WO2015008819A1 - 不均一系触媒および1,2-ジクロロエタンの製造用触媒システム - Google Patents

不均一系触媒および1,2-ジクロロエタンの製造用触媒システム Download PDF

Info

Publication number
WO2015008819A1
WO2015008819A1 PCT/JP2014/069004 JP2014069004W WO2015008819A1 WO 2015008819 A1 WO2015008819 A1 WO 2015008819A1 JP 2014069004 W JP2014069004 W JP 2014069004W WO 2015008819 A1 WO2015008819 A1 WO 2015008819A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chloride
adsorption
dichloroethane
diluent
Prior art date
Application number
PCT/JP2014/069004
Other languages
English (en)
French (fr)
Inventor
淺川哲夫
紗衣 染谷
大橋知一
今富伸哉
浜地秀之
森嘉彦
小栗元宏
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to KR1020167000858A priority Critical patent/KR102264106B1/ko
Priority to CN201480040848.5A priority patent/CN105392561B/zh
Priority to US14/905,517 priority patent/US9687824B2/en
Priority to EP14826546.5A priority patent/EP3023149A4/en
Publication of WO2015008819A1 publication Critical patent/WO2015008819A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/138Halogens; Compounds thereof with alkaline earth metals, magnesium, beryllium, zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/122Halides of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40
    • B01J35/50
    • B01J35/51
    • B01J35/60
    • B01J35/647
    • B01J35/69
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/15Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination
    • C07C17/152Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons
    • C07C17/156Preparation of halogenated hydrocarbons by replacement by halogens with oxygen as auxiliary reagent, e.g. oxychlorination of hydrocarbons of unsaturated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00513Controlling the temperature using inert heat absorbing solids in the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/30
    • B01J35/56
    • B01J35/66
    • B01J35/67

Definitions

  • the present invention relates to a novel heterogeneous catalyst, and more particularly, a catalyst used in the production of petrochemical products and organic chemical products, particularly 1,2-dichloroethane useful as a raw material for vinyl chloride monomer from ethylene.
  • the present invention relates to a novel oxychlorination catalyst produced with high activity and high selectivity, and a method for producing 1,2-dichloroethane.
  • Heterogeneous catalysts can be easily separated from gas-phase or liquid-phase reaction fluids, and are constantly held in the reactor and can function as catalysts, producing many petrochemical processes and organic chemicals. Used in the process.
  • a supported copper chloride catalyst is used for the production of 1,2-dichloroethane (hereinafter abbreviated as EDC) by oxychlorination using ethylene, hydrogen chloride and oxygen as raw materials, and is one of the typical ultra-large petrochemical processes. It is. EDC production facilities are becoming larger and 100,000 tons / year large-scale facilities are operating. In terms of production, ethylene conversion and EDC selectivity are important factors, and even a difference of 0.1% appears as a large economic difference.
  • EDC 1,2-dichloroethane
  • Japanese Unexamined Patent Publication No. 56-141842 Japanese Unexamined Patent Publication No. 57-136828 Japan Special Table 2007-508134 Japanese Unexamined Patent Publication No. 2000-254507
  • EDC production facilities include the air method process (ethylene, HCl, air as the main raw material), the oxygen enrichment method process (ethylene, HCl, air as the main raw material, and a small amount of oxygen added) and the oxygen method process (ethylene, HCl).
  • Oxygen is the main raw material).
  • the air method and the oxygen enrichment process there is a problem in improving unconverted ethylene.
  • the oxygen method process there is a problem in improving productivity with a highly active catalyst, but in the oxychlorination catalyst proposed in Patent Document 1, The catalyst activity and EDC selectivity are not yet satisfactory, and a catalyst that greatly improves the catalyst activity and EDC selectivity is expected.
  • the diluent used for hot spot suppression also has the problem of increasing pressure loss in the case of an irregularly shaped diluent by mechanical grinding, or in a size much smaller than the diameter and length of the catalyst.
  • problems caused by such an increase in pressure loss are economically disadvantageous, such as reduced productivity due to pressure loss and the need for high-pressure reaction equipment.
  • a pressure loss can be suppressed by using a diluent having a large diameter or length, the heat removal effect is lowered, and thus a satisfactory heat removal effect cannot be obtained. Therefore, the material, shape, and dimensions of the selected diluent must be optimized in consideration of the balance between pressure loss and heat removal effect.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a heterogeneous catalyst, particularly an oxychlorination catalyst, which exhibits high catalytic activity and EDC selectivity.
  • a catalyst having a specific pore shape defined by the gas adsorption method has high activity and high selectivity, particularly in oxychlorination.
  • a catalyst system for producing EDC characterized by exhibiting an active and high EDC selectivity, and comprising the catalyst and a diluent selected from a spherical shape, a cylindrical shape or a hollow cylindrical shape, and the same A manufacturing method was found and the present invention was completed.
  • the catalyst characterized by being 19% or less with respect to a value.
  • the porous carrier is alumina, silica, silica-alumina, zeolite, titanium oxide, zirconium oxide or magnesium oxide.
  • a catalyst system for the production of 2-dichloroethane. [16] The catalyst system for production of 1,2-dichloroethane as described in [14] or [15] above, wherein the outer diameter D of the diluent having a spherical shape is the dimension (mm) of the following general formula (1).
  • the outer diameter De 1 of the cylinder of the diluent having a cylindrical shape is the dimension (mm) of the following general formula (2), and the side length L 1 is the dimension (mm) of the following general formula (3).
  • the dimensions of the hollow cylindrical outer diameter De 2 is represented by the following general formula of the hollow cylinder of the diluent with (4) (mm), the dimensions of the inner diameter Di by the following general formula (5) (mm), the side length 1,2-dichloroethane as described in [14] or [15] above, wherein the thickness L 2 is the dimension (mm) of the following general formula (6), and the relationship between the outer diameter De 2 and the inner diameter Di is the following general formula (7) Catalyst system for the production of
  • novel heterogeneous catalyst and catalyst system of the present invention exhibit high ethylene conversion and EDC selectivity, especially when used for oxychlorination of ethylene, and high productivity of EDC useful as a raw material for vinyl chloride monomer. It is also extremely useful industrially as a method of manufacturing with
  • Hysteresis ratio (desorption side adsorption isotherm area ⁇ adsorption side adsorption tower hot spring area) / (adsorption side adsorption isotherm area).
  • the catalyst of the present invention is a heterogeneous catalyst in which a metal compound is supported on a porous carrier, and an integral value of hysteresis generated between an adsorption isotherm and a desorption isotherm in the gas adsorption method is an adsorption isotherm. 19% or less of the total integral value.
  • the gas adsorption method is Shimadzu review Vol. 48 No. 1 (1991.6.), which is a technique for measuring specific surface area and pore distribution from condensation of gas molecules by adsorbing gas molecules having a known adsorption area on the surface of catalyst particles.
  • Nitrogen and argon are mentioned as a gas molecule, Among these, nitrogen is preferable.
  • the adsorption isotherm is a plot of the relative pressure on the horizontal axis, the number of gas molecules adsorbed on the vertical axis, or the volume of gas in the standard state, with the relative pressure changed from low to high.
  • the adsorption isotherm is called the desorption isotherm.
  • Hysteresis is considered to be caused by capillary condensation due to the pore shape (cylinder, cone, slit, ink bottle, etc.) and refers to a mismatch between the adsorption isotherm on the adsorption side and the desorption side. (See FIG. 1).
  • the integral value of hysteresis is defined as the difference between the integral value of the adsorption isotherm and the integral value of the desorption isotherm in the relative pressure range under the measurement conditions.
  • the integral value of hysteresis generated between the adsorption isotherm and desorption isotherm in the gas adsorption method is 19% or less with respect to the total integral value of the adsorption isotherm.
  • 19% or less it is considered that the pore shape of the catalyst changes, the pores of the ink bottle shape decrease, and at the same time, the straight pores increase. Due to this shape change, an effect of improving catalytic activity and selectivity is exhibited.
  • the integral value of hysteresis generated between the adsorption isotherm and desorption isotherm in the gas adsorption method is 17.5% or less with respect to the total integral value of the adsorption isotherm. Preferably there is.
  • the catalyst of the present invention enables operation over a long period of time without impairing activity and selectivity, it can be used for oxidation reaction, reduction reaction, hydrogenation reaction, dehydrogenation reaction, alkylation reaction, etc.
  • a high effect can be expected for an EDC production method from hydrogen chloride and oxygen.
  • the effect of improving the catalyst activity is remarkable, and the activity of the catalyst according to the present invention is improved by 10% or more. Therefore, as a catalyst for an oxygen process requiring high productivity, and in an air process and an oxygen enrichment process. It can be used to improve the conversion rate of unconverted ethylene.
  • the shape of the pore distribution is not particularly limited, and examples thereof include a unimodal pore distribution and a bimodal pore distribution.
  • the shape of bimodal pores is preferable because the catalytic activity and selectivity are improved.
  • the pore diameter of the bimodal pore is not particularly limited, but a bimodal type having a pore having a pore diameter in the range of 3 to less than 15 nm and a pore having a pore diameter in the range of 15 to 50 nm is preferable. Further activity and selectivity can be improved.
  • the catalyst of the present invention is a heterogeneous catalyst in which a metal compound is supported on a porous carrier, and is preferably a granule.
  • the porous carrier is not particularly limited, and examples thereof include alumina, silica, silica-alumina, zeolite, titanium oxide, zirconium oxide, and magnesium oxide. Of these, alumina is preferred because of its high affinity with the metal compound serving as the catalytically active component, and among these, a porous alumina carrier having pores is preferred.
  • the porous alumina carrier may be mixed with silicon or iron derived from the alumina raw material, carbon such as a mold release agent, or additive such as silica or titanium, as long as it does not interfere with the catalytic reaction.
  • Such an alumina carrier can be formed by any method, and can be formed by, for example, an extrusion method or a compression method.
  • the hollow cylinder has an outer diameter of 3 to 6 mm, an inner diameter of less than 1 to 3 mm, and a side length of 3 to 6 mm. It is preferable that the outer diameter is 5 to 6 mm, the inner diameter is less than 2 to 3 mm, and the length is 4 to 6 mm.
  • carrier For example, periodic table group 1, 2 or 11 is preferable, although it does not specifically limit as a metal compound, An oxide or a halide is mentioned.
  • Metal chlorides are preferred.
  • the metal oxide include lithium oxide, sodium oxide, potassium oxide, rubidium oxide, cesium oxide, magnesium oxide, calcium oxide, sultone oxide, barium oxide, copper oxide, and silver oxide.
  • the halide include lithium chloride, sodium chloride, potassium chloride, rubidium chloride, magnesium chloride, calcium chloride, strontium chloride, barium chloride, copper chloride, silver chloride and the like.
  • copper chloride is preferred because of its particularly high activity in oxychlorination.
  • examples of the copper chloride include cuprous chloride and / or cupric chloride. Among them, cupric chloride is preferable because it becomes an oxychlorination catalyst having particularly excellent stability.
  • the supported amount of the metal compound is not particularly limited as long as the oxychlorination catalyst acts as a catalyst, and among them, it is preferably 1 to 30% by weight because it becomes an oxychlorination catalyst having excellent catalytic activity. Further, it is preferably 2 to 28% by weight.
  • the supported amount of copper chloride is preferably 3 to 25% by weight, and more preferably 8 to 20% by weight, since it becomes an oxychlorination catalyst having excellent catalytic activity. preferable.
  • metal chloride on copper chloride as the metal compound.
  • metal chlorides include, but are not limited to, lithium chloride, sodium chloride, potassium chloride, rubidium chloride, cesium chloride, magnesium chloride, calcium chloride, strontium chloride, etc.
  • oxychlorination catalyst Potassium chloride, cesium chloride, sodium chloride and magnesium chloride are preferred because of increased stability.
  • the amount of metal chloride supported is not limited as long as the oxychlorination catalyst acts as a catalyst. Among them, the oxychlorination catalyst contributes to the stability of copper chloride and has excellent catalytic activity. It is preferably ⁇ 20% by weight, more preferably 0.1 to 10% by weight.
  • the loading ratio of copper chloride and other metal chlorides in the oxychlorination catalyst of the present invention is not limited as long as the oxychlorination catalyst acts as a catalyst, and among them, oxychlorine excellent in catalytic activity and stability. From the standpoint of forming a catalyst, a ratio of 0.1 to 3 moles of chloride per mole of copper chloride is preferable, and 0.1 to 1.3 moles is more preferable.
  • the oxychlorination catalyst of the present invention may have any shape, and examples thereof include a spherical shape, a honeycomb shape, and a hollow cylindrical shape. Of these, a hollow cylindrical shape is preferable from the viewpoint of excellent fracture strength. There is no particular limitation on the shape and dimension, and among them, since it has excellent catalytic activity, a cylindrical shape with an outer diameter of 2 to 8 mm, an inner diameter of 1 to 7 mm, and a length of 2 to 8 mm is preferable, and an outer diameter of 3 to It is preferably 6 mm, an inner diameter of 1 to less than 3 mm, and a length of 3 to 6 mm.
  • the catalyst of the present invention can be produced by any method, and examples thereof include a method of producing a catalyst by supporting a metal compound on a porous carrier.
  • Examples of the supporting method at that time include a dipping method, an impregnation method, a coprecipitation method, and the like. Among these, the operation is simple and the productivity is excellent. preferable.
  • the dipping method is to immerse the porous carrier in a solution (immersion solution) containing a metal compound, and after the dipping treatment, after separating the porous carrier and the solution, the porous carrier to which the metal compound is adhered is dried.
  • a solution immersion solution
  • the porous carrier to which the metal compound is adhered is dried.
  • the concentration of the aqueous copper chloride solution is particularly Although not limited, it is preferably 50 to 300 g / L, more preferably 70 to 270 g / L because of high catalytic activity.
  • the concentration of the aqueous potassium chloride solution is not particularly limited, but is preferably 10 to 280 g / L, more preferably 20 to 260 g / L because of high catalytic activity.
  • the concentration of the aqueous cesium chloride solution is not particularly limited, but is preferably 30 to 180 g / L, more preferably 50 to 150 g / L because of its high catalytic activity.
  • the concentration of the aqueous sodium chloride solution is not particularly limited, but is preferably 10 to 130 g / L, more preferably 20 to 100 g / L because of high catalytic activity.
  • the concentration of the magnesium chloride aqueous solution is not particularly limited, but is preferably 50 to 220 g / L, and more preferably 80 to 200 g / L because of its high catalytic activity.
  • the temperature at the time of immersion is not particularly limited, and is, for example, 0 to 80 ° C., preferably 10 to 50 ° C.
  • the reaction pressure is not particularly limited, but is usually normal pressure.
  • the immersion time depends on the temperature and the concentration of the immersion liquid and cannot be generally determined, but is usually 1 to 10 hours.
  • the atmosphere during the reaction is not particularly limited, but it can be substituted with an inert gas such as nitrogen, argon or helium.
  • the supporting order of the metal compounds in the case of producing the oxychlorination catalyst by the immersion method is not particularly limited, but it may be supported at one time or may be supported separately.
  • the metal compound can be supported in the state of each aqueous solution as required.
  • the drying temperature is not particularly limited, but is preferably 0 to 250 ° C, more preferably 30 to 200 ° C.
  • the drying time is not particularly limited, but is preferably 1 to 20 hours, and more preferably 2 to 10 hours.
  • the atmosphere during drying is not particularly limited, but is usually performed in air. Further, it can be substituted with an inert gas such as nitrogen, argon or helium and dried.
  • the firing temperature is not particularly limited, but is preferably 0 to 500 ° C, more preferably 100 to 400 ° C.
  • the firing time is not particularly limited, but is preferably 1 to 20 hours, and more preferably 2 to 10 hours. Moreover, it can replace with an inert gas such as nitrogen, argon or helium, and can be fired.
  • the integral value of the hysteresis generated between the adsorption isotherm and desorption isotherm in the gas adsorption method of the catalyst of the present invention is controlled by treatment of the carrier with hydrochloric acid and subsequent high-temperature calcination.
  • the amount of hydrochloric acid is not particularly limited, but is preferably 10 to 1000 ml, more preferably 20 to 200 ml, per 50 g of carrier.
  • the immersion time is not particularly limited, but is preferably 1 to 20 hours, and more preferably 2 to 10 hours.
  • the temperature at the time of immersion is not particularly limited and is, for example, 0 to 80 ° C., preferably 10 to 50 ° C.
  • EDC can be produced by performing an oxychlorination reaction using ethylene, hydrogen chloride and oxygen as raw materials in the presence of the oxychlorination catalyst.
  • the reaction format for producing EDC by oxychlorination reaction using ethylene, hydrogen chloride and oxygen as raw materials is not particularly limited, and can be performed in any reaction format, for example, fixed bed flow type Or it can carry out by a fluid bed circulation type. Among these, it is preferable to carry out by a fixed bed flow type because the apparatus is simple.
  • the reaction temperature is not particularly limited, but is preferably 100 ° C. to 400 ° C., more preferably 150 ° C. to 350 ° C., because it can be efficiently converted to EDC.
  • the reaction pressure is not particularly limited, but is usually 0.01 to 2 MPa in absolute pressure, preferably 0.05 to 1 MPa.
  • the gas hourly space velocity (GHSV) during a fixed bed flow reaction because it can efficiently converted to EDC, preferably 10 hr -1 ⁇ 10,000 -1, more preferably 30hr -1 ⁇ 8,000hr -1 .
  • the gas hourly space velocity (GHSV) represents the amount of ethylene supplied per unit time (hr) per unit catalyst volume.
  • ethylene, hydrogen chloride, and oxygen may be used as they are, or may be diluted with an inert gas.
  • an inert gas For example, nitrogen, helium, or argon etc. are mentioned, These inert gases can be used not only independently but in mixture of 2 or more types. It is.
  • the so-called air method using air as oxygen as one of the raw materials, the oxygen enrichment method using oxygen added to the air, and the oxygen method using no inert gas such as nitrogen are industrial processes. Widely adopted and implemented.
  • the oxychlorination catalyst of the present invention can be suitably used for any process.
  • the material of the reaction tower is not particularly limited, and examples thereof include nickel, nickel alloy, and stainless steel. Of these, nickel and nickel alloys are preferred because of their excellent corrosion resistance to hydrogen chloride.
  • a diluent may be mixed in the catalyst layer to form a catalyst system for producing EDC including the oxychlorination catalyst and the diluent.
  • the shape of the diluent is not particularly limited and includes, for example, a spherical shape, a cylindrical shape, a hollow cylindrical shape, and the like, but since a good heat removal effect and a low pressure loss are possible, a spherical shape, a cylindrical shape, or a hollow cylindrical shape A diluent having is preferred.
  • a hollow cylindrical shape if the outer diameter is D, the following dimensions (mm); 4.5 ⁇ D ⁇ 7.0 (1) It is preferable that In the case of a cylindrical shape, if the diameter is De 1 and the side length is L 1 , the dimension (mm) is 4.5 ⁇ De 1 ⁇ 7.0 (2) 4.0 ⁇ L 1 ⁇ 7.0 (3) It is preferable that In the case of a hollow cylindrical shape, a circular cylinder having a diameter smaller than the diameter of the circle is formed in parallel with the side surface from the circular surface of one column, and the outer diameter of the hollow cylinder of the diluent is De 2 , the inner diameter Di, the side length L 2 , and the relationship between the outer diameter De 2 and the inner diameter Di in dimensions (mm) 4.5 ⁇ De 2 ⁇ 7.0 (4) 1.5 ⁇ Di ⁇ 4.0 (5) 4.0 ⁇ L 2 ⁇ 7.0 (6) De 2/3 ⁇ Di (7 ) It is preferable that Among them, a hollow cylindrical shape is preferable because
  • the material of the diluent is at least one selected from the group consisting of alumina, silica, alumina-silica, silicon carbide, aluminum nitride and graphite.
  • a sintered body having a specific surface area of 5 m 2 / g or less is preferable for alumina, silica, alumina-silica, silicon carbide, and aluminum nitride. Is preferably a sintered body of 20 m 2 / g or less.
  • the mixing ratio of the oxychlorination catalyst and the diluent can be changed in the range of 5:95 to 95: 5 in consideration of the calorific value.
  • the oxychlorination catalyst can be used in the presence of a high concentration of the diluent at a high raw material concentration, such as the reaction bed inlet, and at a small amount or all at the outlet side.
  • hysteresis was measured using a nitrogen adsorption specific surface area / pore distribution measuring device (trade name: ASAP2400, manufactured by Micromeritics) under conditions of liquid nitrogen temperature and nitrogen relative pressure of 0.001 to 0.995. .
  • the integral value of hysteresis is the difference obtained by calculating the integral values of the adsorption isotherm and desorption isotherm in the range of relative pressures 0.001 to 0.995, and subtracting the former from the latter.
  • ⁇ Reaction method> For the reaction evaluation of the oxychlorination catalyst, a fixed bed gas phase flow reactor using a glass reaction tube (inner diameter 22 mm, length 600 mm) was used. The middle stage of a glass reaction tube was filled with an oxychlorination catalyst, and ethylene, hydrogen chloride, molecular oxygen and nitrogen for dilution were supplied to the catalyst layer.
  • the raw material compositions in Examples 1 to 8, 29 to 35 and Comparative Examples 1 to 4 and 15 to 16 are pneumatic compositions (ethylene 32 ml / min, hydrogen chloride 64 ml / min, oxygen 13 ml / min, nitrogen 91 ml / min) and did.
  • Example 9 to 18 and Comparative Examples 5 to 9 the oxygen enrichment composition (ethylene 24 ml / min, hydrogen chloride 44 ml / min, oxygen 20 ml / min, nitrogen 413 ml / min) was used.
  • the oxygen method composition ethylene 190 ml / min, hydrogen chloride 30 ml / min, oxygen 8 ml / min, nitrogen 122 ml / min was used.
  • the specific activities in Examples 1 to 8, 29 to 35 and Comparative Examples 1 to 4 and 15 to 16 were controlled when 2 cm before the entrance of the catalyst layer was controlled to 220 ° C. and the top temperature of the catalyst layer was controlled to 270 ° C.
  • Each ethylene conversion rate was determined, and the average value of the ethylene conversion rate with respect to the filling rate was set as activity.
  • the specific activity was determined from the ethylene conversion when 2 cm before the catalyst layer entrance was controlled at 220 ° C.
  • the EDC selectivity was determined by controlling 2 cm before the entrance of the catalyst layer to 220 ° C.
  • the outlet gas and the reaction solution under each reaction condition were collected, and the gas component and the liquid component were individually analyzed using a gas chromatograph.
  • the gas component was analyzed using a gas chromatograph (manufactured by Shimadzu Corporation, trade name: GC-14A).
  • PorapakQ (trade name) manufactured by Waters and MS-5A (trade name) manufactured by GL Science were used.
  • the liquid component was analyzed using a gas chromatograph (manufactured by Shimadzu Corporation, trade name: GC-1700).
  • a capillary column (manufactured by GL Science, trade name: TC-1) was used.
  • Example 1 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in 100 ml of 1N hydrochloric acid for 2 hours, drained, 120 A hollow cylindrical shape in which the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method is 12.5% with respect to the integrated value of the adsorption isotherm An alumina support was obtained.
  • hollow cylindrical alumina carrier trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 14.0% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 142, and the EDC selectivity was 99.4%.
  • the specific activity was set to 100 in Comparative Example 2.
  • Example 3 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in 100 ml of 1N hydrochloric acid for 2 hours, drained, 120 A hollow cylindrical shape in which the area ratio of the adsorption / desorption isotherm hysteresis in the gas adsorption method is 14.4% with respect to the integral value of the adsorption isotherm is performed by drying at 700 ° C. and firing at 700 ° C. in air for 5 hours. An alumina support was obtained.
  • hollow cylindrical alumina carrier trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm
  • An oxychlorination catalyst of 80 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 18.9% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 120 and the EDC selectivity was 99.2%.
  • the specific activity was set to 100 in Comparative Example 2.
  • Comparative Example 1 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 500 ° C. for 5 hours, and the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method is 15.2% with respect to the integral value of the adsorption isotherm A carrier was obtained.
  • hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 500 ° C. for 5
  • Comparative Example 2 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 700 ° C. for 5 hours, and the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method is 16.2% with respect to the integral value of the adsorption isotherm A carrier was obtained.
  • hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 700 ° C. for 5
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.1% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 251 and the EDC selectivity was 99.3%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.6% with respect to the integral value of the adsorption isotherm.
  • the specific activity was 234 and the EDC selectivity was 99.1%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 17.2% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 226, and the EDC selectivity was 99.0%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 18.4% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 212 and the EDC selectivity was 98.8%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 23.9% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 199, and the EDC selectivity was 98.6%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 24.1% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 192 and the EDC selectivity was 98.4%.
  • the specific activity was set to 100 in Comparative Example 2.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.2% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 119.
  • the specific activity was set to 100 in Comparative Example 5.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.5% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 118.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.3% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 177.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst of 0.50 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.1% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 260.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst having a (Na + Mg) / Cu ratio of 0.50 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 13.4% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 198.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 15.0% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 117.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 15.1% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 115.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 15.3% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 184.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst of 0.50 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 14.8% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 254.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst having a (Na + Mg) / Cu ratio of 0.50 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 14.8% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 194.
  • the specific activity was set to 100 in Comparative Example 5.
  • An oxychlorination catalyst of 0.50 was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 23.8% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 98.
  • the specific activity was set to 100 in Comparative Example 5.
  • a catalyst was prepared.
  • the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method was 23.8% with respect to the integrated value of the adsorption isotherm.
  • the specific activity was 148.
  • the specific activity was set to 100 in Comparative Example 5.
  • Example 19 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 9, the specific activity was 374. The specific activity was set to 100 in Comparative Example 10.
  • Example 20 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 10, the specific activity was 364. The specific activity was set to 100 in Comparative Example 10.
  • Example 21 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 11, the specific activity was 340. The specific activity was set to 100 in Comparative Example 10.
  • Example 22 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 12, the specific activity was 259. The specific activity was set to 100 in Comparative Example 10.
  • Example 23 As a result of evaluating using the catalyst prepared in Example 13 under oxygen method conditions, the specific activity was 312. The specific activity was set to 100 in Comparative Example 10.
  • Example 24 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 14, the specific activity was 202. The specific activity was set to 100 in Comparative Example 10.
  • Example 25 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 15, the specific activity was 197. The specific activity was set to 100 in Comparative Example 10.
  • Example 26 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 16, the specific activity was 184. The specific activity was set to 100 in Comparative Example 10.
  • Example 27 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 17, the specific activity was 144. The specific activity was set to 100 in Comparative Example 10.
  • Example 28 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Example 18, the specific activity was 168. The specific activity was set to 100 in Comparative Example 10.
  • Comparative Example 10 As a result of evaluation using the catalyst prepared in Comparative Example 5 under oxygen method conditions, the specific activity was 100. The specific activity was set to 100 in Comparative Example 10.
  • Comparative Example 11 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Comparative Example 6, the specific activity was 98. The specific activity was set to 100 in Comparative Example 10.
  • Comparative Example 12 As a result of evaluation using the catalyst prepared in Comparative Example 7 under oxygen method conditions, the specific activity was 91. The specific activity was set to 100 in Comparative Example 10.
  • Comparative Example 13 As a result of evaluation using the catalyst prepared in Comparative Example 8 under oxygen method conditions, the specific activity was 71. The specific activity was set to 100 in Comparative Example 10.
  • Comparative Example 14 As a result of evaluating under the oxygen method conditions using the catalyst prepared in Comparative Example 9, the specific activity was 76. The specific activity was set to 100 in Comparative Example 10.
  • Example 29 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in 100 ml of 1N hydrochloric acid for 2 hours, drained, 120 A hollow cylindrical shape in which the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method is 12.5% with respect to the integrated value of the adsorption isotherm An alumina support was obtained.
  • hollow cylindrical alumina carrier trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm
  • Example 30 Evaluation was performed in the same manner as in Example 29 except that a cylindrical graphite diluent having a diameter of 5.0 mm, a side length of 5.0 mm, and a specific surface area of 1.7 m 2 / g was used as the diluent.
  • Example 31 Except for using a hollow cylindrical alumina-silica diluent having a hollow cylinder outer diameter of 6.4 mm, an inner diameter of 3.5 mm, a side length of 5.0 mm, and a specific surface area of 0.094 m 2 / g as a diluent. Evaluation was performed in the same manner as in Example 29.
  • Example 32 Except for using a hollow cylindrical alumina-silica diluent having a hollow cylinder outer diameter of 6.4 mm, an inner diameter of 3.5 mm, a side length of 6.4 mm, and a specific surface area of 0.094 m 2 / g as the diluent. Evaluation was performed in the same manner as in Example 29.
  • Example 33 Except for using a hollow cylindrical alumina-silica diluent having a hollow cylinder outer diameter of 5.0 mm, an inner diameter of 2.5 mm, a side length of 5.0 mm, and a specific surface area of 0.094 m 2 / g as a diluent. Evaluation was performed in the same manner as in Example 29.
  • Example 34 Except for using a hollow cylindrical graphite diluent having a hollow cylinder outer diameter of 5.0 mm, an inner diameter of 2.0 mm, a side length of 5.0 mm, and a specific surface area of 1.7 m 2 / g as a diluent. Evaluation was conducted in the same manner as in No. 29.
  • Example 35 Example except that a hollow cylindrical graphite diluent having a hollow cylinder outer diameter of 6.0 mm, an inner diameter of 2.5 mm, a side length of 5.0 mm, and a specific surface area of 1.7 m 2 / g was used as the diluent. Evaluation was conducted in the same manner as in No. 29.
  • Comparative Example 15 In the same manner as in Example 29, except that an amorphous graphite diluent having a diameter of 5.0 mm, a side length of 1.0 to 8.0 mm, and a specific surface area of 1.7 m 2 / g was used as the diluent. evaluated.
  • Comparative Example 16 After immersing 50 g of hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 700 ° C. for 5 hours, and the area ratio of adsorption / desorption isotherm hysteresis in the gas adsorption method is 16.2% with respect to the integral value of the adsorption isotherm A carrier was obtained.
  • hollow cylindrical alumina carrier (trade name N611N3, outer diameter 4.9 mm, inner diameter 1.8 mm, length 3.9 mm) manufactured by JGC Catalysts & Chemicals Co., Ltd. in pure water for 1 hour, drained, 120 ° C. Hollow cylindrical alumina that is dried and calcined in air at 700 ° C. for 5
  • Example 29 As a result of quantitative analysis, it was 12.7% CuCl 2 -5.6% KCl / alumina catalyst.
  • Example 29 except that 15 ml of this catalyst was mixed with 15 ml of hollow cylindrical graphite diluent having an outer diameter of 5.0 mm, an inner diameter of 2.0 mm, a side length of 5.0 mm, and a specific surface area of 1.7 m 2 / g. Evaluation was made in the same manner.
  • the heterogeneous catalyst of the present invention can be used as a catalyst for producing 1,2-dichloroethane particularly useful as a raw material for vinyl chloride monomer from ethylene.
  • the dichloroethane selectivity is extremely high and the economy is excellent. In addition, since stable production is possible, it is excellent in safety.
  • Hysteresis 2 Desorption side 3: Adsorption side

Abstract

 高活性・高選択性を発現する不均一系触媒、特にエチレンから1,2-ジクロロエタンを製造するオキシ塩素化に適する触媒および触媒システムを提供する。 多孔質担体上に担持された不均一系触媒であって、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して19%以下であることを特徴とする不均一系触媒および当該触媒と球形状、円柱形状または中空円筒形状を有する希釈剤を含む1,2-ジクロロエタンの製造用触媒システムを提供する。

Description

不均一系触媒および1,2-ジクロロエタンの製造用触媒システム
 本発明は、新規な不均一系触媒に関するものであり、さらに詳しくは、石油化学製品や有機化成品の製造に用いられる触媒、特にエチレンから塩化ビニルモノマーの原料として有用な1,2-ジクロロエタンを高活性かつ高選択的に製造する新規なオキシ塩素化触媒および1,2-ジクロロエタンの製造方法に関する。
 不均一系触媒は、気相または液相反応流体からの分離が容易で、反応装置内に定常的に保持されて触媒としての機能を発揮できることから、多くの石油化学プロセスおよび有機化成品を製造するプロセスに用いられている。
 エチレン、塩化水素および酸素を原料にオキシ塩素化による1,2-ジクロロエタン(以下、EDCと略称する)の製造には担持塩化銅触媒が用いられ、典型的な超大型の石油化学プロセスの一つである。EDC製造設備は大型化が進んでおり、10万トン/年スケールの大型設備が稼動している。生産上、エチレン転化率、及びEDC選択率は重要なファクターであり、0.1%の違いでも経済的には大きな差として表れる。
 エチレン、塩化水素および酸素を原料とするオキシ塩素化反応によりEDCを製造する方法として、アルミナ担体に塩化銅および塩化カリウムを担持した中空円筒状のオキシ塩素化触媒を用いる方法が知られており、例えば円筒形の形状寸法が規定されたオキシ塩素化触媒が提案されている(例えば特許文献1参照。)。
 また、本反応系は発熱反応であるため、反応床入口のように原料濃度が高いところでは、反応速度が高く発熱量が多くなる。発熱によって触媒層が高温になりホットスポットが形成されると、そこでは副反応である燃焼反応による副生物の増加や急速な触媒劣化が進む問題が生じる。そのため、通常、オキシ塩素化触媒と希釈剤を混合し、固定床中でのホットスポットの形成を減少もしくは除去している。(例えば特許文献2~4参照。)
日本国特開昭56-141842号公報 日本国特開昭57-136928号公報 日本国特表2007-508134号公報 日本国特開2000-254507号公報
 EDC製造設備には、空気法プロセス(エチレン、HCl、空気が主原料)、酸素富化法プロセス(エチレン、HCl、空気を主原料として、少量の酸素を付加)および酸素法プロセス(エチレン、HCl、酸素が主原料)が知られている。空気法および酸素富化法プロセスでは、未転化エチレンの向上に課題が、また、酸素法プロセスでは高活性触媒による生産性向上に課題があるが、特許文献1により提案されたオキシ塩素化触媒では、その触媒活性およびEDC選択率はまだ満足できるものではなく、触媒活性およびEDC選択率を大幅に向上させる触媒が期待されている。
 また、ホットスポット抑制のために使用する希釈剤についても、機械的な粉砕による不定形状の希釈剤の場合、あるいは触媒の径や長さよりも大幅に小さい寸法のものでは圧力損失を増大させる問題点がある。このような圧力損失が増大することによる問題点は圧力損失による生産性の低下や高圧反応設備が必要であるなど、経済的に不利である。大きい径や長さの希釈剤を用いることで、圧力損失を抑えることはできるが、除熱効果は低下するため、満足すべき除熱効果が得られない。したがって、選定する希釈剤の材質、形状、寸法は圧力損失と除熱効果のバランスを考慮して最適化しなければならない。
 本発明は上記の課題に鑑みてなされたものであり、その目的は高い触媒活性とEDC選択率を発現する不均一系触媒、特にオキシ塩素化触媒を提供するものである。
 本発明者らは、上記の課題を解決するため鋭意検討を行った結果、ガス吸着法で規定した特定の細孔形状を有する触媒が高活性かつ高選択率を、特にオキシ塩素化において、高活性かつ高EDC選択率を発現すること、および、当該触媒と球形状、円柱形状または中空円筒形状から選択される希釈剤からなることを特徴とする、EDCの製造用触媒システムおよびそれを用いた製造方法を見出し、本発明を完成するに至った。
 即ち、本発明は、以下の[1]及至[20]に存する。
[1] 多孔質担体上に金属化合物が担持された不均一系触媒であって、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して19%以下であることを特徴とする触媒。
[2] 多孔質担体がアルミナ、シリカ、シリカ―アルミナ、ゼオライト、酸化チタン、酸化ジルコニウム又は酸化マグネシウムであることを特徴とする、上記[1]に記載の触媒。
[3] 金属化合物の金属が、周期表1族、2族又は11族であることを特徴とする上記[1]又は[2]に記載の触媒。
[4] 金属化合物が、酸化物またはハロゲン化物であることを特徴とする上記[1]~[3]のいずれかに記載の触媒。
[5] 金属化合物が塩化銅であることを特徴とする上記[1]~[4]のいずれかに記載の触媒。
[6] 金属化合物が、塩化銅並びに塩化カリウム、塩化セシウム、塩化ナトリウムおよび塩化マグネシウムからなる群から選択される1種以上の金属塩化物であることを特徴とする上記[1]~[5]のいずれかに記載の触媒。
[7] 塩化銅の担持量が3~25重量%であることを特徴とする上記[5]又は[6]に記載の触媒。
[8] 金属塩化物の担持量が、0.1~20重量%であることを特徴とする上記[6]又は[7]に記載の触媒。
[9] ガス吸着法が窒素吸着法であることを特徴とする上記[1]~[8]のいずれかに記載の触媒。
[10] 不均一系触媒が中空円筒形状であることを特徴とする上記[1]~[9]のいずれかに記載の触媒。
[11] 外径3~6mm、内径1~3mm未満、長さ3~6mmの中空円筒形状であることを特徴とする上記[10]に記載の触媒。
[12] 触媒がエチレンのオキシ塩素化用途に使用される上記[1]~[11]のいずれかに記載の触媒。
[13] 上記[1]~[12]のいずれかに記載の触媒の存在下、エチレン、塩化水素及び酸素のオキシ塩素化を行うことを特徴とする1,2-ジクロロエタンの製造方法。
[14] 上記[1]~[12]のいずれかに記載の触媒及び球形状、円柱形状または中空円筒形状を有する希釈剤を含むことを特徴とする、エチレン、塩化水素および酸素から1,2-ジクロロエタンの製造用触媒システム。
[15] 希釈剤が、アルミナ、シリカ、アルミナ-シリカ、炭化ケイ素、窒化アルミニウム、炭素及びグラファイトからなる群より選択される少なくとも1種であることを特徴とする上記[14]に記載の1,2-ジクロロエタンの製造用触媒システム。
[16] 球形状を有する希釈剤の外径Dが下記一般式(1)の寸法(mm)である上記[14]又は[15]に記載の1,2-ジクロロエタンの製造用触媒システム。
 4.5≦D≦7.0     (1)
[17] 円柱形状を有する希釈剤の円柱の外径Deが下記一般式(2)の寸法(mm)、側面の長さLが下記一般式(3)の寸法(mm)である上記[14]又は[15]に記載の1,2-ジクロロエタンの製造用触媒システム。
 4.5≦De≦7.0    (2)
 4.0≦L≦7.0     (3)
[18] 中空円筒形状を有する希釈剤の中空円筒の外径Deが下記一般式(4)の寸法(mm)、その内径Diが下記一般式(5)の寸法(mm)、側面の長さLが下記一般式(6)の寸法(mm)、外径Deと内径Diの関係が下記一般式(7)である上記[14]又は[15]に記載の1,2-ジクロロエタンの製造用触媒システム。
 4.5≦De≦7.0    (4)
 1.5≦Di≦4.0     (5)
 4.0≦L≦7.0     (6)
 De/3≦Di       (7)
[19] 希釈剤の外径がオキシ塩素化触媒の長さと等しい長さである上記[14]~[18]のいずれかに記載の1,2-ジクロロエタンの製造用触媒システム。
[20] 上記[14]~[19]のいずれかに記載の1,2-ジクロロエタンの製造用触媒システムの存在下で、エチレン、塩化水素および酸素を反応させることを特徴とする1,2-ジクロロエタンの製造方法。
 本発明の新規な不均一系触媒および触媒システムは、特にエチレンのオキシ塩素化に用いた場合に高いエチレン転化率とEDC選択率を発現し、塩化ビニルモノマーの原料として有用なEDCを高い生産性を持って製造する手法として工業的にも極めて有用である。
液体窒素温度での窒素の吸着等温線を示した図である。ヒステリシス比率=(脱離側吸着等温線面積-吸着側吸着塔温泉面積)/(吸着側吸着等温線面積)。
 以下、本発明について詳細に説明する。
 本発明の触媒は、多孔質担体上に金属化合物が担持された不均一系触媒であって、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して19%以下のものである。
 ここでガス吸着法とは、島津評論 Vol.48 No.1(1991.6.)で定義されるものであり、触媒粒子の表面に吸着占有面積の既知なガス分子を吸着させ、ガス分子の凝縮から比表面積や細孔分布を測定する手法である。ガス分子として、窒素、アルゴンが挙げられ、これらのうち窒素が好ましい。
 吸着等温線とは、横軸に相対圧、縦軸に吸着したガス分子の数または標準状態でのガスの容積をプロットしたものであり、相対圧を低い所から高い所へ変化させたものが吸着等温線、逆を脱着等温線と呼ぶ。またヒステリシスとは、細孔形状(円柱、錐形、スリット状、インクボトル状、など)に起因した毛管凝縮により生じると考えられ、吸着側と脱離側の吸着等温線の不一致のことを指す(図1参照)。
 本発明においてヒステリシスの積分値とは、測定条件下の相対圧範囲における吸着等温線の積分値と脱着等温線の積分値の差分と定義する。
 本発明の触媒は、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して19%以下である。19%以下になることで、触媒の細孔形状が変化し、インクボトル形状の細孔が減少すると同時に、ストレート形状の細孔が増加すると考えられる。この形状変化により、触媒活性や選択率向上の効果が発現する。また、更なる高活性が得られることから、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して17.5%以下であることが好ましい。
 本発明の触媒により、活性および選択率を損なうことなく長期間にわたり運転が可能となるため、酸化反応、還元反応、水素化反応、脱水素反応、アルキル化反応等に使用できるが、特に、エチレン、塩化水素および酸素からのEDC製造法に対して高い効果が期待できる。特に、触媒活性向上の効果は著しく、本発明による触媒の活性は10%以上向上することから、高生産性を必要とする酸素法プロセスの触媒として、また、空気法および酸素富化法プロセスにおける未転化エチレンの転化率向上に利用が可能である。本発明の触媒において、細孔分布の形状は特に限定されないが、例えば、一峰細孔分布、二峰細孔分布等が挙げられる。これらのうち、触媒活性や選択性が向上することから、二峰細孔の形状が好ましい。二峰細孔の細孔直径は特に限定されないが、細孔直径3~15nm未満の範囲内の細孔および細孔直径15~50nmの範囲内の細孔を有する二峰型が好ましく、これによりさらなる活性、選択性の向上が可能になる。
 本発明の触媒は、多孔質担体上に金属化合物が担持された不均一系触媒であり、顆粒であることが好ましい。多孔質担体としては、特に限定されないが、例えばアルミナ、シリカ、シリカ―アルミナ、ゼオライト、酸化チタン、酸化ジルコニウムまたは酸化マグネシウムが挙げられる。これらのうち、触媒活性成分となる金属化合物との親和性が高いことから、アルミナが好ましく、その中でも細孔を有する多孔質アルミナ担体が好ましい。ここで、多孔質アルミナ担体には、触媒反応で差支えない限り、アルミナ原料に由来するケイ素若しくは鉄、離型剤等のカーボン、又はシリカやチタンなどの添加剤が混合しても良い。このようなアルミナ担体は、いかなる方法により成形されても差し支えなく、例えば押出成形法または圧縮成形法により成形することができる。中空円筒形状の寸法に特に制限はなく、その中でも触媒活性に優れるものとなることから中空円筒の外径は3~6mm、内径は1~3mm未満、側面の長さは3~6mmの円筒形状であることが好ましく、さらに外径5~6mm、内径2~3mm未満、長さ4~6mmであることが好ましい。
 多孔質担体上に担持された金属化合物としては、特に限定されないが、例えば周期表1族、2族又は11族が好ましく、金属化合物としては、特に限定されないが、酸化物又はハロゲン化物が挙げられ、金属塩化物が好ましい。金属酸化物として、例えば、酸化リチウム、酸化ナトリウム、酸化カリウム、酸化ルビジウム、酸化セシウム、酸化マグネシウム、酸化カルシウム、酸化スルトンチウム、酸化バリウム、酸化銅、酸化銀等が挙げられる。ハロゲン化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウム、塩化銅、塩化銀等が挙げられる。これらのうち、オキシ塩素化に特に高い活性を示すことから、塩化銅が好ましい。ここで塩化銅としては、塩化第一銅および/または塩化第二銅を挙げることができ、そのなかでも特に安定性に優れるオキシ塩素化触媒となることから塩化第二銅であることが好ましい。
 金属化合物の担持量としては、オキシ塩素化触媒が触媒として作用する限りにおいて如何なる制限はなく、そのなかでも触媒活性に優れるオキシ塩素化触媒となることから1~30重量%であることが好ましく、さらに2~28重量%であることが好ましい。
 金属化合物が塩化銅である場合、塩化銅の担持量としては、触媒活性に優れるオキシ塩素化触媒となることから3~25重量%であることが好ましく、さらに8~20重量%であることが好ましい。
 また、金属化合物として、塩化銅にさらに他の金属塩化物を担持させることが好ましい。他の金属塩化物としては、特に限定されないが、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化セシウム、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム等が挙げられ、これらのうち、オキシ塩素化触媒の安定性が高まることから、塩化カリウム、塩化セシウム、塩化ナトリウムおよび塩化マグネシウムが好ましい。金属塩化物の担持量としては、オキシ塩素化触媒が触媒として作用する限りにおいて如何なる制限はなく、その中でも塩化銅の安定性に寄与し触媒活性に優れるオキシ塩素化触媒となることから0.1~20重量%であることが好ましく、さらに0.1~10重量%であることが好ましい。また、本発明のオキシ塩素化触媒における塩化銅と他の金属塩化物の担持割合は、オキシ塩素化触媒が触媒として作用する限りにおいて如何なる制限はなく、その中でも触媒活性と安定性に優れるオキシ塩素化触媒となることから塩化銅1モルに対して塩化物0.1~3モルの割合が好ましく、さらに0.1~1.3モルであることが好ましい。
 本発明のオキシ塩素化触媒はいかなる形状でも差支えないが、例えば、球状、蜂の巣状、中空円筒形状が挙げられる。これらのうち、破壊強度に優れる点から、中空円筒形状が好ましい。その形状寸法に特に制限はなく、その中でも触媒活性に優れるものとなることから外径2~8mm、内径1~7mm、長さ2~8mmの円筒形状であることが好ましく、さらに外径3~6mm、内径1~3mm未満、長さ3~6mmであることが好ましい。
 本発明の触媒は、いかなる方法により製造されても差し支えなく、例えば多孔質担体に、金属化合物を担持することにより製造する方法を挙げることが出来る。その際の担持方法としては、例えば浸漬法、含浸法、共沈殿法、等の方法を挙げることができ、これらの中でも、操作が簡便で、生産性に優れることから、浸漬法であることが好ましい。
 ここで、浸漬法とは、金属化合物を含む溶液(浸漬液)に多孔質担体を浸漬し、浸漬処理後、多孔質担体と溶液を分離した後、金属化合物が付着した多孔質担体を乾燥、次いで焼成処理を行い、触媒を製造する方法のことである。
 浸漬法における浸漬液として、塩化銅、並びに塩化カリウム、塩化セシウム、塩化ナトリウム及び塩化マグネシウムからなる群から選択される1種以上の金属塩化物の水溶液を用いる場合、塩化銅水溶液の濃度は、特に制限されないが、触媒活性が高いことから、好ましくは50~300g/Lであり、さらに好ましくは70~270g/Lである。また、塩化カリウム水溶液の濃度は、特に制限されないが、触媒活性が高いことから、好ましくは10~280g/Lであり、さらに好ましくは20~260g/Lである。塩化セシウム水溶液の濃度は、特に制限されないが、触媒活性が高いことから、好ましくは30~180g/Lであり、さらに好ましくは50~150g/Lである。塩化ナトリウム水溶液の濃度は、特に制限されないが、触媒活性が高いことから、好ましくは10~130g/Lであり、さらに好ましくは20~100g/Lである。塩化マグネシウム水溶液の濃度は、特に制限されないが、触媒活性が高いことから、好ましくは50~220g/Lであり、さらに好ましくは80~200g/Lである。
 浸漬時の温度は特に制限はなく、例えば、0~80℃、好ましくは10~50℃である。反応圧力は特に制限されないが、通常、常圧である。また、浸漬時間は温度や浸漬液の濃度に左右され、一概に決めることはできないが、通常、1~10時間である。反応中の雰囲気は特に制限はないが、窒素、アルゴン、ヘリウム等の不活性ガスによって置換して用いることができる。
 オキシ塩素化触媒を浸漬法で製造する場合の金属化合物の担持順序は特に制限されないが、一度に担持するか、もしくは分割して担持してもよい。金属化合物は必要に応じて各々の水溶液の状態で担持することができる。
 乾燥温度は特に制限されないが、好ましくは0~250℃であり、さらに好ましくは30~200℃である。乾燥時間は特に制限されないが、好ましくは1~20時間であり、さらに好ましくは2~10時間である。乾燥中の雰囲気は特に制限はないが、通常、空気中で行なわれる。また、窒素、アルゴン、ヘリウム等の不活性ガスによって置換して乾燥することもできる。
 焼成温度は特に制限されないが、好ましくは0~500℃であり、さらに好ましくは100~400℃である。焼成時間は特に制限されないが、好ましくは1~20時間であり、さらに好ましくは2~10時間である。また、窒素、アルゴン、ヘリウム等の不活性ガスによって置換して焼成することもできる。
 本願発明の触媒のガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値は、担体の塩酸による処理と、その後の高温焼成により制御される。塩酸の量は特に制限されないが、好ましくは担体50gあたり10~1000mlであり、さらに好ましくは20~200mlである。浸漬時間は特に制限されないが、好ましくは1~20時間であり、さらに好ましくは2~10時間である。浸漬時の温度は特に制限はなく、例えば0~80℃、好ましくは10~50℃である。
 本発明においては、前記のオキシ塩素化触媒の存在下で、エチレン、塩化水素および酸素を原料にして、オキシ塩素化反応を行なうことによりEDCを製造することができる。
 本発明において、エチレン、塩化水素および酸素を原料にして、オキシ塩素化反応によるEDCを製造する反応形式は特に制限されず、任意の反応形式で行うことが可能であり、例えば、固定床流通式または流動床流通式で行うことができる。これらのうち、装置が簡便なことから固定床流通式で行うことが好ましい。反応温度は特に制限はされないが、EDCへ効率的に転換できることから、好ましくは100℃~400℃、さらに好ましくは150℃~350℃である。反応圧力は特に制限されないが、通常、絶対圧で0.01~2MPaであり、好ましくは0.05~1MPaである。また、固定床流通式反応の際のガス時間空間速度(GHSV)は、EDCへ効率的に転換できることから、好ましくは10hr-1~10,000hr-1、さらに好ましくは30hr-1~8,000hr-1である。ここで、ガス時間空間速度(GHSV)とは、単位触媒体積当たりの単位時間(hr)に対するエチレンの供給量を表すものである。
 なお、エチレン、塩化水素および酸素は、そのまま用いても、不活性ガスで希釈して用いても良い。不活性ガスとしては特に制限されるものではないが、例えば窒素、ヘリウムまたはアルゴン等が挙げられ、これらの不活性ガスは単独で使用するのみならず、二種以上を混合して用いることも可能である。代表的な例として、原料の一つである酸素に空気を用いるいわゆる空気法、空気に酸素を追加して用いる酸素富化法、窒素などの不活性ガスを使用しない酸素法が、工業化プロセスとして広く採用され実施されている。本発明のオキシ塩素化触媒は、いずれのプロセスにも好適に使用することができる。
 反応塔の材質は特に限定されず、例えばニッケル、ニッケル合金、ステンレス等が挙げられる。これらのうち、塩化水素への耐食性に優れることから、ニッケル及びニッケル合金が好ましい。
 オキシ塩素化反応は発熱反応であることから、必要に応じて希釈剤を触媒層に混合し、オキシ塩素化触媒及び希釈材を含むEDCの製造用触媒システムとしても良い。希釈材の形状は特に限定されず、例えば球状、円柱状、中空円筒形状、等が挙げられるが、良好な除熱効果および低い圧力損失を可能とすることから球形状、円柱形状または中空円筒形状を有する希釈剤が好ましい。球形状の場合には、その外径をDとすると以下の寸法(mm);
 4.5≦D≦7.0    (1)
であることが好ましい。円柱形状の場合には、その径をDe、側面の長さをLとすると寸法(mm)が、
 4.5≦De≦7.0    (2)
 4.0≦L≦7.0     (3)
であることが好ましい。中空円筒形状の場合には、1個の円柱の円状面よりその円の径より小さい径を有する円柱を側面と平行に貫通した形状を成しており、希釈剤の中空円筒の外径をDe、その内径をDi、側面の長さをL、そして外径Deと内径Diの関係を寸法(mm)で示すと、
 4.5≦De≦7.0    (4)
 1.5≦Di≦4.0     (5)
 4.0≦L≦7.0     (6)
 De/3≦Di       (7)
であることが好ましい。その中でも、圧力損失の低減が可能になることから、中空円筒形状が好ましい。寸法が大きいと圧力損失は小さいが除熱効果が小さくなり不利である。また、寸法が小さいと除熱効果は大きいが、圧力損失は大きくなり不利になる。
 良好な除熱効果を得るため、希釈剤の材質はアルミナ、シリカ、アルミナ―シリカ、炭化ケイ素、窒化アルミニウム及びグラファイトからなる群より選択少なくとも1種である。これらの希釈剤はオキシ塩素化反応に影響を及ぼさないようにするため、アルミナ、シリカ、アルミナ―シリカ、炭化ケイ素および窒化アルミニウムについては比表面積が5m/g以下の焼結体が好ましく、グラファイトについては20m/g以下の焼結体であることが好ましい。このような焼結体を材質とする希釈剤では、多孔質の成形体で起こるEDCの製造途中における機械的な摩耗が抑制され、圧力損失を増大することなくEDCを安定に製造できる。
 本発明において、オキシ塩素化触媒と希釈剤の混合比は発熱量を考慮して5:95~95:5までの範囲で変更可能である。また、反応床入口のように原料濃度が高いところでは希釈剤が多く、出口側では少ない、あるいはすべてオキシ塩素化触媒を使用することができる。
 以下に、本発明の実施例を示すが、本発明はこれらの実施例に限定されるものではない。
 以下に実施例に用いた測定方法および反応評価方法を示す。
 <ヒステリシスの測定>
 ヒステリシスの測定は、窒素吸着法比表面積・細孔分布測定装置(マイクロメリティクス社製 商品名:ASAP2400)を用い、液体窒素温度および0.001~0.995の窒素相対圧の条件で行った。ヒステリシスの積分値は、相対圧0.001~0.995の範囲において吸着等温線、及び脱着等温線それぞれの積分値を求め、後者から前者を引いた差分である。
 <塩化銅及び塩化物の定量>
 塩化銅、及び塩化物の定量は、走査型蛍光X線分析装置(理学製、(商品名)ZSX PrimusII)を用い、触媒約3gを粉砕、次いで加圧プレスで試料プレートを作製し、このプレートをRh管球、管電圧/管電流50kV/60mAの条件で測定した。得られたCu、及びK濃度は、各々CuCl、KClに換算して、表1に記載した。
 <反応方法>
 オキシ塩素化触媒の反応評価は、ガラス製反応管(内径22mm、長さ600mm)を用いた固定床気相流通式反応装置を用いた。ガラス製反応管の中段に、オキシ塩素化触媒を充填し、エチレン、塩化水素、分子状酸素および希釈用窒素を触媒層に供給した。原料組成は実施例1~8、29~35及び比較例1~4、15~16において、空気法組成(エチレン32ml/min、塩化水素64ml/min、酸素13ml/min、窒素91ml/min)とした。実施例9~18及び比較例5~9においては、酸素富化法組成(エチレン24ml/min、塩化水素44ml/min、酸素20ml/min、窒素413ml/min)とした。実施例19~28及び比較例10~14においては、酸素法組成(エチレン190ml/min、塩化水素30ml/min、酸素8ml/min、窒素122ml/min)とした。比活性は、実施例1~8、29~35及び比較例1~4、15~16において、触媒層の入口手前2cmを220℃に制御した場合と、触媒層のトップ温度を270℃に制御した場合の各々のエチレン転化率を求め、充填率に対するエチレン転化率の平均値を活性と設定した。実施例9~28及び比較例5~14においては、触媒層入口手前2cmを220℃に制御した場合のエチレン転化率から比活性を求めた。また、EDC選択率は、触媒層の入口手前2cmを220℃になるよう制御し求めた。各反応条件での出口ガス及び反応液を採取し、ガスクロマトグラフを用い、ガス成分および液成分を個別に分析した。ガス成分は、ガスクロマトグラフ(島津製作所製、商品名:GC-14A)を用いて分析した。充填剤は、Waters社製PorapakQ(商品名)およびGLサイエンス社製MS-5A(商品名)を用いた。液成分は、ガスクロマトグラフ(島津製作所製、商品名:GC-1700)を用いて分析した。分離カラムは、キャピラリーカラム(GLサイエンス社製、商品名:TC-1)を用いた。
 実施例1
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを1N塩酸100mlに2時間浸した後、水切り、120℃乾燥、および、空気中500℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して12.5%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=174g/L、KCl=136g/Lの水溶液80mLに4時間浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、250℃で4時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.6%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は159、EDC選択率は99.6%であった。なお、比活性は比較例2の活性を100とした。
 実施例2 
 CuCl=255g/L、KCl=140g/Lの水溶液80mLに2時間浸漬させたこと以外は実施例1と同様の条件でK/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、14.0%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は142、EDC選択率は99.4%であった。なお、比活性は比較例2を100とした。
 実施例3 
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを1N塩酸100mlに2時間浸した後、水切り、120℃乾燥、および、空気中700℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して14.4%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=174g/L、KCl=136g/Lの水溶液80mLに4時間浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、420℃で4時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。 ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、17.3%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は134、EDC選択率は99.3%であった。なお、比活性は比較例2を100とした。
 実施例4 
 CuCl=255g/L、KCl=140g/Lの水溶液80mLに2時間浸漬させたこと、および、300℃で4時間焼成したこと以外は実施例3と同様の条件でK/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、18.9%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は120、EDC選択率は99.2%であった。なお、比活性は比較例2を100とした。
 比較例1 
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを純水に1時間浸した後、水切り、120℃乾燥、および、空気中500℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して15.2%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=270g/L、KCl=150g/Lの水溶液80mLに30分浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、420℃で6時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、23.4%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は107、EDC選択率は99.1%であった。なお、比活性は比較例2を100とした。
 比較例2 
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを純水に1時間浸した後、水切り、120℃乾燥、および、空気中700℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して16.2%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=255g/L、KCl=140g/Lの水溶液80mLに2時間浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、420℃で6時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、24.5%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は100、EDC選択率は98.9%であった。なお、比活性は比較例2を100とした。
 実施例5
 浸漬液の濃度をCuCl=207g/L、KCl=22g/Lとしたこと以外は実施例1と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.1%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は251、EDC選択率は99.3%であった。なお、比活性は比較例2を100とした。
 実施例6 
 浸漬液の濃度をCuCl=250g/L、KCl=30g/Lとしたこと以外は実施例2と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.6%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は234、EDC選択率は99.1%であった。なお、比活性は比較例2を100とした。
 実施例7 
 浸漬液の濃度をCuCl=207g/L、KCl=22g/Lとしたこと以外は実施例3と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して17.2%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は226、EDC選択率は99.0%であった。なお、比活性は比較例2を100とした。 実施例8 
 浸漬液の濃度をCuCl=250g/L、KCl=30g/Lとしたこと以外は実施例4と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して18.4%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は212、EDC選択率は98.8%であった。なお、比活性は比較例2を100とした。
 比較例3 
 CuCl=295g/L、KCl=32g/Lの水溶液80mLに1時間浸漬させたこと以外は比較例1と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.9%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は199、EDC選択率は98.6%であった。なお、比活性は比較例2を100とした。
 比較例4 
 浸漬液の濃度をCuCl=250g/L、KCl=30g/Lとした以外は比較例2と同様の条件で、K/Cu比が0.15であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して24.1%であった。この触媒を用いて空気法条件下で評価を行った結果、比活性は192、EDC選択率は98.4%であった。なお、比活性は比較例2を100とした。
Figure JPOXMLDOC01-appb-T000001
 実施例9
 浸漬液の組成をCuCl=161g/L、KCl=98g/Lとした以外は実施例1と同様の条件で、K/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.2%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は119であった。なお、比活性は比較例5を100とした。
 実施例10
 浸漬液の組成をCuCl=161g/L、CsCl=221g/Lとした以外は実施例1と同様の条件で、Cs/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.5%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は118であった。なお、比活性は比較例5を100とした。
 実施例11
 浸漬液の組成をCuCl=161g/L、NaCl=77g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例1と同様の条件で、Na/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.3%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は177であった。なお、比活性は比較例5を100とした。
 実施例12
 浸漬液の組成をCuCl=161g/L、MgCl・2HO=267g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例1と同様の条件で、Mg/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.1%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は260であった。なお、比活性は比較例5を100とした。
 実施例13
 浸漬液の組成をCuCl=161g/L、NaCl=26g/L、MgCl・2HO=180g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例1と同様の条件で、(Na+Mg)/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.4%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は198であった。なお、比活性は比較例5を100とした。
 実施例14
 浸漬液の組成をCuCl=161g/L、KCl=98g/Lとしたこと及び250℃で4時間焼成したこと以外は実施例3と同様の条件で、K/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して15.0%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は117であった。なお、比活性は比較例5を100とした。
 実施例15
 浸漬液の組成をCuCl=161g/L、CsCl=221g/Lとしたこと及び250℃で4時間焼成したこと以外は実施例3と同様の条件で、Cs/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して15.1%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は115であった。なお、比活性は比較例5を100とした。
 実施例16
 浸漬液の組成をCuCl=161g/L、NaCl=77g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例3と同様の条件で、Na/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して15.3%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は184であった。なお、比活性は比較例5を100とした。
 実施例17
 浸漬液の組成をCuCl=161g/L、MgCl・2HO=267g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例3と同様の条件で、Mg/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して14.8%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は254であった。なお、比活性は比較例5を100とした。
 実施例18
 浸漬液の組成をCuCl=161g/L、NaCl=26g/L、MgCl・2HO=180g/Lとしたこと及び400℃で2時間焼成したこと以外は実施例3と同様の条件で、(Na+Mg)/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して14.8%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は194であった。なお、比活性は比較例5を100とした。
 比較例5
 液組成がCuCl=240g/L、KCl=105g/Lの浸漬液に1時間浸漬させたこと及び420℃で6時間焼成したこと以外は比較例2と同様の条件で、K/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.6%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は100であった。なお、比活性は比較例5を100とした。
 比較例6
 液組成がCuCl=240g/L、CsCl=238g/Lの浸漬液に1時間浸漬させたこと及び420℃で6時間焼成したこと以外は比較例2と同様の条件で、Cs/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.8%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は98であった。なお、比活性は比較例5を100とした。
 比較例7
 液組成がCuCl=255g/L、NaCl=91g/Lの浸漬液に30分浸漬させたこととした以外は比較例2と同様の条件で、Na/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.8%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は148であった。なお、比活性は比較例5を100とした。
 比較例8
 液組成がCuCl=255g/L、MgCl・2HO=293g/Lの浸漬液に30分浸漬させたこと及び250℃で4時間焼成したこと以外は比較例23と同様の条件で、Mg/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.7%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は217であった。なお、比活性は比較例5を100とした。
 比較例9
 液組成がCuCl=255g/L、NaCl=32g/L、MgCl・2HO=220g/Lの浸漬液に30分浸漬させたこと及び250℃で4時間焼成したこととした以外は比較例2と同様の条件で、(Na+Mg)/Cu比が0.50であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して23.9%であった。この触媒を用いて酸素富化法条件下で評価を行った結果、比活性は166であった。なお、比活性は比較例5を100とした。
Figure JPOXMLDOC01-appb-T000002
 実施例19
 実施例9で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は374であった。なお、比活性は比較例10を100とした。
 実施例20
 実施例10で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は364であった。なお、比活性は比較例10を100とした。
 実施例21
 実施例11で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は340であった。なお、比活性は比較例10を100とした。
 実施例22
 実施例12で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は259であった。なお、比活性は比較例10を100とした。
 実施例23
 実施例13で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は312であった。なお、比活性は比較例10を100とした。
 実施例24
 実施例14で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は202であった。なお、比活性は比較例10を100とした。
 実施例25
 実施例15で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は197であった。なお、比活性は比較例10を100とした。
 実施例26
 実施例16で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は184であった。なお、比活性は比較例10を100とした。
 実施例27
 実施例17で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は144であった。なお、比活性は比較例10を100とした。
 実施例28
 実施例18で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は168であった。なお、比活性は比較例10を100とした。
 比較例10
 比較例5で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は100であった。なお、比活性は比較例10を100とした。
 比較例11
 比較例6で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は98であった。なお、比活性は比較例10を100とした。
 比較例12
 比較例7で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は91であった。なお、比活性は比較例10を100とした。
 比較例13
 比較例8で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は71であった。なお、比活性は比較例10を100とした。
 比較例14
 比較例9で調製した触媒を用い、酸素法条件下で評価を行った結果、比活性は76であった。なお、比活性は比較例10を100とした。
Figure JPOXMLDOC01-appb-T000003
 実施例29
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを1N塩酸100mlに2時間浸した後、水切り、120℃乾燥、および、空気中500℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して12.5%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=174g/L、KCl=136g/Lの水溶液80mLに4時間浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、250℃で4時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して13.6%であった。定量分析の結果、12.9%CuCl-5.7%KCl/アルミナ触媒であった。この触媒と径5.0mm、比表面積0.1m/gの球形状のアルミナ―シリカ希釈剤を混合して空気法条件の反応方法に従って評価した。
 実施例30
 希釈剤として、径5.0mm、側面の長さ5.0mm、比表面積1.7m/gの円柱形状のグラファイト希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 実施例31
 希釈剤として、中空円筒の外径6.4mm、内径3.5mm、側面の長さ5.0mm、比表面積0.094m/gの中空円筒形状のアルミナ―シリカ希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 実施例32
 希釈剤として、中空円筒の外径6.4mm、内径3.5mm、側面の長さ6.4mm、比表面積0.094m/gの中空円筒形状のアルミナ―シリカ希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 実施例33
 希釈剤として、中空円筒の外径5.0mm、内径2.5mm、側面の長さ5.0mm、比表面積0.094m/gの中空円筒形状のアルミナ―シリカ希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 実施例34
 希釈剤として、中空円筒の外径5.0mm、内径2.0mm、側面の長さ5.0mm、比表面積1.7m/gの中空円筒形状のグラファイト希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 実施例35
 希釈剤として、中空円筒の外径6.0mm、内径2.5mm、側面の長さ5.0mm、比表面積1.7m/gの中空円筒形状のグラファイト希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 比較例15
 希釈剤として、径5.0mm、側面の長さ1.0~8.0mm、比表面積1.7m/gの不定形状のグラファイト希釈剤を用いたこと以外は実施例29と同様の方法で評価した。
 比較例16
 日揮触媒化成株式会社製の中空円筒形状のアルミナ担体(商品名N611N3、外径4.9mm、内径1.8mm、長さ3.9mm)50gを純水に1時間浸した後、水切り、120℃乾燥、および、空気中700℃での5時間の焼成を行い、ガス吸着法における吸脱着等温線ヒステリシスの面積比率が吸着等温線の積分値に対して16.2%である中空円筒形状のアルミナ担体を得た。このアルミナ担体30gに水を十分に吸収させた後、CuCl=255g/L、KCl=140g/Lの水溶液80mLに2時間浸漬させた。浸漬液からアルミナ担体を取り出し、マッフル炉を用いて120℃で2時間乾燥させた。その後、420℃で6時間焼成し、K/Cu比が0.80であるオキシ塩素化触媒を調製した。ガス吸着法における吸脱着等温線ヒステリシスの面積比率は、吸着等温線の積分値に対して、24.5%であった。定量分析の結果、12.7%CuCl-5.6%KCl/アルミナ触媒であった。この触媒15mlと、外径5.0mm、内径2.0mm、側面の長さ5.0mm、比表面積1.7m/gの中空円筒形状グラファイト希釈剤15mlを混合したこと以外は実施例29と同様の方法で評価した。
Figure JPOXMLDOC01-appb-T000004
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の本質と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、2013年7月17日に出願された日本特許出願2013-148891号及び2014年2月24日に出願された日本特許出願2014-32919号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 本発明の不均一系触媒は、特にエチレンから塩化ビニルモノマーの原料として有用な1,2-ジクロロエタンを製造する際の触媒として利用することが可能であり、その際のエチレン転化率、1,2-ジクロロエタン選択率が極めて高いものとなり、経済的にも優れたものとなる。また、安定生産ができることから、安全性にも優れたものとなる。
 1:ヒステリシス
 2:脱着側
 3:吸着側

Claims (20)

  1. 多孔質担体上に金属化合物が担持された不均一系触媒であって、ガス吸着法の吸着等温線と脱着等温線との間に生じるヒステリシスの積分値が、吸着等温線の全積分値に対して19%以下であることを特徴とする触媒。
  2. 多孔質担体がアルミナ、シリカ、シリカ―アルミナ、ゼオライト、酸化チタン、酸化ジルコニウム又は酸化マグネシウムであることを特徴とする、請求項1に記載の触媒。
  3. 金属化合物の金属が、周期表1族、2族又は11族であることを特徴とする請求項1又は2に記載の触媒。
  4. 金属化合物が、酸化物またはハロゲン化物であることを特徴とする請求項1~3のいずれかに記載の触媒。
  5. 金属化合物が塩化銅であることを特徴とする請求項1~4のいずれかに記載の触媒。
  6. 金属化合物が、塩化銅並びに塩化カリウム、塩化セシウム、塩化ナトリウムおよび塩化マグネシウムからなる群から選択される1種以上の金属塩化物であることを特徴とする請求項1~5のいずれかに記載の触媒。
  7. 塩化銅の担持量が3~25重量%であることを特徴とする請求項5又は6に記載の触媒。
  8. 金属塩化物の担持量が、0.1~20重量%であることを特徴とする請求項6又は7に記載の触媒。
  9. ガス吸着法が窒素吸着法であることを特徴とする請求項1~8のいずれかに記載の触媒。
  10. 不均一系触媒が中空円筒形状であることを特徴とする請求項1~9のいずれかに記載の触媒。
  11. 外径3~6mm、内径1~3mm未満、長さ3~6mmの中空円筒形状であることを特徴とする請求項10に記載の触媒。
  12. 触媒がエチレンのオキシ塩素化用途に使用される請求項1~11のいずれかに記載の触媒。
  13. 請求項1~12のいずれかに記載の触媒の存在下、エチレン、塩化水素及び酸素のオキシ塩素化を行うことを特徴とする1,2-ジクロロエタンの製造方法。
  14. 請求項1~12のいずれかに記載の触媒及び球形状、円柱形状または中空円筒形状を有する希釈剤を含むことを特徴とする、エチレン、塩化水素および酸素から1,2-ジクロロエタンの製造用触媒システム。
  15. 希釈剤が、アルミナ、シリカ、アルミナ-シリカ、炭化ケイ素、窒化アルミニウム、炭素及びグラファイトからなる群より選択される少なくとも1種であることを特徴とする請求項14に記載の1,2-ジクロロエタンの製造用触媒システム。
  16. 球形状を有する希釈剤の外径Dが下記一般式(1)の寸法(mm)である請求項14又は15に記載の1,2-ジクロロエタンの製造用触媒システム。
     4.5≦D≦7.0     (1)
  17. 円柱形状を有する希釈剤の円柱の外径Deが下記一般式(2)の寸法(mm)、側面の長さLが下記一般式(3)の寸法(mm)である請求項14又は15に記載の1,2-ジクロロエタンの製造用触媒システム。
     4.5≦De≦7.0    (2)
     4.0≦L≦7.0     (3)
  18. 中空円筒形状を有する希釈剤の中空円筒の外径Deが下記一般式(4)の寸法(mm)、その内径Diが下記一般式(5)の寸法(mm)、側面の長さLが下記一般式(6)の寸法(mm)、外径Deと内径Diの関係が下記一般式(7)である請求項14又は15に記載の1,2-ジクロロエタンの製造用触媒システム。
     4.5≦De≦7.0    (4)
     1.5≦Di≦4.0     (5)
     4.0≦L≦7.0     (6)
     De/3≦Di       (7)
  19. 希釈剤の外径がオキシ塩素化触媒の長さと等しい長さである請求項14~18のいずれかに記載の1,2-ジクロロエタンの製造用触媒システム。
  20. 請求項14~19のいずれかに記載の1,2-ジクロロエタンの製造用触媒システムの存在下で、エチレン、塩化水素および酸素を反応させることを特徴とする1,2-ジクロロエタンの製造方法。
PCT/JP2014/069004 2013-07-17 2014-07-17 不均一系触媒および1,2-ジクロロエタンの製造用触媒システム WO2015008819A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167000858A KR102264106B1 (ko) 2013-07-17 2014-07-17 불균일계 촉매 및 1,2-디클로로에탄의 제조용 촉매 시스템
CN201480040848.5A CN105392561B (zh) 2013-07-17 2014-07-17 非均相催化剂和1,2‑二氯乙烷的制造用催化剂体系
US14/905,517 US9687824B2 (en) 2013-07-17 2014-07-17 Heterogeneous catalyst and catalyst system for producing 1,2-dichloroethane
EP14826546.5A EP3023149A4 (en) 2013-07-17 2014-07-17 Heterogeneous catalyst and catalyst system for manufacturing 1,2-dichloroethane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-148891 2013-07-17
JP2013148891 2013-07-17
JP2014-032919 2014-02-24
JP2014032919 2014-02-24

Publications (1)

Publication Number Publication Date
WO2015008819A1 true WO2015008819A1 (ja) 2015-01-22

Family

ID=52346262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069004 WO2015008819A1 (ja) 2013-07-17 2014-07-17 不均一系触媒および1,2-ジクロロエタンの製造用触媒システム

Country Status (7)

Country Link
US (1) US9687824B2 (ja)
EP (1) EP3023149A4 (ja)
JP (1) JP6379781B2 (ja)
KR (1) KR102264106B1 (ja)
CN (1) CN105392561B (ja)
TW (1) TWI642481B (ja)
WO (1) WO2015008819A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169183A (ja) * 2015-03-12 2016-09-23 東ソー株式会社 均一な触媒混合物を用いた1,2−ジクロロエタンの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654587B (zh) * 2017-03-28 2021-09-07 中国石油化工股份有限公司 制备卤代烃的方法
CN109745989A (zh) * 2017-11-02 2019-05-14 中国石油化工股份有限公司 氧氯化催化剂及其制备方法和应用
CN109745990A (zh) * 2017-11-02 2019-05-14 中国石油化工股份有限公司 氧氯化催化剂及其制备方法和应用
CN115228385B (zh) * 2021-04-23 2023-11-10 国家能源集团宁夏煤业有限责任公司 一种固定床催化剂装填方法和相应的反应测试方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141842A (en) 1980-04-07 1981-11-05 Kanegafuchi Chem Ind Co Ltd Catalyst formed in novel cylindrical shape
JPS57136928A (en) 1981-02-18 1982-08-24 Kanegafuchi Chem Ind Co Ltd Catalyst diluting agent
JP2000254507A (ja) 1999-01-08 2000-09-19 Sud Chem Mt Srl 固定床での発熱反応用触媒
JP2006110419A (ja) * 2004-10-12 2006-04-27 Honda Motor Co Ltd マグネシア触媒、反応膜、アンモニア製造装置、およびマグネシア触媒の作製方法
JP2007508134A (ja) 2003-10-15 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト 触媒不活性でかつ外部こすれ面が丸くなっている成形体を含む触媒層
JP2010051836A (ja) * 2008-08-26 2010-03-11 Babcock Hitachi Kk 窒素酸化物浄化触媒及び窒素酸化物除去方法
WO2012084276A2 (en) * 2010-12-23 2012-06-28 Total Raffinage Marketing Process for preparing an industrial hydroconversion catalyst, catalyst thus obtained and use thereof in a hydroconversion process
JP2012187569A (ja) * 2011-02-21 2012-10-04 Tosoh Corp オキシ塩素化触媒
JP2012532089A (ja) * 2009-07-03 2012-12-13 ナンヤン テクノロジカル ユニヴァーシティ 単層カーボンナノチューブの形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8829706D0 (en) * 1988-12-20 1989-02-15 Ici Plc Oxychlorination catalyst composition
DE4018512A1 (de) * 1990-06-09 1991-12-12 Wacker Chemie Gmbh Zylindrisch geformter katalysator und dessen verwendung bei der oxichlorierung von ethylen
US5366617A (en) * 1992-12-28 1994-11-22 Uop Selective catalytic reforming with high-stability catalyst
JPH08224484A (ja) * 1994-11-03 1996-09-03 Shell Internatl Res Maatschappij Bv 触媒及び水素処理方法
IT1276155B1 (it) 1995-11-21 1997-10-27 Montecatini Tecnologie Srl Catalizzatori per l'ossiclorurazione dell'etilene,procedimento per la loro preparazione e procedimento di ossiclorurazione impiegante gli
CN1154873A (zh) * 1995-11-21 1997-07-23 蒙泰卡蒂尼技术有限公司 乙烯的氧氯化催化剂以及其制备方法和使用该催化剂的氧氯化方法
JP2001143693A (ja) * 1999-11-12 2001-05-25 Lion Corp リチウム二次電池用電極
US7678730B2 (en) * 2004-09-10 2010-03-16 Chevron Usa Inc. Hydroprocessing bulk catalyst and uses thereof
DE102005023955A1 (de) * 2005-05-20 2006-11-23 Basf Ag Inertmaterial für den Einsatz in exothermen Reaktionen
GB0617529D0 (en) * 2006-09-07 2006-10-18 Johnson Matthey Plc Metal nitrate conversion method
CN101274765B (zh) * 2007-03-30 2011-11-30 中国石油化工股份有限公司 一种含贵金属的微孔钛硅材料及其制备方法
US20090114566A1 (en) * 2007-10-31 2009-05-07 Chevron U.S.A. Inc. Method of upgrading heavy hydrocarbon streams to jet products
EP2208528A1 (en) * 2008-12-23 2010-07-21 Süd Chemie - Catalysts Italia S.R.L. Catalysts for fixed bed oxychlorination of ethylene to 1.2-dichloroethane
ITMI20082333A1 (it) 2008-12-29 2010-06-30 Sud Chemie Catalysts Italia S R L Precursori di catalizzatori di ossiclorurazione dell'etilene a dicloroetano.
JP5817435B2 (ja) * 2011-10-25 2015-11-18 東ソー株式会社 オキシ塩素化触媒の製造法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141842A (en) 1980-04-07 1981-11-05 Kanegafuchi Chem Ind Co Ltd Catalyst formed in novel cylindrical shape
JPS57136928A (en) 1981-02-18 1982-08-24 Kanegafuchi Chem Ind Co Ltd Catalyst diluting agent
JP2000254507A (ja) 1999-01-08 2000-09-19 Sud Chem Mt Srl 固定床での発熱反応用触媒
JP2007508134A (ja) 2003-10-15 2007-04-05 ビーエーエスエフ アクチェンゲゼルシャフト 触媒不活性でかつ外部こすれ面が丸くなっている成形体を含む触媒層
JP2006110419A (ja) * 2004-10-12 2006-04-27 Honda Motor Co Ltd マグネシア触媒、反応膜、アンモニア製造装置、およびマグネシア触媒の作製方法
JP2010051836A (ja) * 2008-08-26 2010-03-11 Babcock Hitachi Kk 窒素酸化物浄化触媒及び窒素酸化物除去方法
JP2012532089A (ja) * 2009-07-03 2012-12-13 ナンヤン テクノロジカル ユニヴァーシティ 単層カーボンナノチューブの形成方法
WO2012084276A2 (en) * 2010-12-23 2012-06-28 Total Raffinage Marketing Process for preparing an industrial hydroconversion catalyst, catalyst thus obtained and use thereof in a hydroconversion process
JP2012187569A (ja) * 2011-02-21 2012-10-04 Tosoh Corp オキシ塩素化触媒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3023149A4
SHIMADZU CRITIC, vol. 48, no. 1, June 1991 (1991-06-01)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169183A (ja) * 2015-03-12 2016-09-23 東ソー株式会社 均一な触媒混合物を用いた1,2−ジクロロエタンの製造方法

Also Published As

Publication number Publication date
KR102264106B1 (ko) 2021-06-10
US9687824B2 (en) 2017-06-27
EP3023149A1 (en) 2016-05-25
US20160167026A1 (en) 2016-06-16
TWI642481B (zh) 2018-12-01
EP3023149A4 (en) 2017-03-15
JP6379781B2 (ja) 2018-08-29
CN105392561B (zh) 2018-04-03
CN105392561A (zh) 2016-03-09
KR20160033693A (ko) 2016-03-28
TW201513936A (zh) 2015-04-16
JP2015171703A (ja) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6379781B2 (ja) 不均一系触媒および1,2−ジクロロエタンの製造用触媒システム
JP6595022B2 (ja) 気相酸化により塩素を製造するための触媒および方法
JP2645467B2 (ja) オキシ塩素化用触媒
TWI292722B (en) Ethylene oxide catalyst
JP2009537449A (ja) 気相酸化による塩素の製造方法
JP2018167268A (ja) 気相酸化による塩素製造のための触媒および方法
US8921587B2 (en) Process for producing a catalyst for the oxidation of ethylene to ethylene oxide
CN109890782A (zh) 生产丁二烯的单阶段方法
US20210283583A1 (en) Catalyst for the oxidation of ethylene to ethylene oxide
JP2011515456A (ja) フッ素化された化合物の製造方法
WO2018123911A1 (ja) 含塩素プロペンの製造方法
TW576754B (en) Catalysts for oxychlorination of ethylene to 1,2-dichloroethane
JP2012187569A (ja) オキシ塩素化触媒
KR20190126833A (ko) 합성 가스를 알콜로 전환시키기 위한 촉매
JP6766602B2 (ja) 1,2−ジクロロエタン製造用触媒システム及び1,2−ジクロロエタンの製造方法
JP2014117673A (ja) オキシ塩素化触媒およびそれを用いた1,2−ジクロロエタンの製造方法
WO2012133054A1 (ja) 臭素の製造方法
JP6194809B2 (ja) 1,2−ジクロロエタンの製造方法
JP6848570B2 (ja) 高耐久性を有する1,2−ジクロロエタン製造用触媒システム及び1,2−ジクロロエタンの製造方法
JP2015097981A (ja) 1,2−ジクロロエタンの製造用触媒システムおよびそれを用いた1,2−ジクロロエタンの製造方法
JP2015147163A (ja) 1,2−ジクロロエタン製造用触媒システムおよびそれを用いた1,2−ジクロロエタンの製造方法
JP2015098443A (ja) 1,2−ジクロロエタンの製造用触媒システム及びそれを用いた1,2−ジクロロエタンの製造方法
WO2024057657A1 (ja) フルオロオレフィンの製造方法
EP3995478A1 (en) Method for producing alkane
WO2019065924A1 (ja) 触媒、共役ジエンの製造装置及び共役ジエンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480040848.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14826546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167000858

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014826546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14905517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE