態では実差圧Xが増大されにくく、ヒステリシス量HYが速やかに減少される。
 次に、こうしたヒステリシス量HYの減少態様を踏まえた、実差圧Xを再増大させる場合の制御方法について説明する。
 実差圧Xを要求差圧Mまで再増大させる場合、増圧開始時差圧XI、増圧開始時ヒステリシス量HYI及びその時点の実差圧Xに基づいて補正量Zが演算され、要求差圧Mから補正量Zを減じた差が補正要求差圧MZとされる。そして、指示電流値Ipは、図2に破線で示すマップを用い、補正要求差圧MZに応じた値に設定される。そして、こうした指示電流値Ipに基づいて駆動電流値Idを上昇させることにより、実差圧Xが円滑に要求差圧Mまで再増大される。
 補正要求差圧MZを演算する際に用いられる補正量Zは、実差圧Xの増大に伴って徐々に小さくされる。このときの補正量Zの減少勾配DDZは、上記初期状態におけるヒステリシス量HYの減少勾配と同程度の勾配にすることが好ましい。
 ここで、減少勾配DDZの演算方法について説明する。
 上述したように、実差圧Xの増大を開始させる時点でヒステリシス量HYが「0(零)」よりも大きい場合、増圧開始時差圧XI及び増圧開始時ヒステリシス量HYIに基づいて、ヒステリシス量HYの減少勾配を推定することができる。言い換えると、要求差圧Mの増大量に対する補正量Zの減少量である補正量の減少勾配DDZは、増圧開始時差圧XI及び増圧開始時ヒステリシス量HYIに基づいて設定することができる。例えば、図10に示すマップを用い、基準減少勾配DDZBが、増圧開始時差圧XIに応じた値に設定される。また、基準減少勾配DDZBを補正するための第3の補正ゲインG3が、増圧開始時ヒステリシス量HYIに応じた値に設定される。そして、設定した基準減少勾配DDZB及び第3の補正ゲインG3を、以下に示す関係式(式1)に代入することにより減少勾配DDZが求められる。
  DDZ=DDZB×G3 ・・・(式1)
 なお、上述したように、ヒステリシス量HYの減少勾配は、増圧開始時ヒステリシス量HYIが大きいときほど緩やかになりやすい。そのため、第3の補正ゲインG3は、増圧開始時ヒステリシス量HYIが大きいほど小さくされる。ただし、第3の補正ゲインG3は、「0(零)」よりも大きい。
 また、図10に示すマップでは、範囲の異なる増圧開始時差圧の領域である差圧領域R21,R22,R23毎に基準減少勾配DDZBが設定されている。上述したように、ヒステリシス量HYの減少勾配は、増圧開始時差圧XIが大きいときほど緩やか勾配になりやすい。そのため、最も高圧側の領域である第21の差圧領域R21に対応する基準減少勾配DDZB1は、他の差圧領域R22,R23に対応する基準減少勾配DDZB2,DDZB3よりも急勾配に設定されている。また、2番目に高圧側となる第22の差圧領域R22に対応する基準減少勾配DDZB2は、第21の差圧領域R21に対応する基準減少勾配DDZB1よりは緩やかであるものの、第23の差圧領域R23に対応する基準減少勾配DDZB3よりも急勾配に設定されている。
 なお、こうした減少勾配DDZに基づいて補正量Zを求めた場合、実差圧Xが要求差圧Mに近づくにつれて補正量Zが小さくなり、補正量Zが「0(零)」よりも小さくなる、すなわち補正量Zが負の値になることがある。この場合、補正要求差圧MZが大きくなりすぎ、この補正要求差圧MZに基づいて設定される指示電流値Ipが大きくなり過ぎることがある。このように指示電流値Ipが大きくなり過ぎると、実差圧Xが要求差圧Mを大幅に上回る事象が発生するおそれがある。この点、本実施形態では、こうした事象の発生を抑制するために、補正量Zが「0(零)」未満にならないようにしている。すなわち、減少勾配DDZに基づいて求めた補正量Zが負の値である場合、補正量Zが「0(零)」とされる。
 要求差圧が大きくされる増圧状態では、増圧開始時差圧XI及び増圧開始時ヒステリシス量HYIに応じた勾配(上記補正量の減少勾配)に従って補正量Zが減少される。すなわち、指示電流値Ipは、上記補正量の減少勾配に準じた指示電流値の増大勾配に従って増大される。そして、補正量Zが「0(零)」に達したときには、補正量Zが「0(零)」で固定される。このように補正量Zが「0(零)」に達する時点の差圧は、増圧開始時差圧XI及び増圧開始時ヒステリシス量HYIによって異なる。したがって、補正量Zが「0(零)」に達する時点の差圧が、「境界差圧」に相当し、増圧開始時差圧XIとこの境界差圧との差が、「増圧開始時差圧XIに応じた所定差圧」に相当する。また、増圧開始時差圧XIと境界差圧との間の領域が、「増圧開始時差圧領域」に相当する。
 ちなみに、図11に示すように、上記ヒステリシス量HYの変化態様は、差圧弁32が設けられている液圧回路311,312内を流れるブレーキ液の流量、すなわちポンプ38からのブレーキ液の吐出量Yによっても変わる。図11に示す実線は、吐出量Yが第1の吐出量Y1であるときの実差圧Xの変化に対するヒステリシス量HYの変化態様を示している。また、図11に示す破線は、吐出量Yが第1の吐出量Y1よりも少ない第2の吐出量Y2であるときの実差圧Xの変化に対するヒステリシス量HYの変化態様を示している。そして、図11に示す一点鎖線は、吐出量Yが第1の吐出量Y1よりも多い第3の吐出量Y3であるときの実差圧Xの変化に対するヒステリシス量HYの変化態様を示している。
 吐出量Yが第2の吐出量Y2である場合、実差圧Xが第11の差圧XB11以上であるときには、ヒステリシス量HYが、吐出量Yが第1の吐出量Y1であるときよりも大きくなる。その一方で、吐出量Yが第2の吐出量Y2である場合、実差圧Xが第11の差圧XB11未満であるときには、ヒステリシス量HYが、吐出量Yが第1の吐出量Y1であるときよりも小さくなる。また、吐出量Yが第3の吐出量Y3である場合、実差圧Xが第11の差圧XB11以上であるときには、ヒステリシス量HYが、吐出量Yが第1の吐出量Y1である場合よりも小さくなる。その一方で、吐出量Yが第3の吐出量Y3である場合、実差圧Xが第11の差圧XB11未満であるときには、ヒステリシス量HYが、吐出量Yが第1の吐出量Y1である場合よりも大きくなる。
 本実施形態では、第1の吐出量Y1は、基準吐出量となっている。すなわち、上記の増大勾配DIZ及び減少勾配DDZは、吐出量Yが第1の吐出量Y1である場合の勾配である。そのため、吐出量Yが第2の吐出量Y2や第3の吐出量Y3であるときには、増大勾配DIZ及び減少勾配DDZを補正することが好ましい。
 また、図12に示すように、上記ヒステリシス量HYの変化態様は、液圧回路311,312内を流れるブレーキ液の温度TMPによっても変わる。図12に示す実線は、ブレーキ液の温度TMPが室温であるときの実差圧Xの変化に対するヒステリシス量HYの変化態様を示している。また、図12に示す破線は、ブレーキ液の温度TMPが極めて低い温度であるときの実差圧Xの変化に対するヒステリシス量HYの変化態様を示している。
 実差圧Xが「0(零)」に近い状態、すなわち実差圧Xが第1の差圧XC11未満である場合、ブレーキ液の温度TMPに拘わらず、ヒステリシス量HYは同程度となる。また、実差圧Xが第2の差圧XC12以上である場合についても、ブレーキ液の温度TMPに拘わらず、ヒステリシス量HYは同程度となる。その一方で、実差圧Xが第1の差圧XC11以上であって且つ第2の差圧XC12未満である場合、ブレーキ液の温度TMPが低いほど、ヒステリシス量HYが大きくなる。そのため、ブレーキ液の温度TMPによってヒステリシス量HYの大きさが変わるような場合においては、上記増大勾配DIZ及び減少勾配DDZを補正することが好ましい。
 そこで次に、吐出量Y及びブレーキ液の温度TMPに基づいて増大勾配DIZ及び減少勾配DDZを補正する方法について説明する。
 吐出量Yに基づいた第1の補正ゲインを「G1」とし、ブレーキ液の温度TMPに基づいた第2の補正ゲインを「G2」としたとき、補正増大勾配DRIを以下に示す関係式(式2)のように表すことができるとともに、補正減少勾配DRDを以下に示す関係式(式3)のように表すことができる。すなわち、こうして演算された補正増大勾配DRIが、吐出量Y及びブレーキ液の温度TMPに応じて補正された増大勾配DIZに相当し、補正減少勾配DRDが、吐出量Y及びブレーキ液の温度TMPに応じて補正された減少勾配DDZに相当する。
  DRI=DIZ×G1×G2 ・・・(式2)
  DRD=DDZ×G1×G2 ・・・(式3)
 第1の補正ゲインG1は、図11に示す図に応じたマップを用いることにより、吐出量Yに応じた値に設定することができる。すなわち、そのときの吐出量Yに基づいたマップ(例えば、吐出量Yが第2の吐出量Y2であるときには図11に破線に応じたマップ)が読み出されるとともに、吐出量Yが第1の吐出量Y1であるときのマップ(すなわち、図11に実線に応じたマップであって、以下、「基準吐出量マップ」ともいう。)が読み出される。そして、そのときの吐出量Yに基づいたマップを用い、その時点の実差圧Xに応じたヒステリシス量である第1ヒステリシス量HY11が求められる。また、基準吐出量マップを用い、その時点の実差圧Xに応じたヒステリシス量である第2ヒステリシス量HY12が求められる。そして、第1ヒステリシス量HY11から第2ヒステリシス量HY12を減じた差が正である場合には第1の補正ゲインG1が「1」よりも大きい値に設定され、差が負である場合には第1の補正ゲインG1が「1」未満の値に設定される。なお、同差が「0(零)」である場合、第1の補正ゲインG1は「1」とされる。
 また、第2の補正ゲインG2は、図12に示す図に応じたマップを用いることにより、ブレーキ液の温度TMPに応じた値に設定することができる。すなわち、そのときのブレーキ液の温度TMPに基づいたマップが読み出されるとともに、ブレーキ液の温度TMPが室温であるときのマップ(以下、「基準液温マップ」ともいう。)が読み出される。そして、そのときのブレーキ液の温度TMPに基づいたマップを用い、その時点の実差圧Xに応じたヒステリシス量である第1ヒステリシス量HY21が求められる。また、基準液温マップを用い、その時点の実差圧Xに応じたヒステリシス量である第2ヒステリシス量HY22が求められる。そして、第1ヒステリシス量HY21から第2ヒステリシス量HY22を減じた差が正である場合には第2の補正ゲインG2が「1」よりも大きい値に設定され、差が負である場合には第2の補正ゲインG2が「1」未満の値に設定される。なお、同差が「0(零)」である場合、第2の補正ゲインG2は「1」とされる。
 次に、図13に示すフローチャートを参照して、差圧の減圧が開始される時点及び差圧の増圧が開始される時点を検出するためにECU60が実行する処理ルーチンについて説明する。なお、この処理ルーチンは、予め設定されている制御サイクル毎に実行される。
 図13に示すように、ECU60は、現時点の実差圧Xを演算する(ステップS11)。続いて、ECU60は、減圧判定フラグFLG1がオフであって且つ増圧判定フラグFLG2がオンであるか否かを判定する(ステップS12)。減圧判定フラグFLG1は、実差圧Xが増大されていないときにオンにセットされるフラグであり、増圧判定フラグFLG2は、実差圧Xが減少されていないときにオンにセットされるフラグである。本実施形態では、減圧判定フラグFLG1がオフであって且つ増圧判定フラグFLG2がオンである状態を「増圧状態」といい、減圧判定フラグFLG1がオンであって且つ増圧判定フラグFLG2がオフである状態を「減圧状態」というものとする。
 減圧判定フラグFLG1がオフであって且つ増圧判定フラグFLG2がオンである場合(ステップS12:YES)、すなわち増圧状態である場合、ECU60は、その処理を次のステップS13に移行する。一方、減圧判定フラグFLG1がオンであって且つ増圧判定フラグFLG2がオフである場合(ステップS12:NO)、すなわち減圧状態である場合、ECU60は、その処理を後述するステップS19に移行する。
 ステップS13において、ECU60は、最小値ホールド値H_minに予め設定されている初期値H_minAを設定する。この初期値H_minAは、ECU60が制御するブレーキアクチュエータ30で発生させることのできる差圧の最大値又は同最大値よりも大きい値に設定されている。続いて、ECU60は、現時点の最大値ホールド値H_maxと、ステップS11で演算した実差圧Xとを比較し、大きい方の値を最新の最大値ホールド値H_maxとする(ステップS14)。すなわち、最大値ホールド値H_maxは、実差圧Xが増大されているときには同実差圧Xの増大に伴って次第に大きくなる。一方、実差圧Xが増大して要求差圧Mに達し、実差圧Xが要求差圧Mで保持されている場合、最大値ホールド値H_maxもまた保持されることとなる。
 そして、ECU60は、ステップS14で更新した最大値ホールド値H_maxからステップS11で演算した実差圧Xを減じ、その差(=H_max-X)を差圧減少量ΔX1とする(ステップS15)。続いて、ECU60は、演算した差圧減少量ΔX1が予め設定されている減少判定値ΔX1_Th以上であるか否かを判定する(ステップS16)。この減少判定値ΔX1_Thは、実差圧Xの減少が実際に開始されたか否かを判定するための基準値である。そのため、差圧減少量ΔX1が減少判定値ΔX1_Th以上である場合には、要求差圧Mが小さい値に変更されたことにより、実差圧Xの減少が開始されたと判定することができる。一方、差圧減少量ΔX1が減少判定値ΔX1_Th未満である場合には、実差圧Xが増大している、又は実差圧Xの減少が未だ開始されていないと判定することができる。
 そして、差圧減少量ΔX1が減少判定値ΔX1_Th未満である場合(ステップS16:NO)、ECU60は、ステップS17,S18を実行することなく、本処理ルーチンを一旦終了する。一方、差圧減少量ΔX1が減少判定値ΔX1_Th以上である場合(ステップS16:YES)、ECU60は、減圧判定フラグFLG1をオンにするとともに、増圧判定フラグFLG2をオフにする(ステップS17)。そして、ECU60は、現時点の実差圧Xを減圧開始時差圧XDとしてRAM63の所定領域に記憶させる(ステップS18)。すなわち、増圧状態から減圧状態に移行したと判定できた場合(ステップS16:YES)に、その時点の実差圧Xが減圧開始時差圧XDとして取得される。この点で、本実施形態では、ECU60が、「減圧開始時差圧取得部」としても機能する。その後、ECU60は、その後、本処理ルーチンを一旦終了する。
 ステップS19において、ECU60は、最大値ホールド値H_maxに予め設定されている初期値H_maxAを設定する。この初期値H_maxAは、極めて小さい値に設定されており、例えば、「0(零)」に設定されている。続いて、ECU60は、現時点の最小値ホールド値H_minと、ステップS11で演算した実差圧Xとを比較し、小さい方の値を最新の最小値ホールド値H_minとする(ステップS20)。
 そして、ECU60は、ステップS11で演算した実差圧XからステップS20で更新した最小値ホールド値H_minを減じ、その差(=X-H_min)を差圧増大量ΔX2とする(ステップS21)。続いて、ECU60は、演算した差圧増大量ΔX2が予め設定されている増大判定値ΔX2_Th以上であるか否かを判定する(ステップS22)。この増大判定値ΔX2_Thは、実差圧Xの増大が実際に開始されたか否かを判定するための基準値である。そのため、差圧増大量ΔX2が増大判定値ΔX2_Th以上である場合には、要求差圧Mが大きい値に変更されたことにより、実差圧Xの増大が開始されたと判定することができる。一方、差圧増大量ΔX2が増大判定値ΔX2_Th未満である場合には、実差圧Xが減少している、又は実差圧Xの増大が未だ開始されていないと判定することができる。なお、増大判定値ΔX2_Thは、「0(零)」よりも大きい値であれば、減少判定値ΔX1_Thと同一値であってもよいし、減少判定値ΔX1_Thとは異なる値であってもよい。
 そして、差圧増大量ΔX2が増大判定値ΔX2_Th未満である場合(ステップS22:NO)、ECU60は、ステップS23,S24を実行することなく、本処理ルーチンを一旦終了する。一方、差圧増大量ΔX2が増大判定値ΔX2_Th以上である場合(ステップS22:YES)、ECU60は、減圧判定フラグFLG1をオフにするとともに、増圧判定フラグFLG2をオンにする(ステップS23)。そして、ECU60は、現時点の実差圧Xを増圧開始時差圧XIとしてRAM63の所定領域に記憶させる(ステップS24)。すなわち、減圧状態から増圧状態に移行したと判定できた場合(ステップS22:YES)に、その時点の実差圧Xが増圧開始時差圧XIとして取得される。この点で、本実施形態では、ECU60が、「増圧開始時差圧取得部」としても機能する。その後、ECU60は、その後、本処理ルーチンを一旦終了する。
 次に、図14に示すフローチャートを参照して、差圧弁32に対する指示電流値Ipを決定するためにECU60が実行する処理ルーチンについて説明する。なお、この処理ルーチンは、上記制御サイクル毎に実行される。
 図14に示すように、本処理ルーチンにおいて、ECU60は、減圧判定フラグFLG1がオンであるか否かを判定する(ステップS31)。減圧判定フラグFLG1がオンである場合、増圧判定フラグFLG2がオフであり、減圧状態であると判定することができる。一方、減圧判定フラグFLG1がオフである場合、増圧判定フラグFLG2がオンであり、増圧状態であると判定することができる。そして、減圧判定フラグFLG1がオンである場合(ステップS31:YES)、ECU60は、その処理を次のステップS32に移行する。一方、減圧判定フラグFLG1がオフである場合(ステップS31:NO)、ECU60は、その処理を後述するステップS39に移行する。
 ステップS32において、ECU60は、減圧開始時差圧XDから実差圧Xを減じることにより、差圧変化量ΔXBを求める。続いて、ECU60は、ポンプ38からのブレーキ液の吐出量Y及び温度TMPを読み出す(ステップS33)。なお、ブレーキ液の温度TMPを検出する方法としては、ブレーキ液の温度を検出するための温度センサを液圧回路311,312に設け、同温度センサによって検出される温度を採用してもよいし、車両に設けられている外気温を検出するセンサからの検出信号に基づいて推定したブレーキ液の温度であってもよい。
 そして、ECU60は、補正増大勾配DRIの演算処理を行う(ステップS34)。すなわち、ECU60は、図5に示すマップを用い、減圧開始時差圧XDに応じた増大勾配DIZを設定する。また、ECU60は、図11に示す図に応じたマップを用い、吐出量Yに応じた第1の補正ゲインG1を設定するとともに、図12示す図に応じたマップを用い、ブレーキ液の温度TMPに応じた第2の補正ゲインG2を設定する。そして、ECU60は、設定した増大勾配DIZ、第1の補正ゲインG1及び第2の補正ゲインG2を上記関係式(式2)に代入することにより、補正増大勾配DRIを求める。
 続いて、ECU60は、ステップS34で演算した補正増大勾配DRIにステップS32で演算した差圧変化量ΔXBを乗じることにより、補正量Zを求める(ステップS35)。次のステップS36において、ECU60は、現時点の実差圧Xに応じた制限値Z_Limを取得する(図5参照)。続いて、ECU60は、ステップS35で演算した補正量ZがステップS37で取得した制限値Z_Lim以上であるか否かを判定する(ステップS37)。補正量Zが制限値Z_Lim未満である場合(ステップS37:NO)、ECU60は、ステップS38を実行することなく、その処理を後述するステップS46に移行する。一方、補正量Zが制限値Z_Lim以上である場合(ステップS37:YES)、ECU60は、補正量Zを制限値Z_Limとし(ステップS38)、その処理を次のステップS46に移行する。この点で、ECU60が、指示電流値を補正するための補正量を、減圧開始時差圧に応じて設定する「減圧時補正量設定部」としても機能する。
 ステップS39において、ECU60は、実差圧Xから増圧開始時差圧XIを減じることにより、差圧変化量ΔXAを求める。続いて、ECU60は、ポンプ38からのブレーキ液の吐出量Y及び温度TMPを読み出す(ステップS40)。そして、ECU60は、補正減少勾配DRDの演算処理を行う(ステップS41)。すなわち、ECU60は、図10に示すマップを用いて基準減少勾配DDZBを増圧開始時差圧XIに応じた値にするとともに、第3の補正ゲインG3を増圧開始時ヒステリシス量HYIに応じた値にする。そして、ECU60は、基準減少勾配DDZB及び第3の補正ゲインG3を上記関係式(式1)に代入することにより、減少勾配DDZを求める。また、ECU60は、図11に示す図に応じたマップを用い、吐出量Yに応じた第1の補正ゲインG1を設定するとともに、図12に示す図に応じたマップを用い、ブレーキ液の温度TMPに応じた第2の補正ゲインG2を設定する。そして、ECU60は、設定した減少勾配DDZ、第1の補正ゲインG1及び第2の補正ゲインG2を上記関係式(式3)に代入することにより、補正減少勾配DRDを求める。
 続いて、ECU60は、実差圧Xの減少が終了された時点、すなわち実差圧Xの増大が開始される時点の補正量ZAを読み出す(ステップS42)。この補正量ZAが、「規定量」に応じた値となる。すなわち、補正量ZAを電流値に変換した値が規定量となる。そして、ECU60は、読み出した補正量ZAから、ステップS41で演算した補正減少勾配DRDにステップS39で演算した差圧変化量ΔXAを乗じた積を減じることにより、補正量Zを求める(ステップS43)。すなわち、ECU60は、減圧状態から増圧状態への移行によって実差圧Xを要求差圧Mまで増大させるとき、設定された補正減少勾配DRDに基づいて、増圧開始時補正量である補正量ZAから補正量Zを小さくする。
 そして、ECU60は、演算した補正量Zが「0(零)」以下であるか否かを判定する(ステップS44)。補正量Zが「0(零)」よりも大きい場合(ステップS44:NO)、ECU60は、その処理を後述するステップS46に移行する。一方、補正量Zが「0(零)」以下である場合(ステップS44:YES)、ECU60は、補正量Zを「0(零)」に設定し(ステップS45)、その処理を次のステップS46に移行する。すなわち、実差圧Xを増大させる場合、補正量Zが「0(零)」未満になることが規制される。この点で、本実施形態では、ECU60が、ステップS41で設定された補正減少勾配DRDで、増圧開始時補正量である補正量ZAから補正量Zを小さくする「増圧時補正量設定部」としても機能する。
 ステップS46において、ECU60は、設定されている要求差圧Mから補正量Zを減じることにより、補正要求差圧MZを求める。続いて、ECU60は、図2に破線で示すマップを用い、指示電流値Ipを、ステップS46で演算した補正要求差圧MZに応じた値に設定する。(ステップS47)。この点で、本実施形態では、ECU60が、「指示値設定部」としても機能する。その後、ECU60は、本処理ルーチンを終了する。
 次に、図15に示すタイミングチャートを参照して、実差圧Xを調整する際の作用について説明する。なお、前提として、ブレーキ液の温度TMPは室温であり、実差圧Xを調整する際におけるポンプ38からのブレーキ液の吐出量Yは第1の吐出量Y1で一定であるものとする。
 図15の(a)に示すように、第1の時点t1で、要求差圧Mが第1の要求差圧MC1に設定される。この第1の時点t1では、実差圧Xが「0(零)」であり、同時点t1から差圧弁32及びポンプ38が駆動し始める。このように実差圧Xを「0(零)」から要求差圧M(この場合、第1の要求差圧MC1)まで増大させる場合、ヒステリシスを加味することなく、図2に示すマップMAP1を用い、指示電流値Ipが要求差圧M(この場合、第1の要求差圧MC1)に応じた値に設定される。すると、指示電流値Ipの変更に伴って駆動電流値Idが上昇することにより、実差圧Xがほぼ一定勾配で増大される。このとき、実差圧Xの増大が開始される時点のヒステリシス量HYは「0(零)」であるため、図15の(d)に示すように、補正量Zは「0(零)」となっている。
 そして、第2の時点t2に達すると、実差圧Xが要求差圧M(すなわち、第1の要求差圧MC1)まで増大される。そして、第2の時点t2から第3の時点t3までは、実差圧Xが要求差圧M(すなわち、第1の要求差圧MC1)で保持される。そのため、図15の(c)に示すように、差圧増大量ΔX2は、第1の時点t1から第2の時点t2までは時間が経過するに連れて次第に大きくなり、第2の時点t2から第3の時点t3までは変化しない。また、図15の(b)に示すように、第1の時点t1から第3の時点t3までは、実差圧Xの減少が要求されないため、増圧状態とされる、すなわち増圧判定フラグFLG2がオンで保持される。
 そして、第3の時点t3で、要求差圧Mが、第1の要求差圧MC1よりも小さい第2の要求差圧MC2に変更される。すると、要求差圧Mの変更に伴い、指示電流値Ipが、第2の要求差圧MC2に応じた値に設定される。この指示電流値Ipが「基準指示電流値」となる。すると、指示電流値Ipの減少に伴って駆動電流値Idの降下が開始される。しかし、こうした駆動電流値Idの降下開始の直後にあっては、最大値ホールド値H_maxから実差圧Xを減じた値である差圧減少量ΔX1が減少判定値ΔX1_Th未満となる(ステップS16:NO)。そのため、差圧の減少が開始されたと判定されず、増圧状態が保持される(図15の(a)及び(b)参照)。
 第4の時点t4になると、差圧減少量ΔX1が減少判定値ΔX1_Th以上となり(ステップS16:YES)、増圧状態から減圧状態に移行する。すなわち、増圧判定フラグFLG2がオフとなり、減圧判定フラグFLG1がオンになる(ステップS17)。さらに、第4の時点t4における実差圧Xが減圧開始時差圧XDとして記憶される(ステップS18)。すると、第4の時点t4以降では、減圧開始時差圧XDからの実差圧Xの減少量が差圧変化量ΔXBとして演算される(ステップS32)。
 このように増圧状態から減圧状態に移行した場合、補正量Zが設定される。すなわち、第4の時点t4では、図5に示すマップを用い、増大勾配DIZが減圧開始時差圧XDに応じた値に設定される。また、第1の補正ゲインG1がポンプ38からのブレーキ液の吐出量Yに応じた値に設定され、第2の補正ゲインG2がブレーキ液の温度TMPに応じた値に設定される。そして、このように設定された増大勾配DIZ、第1の補正ゲインG1及び第2の補正ゲインG2を上記関係式(式2)に代入することにより、補正増大勾配DRIが求められる(ステップS34)。
 第4の時点t4から第5の時点t5までは、補正増大勾配DRIに差圧変化量ΔXBを乗じた積が、制限値Z_Lim(ここでは、上限値Z_max)未満である(ステップS37:NO)。そのため、補正量Zの増大が継続される。しかし、第5の時点t5に達すると、補正増大勾配DRIに差圧変化量ΔXBを乗じた積が、制限値Z_Lim(ここでは、上限値Z_max)と等しくなり、第5の時点t5以降では、図15の(d)に破線で示すように、上記積が制限値Z_Limよりも大きくなる(ステップS37:YES)。すなわち、第4の時点t4から第5の時点t5までは、差圧弁32による差圧である実差圧Xが減圧時差圧領域内で減少している。そして、第5の時点t5で実差圧Xが減圧時差圧領域の下限値に達する。そのため、第5の時点t5以降にあっては、補正量Zは制限値Z_Limと等しい値となる。
 そして、第4の時点t4以降では、要求差圧M(すなわち、第2の要求差圧MC2)から補正量Zを減じることにより、補正要求差圧MZが求められる(ステップS46)。そして、この補正要求差圧MZに応じた指示電流値Ipが設定される(ステップS47)。すなわち、指示電流値Ipは、第3の時点t3で設定された基準指示電流値から補正増大勾配DRIに応じた勾配で減少される。すると、指示電流値Ipの減少に伴う駆動電流値Idの降下によって、実差圧Xは、要求差圧M(すなわち、第2の要求差圧MC2)に向けて円滑に減少される。そして、第6の時点t6で、実差圧Xが要求差圧M(すなわち、第2の要求差圧MC2)に達し、実差圧Xが保持されるようになる(図15の(a)参照)。なお、第4の時点t4から第7の時点t7までは、実差圧Xの増大が要求されないため、減圧状態とされる、すなわち減圧判定フラグFLG1がオンで保持される(図15の(b)参照)。
 そして、第7の時点t7で、要求差圧Mが、第2の要求差圧MC2よりも大きい第3の要求差圧MC3に変更される。すると、要求差圧Mの変更に伴い、指示電流値Ipが、第3の要求差圧MC3に応じた値に設定される。この指示電流値Ipが「基準指示電流値」となる。すると、指示電流値Ipの増大に伴って駆動電流値Idの上昇が開始される。しかし、こうした駆動電流値Idの上昇開始の直後にあっては、実差圧Xから最小値ホールド値H_minを減じた値である差圧増大量ΔX2が増大判定値ΔX2_Th未満となる(ステップS22:NO)。そのため、差圧の増大が開始されたと判定されず、減圧状態が保持される(図15の(a)及び(b)参照)。
 第8の時点t8になると、差圧増大量ΔX2が増圧判定値ΔX2_Th以上となり(ステップS22:YES)、減圧状態から増圧状態に移行する。すなわち、減圧判定フラグFLG1がオフとなり、増圧判定フラグFLG2がオンになる(ステップS23)。さらに、第8の時点t8における実差圧Xが増圧開始時差圧XIとして記憶される(ステップS24)。すると、第8の時点t8以降では、増圧開始時差圧XIからの実差圧Xの増大量が差圧変化量ΔXAとして演算される(ステップS39)。
 第8の時点t8以降の状態は、実差圧Xの増大が再び開始された状態である。この場合、増圧開始時ヒステリシス量HYIは「0(零)」よりも大きい。そこで、本実施形態では、第8の時点t8では、上記関係式(式1)を用いることにより、増圧開始時差圧XI及び増圧開始時ヒステリシス量HYIに応じた減少勾配DDZが設定される。そして、こうした減少勾配DDZと、吐出量Yに応じた第1の補正ゲインG1と、ブレーキ液の温度TMPに応じた第2の補正ゲインG2を上記関係式(式3)に代入することにより、補正減少勾配DRDが求められる(ステップS41)。
 そして、第8の時点t8から第9の時点t9までは、第8の時点t8における補正量ZAから補正減少勾配DRDに差圧変化量ΔXAを乗じた積を減じることにより、補正量Zが求められる(ステップS43)。すなわち、補正量Zは、補正減少勾配DRDに基づいて次第に小さくなる。この補正量Zが「0(零)」よりも大きい場合(ステップS44:NO)、要求差圧Mからこの補正量Zを減じることにより、補正要求差圧MZが求められる(ステップS46)。すると、この補正要求差圧MZに応じた指示電流値Ipが設定される。すなわち、指示電流値Ipは、第8の時点t8で設定された基準指示電流値から補正減少勾配DRDに応じた勾配で増大される。すると、指示電流値Ipの変更に伴って駆動電流値Idが上昇する。
 また、上記補正量Zが「0(零)」以下になると(ステップS44:YES)、補正量Zは「0(零)」で保持される。この場合、補正要求差圧MZは要求差圧M(この場合、第3の要求差圧MC3)と一致するようになるため、指示電流値Ipは要求差圧M(すなわち、第3の要求差圧MC3)に応じた値となる。すなわち、第8の時点t8から補正量Zが「0(零)」になる時点までは、差圧弁32による差圧である実差圧Xが増圧時差圧領域内で増大している。そして、補正量Zが「0(零)」になる時点で実差圧Xが増圧時差圧領域の上限値に達する。つまり、実差圧Xが増圧時差圧領域外で増大している場合、補正量Zが「0(零)」で維持される。
 これにより、第8の時点t8からは実差圧Xがほぼ一定勾配で大きくなる。そして、第9の時点t9で、実差圧Xは、要求差圧M(すなわち、第3の要求差圧MC3)に達する。
 この第9の時点t9では、要求差圧Mが第3の要求差圧MC3から「0(零)」に変更される。すなわち、要求差圧Mが小さくなる。そして、指示電流値Ipが、「0(零)」に応じた値に設定される。この指示電流値Ipが「基準指示電流値」となる。すると、指示電流値Ipの減少に伴って、第9の時点t9からは、駆動電流値Idが降下され、実差圧Xが減少し始める。そして、第10の時点t10で、差圧減少量ΔX1が減少判定値ΔX1_Th以上になり、増圧状態から減圧状態に移行する(図15の(b)参照)。すると、第10の時点t10で記憶された減圧開始時差圧XDに基づき、補正増大勾配DRIが求められ(ステップS34)、この補正増大勾配DRIと差圧変化量ΔXBとに基づいて補正量Zが求められる(ステップS35)。
 こうした補正量Zは、実差圧Xが要求差圧M(すなわち、「0(零)」)に近づくに連れて次第に大きくなる。しかし、第11の時点t11で、補正増大勾配DRIに差圧変化量ΔXBを乗じた積が、制限値Z_Lim(ここでは、上限値Z_max)になるため(ステップS37:YES)、補正量Zは制限値Z_Limとされる(ステップS38)。
 そして、要求差圧Mからこうした補正量Zを減じることにより補正要求差圧MZを求め(ステップS46)、この補正要求差圧MZに応じた指示電流値Ipに基づき、駆動電流値Idの降下が制御される。このときの指示電流値Ipは、第10の時点t10で演算した補正増大勾配DRIに応じた勾配で減少される。ただし、第12の時点t12を経過すると、実差圧Xが規定差圧X_Th未満となる。そのため、図15の(d)に一点鎖線で示すように、制限値Z_Limが実差圧Xの減少に合わせて小さくなる。すなわち、補正量Zは、制限値Z_Limの減少に合わせて小さくなる。そして、第13の時点t13に達すると、実差圧Xが要求差圧M(すなわち、「0(零)」)になり、差圧の制御が終了される。すなわち、ポンプ38の駆動が停止される。
 以上、上記構成及び作用によれば、以下に示す効果を得ることができる。
 (1)実差圧Xを制御している際に、増圧状態から減圧状態に移行した場合、差圧弁32に対する指示電流値Ipが減圧開始時差圧XDに基づき設定される。すなわち、ヒステリシスの影響があるため、指示電流値Ipは、減圧開始時差圧XDが大きいときほど小さくされる。このようにヒステリシス量HYの変化態様が減圧開始時差圧XDの大きさによって変わることを鑑み、減圧開始時差圧XDに基づいて指示電流値Ipを設定することにより、実差圧Xを要求差圧Mまで好適に減少させることができる。
 (2)すなわち、減圧状態では、実差圧Xを要求差圧Mまで減少させる場合、補正量Zが、減圧開始時差圧XDが大きいほど大きくされる。そして、要求差圧Mからこうした補正量Zを減じることにより、補正要求差圧MZが演算され、こうした補正要求差圧MZに応じて指示電流値Ipを設定することにより、指示電流値Ipを、減圧開始時差圧XDに応じた勾配で減少させることができる。したがって、減圧状態では、指示電流値Ipをこのように減少させることにより、実差圧Xを要求差圧Mまで円滑に減少させることができる。
 (3)ここで、減圧状態で減圧開始時差圧XDに応じて演算した補正量Zが大き過ぎると、補正要求差圧MZ及び指示電流値Ipが小さくなり過ぎ、実差圧Xが要求差圧Mを大幅に下回ってしまうことがある。そこで、本実施形態では、補正量Zが制限値Z_Limを上回らないようにした。その結果、補正要求差圧MZ及び指示電流値Ipが小さくなり過ぎることが抑制されるため、実差圧Xが要求差圧Mを大幅に下回る事象の発生を抑制することができる。
 (4)なお、実差圧Xが小さい場合、駆動電流値Idの降下に対する実差圧Xの減少率が高い。そのため、実差圧Xを減少させている場合、ヒステリシス量HYの減少勾配は、実差圧Xが小さいときほど急勾配となる。よって、実差圧Xが規定差圧X_Th以上であるときには制限値Z_Limを上限値Z_maxとする一方で、実差圧Xが規定差圧X_Th未満であるときには制限値Z_Limを実差圧Xが小さいほど小さくするようにした。そのため、制限値Z_Limを、そのときの実差圧Xに応じた適切な値に設定することができ、補正量Zが大きくなり過ぎることを好適に規制することができる。したがって、実差圧Xを減少させるときには、実差圧Xが要求差圧Mを大幅に下回る事象の発生を抑制することができ、ひいては実差圧Xを高精度に制御することができる。
 (5)また、本実施形態では、減圧開始時差圧XDに応じた増大勾配DIZ(DIZ1~DIZ3)を求め、この増大勾配DIZに基づいて補正量Zを演算している。その結果、減圧状態では、そのときのヒステリシス量HYの変化態様に見合った勾配で、補正量Zを増大させることができる。これにより、指示電流値Ipを、そのときのヒステリシス量HYの変化態様に見合った勾配で減少させることができる。これにより、実差圧Xを要求差圧Mに向けて円滑に、すなわち実差圧Xを要求差圧Mまでほぼ一定勾配で減少させることができる。したがって、車輪FR,RLに対する制動トルクを徐々に低くすることができる。
 (6)増大勾配DIZ1~DIZ3は、差圧領域R11~R13毎に用意されている。そのため、減圧開始時差圧XD毎に増大勾配DIZを用意する場合と比較して、ECU60の制御負荷の増大を抑制することができる。
 (7)本実施形態では、減圧開始時差圧XDに応じて設定した増大勾配DIZを、そのときのポンプ38からのブレーキ液の吐出量Yによって補正することにより、補正増大勾配DRIが演算される。こうした補正増大勾配DRIに基づいて補正量Zを演算し、この補正量Zに基づいて補正要求差圧MZ及び指示電流値Ipが設定される。このようにそのときのブレーキ液の吐出量Yを加味して指示電流値Ipの減少態様を決定することにより、実差圧Xをより高精度に制御することができる。
 (8)また、本実施形態では、減圧開始時差圧XDに応じて設定した増大勾配DIZを、そのときのブレーキ液の温度TMPによって補正することにより、補正増大勾配DRIが演算される。こうした補正増大勾配DRIに基づいて補正量Zを演算し、この補正量Zに基づいて補正要求差圧MZ及び指示電流値Ipが設定される。このようにそのときのブレーキ液の温度TMPを加味して指示電流値Ipの減少態様を決定することにより、実差圧Xをより高精度に制御することができる。
 (9)減圧状態から増圧状態に移行する場合、増圧開始時ヒステリシス量HYIが「0(零)」よりも大きいことがある。この場合、増圧開始時差圧XIもまた「0(零)」よりも大きいため、増圧開始時差圧XIに基づいて指示電流値Ipの増大態様を制御することにより、実差圧Xを要求差圧Mまで円滑に増大させることができる。すなわち、本実施形態では、増圧開始時差圧XIに基づいて補正減少勾配DRDを求め、差圧Xの増大が開始される時点の補正量ZAから、補正減少勾配DRDに差圧変化量ΔXAを乗じた積を減じることにより補正量Zを求めている。そして、この補正量Zに基づいて補正要求差圧MZ及び指示電流値Ipが設定される。すなわち、指示電流値Ipを、増圧開始時差圧XIに応じた増大勾配で増大させることができる。その結果、実差圧Xが要求差圧Mまで円滑に増大される。したがって、実差圧Xの増大時には、増圧開始時差圧XIを考慮した補正要求差圧MZ及び指示電流値Ipを設定することにより、実差圧Xを要求差圧Mまで好適に増大させることができる。
 (10)また、補正減少勾配DRDを、増圧開始時ヒステリシス量HYIを考慮して求めている。そして、こうした補正減少勾配DRDに基づいて補正量Zを求め、同補正量Zに基づいて補正要求差圧MZ及び指示電流値Ipが設定される。このように増圧開始時差圧XIに加えて増圧開始時ヒステリシス量HYIをも考慮して指示電流値Ipの増大態様を決定することにより、実差圧Xを増大させるときにおける実差圧Xの制御性をさらに向上させることができる。
 (11)また、補正減少勾配DRDを、そのときのポンプ38からのブレーキ液の吐出量Yも考慮して求めている。そして、この補正減少勾配DRDに基づいて補正量Zを演算し、この補正量Zに基づいた補正要求差圧MZ及び指示電流値Ipを設定することにより、実差圧Xをより高精度に制御することができる。
 (12)また、補正減少勾配DRDを、そのときのブレーキ液の温度TMPも考慮して求めている。そして、この補正減少勾配DRDに基づいて補正量Zを演算し、この補正量Zに基づいた補正要求差圧MZ及び指示電流値Ipを設定することにより、実差圧Xをより高精度に制御することができる。
 (13)また、増圧状態では、補正量Zが「0(零)」未満になることを規制している。そのため、補正要求差圧MZが要求差圧Mよりも大きくなることを規制できる。その結果、実差圧Xが要求差圧Mを大幅に上回る事象の発生を抑制することができる。
 なお、上記実施形態は以下のような別の実施形態に変更してもよい。
 ・ヒステリシス量HYの発生態様や変化態様が、ブレーキ液の温度TMPによってあまり変わることがないのであれば、補正減少勾配DRDを、ブレーキ液の温度TMPを考慮することなく求めるようにしてもよい。この場合であっても、補正減少勾配DRDを、増圧開始時ヒステリシス量HYIや増圧開始時差圧XIを考慮して求めることにより、上記(9),(10)と同等の効果を得ることができる。
 ・ヒステリシス量HYの発生態様や変化態様が、液圧回路311,312内におけるブレーキ液の流量によってあまり変わることがないのであれば、補正減少勾配DRDを、ポンプ38からのブレーキ液の吐出量Yを考慮することなく求めるようにしてもよい。この場合であっても、補正減少勾配DRDを、増圧開始時ヒステリシス量HYIや増圧開始時差圧XIを考慮して求めることにより、上記(9),(10)と同等の効果を得ることができる。
 ・補正減少勾配DRDを、増圧開始時ヒステリシス量HYIを考慮するのであれば、増圧開始時差圧XIを考慮することなく求めるようにしてもよい。この場合であっても、上記(10)と同等の効果を得ることができる。
 例えば、補正減少勾配DRDは、増圧開始時差圧XIの大小とは関係なく、増圧開始時ヒステリシス量HYIが大きいほど緩やかな勾配に設定される。そして、増圧状態であって、且つ要求差圧Mが増圧時差圧領域内に含まれる場合には、こうした補正減少勾配DRDに基づいて補正量Zを減少させることにより、指示電流値Ipを、増圧開始時ヒステリシス量HYIに応じた勾配で増大させることができる。その結果、実差圧Xを変更前の要求差圧から変更後の要求差圧近傍まで円滑に増大させることができる。なお、この場合における上記増圧時差圧領域とは、増圧開始時差圧XIと、増圧開始時ヒステリシス量HYIに応じた所定差圧と増圧開始時差圧XIとの和である境界差圧との間の領域のことである。そして、変更後の要求差圧Mが増圧時差圧領域の上限値に達すると、補正量Zが「0(零)」となる。
 一方、増圧状態であっても要求差圧Mが増圧時差圧領域の上限値よりも大きい場合、実差圧Xが増圧時差圧領域の上限値に達するまでは、増圧開始時ヒステリシス量HYIに応じた補正減少勾配DRDに基づいて、補正量Zを減少させる。すると、実差圧Xが増圧時差圧領域の上限値に達した時点で補正量Zが「0(零)」となる。その後、実差圧Xが増圧時差圧領域外で上昇する場合には、補正量Zが「0(零)」で保持されることとなる。これにより、指示電流値Ipが、要求差圧Mに応じた基準指示電流値よりも大きくなることが抑制され、実差圧Xが要求差圧Mを大幅に上回る事象の発生を抑制することができる。
 ・補正減少勾配DRDを、増圧開始時差圧XIを考慮するのであれば、増圧開始時ヒステリシス量HYIを考慮することなく求めるようにしてもよい。この場合であっても、上記(9)と同等の効果を得ることができる。
 例えば、補正減少勾配DRDは、増圧開始時ヒステリシス量HYIの大小とは関係なく、増圧開始時差圧XIが小さいほど緩やかな勾配に設定される。そして、増圧状態であって、且つ要求差圧Mが増圧時差圧領域内に含まれる場合には、こうした補正減少勾配DRDに基づいて補正量Zを減少させることにより、指示電流値Ipを、増圧開始時差圧XIに応じた勾配で増大させることができる。その結果、実差圧Xを変更前の要求差圧から変更後の要求差圧近傍まで円滑に増大させることができる。なお、上記増圧時差圧領域とは、増圧開始時差圧XIと、増圧開始時差圧XIに応じた所定差圧と増圧開始時差圧XIとの和である境界差圧との間の領域のことである。そして、変更後の要求差圧Mが増圧時差圧領域の上限値に達すると、補正量Zが「0(零)」となる。
 一方、増圧状態であっても要求差圧Mが増圧時差圧領域の上限値よりも大きい場合、実差圧Xが増圧時差圧領域の上限値に達するまでは、増圧開始時差圧XIに応じた補正減少勾配DRDに基づいて、補正量Zを減少させる。すると、実差圧Xが増圧時差圧領域の上限値に達した時点で補正量Zが「0(零)」となる。その後、実差圧Xが増圧時差圧領域外で上昇する場合には、補正量Zが「0(零)」で保持されることとなる。これにより、指示電流値Ipが、要求差圧Mに応じた基準指示電流値よりも大きくなることが抑制され、実差圧Xが要求差圧Mを大幅に上回る事象の発生を抑制することができる。
 ・ヒステリシス量HYの発生態様や変化態様が、ブレーキ液の温度TMPによってあまり変わることがないのであれば、補正増大勾配DRIを、ブレーキ液の温度TMPを考慮することなく求めるようにしてもよい。この場合であっても、補正増大勾配DRIを、減圧開始時差圧XDを考慮して求めることにより、上記(1)~(6)と同等の効果を得ることができる。
 ・ヒステリシス量HYの発生態様や変化態様が、液圧回路311,312内におけるブレーキ液の流量によってあまり変わることがないのであれば、補正増大勾配DRIを、ポンプ38からのブレーキ液の吐出量Yを考慮することなく求めるようにしてもよい。この場合であっても、補正増大勾配DRIを、減圧開始時差圧XDを考慮して求めることにより、上記(1)~(6)と同等の効果を得ることができる。
 ・減少勾配DDZを、増圧開始時差圧XIが小さいときほど緩やかにすることができるのであれば、上記実施形態での設定方法とは異なる他の方法で設定するようにしてもよい。例えば、増圧開始時差圧XIが第1の差圧であるときの減少勾配を規定減少勾配とする。そして、増圧開始時差圧XIが第1の差圧よりも大きい場合には、補正ゲインを「1」よりも大きい値とし、この補正ゲインを規定減少勾配に乗じることにより減少勾配DDZを求めるようにしてもよい。逆に、増圧開始時差圧XIが第1の差圧よりも小さい場合には、補正ゲインを「1」よりも小さくかつ「0(零)」よりも大きい値とし、この補正ゲインを規定減少勾配に乗じることにより減少勾配DDZを求めるようにしてもよい。この場合であっても、上記(9)と同等の効果を得ることができる。
 ・増大勾配DIZを、減圧開始時差圧XDが小さいときほど緩やかにすることができるのであれば、上記実施形態での設定方法とは異なる他の方法で設定するようにしてもよい。例えば、減圧開始時差圧XDが第1の差圧であるときの増大勾配を規定増大勾配とする。そして、減圧開始時差圧XDが第1の差圧よりも小さい場合には、補正ゲインを「1」よりも小さい値(例えば、0.9)とし、この補正ゲインを規定増大勾配に乗じることにより増大勾配DIZを求めるようにしてもよい。逆に、減圧開始時差圧XDが第1の差圧よりも大きい場合には、補正ゲインを「1」よりも大きい値(例えば、1.2)とし、この補正ゲインを規定増大勾配に乗じることにより増大勾配DIZを求めるようにしてもよい。この場合であっても、上記(5)と同等の効果を得ることができる。
 ・記憶部として機能するROM62に記憶される特性は、ある差圧から実差圧Xを「0(零)」まで減少させる際における駆動電流値Idと実差圧Xとの関係を示すマップ又は関数であってもよい。また、特性は、ある差圧から実差圧Xを「0(零)」まで減少させる際における駆動電流値Idと実差圧Xとの関係を示すマップ又は関数と、実差圧Xを「0(零)」から増大させる際における駆動電流値Idと実差圧Xとの関係を示すマップ又は関数との間となる特性を示すマップ又は関数であってもよい。
 ・実差圧Xを減少させるための補正量Zの設定方法としては、上記実施形態以外の他の方法を採用してもよい。例えば、減圧開始時差圧XDが大きいほど第1補正量を大きい値に設定し、ポンプ38からのブレーキ液の吐出量Yに応じた第2補正量を設定し、ブレーキ液の温度TMPに応じた第3補正量を設定する。そして、第1補正量、第2補正量及び第3補正量の和を補正量Zとするようにしてもよい。この場合であっても、上記(1)と同等の効果を得ることができる。
 次に、上記実施形態及び別の実施形態から把握できる技術的思想を以下に追記する。
 (A)請求項8又は9において、前記指示値設定部は、指示電流値の増大勾配を、差圧弁が設けられている経路内におけるブレーキ液の流量に基づいて補正するようにしてもよい。
 ヒステリシス量は、上記経路内におけるブレーキ液の流量によっても変化しうる。そのため、指示電流値の増大勾配を上記経路内におけるブレーキ液の流量に基づいて補正することにより、増大勾配を、そのときのヒステリシス量の減少勾配に近づけることができる。そこで、上記構成によれば、指示電流値を、こうした増大勾配に基づいて大きくすることにより、差圧を増大させる際における差圧の制御性をより向上させることができるようになる。
 (B)請求項8又は9において、前記指示値設定部は、指示電流値の増大勾配を、差圧弁が設けられている経路内におけるブレーキ液の温度に基づいて補正するようにしてもよい。
 ヒステリシス量は、上記経路内におけるブレーキ液の温度によっても変化しうる。そのため、指示電流値の増大勾配をブレーキ液の温度に基づいて補正することにより、増大勾配を、そのときのヒステリシス量の減少勾配に近づけることができる。そこで、上記構成によれば、指示電流値を、こうした増大勾配に基づいて大きくすることにより、差圧を増大させる際における差圧の制御性をより向上させることができるようになる。
 22…マスタシリンダ、32…差圧弁、50a,50d…ホイールシリンダ、60…車両の制動制御装置としてのECU(指示値設定部、減圧開始時差圧取得部、減圧時補正量設定部、増圧開始時差圧取得部、増圧時補正量設定部)、62…記憶部の一例であるROM、DDZ…減少勾配、DIZ…増大勾配、DRD…補正減少勾配、DRI…補正増大勾配、FR,RL…車輪、HY…ヒステリシス量、HYI…増圧開始時ヒステリシス量、Id…駆動電流値、Ip…指示電流値、M…要求差圧、MZ…補正要求差圧、R11~R13,R21~R23…差圧領域、TMP…ブレーキ液の温度、X…実差圧、XD…減圧開始時差圧、XI…増圧開始時差圧、X_Th…規定差圧、Y…ポンプからのブレーキ液の吐出量、Z…補正量、ZA…増圧開始時補正量としての補正量、Z_Lim…制限値、Z_max…上限値。

Claims (11)

  1.  マスタシリンダと車輪に対応するホイールシリンダとの間の経路に設けられる差圧弁に対する指示電流値を、同差圧弁による差圧の要求値である要求差圧に応じた値に設定する指示値設定部と、
     前記差圧弁による差圧を増大させる増圧状態から前記差圧弁による差圧を減少させる減圧状態に移行した時点の差圧を減圧開始時差圧として取得する減圧開始時差圧取得部と、を備え、
     前記減圧開始時差圧取得部によって取得された減圧開始時差圧と、同減圧開始時差圧から同減圧開始時差圧に応じた所定差圧を減じた値である境界差圧との間の領域を、減圧時差圧領域とした場合、
     前記指示値設定部は、前記減圧状態であって、且つ前記要求差圧が前記減圧時差圧領域内に含まれるときには、前記要求差圧の減少量に対する指示電流値の減少量である指示電流値の減少勾配を、前記減圧開始時差圧が小さいほど緩やかな勾配にする
     車両の制動制御装置。
  2.  前記要求差圧に応じた指示電流値を基準指示電流値とした場合、
     前記減圧状態であるときに、指示電流値を補正するための補正量を設定する減圧時補正量設定部を備え、
     前記指示値設定部は、前記減圧状態であるときには、前記基準指示電流値から前記減圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定し、
     前記減圧時補正量設定部は、
     前記減圧状態であって、且つ前記要求差圧が前記減圧時差圧領域内に含まれるときには、前記要求差圧の減少量に対する補正量の増大量である補正量の増大勾配を前記減圧開始時差圧が小さいほど緩やかな勾配にし、同増大勾配に従って補正量を増大させ、
     前記減圧状態であって、且つ前記要求差圧が前記減圧時差圧領域の下限値よりも小さい場合、前記差圧弁による差圧が前記減圧時差圧領域内で減少しているときには、前記補正量の増大勾配を前記減圧開始時差圧が小さいほど緩やかな勾配にし、同増大勾配に従って補正量を増大させ、前記差圧弁による差圧が前記減圧時差圧領域を超えて減少しているときには、補正量を制限値と等しくする
     請求項1に記載の車両の制動制御装置。
  3.  前記差圧弁に流れる駆動電流値を上昇させるときにおける同駆動電流値と差圧との関係を示す特性を記憶する記憶部を備え、
     前記指示値設定部は、前記記憶部に記憶されている特性に基づき、前記基準指示電流値を、前記要求差圧が大きいほど大きくする
     請求項2に記載の車両の制動制御装置。
  4.  前記差圧弁による差圧が規定差圧以上であるときには、前記制限値を上限値とし、
     前記差圧弁による差圧が前記規定差圧未満であるときには、差圧が小さいほど前記制限値を小さくしてなる
     請求項2又は請求項3に記載の車両の制動制御装置。
  5.  前記指示値設定部は、差圧領域に応じて前記指示電流値の減少勾配を設定するようになっており、
     前記減圧開始時差圧が第1の差圧領域に含まれる場合の前記指示電流値の減少勾配は、同第1の差圧領域よりも高圧側となる第2の差圧領域に前記減圧開始時差圧が含まれる場合の前記指示電流値の減少勾配よりも緩やかである
     請求項1に記載の車両の制動制御装置。
  6.  前記指示値設定部は、前記指示電流値の減少勾配を、前記差圧弁が設けられている経路内におけるブレーキ液の流量に基づいて補正する
     請求項1~請求項5のうち何れか一項に記載の車両の制動制御装置。
  7.  前記指示値設定部は、前記指示電流値の減少勾配を、前記差圧弁が設けられている経路内におけるブレーキ液の温度に基づいて補正する
     請求項1~請求項6のうち何れか一項に記載の車両の制動制御装置。
  8.  前記減圧状態から前記増圧状態に移行した時点の差圧を増圧開始時差圧として取得する増圧開始時差圧取得部を備え、
     増圧開始時差圧と、同増圧開始時差圧に同増圧開始時差圧に応じた所定差圧を加算した値である境界差圧との間の領域を増圧時差圧領域とした場合、
     前記指示値設定部は、前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域内に含まれるときには、前記要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配を、前記増圧開始時差圧が小さいほど緩やかな勾配にする
     請求項1~請求項7のうち何れか一項に記載の車両の制動制御装置。
  9.  前記減圧状態から前記増圧状態に移行した時点の差圧を増圧開始時差圧として取得する増圧開始時差圧取得部と、
     前記減圧状態から前記増圧状態に移行した時点のヒステリシス量を増圧開始時ヒステリシス量として取得する増圧開始時ヒステリシス量取得部と、を備え、
     増圧開始時差圧と、前記増圧開始時ヒステリシス量取得部によって取得された増圧開始時ヒステリシス量に応じた所定差圧と前記増圧開始時差圧との和である境界差圧との間の領域を増圧時差圧領域とした場合、
     前記指示値設定部は、前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域内に含まれるときには、前記要求差圧の増大量に対する指示電流値の増大量である指示電流値の増大勾配を、前記増圧開始時ヒステリシス量が大きいほど緩やかな勾配にする
     請求項1~請求項8のうち何れか一項に記載の車両の制動制御装置。
  10.  前記要求差圧に応じた指示電流値を基準指示電流値とした場合、
     前記車両の制動制御装置は、
     前記増圧状態であるときに、指示電流値を補正するための補正量を設定する増圧時補正量設定部を備え、
     前記指示値設定部は、前記増圧状態であるときには、前記基準指示電流値から前記増圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定し、
     前記増圧時補正量設定部は、前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域内に含まれるときには、前記要求差圧の増大量に対する補正量の減少量である補正量の減少勾配を前記増圧開始時差圧が小さいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、
     前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域の上限値よりも大きい場合、前記差圧弁による差圧が前記増圧時差圧領域内で増大しているときには、前記補正量の減少勾配を前記増圧開始時差圧が小さいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、前記差圧弁による差圧が前記増圧時差圧領域の上限値を超えているときには、補正量を「0(零)」と等しくする
     請求項8に記載の車両の制動制御装置。
  11.  前記要求差圧に応じた指示電流値を基準指示電流値とした場合、
     前記増圧状態であるときに、指示電流値を補正するための補正量を設定する増圧時補正量設定部を備え、
     前記指示値設定部は、前記増圧状態であるときには、前記基準指示電流値から前記増圧時補正量設定部によって設定された補正量を減じた値に基づいて指示電流値を設定し、
     前記増圧時補正量設定部は、
     前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域内に含まれるときには、前記要求差圧の増大量に対する補正量の減少量である補正量の減少勾配を前記増圧開始時ヒステリシス量が大きいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、
     前記増圧状態であって、且つ前記要求差圧が前記増圧時差圧領域の上限値よりも大きい場合、前記差圧弁による差圧が前記増圧時差圧領域内で増大しているときには、前記補正量の減少勾配を前記増圧開始時ヒステリシス量が大きいほど緩やかな勾配にし、同減少勾配に従って補正量を減少させ、前記差圧弁による差圧が前記増圧時差圧領域の上限値を超えているときには、補正量を「0(零)」と等しくする
     請求項9に記載の車両の制動制御装置。
PCT/JP2014/070176 2013-07-31 2014-07-31 車両の制動制御装置 WO2015016300A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480036706.1A CN105358393B (zh) 2013-07-31 2014-07-31 车辆的制动控制装置
US14/909,019 US9714015B2 (en) 2013-07-31 2014-07-31 Braking control device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013159598A JP5962609B2 (ja) 2013-07-31 2013-07-31 車両の制動制御装置
JP2013-159598 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016300A1 true WO2015016300A1 (ja) 2015-02-05

Family

ID=52431827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070176 WO2015016300A1 (ja) 2013-07-31 2014-07-31 車両の制動制御装置

Country Status (4)

Country Link
US (1) US9714015B2 (ja)
JP (1) JP5962609B2 (ja)
CN (1) CN105358393B (ja)
WO (1) WO2015016300A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6470703B2 (ja) * 2016-05-27 2019-02-13 株式会社アドヴィックス 車両用制動装置
JP6881163B2 (ja) 2017-08-31 2021-06-02 株式会社アドヴィックス 車両の制動制御装置
KR20230036801A (ko) 2021-09-08 2023-03-15 현대모비스 주식회사 전동식 브레이크
US20240101083A1 (en) * 2022-09-21 2024-03-28 Baidu Usa Llc Electrical power conservation during braking for autonomous or assisted driving vehicles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224318A (ja) * 2011-04-22 2012-11-15 Toyota Motor Corp 液圧ブレーキシステム
JP2013047033A (ja) * 2011-08-29 2013-03-07 Hitachi Automotive Systems Ltd ブレーキ制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3613470C2 (de) * 1986-04-22 1994-10-20 Teves Gmbh Alfred Bremsanlage mit Schlupfregelung für Kraftfahrzeuge mit Vorderrad- oder Hinterradantrieb
JPH10250555A (ja) * 1997-03-14 1998-09-22 Unisia Jecs Corp ブレーキ制御装置
DE19834661B4 (de) * 1998-07-31 2007-09-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Bremsanlage
DE19848960B4 (de) 1998-10-23 2006-07-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung eines Drucksteuerventils, insbesondere einer Bremsanlage
JP4661340B2 (ja) * 2005-05-12 2011-03-30 株式会社アドヴィックス 車両のブレーキ液圧制御装置
DE102006011350A1 (de) * 2006-03-11 2007-09-13 Zf Friedrichshafen Ag Kompensation einer Hysterese eines elektronischen Druckstellers
DE102008006653A1 (de) * 2008-01-30 2009-08-06 Continental Teves Ag & Co. Ohg Verfahren zur Konditionierung eines Regelventils
JP5326770B2 (ja) * 2009-04-22 2013-10-30 株式会社アドヴィックス ブレーキ制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224318A (ja) * 2011-04-22 2012-11-15 Toyota Motor Corp 液圧ブレーキシステム
JP2013047033A (ja) * 2011-08-29 2013-03-07 Hitachi Automotive Systems Ltd ブレーキ制御装置

Also Published As

Publication number Publication date
JP5962609B2 (ja) 2016-08-03
US20160200298A1 (en) 2016-07-14
US9714015B2 (en) 2017-07-25
CN105358393B (zh) 2017-09-26
JP2015030319A (ja) 2015-02-16
CN105358393A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
US6030055A (en) Method and device for regulating the pressure in at least one wheel brake
JP5803893B2 (ja) 車両の制動制御装置
US8565980B2 (en) Compensation of reduced braking effect of a hydraulic brake system for a land craft
WO2015016300A1 (ja) 車両の制動制御装置
CN110072746B (zh) 放大能电子防滑调节的车辆制动系统中的制动力的方法和能电子防滑调节的车辆制动系统
US8489301B2 (en) Closed-loop control of brake pressure using a pressure-limiting valve
US20090112433A1 (en) Method for controlling valve in electronic hydraulic pressure control system
WO2018056392A1 (ja) ブレーキ制御装置
JP4207699B2 (ja) 液圧制御装置および液圧制御方法
JP4500743B2 (ja) 車両の制動制御装置
WO2011135707A1 (ja) 車両用液圧ブレーキシステム
JP2008290474A (ja) ブレーキ制御装置
JP6802908B2 (ja) アンチロック制御を実行するために設計されたブレーキシステムの電気機械式のブレーキ倍力装置を運転するための制御装置および方法
KR101967306B1 (ko) 솔레노이드 밸브 제어장치 및 그 제어방법
KR20110040842A (ko) 유압 시스템 내 밸브의 동작점을 결정하고 레벨링하기 위한 방법 및 장치
JP6481388B2 (ja) 車両の制動制御装置
JP6237662B2 (ja) ブレーキ制御装置
JP6136632B2 (ja) 車両の制動制御装置
CN112424038B (zh) 用于运行车辆的制动系统的控制装置和方法
JP2005038305A (ja) 液圧制御装置および液圧制御方法
JP2011073659A (ja) 車両の制動制御装置
JP6361421B2 (ja) 制動装置
CN113811468A (zh) 用于运行机动车辆的制动系统的方法和设备、制动系统和机动车辆
KR20220156943A (ko) 제동 시스템의 압력 위치를 조절하는 방법
KR100550948B1 (ko) 듀티비 맵을 이용한 솔레노이드 밸브의 피더블유엠 제어

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480036706.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832860

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14909019

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832860

Country of ref document: EP

Kind code of ref document: A1