WO2014207854A1 - 内燃機関の診断装置 - Google Patents

内燃機関の診断装置 Download PDF

Info

Publication number
WO2014207854A1
WO2014207854A1 PCT/JP2013/067570 JP2013067570W WO2014207854A1 WO 2014207854 A1 WO2014207854 A1 WO 2014207854A1 JP 2013067570 W JP2013067570 W JP 2013067570W WO 2014207854 A1 WO2014207854 A1 WO 2014207854A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
fuel ratio
region
fuel
sensor
Prior art date
Application number
PCT/JP2013/067570
Other languages
English (en)
French (fr)
Inventor
寛史 宮本
悠司 三好
靖志 岩崎
徹 木所
圭一郎 青木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/067570 priority Critical patent/WO2014207854A1/ja
Priority to EP13887651.1A priority patent/EP3015690B1/en
Priority to BR112015031334-5A priority patent/BR112015031334B1/pt
Priority to CN201380077794.5A priority patent/CN105339634B/zh
Priority to US14/900,792 priority patent/US9850840B2/en
Priority to JP2015523743A priority patent/JP5962856B2/ja
Priority to RU2016102047A priority patent/RU2624252C1/ru
Publication of WO2014207854A1 publication Critical patent/WO2014207854A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/14Exhaust systems with means for detecting or measuring exhaust gas components or characteristics having more than one sensor of one kind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • F02D41/126Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off transitional corrections at the end of the cut-off period
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors

Definitions

  • the present invention relates to a diagnostic device for an internal combustion engine.
  • Air-fuel ratio sensors used in such internal combustion engines gradually deteriorate with use.
  • Such deterioration includes, for example, responsiveness deterioration of the air-fuel ratio sensor.
  • the responsiveness deterioration of the air-fuel ratio sensor is caused by, for example, a vent hole provided in the sensor cover for preventing the sensor element from being wetted by being partially blocked by particulates (PM). If the vent hole is partially blocked in this way, gas exchange between the inner side and the outer side of the sensor cover is delayed, and as a result, the output of the air-fuel ratio sensor becomes dull.
  • various controls executed by the control device for the internal combustion engine will be hindered.
  • a diagnostic device for diagnosing deterioration of the air-fuel ratio sensor has been proposed (see, for example, Patent Documents 1 to 4).
  • the target air-fuel ratio is changed stepwise, and accordingly, the first response time until the output value of the air-fuel ratio sensor reaches the first predetermined value, and the first predetermined A second response time until reaching a second predetermined value greater than the value is determined, and deterioration of the air-fuel ratio sensor is determined based on two of the first response time and the second response time.
  • Patent Document 1 the target air-fuel ratio is changed stepwise, and accordingly, the first response time until the output value of the air-fuel ratio sensor reaches the first predetermined value, and the first predetermined A second response time until reaching a second predetermined value greater than the value is determined, and deterioration of the air-fuel ratio sensor is determined based on two of the first response time and the second response time.
  • the diagnosis of responsiveness deterioration of the air-fuel ratio sensor is performed by changing the air-fuel ratio of the exhaust gas discharged from the internal combustion engine in a step shape and detecting the responsiveness of the air-fuel ratio sensor with respect to this step-like change. . Then, the greater the range in which the air-fuel ratio of the exhaust gas discharged from the internal combustion engine is changed stepwise, the higher the diagnostic accuracy of responsiveness deterioration.
  • the air-fuel ratio of the exhaust gas flowing out from the exhaust purification catalyst becomes leaner than the stoichiometric air-fuel ratio, and the lean degree is It will be extremely large. Therefore, immediately after the start of the fuel cut control or immediately after the end of the fuel cut control, the air-fuel ratio of the exhaust gas discharged from the internal combustion engine is greatly changed in a step shape. For this reason, a highly accurate responsiveness deterioration diagnosis can be performed immediately after the start of the fuel cut control or immediately after the end of the fuel cut control.
  • an air-fuel ratio sensor is often provided downstream of the exhaust purification catalyst.
  • the exhaust gas discharged from the internal combustion engine reaches the downstream air-fuel ratio sensor after passing through the exhaust purification catalyst.
  • the air-fuel ratio of the exhaust gas reaching the downstream air-fuel ratio sensor includes not only the exhaust gas discharged from the internal combustion engine but also the oxygen of the exhaust purification catalyst. It varies depending on the storage capacity and oxygen storage capacity.
  • the downstream side air-fuel ratio sensor according to the state of the exhaust purification catalyst. Output may change. In such a case, even if the actual responsiveness of the downstream air-fuel ratio sensor is constant, if the state of the exhaust purification catalyst changes, the output of the downstream air-fuel ratio sensor changes accordingly.
  • the diagnosis can be performed in a state where the oxygen storage amount in the exhaust purification catalyst is grasped. For this reason, the influence of the state of the exhaust purification catalyst on the output of the downstream air-fuel ratio sensor can be reduced, and as a result, the diagnostic accuracy of the responsiveness deterioration of the downstream air-fuel ratio sensor can be improved.
  • the output of the downstream air-fuel ratio sensor changes according to the state of the exhaust purification catalyst. If the output of the downstream air-fuel ratio sensor changes in accordance with the state of the exhaust purification catalyst in this way, it becomes impossible to accurately diagnose the responsiveness deterioration of the downstream air-fuel ratio sensor.
  • an object of the present invention is to provide an internal combustion engine capable of accurately diagnosing abnormality in responsiveness deterioration of the downstream air-fuel ratio sensor while suppressing the influence of the change in the state of the exhaust purification catalyst. It is to provide a diagnostic device.
  • an exhaust purification catalyst that is disposed in an exhaust passage of an internal combustion engine and that can store oxygen in exhaust gas flowing in, and an exhaust purification catalyst downstream side in the exhaust flow direction
  • an air-fuel ratio sensor for detecting an air-fuel ratio of exhaust gas flowing out from the exhaust purification catalyst, and a fuel cut control for stopping or reducing the fuel supply to the combustion chamber, and after the fuel cut control ends
  • a diagnostic apparatus for an internal combustion engine that performs post-return rich control for controlling an air-fuel ratio of exhaust gas flowing into an exhaust purification catalyst to a rich air-fuel ratio richer than a stoichiometric air-fuel ratio, an output air output from the air-fuel ratio sensor is performed.
  • the output air-fuel ratio of the air-fuel ratio sensor first passes through the first air-fuel ratio region, which is a partial air-fuel ratio region equal to or higher than the stoichiometric air-fuel ratio, after the fuel cut control ends based on the fuel ratio.
  • the output air-fuel ratio of the air-fuel ratio sensor is A second characteristic speed calculation means for calculating a second air-fuel ratio change characteristic when first passing through a second air-fuel ratio area different from the first air-fuel ratio area;
  • the state of the fuel ratio sensor is determined as one of normal, abnormal, and pending determination, and when it is determined that the determination is pending based on the first air-fuel ratio change characteristic, based on the second air-fuel ratio change characteristic
  • an internal combustion engine diagnosis device comprising abnormality diagnosis means for determining that the state of an air-fuel ratio sensor is either normal or abnormal.
  • the first air-fuel ratio region includes an air-fuel ratio region that is leaner than the second air-fuel ratio region.
  • the second air-fuel ratio region includes an air-fuel ratio region richer than the first air-fuel ratio region.
  • the second air-fuel ratio region is a region including the stoichiometric air-fuel ratio.
  • the air-fuel ratio sensor generates a limit current when the air-fuel ratio of the exhaust gas passing through the air-fuel ratio sensor is within a predetermined air-fuel ratio region.
  • the first air-fuel ratio region and the second air-fuel ratio region are within the predetermined air-fuel ratio region where the air-fuel ratio sensor generates a limit current.
  • the first air-fuel ratio region includes a first region upper limit air-fuel ratio and a first region lower limit richer than the first region upper limit air-fuel ratio.
  • the second air-fuel ratio region is a region between the second region upper limit air-fuel ratio and the second region lower limit air-fuel ratio richer than the second region upper limit air-fuel ratio.
  • the second region upper limit air-fuel ratio is leaner than the stoichiometric air-fuel ratio.
  • the second region upper limit air-fuel ratio is richer than the first region lower limit air-fuel ratio.
  • the second region lower limit air-fuel ratio is equal to or lower than the stoichiometric air-fuel ratio.
  • the first air-fuel ratio change characteristic is obtained when the output air-fuel ratio of the air-fuel ratio sensor first passes through the first air-fuel ratio region.
  • a first air-fuel ratio change speed that is a change speed
  • the abnormality diagnosis means determines that the air-fuel ratio sensor is abnormal when the first air-fuel ratio change speed is slower than an abnormal reference change speed;
  • the first air-fuel ratio change rate is faster than the normal reference change rate, it is determined that the air-fuel ratio sensor is normal, and the first air-fuel ratio change rate is the difference between the abnormal reference change rate and the normal reference change rate. If it is between, it is determined as determination pending.
  • the second air-fuel ratio change characteristic is obtained when the output air-fuel ratio of the air-fuel ratio sensor first passes through the second air-fuel ratio region.
  • a second air-fuel ratio changing speed that is a changing speed
  • the abnormality diagnosis means determines that the second air-fuel ratio changing speed is normal / abnormal when the determination is made based on the first air-fuel ratio changing characteristic. It is determined that the air-fuel ratio sensor is normal when it is slower than the change speed, and the air-fuel ratio sensor is abnormal when the second air-fuel ratio change speed is faster than the normal / abnormal judgment reference change speed. Is determined.
  • the air-fuel ratio change rate is a time when the output air-fuel ratio of the air-fuel ratio sensor changes from the upper limit air fuel ratio to the lower limit air fuel ratio in the corresponding air fuel ratio region. Calculated based on
  • the first air-fuel ratio change characteristic is that the output air-fuel ratio of the air-fuel ratio sensor is within the first air-fuel ratio region.
  • the first air-fuel ratio integrated value obtained by integrating the output air-fuel ratio when the first air-fuel ratio integrated value is larger than the abnormal reference integrated value.
  • the second air-fuel ratio change characteristic is that the output air-fuel ratio of the air-fuel ratio sensor is within the second air-fuel ratio region.
  • the second air-fuel ratio integrated value obtained by integrating the output air-fuel ratio when the abnormality diagnosis means determines that the determination is suspended based on the first air-fuel ratio change characteristic.
  • the first air-fuel ratio change characteristic is that the output air-fuel ratio of the air-fuel ratio sensor is the first air-fuel ratio.
  • a first exhaust gas amount integrated value obtained by integrating the amount of exhaust gas that has passed through the exhaust passage in which the air-fuel ratio sensor is disposed while changing from the upper limit air-fuel ratio to the lower limit air-fuel ratio in the fuel ratio region,
  • the air-fuel ratio sensor is determined to be normal, and if the first exhaust gas amount integrated value is between the abnormal reference integrated value and the normal reference integrated value, it is determined as pending determination.
  • the second air-fuel ratio change characteristic is that the output air-fuel ratio of the air-fuel ratio sensor is equal to the second air-fuel ratio change characteristic.
  • a second exhaust gas amount integrated value obtained by integrating the amount of exhaust gas that has passed through the exhaust passage in which the air-fuel ratio sensor is arranged while changing from the upper limit air-fuel ratio to the lower limit air-fuel ratio in the fuel ratio region;
  • the abnormality diagnosis means determines that the air-fuel ratio sensor is normal based on the first air-fuel ratio change characteristic, and When it is determined that the air-fuel ratio sensor is abnormal based on the second air-fuel ratio change characteristic, it is determined that the exhaust purification catalyst has deteriorated.
  • the apparatus further comprises warning means for turning on a warning lamp when the abnormality diagnosis means determines that the air-fuel ratio sensor is abnormal.
  • an internal combustion engine diagnostic apparatus capable of accurately diagnosing an abnormality in responsiveness deterioration of a downstream air-fuel ratio sensor while suppressing the influence of a change in the state of an exhaust purification catalyst.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which the diagnostic apparatus of the present invention is used.
  • FIG. 2 is a schematic cross-sectional view of the air-fuel ratio sensor.
  • FIG. 3 is a diagram showing the relationship between the sensor applied voltage and the output current at each exhaust air-fuel ratio.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is made constant.
  • FIG. 5 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 6 is a time chart of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after fuel cut control.
  • FIG. 7 is a time chart before and after fuel cut control of the downstream output air-fuel ratio.
  • FIG. 8 is a flowchart showing a control routine of abnormality diagnosis control in the first embodiment.
  • FIG. 9 is a time chart before and after fuel cut control such as downstream output air-fuel ratio.
  • FIG. 1 is a diagram schematically showing an internal combustion engine in which a diagnostic device according to a first embodiment of the present invention is used.
  • 1 is an engine body
  • 2 is a cylinder block
  • 3 is a piston that reciprocates within the cylinder block
  • 4 is a cylinder head fixed on the cylinder block 2
  • 5 is a piston
  • 6 is an intake valve
  • 7 is an intake port
  • 8 is an exhaust valve
  • 9 is an exhaust port.
  • the intake valve 6 opens and closes the intake port 7, and the exhaust valve 8 opens and closes the exhaust port 9.
  • a spark plug 10 is disposed at the center of the inner wall surface of the cylinder head 4, and a fuel injection valve 11 is disposed around the inner wall surface of the cylinder head 4.
  • the spark plug 10 is configured to generate a spark in response to the ignition signal.
  • the fuel injection valve 11 injects a predetermined amount of fuel into the combustion chamber 5 according to the injection signal.
  • the fuel injection valve 11 may be arranged so as to inject fuel into the intake port 7.
  • gasoline having a theoretical air-fuel ratio of 14.6 is used as the fuel.
  • other fuels may be used in the internal combustion engine in which the diagnostic device of the present invention is used.
  • the intake port 7 of each cylinder is connected to a surge tank 14 via a corresponding intake branch pipe 13, and the surge tank 14 is connected to an air cleaner 16 via an intake pipe 15.
  • the intake port 7, the intake branch pipe 13, the surge tank 14, and the intake pipe 15 form an intake passage.
  • a throttle valve 18 driven by a throttle valve drive actuator 17 is disposed in the intake pipe 15. The throttle valve 18 is rotated by a throttle valve drive actuator 17 so that the opening area of the intake passage can be changed.
  • the exhaust port 9 of each cylinder is connected to an exhaust manifold 19.
  • the exhaust manifold 19 has a plurality of branches connected to the exhaust ports 9 and a collective part in which these branches are assembled.
  • a collecting portion of the exhaust manifold 19 is connected to an upstream casing 21 containing an upstream exhaust purification catalyst 20.
  • the upstream casing 21 is connected to a downstream casing 23 containing a downstream exhaust purification catalyst 24 via an exhaust pipe 22.
  • the exhaust port 9, the exhaust manifold 19, the upstream casing 21, the exhaust pipe 22, and the downstream casing 23 form an exhaust passage.
  • An electronic control unit (ECU) 31 comprises a digital computer, and is connected to each other via a bidirectional bus 32, a RAM (Random Access Memory) 33, a ROM (Read Only Memory) 34, a CPU (Microprocessor) 35, and an input.
  • a port 36 and an output port 37 are provided.
  • An air flow meter 39 for detecting the flow rate of air flowing through the intake pipe 15 is disposed in the intake pipe 15, and the output of the air flow meter 39 is input to the input port 36 via the corresponding AD converter 38.
  • an upstream air-fuel ratio sensor 40 that detects the air-fuel ratio of the exhaust gas flowing through the exhaust manifold 19 (that is, the exhaust gas flowing into the upstream exhaust purification catalyst 20) is disposed at the collecting portion of the exhaust manifold 19.
  • the downstream side that detects the air-fuel ratio of the exhaust gas that flows in the exhaust pipe 22 (that is, the exhaust gas that flows out of the upstream side exhaust purification catalyst 20 and flows into the downstream side exhaust purification catalyst 24).
  • An air-fuel ratio sensor 41 is arranged. The outputs of these air-fuel ratio sensors 40 and 41 are also input to the input port 36 via the corresponding AD converter 38. The configuration of these air-fuel ratio sensors 40 and 41 will be described later.
  • a load sensor 43 that generates an output voltage proportional to the amount of depression of the accelerator pedal 42 is connected to the accelerator pedal 42, and the output voltage of the load sensor 43 is input to the input port 36 via the corresponding AD converter 38.
  • the crank angle sensor 44 generates an output pulse every time the crankshaft rotates 15 degrees, and this output pulse is input to the input port 36.
  • the CPU 35 calculates the engine speed from the output pulse of the crank angle sensor 44.
  • the output port 37 is connected to the spark plug 10, the fuel injection valve 11, and the throttle valve drive actuator 17 via the corresponding drive circuit 45.
  • the upstream side exhaust purification catalyst 20 is a three-way catalyst having an oxygen storage capacity. Specifically, the upstream side exhaust purification catalyst 20 supports a noble metal having a catalytic action (for example, platinum (Pt)) and a substance having an oxygen storage capacity (for example, ceria (CeO 2 )) on a carrier made of ceramic. It has been made. When the upstream exhaust purification catalyst 20 reaches a predetermined activation temperature, the upstream exhaust purification catalyst 20 exhibits oxygen storage capacity in addition to the catalytic action of simultaneously purifying unburned gas (HC, CO, etc.) and nitrogen oxides (NOx).
  • HC, CO, etc. hydrogen oxides
  • the upstream side exhaust purification catalyst 20 has an air / fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 that is leaner than the stoichiometric air / fuel ratio (hereinafter referred to as “lean air / fuel ratio”). Is stored in the exhaust gas.
  • the upstream side exhaust purification catalyst 20 has oxygen stored in the upstream side exhaust purification catalyst 20 when the air-fuel ratio of the inflowing exhaust gas is richer than the stoichiometric air-fuel ratio (hereinafter referred to as “rich air-fuel ratio”). Release.
  • air-fuel ratio of exhaust gas means the ratio of the mass of fuel to the mass of air supplied until the exhaust gas is generated. Normally, combustion is performed when the exhaust gas is generated. It means the ratio of the mass of fuel to the mass of air supplied into the chamber 5.
  • the air-fuel ratio of the exhaust gas may be referred to as “exhaust air-fuel ratio”.
  • the upstream side exhaust purification catalyst 20 has a catalytic action and an oxygen storage capacity, and thus has a NOx and unburned gas purification action according to the oxygen storage amount.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a lean air-fuel ratio
  • oxygen in the exhaust gas is occluded by the upstream side exhaust purification catalyst 20 when the oxygen storage amount is small, and NOx is reduced accordingly. Reduced and purified.
  • there is a limit to the oxygen storage capacity and when the oxygen storage amount of the upstream side exhaust purification catalyst 20 exceeds the upper limit storage amount, oxygen is hardly stored in the upstream side exhaust purification catalyst 20 any more.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is the lean air-fuel ratio
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is also the lean air-fuel ratio.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is rich, the oxygen stored in the upstream side exhaust purification catalyst 20 is released when the oxygen storage amount is large, Unburned gas is oxidized and purified.
  • the oxygen storage amount of the upstream side exhaust purification catalyst 20 decreases and falls below the lower limit storage amount, oxygen is hardly released from the upstream side exhaust purification catalyst 20 any more.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio
  • the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 also becomes a rich air-fuel ratio.
  • the exhaust purification catalysts 20 and 24 used in the present embodiment NOx and unburned gas in the exhaust gas are purified according to the air-fuel ratio and oxygen storage amount of the exhaust gas flowing into the exhaust purification catalyst.
  • the exhaust purification catalysts 20 and 24 may be different from the three-way catalyst as long as they have a catalytic action and an oxygen storage capacity.
  • the air-fuel ratio sensors 40 and 41 include a solid electrolyte layer 51, an exhaust-side electrode 52 disposed on one side surface thereof, an atmosphere-side electrode 53 disposed on the other side surface, and diffusion of exhaust gas passing therethrough.
  • a diffusion control layer 54 that controls the speed, a protective layer 55 that protects the diffusion control layer 54, and a heater unit 56 that heats the air-fuel ratio sensors 40 and 41 are provided.
  • the solid electrolyte layer 51 is an oxygen ion conductive oxide in which ZrO 2 (zirconia), HfO 2 , ThO 2 , Bi 2 O 3, etc. are distributed with CaO, MgO, Y 2 O 3 , Yb 2 O 3, etc. as stabilizers.
  • the sintered body is formed.
  • the diffusion control layer 54 is formed of a porous sintered body of a heat-resistant inorganic substance such as alumina, magnesia, silica, spinel, mullite or the like.
  • the exhaust-side electrode 52 and the atmosphere-side electrode 53 are formed of a noble metal having high catalytic activity such as platinum.
  • a sensor application voltage V is applied between the exhaust side electrode and the atmosphere side electrode by a voltage application device 60 mounted on the ECU 31.
  • the ECU 31 is provided with a current detection device 61 that detects a current I flowing between the electrodes 52 and 53 via the solid electrolyte layer when a sensor applied voltage is applied.
  • the current detected by the current detector 61 is the output current of the air-fuel ratio sensors 40 and 41.
  • the thus configured air-fuel ratio sensors 40 and 41 have voltage-current (VI) characteristics as shown in FIG.
  • V voltage-current
  • the output current (I) increases as the exhaust air-fuel ratio increases (lean).
  • the VI line at each exhaust air-fuel ratio includes a region parallel to the V axis, that is, a region where the output current hardly changes even when the sensor applied voltage changes. This voltage region is referred to as a limiting current region, and the current at this time is referred to as a limiting current.
  • the limit current region and limit current when the exhaust air-fuel ratio is 18 are indicated by W 18 and I 18 , respectively.
  • the output current changes almost in proportion to the sensor applied voltage.
  • a region where the sensor applied voltage is lower than the limit current region.
  • the inclination at this time is determined by the DC element resistance of the solid electrolyte layer 51.
  • the output current increases as the sensor applied voltage increases. In this region, the output voltage changes according to the change in the sensor applied voltage due to, for example, decomposition of moisture contained in the exhaust gas on the exhaust side electrode 52.
  • FIG. 4 is a diagram showing the relationship between the exhaust air-fuel ratio and the output current I when the applied voltage is kept constant at about 0.4V.
  • the output current I from the air-fuel ratio sensors 40 and 41 increases as the exhaust air-fuel ratio increases (that is, as the exhaust air-fuel ratio becomes leaner).
  • the air-fuel ratio sensors 40 and 41 are configured such that the output current I becomes zero when the exhaust air-fuel ratio is the stoichiometric air-fuel ratio.
  • the exhaust air-fuel ratio becomes larger than a certain value (18 or more in the present embodiment) or becomes smaller than a certain value, the ratio of the change in the output current to the change in the exhaust air-fuel ratio becomes smaller.
  • the limit current type air-fuel ratio sensor having the structure shown in FIG.
  • any structure such as a limit current type air-fuel ratio sensor of another structure or an air-fuel ratio sensor not of the limit current type will be used.
  • An air-fuel ratio sensor may be used.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is based on the engine operating state based on the outputs of the upstream side air-fuel ratio sensor 40 and the downstream side air-fuel ratio sensor 41.
  • the fuel injection amount from the fuel injection valve 11 is set so as to achieve an optimal air-fuel ratio.
  • control is performed so that the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 becomes the target air-fuel ratio based on the output of the upstream side air-fuel ratio sensor 40, and the downstream side. Examples include a method of correcting the output of the upstream air-fuel ratio sensor 40 based on the output of the side air-fuel ratio sensor 41 or changing the target air-fuel ratio.
  • the fuel injection from the fuel injection valve 11 is stopped or significantly reduced to supply the fuel into the combustion chamber 5.
  • the fuel cut control is executed to stop or reduce the fuel amount significantly.
  • Such fuel cut control is performed by, for example, a predetermined rotational speed in which the depression amount of the accelerator pedal 42 is zero or almost zero (that is, the engine load is zero or almost zero) and the engine speed is higher than the idling speed.
  • the upstream side exhaust purification catalyst 20 When the fuel cut control is performed, air or exhaust gas similar to air is discharged from the internal combustion engine. Therefore, the upstream side exhaust purification catalyst 20 has a very high air-fuel ratio (that is, an extremely lean degree). High) gas will flow in. As a result, during fuel cut control, a large amount of oxygen flows into the upstream side exhaust purification catalyst 20, and the oxygen storage amount of the upstream side exhaust purification catalyst 20 reaches the upper limit storage amount.
  • FIG. 5 shows the air-fuel ratio corresponding to the output value of the upstream air-fuel ratio sensor 40 (hereinafter referred to as “upstream-side output air-fuel ratio”) and the oxygen storage of the upstream side exhaust purification catalyst 20 when the fuel cut control is performed.
  • 4 is a time chart of the amount and the air-fuel ratio corresponding to the output value of the downstream air-fuel ratio sensor 41 (hereinafter referred to as “downstream-side output air-fuel ratio”).
  • fuel cut control is started at time t 1 and fuel cut control is ended at time t 3 .
  • the lean air-fuel ratio exhaust gas is discharged from the engine body 1, and the output air-fuel ratio of the upstream air-fuel ratio sensor 40 increases accordingly.
  • oxygen in the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is stored in the upstream side exhaust purification catalyst 20, so that the oxygen storage amount of the upstream side exhaust purification catalyst 20 increases, while the downstream side air-fuel ratio.
  • the output air-fuel ratio of the sensor 41 remains the stoichiometric air-fuel ratio.
  • the upstream side exhaust purification catalyst 20 can no longer store oxygen.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is leaner than the stoichiometric air-fuel ratio.
  • the rich control after the return is performed in order to release the oxygen stored in the upstream side exhaust purification catalyst 20 during the fuel cut control.
  • the exhaust gas having an air-fuel ratio slightly richer than the stoichiometric air-fuel ratio is discharged from the engine body 1.
  • the output air-fuel ratio of the upstream side air-fuel ratio sensor 40 becomes a rich air-fuel ratio, and the oxygen storage amount of the upstream side exhaust purification catalyst 20 gradually decreases.
  • the rich air-fuel ratio exhaust gas flows into the upstream side exhaust purification catalyst 20, the oxygen stored in the upstream side exhaust purification catalyst 20 reacts with the unburned gas in the exhaust gas.
  • the air-fuel ratio of the exhaust gas discharged from the side exhaust purification catalyst 20 is substantially the stoichiometric air-fuel ratio. For this reason, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is substantially the stoichiometric air-fuel ratio.
  • the exhaust gas air-fuel ratio detected by the downstream side air-fuel ratio sensor 41 is richer than the stoichiometric air-fuel ratio.
  • the rich control after returning is ended. Thereafter, normal air-fuel ratio control is started, and in the illustrated example, control is performed so that the air-fuel ratio of the exhaust gas discharged from the engine body becomes the stoichiometric air-fuel ratio.
  • the end condition of the rich control after the return does not necessarily have to be when the rich air-fuel ratio is detected by the downstream air-fuel ratio sensor 41.
  • the predetermined time has elapsed after the fuel cut control is finished, You may make it complete
  • such an output abnormality of the air-fuel ratio sensors 40 and 41 includes responsive deterioration.
  • the response deterioration of the air-fuel ratio sensor is caused by, for example, the ventilation hole provided in the sensor cover (cover provided outside the protective layer 55) for preventing the sensor element from getting wet with particulates (PM). This is caused by partial blockage.
  • FIG. 6 shows how the air-fuel ratio sensor changes when such responsiveness deterioration occurs.
  • FIG. 6 is a time chart similar to FIG. 5 of the upstream output air-fuel ratio and the downstream output air-fuel ratio before and after execution of the fuel cut control.
  • fuel cut control is started at time t 1 and fuel cut control is ended at time t 3 .
  • the rich air-fuel ratio exhaust gas is caused to flow into the upstream side exhaust purification catalyst 20 by the rich control after the return.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 changes as indicated by a solid line A in FIG. That is, since there is a distance from the engine body 1 to the downstream air-fuel ratio sensor 41 after the fuel cut control is finished, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 starts to decrease slightly after the fuel cut control is finished. . At this time, since the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is substantially the stoichiometric air-fuel ratio, the output air-fuel ratio of the downstream-side air-fuel ratio sensor 41 converges to almost the stoichiometric air-fuel ratio.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 changes as indicated by the broken line B in FIG.
  • the rate of decrease in the output air-fuel ratio is slower than when the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness (solid line A).
  • the rate of decrease in the output air-fuel ratio of the downstream air-fuel ratio sensor 41 changes according to whether or not the downstream air-fuel ratio sensor 41 has deteriorated in responsiveness. Therefore, by calculating this rate of decrease, it is possible to diagnose whether or not the downstream air-fuel ratio sensor 41 has deteriorated responsiveness.
  • the diagnosis of such responsiveness deterioration is performed based on the rate of decrease in the region where the exhaust air-fuel ratio is between about 18 and 17.
  • the transition of the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 after the end of the fuel cut control also changes according to the degree of deterioration of the upstream side exhaust purification catalyst 20.
  • the degree of deterioration of the upstream side exhaust purification catalyst 20 is high and its oxygen storage capacity is reduced, almost no oxygen is stored in the upstream side exhaust purification catalyst 20 even during fuel cut control.
  • the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is made rich after the fuel cut control is finished, the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 is accordingly accompanied.
  • the air-fuel ratio also decreases rapidly.
  • This state is indicated by a one-dot chain line C in FIG. 6 represents the transition of the output air-fuel ratio when the downstream side air-fuel ratio sensor 41 has no responsiveness deterioration and the degree of deterioration of the upstream side exhaust purification catalyst 20 is high.
  • the rate of decrease in the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 deteriorates to the upstream side exhaust purification catalyst 20. Compared to the case where no occurs.
  • the downstream side air-fuel ratio sensor 41 when the downstream side air-fuel ratio sensor 41 has deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is high, the reduction in the output air-fuel ratio decreases due to the responsiveness deterioration and the upstream side exhaust gas. This is combined with an increase in the rate of decrease in the output air-fuel ratio accompanying the deterioration of the purification catalyst 20.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is in the region where the exhaust air-fuel ratio is between about 18 and 17, as indicated by a two-dot chain line D in FIG.
  • the transition is the same as the output air-fuel ratio.
  • the downstream air-fuel ratio sensor 41 is in the case shown by the two-dot chain line D in FIG. Despite the occurrence of abnormality in responsiveness deterioration, the abnormality cannot be determined.
  • the first air-fuel ratio change time ⁇ T 1 in FIG. 1 is a parameter representing the first air-fuel ratio change speed for the solid line A.
  • the change rate of the output air-fuel ratio when the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is in the second air-fuel ratio region Y between 16 and the theoretical air-fuel ratio (14.6). (Hereinafter referred to as “second air-fuel ratio change rate”).
  • the second air-fuel ratio change speed similarly to the first air-fuel ratio change speed, the upper limit air-fuel ratio in the second air-fuel ratio region (ie, 16) to the lower limit air-fuel ratio in the second air-fuel ratio region (ie, the stoichiometric air-fuel ratio).
  • the time ⁇ T 2 during which the air-fuel ratio changes until 2 ) is used as a parameter representing the second air-fuel ratio change speed.
  • the second air-fuel ratio change time ⁇ T 2 in FIG. 1 is a parameter representing the first air-fuel ratio change speed for the solid line A.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on the first air-fuel ratio change speed and the second air-fuel ratio change speed thus calculated.
  • the first air-fuel ratio change speed change speed in the first air-fuel ratio region X
  • the abnormal reference change speed that is, the time ⁇ T 1 is longer than the abnormal reference threshold
  • the downstream air-fuel ratio sensor 41 shows no responsiveness deterioration and the upstream exhaust purification catalyst 20 has a low degree of deterioration indicated by a solid line A.
  • the broken line B has a small inclination.
  • a broken line B indicates a case where the downstream air-fuel ratio sensor 41 has deteriorated responsiveness. Therefore, when the first air-fuel ratio change speed is slower than the air-fuel ratio change speed when the downstream air-fuel ratio sensor 41 is not responsively deteriorated, the downstream air-fuel ratio sensor 41 is responsively deteriorated. It can be said that an abnormality has occurred. Therefore, in this embodiment, when the change speed of the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is slower than the abnormal reference change speed, the downstream air-fuel ratio sensor 41 has an abnormality in responsiveness deterioration. Judgment is made.
  • the abnormal reference change rate is, for example, the change rate in the first air-fuel ratio region X when the downstream side air-fuel ratio sensor 41 has not deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low.
  • the speed is slightly slower than the lowest possible speed.
  • the abnormality reference change speed may be a predetermined value, or may be a value that changes in accordance with operating parameters such as engine speed and engine load during rich control after return.
  • the first air-fuel ratio change speed change speed in the first air-fuel ratio region X
  • the normal reference change speed that is, the time ⁇ T 1 is shorter than the normal reference threshold
  • An alternate long and short dash line C indicates a case where the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness. Accordingly, when the first air-fuel ratio change rate is faster than the air-fuel ratio change rate when the downstream side air-fuel ratio sensor 41 is deteriorated in responsiveness, the downstream side air-fuel ratio sensor 41 is responsive. It can be said that no abnormality of deterioration has occurred. Therefore, in this embodiment, when the change rate of the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is faster than the normal reference change rate, the downstream side air-fuel ratio sensor 41 does not have an abnormality in responsiveness deterioration. Judgment is made.
  • the normal reference change rate is, for example, the change rate in the first air-fuel ratio region X when the downstream side air-fuel ratio sensor 41 has not deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low.
  • the change rate is slightly faster than the maximum possible speed.
  • the normal reference change speed may be a predetermined value, or may be a value that changes in accordance with operating parameters such as engine speed and engine load during rich control after return.
  • the downstream air-fuel ratio sensor 41 is used. Whether or not an abnormality of responsiveness deterioration has occurred is unknown (abnormal state unknown), and is determined as pending determination. That is, as described above, in the first air-fuel ratio region X, when the downstream side air-fuel ratio sensor 41 is not abnormally deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low (solid line A).
  • the downstream air-fuel ratio sensor 41 is abnormal in responsiveness deterioration and the upstream exhaust purification catalyst 20 is highly degraded (two-dot chain line D).
  • the output air-fuel ratio changes similarly. Accordingly, in any case, the first air-fuel ratio change rate is faster than the abnormal reference change rate and slower than the normal reference change rate. Therefore, in the present embodiment, when the change rate of the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is faster than the abnormal reference change rate and slower than the normal reference change rate, it is determined as pending determination.
  • the solid line A determined as the determination suspension in the determination based on the first air-fuel ratio change speed is compared with the two-dot chain line D.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 is Asymptotically converges to the theoretical air-fuel ratio.
  • the upstream side exhaust purification catalyst 20 is occluded even if the air-fuel ratio of the exhaust gas flowing into the upstream side exhaust purification catalyst 20 is a rich air-fuel ratio. This is because unburned gas is oxidized and purified by oxygen. As a result, in the case of the solid line A, the second air-fuel ratio change speed (change speed in the second air-fuel ratio region Y) becomes slow.
  • the output of the downstream side air-fuel ratio sensor 41 The air-fuel ratio rapidly changes from the stoichiometric air-fuel ratio to the rich air-fuel ratio.
  • the upstream side exhaust purification catalyst 20 has a high degree of deterioration, so the upstream side exhaust purification catalyst 20 hardly stores oxygen, and as a result, the exhaust gas flowing into the upstream side exhaust purification catalyst 20 remains upstream. This is for passing through the side exhaust purification catalyst 20.
  • the second air-fuel ratio change speed (change speed in the second air-fuel ratio region Y) is increased.
  • the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 changes to the stoichiometric air-fuel ratio immediately after it changes to the rich air-fuel ratio. This is because the rich control after the return is ended immediately after the output air-fuel ratio changes to the rich air-fuel ratio (more precisely, after the end-determined air-fuel ratio is reached) and flows into the upstream side exhaust purification catalyst 20. This is because the target air-fuel ratio of the exhaust gas is switched to the stoichiometric air-fuel ratio.
  • the abnormality diagnosis of the downstream air-fuel ratio sensor 41 is performed based on the second air-fuel ratio change speed. Specifically, when the second air-fuel ratio change speed is slower than the normal / abnormal judgment reference change speed, it is determined that the downstream air-fuel ratio sensor 41 is not abnormal in responsiveness deterioration. ing. On the other hand, when the second air-fuel ratio change speed is faster than the normal / abnormal judgment reference change speed, it is determined that an abnormality of responsiveness deterioration has occurred in the downstream air-fuel ratio sensor 41.
  • the normal / abnormal determination criterion change rate is, for example, within the second air-fuel ratio region Y when the downstream side air-fuel ratio sensor 41 has not deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low.
  • the rate of change is slightly faster than the highest possible rate of change.
  • the normal / abnormal determination criterion changing speed may be a predetermined value, or may be a value that changes according to operating parameters such as engine speed and engine load during rich control after return. .
  • the first air-fuel ratio change rate when the first air-fuel ratio change rate is slower than the abnormality reference change rate, it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor 41, and the first air-fuel ratio change rate is determined.
  • the fuel ratio change speed is faster than the normal reference change speed
  • the first air-fuel ratio change rate is faster than the abnormal reference change rate and slower than the normal reference change rate
  • the determination is pending (that is, the abnormal state is unknown). If it is determined that the determination is pending based on the first air-fuel ratio change speed, the downstream air-fuel ratio sensor 41 is normal when the second air-fuel ratio change speed is slower than the normal / abnormal determination reference change speed.
  • the calculation of the first air-fuel ratio change speed based on the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is performed by the first change speed calculating means, and the second air-fuel ratio change based on the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is performed.
  • the speed is calculated by the second change speed calculation means. Further, whether the downstream air-fuel ratio sensor 41 is normal or abnormal based on the first air-fuel ratio change speed and the second air-fuel ratio change speed is determined by the abnormality diagnosis means.
  • the ECU 31 functions as these first change speed calculation means, second change speed calculation means, and abnormality diagnosis means.
  • the output air-fuel ratio of the downstream air-fuel ratio sensor 41 is from the upper limit air-fuel ratio to the lower limit air-fuel ratio in each air-fuel ratio region.
  • Time to change air-fuel ratio change time
  • the value obtained by subtracting the lower limit air-fuel ratio from the upper limit air-fuel ratio of each air-fuel ratio region for the output air-fuel ratio may be the air-fuel ratio change speed.
  • the downstream air-fuel ratio sensor 41 changes while the output air-fuel ratio changes from the upper limit air-fuel ratio to the lower limit air-fuel ratio in each air-fuel ratio region.
  • An integrated value of the amount of exhaust gas that has passed through may be used.
  • the integrated value of the exhaust gas amount may be estimated from the output value of the air flow meter 39, or may be estimated from the engine load and the engine speed.
  • the first exhaust gas amount integrated value obtained by integrating the exhaust gas amount that has passed through the downstream air-fuel ratio sensor 41 while the output air-fuel ratio changes from the upper limit air-fuel ratio in the first air-fuel ratio region to the lower limit air-fuel ratio is an abnormal reference. If it is greater than the integrated value, it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor 41. On the other hand, if the first exhaust gas amount integrated value is smaller than the normal reference integrated value, it is determined that the downstream air-fuel ratio sensor 41 is normal, and the first exhaust gas amount integrated value is the abnormal reference integrated value and the normal reference integrated value. If it is between the values, it is determined as a determination suspension.
  • the downstream air-fuel ratio sensor 41 is changed while the output air-fuel ratio changes from the upper limit air-fuel ratio to the lower limit air-fuel ratio in the second air-fuel ratio region.
  • the second exhaust gas amount integrated value obtained by integrating the exhaust gas amount that has passed through is larger than the normal / abnormal determination reference integrated value, it is determined that the downstream air-fuel ratio sensor is normal.
  • the second exhaust gas amount integrated value is smaller than the normal / abnormal determination reference integrated value, it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor 41.
  • a warning lamp is lit in a vehicle equipped with an internal combustion engine.
  • the degree of deterioration of the upstream side exhaust purification catalyst 20 is high. Therefore, in these cases, it may be determined that the upstream side exhaust purification catalyst 20 has deteriorated. Specifically, when the first air-fuel ratio change speed is faster than the normal reference change speed, that is, when it is determined that the downstream air-fuel ratio sensor 41 is normal based on the first air-fuel ratio change speed, the upstream It is determined that the side exhaust purification catalyst 20 has deteriorated.
  • the second air-fuel ratio change speed is faster than the normal / abnormal determination reference change speed, that is, when it is determined that the downstream air-fuel ratio sensor 41 is abnormal based on the second air-fuel ratio change speed, the upstream It is determined that the side exhaust purification catalyst 20 has deteriorated.
  • first air-fuel ratio region is a region between the first region upper limit air-fuel ratio and the first region lower limit air-fuel ratio richer than this, in the above example, the first region upper limit air-fuel ratio is 18, One region lower limit air-fuel ratio is set to 17.
  • second air-fuel ratio region is a region between the second region upper limit air-fuel ratio and the second region lower limit air-fuel ratio richer than this, in the above example, the second region upper limit air-fuel ratio is set to 16,
  • the two-region lower limit air-fuel ratio is the stoichiometric air-fuel ratio (14.6 in the above example).
  • the composition of the fuel, the configuration of the downstream air-fuel ratio sensor 41, etc. are not necessarily the regions between them. Not necessarily.
  • the first air-fuel ratio region needs to be a region where the change rate of the output air-fuel ratio changes when the downstream air-fuel ratio sensor 41 undergoes responsiveness deterioration. Therefore, the first region upper limit air-fuel ratio needs to be lower than the output air-fuel ratio when air is exhausted from the upstream side exhaust purification catalyst 20.
  • the first region upper limit air-fuel ratio is an air-fuel ratio at which the downstream air-fuel ratio sensor 41 can generate a limit current. It is necessary. For example, in the example shown in FIG. 3, when the applied voltage in the downstream air-fuel ratio sensor 41 is 0.4 V, a limit current is output if the exhaust air-fuel ratio is about 18, but the exhaust air-fuel ratio is more than that. The limit current is not output. If the limit current is not output in this way, the accuracy of the output current with respect to the actual air-fuel ratio is deteriorated, so that the detection accuracy of the air-fuel ratio is lowered. Therefore, the first region upper limit air-fuel ratio is an air-fuel ratio at which the downstream air-fuel ratio sensor 41 can generate a limit current, and is 18 or less in the air-fuel ratio sensor having the VI characteristic shown in FIG.
  • the first region upper limit air-fuel ratio is the exhaust gas corresponding to the stoichiometric air-fuel ratio.
  • the upper limit lean air-fuel ratio at which a limit current is generated when an applied voltage at which a limit current is generated is applied when detecting.
  • the timing at which the air-fuel ratio of the exhaust gas flowing out from the upstream side exhaust purification catalyst 20 becomes richer than the stoichiometric air-fuel ratio varies according to the amount of oxygen that can be stored by the upstream side exhaust purification catalyst 20 (maximum oxygen storage amount). To do. Therefore, if the first region lower limit air-fuel ratio is set lower than the stoichiometric air-fuel ratio, even if the responsiveness deterioration of the downstream air-fuel ratio sensor 41 is about the same, it depends on the maximum oxygen storage amount of the upstream side exhaust purification catalyst 20. Change. Therefore, the first region lower limit air-fuel ratio needs to be equal to or higher than the theoretical air-fuel ratio. In particular, the first region lower limit air-fuel ratio is preferably leaner than the stoichiometric air-fuel ratio.
  • the first region lower limit air-fuel ratio is also an air-fuel ratio at which the downstream air-fuel ratio sensor 41 can generate the limit current. It is necessary. Therefore, in the air-fuel ratio sensor having the VI characteristic shown in FIG. In consideration of the fact that both the first region upper limit air-fuel ratio and the first region lower limit air-fuel ratio need to be air-fuel ratios at which the downstream air-fuel ratio sensor 41 can generate a limit current, the first air-fuel ratio region Can be said to be a region within the air-fuel ratio region where the downstream air-fuel ratio sensor 41 generates a limit current.
  • the second air-fuel ratio region is basically a region in which the change rate of the output air-fuel ratio changes according to the degree of deterioration of the upstream side exhaust purification catalyst 20 regardless of the presence or absence of responsiveness deterioration of the downstream side air-fuel ratio sensor 41. It is necessary to be.
  • the second air-fuel ratio region preferably includes a region in the vicinity of the stoichiometric air-fuel ratio.
  • the second region upper limit air-fuel ratio needs to be lower than the output air-fuel ratio when air is being discharged from the upstream side exhaust purification catalyst 20, similarly to the first region upper limit air-fuel ratio described above. Further, when a limit current type air-fuel ratio sensor is used as the downstream side air-fuel ratio sensor 41, the second region air-fuel ratio needs to be an air-fuel ratio at which the downstream side air-fuel ratio sensor 41 can generate a limit current. Further, the second region upper limit air-fuel ratio is richer (lower) than the first region lower limit air-fuel ratio in order to prevent the second air-fuel ratio change rate from being affected by the air-fuel ratio change rate in the first air-fuel ratio region. It is preferable that
  • the second region lower-limit air-fuel ratio is The air-fuel ratio is set to include the vicinity of the fuel ratio. Specifically, the second region lower limit air-fuel ratio is set in a range from an air-fuel ratio slightly leaner than the stoichiometric air-fuel ratio to an air-fuel ratio richer than the stoichiometric air-fuel ratio.
  • the end determination air-fuel ratio is set to the second end air-fuel ratio.
  • the region lower limit air-fuel ratio may be set.
  • the second air-fuel ratio area is also an area within the air-fuel ratio area where the downstream air-fuel ratio sensor 41 generates the limit current.
  • the first air-fuel ratio region preferably includes an air-fuel ratio region that is leaner than the second air-fuel ratio region. It can be said that the second air-fuel ratio region preferably includes a richer air-fuel ratio region than the first air-fuel ratio region.
  • FIG. 8 is a flowchart showing a control routine of abnormality diagnosis control in the present embodiment.
  • the abnormality diagnosis control shown in FIG. 8 is a flowchart showing a control routine of abnormality diagnosis control in the present embodiment.
  • step S11 after starting the internal combustion engine or turning on the ignition key of the vehicle equipped with the internal combustion engine, the abnormality diagnosis of the downstream air-fuel ratio sensor 41 has already been performed. It is determined whether or not it has been received. If it is determined in step S11 that the abnormality diagnosis has already been completed, the control routine is terminated. On the other hand, if it is determined in step S11 that the abnormality diagnosis of the downstream air-fuel ratio sensor 41 has not been completed, the process proceeds to step S12.
  • step S12 the first air-fuel ratio change time ⁇ T 1 is calculated based on the output of the downstream air-fuel ratio sensor 41. Specifically, after the fuel cut control is completed, after the return rich control is started, the output air-fuel ratio of the downstream air-fuel ratio sensor 41 first reaches the first region upper limit air-fuel ratio (for example, 18) first. The time required to reach the first region lower limit air-fuel ratio (for example, 17) is calculated as the first air-fuel ratio change time ⁇ T 1 .
  • step S13 and S14 the first air-fuel ratio change time [Delta] T 1 calculated in step S12 is, the abnormality determination threshold or is T1up more, or less than normal determination threshold T1LOW, or normal and abnormal determination threshold T1up It is determined whether it is between the determination threshold value T1low. If it is determined that the first air-fuel ratio change time ⁇ T 1 is equal to or greater than the abnormality determination threshold value T1up, the process proceeds to step S15. In step S15, it is determined that an abnormality in responsiveness deterioration has occurred in the downstream air-fuel ratio sensor 41.
  • step S13 and S14 when the first air-fuel ratio change time [Delta] T 1 is determined to be less normality determination threshold T1low proceeds to step S16.
  • step S ⁇ b> 16 it is determined that no abnormality in responsiveness deterioration has occurred in the downstream air-fuel ratio sensor 41.
  • step S13 and S14 when the first air-fuel ratio change time [Delta] T 1 is determined to be between abnormality determination threshold T1up the normal determination threshold value T1low proceeds to step S17.
  • step S17 the second air-fuel ratio change time [Delta] T 2 based on the output of the downstream air-fuel ratio sensor 41 is calculated. Specifically, after the fuel cut control is completed, after the return rich control is started, the output air-fuel ratio of the downstream side air-fuel ratio sensor 41 first reaches the second region upper limit air-fuel ratio (for example, 16) first. second region lower air-fuel ratio (e.g., stoichiometric air-fuel ratio) of time to reach is calculated as the second air-fuel ratio change time [Delta] T 2 in.
  • the second region upper limit air-fuel ratio for example, 16
  • second region lower air-fuel ratio e.g., stoichiometric air-fuel ratio
  • step S18 the second air-fuel ratio change time [Delta] T 2 calculated in step S17 is, whether less than the normal and abnormal judging threshold T2mid is determined. If it is determined that the second air-fuel ratio change time ⁇ T 2 is smaller than the normal / abnormal determination threshold value T2mid, the process proceeds to step S19. In step S19, it is determined that an abnormality of responsiveness deterioration has occurred in the downstream air-fuel ratio sensor 41. On the other hand, if it is determined in step S18 that the second air-fuel ratio change time ⁇ T 2 is greater than or equal to the normal / abnormal determination threshold value T2mid, the process proceeds to step S20. In step S ⁇ b> 20, it is determined that the downstream air-fuel ratio sensor 41 has no abnormality in responsiveness deterioration.
  • abnormality diagnosis is performed based on the first air-fuel ratio change time ⁇ T 1 and the second air-fuel ratio change time ⁇ T 2 .
  • the first air-fuel ratio change time ⁇ T 1 instead of the first air-fuel ratio change time ⁇ T 1 , the first air-fuel ratio obtained by subtracting the first region lower-limit air-fuel ratio from the first region upper-limit air-fuel ratio is divided by the first air-fuel ratio change time.
  • the change speed V 1 may be used.
  • a second air-fuel ratio change speed V 2 obtained by dividing a value obtained by subtracting the second area lower-limit air-fuel ratio from the second area upper-limit air-fuel ratio is divided by the second air-fuel ratio change time. It may be used.
  • the downstream air-fuel ratio sensor 41 was passed while the output air-fuel ratio changed from the first region upper limit air-fuel ratio to the first region lower limit air-fuel ratio.
  • a first exhaust gas amount integrated value obtained by integrating the exhaust gas amount may be used.
  • the second air-fuel ratio change time ⁇ T 2 the amount of exhaust gas that has passed through the downstream air-fuel ratio sensor 41 is integrated while the output air-fuel ratio changes from the second region upper limit air-fuel ratio to the second region lower limit air-fuel ratio.
  • the second exhaust gas amount integrated value may be used.
  • step S13 the process proceeds to step S15 when the first air-fuel ratio changing speed V 1 is equal to or less than the abnormal reference change rate, abnormal downstream air-fuel ratio sensor 41 is determined to have occurred.
  • step S14 the process proceeds to step S16 when the first air-fuel ratio changing speed V 1 is at the normal reference change speed or higher, the downstream air-fuel ratio sensor 41 is determined to be abnormal is not occurred.
  • step S18 the second air-fuel ratio changing speed V 2 is, the process proceeds to step S19 if it is normal or abnormal reference change speed or higher, it is determined that an abnormality in the downstream-side air-fuel ratio sensor 41 has occurred.
  • the diagnostic device according to the second embodiment is basically configured similarly to the diagnostic device according to the first embodiment. However, in the first embodiment, abnormality diagnosis is performed based on the change rate of the output air-fuel ratio of the downstream air-fuel ratio sensor 41, whereas in the second embodiment, the output of the downstream air-fuel ratio sensor 41 is output. An abnormality diagnosis is performed based on the integrated value (integrated value) of the air-fuel ratio.
  • the integrated value of the output air-fuel ratio shows the same tendency as the air-fuel ratio change speed. This is shown in FIG.
  • FIG. 9 is a time chart similar to FIG. I 1A in FIG. 9 indicates that the output air-fuel ratio is the first air-fuel ratio for the first time when the downstream-side air-fuel ratio sensor 41 is not responsively deteriorated and the degree of deterioration of the upstream-side exhaust purification catalyst 20 is low (solid line A). This is an integrated value of the output air-fuel ratio when passing through the region X. Further, I 1B in FIG. 9 indicates that when the downstream side air-fuel ratio sensor 41 has deteriorated in responsiveness and the degree of deterioration of the upstream side exhaust purification catalyst 20 is low (solid line B), the output air-fuel ratio is the first air-fuel ratio for the first time.
  • I 1C in FIG. 9 indicates that the output air-fuel ratio is the first when the downstream side air-fuel ratio sensor 41 has not deteriorated in responsiveness and the upstream side exhaust purification catalyst 20 has a high degree of deterioration (dashed line C). This is the integrated value of the output air-fuel ratio when passing through the one air-fuel ratio region X.
  • the integrated value I 1B is larger than the integrated value I 1A . Therefore, it can be seen that when the responsiveness deterioration occurs in the downstream air-fuel ratio sensor 41, the integrated value of the output air-fuel ratio when passing through the first air-fuel ratio region X becomes large. Further, the integrated value I 1C is smaller than the integrated value I 1A . Accordingly, it can be seen that when the degree of deterioration of the upstream side exhaust purification catalyst 20 increases, the integrated value of the output air-fuel ratio when passing through the first air-fuel ratio region X decreases.
  • the output air-fuel ratio is within the first air-fuel ratio region X. Shows the same behavior as that of the solid line A. Therefore, when the output air-fuel ratio passes through the first air-fuel ratio region X for the first time, the integrated value of the output air-fuel ratio is about the same between the case shown by the solid line A and the case shown by the two-dot chain line D. It becomes.
  • the downstream air-fuel ratio sensor 41 when the integrated value of the output air-fuel ratio when the output air-fuel ratio passes through the first air-fuel ratio region X for the first time is larger than the abnormal reference integrated value, the downstream air-fuel ratio sensor 41 is It is determined that an abnormality of responsiveness deterioration has occurred.
  • the abnormality reference integrated value is, for example, the output air-fuel ratio in the first air-fuel ratio region X when the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness and the degree of deterioration of the upstream exhaust purification catalyst 20 is low.
  • the integrated value is slightly larger than the maximum value that can be taken.
  • the downstream air-fuel ratio sensor 41 is abnormally deteriorated in responsiveness. Is determined not to occur.
  • the normal reference integrated value is, for example, the output air-fuel ratio in the first air-fuel ratio region X when the downstream air-fuel ratio sensor 41 has not deteriorated in responsiveness and the degree of deterioration of the upstream exhaust purification catalyst 20 is low.
  • the integrated value is a value slightly smaller than the minimum value that can be taken.
  • the downstream air-fuel ratio sensor It is unknown whether or not an abnormality of responsiveness deterioration occurs in 41 (unknown abnormal state), and it is determined as pending determination.
  • I 2A in FIG. 9 is an integrated value of the output air-fuel ratio when the output air-fuel ratio passes through the second air-fuel ratio region X for the first time, as shown by the solid line A. Further, I 2A in FIG. 9 is an integrated value of the output air-fuel ratio when the output air-fuel ratio passes through the second air-fuel ratio region X for the first time, as indicated by a two-dot chain line D. When these integrated values I 2A and I 2D are compared, the integrated value I 2A is larger than the integrated value I 2D . Therefore, it can be seen that when the degree of deterioration of the upstream side exhaust purification catalyst 20 increases, the integrated value of the output air-fuel ratio when passing through the second air-fuel ratio region Y increases.
  • the downstream air-fuel ratio sensor 41 It is determined that there is no abnormality in response deterioration. On the other hand, when this integrated value is smaller than the normal / abnormal determination reference integrated value, it is determined that the downstream air-fuel ratio sensor 41 has an abnormality in responsiveness degradation.
  • the downstream air-fuel ratio sensor 41 When it is determined that the determination is suspended based on the integrated value in the first air-fuel ratio region X, when the second air-fuel ratio integrated value is larger than the normal / abnormal determination reference integrated value, the downstream air-fuel ratio sensor 41 is normal. When it is smaller than the normal / abnormal determination reference integrated value, it is determined that an abnormality has occurred in the downstream air-fuel ratio sensor 41.
  • the output air-fuel ratio first passes through the first air-fuel ratio region by the first change characteristic calculation means (ECU 31).
  • the first air-fuel ratio change characteristic is calculated.
  • the second air-fuel ratio change characteristic when first passing through the second air-fuel ratio region is calculated by the second air-change ratio calculating means (ECU 31).
  • the abnormality diagnosis means determines whether the state of the downstream air-fuel ratio sensor 41 is normal, abnormal, or pending determination (that is, the abnormal state is unknown). If it is determined that there is a determination pending based on the first air-fuel ratio change characteristic, the downstream air-fuel ratio sensor 41 is in a normal state or an abnormal state based on the second air-fuel ratio change characteristic. Determined.
  • the air-fuel ratio change speed air-fuel ratio change time
  • the air-fuel ratio integrated value the air-fuel ratio integrated value
  • Examples include an integrated value of the amount of exhaust gas that has passed through the downstream air-fuel ratio sensor 41.
  • the air-fuel ratio change characteristic is a parameter that shows the same tendency as the air-fuel ratio change speed or the like with respect to the presence or absence of abnormality in responsiveness deterioration of the downstream side air-fuel ratio sensor 41 and the degree of deterioration of the upstream side exhaust purification catalyst 20.
  • parameters other than the above parameters may be used.

Abstract

 内燃機関は、排気浄化触媒(20)と、排気浄化触媒の下流側の空燃比センサ(41)とを具備し、燃料供給を停止する燃料カット制御と、燃料カット制御の終了後に排気空燃比をリッチ空燃比に制御する復帰後リッチ制御とを実行する。空燃比センサから出力される出力空燃比に基づいて、燃料カット制御の終了後、出力空燃比が、第一空燃比領域X及びこれとは異なる第二空燃比領域Yを最初に通過するときの第一空燃比変化特性及び第二空燃比特性が算出される。診断装置では、第一空燃比変化特性に基づいて、空燃比センサの状態について正常、異常、判定保留のうちのいずれか一つとして判定され、状態不明と判定されたときには第二空燃比変化特性に基づいて空燃比センサの状態が正常、異常のうちのいずれかであると判定される。これにより、排気浄化触媒の状態の変化の影響を抑制しつつ、下流側空燃比センサの応答性劣化の異常を正確に診断することができる。

Description

内燃機関の診断装置
 本発明は、内燃機関の診断装置に関する。
 従来から、内燃機関の排気通路に空燃比センサを設け、この空燃比センサの出力に基づいて内燃機関に供給する燃料量を制御するように構成された内燃機関が知られている。
 このような内燃機関に用いられる空燃比センサは、使用に伴って徐々に劣化する。このような劣化としては、例えば、空燃比センサの応答性劣化が挙げられる。空燃比センサの応答性劣化は、センサ素子が被水することを防止するためのセンサカバーに設けられた通気孔がパティキュレート(PM)により部分的に塞がってしまうこと等により生じる。このように通気孔が部分的に塞がると、センサカバーの内側と外側との間のガス交換が遅くなり、その結果、空燃比センサの出力が鈍くなってしまう。このような空燃比センサの劣化が生じると、内燃機関の制御装置が実行する各種制御に支障が生じてしまう。
 そこで、空燃比センサの劣化を診断する診断装置が提案されている(例えば、特許文献1~4を参照)。このような診断装置としては、例えば、目標空燃比をステップ的に変化させると共に、これに伴って空燃比センサの出力値が第1所定値に到達するまでの第1応答時間と、第1所定値よりも大きい第2所定値に到達するまでの第2応答時間とを検出し、第1応答時間と第2応答時間の二つに基づいて空燃比センサの劣化を判定するものが提案されている(例えば、特許文献1)。ここで、空燃比センサの劣化パターンとしては、応答時間が遅れる応答性劣化に加えて応答そのものが増減するゲイン劣化が存在する。これに対して、特許文献1に記載の診断装置によれば、第1応答時間と第2応答時間の二つに基づいて空燃比センサの劣化を判定することにより、二つの劣化パターンのうちいずれにより空燃比センサの劣化が生じているのかを正確に特定することができるとされている。
特開2007-192093号公報 特開2011-196230号公報 特開2001-242126号公報 特開2011-106415号公報
 ところで、空燃比センサの応答性劣化の診断は、内燃機関から排出される排気ガスの空燃比をステップ状に変化させ、このステップ状の変化に対する空燃比センサの応答性を検出することによって行われる。そして、内燃機関から排出される排気ガスの空燃比をステップ状に変化させる幅が大きいほど、応答性劣化の診断精度は高くなる。
 ここで、燃焼室への燃料供給を停止又は大幅に減量する燃料カット制御を実行する際には、排気浄化触媒から流出する排気ガスの空燃比は理論空燃比よりもリーンとなり、そのリーン度合いが極めて大きなものとなる。したがって、燃料カット制御の開始直後或いは燃料カット制御の終了直後には、内燃機関から排出される排気ガスの空燃比が大きくステップ状に変化せしめられる。このため、燃料カット制御の開始直後或いは燃料カット制御の終了直後には高精度の応答性劣化診断を行うことができる。
 一方、空燃比センサの出力に基づいて燃料量を制御する内燃機関では、排気浄化触媒の下流側に空燃比センサが設けられることも多い。このような場合には、内燃機関から排出された排気ガスは排気浄化触媒を通過してから下流側の空燃比センサに到達する。このため、排気浄化触媒が酸素吸蔵能力を有するような場合には、下流側の空燃比センサに到達する排気ガスの空燃比は、内燃機関から排出された排気ガスのみならず排気浄化触媒の酸素吸蔵能力や酸素吸蔵量等に応じて変化する。
 このため、上述したように応答性劣化診断を行うべく内燃機関から排出される排気ガスの空燃比をステップ状に大幅に変化させたときに、排気浄化触媒の状態に応じて下流側空燃比センサの出力が変化してしまう場合がある。このような場合、下流側空燃比センサの実際の応答性が一定であっても、排気浄化触媒の状態が変化すると、それに伴って、下流側空燃比センサの出力が変化してしまう。
 これに対して、例えば、燃料カット制御の終了直後に応答性劣化診断を行えば、排気浄化触媒における酸素吸蔵量を把握した状態で診断を行うことができる。このため、下流側空燃比センサの出力に対する排気浄化触媒の状態の影響を低減することができ、この結果、下流側空燃比センサの応答性劣化の診断精度を高めることができる。
 しかしながら、このように燃料カット制御の終了直後に応答性劣化診断を行っても、なお、排気浄化触媒の状態に応じて下流側空燃比センサの出力が変化する。そして、このように排気浄化触媒の状態に応じて下流側空燃比センサの出力が変化すると、下流側空燃比センサの応答性劣化を正確に診断することができなくなってしまう。
 そこで、上記課題に鑑みて、本発明の目的は、排気浄化触媒の状態の変化の影響を抑制しつつ、下流側空燃比センサの応答性劣化の異常を正確に診断することができる内燃機関の診断装置を提供することにある。
 上記課題を解決するために、第1の発明では、内燃機関の排気通路に配置されると共に流入する排気ガス中の酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する空燃比センサとを具備し、燃焼室への燃料供給を停止又は減量する燃料カット制御と、燃料カット制御の終了後に排気浄化触媒に流入する排気ガスの空燃比を理論空燃比よりもリッチなリッチ空燃比に制御する復帰後リッチ制御とを実行する内燃機関の診断装置において、前記空燃比センサから出力される出力空燃比に基づいて、前記燃料カット制御の終了後、前記空燃比センサの出力空燃比が、理論空燃比以上の一部の空燃比領域である第一空燃比領域を最初に通過するときの第一空燃比変化特性を算出する第一変化特性算出手段と、前記空燃比センサから出力される出力空燃比に基づいて、前記燃料カット制御の終了後、前記空燃比センサの出力空燃比が、前記第一空燃比領域とは異なる第二空燃比領域を最初に通過するときの第二空燃比変化特性を算出する第二特性速度算出手段と、前記第一空燃比変化特性に基づいて、空燃比センサの状態について正常、異常、判定保留のうちのいずれか一つとして判定すると共に、前記第一空燃比変化特性に基づいて判定保留と判定されたときには前記第二空燃比変化特性に基づいて空燃比センサの状態が正常、異常のうちのいずれか一方であると判定する異常診断手段とを具備する、内燃機関の診断装置が提供される。
 第2の発明では、第1の発明において、前記第一空燃比領域は前記第二空燃比領域よりもリーンな空燃比領域を含む。
 第3の発明では、第1又は第2の発明において、前記第二空燃比領域は前記第一空燃比領域よりもリッチな空燃比領域を含む。
 第4の発明では、第1~第3のいずれか一つの発明において、前記第二空燃比領域は、理論空燃比を含む領域である。
 第5の発明では、第1~第4のいずれか一つの発明において、前記空燃比センサは、該空燃比センサを通過する排気ガスの空燃比が所定空燃比領域内にあるときに限界電流を出力する限界電流式空燃比センサであり、前記第一空燃比領域及び前記第二空燃比領域は、前記空燃比センサが限界電流を発生させる前記所定空燃比領域内である。
 第6の発明では、第1~第5のいずれか一つの発明において、前記第一空燃比領域は、第一領域上限空燃比と該第一領域上限空燃比よりもリッチ側の第一領域下限空燃比との間の領域であり、前記第二空燃比領域は、第二領域上限空燃比と該第二領域上限空燃比よりもリッチ側な第二領域下限空燃比との間の領域であり、前記第二領域上限空燃比は理論空燃比よりもリーンである。
 第7の発明では、第5の発明において、前記第二領域上限空燃比は前記第一領域下限空燃比よりもリッチである。
 第8の発明では、第6又は第7の発明において、前記第二領域下限空燃比は理論空燃比以下である。
 第9の発明では、第1~第8のいずれか一つの発明において、前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域を最初に通過するときの変化速度である第一空燃比変化速度であり、前記異常診断手段は、前記第一空燃比変化速度が異常基準変化速度よりも遅い場合には前記空燃比センサに異常があると判定し、前記第一空燃比変化速度が正常基準変化速度よりも速い場合には前記空燃比センサは正常であると判定し、前記第一空燃比変化速度が前記異常基準変化速度と前記正常基準変化速度との間である場合には判定保留として判定する。
 第10の発明では、第1~第9のいずれか一つの発明において、前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域を最初に通過するときの変化速度である第二空燃比変化速度であり、前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二空燃比変化速度が正常・異常判定基準変化速度よりも遅い場合には前記空燃比センサは正常であると判定し、前記第二空燃比変化速度が前記正常・異常判定基準変化速度よりも速い場合には前記空燃比センサは異常であると判定する。
 第11の発明では、第8又は第9の発明において、前記空燃比変化速度は、前記空燃比センサの出力空燃比が、対応する空燃比領域の上限空燃比から下限空燃比に変化する時間に基づいて算出される。
 第12の発明では、第1~第8、第10及び第11のいずれか一つの発明において、前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域内にあるときの該出力空燃比を積算した第一空燃比積算値であり、前記異常診断手段は、前記第一空燃比積算値が異常基準積算値よりも大きい場合には、前記空燃比センサに異常があると判定し、前記第一空燃比積算値が正常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定し、前記第一空燃比積算値が前記異常基準積算値と前記正常基準積算値との間である場合には判定保留として判定する。
 第13の発明では、第1~第9、第11及び第12のいずれか一つの発明において、前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域内にあるときの該出力空燃比を積算した第二空燃比積算値であり、前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二空燃比積算値が正常・異常判定基準積算値よりも大きい場合には前記空燃比センサは正常であると判定し、前記第二空燃比積算値が正常・異常判定基準積算値よりも小さい場合には前記空燃比センサは異常であると判定する。
 第14の発明では、第1~第8、第10、第11及び第13のいずれか一つの発明において、前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域の上限空燃比から下限空燃比まで変化する間に前記空燃比センサの配置された排気通路を通過した排気ガス量を積算した第一排気ガス量積算値であり、前記異常診断手段は、前記第一排気ガス量積算値が異常基準積算値よりも大きい場合には、前記空燃比センサに異常があると判定し、前記第一排気ガス量積算値が正常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定し、前記第一排気ガス量積算値が前記異常基準積算値と前記正常基準積算値との間である場合には判定保留として判定する。
 第15の発明では、第1~第9、第11、第12及び第14のいずれか一つの発明において、前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域の上限空燃比から下限空燃比まで変化する間に前記空燃比センサの配置された排気通路を通過した排気ガス量を積算した第二排気ガス量積算値であり、前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二排気ガス量積算値が正常・異常判定基準積算値よりも大きい場合には前記空燃比センサは正常であると判定し、前記第二排気ガス量積算値が正常・異常判定基準積算値よりも小さい場合には前記空燃比センサは異常であると判定する。
 第16の発明では、第1~第15のいずれか一つの発明において、前記異常診断手段は、前記第一空燃比変化特性に基づいて前記空燃比センサが正常であると判定された場合、及び前記第二空燃比変化特性に基づいて前記空燃比センサが異常であると判定された場合には、前記排気浄化触媒が劣化していると判定する。
 第17の発明では、第1~第16のいずれか一つの発明において、前記異常診断手段によって前記空燃比センサが異常であると判定されたときに、警告灯を点灯させる警告手段をさらに具備する。
 本発明によれば、排気浄化触媒の状態の変化の影響を抑制しつつ、下流側空燃比センサの応答性劣化の異常を正確に診断することができる内燃機関の診断装置が提供される。
図1は、本発明の診断装置が用いられる内燃機関を概略的に示す図である。 図2は、空燃比センサの概略的な断面図である。 図3は、各排気空燃比におけるセンサ印加電圧と出力電流との関係を示す図である。 図4は、印加電圧を一定にしたときの排気空燃比と出力電流Iとの関係を示す図である。 図5は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図6は、上流側出力空燃比及び下流側出力空燃比等の、燃料カット制御前後におけるタイムチャートである。 図7は、下流側出力空燃比の燃料カット制御前後におけるタイムチャートである。 図8は、第一実施形態における異常診断制御の制御ルーチンを示すフローチャートである。 図9は、下流側出力空燃比等の燃料カット制御前後におけるタイムチャートである。
 以下、図面を参照して本発明の内燃機関の診断装置について詳細に説明する。なお、以下の説明では、同様な構成要素には同一の参照番号を付す。図1は、本発明の第一実施形態に係る診断装置が用いられる内燃機関を概略的に示す図である。
<内燃機関全体の説明>
 図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダブロック2内で往復動するピストン、4はシリンダブロック2上に固定されたシリンダヘッド、5はピストン3とシリンダヘッド4との間に形成された燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポートをそれぞれ示す。吸気弁6は吸気ポート7を開閉し、排気弁8は排気ポート9を開閉する。
 図1に示したようにシリンダヘッド4の内壁面の中央部には点火プラグ10が配置され、シリンダヘッド4の内壁面周辺部には燃料噴射弁11が配置される。点火プラグ10は、点火信号に応じて火花を発生させるように構成される。また、燃料噴射弁11は、噴射信号に応じて、所定量の燃料を燃焼室5内に噴射する。なお、燃料噴射弁11は、吸気ポート7内に燃料を噴射するように配置されてもよい。また、本実施形態では、燃料として理論空燃比が14.6であるガソリンが用いられる。しかしながら、本発明の診断装置が用いられる内燃機関では、他の燃料を用いても良い。
 各気筒の吸気ポート7はそれぞれ対応する吸気枝管13を介してサージタンク14に連結され、サージタンク14は吸気管15を介してエアクリーナ16に連結される。吸気ポート7、吸気枝管13、サージタンク14、吸気管15は吸気通路を形成する。また、吸気管15内にはスロットル弁駆動アクチュエータ17によって駆動されるスロットル弁18が配置される。スロットル弁18は、スロットル弁駆動アクチュエータ17によって回動せしめられることで、吸気通路の開口面積を変更することができる。
 一方、各気筒の排気ポート9は排気マニホルド19に連結される。排気マニホルド19は、各排気ポート9に連結される複数の枝部とこれら枝部が集合した集合部とを有する。排気マニホルド19の集合部は上流側排気浄化触媒20を内蔵した上流側ケーシング21に連結される。上流側ケーシング21は、排気管22を介して下流側排気浄化触媒24を内蔵した下流側ケーシング23に連結される。排気ポート9、排気マニホルド19、上流側ケーシング21、排気管22及び下流側ケーシング23は、排気通路を形成する。
 電子制御ユニット(ECU)31はデジタルコンピュータからなり、双方向性バス32を介して相互に接続されたRAM(ランダムアクセスメモリ)33、ROM(リードオンリメモリ)34、CPU(マイクロプロセッサ)35、入力ポート36および出力ポート37を具備する。吸気管15には、吸気管15内を流れる空気流量を検出するためのエアフロメータ39が配置され、このエアフロメータ39の出力は対応するAD変換器38を介して入力ポート36に入力される。また、排気マニホルド19の集合部には排気マニホルド19内を流れる排気ガス(すなわち、上流側排気浄化触媒20に流入する排気ガス)の空燃比を検出する上流側空燃比センサ40が配置される。加えて、排気管22内には排気管22内を流れる排気ガス(すなわち、上流側排気浄化触媒20から流出して下流側排気浄化触媒24に流入する排気ガス)の空燃比を検出する下流側空燃比センサ41が配置される。これら空燃比センサ40、41の出力も対応するAD変換器38を介して入力ポート36に入力される。なお、これら空燃比センサ40、41の構成については後述する。
 また、アクセルペダル42にはアクセルペダル42の踏込み量に比例した出力電圧を発生する負荷センサ43が接続され、負荷センサ43の出力電圧は対応するAD変換器38を介して入力ポート36に入力される。クランク角センサ44は例えばクランクシャフトが15度回転する毎に出力パルスを発生し、この出力パルスが入力ポート36に入力される。CPU35ではこのクランク角センサ44の出力パルスから機関回転数が計算される。一方、出力ポート37は対応する駆動回路45を介して点火プラグ10、燃料噴射弁11及びスロットル弁駆動アクチュエータ17に接続される。
<排気浄化触媒の説明>
 上流側排気浄化触媒20及び下流側排気浄化触媒24は、いずれも同様な構成を有する。以下では、上流側排気浄化触媒20についてのみ説明するが、下流側排気浄化触媒24も同様な構成及び作用を有する。
 上流側排気浄化触媒20は、酸素吸蔵能力を有する三元触媒である。具体的には、上流側排気浄化触媒20は、セラミックから成る担体に、触媒作用を有する貴金属(例えば、白金(Pt))及び酸素吸蔵能力を有する物質(例えば、セリア(CeO2))を担持させたものである。上流側排気浄化触媒20は、所定の活性温度に達すると、未燃ガス(HCやCO等)と窒素酸化物(NOx)とを同時に浄化する触媒作用に加えて、酸素吸蔵能力を発揮する。
 上流側排気浄化触媒20の酸素吸蔵能力によれば、上流側排気浄化触媒20は、上流側排気浄化触媒20に流入する排気ガスの空燃比が理論空燃比よりもリーン(以下、「リーン空燃比」という)であるときには排気ガス中の酸素を吸蔵する。一方、上流側排気浄化触媒20は、流入する排気ガスの空燃比が理論空燃比よりもリッチ(以下、「リッチ空燃比」という)であるときには、上流側排気浄化触媒20に吸蔵されている酸素を放出する。なお、「排気ガスの空燃比」は、その排気ガスが生成されるまでに供給された空気の質量に対する燃料の質量の比率を意味するものであり、通常はその排気ガスが生成されるにあたって燃焼室5内に供給された空気の質量に対する燃料の質量の比率を意味する。本明細書では、排気ガスの空燃比を「排気空燃比」という場合もある。
 上流側排気浄化触媒20は、触媒作用及び酸素吸蔵能力を有することにより、酸素吸蔵量に応じてNOx及び未燃ガスの浄化作用を有する。上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比である場合、酸素吸蔵量が少ないときには上流側排気浄化触媒20により排気ガス中の酸素が吸蔵され、これに伴ってNOxが還元浄化される。ただし、酸素吸蔵能力には限界があり、上流側排気浄化触媒20の酸素吸蔵量が上限吸蔵量を超えると、それ以上、上流側排気浄化触媒20に酸素がほとんど吸蔵されなくなる。この場合、上流側排気浄化触媒20に流入する排気ガスの空燃比がリーン空燃比であると、上流側排気浄化触媒20から流出する排気ガスの空燃比もリーン空燃比となる。
 一方、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比である場合、酸素吸蔵量が多いときには上流側排気浄化触媒20に吸蔵されている酸素が放出され、排気ガス中の未燃ガスが酸化浄化される。ただし、上流側排気浄化触媒20の酸素吸蔵量が少なくなって下限吸蔵量を下回ると、それ以上、上流側排気浄化触媒20から酸素がほとんど放出されなくなる。この場合、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であると、上流側排気浄化触媒20から流出する排気ガスの空燃比もリッチ空燃比となる。
 以上のように、本実施形態において用いられる排気浄化触媒20、24によれば、排気浄化触媒に流入する排気ガスの空燃比及び酸素吸蔵量に応じて排気ガス中のNOx及び未燃ガスの浄化特性が変化する。なお、触媒作用及び酸素吸蔵能力を有していれば、排気浄化触媒20、24は三元触媒とは異なる触媒であってもよい。
<空燃比センサの説明>
 本実施形態では、空燃比センサ40、41としては、限界電流式の空燃比センサが用いられる。図2を用いて、空燃比センサ40、41の構造について簡単に説明する。空燃比センサ40、41は、固体電解質層51と、その一方の側面上に配置された排気側電極52と、その他方の側面上に配置された大気側電極53と、通過する排気ガスの拡散律速を行う拡散律速層54と、拡散律速層54を保護する保護層55と、空燃比センサ40、41の加熱を行うヒータ部56とを具備する。
 固体電解質層51は、ZrO2(ジルコニア)、HfO2、ThO2、Bi23等にCaO、MgO、Y23、Yb23等を安定剤として配当した酸素イオン伝導性酸化物の焼結体により形成されている。また、拡散律速層54は、アルミナ、マグネシア、けい石質、スピネル、ムライト等の耐熱性無機物質の多孔質焼結体により形成されている。さらに、排気側電極52及び大気側電極53は、白金等の触媒活性の高い貴金属により形成されている。
 また、排気側電極と大気側電極との間には、ECU31に搭載された電圧印加装置60によりセンサ印加電圧Vが印加される。加えて、ECU31には、センサ印加電圧を印加したときに固体電解質層を介してこれら電極52、53間に流れる電流Iを検出する電流検出装置61が設けられる。この電流検出装置61によって検出される電流が空燃比センサ40、41の出力電流である。
 このように構成された空燃比センサ40、41は、図3に示したような電圧-電流(V-I)特性を有する。図3からわかるように、出力電流(I)は、排気空燃比が大きくなるほど(リーンになるほど)、大きくなる。また、各排気空燃比におけるV-I線には、V軸に平行な領域、すなわちセンサ印加電圧が変化しても出力電流がほとんど変化しない領域が存在する。この電圧領域は限界電流領域と称され、このときの電流は限界電流と称される。図3では、排気空燃比が18であるときの限界電流領域及び限界電流をそれぞれW18、I18で示している。
 一方、センサ印加電圧が限界電流領域よりも低い領域では、センサ印加電圧にほぼ比例して出力電流が変化する。斯かる領域は比例領域と称される。このときの傾きは、固体電解質層51の直流素子抵抗によって定まる。また、センサ印加電圧が限界電流領域よりも高い領域では、センサ印加電圧の増加に伴って出力電流も増加する。この領域では、排気側電極52上にて排気ガス中に含まれる水分の分解等が生じること等により、センサ印加電圧の変化に応じて出力電圧が変化する。
 図4は、印加電圧を0.4V程度で一定にしたときの、排気空燃比と出力電流Iとの関係を示す図である。図4からわかるように、空燃比センサ40、41では、排気空燃比が大きくなるほど(すなわち、リーンになるほど)、空燃比センサ40、41からの出力電流Iが大きくなる。加えて、空燃比センサ40、41は、排気空燃比が理論空燃比であるときに出力電流Iが零になるように構成される。また、排気空燃比が一定以上(本実施形態では18以上)に大きくなったとき、或いは一定以下に小さくなったときには、排気空燃比の変化に対する出力電流の変化の割合が小さくなる。
 なお、上記例では、空燃比センサ40、41として図2に示した構造の限界電流式の空燃比センサを用いている。しかしながら、少なくとも理論空燃比近傍において、排気空燃比の変化に対して出力値がなだらかに変化すれば、他の構造の限界電流式の空燃比センサや、限界電流式ではない空燃比センサ等、如何なる空燃比センサを用いてもよい。
<基本的な制御>
 このように構成された内燃機関では、上流側空燃比センサ40及び下流側空燃比センサ41の出力に基づいて、上流側排気浄化触媒20に流入する排気ガスの空燃比が機関運転状態に基づいた最適な空燃比となるように、燃料噴射弁11からの燃料噴射量が設定される。このような燃料噴射量の設定方法としては、上流側空燃比センサ40の出力に基づいて上流側排気浄化触媒20に流入する排気ガスの空燃比が目標空燃比となるように制御すると共に、下流側空燃比センサ41の出力に基づいて上流側空燃比センサ40の出力を補正したり、目標空燃比を変更したりする方法が挙げられる。
 また、本発明の実施形態に係る内燃機関では、内燃機関を搭載した車両の減速時等に、燃料噴射弁11からの燃料噴射を停止又は大幅に減量して燃焼室5内への燃料供給を停止又は大幅に減量する燃料カット制御が実施される。斯かる燃料カット制御は、例えば、アクセルペダル42の踏込み量がゼロ又はほぼゼロ(すなわち、機関負荷がゼロ又はほぼゼロ)であり且つ機関回転数がアイドリング時の回転数よりも高い所定の回転数以上であるときに実施される。
 燃料カット制御が行われたときは、内燃機関から空気又は空気と同様な排気ガスが排出されることになるため、上流側排気浄化触媒20には空燃比の極めて高い(すなわち、リーン度合いの極めて高い)ガスが流入することになる。この結果、燃料カット制御中には、上流側排気浄化触媒20に多量の酸素が流入し、上流側排気浄化触媒20の酸素吸蔵量は上限吸蔵量に達する。
 また、本実施形態の内燃機関では、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素を放出させるために、燃料カット制御の終了直後には、上流側排気浄化触媒20に流入する排気ガスの空燃比をリッチ空燃比にする復帰後リッチ制御が行われる。この様子を図5に示す。
 図5は、燃料カット制御を行った際に、上流側空燃比センサ40の出力値に相当する空燃比(以下、「上流側出力空燃比」という)と、上流側排気浄化触媒20の酸素吸蔵量と、下流側空燃比センサ41の出力値に相当する空燃比(以下、「下流側出力空燃比」という)とのタイムチャートである。図示した例では、時刻t1において燃料カット制御が開始されると共に、時刻t3において燃料カット制御が終了せしめられる。
 図示した例では、時刻t1において、燃料カット制御が開始せしめられると、機関本体1からはリーン空燃比の排気ガスが排出され、これに伴って上流側空燃比センサ40の出力空燃比が増大する。このとき、上流側排気浄化触媒20に流入する排気ガス中の酸素は上流側排気浄化触媒20に吸蔵されるため、上流側排気浄化触媒20の酸素吸蔵量は増大し、一方、下流側空燃比センサ41の出力空燃比は理論空燃比のままとなる。
 その後、時刻t2において上流側排気浄化触媒20の酸素吸蔵量が上限吸蔵量(Cmax)に達すると上流側排気浄化触媒20はそれ以上酸素を吸蔵することができなくなる。このため、時刻t2以降においては、下流側空燃比センサ41の出力空燃比が理論空燃比よりもリーンになる。
 時刻t3において、燃料カット制御が終了せしめられると、燃料カット制御中に上流側排気浄化触媒20に吸蔵された酸素を放出させるために、復帰後リッチ制御が行われる。復帰後リッチ制御では、機関本体1からは理論空燃比よりも僅かにリッチな空燃比の排気ガスが排出される。これに伴って、上流側空燃比センサ40の出力空燃比がリッチ空燃比になると共に、上流側排気浄化触媒20の酸素吸蔵量が徐々に減少する。このとき、上流側排気浄化触媒20にリッチ空燃比の排気ガスが流入せしめられても、上流側排気浄化触媒20に吸蔵されている酸素と排気ガス中の未燃ガスとが反応するため、上流側排気浄化触媒20から排出される排気ガスの空燃比はほぼ理論空燃比となる。このため、下流側空燃比センサ41の出力空燃比はほぼ理論空燃比となる。
 酸素吸蔵量の減少が続くと、ついには酸素吸蔵量がほぼゼロとなって、上流側排気浄化触媒20から未燃ガスが流出する。これにより、時刻t4において、下流側空燃比センサ41によって検出された排気空燃比が理論空燃比よりもリッチとなる。このように、下流側空燃比センサ41の出力空燃比が理論空燃比よりも僅かにリッチである終了判定空燃比に達すると、復帰後リッチ制御が終了せしめられる。その後、通常の空燃比制御が開始され、図示した例では、機関本体から排出される排気ガスの空燃比が理論空燃比になるように制御される。
 なお、復帰後リッチ制御の終了条件は必ずしも下流側空燃比センサ41によってリッチ空燃比が検出された時でなくてもよく、例えば、燃料カット制御の終了後、一定時間が経過した時等、他の条件で終了するようにされてもよい。
<応答性劣化診断における課題>
 上述したように、空燃比センサ40、41に基づいて燃料噴射量を設定する場合には、空燃比センサ40、41に異常が生じて、空燃比センサ40、41の出力の精度が悪化してしまうと、燃料噴射量を最適に設定することができなくなる。その結果、排気エミッションの悪化や燃費の悪化を招いてしまう。このため、多くの内燃機関では、空燃比センサ40、41の異常を自己診断する診断装置が設けられている。
 ところで、このような空燃比センサ40、41の出力異常としては、応答性劣化が挙げられる。空燃比センサの応答性劣化は、例えば、センサ素子が被水することを防止するためのセンサカバー(保護層55よりも外側に設けられたカバー)に設けられた通気孔がパティキュレート(PM)により部分的に塞がってしまうことより生じる。このような応答性劣化が生じたときにおける空燃比センサの推移の様子を、図6に示す。
 図6は、燃料カット制御の実行前後における、上流側出力空燃比及び下流側出力空燃比の、図5と同様なタイムチャートである。図示した例では、時刻t1において燃料カット制御が開始されると共に、時刻t3において燃料カット制御が終了せしめられる。燃料カット制御が終了せしめられると、復帰後リッチ制御により上流側排気浄化触媒20にはリッチ空燃比の排気ガスが流入せしめられる。
 下流側空燃比センサ41に応答性劣化が生じていない場合、下流側空燃比センサ41の出力空燃比は図6に実線Aで示したように推移する。すなわち、燃料カット制御の終了後、機関本体1から下流側空燃比センサ41まで距離があるため、燃料カット制御の終了から僅かに遅れて、下流側空燃比センサ41の出力空燃比が低下し始める。また、このとき上流側排気浄化触媒20から流出する排気ガスの空燃比はほぼ理論空燃比となっているため、下流側空燃比センサ41の出力空燃比もほぼ理論空燃比に収束する。
 一方、下流側空燃比センサ41に応答性劣化が生じている場合、下流側空燃比センサ41の出力空燃比は図6に破線Bで示したように推移する。すなわち、下流側空燃比センサ41に応答性劣化が生じていない場合(実線A)に比べて、出力空燃比の低下速度が遅くなる。このように、下流側空燃比センサ41の応答性劣化の有無に応じて、下流側空燃比センサ41の出力空燃比の低下速度が変化する。このため、この低下速度を算出することにより、下流側空燃比センサ41の応答性劣化の有無を診断することができる。特に、このような応答性劣化の診断は、排気空燃比が18程度と17程度との間の領域の低下速度に基づいて行うのが好ましい。
 ところで、燃料カット制御の終了後の下流側空燃比センサ41の出力空燃比の推移は、上流側排気浄化触媒20の劣化度合いに応じても変化する。例えば、上流側排気浄化触媒20の劣化度合いが高くて、その酸素吸蔵能力が低下している場合には、燃料カット制御中においても上流側排気浄化触媒20にはほとんど酸素が吸蔵されない。このため、燃料カット制御が終了して上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比にされると、これに伴って、上流側排気浄化触媒20から流出する排気ガスの空燃比も急激に低下する。
 この様子を、図6中に一点鎖線Cで示す。図6の一点鎖線Cは、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが高い場合の出力空燃比の推移を表している。図6の実線Aと一点鎖線Cとの比較からもわかるように、燃料カット制御の終了後においては、下流側空燃比センサ41の出力空燃比の低下速度は、上流側排気浄化触媒20に劣化が生じていない場合に比べて速くなる。
 一方、下流側空燃比センサ41に応答性劣化が生じており且つ上流側排気浄化触媒20の劣化度合いが高い場合には、応答性劣化に伴う出力空燃比の低下速度の低下と、上流側排気浄化触媒20の劣化に伴う出力空燃比の低下速度の増大とが合わさる。この結果、斯かる場合には、下流側空燃比センサ41の出力空燃比は、図6中に二点鎖線Dで示したように、排気空燃比が18程度と17程度との間の領域において、実線Aの場合(下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合)における出力空燃比と同様に推移する。
 このため、上述したように出力空燃比の低下速度に基づいて応答性劣化を診断していると、図6中に二点鎖線Dで示したような場合には、下流側空燃比センサ41に応答性劣化の異常が生じているにもかかわらず、異常判定することができない。
<本発明における異常診断の原理>
 これに対して、本発明に係る実施形態では、異なる二つの空燃比領域において、その空燃比領域における下流側空燃比センサ41の出力空燃比の変化速度をそれぞれ算出し、算出された各空燃比領域における変化速度に基づいて下流側空燃比センサ41の異常(特に、応答性劣化)を診断するようにしている。以下では、まず、本発明における下流側空燃比センサ41の異常診断の原理について説明する。
 上述したように、出力空燃比が18程度と17程度との間の領域では、上流側排気浄化触媒20の劣化度合いが低い限り、下流側空燃比センサ41の出力空燃比の応答性劣化の有無を検出することができる。そこで、本実施形態では、まず、燃料カット制御の終了後、下流側空燃比センサ41の出力空燃比が初めて18と17との間の第一空燃比領域X内を通過するときの出力空燃比の低下速度(以下、「第一空燃比変化速度」という)を算出する。特に、本実施形態では、第一空燃比領域の上限空燃比(すなわち、18)から第一空燃比領域の下限空燃比(すなわち、17)まで変化する時間ΔT1が第一空燃比変化速度を表すパラメータとして用いられる。この第一空燃比変化時間ΔT1は長くなるほど、第一空燃比変化速度が遅くなることを意味する。なお、図1中の第一空燃比変化時間ΔT1は実線Aについての第一空燃比変化速度を表すパラメータである。
 加えて、本実施形態では、下流側空燃比センサ41の出力空燃比が16と理論空燃比(14.6)との間の第二空燃比領域Y内にあるときの出力空燃比の変化速度(以下、「第二空燃比変化速度」という)を算出する。この第二空燃比変化速度についても、第一空燃比変化速度と同様に、第二空燃比領域の上限空燃比(すなわち、16)から第二空燃比領域の下限空燃比(すなわち、理論空燃比)まで変化する時間ΔT2が第二空燃比変化速度を表すパラメータとして用いられる。この第二空燃比変化時間ΔT2も長くなるほど、第二空燃比変化速度が遅くなることを意味する。なお、図1中の第二空燃比変化時間ΔT2は実線Aについての第一空燃比変化速度を表すパラメータである。
 本発明の実施形態によれば、このようにして算出された第一空燃比変化速度及び第二空燃比変化速度に基づいて、下流側空燃比センサ41の異常診断が行われる。まず、第一空燃比変化速度(第一空燃比領域X内における変化速度)が、異常基準変化速度よりも遅い(すなわち、時間ΔT1が異常基準閾値よりも長い)場合には、下流側空燃比センサ41に応答性劣化の異常が発生していると判定する。
 すなわち、第一空燃比領域X内における出力空燃比A~Dを比較すると、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い実線Aに対して破線Bでは傾きが小さくなっている。そして、破線Bは、下流側空燃比センサ41に応答性劣化が生じている場合を示している。したがって、第一空燃比変化速度が、下流側空燃比センサ41に応答性劣化が生じていないときの空燃比変化速度よりも遅くなっている場合には、下流側空燃比センサ41に応答性劣化の異常が発生しているといえる。そこで、本実施形態では、異常基準変化速度よりも下流側空燃比センサ41の出力空燃比の変化速度が遅い場合には、下流側空燃比センサ41に応答性劣化の異常が発生していると判定するようにしている。
 なお、異常基準変化速度は、例えば、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低いときに第一空燃比領域X内における変化速度が取り得る最低速度よりも僅かに遅い速度とされる。そして、異常基準変化速度は、予め定められた値であってもよいし、復帰後リッチ制御中における機関回転数や機関負荷等の運転パラメータに応じて変化する値であってもよい。
 一方、第一空燃比変化速度(第一空燃比領域X内における変化速度)が、正常基準変化速度よりも速い(すなわち、時間ΔT1が正常基準閾値よりも短い)場合には、下流側空燃比センサ41には応答性劣化の異常が発生していないと判定する。すなわち、第一空燃比領域X内における出力空燃比A~Dを比較すると、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い実線Aに対して一点鎖線Cでは傾きが大きくなっている。そして、一点鎖線Cは、下流側空燃比センサ41に応答性劣化が生じていない場合を示している。したがって、第一空燃比変化速度が、下流側空燃比センサ41に応答性劣化が生じているときの空燃比変化速度よりも速くなっている場合には、下流側空燃比センサ41には応答性劣化の異常が発生していないといえる。そこで、本実施形態では、下流側空燃比センサ41の出力空燃比の変化速度が正常基準変化速度よりも速い場合には、下流側空燃比センサ41に応答性劣化の異常が発生していないと判定するようにしている。
 なお、正常基準変化速度は、例えば、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低いときに第一空燃比領域X内における変化速度が取り得る最高速度よりも僅かに速い変化速度とされる。そして、正常基準変化速度は、予め定められた値であってもよいし、復帰後リッチ制御中における機関回転数や機関負荷等の運転パラメータに応じて変化する値であってもよい。
 これに対して、第一空燃比変化速度(第一空燃比領域X内における変化速度)が、異常基準変化速度よりも速く且つ正常基準変化速度よりも遅い場合には、下流側空燃比センサ41に応答性劣化の異常が発生しているか否か不明(異常状態不明)であり判定保留として判定する。すなわち、上述したように、第一空燃比領域X内では、下流側空燃比センサ41に応答性劣化の異常が生じておらず且つ上流側排気浄化触媒20の劣化度合いも低い場合(実線A)と、下流側空燃比センサ41に応答性劣化の異常が生じていて且つ上流側排気浄化触媒20の劣化度合いが高い場合(二点鎖線D)とのいずれにおいても、下流側空燃比センサ41の出力空燃比は同様に推移する。したがって、いずれの場合においても、第一空燃比変化速度は、異常基準変化速度よりも速く且つ正常基準変化速度よりも遅くなってしまう。そこで、本実施形態では、下流側空燃比センサ41の出力空燃比の変化速度が異常基準変化速度よりも速く且つ正常基準変化速度よりも遅い場合には、判定保留として判定するようにしている。
 一方、第一空燃比変化速度に基づく判定において判定保留として判定された実線Aと二点鎖線Dとを比較する。実線Aの場合(下流側空燃比センサ41に応答性劣化の異常が生じておらず且つ上流側排気浄化触媒20の劣化度合いも低い場合)には、下流側空燃比センサ41の出力空燃比は理論空燃比に漸近的に収束していく。これは、上流側排気浄化触媒20の劣化度合いが低いため、上流側排気浄化触媒20に流入する排気ガスの空燃比がリッチ空燃比であっても、上流側排気浄化触媒20に吸蔵されていた酸素により未燃ガスが酸化・浄化されるためである。この結果、実線Aの場合には、第二空燃比変化速度(第二空燃比領域Y内における変化速度)は遅くなる。
 一方、二点鎖線Bの場合(下流側空燃比センサ41に応答性劣化の異常が生じていて且つ上流側排気浄化触媒20の劣化度合いが高い場合)には、下流側空燃比センサ41の出力空燃比は理論空燃比を越えてリッチ空燃比まで迅速に変化する。これは、上流側排気浄化触媒20の劣化度合いが高いため、上流側排気浄化触媒20にはほとんど酸素が吸蔵されておらず、その結果、上流側排気浄化触媒20に流入した排気ガスがそのまま上流側排気浄化触媒20を通過するためである。この結果、二点鎖線Dの場合には、第二空燃比変化速度(第二空燃比領域Y内における変化速度)は速くなる。
 なお、図6に示した例で、一点鎖線C及び二点鎖線Dにおいて、下流側空燃比センサ41の出力空燃比がリッチ空燃比に変化した後すぐに理論空燃比へと変化している。これは、当該出力空燃比がリッチ空燃比に変化した直後(より、正確には、終了判定空燃比に到達した直後)に復帰後リッチ制御が終了せしめられ、上流側排気浄化触媒20に流入する排気ガスの目標空燃比が理論空燃比に切り替えられるためである。
 そこで、本実施形態では、第一空燃比変化速度に基づく判定において判定保留と判定された場合には、第二空燃比変化速度に基づいて下流側空燃比センサ41の異常診断が行われる。具体的には、第二空燃比変化速度が、正常・異常判定基準変化速度よりも遅い場合には、下流側空燃比センサ41には応答性劣化の異常が発生していないと判定するようにしている。一方、第二空燃比変化速度が、正常・異常判定基準変化速度よりも速い場合には、下流側空燃比センサ41には応答性劣化の異常が発生していると判定するようにしている。なお、正常・異常判定基準変化速度は、例えば、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低いときに第二空燃比領域Y内における変化速度が取り得る最高速度よりも僅かに速い変化速度である。そして、正常・異常判定基準変化速度は、予め定められた値であってもよいし、復帰後リッチ制御中における機関回転数や機関負荷等の運転パラメータに応じて変化する値であってもよい。
 したがって、これらを総合すると、本実施形態では、第一空燃比変化速度が異常基準変化速度よりも遅い場合には、下流側空燃比センサ41に異常が発生していると判定し、第一空燃比変化速度が正常基準変化速度よりも速い場合には、下流側空燃比センサ41が正常であると判定する。また、第一空燃比変化速度が異常基準変化速度よりも速く且つ正常基準変化速度よりも遅い場合には、判定保留(すなわち、異常状態不明)であると判定する。そして、第一空燃比変化速度に基づいて判定保留であると判定された場合には、第二空燃比変化速度が正常・異常判定基準変化速度よりも遅いときには下流側空燃比センサ41が正常であると判定し、正常・異常判定基準変化速度よりも速いときには下流側空燃比センサ41に異常が発生していると判定する。下流側空燃比センサ41の異常診断をこのように行うことにより、上流側排気浄化触媒20に劣化が生じても下流側空燃比センサ41の応答性劣化の異常を正確に診断することができるようになる。
 なお、下流側空燃比センサ41の出力空燃比に基づく第一空燃比変化速度の算出は第一変化速度算出手段により行われ、下流側空燃比センサ41の出力空燃比に基づく第二空燃比変化速度の算出は第二変化速度算出手段により行われる。また、第一空燃比変化速度及び第二空燃比変化速度に基づく下流側空燃比センサ41の正常及び異常の判定は異常診断手段によって行われる。ECU31は、これら第一変化速度算出手段、第二変化速度算出手段及び異常診断手段として機能する。
 また、上記実施形態では、各空燃比領域X、Y内を通過するときの空燃比変化速度として、下流側空燃比センサ41の出力空燃比が各空燃比領域の上限空燃比から下限空燃比まで変化する時間(空燃比変化時間)を用いている。しかしながら、空燃比変化時間の代わりに、出力空燃比が各空燃比領域の上限空燃比から下限空燃比を減算した値を空燃比変化時間で除算した値を空燃比変化速度としてもよい。
 或いは、各空燃比領域X、Y内を通過するときの空燃比変化速度の代わりに、出力空燃比が各空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量の積算値を用いてもよい。この排気ガス量の積算値は、エアフロメータ39の出力値から推定するようにしてもよいし、機関負荷及び機関回転数から推定するようにしてもよい。
 この場合、出力空燃比が第一空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量を積算した第一排気ガス量積算値が異常基準積算値よりも大きい場合には、下流側空燃比センサ41に異常が発生していると判定する。一方、第一排気ガス量積算値が正常基準積算値よりも小さい場合には下流側空燃比センサ41は正常であると判定し、第一排気ガス量積算値が異常基準積算値と正常基準積算値との間である場合には判定保留として判定する。そして、第一排気ガス量積算値に基づいて判定保留として判定された場合には、出力空燃比が第二空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量を積算した第二排気ガス量積算値が正常・異常判定基準積算値よりも大きい場合には下流側空燃比センサは正常であると判定する。一方、第二排気ガス量積算値が正常・異常判定基準積算値よりも小さい場合には下流側空燃比センサ41に異常が発生している判定する。
 また、本実施形態では、診断装置により下流側空燃比センサ41に異常があると判定された場合には、内燃機関を搭載した車両において警告灯が点灯するように構成される。
 加えて、上述したように、一点鎖線Cの場合及び二点鎖線Dの場合には、上流側排気浄化触媒20の劣化度合いが高いものとなっている。したがって、これら場合には、上流側排気浄化触媒20が劣化していると判定するようにしてもよい。具体的には、第一空燃比変化速度が正常基準変化速度よりも速い場合、すなわち第一空燃比変化速度に基づいて下流側空燃比センサ41が正常であると判定された場合には、上流側排気浄化触媒20が劣化していると判定される。また、第二空燃比変化速度が正常・異常判定基準変化速度よりも速い場合、すなわち第二空燃比変化速度に基づいて下流側空燃比センサ41が異常であると判定された場合には、上流側排気浄化触媒20が劣化していると判定される。
<第一空燃比領域及び第二空燃比領域>
 ところで、第一空燃比領域を第一領域上限空燃比とこれよりもリッチ側の第一領域下限空燃比との間の領域とすると、上述した例では、第一領域上限空燃比を18、第一領域下限空燃比を17としている。また、第二空燃比領域を第二領域上限空燃比とこれよりもリッチ側の第二領域下限空燃比との間の領域とすると、上述した例では、第二領域上限空燃比を16、第二領域下限空燃比を理論空燃比(上述した例では、14.6)としている。しかしながら、排気浄化触媒20の特性、燃料の組成、下流側空燃比センサ41の構成等に応じて変更すべきものであるため、第一空燃比領域及び第二空燃比領域は必ずしもこれらの間の領域でなくてもよい。
 まず、第一空燃比領域について説明する。第一空燃比領域は、基本的に、下流側空燃比センサ41に応答性劣化が生じたときにその出力空燃比の変化速度が変化する領域であることが必要である。したがって、第一領域上限空燃比は、上流側排気浄化触媒20から空気が排出されているときの出力空燃比よりも低いことが必要である。
 加えて、下流側空燃比センサ41として上述したように限界電流式空燃比センサを用いたときには、第一領域上限空燃比は、下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である。例えば、図3に示した例では、下流側空燃比センサ41における印加電圧を0.4Vとしたときには、排気空燃比が18程度であれば限界電流が出力されるが、排気空燃比がそれ以上になると限界電流は出力されない。このように限界電流が出力されなくなると、実際の空燃比に対する出力電流の精度が悪化するため、空燃比の検出精度が低下する。そこで、第一領域上限空燃比は、下流側空燃比センサ41が限界電流を発生させ得る空燃比とされ、図3に示したV-I特性を有する空燃比センサでは18以下とされる。
 或いは、下流側空燃比センサ41として出力電流が大きくなるにつれて印加電圧を大きくするように構成されているセンサを用いた場合には、第一領域上限空燃比は、理論空燃比に相当する排気ガスを検出する際に限界電流が発生する印加電圧を印加したときに、限界電流が発生する上限リーン空燃比としてもよい。
 また、上流側排気浄化触媒20から流出する排気ガスの空燃比が理論空燃比よりもリッチになるタイミングは、上流側排気浄化触媒20が吸蔵可能な酸素量(最大酸素吸蔵量)に応じて変化する。したがって、第一領域下限空燃比を理論空燃比よりも低く設定すると、下流側空燃比センサ41の応答性劣化が同程度であっても、上流側排気浄化触媒20の最大酸素吸蔵量に応じて変化する。したがって、第一領域下限空燃比は理論空燃比以上であることが必要である。特に、第一領域下限空燃比は理論空燃比よりもリーンであるのが好ましい。
 加えて、下流側空燃比センサ41として上述したように限界電流式空燃比センサを用いたときには、第一領域下限空燃比も、下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である。したがって、図3に示したV-I特性を有する空燃比センサでは、12以上とされる。なお、第一領域上限空燃比及び第一領域下限空燃比のいずれも下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である点を考慮すると、第一空燃比領域は下流側空燃比センサ41が限界電流を発生させる空燃比領域内の領域であるといえる。
 次に、第二空燃比領域について説明する。第二空燃比領域は、基本的に、下流側空燃比センサ41の応答性劣化の有無にかかわらず、上流側排気浄化触媒20の劣化度合いに応じてその出力空燃比の変化速度が変化する領域であることが必要である。上述したように、上流側排気浄化触媒20の劣化度合いに応じて理論空燃比近傍における出力空燃比が変化することから、第二空燃比領域は理論空燃比近傍の領域を含むことが好ましい。
 第二領域上限空燃比は、上述した第一領域上限空燃比と同様に、上流側排気浄化触媒20から空気が排出されているときの出力空燃比よりも低いことが必要である。また、下流側空燃比センサ41として限界電流式空燃比センサを用いたときには、第二領域空燃比は、下流側空燃比センサ41が限界電流を発生させ得る空燃比であることが必要である。さらに、第二空燃比変化速度に、第一空燃比領域における空燃比変化速度の影響が入ることを防止するために、第二領域上限空燃比は第一領域下限空燃比よりもリッチ(低い)であることが好ましい。
 一方、第二領域下限空燃比は、上述したように上流側排気浄化触媒20の劣化度合いに応じて理論空燃比近傍における出力空燃比の推移が変化することから、第二空燃比領域が理論空燃比近傍を含むような空燃比とされる。具体的には、第二領域下限空燃比は、理論空燃比よりも僅かにリーンな空燃比から理論空燃比よりもリッチな空燃比までの範囲内とされる。また、復帰後リッチ制御の終了タイミングを、下流側空燃比センサ41の出力空燃比が理論空燃比よりもリッチな終了判定空燃比に達したときとしている場合には、終了判定空燃比を第二領域下限空燃比としてもよい。また、下流側空燃比センサ41として上述したように限界電流式空燃比センサを用いたときには、第二空燃比領域も下流側空燃比センサ41が限界電流を発生させる空燃比領域内の領域とされる。
 なお、第一空燃比領域及び第二空燃比領域の関係を概略的に説明すると、本実施形態では、第一空燃比領域は第二空燃比領域よりもリーンな空燃比領域を含むのが好ましく、第二空燃比領域は第一空燃比領域よりもリッチな空燃比領域を含むのが好ましいといえる。
<フローチャート>
 図8は、本実施形態における異常診断制御の制御ルーチンを示すフローチャートである。図8に示した異常診断制御は、ECU31において行われる。
 図8に示したように、まず、ステップS11において、内燃機関を始動してから、或いは内燃機関を搭載した車両のイグニッションキーをオンにしてから、下流側空燃比センサ41の異常診断が既に行われたか否かが判定される。ステップS11において、異常診断が既に完了したと判定された場合には制御ルーチンが終了せしめられる。一方、ステップS11において、下流側空燃比センサ41の異常診断が未了であると判定された場合にはステップS12へと進む。
 ステップS12では、下流側空燃比センサ41の出力に基づいて第一空燃比変化時間ΔT1が算出される。具体的には、燃料カット制御の終了後、復帰後リッチ制御の開始後、下流側空燃比センサ41の出力空燃比が最初に第一領域上限空燃比(例えば、18)に到達してから最初に第一領域下限空燃比(例えば、17)に到達するまでの時間が第一空燃比変化時間ΔT1として算出される。
 次いで、ステップS13、14では、ステップS12で算出された第一空燃比変化時間ΔT1が、異常判定閾値T1up以上であるか、正常判定閾値T1low以下であるか、或いは、異常判定閾値T1upと正常判定閾値T1lowとの間であるかが判定される。第一空燃比変化時間ΔT1が異常判定閾値T1up以上であると判定された場合にはステップS15へと進む。ステップS15では、下流側空燃比センサ41に応答性劣化の異常が発生していると判定される。一方、ステップS13、14において、第一空燃比変化時間ΔT1が正常判定閾値T1low以下であると判定された場合には、ステップS16へと進む。ステップS16では下流側空燃比センサ41には応答性劣化の異常は発生していないと判定される。一方、ステップS13、14において、第一空燃比変化時間ΔT1が、異常判定閾値T1upと正常判定閾値T1lowとの間であると判定された場合には、ステップS17へと進む。
 ステップS17では、下流側空燃比センサ41の出力に基づいて第二空燃比変化時間ΔT2が算出される。具体的には、燃料カット制御の終了後、復帰後リッチ制御の開始後、下流側空燃比センサ41の出力空燃比が最初に第二領域上限空燃比(例えば、16)に到達してから最初に第二領域下限空燃比(例えば、理論空燃比)に到達するまでの時間が第二空燃比変化時間ΔT2として算出される。
 次いで、ステップS18では、ステップS17で算出された第二空燃比変化時間ΔT2が、正常・異常判定閾値T2midよりも小さいか否かが判定される。第二空燃比変化時間ΔT2が、正常・異常判定閾値T2midよりも小さいと判定された場合にはステップS19へと進む。ステップS19では、下流側空燃比センサ41に応答性劣化の異常が発生していると判定される。一方、ステップS18において、第二空燃比変化時間ΔT2が、正常・異常判定閾値T2mid以上であると判定された場合にはステップS20へと進む。ステップS20では、下流側空燃比センサ41には応答性劣化の異常は発生していないと判定される。
 なお、上記例では、第一空燃比変化時間ΔT1及び第二空燃比変化時間ΔT2に基づいて異常診断を行っている。しかしながら、上述したように、第一空燃比変化時間ΔT1の代わりに、第一領域上限空燃比から第一領域下限空燃比を減算した値を第一空燃比変化時間で除算した第一空燃比変化速度V1を用いてもよい。また、第二空燃比変化時間ΔT2の代わりに、第二領域上限空燃比から第二領域下限空燃比を減算した値を第二空燃比変化時間で除算した第二空燃比変化速度V2を用いてもよい。
 或いは、上述したように、第一空燃比変化時間ΔT1の代わりに、出力空燃比が第一領域上限空燃比から第一領域下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量を積算した第一排気ガス量積算値を用いてもよい。また、第二空燃比変化時間ΔT2の代わりに、出力空燃比が第二領域上限空燃比から第二領域下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量を積算した第二排気ガス量積算値を用いてもよい。
 この場合、ステップS13では、第一空燃比変化速度V1が異常基準変化速度以下である場合にステップS15へと進み、下流側空燃比センサ41に異常が発生していると判定される。また、ステップS14では、第一空燃比変化速度V1が正常基準変化速度以上である場合にステップS16へと進み、下流側空燃比センサ41には異常が発生していないと判定される。同様に、ステップS18では、第二空燃比変化速度V2が、正常・異常基準変化速度以上である場合にステップS19へと進み、下流側空燃比センサ41に異常が発生していると判定される。
<第二実施形態>
 次に、図9を参照して、本発明の第二実施形態に係る診断装置について説明する。第二実施形態に係る診断装置は、基本的に第一実施形態に係る診断装置と同様に構成される。しかしながら、第一実施形態では、下流側空燃比センサ41の出力空燃比の変化速度に基づいて異常診断が行われているのに対して、第二実施形態では、下流側空燃比センサ41の出力空燃比の積算値(積分値)に基づいて異常診断が行われる。
 下流側空燃比センサ41の出力空燃比の応答性劣化の有無については、出力空燃比の積算値も、空燃比変化速度と同様な傾向を示す。この様子を、図9に示す。
 図9は、図7と同様なタイムチャートである。図9のI1Aは、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合(実線A)に、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値である。また、図9のI1Bは、下流側空燃比センサ41に応答性劣化が生じており且つ上流側排気浄化触媒20の劣化度合いが低い場合(実線B)に、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値である。さらに、図9のI1Cは、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが高い場合(一点鎖線C)に、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値である。
 これら積算値I1A、I1B、I1Cを比較すると、積算値I1Bは積算値I1Aよりも大きい。したがって、下流側空燃比センサ41に応答性劣化が生じると、第一空燃比領域X内を通過するときの出力空燃比の積算値は大きくなることがわかる。また、積算値I1Cは積算値I1Aよりも小さい。したがって、上流側排気浄化触媒20の劣化度合いが高くなると、第一空燃比領域X内を通過するときの出力空燃比の積算値は小さくなることがわかる。
 一方、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低い場合(二点鎖線D)には、出力空燃比は第一空燃比領域X内において実線Aと同様な挙動を示す。このため、実線Aで示したような場合と二点鎖線Dで示したような場合は、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値は同程度となる。
 そこで、本実施形態では、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値が、異常基準積算値よりも大きい場合には、下流側空燃比センサ41に応答性劣化の異常が発生していると判定する。なお、異常基準積算値は、例えば、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低いときに第一空燃比領域X内における出力空燃比の積算値が取り得る最大値よりも僅かに大きい値とされる。
 一方、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値が、正常基準積算値よりも大きい場合には、下流側空燃比センサ41に応答性劣化の異常は発生していないと判定する。なお、正常基準積算値は、例えば、下流側空燃比センサ41に応答性劣化が生じておらず且つ上流側排気浄化触媒20の劣化度合いが低いときに第一空燃比領域X内における出力空燃比の積算値が取り得る最小値よりも僅かに小さい値とされる。
 また、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値が、異常基準積算値と正常基準積算値との間である場合には、下流側空燃比センサ41に応答性劣化の異常が発生しているか否か不明(異常状態不明)であり判定保留として判定する。
 また、図9のI2Aは、実線Aで示したような場合に、出力空燃比が初めて第二空燃比領域X内を通過するときの出力空燃比の積算値である。また、図9のI2Aは、二点鎖線Dで示したような場合に、出力空燃比が初めて第二空燃比領域X内を通過するときの出力空燃比の積算値である。これら積算値I2A、I2Dを比較すると、積算値I2Aは積算値I2Dよりも大きい。したがって、上流側排気浄化触媒20の劣化度合いが高くなると、第二空燃比領域Y内を通過するときの出力空燃比の積算値は大きくなることがわかる。
 そこで、本実施形態では、出力空燃比が初めて第一空燃比領域X内を通過するときの出力空燃比の積算値に基づく判定において判定保留として判定された場合には、第二空燃比領域Y内を通過するときの出力空燃比の積算値に基づいて異常診断が行われる。具体的には、出力空燃比が初めて第二空燃比領域X内を通過するときの出力空燃比の積算値が、正常・異常判定基準積算値よりも大きい場合には、下流側空燃比センサ41には応答性劣化の異常が発生していないと判定するようにしている。一方、この積算値が、正常・異常判定基準積算値よりも小さい場合には、下流側空燃比センサ41には応答性劣化の異常が発生していると判定するようにしている。
 したがって、これらを総合すると、本実施形態では、第一空燃比領域Xにおける積算値が異常基準積算値よりも大きい場合には、下流側空燃比センサ41に異常が発生していると判定し、第一空燃比領域Xにおける積算値が正常基準積算値よりも小さい場合には、下流側空燃比センサ41が正常であると判定する。また、第一空燃比領域Xにおける積算値が異常基準積算値と正常基準積算値との間である場合には、判定保留としてと判定する。そして、第一空燃比領域Xにおける積算値に基づいて判定保留として判定された場合には、第二空燃比積算値が正常・異常判定基準積算値よりも大きいときには下流側空燃比センサ41が正常であると判定し、正常・異常判定基準積算値よりも小さいときには下流側空燃比センサ41に異常が発生していると判定する。下流側空燃比センサ41の異常診断をこのように行うことにより、上流側排気浄化触媒20に劣化が生じても下流側空燃比センサ41の応答性劣化の異常を正確に診断することができる。
 上述した第一実施形態と第二実施形態をまとめて表現すると、本発明の実施形態によれば、第一変化特性算出手段(ECU31)により、出力空燃比が第一空燃比領域を最初に通過するときの第一空燃比変化特性が算出される。加えて、第二変化特性算出手段(ECU31)により、第二空燃比領域を最初に通過するときの第二空燃比変化特性が算出される。そして、異常診断手段(ECU31)により、第一空燃比変化特性に基づいて、下流側空燃比センサ41の状態について正常、異常、判定保留(すなわち、異常状態不明)のうちのいずれか一つであるとして判定され、第一空燃比変化特性に基づいて判定保留と判定されたときには第二空燃比変化特性に基づいて下流側空燃比センサ41の状態が正常、異常のうちいずれか一方であると判定される。
 空燃比変化特性としては、上述した実施形態では、空燃比変化速度(空燃比変化時間)、空燃比積算値、出力空燃比が各空燃比領域の上限空燃比から下限空燃比まで変化する間に下流側空燃比センサ41を通過した排気ガス量の積算値等が挙げられる。しかしながら、空燃比変化特性としては、下流側空燃比センサ41の応答性劣化異常の有無及び上流側排気浄化触媒20の劣化度合いに対して、空燃比変化速度等と同様な傾向を示すパラメータであれば、上記パラメータ以外のパラメータを用いてもよい。
 1  機関本体
 5  燃焼室
 6  吸気弁
 8  排気弁
 11  燃料噴射弁
 19  排気マニホルド
 20  上流側排気浄化触媒
 21  上流側ケーシング
 23  下流側ケーシング
 24  下流側排気浄化触媒
 31  電子制御ユニット(ECU)
 40  上流側空燃比センサ
 41  下流側空燃比センサ

Claims (17)

  1.  内燃機関の排気通路に配置されると共に流入する排気ガス中の酸素を吸蔵可能な排気浄化触媒と、該排気浄化触媒の排気流れ方向下流側に配置されると共に前記排気浄化触媒から流出する排気ガスの空燃比を検出する空燃比センサとを具備し、燃焼室への燃料供給を停止又は減量する燃料カット制御と、燃料カット制御の終了後に排気浄化触媒に流入する排気ガスの空燃比を理論空燃比よりもリッチなリッチ空燃比に制御する復帰後リッチ制御とを実行する内燃機関の診断装置において、
     前記空燃比センサから出力される出力空燃比に基づいて、前記燃料カット制御の終了後、前記空燃比センサの出力空燃比が、理論空燃比以上の一部の空燃比領域である第一空燃比領域を最初に通過するときの第一空燃比変化特性を算出する第一変化特性算出手段と、
     前記空燃比センサから出力される出力空燃比に基づいて、前記燃料カット制御の終了後、前記空燃比センサの出力空燃比が、前記第一空燃比領域とは異なる第二空燃比領域を最初に通過するときの第二空燃比変化特性を算出する第二変化特性算出手段と、
     前記第一空燃比変化特性に基づいて、空燃比センサの状態について正常、異常、判定保留のうちのいずれか一つとして判定すると共に、前記第一空燃比変化特性に基づいて判定保留と判定されたときには前記第二空燃比変化特性に基づいて空燃比センサの状態が正常、異常のうちのいずれか一方であると判定する異常診断手段とを具備する、内燃機関の診断装置。
  2.  前記第一空燃比領域は前記第二空燃比領域よりもリーンな空燃比領域を含む、請求項1に記載の内燃機関の診断装置。
  3.  前記第二空燃比領域は前記第一空燃比領域よりもリッチな空燃比領域を含む、請求項1又は2に記載の内燃機関の診断装置。
  4.  前記第二空燃比領域は、理論空燃比を含む領域である、請求項1~3のいずれか1項に記載の内燃機関の診断装置。
  5.  前記空燃比センサは、該空燃比センサを通過する排気ガスの空燃比が所定空燃比領域内にあるときに限界電流を出力する限界電流式空燃比センサであり、前記第一空燃比領域及び前記第二空燃比領域は、前記空燃比センサが限界電流を発生させる前記所定空燃比領域内である、請求項1~4のいずれか1項に記載の内燃機関の診断装置。
  6.  前記第一空燃比領域は、第一領域上限空燃比と該第一領域上限空燃比よりもリッチ側の第一領域下限空燃比との間の領域であり、前記第二空燃比領域は、第二領域上限空燃比と該第二領域上限空燃比よりもリッチ側な第二領域下限空燃比との間の領域であり、前記第二領域上限空燃比は理論空燃比よりもリーンである、請求項1~5のいずれか1項に記載の診断装置。
  7.  前記第二領域上限空燃比は前記第一領域下限空燃比よりもリッチである、請求項6に記載の内燃機関の診断装置。
  8.  前記第二領域下限空燃比は理論空燃比以下である、請求項6又は7に記載の内燃機関の診断装置。
  9.  前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域を最初に通過するときの変化速度である第一空燃比変化速度であり、
     前記異常診断手段は、前記第一空燃比変化速度が異常基準変化速度よりも遅い場合には前記空燃比センサに異常があると判定し、前記第一空燃比変化速度が正常基準変化速度よりも速い場合には前記空燃比センサは正常であると判定し、前記第一空燃比変化速度が前記異常基準変化速度と前記正常基準変化速度との間である場合には判定保留として判定する、請求項1~8のいずれか1項に記載の内燃機関の診断装置。
  10.  前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域を最初に通過するときの変化速度である第二空燃比変化速度であり、
     前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二空燃比変化速度が正常・異常判定基準変化速度よりも遅い場合には前記空燃比センサは正常であると判定し、前記第二空燃比変化速度が前記正常・異常判定基準変化速度よりも速い場合には前記空燃比センサは異常であると判定する、請求項1~9のいずれか1項に記載の内燃機関の診断装置。
  11.  前記空燃比変化速度は、前記空燃比センサの出力空燃比が、対応する空燃比領域の上限空燃比から下限空燃比に変化する時間に基づいて算出される、請求項9又は10に記載の内燃機関の診断装置。
  12.  前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域内にあるときの該出力空燃比を積算した第一空燃比積算値であり、
     前記異常診断手段は、前記第一空燃比積算値が異常基準積算値よりも大きい場合には、前記空燃比センサに異常があると判定し、前記第一空燃比積算値が正常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定し、前記第一空燃比積算値が前記異常基準積算値と前記正常基準積算値との間である場合には判定保留として判定する、請求項1~8、10、11のいずれか1項に記載の内燃機関の診断装置。
  13.  前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域内にあるときの該出力空燃比を積算した第二空燃比積算値であり、
     前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二空燃比積算値が正常・異常判定基準積算値よりも大きい場合には前記空燃比センサは正常であると判定し、前記第二空燃比積算値が正常・異常判定基準積算値よりも小さい場合には前記空燃比センサは異常であると判定する、請求項1~9、11、12のいずれか1項に記載の内燃機関の診断装置。
  14.  前記第一空燃比変化特性は、前記空燃比センサの出力空燃比が前記第一空燃比領域の上限空燃比から下限空燃比まで変化する間に前記空燃比センサの配置された排気通路を通過した排気ガス量を積算した第一排気ガス量積算値であり、
     前記異常診断手段は、前記第一排気ガス量積算値が異常基準積算値よりも大きい場合には、前記空燃比センサに異常があると判定し、前記第一排気ガス量積算値が正常基準積算値よりも小さい場合には前記空燃比センサは正常であると判定し、前記第一排気ガス量積算値が前記異常基準積算値と前記正常基準積算値との間である場合には判定保留として判定する、請求項1~8、10、11、13のいずれか1項に記載の内燃機関の診断装置。
  15.  前記第二空燃比変化特性は、前記空燃比センサの出力空燃比が前記第二空燃比領域の上限空燃比から下限空燃比まで変化する間に前記空燃比センサの配置された排気通路を通過した排気ガス量を積算した第二排気ガス量積算値であり、
     前記異常診断手段は、前記第一空燃比変化特性に基づいて判定保留として判定されたときには、前記第二排気ガス量積算値が正常・異常判定基準積算値よりも大きい場合には前記空燃比センサは正常であると判定し、前記第二排気ガス量積算値が正常・異常判定基準積算値よりも小さい場合には前記空燃比センサは異常であると判定する、請求項1~9、11、12、14のいずれか1項に記載の内燃機関の診断装置。
  16.  前記異常診断手段は、前記第一空燃比変化特性に基づいて前記空燃比センサが正常であると判定された場合、及び前記第二空燃比変化特性に基づいて前記空燃比センサが異常であると判定された場合には、前記排気浄化触媒が劣化していると判定する、請求項1~15のいずれか1項に記載の内燃機関の診断装置。
  17.  前記異常診断手段によって前記空燃比センサが異常であると判定されたときに、警告灯を点灯させる警告手段をさらに具備する、請求項1~16のいずれか1項に記載の内燃機関の診断装置。
PCT/JP2013/067570 2013-06-26 2013-06-26 内燃機関の診断装置 WO2014207854A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2013/067570 WO2014207854A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置
EP13887651.1A EP3015690B1 (en) 2013-06-26 2013-06-26 Internal-combustion-engine diagnostic device
BR112015031334-5A BR112015031334B1 (pt) 2013-06-26 2013-06-26 Sistema de diagnóstico de motor de combustão interna
CN201380077794.5A CN105339634B (zh) 2013-06-26 2013-06-26 内燃机的诊断装置
US14/900,792 US9850840B2 (en) 2013-06-26 2013-06-26 Diagnosis system of internal combustion engine
JP2015523743A JP5962856B2 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置
RU2016102047A RU2624252C1 (ru) 2013-06-26 2013-06-26 Система диагностики двигателя внутреннего сгорания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/067570 WO2014207854A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置

Publications (1)

Publication Number Publication Date
WO2014207854A1 true WO2014207854A1 (ja) 2014-12-31

Family

ID=52141258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/067570 WO2014207854A1 (ja) 2013-06-26 2013-06-26 内燃機関の診断装置

Country Status (7)

Country Link
US (1) US9850840B2 (ja)
EP (1) EP3015690B1 (ja)
JP (1) JP5962856B2 (ja)
CN (1) CN105339634B (ja)
BR (1) BR112015031334B1 (ja)
RU (1) RU2624252C1 (ja)
WO (1) WO2014207854A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024758B2 (en) 2015-05-19 2018-07-17 Fanuc Corporation Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
JP2020070789A (ja) * 2018-11-02 2020-05-07 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP2020143648A (ja) * 2019-03-08 2020-09-10 いすゞ自動車株式会社 ラムダセンサーの応答性診断方法、及び排気浄化システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6998416B2 (ja) * 2020-03-30 2022-01-18 本田技研工業株式会社 空燃比センサの劣化判定装置
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169493A (ja) * 1996-12-11 1998-06-23 Unisia Jecs Corp 広域空燃比センサの異常診断装置
JP2001242126A (ja) 2000-02-28 2001-09-07 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2007192093A (ja) 2006-01-18 2007-08-02 Hitachi Ltd 内燃機関の空燃比センサ診断装置
JP2008169776A (ja) * 2007-01-12 2008-07-24 Toyota Motor Corp 酸素センサの異常診断装置
JP2011106415A (ja) 2009-11-20 2011-06-02 Denso Corp 酸素濃度センサの応答性劣化検出装置
JP2011196230A (ja) 2010-03-18 2011-10-06 Toyota Motor Corp 内燃機関の排気浄化装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177575A (ja) * 1994-12-28 1996-07-09 Nippondenso Co Ltd 内燃機関の空燃比制御装置の自己診断装置
DE19722334B4 (de) * 1997-05-28 2011-01-05 Robert Bosch Gmbh Abgassondendiagnoseverfahren und -vorrichtung
JP2001215205A (ja) * 2000-01-31 2001-08-10 Honda Motor Co Ltd 酸素濃度センサの故障判定装置
JP4453061B2 (ja) * 2000-10-24 2010-04-21 株式会社デンソー 内燃機関の制御装置
US6898927B2 (en) * 2001-10-16 2005-05-31 Denso Corporation Emission control system with catalyst warm-up speeding control
JP4161771B2 (ja) 2002-11-27 2008-10-08 トヨタ自動車株式会社 酸素センサの異常検出装置
JP4089537B2 (ja) 2003-07-10 2008-05-28 トヨタ自動車株式会社 空燃比センサの異常検出装置
JP4218601B2 (ja) * 2004-06-29 2009-02-04 トヨタ自動車株式会社 圧縮着火内燃機関の空燃比センサ劣化判定システム
EP1724458A1 (de) * 2005-05-19 2006-11-22 Delphi Technologies, Inc. Verfahren und Vorrichtung zur Diagnose eines Messwertes
JP4384129B2 (ja) * 2006-03-24 2009-12-16 本田技研工業株式会社 触媒劣化検出装置
JP4803502B2 (ja) * 2007-06-22 2011-10-26 トヨタ自動車株式会社 空燃比センサの異常診断装置
FR2923863B1 (fr) * 2007-11-20 2010-02-26 Renault Sas Procede pour diagnostiquer l'etat d'un systeme d'alimentation en carburant d'un moteur.
DE102008004207A1 (de) * 2008-01-14 2009-07-16 Robert Bosch Gmbh Verfahren und Steuergerät zur Überprüfung eines Abgasnachbehandlungssystems eines Verbrennungsmotors
JP4527792B2 (ja) * 2008-06-20 2010-08-18 本田技研工業株式会社 排ガス浄化装置の劣化判定装置
JP5035140B2 (ja) 2008-06-26 2012-09-26 日産自動車株式会社 空燃比センサの異常診断装置
JP2010025090A (ja) 2008-07-24 2010-02-04 Toyota Motor Corp 空燃比センサの異常診断装置
JP5182109B2 (ja) 2009-01-13 2013-04-10 トヨタ自動車株式会社 空燃比センサの異常判定装置
JP2010174790A (ja) * 2009-01-30 2010-08-12 Toyota Motor Corp 空燃比センサの制御装置
JP4835704B2 (ja) * 2009-02-23 2011-12-14 トヨタ自動車株式会社 酸素センサの異常判定装置
DE102009030582A1 (de) * 2009-06-26 2011-01-05 Audi Ag Verfahren zum Diagnostizieren der Funktionsfähigkeit einer Lambdasonde
JP5515967B2 (ja) 2010-03-30 2014-06-11 トヨタ自動車株式会社 診断装置
JP5287809B2 (ja) 2010-08-31 2013-09-11 三菱自動車工業株式会社 触媒下流側排ガスセンサの劣化診断装置
JP5346989B2 (ja) * 2011-05-31 2013-11-20 本田技研工業株式会社 空燃比センサの異常判定装置
JP2012127356A (ja) 2012-03-22 2012-07-05 Toyota Motor Corp 空燃比センサの異常診断装置
JP6077308B2 (ja) * 2013-01-09 2017-02-08 日本特殊陶業株式会社 空燃比制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169493A (ja) * 1996-12-11 1998-06-23 Unisia Jecs Corp 広域空燃比センサの異常診断装置
JP2001242126A (ja) 2000-02-28 2001-09-07 Nissan Motor Co Ltd 空燃比センサの異常診断装置
JP2007192093A (ja) 2006-01-18 2007-08-02 Hitachi Ltd 内燃機関の空燃比センサ診断装置
JP2008169776A (ja) * 2007-01-12 2008-07-24 Toyota Motor Corp 酸素センサの異常診断装置
JP2011106415A (ja) 2009-11-20 2011-06-02 Denso Corp 酸素濃度センサの応答性劣化検出装置
JP2011196230A (ja) 2010-03-18 2011-10-06 Toyota Motor Corp 内燃機関の排気浄化装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024758B2 (en) 2015-05-19 2018-07-17 Fanuc Corporation Abnormality detecting device having function for detecting abnormality of machine tool, and abnormality detecting method
JP2020070789A (ja) * 2018-11-02 2020-05-07 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP7204426B2 (ja) 2018-11-02 2023-01-16 日立Astemo株式会社 内燃機関の燃料噴射制御装置
JP2020143648A (ja) * 2019-03-08 2020-09-10 いすゞ自動車株式会社 ラムダセンサーの応答性診断方法、及び排気浄化システム
WO2020184446A1 (ja) * 2019-03-08 2020-09-17 いすゞ自動車株式会社 ラムダセンサーの応答性診断方法、及び排気浄化システム
CN113557356A (zh) * 2019-03-08 2021-10-26 五十铃自动车株式会社 氧传感器的响应性诊断方法及废气净化系统
JP7124771B2 (ja) 2019-03-08 2022-08-24 いすゞ自動車株式会社 ラムダセンサーの応答性診断方法、及び排気浄化システム
CN113557356B (zh) * 2019-03-08 2023-09-15 五十铃自动车株式会社 氧传感器的响应性诊断方法及废气净化系统

Also Published As

Publication number Publication date
EP3015690B1 (en) 2019-02-20
BR112015031334A2 (pt) 2017-07-25
US9850840B2 (en) 2017-12-26
JPWO2014207854A1 (ja) 2017-02-23
BR112015031334B1 (pt) 2021-08-24
EP3015690A1 (en) 2016-05-04
US20160138504A1 (en) 2016-05-19
CN105339634B (zh) 2018-06-01
RU2624252C1 (ru) 2017-07-03
EP3015690A4 (en) 2016-07-13
CN105339634A (zh) 2016-02-17
JP5962856B2 (ja) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5962856B2 (ja) 内燃機関の診断装置
JP5983879B2 (ja) 内燃機関の診断装置
JP6020739B2 (ja) 空燃比センサの異常診断装置
JP6237460B2 (ja) 内燃機関の異常診断装置
JP6011726B2 (ja) 内燃機関の診断装置
JP6222020B2 (ja) 空燃比センサの異常診断装置
JP6179371B2 (ja) 空燃比センサの異常診断装置
CN107076045B (zh) 内燃发动机的控制装置和控制方法
US10156200B2 (en) Abnormality diagnosis system of downstream side air-fuel ratio sensor
JP6090092B2 (ja) 空燃比センサの異常診断装置
JP6110270B2 (ja) 内燃機関の異常診断装置
JP5858178B2 (ja) 内燃機関の制御装置
JP6734019B2 (ja) 下流側空燃比センサの異常診断装置
JP2021102943A (ja) 触媒劣化検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380077794.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015523743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14900792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013887651

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015031334

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016102047

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015031334

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151214