WO2011135707A1 - 車両用液圧ブレーキシステム - Google Patents

車両用液圧ブレーキシステム Download PDF

Info

Publication number
WO2011135707A1
WO2011135707A1 PCT/JP2010/057636 JP2010057636W WO2011135707A1 WO 2011135707 A1 WO2011135707 A1 WO 2011135707A1 JP 2010057636 W JP2010057636 W JP 2010057636W WO 2011135707 A1 WO2011135707 A1 WO 2011135707A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
supply pressure
valve device
abs
abs valve
Prior art date
Application number
PCT/JP2010/057636
Other languages
English (en)
French (fr)
Inventor
宏司 中岡
徹也 宮崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011533885A priority Critical patent/JP5163817B2/ja
Priority to PCT/JP2010/057636 priority patent/WO2011135707A1/ja
Priority to US13/322,971 priority patent/US8899697B2/en
Priority to CN201080034308.8A priority patent/CN102470834B/zh
Priority to DE112010005528.9T priority patent/DE112010005528B4/de
Publication of WO2011135707A1 publication Critical patent/WO2011135707A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration

Definitions

  • the present invention relates to a hydraulic brake system for a vehicle that includes a hydraulic pressure source device and generates a braking force based on hydraulic fluid supplied by the hydraulic pressure source device.
  • a hydraulic brake system mounted on a vehicle the hydraulic fluid supplied by a hydraulic pressure source device capable of adjusting the hydraulic pressure of the hydraulic fluid without depending on the operating force applied to the brake operating member by the driver is used.
  • a hydraulic pressure source device capable of adjusting the hydraulic pressure of the hydraulic fluid without depending on the operating force applied to the brake operating member by the driver.
  • the supply pressure which is the hydraulic pressure of the hydraulic fluid supplied by the hydraulic pressure source device
  • the supply pressure is changed to be controllable so that the brake operation by the driver can be performed. Based on this, it is possible to generate an appropriate braking force.
  • an ABS valve device is mounted in the hydraulic brake system in order to suppress wheel lock, side slip, and the like.
  • the following patent document describes an example of a brake system including a hydraulic pressure source device and an ABS valve device.
  • A Summary of Invention
  • a brake system capable of generating a braking force based on hydraulic fluid supplied by a hydraulic pressure source device, to generate an appropriate braking force based on a brake operation by a driver.
  • the target supply pressure that is the target of the supply pressure is determined based on the brake operation by the driver, and the target supply pressure control is performed in which the power supplied to the hydraulic pressure source device is controlled so that the supply pressure becomes the target supply pressure Is done.
  • the target supply pressure control when the supply pressure is higher than the target supply pressure, electric power corresponding to the difference between the supply pressure and the target supply pressure is supplied to the pressure reducing linear valve of the hydraulic pressure source device, When the supply pressure is lower than the target supply pressure, electric power corresponding to the difference between the supply pressure and the target supply pressure is supplied to the pressure increasing linear valve of the hydraulic pressure source device.
  • the target range is set such that the upper limit value is a value obtained by adding the upper limit determination addition value to the target supply pressure, and the lower limit value is a value obtained by subtracting the lower limit determination subtraction value from the target supply pressure.
  • power is supplied to the pressure reducing linear valve to open the pressure reducing linear valve when the supply pressure exceeds the upper limit, and the pressure increasing linear valve has a lower supply pressure. Electric power for opening the pressure-increasing linear valve is supplied when the value is lower than the value.
  • the ABS valve device When the ABS valve device is operated, the hydraulic valve device is controlled so that the supply pressure is within the target range, so that frequent switching of the open / close state of the pressure reducing linear valve and the pressure increasing linear valve can be suppressed. .
  • the target supply pressure control is executed so that the supply pressure becomes the target supply pressure as soon as possible.
  • the two controls By selectively executing the two controls as described above, it is possible to suppress frequent switching of the open / close state of the pressure-reducing linear valve and the pressure-increasing linear valve when the ABS valve device is in operation.
  • the valve device When the valve device is not operated, it is possible to generate an appropriate braking force based on a brake operation by the driver.
  • the supply pressure often deviates from the target supply pressure.
  • the upper limit determination addition value is set to a large value in order to maintain the supply pressure at a certain level during target range control. In such cases, the supply pressure is often higher than the target supply pressure to some extent.
  • the present invention has been made in view of such circumstances, and in a brake system capable of selectively executing target supply pressure control and target range control, can satisfactorily cope with the end of the operation of the ABS valve device.
  • the problem is to provide a system.
  • the hydraulic brake system includes (A) determination of the depressurization threshold value as response control for responding to the situation under a situation where the operation of the ABS valve device is estimated to be terminated.
  • the target supply pressure control is executed when it is estimated that (B) the above upper limit determination addition value is reduced, and (C) the operation of the ABS valve device is completed.
  • at least one of increasing the electric power supplied to the linear valve for pressure reduction and (D) reducing the target supply pressure is executed.
  • the depressurization threshold value addition value is reduced.
  • the target supply pressure control is easily executed instead of the target range control, and the difference between the supply pressure and the target supply pressure can be reduced.
  • the upper limit determination additional value under the operation end condition, it becomes possible to reduce the upper limit value of the target range when the target range control is executed, and the difference between the supply pressure and the target supply pressure. Can be reduced.
  • the target supply pressure control is executed at the time when the ABS apparatus is estimated to be operating under the operation end condition, the supply pressure is increased by increasing the power supplied to the pressure reducing linear valve.
  • the target supply pressure can be quickly reduced, and the difference between the supply pressure and the target supply pressure can be reduced.
  • by reducing the target supply pressure as will be described in detail later, it becomes possible to increase the pressure reducing effect by the hydraulic valve device, and to reduce the difference between the supply pressure and the target supply pressure. Is possible. Therefore, according to the hydraulic brake system of the present invention, it is possible to reduce the difference between the supply pressure and the target supply pressure at the end of the operation of the ABS valve device by executing the corresponding control. It is possible to cope with the end of the operation in a good manner.
  • the item (1) added with the technical features described in the items (3), (5), (7), and (9) corresponds to claim 1
  • the technical features of (4), (6), (8) and (10) are added to claim 1 in claim 2, claim 1 or claim 2 in (11)
  • the technical features described in (11) and (13) are added to any one of claims 1 to 3 to which the technical features described in items (12) and (12) are added. Is added to the technical features of (11) and (14) in any one of claims 1 to 4, and is claimed in claim 5.
  • a brake operation member operated by a driver
  • a brake device that is provided on the wheel and generates a braking force according to the pressure supplied to the wheel
  • An electromagnetic pressure-increasing linear valve that boosts the hydraulic fluid according to the electric power supplied to itself, and an electromagnetic pressure-decreasing linear valve that depressurizes the hydraulic fluid according to the electric power supplied to itself.
  • a hydraulic pressure source device for supplying hydraulic fluid regulated by An ABS valve device interposed between the hydraulic pressure source device and the brake device;
  • a control device for controlling the operation of the pressure-increasing linear valve by controlling the power supplied to the pressure-increasing linear valve and controlling the operation of the pressure-increasing linear valve by controlling the power supplied to the pressure-increasing linear valve
  • a hydraulic brake system for vehicles comprising
  • the control device is A target supply pressure determining unit that determines a target supply pressure that is a target of a supply pressure that is a hydraulic pressure of hydraulic fluid supplied by the hydraulic pressure source device based on an operation of the brake operation member; (a) When the supply pressure is higher than the target supply pressure, the difference between the supply pressure and the target supply pressure is set so that the supply pressure becomes the target supply pressure determined by the target supply pressure determination unit.
  • a supply pressure control execution unit for selectively executing a second control is continuously supplied to the increased pressure linear valve power for opening the said increase pressure linear valve in the case of Tsu, As control executed by the supply pressure control execution unit, (i) when the ABS valve device is not operating, the first control is selected, while (ii) when the ABS valve device is operating.
  • the second control is performed when the supply pressure is equal to or higher than the target supply pressure, and is equal to or lower than a pressure obtained by adding a depressurization threshold value determination addition value larger than the upper limit determination addition value to the target supply pressure.
  • a control selection unit that selects each of the first controls when the supply pressure is higher than a pressure obtained by adding the depressurization threshold value addition value to the target supply pressure;
  • the control device further comprises: A vehicle hydraulic brake system having an ABS valve device operation end response unit that executes response control for responding to a situation where the operation of the ABS valve device is estimated to end.
  • the hydraulic pressure source device supplies the ABS valve device when the first control as the target supply pressure control is being executed.
  • the supply pressure which is the hydraulic pressure of the hydraulic fluid
  • the second control as the target range control is executed instead of the target pressure control when the ABS valve device is operating.
  • the target supply pressure control is executed so that the supply pressure quickly becomes the target supply pressure.
  • the two controls By selectively executing the two controls as described above, it is possible to suppress frequent switching of the open / close state of the pressure-reducing linear valve and the pressure-increasing linear valve when the ABS valve device is in operation.
  • the valve device When the valve device is not operated, it is possible to generate an appropriate braking force based on a brake operation by the driver.
  • the supply pressure is often deviated from the target supply pressure to some extent.
  • the upper limit determination addition value is a large value in order to maintain the supply pressure at a certain level during target range control. In such a case, the supply pressure is often higher than the target supply pressure.
  • Corresponding control may be control that can satisfactorily cope with the situation in which the operation of the ABS valve device is estimated to be completed.
  • the control may be control for increasing the effect of reducing the supply pressure.
  • the control may be able to be reduced to a low level.
  • the “ABS valve device” described in this section may have any structure that can increase or decrease the brake pressure, which is the pressure of the hydraulic fluid supplied to the brake device, in order to suppress the lock, side slip, idling, etc. of the wheel.
  • An ABS holding valve that can switch between a state where the hydraulic fluid supplied by the hydraulic pressure source device is allowed to flow into the brake device and a state where the hydraulic fluid is prohibited, and a flow of the hydraulic fluid supplied to the brake device to the reservoir are allowed.
  • An ABS pressure reducing valve capable of switching between a state and a prohibited state, the ABS holding valve is opened and the ABS pressure reducing valve is closed to increase the brake pressure, and the ABS holding valve is closed. Further, the brake pressure may be reduced by opening the ABS pressure reducing valve.
  • ABS valve device when the ABS valve device is operating” described in this section refers to a case where the open / close state of the ABS holding valve or the ABS pressure reducing valve is frequently switched, and “the ABS valve device is operating. “No” means a case where the ABS holding valve is opened and the state where the ABS pressure reducing valve is closed is maintained.
  • the “upper limit determination addition value” and the “decompression threshold determination addition value” described in this section are each a positive value, and the “lower limit determination subtraction value” is a positive value. In order to maintain the supply pressure at a certain level during execution of the target range control, it may be set to 0 or a negative value. That is, when the lower limit determination subtraction value is set to a positive value, the target range is a range including the target supply pressure.
  • the lower limit determination subtraction value when the lower limit determination subtraction value is set to 0, the lower limit value of the target range becomes the target supply pressure, and when the lower limit determination subtraction value is set to a negative value, the lower limit value of the target range Since the pressure becomes higher than the target supply pressure, it is possible to make the supply pressure higher than the target supply pressure to some extent when the target range control is executed.
  • the lower limit determination subtraction value is set to a negative value, the upper limit determination addition value is larger than the absolute value of the lower limit determination subtraction value, and the lower limit determination subtraction value is a positive value. Is set to a value larger than the absolute value of the lower limit determination subtraction value.
  • the correspondence control is The vehicle hydraulic brake system according to (1), which is control for reducing a difference between the supply pressure and the target supply pressure at the time when the operation of the ABS valve device is completed.
  • the ABS valve device operation end corresponding part is The hydraulic brake system for a vehicle according to (1) or (2), wherein the corresponding control is configured to reduce the depressurization threshold value addition value.
  • the depressurization threshold value addition value is reduced, and the target supply pressure control is executed instead of the target range control. It becomes easy. Therefore, according to the system described in this section, it is possible to reduce the difference between the supply pressure and the target supply pressure in a situation where the operation of the ABS valve device is estimated to end, and the operation of the ABS valve device is ended. It is possible to reduce a sense of discomfort with respect to the brake operation of the driver at the time.
  • ABS valve device operation end corresponding part is One of the traveling speed of the vehicle equipped with the vehicle hydraulic brake system and the target supply pressure is used as a parameter.
  • vehicle speed The higher the running speed of the vehicle (hereinafter may be referred to as “vehicle speed”), the easier the wheel skids, and the lower the vehicle speed, the harder the wheel skids. Further, the higher the target supply pressure, the easier the wheel lock occurs, and the lower the target supply pressure, the less likely the wheel lock occurs. For this reason, it is desirable to reduce the difference between the supply pressure and the target supply pressure in preparation for the end of the operation of the ABS valve device as the vehicle speed or the target supply pressure is lower. In the system described in this section, the lower the vehicle speed or the target supply pressure, the smaller the depressurization threshold value addition value can be made, and the difference between the supply pressure and the target supply pressure can be reduced. .
  • the ABS valve device operation end corresponding part is The vehicle hydraulic brake system according to any one of (1) to (4), wherein the correspondence control is configured to reduce the upper limit determination addition value.
  • the ABS valve device operation end corresponding part is Using one of the travel speed of the vehicle equipped with the vehicle hydraulic brake system and the target supply pressure as a parameter, the lower the parameter, the smaller the upper limit determination addition value is configured (5) The vehicle hydraulic brake system according to the item.
  • the upper limit value of the target range in the target range control that is, the upper limit determination addition value
  • the difference between the supply pressure and the target supply pressure may be increased in the target range control.
  • movement of an ABS valve apparatus may become large, so that the addition value for upper limit determination is large. Therefore, according to the system described in the above two items, the supply pressure at the time of execution of the target range control and the target can be reduced by reducing the upper limit determination addition value under the situation where the operation of the ABS valve device is estimated to end.
  • the difference from the supply pressure can be reduced, and the driver's uncomfortable feeling about the brake operation at the end of the operation of the ABS valve device can be reduced.
  • the difference between the supply pressure and the target supply pressure is further reduced by reducing the upper limit determination addition value as the vehicle speed or the target supply pressure is lower. It is possible to further reduce a sense of discomfort with respect to the brake operation of the driver at the end of operation of the device.
  • the ABS valve device operation end corresponding part is As the response control, when the first control is executed at the time when it is estimated that the operation of the ABS device is completed, the power supplied to the pressure-reducing linear valve is increased ( The vehicle hydraulic brake system according to any one of items 1) to (6).
  • the ABS valve device operation end corresponding part is One of the traveling speed of the vehicle equipped with the vehicle hydraulic brake system and the target supply pressure is used as a parameter, and the lower the parameter, the more the electric power supplied to the pressure-reducing linear valve is increased.
  • the vehicle hydraulic brake system according to item (7) configured.
  • the supply pressure is considerably higher than the target supply pressure. In such a case, if the operation of the ABS valve device is completed, the difference between the supply pressure and the target supply pressure is considerably large, so that the driver may feel a great sense of discomfort with respect to the brake operation.
  • the supply power to the pressure-reducing linear valve is increased when the target supply pressure control is being executed in a situation where the operation of the ABS valve device is estimated to end.
  • the supply pressure can quickly follow the target supply pressure. Therefore, according to the system described in the above two items, it is possible to reduce the difference between the supply pressure and the target supply pressure in a situation where the operation of the ABS valve device is estimated to end.
  • the difference between the supply pressure and the target supply pressure is further reduced by increasing the supply power to the linear valve for pressure reduction as the vehicle speed or the target supply pressure is lower.
  • the ABS valve device operation end corresponding part is The vehicle hydraulic brake system according to any one of (1) to (8), wherein the target supply pressure determined by the target supply pressure determination unit is reduced as the response control. .
  • the ABS valve device operation end corresponding part is Item (9) is configured to use one of the traveling speed of the vehicle equipped with the vehicle hydraulic brake system and the target supply pressure as a parameter, and to reduce the target supply pressure more greatly as the parameter is lower.
  • the threshold value for determining switching between the target supply pressure control and the target range control when the ABS valve device is operated is set to a value obtained by adding the depressurization threshold value addition value to the target supply pressure. For this reason, it is possible to reduce the threshold value by reducing the target supply pressure instead of reducing the depressurization threshold value addition value, and the target supply pressure control is executed instead of the target range control when the ABS valve device is operated. It becomes easy to be done. Further, the upper limit value of the target range is set to a value obtained by adding the upper limit determination addition value to the target supply pressure.
  • the target supply pressure control when the supply pressure is higher than the target supply pressure, electric power corresponding to a pressure difference obtained by subtracting the supply pressure from the target supply pressure is supplied to the pressure reducing linear valve. For this reason, by reducing the target supply pressure, it is possible to increase the power supplied to the linear valve for pressure reduction at the time of executing the target supply pressure control, and to quickly follow the target supply pressure with the supply pressure. Become.
  • the reduction threshold value determination addition value is reduced, the upper limit determination addition value is reduced, and the power supplied to the pressure reduction linear valve is reduced. It is possible to produce all the effects of the increase, and to reduce the driver's uncomfortable feeling about the brake operation at the end of the operation of the ABS valve device. Further, according to the system described in the latter section, the lower the vehicle speed or the target supply pressure, the lower the target supply pressure, thereby further reducing the difference between the supply pressure and the target supply pressure. It is possible to further reduce the driver's uncomfortable feeling about the brake operation at the end of the operation.
  • the hydraulic brake system may be executable only in one of the four modes or may be executable in a plurality of the four modes.
  • the plurality may be executed simultaneously as the corresponding control, and one of the plurality of items may be executed as the corresponding control alone. May be.
  • the addition value for determining the depressurization threshold value is decreased.
  • the upper limit determination addition value may be reduced, and either the reduction threshold value determination addition value may be reduced or the upper limit determination addition value may be selectively reduced.
  • the ABS valve device operation end corresponding part is Item (1) is configured to include an ABS valve device operation end estimation unit that estimates the end of operation of the ABS valve device, and to execute the correspondence control based on the estimation of the ABS valve device operation end estimation unit.
  • the hydraulic brake system for vehicles according to any one of items (10) to (10).
  • the ABS valve device operation end estimation unit The vehicle hydraulic brake system according to (11), configured to estimate that the operation of the ABS valve device is terminated when the supply pressure is stabilized.
  • the ABS valve device is structured to increase or decrease the brake pressure in order to suppress wheel locking, side slip, etc.
  • the supply pressure stabilizes as the brake pressure increases and decreases. Repeat the increase and decrease without doing.
  • the operating frequency of the ABS valve device decreases, the supply pressure does not increase or decrease greatly, and the range of fluctuations in the supply pressure decreases. That is, the supply pressure does not change greatly and stabilizes. Therefore, according to the system described in this section, it is possible to appropriately estimate that the operation of the ABS valve device is finished, and it is possible to execute the corresponding control at an appropriate timing.
  • the “ABS valve device operation end estimation unit” described in this section calculates the difference between the maximum and minimum values of supply pressure per unit time, the amount of change in the average value of supply pressure per unit time, the least square method, etc. By utilizing this, it is possible to determine the stability of the supply pressure. Specifically, for example, the supply pressure may be determined to be stable when the difference between the maximum value and the minimum value of the supply pressure per unit time is equal to or less than the set difference. It may be determined that the supply pressure is stable when the contribution ratio is equal to or greater than the set value.
  • the ABS valve device operation end estimation unit The configuration according to (11) or (12), wherein the operation of the ABS valve device is estimated to be terminated when the supply pressure increases even though the target supply pressure has not increased. Hydraulic brake system for vehicles.
  • the supply pressure increases as the target supply pressure increases.
  • the supply pressure decreases due to the operation of the ABS valve device. Therefore, the supply pressure may not increase even if the target supply pressure increases. That is, if the supply pressure does not increase despite the increase in the target supply pressure, it is highly likely that the ABS valve device is operating frequently.
  • the supply pressure does not increase despite the target supply pressure increasing, that is, when the supply pressure increases even though the target supply pressure does not increase, the ABS is increased. It is unlikely that the valve device is operating. Therefore, according to the system described in this section, it is possible to appropriately estimate that the operation of the ABS valve device is finished, and it is possible to execute the corresponding control at an appropriate timing.
  • the ABS valve device operation end estimation unit The vehicle hydraulic brake system according to any one of (11) to (13), configured to estimate that the operation of the ABS valve device is ended when the target supply pressure decreases.
  • the “ABS valve device operation end estimation unit” described in this section may determine the decrease in the target supply pressure based on the change gradient, change amount, change speed, etc. of the target supply pressure. It may be judged by such as. Specifically, for example, when the change gradient of the target supply pressure is equal to or less than the set gradient, it may be determined that the target supply pressure has decreased, and when the target supply pressure decrease amount is equal to or greater than the set amount. In addition, it may be determined that the target supply pressure has decreased.
  • the ABS valve device operation end estimation unit The vehicular fluid according to any one of (11) to (14), configured to estimate that the operation of the ABS valve device is terminated when the target supply pressure is equal to or lower than a set pressure. Pressure brake system.
  • the ABS valve device operation end estimation unit The items (11) to (15) are configured to estimate that the operation of the ABS valve device is terminated when the traveling speed of the vehicle equipped with the vehicle hydraulic brake system is equal to or lower than a set speed.
  • the vehicle hydraulic brake system according to any one of the above.
  • ABS valve device operation end estimation unit The vehicle according to any one of (11) to (16), wherein the operation of the ABS valve device is estimated to be terminated when the operation of the ABS valve device continues for a set time or longer. Hydraulic brake system.
  • the ABS valve device operates when suppressing wheel lock, side slip, etc., and hardly operates continuously for a long time. Therefore, according to the system described in this section, it is possible to appropriately estimate that the operation of the ABS valve device is finished, and it is possible to execute the corresponding control at an appropriate timing.
  • the ABS valve device operation end estimation unit The ABS valve device when a difference between a determination target pressure that is one of the supply pressure and the target supply pressure and a brake pressure that is a pressure of hydraulic fluid supplied to the brake device is equal to or less than a set difference.
  • the vehicle hydraulic brake system according to any one of items (11) to (17), which is configured to estimate that the operation of is completed.
  • the ABS valve device When the ABS valve device is not operating, the hydraulic fluid supplied by the hydraulic pressure source device acts on the brake device, so the supply pressure and the brake pressure are the same.
  • the brake pressure increases or decreases to suppress wheel locking or the like, and the supply pressure and the brake pressure are often different. That is, when the difference between the supply pressure and the brake pressure is small, it is considered that the operating frequency of the ABS valve device is decreased. Further, since the supply pressure and the target supply pressure increase and decrease in substantially the same manner, it is considered that the operating frequency of the ABS valve device is lowered even when the difference between the target supply pressure and the brake pressure is small. Therefore, according to the system described in this section, it is possible to appropriately estimate that the operation of the ABS valve device is finished, and it is possible to execute the corresponding control at an appropriate timing.
  • the hydraulic brake system may be capable of executing only one of the seven aspects, or may be capable of executing a plurality of the seven aspects.
  • the end of the operation of the ABS valve device may be estimated on condition that one of the plurality of aspects is satisfied.
  • the end of the operation of the ABS valve device may be estimated on the condition that two or more of the plurality are simultaneously satisfied.
  • the vehicle speed it may be estimated that the operation of the ABS valve device is finished when the speed becomes below the set speed, or the operation of the ABS valve device may be finished when the operation of the ABS valve device continues for a set time or more, Further, it may be estimated that the operation of the ABS valve device is ended when the vehicle speed is equal to or lower than the set speed and the operation of the ABS valve device continues for a set time or more.
  • the vehicle hydraulic brake system is Four brake devices each corresponding to the front, rear, left and right wheels are the brake devices, The ABS valve device operation end estimation unit, A single brake pressure for determining a difference from the determination target pressure is determined based on the brake pressure of each of at least one of the four brake devices, and the determined single brake pressure.
  • the four brake pressures corresponding to the four brake devices provided corresponding to the four wheels are usually different from each other when the ABS valve device is operated. For this reason, in the system described in this section, a single brake pressure is determined in order to determine the difference from the determination target pressure, and the difference between the determined single brake pressure and the determination target pressure is determined. The end of the operation of the ABS valve device is estimated.
  • the “ABS valve device operation end estimation unit” described in this section calculates a single brake pressure by using one of the four brake pressures or a value calculated using a plurality of the four brake pressures. Specifically, for example, an average value of four brake pressures, a maximum value, a second or third largest value, a value calculated by weighting each of the four brake pressures, etc.
  • the brake pressure should be determined.
  • the ABS valve device usually has four pairs of solenoid valves corresponding to the four wheels, and not all of the four pairs of solenoid valves are activated when the ABS valve device is operated. That is, at least one pair of solenoid valves may not operate. In such a case, a single brake pressure for determining the difference between the brake pressure of the wheel corresponding to any one of the at least one pair of solenoid valves that are not operating and the determination target pressure. You may decide to.
  • the vehicle hydraulic brake system is Four brake devices each corresponding to the front, rear, left and right wheels are the brake devices, The ABS valve device operation end estimation unit, The difference between the brake pressure of each of the four brake devices and the determination target pressure is determined, and even in one of the four brake devices, the difference between the brake pressure and the determination target pressure is equal to or less than the set difference.
  • the ABS valve device operation end corresponding part is As the correspondence control, (A) reducing the depressurization threshold value addition value; (B) reducing the upper limit determining addition value; (C) In the case where the first control is being executed at the time when the operation of the ABS device is estimated to end, increasing the power supplied to the pressure reducing linear valve; (D) It is configured to perform at least one of reducing the target supply pressure determined by the target supply pressure determination unit, (A) When the correspondence control is configured to reduce the pressure reduction threshold value addition value, a difference between the brake pressure and the determination target pressure among the four brake devices is equal to or less than the set difference.
  • the power supplied to the pressure reducing linear valve Increase more, (D)
  • the response control is configured to reduce the target supply pressure determined by the target supply pressure determination unit, the brake pressure and the determination target pressure of the four brake devices.
  • the difference from the determination target pressure is calculated for every four brake pressures in order to estimate the end of the operation of the ABS valve device.
  • the added value, the target supply pressure, the supply power, and the like in the corresponding control are changed according to the number of the four brake pressures whose difference from the determination target pressure is equal to or less than the set difference. If the difference between all the brake pressures and the judgment target pressure is less than the set difference, it is considered that the operating frequency of the four pairs of solenoid valves provided corresponding to all the wheels has decreased, If the difference between the brake pressure and the determination target pressure is larger than the set difference, it is considered that the four pairs of solenoid valves are operating frequently. Therefore, according to the system described in the latter section, it is possible to reduce the difference between the supply pressure and the target supply pressure as the number of the operation frequency of the four pairs of solenoid valves decreases. Become.
  • the ABS valve device operation end estimation unit A brake pressure estimating unit that estimates the brake pressure based on an operating state of the ABS valve device after the ABS valve device starts to operate, and the brake pressure estimating unit estimates the brake pressure and
  • the vehicle hydraulic brake system according to any one of items (18) to (21), configured to estimate the end of the operation of the ABS valve device.
  • the ABS valve device usually has four pairs of electromagnetic valves corresponding to the four wheels.
  • the pair of solenoid valves includes an ABS holding valve capable of increasing the brake pressure and an ABS pressure reducing valve capable of reducing the brake pressure.
  • the ABS holding valve is opened and the ABS pressure reducing valve is closed.
  • the brake pressure is increased, the ABS pressure reducing valve is opened, and the ABS holding valve is closed, thereby reducing the brake pressure. Therefore, based on the operating status of the ABS valve device, that is, the operating history of each of the ABS holding valve and the ABS pressure reducing valve, specifically, the valve opening time after the ABS valve device starts operating, etc. It is possible to calculate the amount of change.
  • each of the four brake pressures is the same as the supply pressure. Therefore, by subtracting the amount of change in brake pressure calculated based on the operation history of each of the ABS holding valve and the ABS pressure reducing valve from the supply pressure immediately before the ABS valve device is operated, the brake pressure when the ABS valve device is operated is reduced. It is possible to estimate appropriately.
  • the control selection unit When the ABS valve device is operating, the second control is performed when the supply pressure is less than the target supply pressure and is equal to or higher than a pressure obtained by subtracting a subtraction value for determining an increase threshold from the target supply pressure. (1) to (22), wherein the first control is selected when the supply pressure is less than a pressure obtained by subtracting the subtraction value for determining the pressure increase threshold value from the target supply pressure.
  • the hydraulic brake system for a vehicle according to any one of the items.
  • the target supply pressure control is executed when the supply pressure becomes too lower than the target supply pressure even when the ABS valve device is operating. Therefore, according to the system described in the above two items, even if the supply pressure is rapidly decreased, the supply pressure can be rapidly increased to the target supply pressure.
  • the target supply pressure control is easily executed instead of the target range control, and the supply pressure is increased when the ABS valve device is operated. It is possible to maintain.
  • the vehicle hydraulic brake system is A fluid passage for supplying hydraulic fluid from the fluid pressure source device to the ABS valve device; A detector that is provided in the liquid passage and detects the hydraulic pressure of the working fluid in the liquid passage;
  • the control device is The vehicle hydraulic brake system according to any one of (1) to (24), wherein the hydraulic pressure detected by the detector is regarded as the supply pressure.
  • the hydraulic pressure of the hydraulic fluid in the liquid passage is adopted as the supply pressure, and according to the system described in this section, it is possible to detect the supply pressure appropriately.
  • FIG. 1 It is a schematic diagram showing the drive system and braking system of the hybrid vehicle equipped with the hydraulic brake system for vehicles which is embodiment of claimable invention. It is the schematic which shows the hydraulic brake system for vehicles which is embodiment of the claimable invention. It is a schematic sectional drawing which shows the linear valve for pressure increase and the linear valve for pressure reduction of FIG. It is a graph which shows the relationship between a supply pressure and the valve opening current of the linear valve for pressure reduction. It is a graph which shows the relationship between the differential pressure of a high pressure source pressure and a supply pressure, and the valve opening current of the linear valve for pressure increase. It is a chart which shows roughly change with time passage of an addition value for pressure reduction threshold determination at the time of execution of correspondence control, target supply pressure, actual supply pressure, and brake pressure.
  • FIG. 6 is a chart schematically showing changes of a target supply pressure, an actual supply pressure, and a brake pressure over time when the actual supply pressure is increased even though the target supply pressure is not increased. It is the schematic which shows the relationship between a target supply pressure and the gain depending on it. It is the schematic which shows the relationship between the traveling speed of a vehicle, and the gain depending on it. It is a flowchart which shows the hydraulic braking program performed in control of the hydraulic brake system for vehicles. It is a flowchart which shows the subroutine at the time of the ABS valve apparatus operation
  • FIG. 1 schematically shows a drive system and a braking system for a hybrid vehicle equipped with the vehicle hydraulic brake system of the embodiment.
  • an engine 10 and an electric motor 12 are mounted as power sources, and a generator 14 that generates electric power by the output of the engine 10 is also mounted.
  • These engine 10, electric motor 12, and generator 14 are connected to each other by a power split mechanism 16.
  • the output of the engine 10 is divided into an output for operating the generator 14 and an output for rotating one of the four wheels 18 as a driving wheel,
  • the output from the electric motor 12 can be transmitted to the drive wheels. That is, the power split mechanism 16 functions as a transmission related to the driving force transmitted to the drive wheels via the speed reducer 20 and the drive shaft 22.
  • wheel 18 is used as a general term, but when indicating that they correspond to any of the four wheels, the left front wheel, the right front wheel, the left rear wheel, The subscripts “FL”, “FR”, “RL”, and “RR” are assigned to the right rear wheel, respectively. According to this notation, the driving wheels in the vehicle are the wheel 18RL and the wheel 18RR.
  • the electric motor 12 is an AC synchronous motor and is driven by AC power.
  • the vehicle is provided with an inverter 24, and the inverter 24 can convert electric power from direct current to alternating current or from alternating current to direct current. Therefore, by controlling the inverter 24, the AC power output from the generator 14 is converted into the DC power for storing in the battery 26, or the DC power stored in the battery 26 is converted into the electric motor. 12 can be converted into AC power for driving the motor 12.
  • the generator 14 has a configuration as an AC synchronous motor. That is, in the vehicle of the present embodiment, it can be considered that two AC synchronous motors are mounted, and one is used mainly as an electric motor 12 for outputting driving force, and the other is a generator. 14 is mainly used for power generation by the output of the engine 10.
  • the electric motor 12 can also generate power (regenerative power generation) by using the rotation of the wheels 18RL and 18RR accompanying the traveling of the vehicle. At this time, in the electric motor 12 connected to the wheels 18RL and 18RR, electric power is generated and a resistance force for stopping the rotation of the electric motor 12 is generated. Therefore, the resistance force can be used as a braking force for braking the vehicle. That is, the electric motor 12 is used as a regenerative brake means for braking the vehicle while generating electric power. Therefore, the vehicle is braked when the regenerative brake is controlled together with the engine brake and a hydraulic brake described later.
  • the above-described brake control and various other vehicle-related controls are performed by a plurality of electronic control units (ECUs).
  • the main ECU 40 has a function of supervising these controls.
  • the hybrid vehicle can run by driving the engine 10 and the electric motor 12.
  • the driving of the engine 10 and the driving of the electric motor 12 are comprehensively controlled by the main ECU 40.
  • the distribution of the output of the engine 10 and the output of the electric motor 12 is determined by the main ECU 40, and the engine ECU 42 that controls the engine 10, the electric motor 12, and the motor that controls the generator 14 based on the distribution. Commands for each control are output to the ECU 44.
  • a battery ECU 46 that controls the battery 26 is also connected to the main ECU 40.
  • a brake ECU 48 for controlling the brake is also connected to the main ECU 40.
  • the vehicle is provided with a brake operation member that is operated by a driver, and the brake ECU 48 determines a target braking force based on an operation amount of the brake operation member, and this target braking force is applied to the main ECU 40. Is output.
  • the main ECU 40 outputs this target braking force to the motor ECU 44, and the motor ECU 44 controls the regenerative braking based on the target braking force, and the execution value thereof, that is, the generated regenerative braking force is supplied to the main ECU 40. Output to.
  • the regenerative braking force is subtracted from the target braking force, and the target hydraulic braking force to be generated in the hydraulic brake system 100 mounted on the vehicle is determined by the subtracted value.
  • the main ECU 40 outputs the target hydraulic braking force to the brake ECU 48, and the brake ECU 48 performs control so that the hydraulic braking force generated by the hydraulic brake system 100 becomes the target hydraulic braking force in a normal state.
  • FIG. 2 conceptually shows a hydraulic brake system 100 provided in the vehicle.
  • the hydraulic brake system 100 includes a brake pedal 110 as a brake operation member, a master cylinder device 112, and a brake actuator 114.
  • the master cylinder device 112 includes a master cylinder 116 that pressurizes hydraulic fluid (brake fluid) based on depression of the brake pedal 110.
  • the master cylinder 116 includes two pressurizing chambers 118, 120.
  • the pressurizing chamber 118 is connected to one end of the main liquid passage 122, and the pressurizing chamber 120 is connected to one end of the main liquid passage 124.
  • the other end of the main fluid passage 122 is connected to a brake cylinder 128FL of a brake device 126FL that brakes the rotation of the left front wheel 18FL, and the other end of the main fluid passage 124 is a brake of the brake device 126FR that brakes the rotation of the right front wheel 18FR. It is connected to the cylinder 128FR.
  • a master cut valve 130 is provided in the middle of the main liquid passage 122, and a master cut valve 132 is provided in the middle of the main liquid passage 124.
  • Each of the master cut valves 130 and 132 is a normally open electromagnetic on-off valve that allows the flow of hydraulic fluid from the master cylinder 116 to the brake cylinder 128 in the open state and from the master cylinder 116 to the brake cylinder 128 in the closed state.
  • the master cylinder device 112 is provided with a reservoir 134 that stores hydraulic fluid at atmospheric pressure, and hydraulic fluid is supplied from the reservoir 134 to each of the pressurizing chambers 118 and 120 of the master cylinder 116.
  • a stroke simulator 138 is connected to the main fluid passage 122 via a simulator control valve 136 which is a normally closed electromagnetic on-off valve.
  • the brake actuator 114 adjusts the hydraulic pressures of the brake cylinders 128FL and FR, the wheel cylinder 128RL of the brake device 126RL that brakes the rotation of the left rear wheel 18RL, and the wheel cylinder 128RR of the brake device 126RR that brakes the rotation of the right rear wheel 18RR.
  • a high pressure source device 140, an ABS valve device 142, and a hydraulic pressure source device 144 are provided.
  • the high pressure source device 140 is provided in a high pressure passage 150 having one end connected to the reservoir 134.
  • the high pressure source device 140 stores the pump 152 that pumps hydraulic fluid from the reservoir 134 through the high pressure passage 150, the electric motor 154 that drives the pump 152, and the hydraulic fluid discharged from the pump 152 in a pressurized state. It has an accumulator 156 and a relief valve 158 that regulates the discharge pressure of the pump 152 to a set value or less.
  • the other end of the high-pressure passage 150 is connected to the common passage 160 so that the high-pressure hydraulic fluid generated by the high-pressure source device 140 can flow through the common passage 160.
  • one end of the low-pressure passage 162 is connected to the common passage 160, and the other end of the low-pressure passage 162 is connected to the reservoir 134. For this reason, the hydraulic fluid in the common passage 160 can flow to the reservoir 134 via the low-pressure passage 162.
  • the hydraulic pressure source device 144 includes a normally closed electromagnetic linear valve (hereinafter sometimes referred to as a “pressure increasing linear valve”) 170 provided downstream of the high pressure source device 140 in the high pressure passage 150, and a low pressure passage 162. And a normally closed electromagnetic linear valve (hereinafter also referred to as a “pressure-reducing linear valve”) 172.
  • the pressure-increasing linear valve 170 can control the inflow of the high-pressure hydraulic fluid generated by the high-pressure source device 140 into the common passage 160, while the pressure-decreasing linear valve 172 is in the common passage 160. It is possible to control the outflow of the hydraulic fluid to the reservoir 134.
  • the pressure-increasing linear valve 170 and the pressure-reducing linear valve 172 have a predetermined fixed relationship between the hydraulic pressure difference between the high-pressure side hydraulic fluid and the low-pressure side hydraulic fluid and the supply current, and increase or decrease of the supply current.
  • the valve opening pressure can be changed accordingly. Therefore, the pressure-increasing linear valve 170 and the pressure-decreasing linear valve 172 can continuously change the supply pressure, which is the fluid pressure that the fluid pressure source device 144 supplies to the common passage 160, by controlling the supply current. It is possible to easily control the pressure to an arbitrary height.
  • each of the pressure increasing linear valve 170 and the pressure reducing linear valve 172 includes a seating valve including a valve body 180 and a valve seat 182, a spring 184, a solenoid 186, It has.
  • the biasing force F1 of the spring 184 acts in a direction that causes the valve body 180 to approach the valve seat 182, and a current is supplied to the solenoid 186 so that the driving force F2 acts in a direction that causes the valve body 180 to separate from the valve seat 182.
  • the differential pressure acting force F3 corresponding to the differential pressure between the hydraulic pressure of the hydraulic fluid pressurized by the high pressure source device 140 and the supply pressure separates the valve body 180 from the valve seat 182.
  • the differential pressure acting force F ⁇ b> 3 according to the hydraulic pressure of the hydraulic fluid stored in the reservoir 134, that is, the differential pressure between the atmospheric pressure and the supply pressure, causes the valve body 180 to act. It acts in the direction of separating from the seat 182.
  • the pressure difference acting force F3 is controlled by controlling the amount of current supplied to the solenoid 186, and the pressure-increasing linear valve 170 and the pressure-decreasing linear valve.
  • the valve opening pressure of 172 can be controlled.
  • the supply pressure can be changed in a controllable manner by causing the pressure-increasing linear valve 170 and the pressure-decreasing linear valve 172 to function as a differential pressure valve.
  • the difference between the target supply pressure that is the target of the supply pressure and the actual supply pressure that is the actual supply pressure is large, the amount of current supplied to the solenoid 186 is increased, and the flow rate of the hydraulic fluid from the high pressure side to the low pressure side
  • the smaller the difference between the target supply pressure and the actual supply pressure the less the amount of power supplied to the solenoid 186, thereby changing the actual supply pressure to the target supply pressure.
  • a high-pressure source hydraulic pressure sensor 190 that detects the hydraulic pressure of the high-pressure hydraulic fluid generated by the high-pressure source device 140 is provided between the pump 152 of the high-pressure passage 150 and the pressure-increasing linear valve 170.
  • the passage 160 is provided with a common passage hydraulic pressure sensor 192 as a detector for detecting the hydraulic pressure of the working fluid in the common passage 160 as the liquid passage, that is, the supply pressure.
  • the four brake cylinders 128 are connected to the common passage 160 via the ABS valve device 142.
  • the ABS valve device 142 includes an ABS holding valve 200 for increasing and holding the hydraulic pressure of the brake cylinder 128 and an ABS pressure reducing valve 202 for reducing the hydraulic pressure of the brake cylinder 128 corresponding to each wheel.
  • the ABS holding valve 200 is provided in the middle of the individual passage 204 connected to the brake cylinder 128 and the common passage 160, and is an electromagnetic on-off valve.
  • the ABS holding valve 200FL corresponding to the left front wheel 18FL is a normally open valve, and the other three ABS holding valves 200FR, RL, RR are normally closed valves.
  • the ABS pressure reducing valve 202 is provided in the middle of the individual low-pressure passage 206 connected to the downstream side of the ABS holding valve 200 of the individual passage 204 and the low-pressure passage 162, and is an electromagnetic on-off valve.
  • the two ABS pressure reducing valves 202FL and FR corresponding to the front wheels 18FL and FR are normally closed valves, and the two ABS pressure reducing valves 202RL and RR corresponding to the rear wheels 18RL and RR are normally open valves.
  • a brake ECU 48 is provided as shown in FIG.
  • the brake ECU 48 is a control device that controls the operation of the various solenoid valves 130, 132, 136, 170, 172, 200, 202, and the pump 152, and hydraulic fluid pressure that acts on the brake cylinder 128 of each brake device 126. Is to control.
  • the brake ECU 48 includes a controller 210 mainly composed of a computer having a CPU, ROM, RAM, etc., a drive circuit 212 corresponding to the electric motor 154 that drives the pump 152, and various electromagnetic valves 130, 132, 136, 170.
  • a battery 230 is connected to the plurality of drive circuits 212 and the like via a converter 228, and electric power is supplied from the battery 230 to the electric motor 154, various control valves 130, and the like.
  • a controller 210 is connected to the plurality of drive circuits 212 and the like, and the controller 210 transmits each control signal to the plurality of drive circuits 212 and the like. Specifically, the controller 210 transmits a motor drive signal to the drive circuit 212 of the electric motor 154, and opens and closes various electromagnetic valves to the drive circuits 214, 216, and 218 of the master cut valves 130 and 132 and the simulator control valve 136, respectively. A control signal for transmitting is transmitted. Furthermore, a current control signal for controlling the magnetic force generated by the solenoid 186 of each linear valve 170, 172 is transmitted to the drive circuits 220, 222 of the pressure increasing linear valve 170 and the pressure reducing linear valve 172, and the ABS.
  • a wheel speed sensor 234 for detecting the response, a response method selection switch 236 for selecting a response method in response control to be described later, an estimation method selection switch 238 for selecting an estimation method of the operation end of the ABS valve device 142 in the response control, Are connected to each other, and the detection values of the sensors and switches are used in the control of the brake system 100 described later.
  • the master cut valves 130 and 132 are excited and closed so that the hydraulic fluid pressurized by the master cylinder 116 does not act on the brake cylinder 128.
  • the ABS holding valve 200FL corresponding to the left front wheel 18FL is demagnetized in order to operate the brake cylinder 128 depending on the hydraulic fluid regulated by the hydraulic pressure source device 144, and the other three ABS holding valves.
  • the two ABS pressure reducing valves 202FL and FR corresponding to the front wheels 18FL and FR are demagnetized, and the two ABS pressure reducing valves 202RL and RR corresponding to the rear wheels 18RL and RR are set in an excited state.
  • the ABS pressure reducing valve 202 is closed.
  • Target supply pressure control The target hydraulic braking force to be generated by the brake device 126 in the electric braking control is calculated by the main ECU 40 as described above, and the supply pressure that can generate the target hydraulic braking force is the target.
  • the supply hydraulic pressure P * is calculated by the controller 210 of the brake ECU 48. Then, the calculated target supply pressure P * is compared with the actual supply pressure Pr detected by the common passage hydraulic pressure sensor 192. When the actual supply pressure Pr is higher than the target supply pressure P * , the actual supply pressure Pr is detected.
  • the hydraulic pressure source device 144 is controlled to reduce the supply pressure Pr. When the actual supply pressure Pr is lower than the target supply pressure P *, the hydraulic pressure source device 144 is controlled to increase the actual supply pressure Pr. That is, in the electric braking control, the target supply pressure control for controlling the operation of the hydraulic pressure source device 144 so that the actual supply pressure Pr becomes the target supply pressure P * is executed.
  • the pressure increasing linear valve 170 is demagnetized so as to close the pressure increasing linear valve 170. That is, the energization amount to the solenoid 186 of the pressure increasing linear valve 170 is set to zero. Then, the energization amount to the solenoid 186 of the pressure reducing linear valve 172 is controlled so that the actual supply pressure Pr decreases to the target supply pressure P * .
  • the energization amount to the solenoid 186 of the pressure reducing linear valve 172 is determined based on the absolute value of the supply pressure difference ⁇ P which is the difference between the target supply pressure P * and the actual supply pressure Pr.
  • i * G i G0 + K G ⁇
  • K G is a proportional gain that corresponds to the pressure-reducing linear valve 172
  • i G0 is the hydraulic fluid stored in the actual supply pressure Pr and reservoir 134 which acts on the valve body 180 of the pressure-reducing linear valves 172
  • the valve opening current i GK of the pressure reducing linear valve 172 has a certain relationship with the supply pressure Pk, and is determined according to the following equation.
  • i GK f (Pk)
  • f (Pk) is a function that depends on the supply pressure Pk, and is a function that linearly decreases as the supply pressure Pk increases as shown in FIG.
  • the energization amount to the solenoid 186 of the pressure reducing linear valve 172 is set to 0 in order to close the pressure reducing linear valve 172. Then, the energization amount to the solenoid 186 of the pressure-increasing linear valve 170 is controlled so that the actual supply pressure Pr increases to the target supply pressure P * .
  • the target supply current i * Z energization amount to the solenoid 186 of the pressure increasing linear valve 170 is determined according to the following equation.
  • K Z is a proportional gain corresponding to the pressure-increasing linear valve 170
  • i Z0 is detected by the high pressure hydraulic fluid generated by the high pressure source device 140, that is, detected by the high pressure source hydraulic pressure sensor 190.
  • the valve opening current i ZK of the pressure-increasing linear valve 170 is determined according to the differential pressure (Ph ⁇ Pr) between the high-pressure source pressure Ph and the actual supply pressure Pr.
  • the valve opening current i ZK of the pressure-increasing linear valve 170 has a certain relationship with the differential pressure (Ph ⁇ Pk) between the high pressure source pressure Ph and the supply pressure Pk, and is determined according to the following equation.
  • g (Ph-Pk) a function depending on the differential pressure (Ph ⁇ Pk) between the high pressure source pressure Ph and the supply pressure Pk, and as shown in FIG. 5, the differential pressure (Ph ⁇ Pk) The function is such that it decreases linearly as it increases.
  • the energization amount to the solenoid 186 of the pressure-increasing linear valve 170 and the solenoid of the pressure-reducing linear valve 172 are maintained in order to maintain the actual supply pressure Pr.
  • the energization amount to 186 is 0 respectively.
  • the supply pressure can be set as the target supply pressure by controlling the energization amount to each solenoid 186 of the pressure increasing linear valve 170 and the pressure reducing linear valve 172.
  • the braking force generated by the brake device 126 can be set as the target hydraulic braking force.
  • ABS Anti-lock Brake System
  • VSC Vehicle Stability Control
  • TRC Traction Control
  • the ABS control is a control for suppressing the lock of the wheel at the time of sudden braking or the like
  • the VSC control is a control for suppressing a side slip of the wheel at the time of turning of the vehicle.
  • the TRC control is a control for suppressing idling of the drive wheels when the vehicle starts, suddenly accelerates, or the like.
  • the ABS holding valve 200 and the ABS pressure reducing valve 202 provided corresponding to each brake device 126 are controlled, so that the brake pressure of each brake device 126 is individually controlled.
  • the controller 210 of the brake ECU 48 the four ABS holding valves 200 and the four ABS pressure reducing valves are based on the rotation speed, slip ratio, etc. of each wheel.
  • the duty ratio is calculated corresponding to each of 202.
  • electric power is supplied to each ABS holding valve 200 and each ABS pressure reducing valve 202 so that each ABS holding valve 200 and each ABS pressure reducing valve 202 open and close according to the respective duty ratios.
  • the brake pressure can be increased to the supply pressure, and the ABS holding valve 200 is closed and the ABS pressure reducing valve 202 is opened. In this state, the brake pressure can be reduced to atmospheric pressure. In this way, by controlling the ABS valve device 142, wheel lock, side slip, idling and the like are suppressed.
  • each ABS holding valve 200 and each ABS pressure reducing valve 202 are opened and closed, so that the operation supplied by the hydraulic pressure source device 144 is performed.
  • the volume in the liquid passage such as the common passage 160 into which the liquid flows changes greatly, and it becomes difficult for the supply pressure to follow the target supply pressure.
  • the ABS pressure reducing valve 202 is opened, the hydraulic fluid flows out from the brake device 126 to the reservoir 134, and when the ABS holding valve 200 is opened, the hydraulic fluid in the common passage 160 flows into the brake device 126. To do.
  • the ABS holding valve 200 and the ABS pressure reducing valve 202 are frequently opened and closed.
  • the hydraulic fluid in the common passage 160 that is, the hydraulic fluid supplied from the hydraulic pressure source device 144 is often discharged to the reservoir 134 via the brake device 126, and it is difficult to maintain the supply pressure at a high pressure. There is a risk of becoming. Further, the supply pressure largely fluctuates as the hydraulic fluid supplied from the hydraulic pressure source device 144 is discharged to the reservoir 134, so that the energized state of the pressure increasing linear valve 170 and the pressure reducing linear valve 172 is frequently switched. There is a case.
  • Target range control Therefore, in the brake system 100, when the ABS control or the like is being executed, the hydraulic pressure valve is controlled so that the supply pressure falls within the target range instead of the target supply pressure control as the first control.
  • Target range control for controlling the device 144 is executed.
  • the pressure reducing linear valve 172 opens and the supply pressure becomes lower than the lower limit value of the target range.
  • Target range of the target range control the upper limit value with a value obtained by adding the upper limit determined addition value ⁇ to the target supply pressure P *, the lower limit value by subtracting the lower limit determination subtracted value ⁇ from the target supply pressure P * It is set to be a value. Since the target range control is executed in a situation where the hydraulic fluid in the common passage 160 is discharged to the reservoir 134 through the brake device 126 at a high frequency, in order to maintain the supply pressure at a certain level, the upper limit determination addition value ⁇ is set to be larger than the lower limit determination subtraction value ⁇ . Incidentally, the lower limit determining subtraction value ⁇ in the present system 100 is set to 0, so that the supply pressure is maintained at or above the target supply pressure.
  • the target supply current i * Z to the solenoid 186 of the pressure-increasing linear valve 170 has a lower limit determining subtraction value ⁇ of 0, so that the pressure-increasing linear valve 170 opens at the target supply pressure P * . 5 is determined according to the function shown in FIG. 5 showing the relationship between the differential pressure (Ph ⁇ Pk) between the high pressure source pressure Ph and the supply pressure Pk and the valve opening current i ZK of the pressure increasing linear valve 170.
  • the target range control it is possible to keep the supply pressure within the target range by controlling the energization amount to each solenoid 186 of the pressure increasing linear valve 170 and the pressure reducing linear valve 172. .
  • the pressure increasing linear valve 170 and the pressure reducing pressure do not follow the target supply pressure.
  • frequent switching of the energized state of the linear valve 172 can be suppressed.
  • the supply pressure can be kept within a range set to be equal to or higher than the target supply pressure, and the supply pressure can be maintained at a certain level.
  • the supply pressure may deviate greatly from the target range due to a sudden change in the target supply pressure P *, a sudden decrease in the brake pressure, or the like.
  • the unit time of the hydraulic fluid from the high pressure source device 140 to the common passage 160 It is desirable to increase the permeation amount or the outflow amount per unit time of the hydraulic fluid from the common passage 160 to the reservoir 134 so that the supply pressure quickly falls within the target range. Therefore, in the present system 100, even when the ABS control or the like is executed, when the supply pressure deviates greatly from the target range, the pressure increasing linear valve 170 and the pressure reducing linear valve 172 are used as flow rate adjusting valves.
  • Target supply pressure control which is functioning control, is executed.
  • the supply pressure in the target supply pressure control is reduced.
  • the supply pressure is lower than the pressure increase threshold set to a pressure lower than the target supply pressure
  • control to increase the supply pressure in the target supply pressure control is executed.
  • vacuum threshold, the target supply pressure P * on is set to a vacuum threshold determination addition value obtained by adding the P G (P * + P G ), increasing pressure threshold value, the target supply pressure P * increased from pressure threshold It is set to a value (P * ⁇ P Z ) obtained by subtracting the subtraction value P Z for determination.
  • vacuum threshold determination additional value P G is set to a value greater than the upper limit determined addition value alpha.
  • target range control is control that requires the supply pressure to be within the target range
  • target range control the supply pressure often deviates from the target supply pressure, and the width of the target range is set large. In such a case, the supply pressure may be greatly deviated from the target supply pressure.
  • the target supply pressure control is executed when the ABS valve device 142 is operating, the supply pressure is greatly deviated from the target supply pressure. The driver may feel uncomfortable with the brake operation.
  • the corresponding control is performed to respond to the situation.
  • Corresponding control is control for reducing the difference between the supply pressure and the target supply pressure at the time when the operation of the ABS valve device 142 is completed, and is for the driver's brake operation at the time when the operation of the ABS valve device 142 is completed. This is control for reducing a sense of incongruity.
  • the target range control executed when the ABS valve device is operated is a control for keeping the supply pressure within the target range set to be equal to or higher than the target supply pressure. Therefore, the supply pressure when the ABS valve device is operated is the target supply. Often over pressure.
  • the response control is control for bringing the supply pressure that is higher than the target supply pressure closer to the target supply pressure, and is control for increasing the pressure reduction effect.
  • the response control is control for bringing the supply pressure that is higher than the target supply pressure closer to the target supply pressure, and is control for increasing the pressure reduction effect.
  • it is possible to reduce the difference between the supply pressure and the target supply pressure by various methods under a situation where the operation of the ABS valve device 142 is estimated to end. That is, there are various variations in the correspondence control executed in the system 100. Below, the variation of response
  • the ABS valve device 142 is operating. Further, it is desirable that the pressure reduction threshold for switching between the target supply pressure control and the target range control is set to a value somewhat higher than the target supply pressure. However, as the depressurization threshold is set higher than the target supply pressure, it becomes more difficult to switch from the target range control to the target supply pressure control, and the difference between the supply pressure and the target supply pressure becomes larger when the supply pressure is higher than the target supply pressure. There is a risk.
  • the vacuum threshold determination additional value P G for setting the decompression threshold to a small value. More specifically, during normal, the vacuum threshold determination additional value P G may be set to P G1, in a situation where the operation of the ABS valve device 142 is presumed to end, the pressure reduction threshold determination additional value P G Change to P G2 smaller than P G1 .
  • the vacuum threshold determination additional value P G By reducing the thus reduced pressure threshold determination additional value P G, and easily switched from the target range control to control the target supply pressure, the difference between the supply pressure and the target supply pressure at operating end of the ABS valve device 142 Can be reduced. That is, as the corresponding control, vacuum by the threshold value determination additional value P G is changed to a small value, it is possible to reduce the uncomfortable feeling of the driver's operation at the end of the ABS valve device.
  • the target supply pressure when the corresponding control relies on vacuum threshold determination additional value P G is running P *, the actual supply pressure Pr, the change over time of the braking pressure P B, and vacuum threshold determination showing changes over time of use additional value P G.
  • the value of the pressure reducing threshold determination additional value P G is a small value, i.e., when the value of the pressure reducing threshold determination additional value P G is a P G2
  • the actual supply pressure Pr (dotted line) and the brake pressure P B one-dot chain line
  • the actual supply pressure Pr and the brake pressure P B Is indicated by a one-dot chain line.
  • the upper limit value of the target range that is, the upper limit determination addition value ⁇ is a large value. It is desirable to make it.
  • the higher the upper limit determination addition value ⁇ is set the greater the difference between the valve opening pressure of the pressure reducing linear valve 172 and the target supply pressure, and the supply pressure is higher when the supply pressure is higher than the target supply pressure. There is a possibility that the difference from the target supply pressure becomes large.
  • the upper limit determination addition value ⁇ is changed to a small value under a situation in which the operation of the ABS valve device 142 is estimated to end.
  • the upper limit determination addition value ⁇ is set to ⁇ 1 during normal times, and the upper limit determination addition value ⁇ is smaller than ⁇ 1 under the situation where the operation of the ABS valve device 142 is estimated to end. to change to the ⁇ 2.
  • the difference between the valve opening pressure of the pressure reducing linear valve 172 and the target supply pressure is reduced, and the supply pressure and the target at the time when the operation of the ABS valve device 142 ends.
  • the difference from the supply pressure can be reduced. That is, by changing the upper limit determination addition value ⁇ to a small value as the corresponding control, it is possible to reduce the driver's uncomfortable feeling at the end of the operation of the ABS valve device.
  • FIG. 7A shows changes with time in target supply pressure P * , actual supply pressure Pr, and brake pressure P B when corresponding control is not executed
  • FIG. 7B shows addition for determining an upper limit.
  • target supply pressure P * when the corresponding control relies on the value ⁇ is running
  • the actual supply pressure Pr showing changes over time of the braking pressure P B.
  • FIG. 7A when the corresponding control is not executed (FIG. 7A), the actual supply pressure Pr (dotted line) is maintained at a high pressure even if the target supply pressure P * (solid line) is reduced. Therefore, the difference between the target supply pressure P * and the actual supply pressure Pr is large.
  • FIG. 7A shows changes with time in target supply pressure P * , actual supply pressure Pr, and brake pressure P B when corresponding control is not executed
  • FIG. 7B shows addition for determining an upper limit.
  • target supply pressure P * when the corresponding control relies on the value ⁇ is running
  • the actual supply pressure Pr showing changes over time of the braking pressure P B.
  • the target supply pressure control may be executed when the ABS valve device 142 is operated. In this case, the supply pressure greatly deviates from the target supply pressure. Therefore, control using feedback control is executed to quickly reduce the difference between the supply pressure and the target supply pressure.
  • the component of the target supply current to the solenoid 186 is determined according to the difference between the actual supply pressure and the target supply pressure, and the pressure reducing effect is determined according to the feedback gain used when the component is determined. Or, the pressure increasing effect changes.
  • the proportional gain K G corresponding to pressure-reducing linear valve 172 are utilized, its vacuum effect proportional as the gain K G is high is high, vacuum effect increases proportional gain K G is low is low.
  • a high proportional gain K G corresponding to the pressure-reducing linear valve 172 To do in a situation where the operation of the ABS valve device 142 is estimated to end, when the control target supply pressure is running, a high proportional gain K G corresponding to the pressure-reducing linear valve 172 To do.
  • the proportional gain K G may be set to K G1
  • the proportional gain K G to K greater K than G1 G2 To do By increasing such proportional gain K G, by increasing the vacuum effect, it is possible to reduce the difference between the supply pressure and the target supply pressure at operating end of the ABS valve device 142. That is, as the corresponding control, by increasing the proportional gain K G corresponding to the pressure-reducing linear valve 172, to increase the power supplied to the pressure-reducing linear valve 172, the driver's discomfort in operation at the end of the ABS valve device Can be reduced.
  • Vacuum threshold the target supply pressure P * on is set to a vacuum threshold determination addition value obtained by adding the P G (P * + P G), vacuum threshold determination additional value P in G rather than the target supply pressure P * It is also possible to reduce the decompression threshold value by reducing the value of.
  • the upper limit of the target range is set to the target supply pressure P * to a value obtained by adding the upper limit determination additional value alpha (P * + alpha), the target supply pressure rather than limit determination additional value alpha P * It is also possible to reduce the upper limit value by making it smaller.
  • the target supply current i * G i G0 + K G ⁇ (Pr-P *)
  • the target supply current i * G of the pressure-reducing linear valve 172 rather than the proportional gain K G, to increase the difference between the actual supply pressure Pr and the target supply pressure P * (Pr-P *) It also increases. That is, even if the target supply pressure P * is reduced, the difference (Pr ⁇ P * ) between the actual supply pressure Pr and the target supply pressure P * is increased, and the target supply current i * G of the pressure reducing linear valve 172 is increased. It is possible to make it.
  • the target supply pressure P * used for control is reduced as the corresponding control under the situation where the operation of the ABS valve device 142 is estimated to end. Specifically, in the normal state, each control is executed using the target supply fluid pressure P * corresponding to the target fluid pressure braking force, and the target fluid is estimated under the condition that the operation of the ABS valve device 142 is finished.
  • Each control is executed using the pressure (P * ⁇ ) obtained by reducing the set reduction value ⁇ (> 0) from the target supply hydraulic pressure P * corresponding to the pressure braking force.
  • P * ⁇ the pressure obtained by reducing the set reduction value ⁇ (> 0) from the target supply hydraulic pressure P * corresponding to the pressure braking force.
  • ABS valve device 142 Estimating the end of the operation of the ABS valve device
  • the ABS valve device 142 is controlled to suppress wheel lock, side slip, idling, etc., and by determining whether or not the wheel lock is likely to occur, the ABS valve device 142 It is possible to estimate the end of operation. Further, since the brake pressure, the supply pressure, and the like change with the operation of the ABS valve device 142, the ABS valve device is based on the history of changes in the brake pressure, the supply pressure, etc., the relationship between the brake pressure and the supply pressure, and the like. It is also possible to estimate the end of operation 142.
  • the end of the operation of the ABS valve device 142 can be estimated based on factors such as brake pressure, supply pressure, wheel lock, and the like.
  • the ABS valve device can be estimated by various methods. The end of operation of the device 142 is estimated. Below, the variation of the estimation method of the completion
  • the present system 100 which estimates the end of the operation of the ABS valve device 142 based on the difference between the actual supply pressure Pr and the braking pressure P B, the actual supply pressure Pr and the braking pressure as a determination target pressure P B It is estimated that the operation of the ABS valve device 142 will be finished soon when the difference between the two becomes equal to or less than the set difference P 1 .
  • the actual supply pressure Pr is a control target supply pressure is controlled so as to follow the target supply pressure P *, controlled to be a target range control a pressure close to the target supply pressure P * Has been.
  • the target supply hydraulic pressure P * can be used instead of the actual supply pressure Pr. Therefore, in the present system 100, also based on the difference between the target supply pressure P * and the brake pressure P B and estimates the end of the operation of the ABS valve device 142, the target feed pressure as a determination target pressure P * It is estimated that the operation of the ABS valve device 142 will be completed soon when the difference between the brake pressure P B and the brake pressure P B becomes equal to or less than the set difference P 2 .
  • the brake pressure P B is estimated based on the operating state of the ABS valve device 142. Since the estimation method of the brake pressure P B is a known method, a brief description will be given first. A change amount of the brake pressure P B is calculated. Then, the brake pressure P B is estimated by subtracting the calculated change amount of the brake pressure P B from the actual supply pressure Pr immediately before the operation of the ABS valve device 142. The brake pressure P B is estimated for each brake device 126, and four brake pressures P B are estimated corresponding to the four brake devices 126.
  • the ABS control or the like is control for suppressing wheel lock, side slip, etc., and is not executed for a wheel that does not cause wheel lock, side slip, or the like. Comparing the brake pressure P B of the wheel on which the ABS control is executed and the brake pressure P B of the wheel on which the ABS control is not executed, as shown in FIG. 8, the brake pressure P of the wheel on which the ABS control is not executed is shown. B (dashed line) changes so as to substantially follow the target supply hydraulic pressure P * (solid line). On the other hand, the brake pressure P B (two-dot chain line) of the wheel on which the ABS control is executed changes almost independently of the target supply hydraulic pressure P * (solid line).
  • the ABS control or the like when estimating the completion of the operation of the ABS valve device 142, with four brake pressure P B of the braking device 126 the ABS control or the like is not executed among the brake pressure P B target The difference from the supply hydraulic pressure P * is calculated. However, when ABS control or the like is executed for all wheels, the difference from the target supply hydraulic pressure P * is calculated using the average value of the four brake pressures P B.
  • the operation end of the ABS valve device 142 is estimated based on the difference between the brake pressure P B and the actual supply pressure Pr, the difference between the actual supply pressure Pr and each of the four brake pressures P B is calculated. It is estimated that if the difference between the actual supply pressure Pr and the brake pressure P B is equal to or less than the set difference P 1 even with one brake pressure P B , the operation of the ABS valve device 142 will be finished soon.
  • the number of actual supply pressure Pr and the braking pressure P B brake pressure difference is preset differential P 1 below and P B as (hereinafter sometimes referred to as "determination establishment number") is large, vacuum effect in the corresponding control Is to be higher.
  • the vacuum threshold determination additional value P G2 Is determined according to the following equation in accordance with the determination number N.
  • P G2 K N1 ⁇ P G2
  • K N1 is a gain that depends on the determination establishment number N, and is 1 when the determination establishment number N is 1 and decreases as the determination establishment number N increases, as shown in FIG. It is set to become.
  • the proportional gain K corresponding to the pressure-reducing linear valve 172 is increased so as to increase the target supply current i * G in the corresponding control depending on the target supply current i * G of the pressure-reducing linear valve 172 as the number of established determinations N increases.
  • G2 is increased, and the proportional gain KG2 is determined according to the following equation in accordance with the determination number N.
  • K G2 K N2 ⁇ K G2
  • K N2 is a gain that depends on the determination establishment number N, and is 1 when the determination establishment number N is 1, and increases as the determination establishment number N increases, as shown in FIG. It is set to become.
  • the target supply pressure P * in the corresponding control depending on the target supply pressure P * is reduced, and the target supply pressure P * is determined according to the following equation according to the determination establishment number N. It is determined.
  • P * P * ⁇ K N2 ⁇ ⁇
  • Figure 10 shows the target supply pressure P *, the actual supply pressure Pr, the change over time of the braking pressure P B.
  • the brake pressure P B (dashed line) is somewhat lower than the actual supply pressure Pr, and the ABS pressure reducing valve 202 operates. It is estimated that When the actual supply pressure Pr does not vary greatly and stabilizes, the brake pressure P B and the actual supply pressure Pr substantially coincide with each other, so that it is estimated that the ABS pressure reducing valve 202 is hardly operated. Therefore, in the present system 100, when the actual supply pressure Pr becomes stable, it is estimated that the operation of the ABS valve device 142 will be finished soon.
  • the ABS valve device 142 is activated. Since the actual supply pressure Pr may have fluctuated greatly, it is not estimated that the operation of the ABS valve device 142 is terminated.
  • the target supply pressure P * decreases, It is estimated that the operation of the ABS valve device 142 will be finished soon when the amount of decrease is large to some extent.
  • ⁇ P * 0 is exceeded, it is estimated that the operation of the ABS valve device 142 will be finished soon.
  • the lower the target supply pressure P * the higher the pressure reduction effect in the corresponding control. More specifically, the lower the target supply pressure P * , the smaller the depressurization threshold determination addition value P G2 in the corresponding control that relies on the depressurization threshold determination addition value P G.
  • G2 is determined according to the following equation according to the target supply pressure P * .
  • P G2 K P1 ⁇ P G2
  • K P1 is a gain that rely on target supply pressure P *, as shown in FIG. 12 (a), becomes 1 when the target supply pressure P * is set pressure P * 0, the target supply pressure P The value is set to become smaller as * becomes lower than the set pressure P * 0 .
  • K G2 K P2 ⁇ K G2
  • K P2 K P2 ⁇ K G2
  • K V1 is a gain depending on the vehicle speed V, and is 1 when the vehicle speed V is the set speed V 0 as shown in FIG. 13A, and as the vehicle speed V becomes lower than the set speed V 0. It is set to a small value.
  • K G2 K V2 ⁇ K G2
  • K V2 is a gain depending on the vehicle speed V, and is 1 when the vehicle speed V is the set speed V 0 as shown in FIG. 13B, and as the vehicle speed V becomes lower than the set speed V 0. It is set to be a large value.
  • actuating ends estimate ABS control of the ABS valve device based on the operation duration of the ABS valve device, instantly reducing the brake pressure P B, and a control for increasing a reduced brake pressure P B instantaneously, Although the control is such that the decrease and increase of the brake pressure P B are repeated, it is rarely executed for a long time. Therefore, in the present system 100, when the ABS valve device 142 operates continuously to some extent, specifically, when the operation time T after the ABS valve device 142 starts operating becomes equal to or longer than the set time T 0 , It is presumed that the operation of the ABS valve device 142 will end soon.
  • Control program> the control of the supply pressure, which is the hydraulic pressure of the hydraulic fluid generated by the hydraulic pressure source device 144, is set while the ignition switch is turned on in the hydraulic braking program shown in the flowchart of FIG. This is performed by being repeatedly executed by the controller 210 of the brake ECU 48 at a predetermined time interval ⁇ t.
  • a flow of control processing by the hydraulic braking program will be briefly described with reference to a flowchart shown in the drawing.
  • step 1 the target supply is performed based on the target hydraulic braking force calculated in the main ECU 40.
  • the pressure P * is determined.
  • the controller 210 stores map data related to the target supply pressure P * using the target hydraulic pressure braking force as a parameter, and the target supply hydraulic pressure P * is determined by referring to the map data.
  • the actual supply pressure Pr is detected by the common passage hydraulic pressure sensor 192
  • the high pressure source pressure Ph is detected by the high pressure source hydraulic pressure sensor 190.
  • S4 it is determined whether or not the ABS valve device 142 is operating. If any one of the four ABS holding valves 200 and the four ABS pressure reducing valves 202 of the ABS valve device 142 is operating, it is determined that the ABS valve device 142 is operating. If it is determined that the ABS valve device 142 is operating, in S5, a process for executing the ABS valve device operating subroutine shown in the flowchart of FIG. 15 is executed. In this ABS valve device operation subroutine, processing for executing the ABS valve device operation completion estimation subroutine is executed in S21. In this ABS valve device operation end estimation subroutine, eight subroutines shown in the flowcharts of FIGS. 16 to 23 are prepared, and any one of them is executed by operating the estimation method selection switch 238 by the driver. It is like that.
  • the estimation method selection switch 238 selects the ABS valve device operation end estimation method based on the difference between the actual supply pressure Pr and the brake pressure P B , the first ABS valve device operation end estimation shown in the flowchart in FIG. A subroutine is executed.
  • the brake pressure P B corresponding to each wheel is estimated based on the duty ratio of each ABS holding valve 200 and each ABS pressure reducing valve 202.
  • S42 it is determined whether or not the difference between the estimated brake pressure P B and the actual supply pressure Pr is equal to or less than the set difference P 1.
  • the difference from the actual supply pressure Pr is determined. Is determined as the number of brake pressures P B that is equal to or less than the set difference P 1 .
  • the flag value of the ABS valve device operation end estimation flag F S in S45 is set to 1.
  • the ABS valve device operation end estimation flag F S indicates whether or not the operation of the ABS valve device 142 is estimated to end, and when the flag value of the flag F S is set to 1. Indicates that the operation of the ABS valve device 142 is estimated to end, and when the value is 0, the operation of the ABS valve device 142 is not estimated to end. ing. If it is determined that the determination number N is 0, the flag value of the ABS valve device operation end estimation flag F S is set to 0 in S46. When the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the estimation method selection switch 238 selects the ABS valve device operation end estimation method based on the difference between the target supply pressure P * and the brake pressure P B , the second ABS valve device whose flowchart is shown in FIG.
  • An operation end estimation subroutine is executed.
  • the brake pressure P B corresponding to each wheel is estimated in S51, and it is determined in S52 whether or not there is a wheel for which ABS control or the like has not been executed. If it is determined that there is a wheel for which ABS control or the like has not been executed, the determination brake pressure PHB used for determination is determined as a brake pressure P B for a wheel for which ABS control or the like has not been executed in S53. Is done.
  • determining the brake pressure P HB is the average value Is done.
  • S55 whether the difference between the determined brake pressure P HB target supply pressure P * is set differential P 2 or less is determined. If they difference is determined to set difference is P 2 or less, in S56, the flag value of the ABS valve device operation terminates estimation flag F S is in 1, it is determined that they difference is set difference not P 2 less If it has been detected, the flag value is set to 0 in S57.
  • the third ABS valve device operation end estimation subroutine shown in the flowchart of FIG. 18 is executed.
  • the In this subroutine first, in S61, the change gradient dPr and the contribution rate R of the actual supply pressure Pr are calculated based on the least square method. Next, in S62, it is determined whether or not the calculated contribution rate R is greater than the set value R0 .
  • the flag value of the ABS valve device operation end estimation flag F S is set to 1.
  • the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the estimation method selection switch 238 selects the ABS valve device operation end estimation method based on the change gradients of the actual supply pressure Pr and the target supply pressure P *
  • the flowchart shown in FIG. A 4ABS valve device operation end estimation subroutine is executed.
  • this subroutine at S71, variation gradient dPr of the actual supply pressure Pr is calculated based on the least squares method, in S72, the target supply pressure P * of the change gradient dP * is calculated based on the least squares method.
  • S73 it is determined whether or not the change gradient dPr of the actual supply pressure Pr is greater than 0 and less than the set gradient dPr0.
  • the flag value of the ABS valve device operation end estimation flag F S is set to zero.
  • the fifth ABS valve device operation end estimation subroutine shown in the flowchart of FIG. 20 is executed. .
  • this subroutine it is determined in S81 whether or not the target supply pressure P * has decreased. Specifically, the present target supply pressure was determined in the execution of the program P * is, whether the previous target supply pressure P * or P less than determined in the last execution of the present program is determined.
  • the target supply pressure P * is judged not to be less than the previous target supply pressure P * P, that is, when the target supply pressure P * is determined not to be reduced, in S82, 1 single braking operation
  • the maximum target supply pressure P * MAX which is the highest target supply pressure P * , is set as the target supply pressure P * determined in the current execution of this program. If it is determined that the target supply pressure P * is decreasing, in S83, is the value obtained by subtracting the target supply pressure P * from the maximum target supply pressure P * MAX exceeding the set deviation ⁇ P * 0 ? It is determined whether or not.
  • the flag value of the ABS valve device operation end estimation flag F S is determined in S84. Is set to 1. Further, the maximum target supply pressure P * MAX is being made a target supply pressure P *, or is a value obtained by subtracting the maximum target supply pressure P * MAX target supply pressure from P * is set deviation [Delta] P * 0 or less determined If so, the flag value of the ABS valve device operation end estimation flag F S is set to 0 in S85. When the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the sixth ABS valve device operation end estimation subroutine shown in the flowchart of FIG. 21 is executed. .
  • this subroutine it is determined in S91 whether or not the target supply pressure P * is less than or equal to the set pressure P * 0 . If it is determined that the target supply pressure P * is less than or equal to the set pressure P * 0 , in S92, the flag value of the ABS valve device operation end estimation flag F S is set to 1, and the target supply pressure P * is set to the set pressure. If it is determined that it is not less than P * 0 , the flag value is set to 0 in S93. When the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the seventh ABS valve device operation end estimation subroutine shown in the flowchart of FIG. 22 is executed.
  • the vehicle speed V is detected by the wheel speed sensor 234, then, in S102, whether the detected vehicle speed V is equal to or less than the set speed V 0 is determined. If it is determined that the vehicle speed V is less than or equal to the set speed V 0 , the flag value of the ABS valve device operation end estimation flag F S is set to 1 in S103, and it is determined that the vehicle speed V is not less than or equal to the set speed V 0. If the flag is not met, the flag value is set to 0 in S104. When the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the eighth ABS valve device operation end estimation subroutine shown in the flowchart of FIG. 23 is executed. Is done. In this subroutine, in S111, the time interval ⁇ t is added to the operating time T in order to measure the operating time T after the ABS valve device 142 starts to operate. In S112, the operating time T is equal to or longer than the set time T 0. It is determined whether or not. If the operation time T is determined to set is time T 0 or more, in S113, the flag value of the ABS valve device operation terminates estimation flag F S 1, the operation time T is not the set time T 0 or more If it is determined, the flag value is set to 0 in S114. When the flag value of the ABS valve device operation end estimation flag F S is determined, the execution of this subroutine ends.
  • the first response control execution subroutine indicated by a flow chart of FIG. 24 is executed.
  • the estimation method selection switch 238 it is determined whether or not the estimation method selection switch 238 has selected the ABS valve device operation end estimation method based on the difference between the actual supply pressure Pr and the brake pressure P B. That is, it is determined whether or not a first ABS valve device operation end estimation subroutine (hereinafter may be abbreviated as “first estimation subroutine”) has been executed. If it is determined that the first estimation subroutine has been executed, the map data set as shown in FIG.
  • the threshold determining addition value P G is determined. If it is determined that the first estimation subroutine has not been executed, whether or not the ABS valve device operation end estimation method based on the target supply pressure P * is selected by the estimation method selection switch 238 in S123. Is determined. That is, it is determined whether or not a sixth ABS valve device operation end estimation subroutine (hereinafter, may be abbreviated as “sixth estimation subroutine”) has been executed. If it is determined that the sixth estimation subroutine has been executed, the map data set as shown in FIG. 12A is referred to based on the target supply pressure P * in S124, as described above.
  • a depressurization threshold value determining addition value P G is determined. If it is determined that the sixth estimation subroutine has not been executed, it is determined in S125 whether the ABS valve device operation end estimation method based on the vehicle speed V has been selected by the estimation method selection switch 238. The That is, it is determined whether or not a seventh ABS valve device operation end estimation subroutine (hereinafter may be abbreviated as “seventh estimation subroutine”) has been executed. If it is determined that the seventh estimation subroutine has been executed, the decompression threshold value is determined as described above by referring to the map data set as shown in FIG. 13A based on the vehicle speed V in S126. use additional value P G is determined. If it is determined that the seventh estimation subroutine has not been executed, the decompression threshold value determination addition value P G is determined to be P G2 in S127. When vacuum threshold determination additional value P G is determined to be any value, execution of this subroutine is ended.
  • the second response control execution subroutine shown in the flowchart of FIG. 25 is executed.
  • this subroutine it is determined in S131 whether the first estimation subroutine has been executed. If it is determined that the first estimation subroutine has been executed, in S132, the map data set as shown in FIG. 9A is referred to based on the determination number N, and the upper limit is set as described above.
  • the determination addition value ⁇ is determined. If it is determined that the first estimation subroutine has not been executed, it is determined in S133 whether or not the sixth estimation subroutine has been executed. If it is determined that the sixth estimation subroutine has been executed, the map data set as shown in FIG.
  • An upper limit determination addition value ⁇ is determined. If it is determined that the sixth estimation subroutine has not been executed, it is determined in S135 whether or not the seventh estimation subroutine has been executed. If it is determined that the seventh estimation subroutine has been executed, the map data set as shown in FIG. 13 (a) is referred to based on the vehicle speed V in S136, and the upper limit is determined as described above. The addition value ⁇ is determined. If it is determined that the seventh estimation subroutine is not executed, the upper limit determination addition value ⁇ is determined to be ⁇ 2 in S137. When the upper limit determination addition value ⁇ is determined to be any value, the execution of this subroutine ends.
  • a third response control execution subroutine whose flowchart is shown in FIG. 26 is executed.
  • this subroutine it is determined in S141 whether or not the first estimation subroutine has been executed. If it is determined that the first estimation subroutine has been executed, the map data set as shown in FIG. 9B is referred to based on the determination number N in S142, and the pressure is reduced as described above. proportion corresponding to use linear valve 172 gain K G is determined. If it is determined that the first estimation subroutine has not been executed, it is determined in S143 whether or not the sixth estimation subroutine has been executed.
  • the map data set as shown in FIG. 12B is referred to based on the target supply pressure P * in S144, as described above.
  • proportional gain K G is determined. If it is determined that the sixth estimation subroutine has not been executed, it is determined in S145 whether or not the seventh estimation subroutine has been executed. When it is determined that the seventh estimation subroutine has been executed, in S146, the map data set as shown in FIG. 13B is referred to based on the vehicle speed V, and the proportional gain K is set as described above. G is determined. Further, when the seventh estimation subroutine is determined not to be performed, in S147, the proportional gain K G is determined to be K G2. If the proportional gain K G is determined to be any value, execution of this subroutine is ended.
  • the fourth response control execution subroutine shown in the flowchart of FIG. 27 is executed.
  • a target supply pressure P * is determined. If it is determined that the sixth estimation subroutine has not been executed, it is determined in S155 whether or not the seventh estimation subroutine has been executed. If it is determined that the seventh estimation subroutine has been executed, in S156, based on the vehicle speed V, the map data set as shown in FIG. P * is determined. If it is determined that the seventh estimation subroutine has not been executed, the target supply pressure P * is determined by subtracting the set reduction value ⁇ from the target supply pressure P * in S157. When the target supply pressure P * is determined to be any value, the execution of this subroutine ends.
  • the actual supply pressure Pr is increased from the target supply pressure P * in S27.
  • pressure threshold value determination subtraction value P Z a reduced pressure or more, whether or not pressure or less by adding the target supply pressure P * in vacuum threshold determination additional value P G is determined. That is, it is determined whether or not the actual supply pressure Pr is not less than the pressure increase threshold value and not more than the pressure decrease threshold value. If it is determined that the actual supply pressure Pr is not less than the pressure increase threshold value and not more than the pressure decrease threshold value, the map data set as shown in FIG. 4 is referred to in order to execute the target range control in S28.
  • the target supply current i * G of the pressure-reducing linear valve 172 is determined, and the target supply current i * Z of the pressure-increasing linear valve 170 is determined with reference to the map data set as shown in FIG.
  • the actual supply pressure Pr is whether decompression threshold (P * + P G) is greater than is determined. If it is determined that the actual supply pressure Pr is greater than the pressure reduction threshold, in S30, the target supply current i * Z of the pressure increasing linear valve 170 is determined to be 0 in order to reduce the supply pressure in the target supply pressure control.
  • the target supply current i * G of the pressure reducing linear valve 172 is determined according to the above equation using feedback control.
  • the target supply current i * G of the pressure reducing linear valve 172 is set to 0 in S31 in order to increase the supply pressure in the target supply pressure control.
  • the target supply current i * Z of the pressure-increasing linear valve 170 is determined according to the above equation using feedback control.
  • the maximum target supply pressure P * MAX is reset to 0 in S6, and the operating time T is also reset to 0 in S7. .
  • the target supply current i * G of the pressure reducing linear valve 172 and the target supply current i * Z of the pressure increasing linear valve 170 are determined to be zero.
  • the target supply current i * Z of the pressure increasing linear valve 170 is determined to be 0 in S11, and the target supply current of the pressure reducing linear valve 172 is determined.
  • i * G is determined according to the above equation using feedback control. If it is determined that the actual supply pressure Pr is smaller than the target supply pressure P * , the target supply current i * G of the pressure reducing linear valve 172 is determined to be 0 in S12, and the target supply current of the pressure increasing linear valve 170 is determined.
  • i * Z is determined according to the above equation using feedback control.
  • a control signal based on the determined target supply current i * G of the pressure reducing linear valve 172 is transmitted to the drive circuit 222, and a control signal based on the target supply current i * Z of the pressure increasing linear valve 170 is driven. After being transmitted to the circuit 220, one execution of the program ends.
  • the controller 210 of the brake ECU 48 that executes the hydraulic braking program can be considered to have a functional configuration as shown in FIG. 28 in view of its execution processing.
  • the controller 210 is a functional unit that executes the process of S1, that is, a functional unit that determines a target supply pressure P * that is the hydraulic pressure of the hydraulic fluid to be supplied by the hydraulic pressure source device 144.
  • Supply pressure control unit 250 uses supply pressure control unit 250 as a function unit that executes the processes of S9, S11 to S13, S28, S30, and S31, that is, a function unit that selectively executes target supply pressure control and target range control.
  • the control selection unit 254 is used as a function unit that executes the processes of S4, S27, and S29, that is, a function unit that selects which of the target supply pressure control and the target range control is to be executed.
  • the ABS valve device operation end response unit 2 is a function unit that executes the processes of S21 and S26, that is, a function unit corresponding to the situation in a situation where the operation of the ABS valve device is estimated to end. 6, are provided, respectively.
  • the ABS valve device operation end response unit 256 includes an ABS valve device operation end estimation unit 258 as a function unit that executes the processing of S21, that is, a function unit that estimates the end of the operation of the ABS valve device. .
  • the ABS valve device operation end estimation unit 258 includes a brake pressure estimation unit 260 as a function unit that executes the processes of S41 and S51, that is, a function unit that estimates the brake pressure P B.
  • the corresponding control based on the depressurization threshold determining addition value P G , the corresponding control relying on the upper limit determining additional value ⁇ , and the target supply current i * G of the depressurizing linear valve 172
  • the dependent response control and the corresponding control dependent on the target supply pressure P * can be selectively executed independently, but two or more of the four corresponding controls can be simultaneously executed. May be. That is, for example, when the operation of the ABS valve apparatus 142 is estimated to be completed, as well as reducing the vacuum threshold determination additional value P G, may be reduced upper limit determination additional value alpha.
  • the following first corresponding control execution subroutine execution executes the second adaptive control execution subroutine, may be reduced under vacuum threshold determination additional value P G and the upper limit determined addition value alpha.
  • a system that can execute a part of the four correspondence controls may be used. That is, for example, the target supply current i * corresponding control only that rely on G is may be executable system, adaptive control and the target supply pressure that rely on vacuum threshold determination additional value P G of pressure-reducing linear valves 172 The system may be capable of executing only the response control based on P * .
  • eight estimation methods are employed as methods for estimating the end of the operation of the ABS valve device 142, and these eight estimation methods are used. Is selectively executed alone. That is, it is estimated that the operation of the ABS valve device 142 is completed when the conditions of any one of the first to eighth ABS valve device operation completion estimation subroutines are satisfied. As such, the end of the operation of the ABS valve device 142 may be estimated. However, when the conditions of two or more of the first to eighth ABS valve device operation end estimation subroutines are satisfied, the ABS valve device It may be estimated that the operation of 142 ends.
  • the ABS valve device when the sixth ABS valve device operation end estimation subroutine is executed to satisfy the condition of S91 and the seventh ABS valve device operation end estimation subroutine is executed to satisfy the condition of S102, the ABS valve device It may be estimated that the operation of 142 ends.
  • a system that can execute a part of the eight estimation methods may be used. That is, for example, the system may be capable of executing only the estimation method based on the vehicle speed, or may be the system capable of executing only the estimation method based on the operation duration time of the ABS valve device and the estimation method based on the target supply pressure. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

 ブレーキ装置に調圧した作動液を供給可能な液圧源装置と、ABS弁装置(以下、弁装置と略す)とを備え、液圧源装置が供給する作動液の液圧である供給圧が目標供給圧となるように液圧源装置を制御する第1制御(S30,31)と、供給圧が目標範囲内に収まるように液圧源装置を制御する第2制御(S28)とを実行可能なシステムにおいて、弁装置非作動時に第1制御を実行し、弁装置作動時において、基本的には第2制御を実行し、供給圧が閾値より高いときには第1制御を実行するとともに、弁装置の作動が終了すると推定される状況下において、閾値を小さくすること、目標範囲の上限値を小さくすること、弁装置作動時での第1制御実行時に減圧用リニア弁への供給電力を増加させること、目標供給圧を低減させることの少なくとも1つを実行する(S26)ように構成する。このような構成によれば、弁装置作動終了時の運転者の違和感を軽減できる。

Description

車両用液圧ブレーキシステム
 本発明は、液圧源装置を備え、その液圧源装置によって供給される作動液に依拠して制動力を発生させる車両用液圧ブレーキシステムに関する。
 車両に搭載される液圧ブレーキシステムには、運転者によってブレーキ操作部材に加えられる操作力に依拠することなく、作動液の液圧を調圧可能な液圧源装置によって供給される作動液に依拠して制動力を発生させるシステムが存在する。そのようなシステムでは、液圧源装置への供給電力を制御することで、その液圧源装置が供給する作動液の液圧である供給圧を制御可能に変更し、運転者によるブレーキ操作に基づいた適切な制動力を発生させることが可能となっている。また、液圧ブレーキシステムには、車輪のロック,横滑り等を抑制するためにABS弁装置が搭載されているシステムも存在する。下記特許文献には、液圧源装置およびABS弁装置を備えたブレーキシステムの一例が記載されている。
特開2009-61816号公報 特開2009-292176号公報 特開2007-137281号公報
 (A)発明の概要
 液圧源装置によって供給される作動液に依拠して制動力を発生させることが可能なブレーキシステムにおいては、運転者によるブレーキ操作に基づいた適切な制動力を発生させるべく、運転者によるブレーキ操作に基づいて供給圧の目標となる目標供給圧を決定し、供給圧が目標供給圧となるように液圧源装置への供給電力が制御される目標供給圧制御が実行される。詳しくいえば、目標供給圧制御では、供給圧が目標供給圧より高い場合には、液圧源装置の有する減圧用リニア弁に供給圧と目標供給圧との差に応じた電力が供給され、供給圧が目標供給圧より低い場合には、液圧源装置の有する増圧用リニア弁に供給圧と目標供給圧との差に応じた電力が供給される。このように目標供給圧制御が実行されることで、供給圧を目標供給圧にすることが可能となっている。
 ただし、目標供給圧制御実行時にABS弁装置が作動すると、供給圧が大きく変動し、供給圧を目標供給圧に追従させるべく、減圧用リニア弁および増圧用リニア弁の開閉状態が頻繁に切り換えられる虞がある。そこで、上記特許文献1に記載のシステムでは、ABS弁装置が作動している場合には、基本的に、目標供給圧制御とは別の制御が実行されるようになっている。詳しくいえば、目標供給圧に対してある程度マージンをもつ範囲を目標範囲として定め、ABS弁装置作動時に、その目標範囲内に供給圧が収まるように液圧源装置への供給電力が制御される目標範囲制御が実行されるようになっている。目標範囲は、それの上限値が目標供給圧に上限決定用加算値を加えた値となるとともに下限値が目標供給圧から下限決定用減算値を減じた値となるように設定されている。目標範囲制御では、減圧用リニア弁に、供給圧が上限値以上となった場合に減圧用リニア弁を開弁させるための電力が供給されるとともに、増圧用リニア弁には、供給圧が下限値以下となった場合に増圧用リニア弁を開弁させるための電力が供給される。ABS弁装置作動時に、供給圧が目標範囲内に収まるように液圧弁装置が制御されることで、減圧用リニア弁および増圧用リニア弁の開閉状態の頻繁な切換を抑制することが可能となる。ただし、ABS弁装置作動時であっても、供給圧が目標範囲から大きくずれたような場合、具体的にいえば、目標供給圧に減圧閾値決定用加算値を加えた圧力より供給圧が高くなった場合には、供給圧を早急に目標供給圧にするべく、目標供給圧制御が実行されるようになっている。
 上述したように2つの制御が選択的に実行されることで、ABS弁装置の作動時において、減圧用リニア弁および増圧用リニア弁の開閉状態の頻繁な切換を抑制することが可能となり、ABS弁装置の非作動時において、運転者によるブレーキ操作に基づいた適切な制動力を発生させることが可能となっている。ただし、ABS弁装置の作動時には、供給圧が目標供給圧からズレていることが多く、特に、目標範囲制御時に供給圧をある程度高圧に維持すべく、上限値決定用加算値が大きな値とされているような場合には、供給圧が目標供給圧よりある程度高くなることが多くある。供給圧が目標供給圧よりある程度高くなると、例えば、運転者が想定している制動力より大きな制動力が生じ、運転者が違和感を感じる虞がある。このため、ABS弁装置の作動が終了すると推定される状況下では、例えば、供給圧を早急に低減させることが望ましい。本発明は、そのような事情に鑑みてなされたものであり、目標供給圧制御と目標範囲制御とを選択的に実行可能なブレーキシステムにおいて、ABS弁装置の作動の終了に良好に対応可能なシステムを提供することを課題とする。
 上記課題を解決するために、本発明の液圧ブレーキシステムは、ABS弁装置の作動が終了すると推定される状況下において、その状況に対応するための対応制御として、(A)上記減圧閾値決定用加算値を小さくすることと、(B)上記上限決定用加算値を小さくすることと、(C)ABS弁装置の作動が終了すると推定された時点で目標供給圧制御が実行されている場合において、減圧用リニア弁に供給されている電力を増加させることと、(D)目標供給圧を低減させることとの少なくとも1つを実行するように構成される。
 本発明の液圧ブレーキシステムでは、ABS弁装置の作動が終了すると推定される状況下(以下、「作動終了状況下」と略す場合がある)において、減圧閾値決定用加算値を小さくすることで、目標範囲制御の代わりに目標供給圧制御が実行され易くなり、供給圧と目標供給圧との差を小さくすることが可能となる。また、作動終了状況下において、上限決定用加算値を小さくすることで、目標範囲制御が実行される際の目標範囲の上限値を小さくすることが可能となり、供給圧と目標供給圧との差を小さくすることが可能となる。また、作動終了状況下において、ABS装置の作動終了が推定された時点で目標供給圧制御が実行されている場合に、減圧用リニア弁に供給されている電力を増加させることで、供給圧を目標供給圧に早急に低下させることが可能となり、供給圧と目標供給圧との差を小さくすることが可能となる。また、作動終了状況下において、目標供給圧を低減させることで、後に詳しく説明するように、液圧弁装置による減圧効果を高めることが可能となり、供給圧と目標供給圧との差を小さくすることが可能となる。したがって、本発明の液圧ブレーキシステムによれば、対応制御を実行することで、ABS弁装置の作動終了時点での供給圧と目標供給圧との差を小さくすることが可能となり、ABS弁装置の作動の終了に良好に対応することが可能となる。
 (B)発明の態様
 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施形態の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
 なお、以下の各項において、(1)項に(3)項、(5)項、(7)項および(9)項に記載の技術的特徴を付加したものが請求項1に相当し、請求項1に(4)項、(6)項、(8)項および(10)項に記載の技術的特徴を付加したものが請求項2に、請求項1または請求項2に(11)項および(12)項に記載の技術的特徴を付加したものが請求項3に、請求項1ないし請求項3のいずれか1つに(11)項および(13)項に記載の技術的特徴を付加したものが請求項4に、請求項1ないし請求項4のいずれか1つに(11)項および(14)項に記載の技術的特徴を付加したものが請求項5に、請求項1ないし請求項5のいずれか1つに(11)項および(15)項に記載の技術的特徴を付加したものが請求項6に、請求項1ないし請求項6のいずれか1つに(11)項および(16)項に記載の技術的特徴を付加したものが請求項7に、請求項1ないし請求項7のいずれか1つに(11)項および(17)項に記載の技術的特徴を付加したものが請求項8に、請求項1ないし請求項8のいずれか1つに(11)項および(18)項に記載の技術的特徴を付加したものが請求項9に、請求項9に(19)項に記載の技術的特徴を付加したものが請求項10に、請求項9に(20)項に記載の技術的特徴を付加したものが請求項11に、請求項11に(21)項に記載の技術的特徴を付加したものが請求項12に、請求項9ないし請求項12のいずれか1つに(22)項に記載の技術的特徴を付加したものが請求項13に、それぞれ相当する。
 (1)運転者によって操作されるブレーキ操作部材と、
 車輪に設けられて自身に供給された圧力に応じた制動力を発生させるブレーキ装置と、
 自身に供給される電力に応じて作動液を増圧する電磁式の増圧用リニア弁と、自身に供給される電力に応じて作動液を減圧する電磁式の減圧用リニア弁とを有し、それらによって調圧された作動液を供給する液圧源装置と、
 その液圧源装置と前記ブレーキ装置との間に介在させられたABS弁装置と、
 前記増圧用リニア弁への供給電力を制御してその増圧用リニア弁の作動を制御するとともに、前記減圧用リニア弁への供給電力を制御してその減圧用リニア弁の作動を制御する制御装置と
 を備えた車両用液圧ブレーキシステムであって、
 前記制御装置が、
 前記ブレーキ操作部材の操作に基づいて、前記液圧源装置が供給する作動液の液圧である供給圧の目標となる目標供給圧を決定する目標供給圧決定部と、
 (a)前記供給圧が前記目標供給圧決定部によって決定された前記目標供給圧となるように、前記供給圧が前記目標供給圧より高い場合に前記供給圧と前記目標供給圧との差に応じた電力を前記減圧用リニア弁に供給するとともに、前記供給圧が前記目標供給圧より低い場合に前記供給圧と前記目標供給圧との差に応じた電力を前記増圧用リニア弁に供給する第1制御と、(b)上限値が前記目標供給圧に上限決定用加算値を加えた値となるとともに下限値が前記目標供給圧から下限決定用減算値を減じた値となるように決定される目標範囲内に前記供給圧が収まるように、前記供給圧が前記上限値以上となった場合において前記減圧用リニア弁を開弁させるための電力を前記減圧用リニア弁に供給し続けるとともに、前記供給圧が前記下限値以下となった場合において前記増圧用リニア弁を開弁させるための電力を前記増圧用リニア弁に供給し続ける第2制御とを選択的に実行する供給圧制御実行部と、
 その供給圧制御実行部が実行する制御として、(i)前記ABS弁装置が作動していない場合に前記第1制御を選択し、一方、(ii)前記ABS弁装置が作動している場合において、前記供給圧が前記目標供給圧以上であり、かつその目標供給圧に前記上限決定用加算値より大きな値の減圧閾値決定用加算値を加えた圧力以下であるときに前記第2制御を、前記供給圧が前記目標供給圧に前記減圧閾値決定用加算値を加えた圧力より高いときに前記第1制御を、それぞれ選択する制御選択部とを有し、
 前記制御装置が、さらに、
 前記ABS弁装置の作動が終了すると推定される状況下において、その状況に対応するための対応制御を実行するABS弁装置作動終了対応部を有する車両用液圧ブレーキシステム。
 液圧源装置とABS弁装置とを備えた液圧ブレーキシステムにおいて、上記目標供給圧制御としての第1制御が実行されている際に、ABS弁装置が作動すると、液圧源装置が供給する作動液の液圧である供給圧が大きく変動し、供給圧を目標供給圧に追従させるべく、減圧用リニア弁および増圧用リニア弁の開閉状態が頻繁に切り換えられる虞がある。このため、ABS弁装置が作動している場合に、上記目標範囲制御としての第2制御が目標圧制御の代わりに実行されるシステムが存在する。ただし、ABS弁装置作動時であっても、供給圧が減圧閾値を超えるほど高くなった場合、詳しくいえば、目標供給圧に減圧閾値決定用加算値を加えた圧力より供給圧が高くなった場合等には、供給圧を早急に目標供給圧にするべく、目標供給圧制御が実行されるようになっている。
 上述したように2つの制御が選択的に実行されることで、ABS弁装置の作動時において、減圧用リニア弁および増圧用リニア弁の開閉状態の頻繁な切換を抑制することが可能となり、ABS弁装置の非作動時において、運転者によるブレーキ操作に基づいた適切な制動力を発生させることが可能となっている。ただし、ABS弁装置の作動時には、供給圧は目標供給圧からある程度ズレていることが多く、特に、目標範囲制御時に供給圧をある程度高圧に維持すべく、上限値決定用加算値が大きな値とされているような場合には、供給圧が目標供給圧よりある程度高くなることが多くある。供給圧が目標供給圧よりある程度高くなると、例えば、運転者が想定している制動力より大きな制動力が生じ、運転者が違和感を感じる虞がある。このため、ABS弁装置の作動が終了すると推定される状況下では、例えば、供給圧を早急に低減させることが望ましい。
 そこで、本項に記載の液圧ブレーキシステムでは、ABS弁装置の作動が終了すると推定される状況下において、その状況に良好に対応するための対応制御が実行されるようになっている。対応制御は、ABS弁装置の作動が終了すると推定される状況に良好に対応可能な制御であればよく、例えば、供給圧の減圧効果を高めるための制御であってもよく、供給圧を早急に低減させることが可能な制御であってもよい。対応制御を実行することで、例えば、ABS弁装置の作動が終了した時点での前記供給圧と前記目標供給圧との差を小さくすることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。
 本項に記載の「ABS弁装置」は、車輪のロック,横滑り,空転等を抑制するべく、ブレーキ装置に供給される作動液の圧力であるブレーキ圧を増減可能な構造であればよく、例えば、液圧源装置が供給する作動液のブレーキ装置への流入を許容する状態と禁止する状態とを切換可能なABS保持弁と、ブレーキ装置に供給された作動液のリザーバへの流出を許容する状態と禁止する状態とを切換可能なABS減圧弁とを有し、ABS保持弁が開弁されるとともにABS減圧弁が閉弁されることで、ブレーキ圧を増加させ、ABS保持弁が閉弁されるとともにABS減圧弁が開弁されることで、ブレーキ圧を低減させる構造であってもよい。また、本項に記載の「ABS弁装置が作動している場合」とは、ABS保持弁若しくはABS減圧弁の開閉状態が頻繁に切り換えられている場合であり、「ABS弁装置が作動していない場合」とは、ABS保持弁が開弁されるとともにABS減圧弁が閉弁される状態が維持されている場合である。
 本項に記載の「上限決定用加算値」と「減圧閾値決定用加算値」とは、それぞれ、正の値とされており、「下限決定用減算値」は、正の値とされてもよく、目標範囲制御実行時に供給圧をある程度高圧に維持するべく、0若しくは負の値とされてもよい。つまり、下限決定用減算値が正の値に設定される場合には、目標範囲は目標供給圧を含んだ範囲となる。また、下限決定用減算値が0に設定される場合には、目標範囲の下限値が目標供給圧となり、下限決定用減算値が負の値に設定される場合には、目標範囲の下限値が目標供給圧より高い圧力となるため、目標範囲制御実行時に供給圧を目標供給圧に対してある程度高圧にすることが可能となる。なお、下限決定用減算値が負の値に設定される場合には、上限決定用加算値は下限決定用減算値の絶対値より大きな値とされており、下限決定用減算値が正の値に設定される場合には、上限決定用加算値は下限決定用減算値の絶対値より大きな値とされることが望ましい。
 (2)前記対応制御が、
 前記ABS弁装置の作動が終了した時点での前記供給圧と前記目標供給圧との差を小さくするための制御である(1)項に記載の車両用液圧ブレーキシステム。
 本項に記載のシステムによれば、ABS弁装置作動時の液圧弁装置の制御からABS弁装置非作動時の液圧弁装置の制御への切換を円滑にすることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。
 (3)前記ABS弁装置作動終了対応部が、
 前記対応制御として、前記減圧閾値決定用加算値を小さくするように構成された(1)項または(2)項に記載の車両用液圧ブレーキシステム。
 ABS弁装置が作動している場合であっても、供給圧が目標供給圧より高くなりすぎた場合、具体的には、供給圧が目標供給圧に減圧閾値決定用加算値を加えた圧力より高くなった場合には、供給圧を早急に目標供給圧まで低減させるべく、目標範囲制御の代わりに目標供給圧制御が実行される。つまり、減圧閾値決定用加算値が大きいほど、ABS弁装置作動時に目標範囲制御の代わりに目標供給圧制御が実行され難くなり、供給圧と目標供給圧との差が大きくなる虞がある。このため、減圧閾値決定用加算値が大きいほど、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感が大きくなる虞がある。本項に記載のシステムにおいては、ABS弁装置の作動が終了すると推定される状況下において、減圧用閾値決定用加算値を小さくしており、目標範囲制御の代わりに目標供給圧制御が実行され易くなる。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了すると推定される状況下において、供給圧と目標供給圧との差を小さくすることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。
 (4)前記前記ABS弁装置作動終了対応部が、
 当該車両用液圧ブレーキシステムを搭載した車両の走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記減圧閾値決定用加算値をより小さくするように構成された(3)項に記載の車両用液圧ブレーキシステム。
 車両の走行速度(以下、「車速」という場合がある)が高いほど車輪の横滑りは発生し易く、車速が低いほど車輪の横滑りは発生し難い。また、目標供給圧が高いほど車輪のロックは発生し易く、目標供給圧が低いほど車輪のロックは発生し難い。このため、車速、若しくは目標供給圧が低いほど、ABS弁装置の作動の終了に備えて、供給圧と目標供給圧との差を小さくしておくことが望ましい。本項に記載のシステムにおいては、車速、若しくは目標供給圧が低いほど、減圧閾値決定用加算値を小さくしており、供給圧と目標供給圧との差を小さくすることが可能となっている。
 (5)前記ABS弁装置作動終了対応部が、
 前記対応制御として、前記上限決定用加算値を小さくするように構成された(1)項ないし(4)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 (6)前記前記ABS弁装置作動終了対応部が、
 当該車両用液圧ブレーキシステムを搭載した車両の走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記上限決定用加算値をより小さくするように構成された(5)項に記載の車両用液圧ブレーキシステム。
 目標範囲制御における目標範囲の上限値、つまり、上限決定用加算値が大きいと、目標範囲制御において、供給圧と目標供給圧との差が大きくなる虞がある。このため、上限決定用加算値が大きいほど、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感が大きくなる虞がある。したがって、上記2つの項に記載のシステムによれば、ABS弁装置の作動が終了すると推定される状況下において、上限決定用加算値を小さくすることで、目標範囲制御実行時の供給圧と目標供給圧との差を小さくすることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。また、後者の項に記載のシステムによれば、車速、若しくは目標供給圧が低いほど、上限決定用加算値を小さくすることで、供給圧と目標供給圧との差をさらに小さくし、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感をさらに軽減することが可能となる。
 (7)前記ABS弁装置作動終了対応部が、
 前記対応制御として、前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させるように構成された(1)項ないし(6)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 (8)前記前記ABS弁装置作動終了対応部が、
 当該車両用液圧ブレーキシステムを搭載した車両の走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記減圧用リニア弁に供給されている電力をより多く増加させるように構成された(7)項に記載の車両用液圧ブレーキシステム。
 ABS弁装置作動時に目標供給圧制御が実行されている場合には、供給圧は目標供給圧より相当高くなっている。このような場合に、ABS弁装置の作動が終了すれば、供給圧と目標供給圧との差が相当大きいため、運転者はブレーキ操作に対して大きな違和感を感じる虞がある。上記2つの項に記載のシステムにおいては、ABS弁装置の作動が終了すると推定される状況下において、目標供給圧制御が実行されている場合の減圧用リニア弁への供給電力を増加させており、供給圧を早急に目標供給圧に追従させることが可能となる。したがって、上記2つの項に記載のシステムによれば、ABS弁装置の作動が終了すると推定される状況下において、供給圧と目標供給圧との差を小さくすることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。また、後者の項に記載のシステムによれば、車速、若しくは目標供給圧が低いほど、減圧用リニア弁への供給電力を増加させることで、供給圧と目標供給圧との差をさらに小さくし、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感をさらに軽減することが可能となる。
 (9)前記ABS弁装置作動終了対応部が、
 前記対応制御として、前記目標供給圧決定部によって決定される前記目標供給圧を低減させるように構成された(1)項ないし(8)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 (10)前記前記ABS弁装置作動終了対応部が、
 当該車両用液圧ブレーキシステムを搭載した車両の走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記目標供給圧をより大きく低減させるように構成された(9)項に記載の車両用液圧ブレーキシステム。
 ABS弁装置作動時に目標供給圧制御と目標範囲制御との切換を判定するための閾値は、目標供給圧に減圧閾値決定用加算値を加えた値に設定されている。このため、減圧閾値決定用加算値を小さくするのではなく目標供給圧を低減させることでもその閾値を小さくすることが可能となり、ABS弁装置作動時に目標範囲制御の代わりに目標供給圧制御が実行され易くなる。また、目標範囲の上限値は、目標供給圧に上限決定用加算値を加えた値に設定されている。このため、上限決定用加算値を小さくするのではなく目標供給圧を低減させることでも目標範囲の上限値を小さくすることが可能となり、目標範囲制御実行時の供給圧と目標供給圧との差を小さくすることが可能となる。さらに、目標供給圧制御において、供給圧が目標供給圧より高い場合には、目標供給圧から供給圧を減じた圧力差に応じた電力が減圧用リニア弁に供給される。このため、目標供給圧を低減させることで、目標供給圧制御実行時の減圧用リニア弁への供給電力を増加させることが可能となり、供給圧を早急に目標供給圧に追従させることが可能となる。
 したがって、上記2つの項に記載のシステムによれば、対応制御として、減圧閾値決定用加算値を小さくすることと、上限決定用加算値を小さくすることと、減圧用リニア弁への供給電力を増加させることとの全ての効果を生じさせることが可能となり、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。また、後者の項に記載のシステムによれば、車速、若しくは目標供給圧が低いほど、目標供給圧を低減させることで、供給圧と目標供給圧との差をさらに小さくし、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感をさらに軽減することが可能となる。
 ちなみに、対応制御として、減圧閾値決定用加算値を小さくすることと、上限決定用加算値を小さくすることと、減圧用リニア弁への供給電力を増加させることと、目標供給圧を低減させることとの4つの態様を説明したが、それら4つの態様のうちの少なくとも1つを対応制御として実行することで、ABS弁装置の作動終了時の運転者のブレーキ操作に対する違和感を軽減することが可能となる。つまり、当該液圧ブレーキシステムは、4つの態様のうちの1つだけ実行可能とされていてもよく、4つの態様のうちの複数のものを実行可能とされていてもよい。また、4つの態様のうちの複数のものを実行可能とされている場合には、それら複数のものを同時に対応制御として実行してもよく、それら複数のものの1つを単独で対応制御として実行してもよい。具体的にいえば、対応制御として、減圧閾値決定用加算値を小さくすることと、上限決定用加算値を小さくすることとが採用されている場合には、減圧閾値決定用加算値を小さくするとともに上限決定用加算値を小さくしてもよく、減圧閾値決定用加算値を小さくすることと、上限決定用加算値を小さくこととのいずれかを選択的に実行してもよい。
 (11)前記ABS弁装置作動終了対応部が、
 前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成された(1)項ないし(10)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 本項に記載のシステムにおいては,ABS弁装置の作動が終了することを予測することが可能となり、上記対応制御を適切なタイミングで実行することが可能となる。
 (12)前記ABS弁装置作動終了推定部が、
 前記供給圧が安定した場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項に記載の車両用液圧ブレーキシステム。
 ABS弁装置は、車輪のロック,横滑り等を抑制するべく、ブレーキ圧を増減させる構造とされており、ABS弁装置が頻繁に作動しているときには、ブレーキ圧の増減に伴って供給圧は安定することなく増減を繰り返す。一方、ABS弁装置の作動頻度が低下すると、供給圧は大きく増減しなくなり、供給圧の変動の幅が小さくなる。つまり、供給圧が大きく変化しなくなり、安定する。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 本項に記載の「ABS弁装置作動終了推定部」は、単位時間当たりの供給圧の最大値と最小値との差,単位時間当たりの供給圧の平均値の変化量,最小2乗法等を利用して、供給圧の安定を判定することが可能である。具体的には、例えば、単位時間当たりの供給圧の最大値と最小値との差が設定差以下となった場合に供給圧は安定していると判定してもよく、最小2乗法において演算される寄与率が設定値以上である場合に供給圧は安定していると判定してもよい。
 (13)前記ABS弁装置作動終了推定部が、
 前記目標供給圧が増加していないにも関わらず前記供給圧が増加した場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項または(12)項に記載の車両用液圧ブレーキシステム。
 ABS弁装置が作動していない場合には、目標供給圧の増加に伴って供給圧も増加するが、ABS弁装置が作動している場合には、ABS弁装置の作動によって供給圧が低下するため、目標供給圧が増加しても供給圧が増加しないことがある。つまり、目標供給圧が増加しているにも関わらず供給圧が増加しない場合には、ABS弁装置が頻繁に作動している可能性が極めて高いと考えられる。一方、目標供給圧が増加しているにも関わらず供給圧が増加しない場合とは反対の場合、つまり、目標供給圧が増加していないにも関わらず供給圧が増加した場合には、ABS弁装置が作動している可能性は殆どないと考えられる。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 (14)前記ABS弁装置作動終了推定部が、
 前記目標供給圧が低下した場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項ないし(13)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 運転者がブレーキペダルを踏み込んで目標供給圧が増加している場合には、車輪のロック,横滑り等の発生の可能性は高いが、運転者がブレーキペダルの踏み込みをやめて目標供給圧が低下するような場合には、車輪のロック,横滑り等の発生の可能性は低くなる。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 本項に記載の「ABS弁装置作動終了推定部」は、目標供給圧の低下を目標供給圧の変化勾配,変化量,変化速度等によって判定してもよく、ブレーキペダルの操作量,操作速度等によって判断してもよい。具体的には、例えば、目標供給圧の変化勾配が設定勾配以下となった場合に、目標供給圧が低下したと判断してもよく、目標供給圧の低下量が設定量以上となった場合に、目標供給圧が低下したと判断してもよい。
 (15)前記ABS弁装置作動終了推定部が、
 前記目標供給圧が設定圧以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項ないし(14)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 目標供給圧が高い場合には、ブレーキ圧も高くなるため、車輪のロック,横滑り等の発生の可能性は高い。一方、目標供給圧が低下すれば、ブレーキ圧も低下するため、車輪のロック,横滑り等の発生の可能性は低くなる。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 (16)前記ABS弁装置作動終了推定部が、
 当該車両用液圧ブレーキシステムを搭載した車両の走行速度が設定速度以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項ないし(15)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 車速が高い場合には、車輪の横滑り等の発生の可能性は高く、車速が低い場合には、車輪の横滑り等の発生の可能性は低い。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 (17)前記ABS弁装置作動終了推定部が、
 前記ABS弁装置の作動が設定時間以上継続した場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項ないし(16)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 ABS弁装置は、車輪のロック,横滑り等を抑制する際に作動するものであり、長時間連続して作動することは殆どない。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 (18)前記ABS弁装置作動終了推定部が、
 前記供給圧と前記目標供給圧との一方である判定対象圧と前記ブレーキ装置に供給されている作動液の圧力であるブレーキ圧との差が設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された(11)項ないし(17)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 ABS弁装置が作動していない場合には、液圧源装置が供給する作動液がブレーキ装置に作用することから、供給圧とブレーキ圧とは同じとなる。一方、ABS弁装置が作動している場合には、車輪のロック等を抑制するべくブレーキ圧が増減し、供給圧とブレーキ圧とは異なっている場合が多い。つまり、供給圧とブレーキ圧との差が小さい場合には、ABS弁装置の作動頻度が低下していると考えられる。また、供給圧と目標供給圧と概ね同じように増減することから、目標供給圧とブレーキ圧との差が小さい場合にも、ABS弁装置の作動頻度が低下していると考えられる。したがって、本項に記載のシステムによれば、ABS弁装置の作動が終了することを適切に推定することが可能となり、適切なタイミングで対応制御を実行することが可能となる。
 ちなみに、ABS弁装置の作動の終了を推定する手段として、7つの態様を上述したが、それら7つの態様のうちの少なくとも1つのものによって、ABS弁装置の作動の終了を推定することで、上記対応制御を適切なタイミングで実行することが可能となる。つまり、当該液圧ブレーキシステムは、7つの態様のうちの1つのものだけ実行可能とされていてもよく、7つの態様のうちの複数のものを実行可能とされていてもよい。また、7つの態様のうちの複数のものを実行可能とされている場合には、それら複数のもののうちの1つのものを満たすことを条件として、ABS弁装置の作動の終了を推定してもよく、それら複数のもののうちの2以上のものを同時に満たすことを条件として、ABS弁装置の作動の終了を推定してもよい。具体的にいえば、例えば、ABS弁装置の作動の終了を推定する手段として、車速に依拠した態様とABS弁装置の作動の継続時間に依拠した態様とが採用されている際には、車速が設定速度以下となった場合にABS弁装置の作動が終了すると推定してもよく、ABS弁装置の作動が設定時間以上継続した場合にABS弁装置の作動が終了すると推定してもよく、また、車速が設定速度以下となり、かつ、ABS弁装置の作動が設定時間以上継続した場合にABS弁装置の作動が終了すると推定してもよい。
 (19)当該車両用液圧ブレーキシステムが、
 前後左右の車輪に対応してそれぞれが前記ブレーキ装置となる4つのブレーキ装置を備え、
 前記ABS弁装置作動終了推定部が、
  前記4つのブレーキ装置のうちの少なくとも1つのものの各々の前記ブレーキ圧に基づいて前記判定対象圧との差を判定するための単一のブレーキ圧を決定し、その決定された単一のブレーキ圧と前記判定対象圧との差が前記設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された(18)項に記載の車両用液圧ブレーキシステム。
 4輪に対応して設けられた4つのブレーキ装置に対応する4つのブレーキ圧は、ABS弁装置作動時には、通常、互いに異なる。このため、本項に記載のシステムにおいては、上記判定対象圧との差を判定するために単一のブレーキ圧を決定し、その決定された単一のブレーキ圧と判定対象圧との差によってABS弁装置の作動の終了を推定している。本項に記載の「ABS弁装置作動終了推定部」は、4つのブレーキ圧のいずれかのもの、若しくは、4つのブレーキ圧の複数のものを用いて演算したものによって、単一のブレーキ圧を決定すればよく、具体的には、例えば、4つのブレーキ圧の平均値,最大値,2番目若しくは3番目に大きい値,4つのブレーキ圧の各々に重み付けをし演算した値等によって、単一のブレーキ圧を決定すればよい。また、ABS弁装置は、通常、4つの車輪に対応して4対の電磁弁を有しており、ABS弁装置作動時に4対の電磁弁が全て作動するわけではない。つまり、少なくとも1対の電磁弁が作動しない場合がある。このような場合には、作動していないその少なくとも1対の電磁弁のうちのいずれか1つに対応する車輪のブレーキ圧を、判定対象圧との差を判定するための単一のブレーキ圧に決定してもよい。
 (20)当該車両用液圧ブレーキシステムが、
 前後左右の車輪に対応してそれぞれが前記ブレーキ装置となる4つのブレーキ装置を備え、
 前記ABS弁装置作動終了推定部が、
 前記4つのブレーキ装置の各々の前記ブレーキ圧について前記判定対象圧との差を判定し、前記4つのブレーキ装置のうちの1つでも前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された(18)項に記載の車両用液圧ブレーキシステム。
 (21)前記ABS弁装置作動終了対応部が、
 前記対応制御として、
 (A)前記減圧閾値決定用加算値を小さくすることと、
 (B)前記上限決定用加算値を小さくすることと、
 (C)前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させることと、
 (D)前記目標供給圧決定部によって決定される前記目標供給圧を低減させることと
 の少なくとも1つを実行するように構成され、
 (A)前記対応制御として、前記減圧閾値決定用加算値を小さくするように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記減圧閾値決定用加算値をより小さくし、
 (B)前記対応制御として、前記上限決定用加算値を小さくするように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記上限決定用加算値をより小さくし、
 (C)前記対応制御として、前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させるように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記減圧用リニア弁に供給されている電力をより多く増加させ、
 (D)前記対応制御として、前記目標供給圧決定部によって決定される前記目標供給圧を低減させるように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記目標供給圧をより大きく低減させるように構成された(20)項に記載の車両用液圧ブレーキシステム。
 上記2つの項に記載のシステムにおいては、ABS弁装置の作動の終了を推定するべく、4つのブレーキ圧毎に判定対象圧との差を演算しており、後者の項に記載のシステムにおいては、4つのブレーキ圧のうちの判定対象圧との差が設定差以下となっているものの数に応じて対応制御における加算値,目標供給圧,供給電力等を変化させている。全てのブレーキ圧が判定対象圧との差が設定差以下となっていれば、全車輪に対応して設けられた4対の電磁弁の作動頻度が低下していると考えられ、一方、全てのブレーキ圧が判定対象圧との差が設定差より大きくなっていれば、4対の電磁弁は頻繁に作動していると考えられる。したがって、後者の項に記載のシステムによれば、4対の電磁弁のうちの作動頻度が低下しているものの数が多いほど、供給圧と目標供給圧との差を小さくすることが可能となる。
 (22)前記ABS弁装置作動終了推定部が、
 前記ABS弁装置が作動し始めてからの前記ABS弁装置の作動状況に基づいて前記ブレーキ圧を推定するブレーキ圧推定部を有し、そのブレーキ圧推定部によって推定された前記ブレーキ圧に基づいて前記ABS弁装置の作動の終了を推定するように構成された(18)項ないし(21)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 ABS弁装置は、上述したように、通常、4つの車輪に対応して4対の電磁弁を有している。1対の電磁弁は、ブレーキ圧を増圧可能なABS保持弁とブレーキ圧を減圧可能なABS減圧弁とによって構成されており、ABS保持弁が開弁されるとともにABS減圧弁が閉弁されることで、ブレーキ圧を増加させ、ABS減圧弁が開弁されるとともにABS保持弁が閉弁されることで、ブレーキ圧を低下させる構造とされている。このため、ABS弁装置の作動状況、つまり、ABS保持弁およびABS減圧弁の各々の作動履歴、具体的にいえば、ABS弁装置が作動し始めてからの開弁時間等に基づいてブレーキ圧の変化量を演算することが可能である。また、ABS弁装置が作動していない場合、つまり、4対の電磁弁が作動していない場合には、4つのブレーキ圧の各々は供給圧と同じとなっている。したがって、ABS弁装置が作動する直前の供給圧からABS保持弁およびABS減圧弁の各々の作動履歴に基づいて演算されるブレーキ圧の変化量を減じることで、ABS弁装置作動時のブレーキ圧を適切に推定することが可能である。
 (23)前記制御選択部が、
 前記ABS弁装置が作動している場合において、前記供給圧が前記目標供給圧未満であり、かつ前記目標供給圧から増圧閾値決定用減算値を減じた圧力以上であるときに前記第2制御を、前記供給圧が前記目標供給圧から前記増圧閾値決定用減算値を減じた圧力未満であるときに前記第1制御を、それぞれ選択するように構成された(1)項ないし(22)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 (24)前記減圧閾値決定用加算値が、前記増圧閾値決定用減算値より大きな値である(23)項に記載の車両用液圧ブレーキシステム。
 上記2つの項に記載のシステムにおいては、ABS弁装置作動時であっても、供給圧が目標供給圧より低くなりすぎた場合に目標供給圧制御が実行される。したがって、上記2つの項に記載のシステムによれば、供給圧が急激に低下しても、供給圧を早急に目標供給圧にまで増加することが可能となる。また、後者の項に記載のシステムにおいては、供給圧が目標供給圧より低下した際に目標範囲制御の代わりに目標供給圧制御が実行され易くなっており、ABS弁装置作動時に供給圧を高圧に維持することが可能となっている。
 (25)当該車両用液圧ブレーキシステムが、
 前記液圧源装置から前記ABS弁装置へ作動液を供給するための液通路と、
 その液通路に設けられ、前記液通路内の作動液の液圧を検出する検出器とを備え、
 前記制御装置が、
 前記検出器によって検出される液圧を前記供給圧とみなすように構成された(1)項ないし(24)項のいずれか1つに記載の車両用液圧ブレーキシステム。
 本項に記載のシステムにおいては、液通路内の作動液の液圧を供給圧として採用しており、本項に記載のシステムによれば、適切に供給圧を検出することが可能となる。
請求可能発明の実施形態である車両用液圧ブレーキシステムが装備されたハイブリッド車両の駆動システムおよび制動システムを表す模式図である。 請求可能発明の実施形態である車両用液圧ブレーキシステムを示す概略図である。 図2の増圧用リニア弁および減圧用リニア弁を示す概略断面図である。 供給圧と減圧用リニア弁の開弁電流との関係を示すグラフである。 高圧源圧と供給圧との差圧と増圧用リニア弁の開弁電流との関係を示すグラフである。 対応制御実行時の減圧閾値決定用加算値,目標供給圧,実供給圧,ブレーキ圧の時間経過に対する変化を概略的に示すチャートである。 (a)対応制御非実行時の目標供給圧,実供給圧,ブレーキ圧の時間経過に対する変化を概略的に示すチャート、および(b)対応制御実行時の目標供給圧,実供給圧,ブレーキ圧の時間経過に対する変化を概略的に示すチャートである。 目標供給圧,ABS制御非実行輪のブレーキ圧、ABS制御実行輪のブレーキ圧の時間経過に対する変化を概略的に示すチャートである。 判定成立数とそれに依拠するゲインとの関係を示す概略図である。 実供給圧が大きく変化した後に実供給圧が安定した場合の目標供給圧,実供給圧、ブレーキ圧の時間経過に対する変化を概略的に示すチャートである。 目標供給圧が増加していないにも関わらず実供給圧が増加している場合の目標供給圧,実供給圧、ブレーキ圧の時間経過に対する変化を概略的に示すチャートである。 目標供給圧とそれに依拠するゲインとの関係を示す概略図である。 車両の走行速度とそれに依拠するゲインとの関係を示す概略図である。 車両用液圧ブレーキシステムの制御において実行される液圧制動プログラムを示すフローチャートである。 液圧制動プログラムにおいて実行されるABS弁装置作動時サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第1ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第2ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第3ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第4ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第5ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第6ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第7ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第8ABS弁装置作動終了推定サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第1対応制御実行サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第2対応制御実行サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第3対応制御実行サブルーチンを示すフローチャートである。 液圧制動プログラムにおいて実行される第4対応制御実行サブルーチンを示すフローチャートである。 車両用液圧ブレーキシステムの制御を司る制御装置の機能を示すブロック図である。
 以下、請求可能発明の実施形態を、図を参照しつつ詳しく説明する。なお、本請求可能発明は、下記実施形態の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更を施した種々の態様で実施することができる。
実施形態
 <車両の構成>
 図1に、実施形態の車両用液圧ブレーキシステムを搭載したハイブリッド車両の駆動システムおよび制動システムを模式的に示す。車両には、動力源として、エンジン10と電気モータ12とが搭載されており、また、エンジン10の出力により発電を行う発電機14も搭載されている。これらエンジン10、電気モータ12、発電機14は、動力分割機構16によって互いに接続されている。この動力分割機構16を制御することで、エンジン10の出力を発電機14を作動させるための出力と、4つの車輪18のうちの駆動輪となるものを回転させるための出力とに振り分けたり、電気モータ12からの出力を駆動輪に伝達させることができる。つまり、動力分割機構16は、減速機20および駆動軸22を介して駆動輪に伝達される駆動力に関する変速機として、機能するのである。なお、「車輪18」等のいくつかの構成要素は、総称として使用するが、4つの車輪のいずれかに対応するものであることを示す場合には、左前輪,右前輪,左後輪,右後輪にそれぞれ対応して、添え字「FL」,「FR」,「RL」,「RR」を付すこととする。この表記に従えば、本車両における駆動輪は、車輪18RL,および車輪18RRである。
 電気モータ12は、交流同期電動機であり、交流電力によって駆動される。車両にはインバータ24が備えられており、インバータ24は、電力を、直流から交流、あるいは、交流から直流に変換することができる。したがって、インバータ24を制御することで、発電機14によって出力される交流の電力を、バッテリー26に蓄えるための直流の電力に変換させたり、バッテリ26に蓄えられている直流の電力を、電気モータ12を駆動するための交流の電力に変換させることができる。発電機14は、電気モータ12と同様に、交流同期電動機としての構成を有している。つまり、本実施例の車両では、交流同期電動機が2つ搭載されていると考えることができ、一方が、電気モータ12として、主に駆動力を出力するために使用され、他方が、発電機14として、主にエンジン10の出力により発電するために使用されている。
 また、電気モータ12は、車両の走行に伴う車輪18RL、18RRの回転を利用して、発電(回生発電)を行うことも可能である。このとき、車輪18RL、18RRに連結される電気モータ12では、電力が発生するとともに、電気モータ12の回転を制止するための抵抗力が発生する。したがって、その抵抗力を、車両を制動する制動力として利用することができる。つまり、電気モータ12は、電力を発生させつつ車両を制動するための回生ブレーキの手段として利用される。したがって、本車両は、回生ブレーキがエンジンブレーキや後述する液圧ブレーキとともに制御されることで、制動されるのである。
 本車両において、上記のブレーキの制御や、その他の車両に関する各種の制御は、複数の電子制御ユニット(ECU)によって行われる。複数のECUのうち、メインECU40は、それらの制御を統括する機能を有している。例えば、ハイブリッド車両は、エンジン10の駆動および電気モータ12の駆動によって走行することが可能とされているが、それらエンジン10の駆動と電気モータ12の駆動は、メインECU40によって総合的に制御される。具体的に言えば、メインECU40によって、エンジン10の出力と電気モータ12による出力の配分が決定され、その配分に基づき、エンジン10を制御するエンジンECU42、電気モータ12及び発電機14を制御するモータECU44に各制御についての指令が出力される。また、メインECU40には、バッテリ26を制御するバッテリECU46も接続されている。
 さらに、メインECU40には、ブレーキを制御するブレーキECU48も接続されている。当該車両には、運転者によって操作されるブレーキ操作部材が設けられており、ブレーキECU48は、そのブレーキ操作部材の操作量に基づいて目標制動力を決定し、メインECU40に対してこの目標制動力を出力する。メインECU40は、モータECU44にこの目標制動力を出力し、モータECU44は、その目標制動力に基づいて回生ブレーキを制御するとともに、それの実行値、つまり、発生させている回生制動力をメインECU40に出力する。メインECU40では、目標制動力から回生制動力が減算され、その減算された値によって、車両に搭載される液圧ブレーキシステム100において発生すべき目標液圧制動力が決定される。メインECU40は、目標液圧制動力をブレーキECU48に出力し、ブレーキECU48は、通常時において、液圧ブレーキシステム100が発生させる液圧制動力が目標液圧制動力となるように制御するのである。
  <車両用液圧ブレーキシステムの構成>
 図2に、車両が備える液圧ブレーキシステム100を概念的に示す。本液圧ブレーキシステム100は、ブレーキ操作部材としてのブレーキペダル110と、マスタシリンダ装置112と、ブレーキアクチュエータ114とを備えている。マスタシリンダ装置112は、ブレーキペダル110の踏込みに基づいて作動液(ブレーキ液)を加圧するマスタシリンダ116を備えている。マスタシリンダ116は、2つの加圧室118,120を備えており、加圧室118は主液通路122の一端に、加圧室120は主液通路124の一端に、それぞれ接続されている。主液通路122の他端は、左前輪18FLの回転を制動するブレーキ装置126FLのブレーキシリンダ128FLと接続され、主液通路124の他端は、右前輪18FRの回転を制動するブレーキ装置126FRのブレーキシリンダ128FRと接続されている。
 主液通路122の途中にはマスタカット弁130が設けられており、主液通路124の途中にはマスタカット弁132が設けられている。各マスタカット弁130,132は、常開の電磁式開閉弁であり、開状態でマスタシリンダ116からブレーキシリンダ128へ向かう作動液の流れを許容するとともに、閉状態でマスタシリンダ116からブレーキシリンダ128へ向かう作動液の流れを禁止するものとされている。また、マスタシリンダ装置112には、作動液が大気圧で蓄えられるリザーバ134が設けられており、そのリザーバ134からマスタシリンダ116の加圧室118,120の各々に作動液が供給される。なお、主液通路122には、常閉の電磁式開閉弁であるシュミレータ制御弁136を介してストロークシミュレータ138が接続されている。
 ブレーキアクチュエータ114は、上記ブレーキシリンダ128FL,FR、左後輪18RLの回転を制動するブレーキ装置126RLのホイールシリンダ128RL、右後輪18RRの回転を制動するブレーキ装置126RRのホイールシリンダ128RRの各液圧を制御するものであり、高圧源装置140とABS弁装置142と液圧源装置144とを備えている。
 高圧源装置140は、リザーバ134に一端が接続される高圧通路150に設けられている。高圧源装置140は、高圧通路150を介してリザーバ134から作動液を汲み上げるポンプ152と、そのポンプ152を駆動する電動モータ154と、ポンプ152から吐出された作動液を加圧された状態で蓄えるアキュムレータ156と、ポンプ152の吐出圧を設定値以下に規制するリリーフ弁158とを有している。高圧通路150の他端は共通通路160に接続されており、高圧源装置140が発生させる高圧の作動液を共通通路160に流すことが可能となっている。また、共通通路160には、低圧通路162の一端が接続されており、その低圧通路162の他端はリザーバ134に接続されている。このため、共通通路160内の作動液を、低圧通路162を介して、リザーバ134に流すことが可能となっている。
 液圧源装置144は、高圧通路150の高圧源装置140の下流側に設けられた常閉の電磁式リニア弁(以下、「増圧用リニア弁」という場合がある)170と、低圧通路162に設けられた常閉の電磁式リニア弁(以下、「減圧用リニア弁」という場合がある)172とを有している。増圧用リニア弁170は、高圧源装置140が発生させる高圧の作動液の共通通路160への流入を制御することが可能となっており、一方、減圧用リニア弁172は、共通通路160内の作動液のリザーバ134への流出を制御することが可能となっている。増圧用リニア弁170および減圧用リニア弁172は、高圧側の作動液と低圧側の作動液との液圧差と供給電流との間に予め定められた一定の関係があり、供給電流の増減に応じて開弁圧が変えることが可能となっている。したがって、増圧用リニア弁170および減圧用リニア弁172は、供給電流の制御により、液圧源装置144が共通通路160に供給する液圧である供給圧を連続的に変化させることができ、供給圧を容易に任意の高さに制御することが可能となっている。
 具体的にいえば、増圧用リニア弁170および減圧用リニア弁172は、図3に示すように、いずれも、弁体180と弁座182とを含むシーティング弁と、スプリング184と、ソレノイド186とを備えている。スプリング184の付勢力F1は、弁体180を弁座182に接近させる向きに作用し、ソレノイド186に電流が供給されることにより駆動力F2が弁体180を弁座182から離間させる向きに作用する。また、増圧用リニア弁170においては、高圧源装置140によって加圧された作動液の液圧と供給圧との差圧に応じた差圧作用力F3が弁体180を弁座182から離間させる向きに作用し、減圧用リニア弁172においては、リザーバ134に貯留される作動液の液圧、つまり、大気圧と供給圧との差圧に応じた差圧作用力F3が弁体180を弁座182から離間させる向きに作用する。このため、増圧用リニア弁170および減圧用リニア弁172のいずれにおいても、ソレノイド186への通電量を制御することによって、差圧作用力F3を制御し、増圧用リニア弁170および減圧用リニア弁172の開弁圧を制御することが可能となっている。つまり、増圧用リニア弁170および減圧用リニア弁172を差圧弁として機能させて、供給圧を制御可能に変化させることが可能となっている。
 また、増圧用リニア弁170および減圧用リニア弁172を流量調整弁として機能させて、供給圧を制御することも可能となっている。供給圧の目標となる目標供給圧と実際の供給圧である実供給圧との差が大きい場合には、ソレノイド186への通電量を多くして、高圧側から低圧側への作動液の流量を多くし、一方、目標供給圧と実供給圧との差が小さくなるほど、ソレノイド186への通電量を少なくなくすることで、実供給圧を目標供給圧まで変化させるのである。つまり、目標供給圧と実供給圧との差に応じた電力をソレノイド186へ供給して、実供給圧を目標供給圧まで変化させることが可能となっている。
 なお、高圧通路150のポンプ152と増圧用リニア弁170との間には、高圧源装置140が発生させる高圧の作動液の液圧を検出する高圧源液圧センサ190が設けられており、共通通路160には、その液通路としての共通通路160内の作動液の液圧、つまり、供給圧を検出する検出器としての共通通路液圧センサ192が設けられている。
 また、共通通路160には、ABS弁装置142を介して上記4つのブレーキシリンダ128が接続されている。ABS弁装置142は、ブレーキシリンダ128の液圧を増圧及び保持するためのABS保持弁200と、ブレーキシリンダ128の液圧を減圧するためのABS減圧弁202とを、各車輪に対応して有している。ABS保持弁200は、ブレーキシリンダ128と共通通路160とに接続される個別通路204の途中に設けられており、電磁式の開閉弁とされている。左前輪18FLに対応するABS保持弁200FLは常開弁とされており、他の3つのABS保持弁200FR,RL,RRは常閉弁とされている。また、ABS減圧弁202は、個別通路204のABS保持弁200の下流側と低圧通路162とに接続される個別低圧通路206の途中に設けられており、電磁式の開閉弁とされている。前輪18FL,FRに対応する2つのABS減圧弁202FL、FRは常閉弁とされており、後輪18RL,RRに対応する2つのABS減圧弁202RL、RRは常開弁とされている。
 本システム10では、図1に示すように、ブレーキECU48が設けられている。ブレーキECU48は、各種電磁弁130,132,136,170,172,200,202、およびポンプ152の作動を制御する制御装置であり、各ブレーキ装置126のブレーキシリンダ128に作用させる作動液の液圧を制御するものである。ブレーキECU48は、CPU,ROM,RAM等を備えたコンピュータを主体として構成されたコントローラ210と、ポンプ152を駆動する電動モータ154に対応する駆動回路212と、各種電磁弁130,132,136,170,172,200,202のそれぞれに対応する複数の駆動回路214,216,218,220,222,224,226とを有している(図28参照)。それら複数の駆動回路212等には、コンバータ228を介してバッテリ230が接続されており、電動モータ154、各種制御弁130等に、そのバッテリ230から電力が供給される。
 さらに、複数の駆動回路212等には、コントローラ210が接続されており、コントローラ210が、それら複数の駆動回路212等に各制御信号を送信する。詳しくは、コントローラ210は、電動モータ154の駆動回路212にモータ駆動信号を送信し、マスタカット弁130,132,シュミレータ制御弁136のそれぞれの駆動回路214,216,218に各種電磁弁を開閉するための制御信号を送信する。さらに、増圧用リニア弁170,減圧用リニア弁172の駆動回路220,222には、各リニア弁170,172の有するソレノイド186の発生させる磁気力を制御するための電流制御信号を送信し、ABS保持弁200,ABS減圧弁202の駆動回路224,226には、各種電磁弁の開閉時間を制御するための電流制御信号を送信する。このように、コントローラ210が各駆動回路212等に各制御信号を送信することで、電動モータ154、各種電磁弁130等の作動を制御する。なお、コントローラ210には、上記高圧源液圧センサ190および共通通路液圧センサ192とともに、ブレーキペダル110の操作量を検出するストロークセンサ232、各車輪18に対して設けられて各車輪の回転速度を検出する車輪速センサ234、後述する対応制御における対応方法を選択するための対応方法選択スイッチ236、その対応制御におけるABS弁装置142の作動の終了の推定方法を選択する推定方法選択スイッチ238等が接続されており、各センサ,スイッチによる検出値は、後に説明するブレーキシステム100の制御において利用される。
 <車両用液圧ブレーキシステムの制御>
 上述した構造によって、本ブレーキシステム100では、ブレーキペダル110が運転者によって操作された場合に、そのブレーキペダル100に加えられた操作力によってマスタシリンダ116の加圧室118,120内の作動液が加圧され、その加圧された作動液に依拠してブレーキ装置126のブレーキシリンダ128を作動させることで、制動力を発生させることが可能となっている。ただし、本システム10では、通常時に、マスタシリンダ116によって加圧された作動液に依拠することなく、液圧源装置144によって調圧される作動液に依拠してブレーキ装置126のブレーキシリンダ128を作動させる電気制動制御が実行される。
 電気制動制御では、マスタシリンダ116によって加圧された作動液がブレーキシリンダ128に作用しないように、マスタカット弁130,132が励磁されて閉弁状態とされる。そして、液圧源装置144によって調圧された作動液に依拠してブレーキシリンダ128を作動させるべく、左前輪18FLに対応するABS保持弁200FLを消磁状態とするとともに、他の3つのABS保持弁200FR,RL,RRを励磁状態とすることで、全てのABS保持弁200が開弁状態とされる。また、前輪18FL,FRに対応する2つのABS減圧弁202FL、FRを消磁状態とするとともに、後輪18RL,RRに対応する2つのABS減圧弁202RL、RRを励磁状態とすることで、全てのABS減圧弁202が閉弁状態とされる。このように各種電磁弁を制御することで、液圧源装置144が供給する作動液によってブレーキシリンダ128が作動するのである。つまり、液圧源装置144が供給する作動液の液圧である供給圧が、ブレーキシリンダ128へ供給される作動液の液圧であるブレーキ圧となるのである。
 i)目標供給圧制御
 電気制動制御においてブレーキ装置126が発生させるべき目標液圧制動力は、上述したように、上記メインECU40によって演算されており、その目標液圧制動力を発生可能な供給圧が目標供給液圧P*として、ブレーキECU48のコントローラ210において演算される。そして、その演算された目標供給圧P*と、上記共通通路液圧センサ192によって検出される実供給圧Prとが比較されて、実供給圧Prが目標供給圧P*より高い場合には実供給圧Prを低減させるべく液圧源装置144が制御され、実供給圧Prが目標供給圧P*より低い場合には実供給圧Prを増加させるべく液圧源装置144が制御される。つまり、電気制動制御において、実供給圧Prが目標供給圧P*となるように液圧源装置144の作動を制御する目標供給圧制御が実行されるのである。
 詳しくいえば、目標供給圧制御において、実供給圧Prが目標供給圧P*より高い場合には、増圧用リニア弁170を閉弁させるべく、増圧用リニア弁170は消磁状態とされる。つまり、増圧用リニア弁170のソレノイド186への通電量が0とされる。そして、実供給圧Prが目標供給圧P*まで低下するように、減圧用リニア弁172のソレノイド186への通電量が制御される。本システム100において、減圧用リニア弁172のソレノイド186への通電量は、目標供給圧P*と実供給圧Prとの差である供給圧差ΔPの絶対値に基づいて決定されており、供給圧差ΔPの絶対値に基づくフィードバック制御の手法を利用して決定される。具体的には、まず、供給圧差ΔPが演算され、次いで、それをパラメータとして、次式に従って、減圧用リニア弁172のソレノイド186への目標供給電流i* Gが決定される。
  i* G=iG0+KG・|Δθ|
ここで、KGは、減圧用リニア弁172に対応する比例ゲインであり、iG0は、減圧用リニア弁172の弁体180に作用する実供給圧Prとリザーバ134に貯留される作動液の液圧との差圧、つまり、実供給圧Prに応じて定まる減圧用リニア弁172の開弁電流iGKである。その減圧用リニア弁172の開弁電流iGKは、供給圧Pkと一定の関係があり、次式に従って決定される。
  iGK=f(Pk)
ここで、f(Pk)は、供給圧Pkに依拠した関数であり、図4に示すように、供給圧Pkの増加に伴って直線的に減少するような関数とされている。
 一方、実供給圧Prが目標供給圧P*より低い場合には、減圧用リニア弁172を閉弁させるべく、減圧用リニア弁172のソレノイド186への通電量が0とされる。そして、実供給圧Prが目標供給圧P*まで増加するように、増圧用リニア弁170のソレノイド186への通電量が制御される。増圧用リニア弁170のソレノイド186への目標供給電流i* Z通電量は、次式に従って決定される。
  i* Z=iZ0+KZ・|Δθ|
ここで、KZは、増圧用リニア弁170に対応する比例ゲインであり、iZ0は、高圧源装置140が発生させる高圧の作動液の液圧、つまり、高圧源液圧センサ190によって検出される高圧源圧Phと実供給圧Prとの差圧(Ph-Pr)に応じて定まる増圧用リニア弁170の開弁電流iZKである。その増圧用リニア弁170の開弁電流iZKは、高圧源圧Phと供給圧Pkとの差圧(Ph-Pk)と一定の関係があり、次式に従って決定される。
  iZK=g(Ph-Pk)
ここで、g(Ph-Pk)は、高圧源圧Phと供給圧Pkとの差圧(Ph-Pk)に依拠した関数であり、図5に示すように、差圧(Ph-Pk)の増加に伴って直線的に減少するような関数とされている。
 なお、実供給圧Prと目標供給圧P*とが概ね等しい場合には、実供給圧Prを維持するべく、増圧用リニア弁170のソレノイド186への通電量と、減圧用リニア弁172のソレノイド186への通電量とは、それぞれ0とされる。このように、目標供給圧制御において、増圧用リニア弁170と減圧用リニア弁172との各ソレノイド186への通電量を制御することで、供給圧を目標供給圧とすることが可能となり、各ブレーキ装置126が発生させる制動力を目標液圧制動力とすることが可能となっている。
 ii)ABS弁装置の制御
 また、本ブレーキシステム100においては、ABS弁装置142の作動を制御することで、車両の挙動を安定化させるための制御、所謂ABS(Anti-lock Brake System)制御,VSC(Vehicle Stability Control)制御,TRC(Traction Control)制御が実行されるようになっている。ABS制御は、急ブレーキ時等において車輪のロックを抑制するための制御であり、VSC制御は、車両旋回時における車輪の横滑りを抑制するための制御である。また、TRC制御は、車両発進時,急加速時等に駆動輪の空転を抑制するための制御である。
 ABS制御,VSC制御,TRC制御では、各ブレーキ装置126に対応して設けられたABS保持弁200とABS減圧弁202とが制御されることで、各ブレーキ装置126のブレーキ圧が個別に制御される。ABS制御等は、公知の制御であることから、簡単に説明すると、まず、ブレーキECU48のコントローラ210において各車輪の回転速度,スリップ率等に基づいて4つのABS保持弁200と4つのABS減圧弁202との各々に対応してデューティ比が演算される。そして、各ABS保持弁200と各ABS減圧弁202とがそれぞれのデューティ比に従って開閉するように、各ABS保持弁200と各ABS減圧弁202とに電力が供給される。ABS保持弁200が開弁されABS減圧弁202が閉弁されている状態においては、ブレーキ圧は供給圧まで増加可能であり、ABS保持弁200が閉弁されABS減圧弁202が開弁されている状態においては、ブレーキ圧は大気圧まで低減可能となっている。このように、ABS弁装置142を制御することで、車輪のロック,横滑り,空転等が抑制されるようになっている。
 ただし、上記目標供給圧制御が実行されている際にABS制御等が実行されると、各ABS保持弁200および各ABS減圧弁202が開閉されるため、液圧源装置144によって供給される作動液が流入する共通通路160等の液通路内の容積が大きく変化し、供給圧が目標供給圧に追従し難くなる場合がある。また、ABS減圧弁202が開弁されると、ブレーキ装置126からリザーバ134に作動液が流出し、ABS保持弁200が開弁されると、共通通路160内の作動液がブレーキ装置126に流入する。ABS制御等実行時においては、ABS保持弁200およびABS減圧弁202は頻繁に開閉される。このため、共通通路160内の作動液、つまり、液圧源装置144から供給される作動液がブレーキ装置126を介してリザーバ134に排出されることが多くなり、供給圧を高圧に維持し難くなる虞がある。また、液圧源装置144から供給される作動液のリザーバ134への排出に伴って供給圧が大きく変動することで、増圧用リニア弁170および減圧用リニア弁172の通電状態が頻繁に切り換えられる場合がある。
 iii)目標範囲制御
 そこで、本ブレーキシステム100では、ABS制御等が実行されている場合には、第1制御としての目標供給圧制御に代えて、供給圧が目標範囲内に収まるように液圧弁装置144を制御する目標範囲制御を実行するようになっている。第2制御としての目標範囲制御においては、供給圧が目標範囲の上限値以上となった場合に減圧用リニア弁172が開弁するとともに、供給圧が目標範囲の下限値以下となった場合に増圧用リニア弁170が開弁するように、増圧用リニア弁170および減圧用リニア弁172に電力を供給することで、供給圧が目標範囲内に維持されるようになっている。つまり、目標範囲の上限値に相当する圧力が減圧用リニア弁172の開弁圧となるような電力を減圧用リニア弁172に供給するとともに、目標範囲の下限値に相当する圧力が増圧用リニア弁170の開弁圧となるような電力を増圧用リニア弁170に供給することで、増圧用リニア弁170および減圧用リニア弁172を差圧弁として機能させて、供給圧が目標範囲内に維持されるようになっている。
 目標範囲制御での目標範囲は、上限値が目標供給圧P*に上限決定用加算値αを加えた値となるとともに、下限値が目標供給圧P*から下限決定用減算値βを減じた値となるように設定されている。目標範囲制御は、共通通路160内の作動液がブレーキ装置126を介してリザーバ134に排出される頻度の高い状況において実行される制御であることから、供給圧をある程度高い圧力に維持するべく、上限決定用加算値αは下限決定用減算値βより大きな値となるように設定されている。ちなみに、本システム100での下限決定用減算値βは0に設定されており、供給圧が目標供給圧以上に維持されるようになっている。
 目標範囲制御での減圧用リニア弁172のソレノイド186への目標供給電流i* Gは、目標供給圧P*に上限決定用加算値αを加えた値に相当する圧力において減圧用リニア弁172が開弁するように決定される。具体的には、目標供給電流i* Gは、減圧用リニア弁172の開弁電流iGKと供給圧Pkとの関係を示した図4に示す関数に従って決定される。つまり、目標供給電流i* Gは、目標供給圧P*に上限決定用加算値αを加えた値(P*+α)に対応する開弁電流iGKであり、次式に従って決定される。
  i* G=f(P*+α)
 一方、増圧用リニア弁170のソレノイド186への目標供給電流i* Zは、下限決定用減算値βが0であることから、目標供給圧P*において増圧用リニア弁170が開弁するように決定されており、高圧源圧Phと供給圧Pkとの差圧(Ph-Pk)と増圧用リニア弁170の開弁電流iZKとの関係を示した図5に示す関数に従って決定される。具体的には、目標供給電流i* Zは、高圧源圧Phと目標供給圧P*との差圧(Ph-P*)に対応する開弁電流iZKであり、次式に従って決定される。
  i* Z=g(Ph-P*
 目標範囲制御においては、上述したように、増圧用リニア弁170と減圧用リニア弁172との各ソレノイド186への通電量を制御することで、供給圧を目標範囲内に収めることが可能となる。このため、ABS制御等の実行によってABS保持弁200,ABS減圧弁202が頻繁に開閉している状況下においては、供給圧を敢えて目標供給圧に追従させることなく、増圧用リニア弁170および減圧用リニア弁172の通電状態の頻繁な切換を抑制することが可能となっている。また、供給圧を目標供給圧以上に設定された範囲内に収めることが可能となり、供給圧をある程度高圧に維持することが可能となっている。
 ただし、目標供給圧P*の急変,ブレーキ圧の急減等によって供給圧が目標範囲から大きくズレる場合があり、このような場合には、高圧源装置140から共通通路160への作動液の単位時間あたりの流入量、若しくは、共通通路160からリザーバ134への作動液の単位時間あたりの流出量を多くして、供給圧を早急に目標範囲内に収めることが望ましい。そこで、本システム100では、ABS制御等が実行されている場合であっても、供給圧が目標範囲から大きくズレた場合には、増圧用リニア弁170および減圧用リニア弁172を流量調整弁として機能させる制御である目標供給圧制御が実行されるようになっている。詳しくいえば、ABS制御等が実行されている場合であっても、目標供給圧より比較的高い圧力に設定された減圧閾値より供給圧が高くなったときには、目標供給圧制御での供給圧を低減させる制御が実行され、目標供給圧より低い圧力に設定された増圧閾値より供給圧が低くなったときには、目標供給圧制御での供給圧を増加させる制御が実行される。ちなみに、減圧閾値は、目標供給圧P*に減圧閾値決定用加算値PGを加えた値(P*+PG)に設定されており、増圧閾値は、目標供給圧P*から増圧閾値決定用減算値PZを減じた値(P*-PZ )に設定されている。なお、減圧閾値決定用加算値PGは、上記上限決定用加算値αより大きな値に設定されている。
 iv)対応制御
 本システム100では、上述したように、ABS弁装置142が作動している場合には、基本的に目標範囲制御が実行され、ABS弁装置142が作動していない場合には、目標供給圧制御が実行される。目標範囲制御は、供給圧が目標範囲内に収まっていればよい制御であることから、目標範囲制御では、供給圧は目標供給圧からズレていることが多く、目標範囲の幅が大きく設定されているような場合には、供給圧が目標供給圧から大きくズレている場合もある。このため、ABS弁装置142の作動が終了して、目標範囲制御の代わりに目標供給圧制御が実行されると、供給圧が目標供給圧に追従し難い場合があり、運転者がブレーキ操作に違和感を抱く虞がある。また、ABS弁装置142が作動している場合に目標供給圧制御が実行されている場合は、供給圧が目標供給圧から大きく乖離している場合であるため、ABS弁装置142の作動終了時に運転者がブレーキ操作に違和感を抱く虞がある。
 以上のことに鑑みて、本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、その状況に対応するための対応制御が実行される。対応制御は、ABS弁装置142の作動が終了した時点での供給圧と目標供給圧との差を小さくするための制御であり、ABS弁装置142の作動終了時点での運転者のブレーキ操作に対する違和感を低減させるための制御である。ちなみに、ABS弁装置作動時に実行される目標範囲制御は、目標供給圧以上に設定された目標範囲内に供給圧を収めるための制御であることから、ABS弁装置作動時の供給圧は目標供給圧以上となっていることが多い。つまり、対応制御は、目標供給圧より高くなっている供給圧を目標供給圧に近づけるための制御であり、減圧効果を高めるための制御である。本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、種々の方法によって供給圧と目標供給圧との差を小さくすることが可能とされている。つまり、本システム100において実行される対応制御には様々なバリエーションがある。以下に、対応制御のバリエーションについて説明する。
 a)減圧閾値決定用加算値に依拠した対応制御
 増圧用リニア弁170および減圧用リニア弁172の通電状態の頻繁な切換を抑制するという観点からすれば、ABS弁装置142が作動している場合に目標供給圧制御と目標範囲制御とを切り換えるための減圧閾値は目標供給圧よりある程度高い値に設定されることが望ましい。しかし、減圧閾値が目標供給圧より高く設定されるほど、目標範囲制御から目標供給圧制御に切り換えられ難くなり、供給圧が目標供給圧より高い状態で供給圧と目標供給圧との差が大きくなる虞がある。
 そこで、本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、減圧閾値を設定するための減圧閾値決定用加算値PGを小さな値に変更する。具体的には、通常時に、減圧閾値決定用加算値PGをPG1に設定しておき、ABS弁装置142の作動が終了すると推定される状況下において、減圧閾値決定用加算値PGをPG1より小さなPG2に変更する。このように減圧閾値決定用加算値PGを小さくすることで、目標範囲制御から目標供給圧制御に切り換えられ易くし、ABS弁装置142の作動終了時点での供給圧と目標供給圧との差を小さくすることが可能となる。つまり、対応制御として、減圧閾値決定用加算値PGの値を小さな値に変更することで、ABS弁装置の作動終了時の運転者の違和感を低減させることが可能となっている。
 図6に、減圧閾値決定用加算値PGに依拠した対応制御が実行されている場合の目標供給圧P*,実供給圧Pr,ブレーキ圧PBの時間経過に対する変化、および、減圧閾値決定用加算値PGの時間経過に対する変化を示す。図から解るように、減圧閾値決定用加算値PGの値が小さな値にされている場合、つまり、減圧閾値決定用加算値PGの値がPG2にされている場合には、対応制御が実行されており、目標供給圧P*(実線)と実供給圧Pr(点線)との差を小さくすることが可能となっている。なお、本図6および本図6より後に示す図面において実供給圧Pr(点線)とブレーキ圧PB(一点鎖線)とが一致している場合には、実供給圧Prとブレーキ圧PBとを一点鎖線によって示している。
 b)上限決定用加算値に依拠した対応制御
 ABS弁装置142の作動時に供給圧をある程度高圧に維持するという観点からすれば、目標範囲の上限値、つまり、上限決定用加算値αを大きな値にすることが望ましい。しかし、上限決定用加算値αが大きな値に設定されるほど、減圧用リニア弁172の開弁圧と目標供給圧との差が大きくなり、供給圧が目標供給圧より高い状態で供給圧と目標供給圧との差が大きくなる虞がある。
 そこで、本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、上限決定用加算値αを小さな値に変更する。具体的には、通常時に、上限決定用加算値αをα1に設定しておき、ABS弁装置142の作動が終了すると推定される状況下において、上限決定用加算値αをα1より小さなα2に変更する。このように、上限決定用加算値αを小さくすることで、減圧用リニア弁172の開弁圧と目標供給圧との差を小さくし、ABS弁装置142の作動終了時点での供給圧と目標供給圧との差を小さくすることが可能となる。つまり、対応制御として、上限決定用加算値αを小さな値に変更することで、ABS弁装置の作動終了時の運転者の違和感を低減させることが可能となる。
 図7(a)に、対応制御が実行されていない場合の目標供給圧P*,実供給圧Pr,ブレーキ圧PBの時間経過に対する変化を示し、図7(b)に、上限決定用加算値αに依拠した対応制御が実行されている場合の目標供給圧P*,実供給圧Pr,ブレーキ圧PBの時間経過に対する変化を示す。図から解るように、対応制御が実行されていない場合(図7(a))には、目標供給圧P*(実線)が低下しても、実供給圧Pr(点線)は高圧に維持されており、目標供給圧P*と実供給圧Prとの差は大きくなっている。一方、対応制御が実行されている場合(図7(b))には、目標供給圧P*の変化に実供給圧Prは追従しており、目標供給圧P*と実供給圧Prとの差を小さくすることが可能となっている。なお、本図7および本図7より後に示す図面において目標供給圧P*と実供給圧Prとブレーキ圧PBとが一致している場合には、それら3つの液圧P*,Pr,PBを実線によって示している。
 c)減圧用リニア弁の目標供給電流に依拠した対応制御
 また、ABS弁装置142の作動時に目標供給圧制御が実行される場合があるが、この場合には供給圧が目標供給圧から大きく乖離しており、供給圧と目標供給圧との差を早急に小さくするべく、フィードバック制御を利用した制御が実行される。フィードバック制御では、実供給圧と目標供給圧との差に応じてソレノイド186への目標供給電流の成分が決定されており、その成分が決定される際に利用されるフィードバックゲインに応じて減圧効果、若しくは、増圧効果が変化する。具体的にいえば、減圧用リニア弁172のソレノイド186への目標供給電流i* Gの成分が決定される際には、減圧用リニア弁172に対応した比例ゲインKGが利用されており、その比例ゲインKGが高いほど減圧効果は高くなり、比例ゲインKGが低いほど減圧効果は低くなる。
 そこで、本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、目標供給圧制御が実行されている場合には、減圧用リニア弁172に対応した比例ゲインKGを高くする。具体的には、通常時に、比例ゲインKGをKG1に設定しておき、ABS弁装置142の作動が終了すると推定される状況下において、比例ゲインKGをKG1より大きなKG2に変更する。このように比例ゲインKGを高くすることで、減圧効果を高くして、ABS弁装置142の作動終了時点での供給圧と目標供給圧との差を小さくすることが可能となる。つまり、対応制御として、減圧用リニア弁172に対応した比例ゲインKGを高くすることで、減圧用リニア弁172への供給電力を増加させて、ABS弁装置の作動終了時の運転者の違和感を低減させることが可能となっている。
 d)目標供給圧に依拠した対応制御
 上述したように、減圧閾値を小さくすることと、目標範囲の上限値を小さくすることと、減圧用リニア弁172の目標供給電流i* Gを増加させることとの少なくとも1つを実行することで、ABS弁装置の作動終了時の運転者の違和感を低減させることが可能である。減圧用閾値は、目標供給圧P*に減圧閾値決定用加算値PGを加えた値(P*+PG)に設定されており、減圧閾値決定用加算値PGではなく目標供給圧P*を小さくすることでも減圧閾値を小さくすることが可能である。また、目標範囲の上限値は、目標供給圧P*に上限決定用加算値αを加えた値(P*+α)に設定されており、上限決定用加算値αではなく目標供給圧P*を小さくすることでも上限値を小さくすることが可能である。また、減圧用リニア弁172の目標供給電流i* Gは、次式に従って決定されている。
  i* G=iG0+KG・|ΔP|
ちなみに、供給圧差ΔPは、実供給圧Prと目標供給圧P*との差であり、供給圧の減圧時には、実供給圧Prは目標供給圧P*より高いことから、上記式は次式に変形可能である。
  i* G=iG0+KG・(Pr-P*
この式から解るように、減圧用リニア弁172の目標供給電流i* Gは、比例ゲインKGではなく、実供給圧Prと目標供給圧P*との差(Pr-P*)を大きくすることでも増加する。つまり、目標供給圧P*を小さくすることでも、実供給圧Prと目標供給圧P*との差(Pr-P*)が大きくなり、減圧用リニア弁172の目標供給電流i* Gを増加させることが可能である。
 したがって、制御に利用する目標供給圧P*を低減させることで、減圧閾値を小さくすることと、目標範囲の上限値を小さくすることと、減圧用リニア弁172の目標供給電流i* Gを増加させることとを実現することが可能となる。そこで、本システム100では、ABS弁装置142の作動が終了すると推定される状況下において、対応制御として、制御に利用する目標供給圧P*を低減させている。具体的には、通常時に、上記目標液圧制動力に応じた目標供給液圧P*を用いて各制御を実行し、ABS弁装置142の作動が終了すると推定される状況下において、上記目標液圧制動力に応じた目標供給液圧P*から設定低減値γ(>0)を低減させた圧力(P*-γ)を用いて各制御を実行する。このように、対応制御として、目標供給液圧P*を低減させることで、ABS弁装置の作動終了時の運転者の違和感を低減させることが可能となっている。
 v)ABS弁装置の作動終了の推定
 上記対応制御を実行するべく、ABS弁装置142の作動がまもなく終了するか否かを推定する必要がある。ABS弁装置142は、車輪のロック,横滑り,空転等を抑制するべく制御されるものであり、車輪のロック等の発生しやすい状況であるか否かを判定することで、ABS弁装置142の作動終了を推定することが可能である。また、ABS弁装置142の作動に伴ってブレーキ圧,供給圧等が変化することから、ブレーキ圧,供給圧等の変化の履歴,ブレーキ圧と供給圧との関係等に基づいて、ABS弁装置142の作動終了を推定することも可能である。このように、ABS弁装置142の作動の終了は、ブレーキ圧,供給圧,車輪のロック等の発生要因等に基づいて推定することが可能であり、本システム100では、様々な方法によってABS弁装置142の作動終了が推定されている。以下に、ABS弁装置142の作動終了の推定方法のバリエーションについて説明する。
 a)供給圧とブレーキ圧との差に基づくABS弁装置の作動終了推定
 ABS弁装置142が作動している際には、ABS減圧弁202の作動に伴ってブレーキ圧PBは実供給圧Prより低くなっている場合が多い。つまり、ABS減圧弁202の開閉が頻繁に切換られている際には、ブレーキ圧PBと実供給圧Prとの差は大きくなり、ABS減圧弁202が開弁されることが少なくなると、ブレーキ圧PBと実供給圧Prとの差は小さくなる。ABS減圧弁202が開弁されることが少なくなる場合には、車輪のロック等がある程度抑制されていることが多く、ABS弁装置142の作動がまもなく終了することが多い。そこで、本システム100では、実供給圧Prとブレーキ圧PBとの差に基づいてABS弁装置142の作動の終了を推定しており、判定対象圧としての実供給圧Prとブレーキ圧PBとの差が設定差P1以下となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 また、実供給圧Prは、目標供給圧制御では目標供給液圧P*に追従するように制御されており、目標範囲制御であっても目標供給液圧P*に近い圧力となるように制御されている。このため、ABS弁装置142の作動の終了を推定する場合に、実供給圧Prの代わりに目標供給液圧P*を用いることが可能である。そこで、本システム100では、目標供給液圧P*とブレーキ圧PBとの差に基づいてもABS弁装置142の作動の終了を推定しており、判定対象圧としての目標供給液圧P*とブレーキ圧PBとの差が設定差P2以下となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 ちなみに、本システム100では、ブレーキ圧PBは、ABS弁装置142の作動状況に基づいて推定している。ブレーキ圧PBの推定方法は、公知の方法であることから、簡単に説明すると、まず、ABS保持弁200とABS減圧弁202との各々のデューティ比からABS弁装置142が作動してからのブレーキ圧PBの変化量を演算する。そして、ABS弁装置142の作動直前の実供給圧Prからその演算したブレーキ圧PBの変化量を減じることで、ブレーキ圧PBを推定している。ブレーキ圧PBはブレーキ装置126毎に推定しており、4つのブレーキ装置126に対応して4つのブレーキ圧PBが推定される。
 ABS制御等は、車輪のロック,横滑り等を抑制する制御であり、車輪のロック,横滑り等の生じていない車輪に対しては実行されない。ABS制御が実行される車輪のブレーキ圧PBとABS制御が実行されていない車輪のブレーキ圧PBとを比較すると、図8に示すように、ABS制御が実行されていない車輪のブレーキ圧PB(一点鎖線)は、目標供給液圧P*(実線)に概ね追従するように変化している。一方、ABS制御が実行されている車輪のブレーキ圧PB(二点鎖線)は、目標供給液圧P*(実線)とは殆ど無関係に変化している。そこで、本システム100では、ABS弁装置142の作動の終了を推定する際に、4つのブレーキ圧PBのうちのABS制御等が実行されていないブレーキ装置126のブレーキ圧PBを用いて目標供給液圧P*との差を演算している。ただし、全ての車輪に対してABS制御等が実行されている場合には、4つのブレーキ圧PBの平均値を用いて目標供給液圧P*との差を演算している。
 また、ブレーキ圧PBと実供給圧Prとの差に基づいてABS弁装置142の作動終了を推定する際には、4つのブレーキ圧PBの各々に対して実供給圧Prとの差を演算し、1つのブレーキ圧PBでも実供給圧Prとブレーキ圧PBとの差が設定差P1以下となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。なお、実供給圧Prとブレーキ圧PBとの差が設定差P1以下となるブレーキ圧PBの数(以下、「判定成立数」という場合がある)が多いほど、対応制御において減圧効果が高くなるようにされている。詳しくいえば、判定成立数Nが多いほど、減圧閾値決定用加算値PGに依拠した対応制御での減圧閾値決定用加算値PG2を小さくしており、その減圧閾値決定用加算値PG2は、判定成立数Nに応じて次式に従って決定される。
  PG2=KN1・PG2
ここで、KN1は、判定成立数Nに依拠するゲインであり、図9(a)に示すように、判定成立数Nが1の場合に1となり、判定成立数Nが多くなるにつれて小さな値となるように設定されている。また、判定成立数Nが多いほど、上限決定用加算値αに依拠した対応制御での上限決定用加算値α2も小さくしており、その上限決定用加算値α2は、判定成立数Nに応じて次式に従って決定される。
  α2=KN1・α2
 さらに、判定成立数Nが多いほど、減圧用リニア弁172の目標供給電流i* Gに依拠した対応制御における目標供給電流i* Gを増加させるべく、減圧用リニア弁172に対応した比例ゲインKG2を大きくしており、その比例ゲインKG2は、判定成立数Nに応じて次式に従って決定される。
  KG2=KN2・KG2
ここで、KN2は、判定成立数Nに依拠するゲインであり、図9(b)に示すように、判定成立数Nが1の場合に1となり、判定成立数Nが多くなるにつれて大きな値となるように設定されている。また、判定成立数Nが多いほど、目標供給圧P*に依拠した対応制御での目標供給圧P*を低減させおり、その目標供給圧P*は、判定成立数Nに応じて次式に従って決定される。
  P*=P*-KN2・γ
 b)実供給圧の変動に基づくABS弁装置の作動終了推定
 ABS減圧弁202の作動に伴って、液圧源装置144によって供給される作動液がブレーキ装置126を介してリザーバ134に排出されることで、実供給圧Prは低下する。一方、低下した実供給圧を増加させるべく、増圧用リニア弁170が作動することで、実供給圧Prは増加する。このため、ABS弁装置142の作動時には、実供給圧Prは安定せずに増減を繰り返す。そして、ABS減圧弁202の作動頻度が低下するにつれて、実供給圧Prは、大きく増減しなくなり安定する。図10に、目標供給圧P*,実供給圧Pr,ブレーキ圧PBの時間経過に対する変化を示す。図から解るように、実供給圧Pr(点線)が大きく変動している場合には、ブレーキ圧PB(一点鎖線)は実供給圧Prよりある程度低くなっており、ABS減圧弁202が作動していると推定される。そして、実供給圧Prが大きく変動しなくなり安定すると、ブレーキ圧PBと実供給圧Prとが概ね一致することから、ABS減圧弁202が殆ど作動しなくなっていると推定される。そこで、本システム100では、実供給圧Prが安定した場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 c)実供給圧と目標供給圧との各々の変化勾配に基づくABS弁装置の作動終了推定
 目標供給圧P*が増加している場合には、実供給圧Prは、通常、目標供給圧P*に追従して増加する。しかし、ABS弁装置142が作動している場合には、液圧源装置144によって供給される作動液がブレーキ装置126を介してリザーバ134に排出されることで、目標供給圧P*が増加しているにも関わらず、実供給圧Prは低下する場合がある。つまり、目標供給圧P*が増加しているにも関わらず、実供給圧Prが低下している場合には、ABS弁装置142が作動している可能性は極めて高いと考えられる。また、目標供給圧P*が増加しているにも関わらず、実供給圧Prが低下している場合とは、反対の場合、つまり、目標供給圧P*が増加していないにも関わらず、実供給圧Prが増加している場合には、液圧源装置144によって供給される作動液がブレーキ装置126を介してリザーバ134に排出されていることは殆どないと考えられることから、ABS弁装置142が作動している可能性は極めて低いと考えられる。
 また、図11に示すように、目標供給圧P*(実線)が増加していないにも関わらず、実供給圧Pr(点線)が増加している場合(t1<t<t2)には、実供給圧Prとブレーキ圧(一点鎖線)とが一致しており、ABS減圧弁202は殆ど作動していないと推定される。そこで、本システム100では、目標供給圧P*が増加していないにも関わらず、実供給圧Prが増加している場合、つまり、目標供給圧P*の変化勾配dP*が正の値でないにも関わらず、実供給圧Prの変化勾配dPrが正の値となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。ただし、実供給圧Prの変化勾配dPrが大きすぎる場合、具体的には、実供給圧Prの変化勾配dPrが設定勾配dPr0以上となった場合には、ABS弁装置142の作動に伴って実供給圧Prが大きく変動した可能性があるため、ABS弁装置142の作動が終了すると推定しないようにしている。
 d)運転者によるブレーキ操作に基づくABS弁装置の作動終了推定
 運転者によるブレーキペダル110の操作量が増加している場合、つまり、目標供給圧P*が増加している場合には、ブレーキ圧PBも増加し、車輪がロックする可能性が高くなる。一方、運転者によるブレーキペダル110の操作が解除されるような場合、つまり、目標供給圧P*が低下している場合には、ブレーキ圧PBも低下し、車輪がロックする可能性は低くなる。そこで、本システム100では、目標供給圧P*が低下した場合に、ABS弁装置142の作動がまもなく終了すると推定している。ただし、目標供給圧P*が低下しても、目標供給圧P*が高い場合には、車輪がロックする可能性はある程度あるため、本システム100では、目標供給圧P*が低下するとともに、その低下量がある程度大きい場合に、ABS弁装置142の作動がまもなく終了すると推定している。具体的には、1回のブレーキ操作の中で最も高い目標供給圧P*である最大目標供給圧P* MAXから目標供給圧P*を減じた値(P* MAX-P*)が設定偏差ΔP* 0を超えた場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 e)目標供給圧に基づくABS弁装置の作動終了推定
 目標供給圧P*が高い場合には、ブレーキ圧PBも高くなり、車輪がロックする可能性が高くなるが、目標供給圧P*が低い場合には、ブレーキ圧PBも低いため、車輪がロックする可能性は低くなる。そこで、本システム100では、目標供給圧P*が設定圧P* 0以下となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 また、目標供給圧P*が低いほど、対応制御において減圧効果が高くなるようにされている。詳しくいえば、目標供給圧P*が低いほど、減圧閾値決定用加算値PGに依拠した対応制御での減圧閾値決定用加算値PG2を小さくしており、その減圧閾値決定用加算値PG2は、目標供給圧P*に応じて次式に従って決定される。
  PG2=KP1・PG2
ここで、KP1は、目標供給圧P*に依拠するゲインであり、図12(a)に示すように、目標供給圧P*が設定圧P* 0の場合に1となり、目標供給圧P*が設定圧P* 0より低くなるにつれて小さな値となるように設定されている。また、目標供給圧P*が低いほど、上限決定用加算値αに依拠した対応制御での上限決定用加算値α2も小さくしており、その上限決定用加算値α2は、目標供給圧P*に応じて次式に従って決定される。
  α2=KP1・α2
 さらに、目標供給圧P*が低いほど、減圧用リニア弁172の目標供給電流i* Gに依拠した対応制御における比例ゲインKG2を大きくしており、その比例ゲインKG2は、目標供給圧P*に応じて次式に従って決定される。
  KG2=KP2・KG2
ここで、KP2は、目標供給圧P*に依拠するゲインであり、図12(b)に示すように、目標供給圧P*が設定圧P* 0の場合に1となり、目標供給圧P*が設定圧P* 0より低くなるにつれて大きな値となるように設定されている。また、目標供給圧P*が低いほど、目標供給圧P*に依拠した対応制御での目標供給圧P*を低減させており、その目標供給圧P*は、次式に従って決定される。
  P*=P*-KP2・γ
 f)車両の走行速度に基づくABS弁装置の作動終了推定
 車両の走行速度(以下、「車速」と略す場合がある)Vが高い場合には、車輪の横滑りが発生する可能性が高くなる。さらに、車速Vが高い場合には、高速で走る車両を制動するためにブレーキ圧PBが高くなり、車輪がロックする可能性も高くなる。一方、車速Vが低い場合には、車輪の横滑り,ロックが発生する可能性は低い。そこで、本システム100では、車速Vが設定速度V0以下となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 また、車速Vが低いほど、対応制御において減圧効果が高くなるようにされている。詳しくいえば、車速Vが低いほど、減圧閾値決定用加算値PGに依拠した対応制御での減圧閾値決定用加算値PG2を小さくしており、その減圧閾値決定用加算値PG2は、車速Vに応じて次式に従って決定される。
  PG2=KV1・PG2
ここで、KV1は、車速Vに依拠するゲインであり、図13(a)に示すように、車速Vが設定速度V0の場合に1となり、車速Vが設定速度V0より低くなるにつれて小さな値となるように設定されている。また、車速Vが低いほど、上限決定用加算値αに依拠した対応制御での上限決定用加算値α2も小さくしており、その上限決定用加算値α2は、車速Vに応じて次式に従って決定される。
  α2=KV1・α2
 さらに、車速Vが低いほど、減圧用リニア弁172の目標供給電流i* Gに依拠した対応制御における比例ゲインKG2を大きくしており、その比例ゲインKG2は、車速Vに応じて次式に従って決定される。
  KG2=KV2・KG2
ここで、KV2は、車速Vに依拠するゲインであり、図13(b)に示すように、車速Vが設定速度V0の場合に1となり、車速Vが設定速度V0より低くなるにつれて大きな値となるように設定されている。また、車速Vが低いほど、目標供給圧P*に依拠した対応制御での目標供給圧P*を低減させており、その目標供給圧P*は、車速Vに応じて次式に従って決定される。
  P*=P*-KV2・γ
 g)ABS弁装置の作動継続時間に基づくABS弁装置の作動終了推定
 ABS制御等は、ブレーキ圧PBを瞬時に低下させ、そして、低下したブレーキ圧PBを瞬時に増加させる制御であり、ブレーキ圧PBの低下と増加とが繰り返される制御であるが、長時間継続して実行されることは少ない。そこで、本システム100では、ABS弁装置142がある程度継続して作動した場合、具体的には、ABS弁装置142が作動し始めてからの作動時間Tが設定時間T0以上となった場合に、ABS弁装置142の作動がまもなく終了すると推定している。
 <制御プログラム>
 本システム100において液圧源装置144が発生させる作動液の液圧である供給圧の制御は、図14にフローチャートを示す液圧制動プログラムが、イグニッションスイッチがON状態とされている間、設定された時間間隔ΔtをおいてブレーキECU48のコントローラ210により繰り返し実行されることによって行われる。以下に、液圧制動プログラムによる制御処理のフローを、図に示すフローチャートを参照しつつ、簡単に説明する。
 液圧制動プログラムによる処理では、まず、ステップ1(以下、単に「S1」と略す。他のステップについても同様とする)において、上記メインECU40において演算されている目標液圧制動力に基づいて目標供給圧P*が決定される。コントローラ210内には、目標液圧制動力をパラメータとする目標供給圧P*に関するマップデータが格納されており、目標供給液圧P*は、そのマップデータを参照することによって決定される。そして、S2において、共通通路液圧センサ192によって、実供給圧Prが検出され、S3において、高圧源液圧センサ190によって、高圧源圧Phが検出される。
 S4において、ABS弁装置142が作動しているか否かが判定される。ABS弁装置142の4つのABS保持弁200および4つのABS減圧弁202のうちの1つでも作動していれば、ABS弁装置142が作動していると判定される。ABS弁装置142が作動していると判定されると、S5において、図15にフローチャートを示すABS弁装置作動時サブルーチンを実行するための処理が実行される。このABS弁装置作動時サブルーチンでは、S21において、ABS弁装置作動終了推定サブルーチンを実行するための処理が実行される。このABS弁装置作動終了推定サブルーチンでは、図16~図23にフローチャートで示す8つのサブルーチンが準備されており、推定方法選択スイッチ238を運転者が操作することによって、それらのいずれかが実行されるようになっている。
 推定方法選択スイッチ238によって実供給圧Prとブレーキ圧PBとの差に基づくABS弁装置の作動終了推定方法が選択されている場合には、図16にフローチャートを示す第1ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、まず、S41において、各車輪に対応したブレーキ圧PBが、各ABS保持弁200および各ABS減圧弁202のデューティ比に基づいて推定される。次に、S42において、推定された各ブレーキ圧PBに対して、実供給圧Prとの差が設定差P1以下であるか否かが判定され、S43において、実供給圧Prとの差が設定差P1以下であるブレーキ圧PBの数である判定成立数Nが決定される。続いて、S44において、判定成立数Nが0でないか否かが判定され、判定成立数Nが0でないと判定された場合には、S45において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされる。ABS弁装置作動終了推定フラグFSは、ABS弁装置142の作動が終了すると推定される状況下にあるか否かを示すものであり、そのフラグFSのフラグ値が1とされる場合には、ABS弁装置142の作動が終了すると推定される状況下にあることを示し、0とされている場合には、ABS弁装置142の作動が終了すると推定される状況下にないことを示している。また、判定成立数Nが0であると判定された場合には、S46において、ABS弁装置作動終了推定フラグFSのフラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって目標供給圧P*とブレーキ圧PBとの差に基づくABS弁装置の作動終了推定方法が選択されている場合には、図17にフローチャートを示す第2ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、S51において、各車輪に対応したブレーキ圧PBが推定され、S52において、ABS制御等が実行されていない車輪が存在するか否かが判定される。ABS制御等が実行されていない車輪が存在すると判定された場合には、S53において、判定に利用する判定用ブレーキ圧PHBが、ABS制御等が実行されていない車輪のブレーキ圧PBに決定される。また、ABS制御等が実行されていない車輪が存在しないと判定された場合には、S54において、4つのブレーキ圧PBの平均値が演算され、判定用ブレーキ圧PHBがその平均値に決定される。判定用ブレーキ圧PHBが決定されると、S55において、目標供給圧P*と判定用ブレーキ圧PHBとの差が設定差P2以下であるか否かが判定される。それら差が設定差P2以下であると判定された場合には、S56において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされ、それら差が設定差P2以下でないと判定された場合には、S57において、フラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって実供給圧Prの変動に基づくABS弁装置の作動終了推定方法が選択されている場合には、図18にフローチャートを示す第3ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、まず、S61において、実供給圧Prの変化勾配dPrおよび寄与率Rが、最小2乗法に基づいて演算される。次に、S62において、演算された寄与率Rが設定値R0より大きいか否かが判定される。寄与率Rが高いほど実供給圧Prは安定しているため、寄与率Rが設定値R0より大きいと判定された場合には、実供給圧Prは安定していると推定し、S63において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされる。一方、寄与率Rが設定値R0以下と判定された場合には、実供給圧Prは安定していないと推定し、S64において、フラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって実供給圧Prと目標供給圧P*との各々の変化勾配に基づくABS弁装置の作動終了推定方法が選択されている場合には、図19にフローチャートを示す第4ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、S71において、実供給圧Prの変化勾配dPrが最小2乗法に基づいて演算され、S72において、目標供給圧P*の変化勾配dP*が最小2乗法に基づいて演算される。次に、S73において、実供給圧Prの変化勾配dPrが0より大きく、かつ、設定勾配dPr0未満であるか否かが判定される。実供給圧Prの変化勾配dPrが0より大きく、かつ、設定勾配dPr0未満であると判定された場合には、S74において、目標供給圧P*の変化勾配dP*が0より大きいか否かが判定される。目標供給圧P*の変化勾配dP*が0以下と判定された場合には、S75において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされる。また、実供給圧Prの変化勾配dPrが0より大きく、かつ、設定勾配dPr0未満でないと判定された場合、若しくは、目標供給圧P*の変化勾配dP*が0より大きいと判定された場合には、S76において、ABS弁装置作動終了推定フラグFSのフラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって運転者のブレーキ操作に基づくABS弁装置の作動終了推定方法が選択されている場合には、図20にフローチャートを示す第5ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、S81において、目標供給圧P*が低下しているか否かが判定される。具体的には、今回の本プログラムの実行において決定された目標供給圧P*が、前回の本プログラムの実行において決定された前回目標供給圧P* Pより小さいか否かが判定される。目標供給圧P*が前回目標供給圧P* Pより小さくないと判定された場合、つまり、目標供給圧P*が低下していないと判定された場合には、S82において、1回のブレーキ操作の中で最も高い目標供給圧P*である最大目標供給圧P* MAXが、今回の本プログラムの実行において決定された目標供給圧P*とされる。また、目標供給圧P*が低下していると判定された場合には、S83において、最大目標供給圧P* MAXから目標供給圧P*を減じた値が設定偏差ΔP* 0を超えているか否かが判定される。最大目標供給圧P* MAXから目標供給圧P*を減じた値が設定偏差ΔP* 0を超えていると判定された場合には、S84において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされる。また、最大目標供給圧P* MAXが目標供給圧P*とされた後、若しくは、最大目標供給圧P* MAXから目標供給圧P*を減じた値が設定偏差ΔP* 0以下であると判定された場合には、S85において、ABS弁装置作動終了推定フラグFSのフラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって目標供給圧P*に基づくABS弁装置の作動終了推定方法が選択されている場合には、図21にフローチャートを示す第6ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、S91において、目標供給圧P*が設定圧P* 0以下であるか否かが判定される。目標供給圧P*が設定圧P* 0以下であると判定された場合には、S92において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされ、目標供給圧P*が設定圧P* 0以下でないと判定された場合には、S93において、フラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によって車速Vに基づくABS弁装置の作動終了推定方法が選択されている場合には、図22にフローチャートを示す第7ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、まず、S101において、車輪速センサ234によって車速Vが検出され、次に、S102において、その検出された車速Vが設定速度V0以下であるか否かが判定される。車速Vが設定速度V0以下であると判定された場合には、S103において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされ、車速Vが設定速度V0以下でないと判定された場合には、S104において、フラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 また、推定方法選択スイッチ238によってABS弁装置の作動継続時間に基づくABS弁装置の作動終了推定方法が選択されている場合には、図23にフローチャートを示す第8ABS弁装置作動終了推定サブルーチンが実行される。このサブルーチンでは、S111において、ABS弁装置142が作動し始めてからの作動時間Tを計測するべく、その作動時間Tに時間間隔Δtが加算され、S112において、その作動時間Tが設定時間T0以上であるか否かが判定される。作動時間Tが設定時間T0以上であると判定された場合には、S113において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされ、作動時間Tが設定時間T0以上でないと判定された場合には、S114において、フラグ値が0にされる。ABS弁装置作動終了推定フラグFSのフラグ値が決定されると、このサブルーチンの実行が終了する。
 上記8つのABS弁装置作動終了推定サブルーチンのいずれかの実行が終了すると、ABS弁装置作動時サブルーチンのS22において、ABS弁装置作動終了推定フラグFSのフラグ値が1にされているか否かが判定される。フラグ値が1にされていないと判定された場合には、S23において、減圧閾値決定用加算値PGがPG1に決定され、S24において、上限決定用加算値αがα1に決定される。そして、S25において、減圧用リニア弁172に対応した比例ゲインKGがKG1に決定される。また、フラグ値が1にされていると判定された場合には、S26において、対応制御実行サブルーチンを実行するための処理が実行される。この対応制御実行サブルーチンでは、図24~図27にフローチャートで示す4つのサブルーチンが準備されており、対応方法選択スイッチ236を運転者が操作することによって、それらのいずれかが実行されるようになっている。
 対応方法選択スイッチ236によって減圧閾値決定用加算値PGに依拠した対応制御が選択されている場合には、図24にフローチャートを示す第1対応制御実行サブルーチンが実行される。このサブルーチンでは、S121において、推定方法選択スイッチ238によって実供給圧Prとブレーキ圧PBとの差に基づくABS弁装置の作動終了推定方法が選択されているか否かが判定される。つまり、第1ABS弁装置作動終了推定サブルーチン(以下、「第1推定サブルーチン」と略す場合がある)が実行されたか否かが判定される。第1推定サブルーチンが実行されたと判定された場合には、S122において、判定成立数Nに基づいて、図9(a)に示すように設定されているマップデータを参照し、上述したように減圧閾値決定用加算値PGが決定される。また、第1推定サブルーチンが実行されていないと判定された場合には、S123において、推定方法選択スイッチ238によって目標供給圧P*に基づくABS弁装置の作動終了推定方法が選択されているか否かが判定される。つまり、第6ABS弁装置作動終了推定サブルーチン(以下、「第6推定サブルーチン」と略す場合がある)が実行されたか否かが判定される。第6推定サブルーチンが実行されたと判定された場合には、S124において、目標供給圧P*に基づいて、図12(a)に示すように設定されているマップデータを参照し、上述したように減圧閾値決定用加算値PGが決定される。また、第6推定サブルーチンが実行されていないと判定された場合には、S125において、推定方法選択スイッチ238によって車速Vに基づくABS弁装置の作動終了推定方法が選択されているか否かが判定される。つまり、第7ABS弁装置作動終了推定サブルーチン(以下、「第7推定サブルーチン」と略す場合がある)が実行されたか否かが判定される。第7推定サブルーチンが実行されたと判定された場合には、S126において、車速Vに基づいて、図13(a)に示すように設定されているマップデータを参照し、上述したように減圧閾値決定用加算値PGが決定される。また、第7推定サブルーチンが実行されていないと判定された場合には、S127において、減圧閾値決定用加算値PGがPG2に決定される。減圧閾値決定用加算値PGがいずれかの値に決定されると、このサブルーチンの実行が終了する。
 対応方法選択スイッチ236によって上限決定用加算値αに依拠した対応制御が選択されている場合には、図25にフローチャートを示す第2対応制御実行サブルーチンが実行される。このサブルーチンでは、S131において、第1推定サブルーチンが実行されたか否かが判定される。第1推定サブルーチンが実行されたと判定された場合には、S132において、判定成立数Nに基づいて、図9(a)に示すように設定されているマップデータを参照し、上述したように上限決定用加算値αが決定される。また、第1推定サブルーチンが実行されていないと判定された場合には、S133において、第6推定サブルーチンが実行されたか否かが判定される。第6推定サブルーチンが実行されたと判定された場合には、S134において、目標供給圧P*に基づいて、図12(a)に示すように設定されているマップデータを参照し、上述したように上限決定用加算値αが決定される。また、第6推定サブルーチンが実行されていないと判定された場合には、S135において、第7推定サブルーチンが実行されたか否かが判定される。第7推定サブルーチンが実行されたと判定された場合には、S136において、車速Vに基づいて、図13(a)に示すように設定されているマップデータを参照し、上述したように上限決定用加算値αが決定される。また、第7推定サブルーチンが実行されていないと判定された場合には、S137において、上限決定用加算値αがα2に決定される。上限決定用加算値αがいずれかの値に決定されると、このサブルーチンの実行が終了する。
 対応方法選択スイッチ236によって目標供給電流i* Gに依拠した対応制御が選択されている場合には、図26にフローチャートを示す第3対応制御実行サブルーチンが実行される。このサブルーチンでは、S141において、第1推定サブルーチンが実行されたか否かが判定される。第1推定サブルーチンが実行されたと判定された場合には、S142において、判定成立数Nに基づいて、図9(b)に示すように設定されているマップデータを参照し、上述したように減圧用リニア弁172に対応した比例ゲインKGが決定される。また、第1推定サブルーチンが実行されていないと判定された場合には、S143において、第6推定サブルーチンが実行されたか否かが判定される。第6推定サブルーチンが実行されたと判定された場合には、S144において、目標供給圧P*に基づいて、図12(b)に示すように設定されているマップデータを参照し、上述したように比例ゲインKGが決定される。また、第6推定サブルーチンが実行されていないと判定された場合には、S145において、第7推定サブルーチンが実行されたか否かが判定される。第7推定サブルーチンが実行されたと判定された場合には、S146において、車速Vに基づいて、図13(b)に示すように設定されているマップデータを参照し、上述したように比例ゲインKGが決定される。また、第7推定サブルーチンが実行されていないと判定された場合には、S147において、比例ゲインKGがKG2に決定される。比例ゲインKGがいずれかの値に決定されると、このサブルーチンの実行が終了する。
 対応方法選択スイッチ236によって目標供給圧P*に依拠した対応制御が選択されている場合には、図27にフローチャートを示す第4対応制御実行サブルーチンが実行される。このサブルーチンでは、S151において、第1推定サブルーチンが実行されたか否かが判定される。第1推定サブルーチンが実行されたと判定された場合には、S152において、判定成立数Nに基づいて、図9(b)に示すように設定されているマップデータを参照し、上述したように目標供給圧P*が決定される。また、第1推定サブルーチンが実行されていないと判定された場合には、S153において、第6推定サブルーチンが実行されたか否かが判定される。第6推定サブルーチンが実行されたと判定された場合には、S154において、目標供給圧P*に基づいて、図12(b)に示すように設定されているマップデータを参照し、上述したように目標供給圧P*が決定される。また、第6推定サブルーチンが実行されていないと判定された場合には、S155において、第7推定サブルーチンが実行されたか否かが判定される。第7推定サブルーチンが実行されたと判定された場合には、S156において、車速Vに基づいて、図13(b)に示すように設定されているマップデータを参照し、上述したように目標供給圧P*が決定される。また、第7推定サブルーチンが実行されていないと判定された場合には、S157において、目標供給圧P*から設定低減値γを減じたものが、目標供給圧P*に決定される。目標供給圧P*がいずれかの値に決定されると、このサブルーチンの実行が終了する。
 上記4つの対応制御実行サブルーチンのいずれかの実行が終了した後、若しくは、ABS弁装置作動時サブルーチンのS26の実行が終了した後に、S27において、実供給圧Prが、目標供給圧P*から増圧閾値決定用減算値PZを減じた圧力以上、かつ、目標供給圧P*に減圧閾値決定用加算値PGを加えた圧力以下であるか否かが判定される。つまり、実供給圧Prが、増圧閾値以上かつ減圧閾値以下であるか否かが判定される。実供給圧Prが増圧閾値以上かつ減圧閾値以下であると判定された場合には、S28において、目標範囲制御を実行するべく、図4に示すように設定されているマップデータを参照し、減圧用リニア弁172の目標供給電流i* Gが決定され、図5に示すように設定されているマップデータを参照し、増圧用リニア弁170の目標供給電流i* Zが決定される。
 また、実供給圧Prが増圧閾値以上かつ減圧閾値以下でないと判定された場合には、S29において、実供給圧Prが減圧閾値(P*+PG)より大きいか否かが判定される。実供給圧Prが減圧閾値より大きいと判定された場合には、S30において、目標供給圧制御において供給圧を低減させるべく、増圧用リニア弁170の目標供給電流i* Zが0に決定され、減圧用リニア弁172の目標供給電流i* Gが、フィードバック制御を利用した上記式に従って決定される。また、実供給圧Prが減圧閾値以下であると判定された場合には、S31において、目標供給圧制御において供給圧を増加させるべく、減圧用リニア弁172の目標供給電流i* Gが0に決定され、増圧用リニア弁170の目標供給電流i* Zが、フィードバック制御を利用した上記式に従って決定される。減圧用リニア弁172の目標供給電流i* Gおよび増圧用リニア弁170の目標供給電流i* Zが決定されると、ABS弁装置作動時サブルーチンの実行が終了する。
 メインルーチンのS4においてABS弁装置142が作動していないと判定された場合には、S6において、最大目標供給圧P* MAXが0にリセットされ、S7において、作動時間Tも0にリセットされる。次に、S8において、実供給圧Prと目標供給圧P*とが概ね一致しているか否かが判定され、実供給圧Prと目標供給圧P*とが概ね一致していると判定された場合には、S9において、減圧用リニア弁172の目標供給電流i* Gおよび増圧用リニア弁170の目標供給電流i* Zが0に決定される。また、実供給圧Prと目標供給圧P*とが概ね一致していないと判定された場合には、S10において、実供給圧Prが目標供給圧P*より大きいか否かが判定される。実供給圧Prが目標供給圧P*より大きいと判定された場合には、S11において、増圧用リニア弁170の目標供給電流i* Zが0に決定され、減圧用リニア弁172の目標供給電流i* Gが、フィードバック制御を利用した上記式に従って決定される。また、実供給圧Prが目標供給圧P*より小さいと判定されると、S12において、減圧用リニア弁172の目標供給電流i* Gが0に決定され、増圧用リニア弁170の目標供給電流i* Zが、フィードバック制御を利用した上記式に従って決定される。そして、S13において、決定された減圧用リニア弁172の目標供給電流i* Gに基づく制御信号が駆動回路222に送信され、増圧用リニア弁170の目標供給電流i* Zに基づく制御信号が駆動回路220に送信された後、本プログラムの1回の実行が終了する。
 <制御装置の機能構成>
 液圧制動プログラムを実行するブレーキECU48のコントローラ210は、それの実行処理に鑑みれば、図28に示すような機能構成を有するものと考えることができる。図から解るように、コントローラ210は、S1の処理を実行する機能部、つまり、液圧源装置144が供給するべき作動液の液圧である目標供給圧P*を決定する機能部として、目標供給圧決定部250を、S9,S11~S13,S28,S30,S31の処理を実行する機能部、つまり、目標供給圧制御と目標範囲制御とを選択的に実行する機能部として、供給圧制御実行部252を、S4,S27,S29の処理を実行する機能部、つまり、目標供給圧制御と目標範囲制御とのいずれの制御を実行すべきかを選択する機能部として、制御選択部254を、S21,S26の処理を実行する機能部、つまり、ABS弁装置の作動が終了すると推定される状況下においてその状況に対応する機能部として、ABS弁装置作動終了対応部256を、それぞれ備えている。さらに、ABS弁装置作動終了対応部256は、S21の処理を実行する機能部、つまり、ABS弁装置の作動の終了を推定する機能部として、ABS弁装置作動終了推定部258を有している。そのABS弁装置作動終了推定部258は、S41,S51の処理を実行する機能部、つまり、ブレーキ圧PBを推定する機能部として、ブレーキ圧推定部260を有している。
 <対応制御およびABS弁装置の作動の終了の推定方法の更なるバリエーション>
 上記液圧ブレーキシステム100においては、減圧閾値決定用加算値PGに依拠した対応制御と、上限決定用加算値αに依拠した対応制御と、減圧用リニア弁172の目標供給電流i* Gに依拠した対応制御と、目標供給圧P*に依拠した対応制御とが選択的に単独で実行可能とされているが、それら4つの対応制御のうちの2以上の対応制御が同時に実行可能とされてもよい。つまり、例えば、ABS弁装置142の作動が終了すると推定された場合に、減圧閾値決定用加算値PGを小さくするとともに、上限決定用加算値αを小さくしてもよい。具体的にいえば、上記第1対応制御実行サブルーチン実行後に、上記第2対応制御実行サブルーチンを実行し、減圧閾値決定用加算値PGおよび上限決定用加算値αを小さくしてもよい。また、4つの対応制御のうちの一部のものが実行可能なシステムであってもよい。つまり、例えば、減圧用リニア弁172の目標供給電流i* Gに依拠した対応制御だけが実行可能なシステムであってもよく、減圧閾値決定用加算値PGに依拠した対応制御と目標供給圧P*に依拠した対応制御とだけが実行可能なシステムであってもよい。
 また、上記液圧ブレーキシステム100においては、ABS弁装置142の作動の終了を推定する方法として、図16~図23に示すように、8つの推定方法が採用されており、それら8つの推定方法は選択的に単独で実行されるようになっている。つまり、第1~第8ABS弁装置作動終了推定サブルーチンのうちのいずれか1つのサブルーチンの各条件を満たした場合に、ABS弁装置142の作動が終了すると推定している。そのように、ABS弁装置142の作動の終了を推定してもよいが、第1~第8ABS弁装置作動終了推定サブルーチンのうちの2以上のサブルーチンの各条件を満たした場合に、ABS弁装置142の作動が終了すると推定してもよい。具体的には、例えば、第6ABS弁装置作動終了推定サブルーチンを実行し、S91の条件を満たすとともに、第7ABS弁装置作動終了推定サブルーチンを実行し、S102の条件を満たした場合に、ABS弁装置142の作動が終了すると推定してもよい。また、8つの推定方法のうちの一部のものが実行可能なシステムであってもよい。つまり、例えば、車速に基づく推定方法だけが実行可能なシステムであってもよく、ABS弁装置の作動継続時間に基づく推定方法と目標供給圧に基づく推定方法とだけが実行可能なシステムであってもよい。

Claims (13)

  1.  運転者によって操作されるブレーキ操作部材と、
     車輪に設けられて自身に供給された圧力に応じた制動力を発生させるブレーキ装置と、
     自身に供給される電力に応じて作動液を増圧する電磁式の増圧用リニア弁と、自身に供給される電力に応じて作動液を減圧する電磁式の減圧用リニア弁とを有し、それらによって調圧された作動液を供給する液圧源装置と、
     その液圧源装置と前記ブレーキ装置との間に介在させられたABS弁装置と、
     前記増圧用リニア弁への供給電力を制御してその増圧用リニア弁の作動を制御するとともに、前記減圧用リニア弁への供給電力を制御してその減圧用リニア弁の作動を制御する制御装置と
     を備えた車両用液圧ブレーキシステムであって、
     前記制御装置が、
     前記ブレーキ操作部材の操作に基づいて、前記液圧源装置が供給する作動液の液圧である供給圧の目標となる目標供給圧を決定する目標供給圧決定部と、
     (a)前記供給圧が前記目標供給圧決定部によって決定された前記目標供給圧となるように、前記供給圧が前記目標供給圧より高い場合に前記供給圧と前記目標供給圧との差に応じた電力を前記減圧用リニア弁に供給するとともに、前記供給圧が前記目標供給圧より低い場合に前記供給圧と前記目標供給圧との差に応じた電力を前記増圧用リニア弁に供給する第1制御と、(b)上限値が前記目標供給圧に上限決定用加算値を加えた値となるとともに下限値が前記目標供給圧から下限決定用減算値を減じた値となるように決定される目標範囲内に前記供給圧が収まるように、前記供給圧が前記上限値以上となった場合において前記減圧用リニア弁を開弁させるための電力を前記減圧用リニア弁に供給し続けるとともに、前記供給圧が前記下限値以下となった場合において前記増圧用リニア弁を開弁させるための電力を前記増圧用リニア弁に供給し続ける第2制御とを選択的に実行する供給圧制御実行部と、
     その供給圧制御実行部が実行する制御として、(i)前記ABS弁装置が作動していない場合に前記第1制御を選択し、一方、(ii)前記ABS弁装置が作動している場合において、前記供給圧が前記目標供給圧以上であり、かつその目標供給圧に前記上限決定用加算値より大きな値の減圧閾値決定用加算値を加えた圧力以下であるときに前記第2制御を、前記供給圧が前記目標供給圧に前記減圧閾値決定用加算値を加えた圧力より高いときに前記第1制御を、それぞれ選択する制御選択部とを有し、
     前記制御装置が、さらに、
     前記ABS弁装置の作動が終了すると推定される状況下において、その状況に対応するための対応制御を実行するABS弁装置作動終了対応部を有し、
     そのABS弁装置作動終了対応部が、
     前記対応制御として、
     (A)前記減圧閾値決定用加算値を小さくすることと、
     (B)前記上限決定用加算値を小さくすることと、
     (C)前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させることと、
     (D)前記目標供給圧決定部によって決定される前記目標供給圧を低減させることと
     の少なくとも1つを実行するように構成された車両用液圧ブレーキシステム。
  2.  前記ABS弁装置作動終了対応部が、
     (A)前記対応制御として、前記減圧閾値決定用加算値を小さくするように構成された場合に、当該車両用液圧ブレーキシステムを搭載した車両の走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記減圧閾値決定用加算値をより小さくし、
     (B)前記対応制御として、前記上限決定用加算値を小さくするように構成された場合に、前記走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記上限決定用加算値をより小さくし、
     (C)前記対応制御として、前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させるように構成された場合に、前記走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記減圧用リニア弁に供給されている電力をより多く増加させ、
     (D)前記対応制御として、前記目標供給圧決定部によって決定される前記目標供給圧を低減させるように構成された場合に、前記走行速度と前記目標供給圧との一方をパラメータとして用い、そのパラメータが低いほど前記目標供給圧をより大きく低減させるように構成された請求項1に記載の車両用液圧ブレーキシステム。
  3.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記供給圧が安定した場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1または請求項2に記載の車両用液圧ブレーキシステム。
  4.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記目標供給圧が増加していないにも関わらず前記供給圧が増加した場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項3のいずれか1つに記載の車両用液圧ブレーキシステム。
  5.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記目標供給圧が低下した場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項4のいずれか1つに記載の車両用液圧ブレーキシステム。
  6.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記目標供給圧が設定圧以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項5のいずれか1つに記載の車両用液圧ブレーキシステム。
  7.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     当該車両用液圧ブレーキシステムを搭載した車両の走行速度が設定速度以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項6のいずれか1つに記載の車両用液圧ブレーキシステム。
  8.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記ABS弁装置の作動が設定時間以上継続した場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項7のいずれか1つに記載の車両用液圧ブレーキシステム。
  9.  前記ABS弁装置作動終了対応部が、
     前記ABS弁装置の作動の終了を推定するABS弁装置作動終了推定部を有し、そのABS弁装置作動終了推定部の推定に基づいて前記対応制御を実行するように構成され、
     前記ABS弁装置作動終了推定部が、
     前記供給圧と前記目標供給圧との一方である判定対象圧と前記ブレーキ装置に供給されている作動液の圧力であるブレーキ圧との差が設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項1ないし請求項8のいずれか1つに記載の車両用液圧ブレーキシステム。
  10.  当該車両用液圧ブレーキシステムが、
     前後左右の車輪に対応してそれぞれが前記ブレーキ装置となる4つのブレーキ装置を備え、
     前記ABS弁装置作動終了推定部が、
      前記4つのブレーキ装置のうちの少なくとも1つのものの各々の前記ブレーキ圧に基づいて前記判定対象圧との差を判定するための単一のブレーキ圧を決定し、その決定された単一のブレーキ圧と前記判定対象圧との差が前記設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項9に記載の車両用液圧ブレーキシステム。
  11.  当該車両用液圧ブレーキシステムが、
     前後左右の車輪に対応してそれぞれが前記ブレーキ装置となる4つのブレーキ装置を備え、
     前記ABS弁装置作動終了推定部が、
     前記4つのブレーキ装置の各々の前記ブレーキ圧について前記判定対象圧との差を判定し、前記4つのブレーキ装置のうちの1つでも前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となった場合に、前記ABS弁装置の作動が終了すると推定するように構成された請求項9に記載の車両用液圧ブレーキシステム。
  12.  前記ABS弁装置作動終了対応部が、
     前記対応制御として、
     (A)前記減圧閾値決定用加算値を小さくすることと、
     (B)前記上限決定用加算値を小さくすることと、
     (C)前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させることと、
     (D)前記目標供給圧決定部によって決定される前記目標供給圧を低減させることと
     の少なくとも1つを実行するように構成され、
     (A)前記対応制御として、前記減圧閾値決定用加算値を小さくするように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記減圧閾値決定用加算値をより小さくし、
     (B)前記対応制御として、前記上限決定用加算値を小さくするように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記上限決定用加算値をより小さくし、
     (C)前記対応制御として、前記ABS装置の作動が終了すると推定された時点で前記第1制御が実行されている場合において、前記減圧用リニア弁に供給されている電力を増加させるように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記減圧用リニア弁に供給されている電力をより多く増加させ、
     (D)前記対応制御として、前記目標供給圧決定部によって決定される前記目標供給圧を低減させるように構成された場合に、前記4つのブレーキ装置のうちの前記ブレーキ圧と前記判定対象圧との差が前記設定差以下となっているものの数が多いほど前記目標供給圧をより大きく低減させるように構成された請求項11に記載の車両用液圧ブレーキシステム。
  13.  前記ABS弁装置作動終了推定部が、
     前記ABS弁装置が作動し始めてからの前記ABS弁装置の作動状況に基づいて前記ブレーキ圧を推定するブレーキ圧推定部を有し、そのブレーキ圧推定部によって推定された前記ブレーキ圧に基づいて前記ABS弁装置の作動の終了を推定するように構成された請求項9項ないし請求項12のいずれか1つに記載の車両用液圧ブレーキシステム。
PCT/JP2010/057636 2010-04-29 2010-04-29 車両用液圧ブレーキシステム WO2011135707A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011533885A JP5163817B2 (ja) 2010-04-29 2010-04-29 車両用液圧ブレーキシステム
PCT/JP2010/057636 WO2011135707A1 (ja) 2010-04-29 2010-04-29 車両用液圧ブレーキシステム
US13/322,971 US8899697B2 (en) 2010-04-29 2010-04-29 Hydraulic brake system for vehicle
CN201080034308.8A CN102470834B (zh) 2010-04-29 2010-04-29 车辆用液压制动系统
DE112010005528.9T DE112010005528B4 (de) 2010-04-29 2010-04-29 Hydraulisches Bremssystem für Fahrzeuge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057636 WO2011135707A1 (ja) 2010-04-29 2010-04-29 車両用液圧ブレーキシステム

Publications (1)

Publication Number Publication Date
WO2011135707A1 true WO2011135707A1 (ja) 2011-11-03

Family

ID=44861047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057636 WO2011135707A1 (ja) 2010-04-29 2010-04-29 車両用液圧ブレーキシステム

Country Status (5)

Country Link
US (1) US8899697B2 (ja)
JP (1) JP5163817B2 (ja)
CN (1) CN102470834B (ja)
DE (1) DE112010005528B4 (ja)
WO (1) WO2011135707A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8672419B2 (en) * 2010-02-02 2014-03-18 Toyota Jidosha Kabushiki Kaisha Brake system
WO2011108090A1 (ja) * 2010-03-03 2011-09-09 トヨタ自動車株式会社 液圧ブレーキシステム
FR3009523B1 (fr) * 2013-08-06 2015-08-07 Renault Sa Controle du freinage regeneratif dans un vehicule electrique ou hybride
KR102286743B1 (ko) * 2014-11-05 2021-08-09 현대모비스 주식회사 차량용 회생제동 시스템 제어 방법
DE102018213284A1 (de) * 2018-08-08 2020-02-13 Continental Teves Ag & Co. Ohg Bremssystem für ein Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137281A (ja) * 2005-11-18 2007-06-07 Toyota Motor Corp ブレーキ制御装置
JP2008162562A (ja) * 2007-01-05 2008-07-17 Toyota Motor Corp ブレーキ制御装置
JP2009061816A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp ブレーキ制御装置
JP2009292176A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp ブレーキ制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310251A (en) * 1991-04-26 1994-05-10 Alliedsignal Inc. Electro-hydraulic service & parking brake system
US5984432A (en) * 1997-03-14 1999-11-16 Toyota Jidosha Kabushiki Kaisha Pressure control apparatus including seating valve controlled by electric current incremented upon valve opening depending upon pressure difference across the valve
JP3379397B2 (ja) * 1997-08-12 2003-02-24 トヨタ自動車株式会社 液圧ブレーキ装置
DE19807367A1 (de) * 1998-02-21 1999-08-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Überprüfung einer Bremsanlage
JP3939936B2 (ja) * 2001-05-30 2007-07-04 トヨタ自動車株式会社 車輌用制動制御装置
JP4654547B2 (ja) * 2001-07-24 2011-03-23 トヨタ自動車株式会社 ブレーキ装置
JP2006232098A (ja) * 2005-02-24 2006-09-07 Hitachi Ltd 車両の制動制御装置
JP2006311791A (ja) * 2005-03-31 2006-11-09 Advics:Kk 車両用ブレーキ制御装置
JP4222382B2 (ja) * 2006-04-28 2009-02-12 トヨタ自動車株式会社 車両制動装置
DE102007059734B4 (de) * 2006-12-21 2016-12-08 Toyota Jidosha Kabushiki Kaisha Bremsregelungsvorrichtung und Bremsregelungsverfahren
JP4297178B2 (ja) * 2007-04-10 2009-07-15 トヨタ自動車株式会社 ブレーキ制御装置
JP4466696B2 (ja) * 2007-08-10 2010-05-26 トヨタ自動車株式会社 ブレーキ装置、ブレーキ制御装置およびブレーキ制御方法
JP4623090B2 (ja) * 2007-12-25 2011-02-02 トヨタ自動車株式会社 ブレーキ制御装置
US8894159B2 (en) * 2009-03-25 2014-11-25 Toyota Jidosha Kabushiki Kaisha Brake controlling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137281A (ja) * 2005-11-18 2007-06-07 Toyota Motor Corp ブレーキ制御装置
JP2008162562A (ja) * 2007-01-05 2008-07-17 Toyota Motor Corp ブレーキ制御装置
JP2009061816A (ja) * 2007-09-04 2009-03-26 Toyota Motor Corp ブレーキ制御装置
JP2009292176A (ja) * 2008-06-02 2009-12-17 Toyota Motor Corp ブレーキ制御装置

Also Published As

Publication number Publication date
CN102470834A (zh) 2012-05-23
US20120068529A1 (en) 2012-03-22
US8899697B2 (en) 2014-12-02
JP5163817B2 (ja) 2013-03-13
DE112010005528T5 (de) 2013-04-04
DE112010005528B4 (de) 2022-10-20
CN102470834B (zh) 2014-11-05
DE112010005528T8 (de) 2013-08-22
JPWO2011135707A1 (ja) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5119646B2 (ja) 車両用ブレーキ制御装置
US8788172B2 (en) Method and device for controlling an electrohydraulic braking system for motor vehicles
JP4747959B2 (ja) 車両のブレーキ液圧制御装置
JP4631947B2 (ja) ブレーキ制御装置
US8567875B2 (en) Anti-skid control device and automatic brake control device
JP4535103B2 (ja) ブレーキ制御装置
JP5163817B2 (ja) 車両用液圧ブレーキシステム
JP4899796B2 (ja) アンチスキッド制御装置
JP4935760B2 (ja) ブレーキ制御装置
JP5125944B2 (ja) ブレーキ制御装置
JP2013043489A (ja) 車両用のブレーキ装置
JP2012192767A (ja) 車両用液圧ブレーキシステム
JP4289178B2 (ja) 車両用ブレーキ装置
JP5821830B2 (ja) 制動力制御装置及び制御装置
CN108883750B (zh) 车辆的制动控制装置
JP4022366B2 (ja) 電磁弁制御装置
JP5251436B2 (ja) ブレーキ制御装置
JP6449071B2 (ja) 車両用ブレーキ液圧制御装置
JP5273278B2 (ja) ハイドロブレーキ制御装置
JP5673328B2 (ja) 液圧ブレーキシステム
JP2008296751A (ja) 車両のアンチロックブレーキ制御装置
JP2008302717A (ja) 車両のアンチロックブレーキ制御装置
JP2005035367A (ja) ブレーキ制御装置
JP2007230420A (ja) ブレーキ制御装置
JP6511312B2 (ja) 車両用ブレーキ液圧制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034308.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011533885

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13322971

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850722

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010005528

Country of ref document: DE

Ref document number: 1120100055289

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850722

Country of ref document: EP

Kind code of ref document: A1