WO2014206315A1 - 聚酰亚胺微孔隔膜的制备方法 - Google Patents

聚酰亚胺微孔隔膜的制备方法 Download PDF

Info

Publication number
WO2014206315A1
WO2014206315A1 PCT/CN2014/080843 CN2014080843W WO2014206315A1 WO 2014206315 A1 WO2014206315 A1 WO 2014206315A1 CN 2014080843 W CN2014080843 W CN 2014080843W WO 2014206315 A1 WO2014206315 A1 WO 2014206315A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
inorganic
solution
agent
nano
Prior art date
Application number
PCT/CN2014/080843
Other languages
English (en)
French (fr)
Inventor
尚玉明
王要武
何向明
李建军
王莉
赵鹏
杨聚平
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Priority to JP2016522226A priority Critical patent/JP6073528B2/ja
Publication of WO2014206315A1 publication Critical patent/WO2014206315A1/zh
Priority to US14/980,487 priority patent/US20160111696A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00793Dispersing a component, e.g. as particles or powder, in another component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of chemical material preparation, and in particular relates to a preparation method of a polyimide microporous membrane. Background technique
  • the safety of lithium-ion batteries is particularly important. Based on the analysis of the causes of lithium-ion battery safety, the safety of lithium-ion batteries can be improved from the following aspects: First, real-time monitoring and processing of lithium-ion battery charging and discharging process by optimizing the design and management of lithium-ion batteries. To ensure the safety of lithium-ion batteries, the second is to improve or develop new electrode materials, improve the intrinsic safety performance of the battery, and the third is to use a new safe electrolyte and diaphragm system to improve battery safety.
  • the separator is one of the key inner layer components in the structure of a lithium ion battery. Its function is to enable electrolyte ions to pass through and separate the cathode from the anode to prevent short circuit.
  • Conventional lithium ion battery separators are polyolefins, such as polypropylene (PP) and polyethylene (PE), which are prepared by physical (such as stretching) or chemical (such as extraction) pore-forming processes, such as Asahi, Japan. Diaphragm products of foreign companies such as Tonen, Ube Ube, and Celgard.
  • polyolefin As the matrix polymer of the separator, polyolefin has the advantages of high strength, good acid and alkali resistance, good solvent resistance, etc., but the disadvantage is that the melting point is low (the melting point of polyethylene is about 130 ° C, and the polypropylene is about 160 ° C). , high temperature is easy to shrink or melt. When the battery is out of control, the temperature reaches the melting point of the polymer, the diaphragm shrinks and melts and ruptures, and the positive and negative terminals of the battery are short-circuited, which accelerates the thermal runaway of the battery, which leads to safety accidents such as fire and explosion of the battery.
  • a method for preparing a polyimide microporous membrane comprising the steps of: preparing a soluble polyimide by a one-step method using a flexible monomer, and forming a polyimide solution; providing an inorganic template agent, the The templating agent is an inorganic nanoparticle, and the inorganic templating agent is surface-treated by a surface treating agent in an organic solvent, and the inorganic templating agent is dispersed in the organic solvent to form an inorganic templating agent dispersion; the polyimide solution is prepared Mixing with an inorganic templating agent dispersion and sonicating to form a film forming solution; coating the film forming solution on the surface of the substrate and drying to form an organic-inorganic composite film; and placing the organic-inorganic composite film in the template removing agent solution
  • the preparation of the polyimide solution comprises: adding a dianhydride monomer and a diamine monomer to an organic solvent to form a mixed solution under a protective atmosphere, and stirring the mixed solution to make the dianhydride monomer and the diamine monomer in the organic After dissolving in a solvent, a catalyst is added, and the mixture is sufficiently reacted at a temperature of from 160 ° C to 200 ° C to form a polyimide, and the obtained polyimide is dissolved in an organic solvent to be disposed into a polyimide solution.
  • the present invention provides a method for preparing a polyimide microporous membrane, which comprises surface modification of an inorganic template by a surface treatment agent to make the inorganic template agent hydrophobic, and then the surface modified inorganic template.
  • the agent is mixed with the polyimide solution to prepare an organic-inorganic hybrid film, and then the inorganic template is removed by a template removing agent, and dried to obtain a polyimide microporous separator.
  • the polyimide microporous separator has high temperature resistance and a heat shrinkage rate of almost 0 at 150 °C, thereby improving the safety performance of the lithium ion battery.
  • Figure 1 shows the 2032 button cell rate performance of a polyimide microporous separator.
  • the preparation method of the polyimide microporous membrane comprises the following steps: Step one, preparing a soluble polyimide by a one-step method using a flexible monomer, and forming a polyimide solution;
  • Step 2 providing an inorganic templating agent, subjecting the inorganic templating agent to a surface treatment agent in an organic solvent to disperse the inorganic templating agent in the organic solvent to form an inorganic templating agent dispersion;
  • Step three mixing the polyimide solution and the inorganic template dispersion and ultrasonically forming Film forming solution;
  • Step 4 coating the film forming solution on the surface of the substrate and drying to form an organic-inorganic composite film;
  • Step 5 the organic-inorganic composite film is placed in a template remover solution, and the inorganic template agent in the organic-inorganic composite film reacts with the template remover to remove the inorganic template agent in the organic-inorganic composite film, thereby obtaining The polyimide microporous membrane.
  • polyimides are mostly prepared by a two-step process.
  • the dianhydride monomer and the diacid monomer are polymerized at room temperature to obtain an intermediate polyamic acid, which is then heat treated at a high temperature (for example, 300 ° C to 400 ° C).
  • the polyamic acid is imidized to obtain a polyimide.
  • cross-linking between molecular chains is liable to occur during high-temperature treatment, and the polyimide obtained by the method is mostly a poorly soluble substance, and is not suitable for compounding with an inorganic template to obtain a composite film.
  • monomer selection is also important, and polyimides prepared from some of the more rigid monomers are also poorly soluble.
  • the present invention uses a flexible monomer to obtain a soluble polyimide in a one-step process at a medium temperature and forms a polyimide solution, specifically comprising the following steps:
  • the protective atmosphere may be nitrogen or an inert gas such as argon, and the amount of the dianhydride monomer, the diamine monomer and the solvent is calculated in accordance with the solid content of the polymerization system of 4 to 20% by weight.
  • the solid content refers to the solid content of the polymer, because the polymer is obtained by polymerization of two monomers, and the mass after the polymer is substantially unchanged, so the solid content is also the total weight of the diamine monomer and the dianhydride monomer as a total of the mixed liquid. The mass percentage of quality.
  • the dianhydride monomer and the diamine monomer are flexible monomers, and the dianhydride monomer is one of the compounds represented by the formula (1-1), the formula (1-2) and the formula (1-3). Or a mixture of several.
  • the diamine monomer has a structural formula of the formula (2-1), the formula (2-2), the formula (2-3), the formula (2-4), the formula (2-5), and the formula (2-6).
  • the ratio of the total number of moles of the diamine monomer to the total moles of the dianhydride monomer is from 1:1 to 1:1.05.
  • the organic solvent is one or more of dinonyl amide, dimercaptoacetamide, 1,2-dichloroethane, dimethyl sulfoxide, diphenyl sulfone, sulfolane and N-decyl pyrrolidone. .
  • the mixed solution may be first stirred at room temperature, and after the catalyst is added, the temperature may be slowly raised to a temperature of from 160 ° C to 200 ° C, and then the reaction is stirred for 12 hours to 48 hours, such as 24 hours.
  • the dianhydride monomer and the diamine monomer can directly form a soluble polyacyl group by a one-step reaction at a temperature of from 160 ° C to 200 ° C. Imine.
  • the soluble polyimide is soluble in an aprotic strong polar solvent.
  • the resulting polyimide is a viscous polymer solution.
  • the soluble polyimide can be further purified, specifically, the viscosity is thickened.
  • the polymer solution is washed and dried by a washing reagent to obtain a soluble polyimide solid.
  • the catalyst is dissolved in the washing reagent, and the polyimide is insoluble in the washing reagent to form a precipitate.
  • the washing reagent may be water, an aqueous solution of decyl alcohol or an aqueous solution of ethanol (the concentration of sterol or ethanol is
  • the catalyst is one or more of benzoic acid, benzenesulfonic acid, nonylbenzenesulfonic acid, phenylacetic acid, pyridine, quinoline, isoquinoline, 8-hydroxyisoquinoline, pyrrole, imidazole, catalyst
  • the amount added is 0.1 to 5% by weight based on the total mass of the dianhydride monomer and the diamine monomer.
  • an azeotropic dehydrating agent may be further added.
  • the azeotropic dehydrating agent is one or more of benzene, n-hexane, toluene, m-nonylbenzene, p-nonylbenzene, o-diphenylbenzene, and the azeotropic dehydrating agent is added in a mass of dianhydride monomer and two 2-20 times the total mass of the amine monomer, the acidic catalyst system may be free of azeotropic dehydrating agent.
  • the polyimide is present in the solution in an amount of 5 to 20% by weight.
  • the organic solvent in the step S13 may be an aprotic strong polar solvent, and specifically may be a dimercaptophthalamide, a dimercaptoacetamide, a 1,2-dichloroethane, a dimercaptosulfoxide or a diphenylsulfone.
  • sulfolane and N-decylpyrrolidone One or more of sulfolane and N-decylpyrrolidone.
  • the step 2 may specifically include: uniformly mixing the inorganic templating agent and the surface treating agent in an organic solvent, and heating to 40 ° C to 80 ° C for 2 hours to 8 hours after sonication.
  • the inorganic templating agent is an inorganic nanoparticle, the material may be a metal oxide, and the metal oxide does not react with the polyimide solution.
  • the inorganic templating agent may be nano silica (SiO 2 ) particles, nano titanium dioxide (Ti0 2 ) particles, nano aluminum oxide (Al 2 2 3 3 ) particles, nano calcium carbonate (CaC 0 3 ) particles, nanometers.
  • the mass ratio of the inorganic templating agent to the organic solvent may be from 0.05:1 to 0.5:1.
  • the surface treatment agent functions to make the inorganic templating agent hydrophobic, thereby improving the dispersibility of the inorganic templating agent in the organic system
  • the surface treating agent used may be a silane coupling agent.
  • the surface treatment agent may be vinyltrimethoxysilane, vinyltriethoxysilane, ⁇ -(mercaptoacryloxy)propyltrimethoxysilane, ⁇ -(mercaptoacryloyl) Oxygen) propyltriethoxysilane, mercaptotrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, gamma-aminopropyltriethoxysilane, isobutyltriethoxysilane One or more of a silicon group and a butadiene-based triethoxysilane.
  • the surface The mass ratio of the treating agent to the inorganic templating agent is from 0.001:1 to 0.05:1.
  • the organic solvent used in the second step can be selected from the organic solvent of the same type as the first step, that is, it can be dinonyl amide, dimercaptoacetamide, 1,2-dichloroethane, dimercaptosulfoxide, diphenyl sulfone.
  • One or more of sulfolane and N-decylpyrrolidone can be selected from the organic solvent of the same type as the first step, that is, it can be dinonyl amide, dimercaptoacetamide, 1,2-dichloroethane, dimercaptosulfoxide, diphenyl sulfone.
  • One or more of sulfolane and N-decylpyrrolidone One or more of sulfolane and N-decylpyrrolidone.
  • the solution obtained by mixing the polyimide solution and the inorganic templating agent dispersion may be subjected to ultrasonic dispersion treatment, and the ultrasonic dispersion time is from 0.5 hours to 8 hours.
  • the polyimide solution and the inorganic templating agent dispersion are mixed in a mass ratio of the inorganic templating agent to the polyimide dry matter of 0.3:1 to 2:1. Since the inorganic templating agent is hydrophobic after being treated by the surface treating agent, it can have good dispersibility in an organic system, so when the polyimide solution and the inorganic templating agent dispersion are mixed, the inorganic template The agent can be uniformly dispersed in the polyimide solution.
  • the film forming solution can be applied to the surface of the substrate by knife coating, spraying, casting, etc., at a temperature of 50 ° C to 80 ° C for 0.5 hours to 24 hours, and then After drying at a temperature of 100 ° C to 120 for 0.5 hour to 24 hours, an organic-inorganic composite film is obtained.
  • the step of demolding may be to remove the organic-inorganic composite film from the surface of the substrate.
  • the organic-inorganic composite film comprises a polyimide substrate and an inorganic template agent dispersed in the polyimide matrix.
  • the template removing agent is a substance which chemically reacts with the inorganic template to remove the inorganic template and does not react with the polyimide.
  • the template remover may be an acid, including a mixture of one or more of hydrochloric acid, hydrofluoric acid, sulphuric acid, nitric acid, acetic acid, and citric acid.
  • the acid can be dissolved in a solvent to form a solution, such as in water.
  • the acid solution has a concentration of 5 to 40% by weight.
  • the inorganic templating agent is a nanoparticle uniformly dispersed in the polyimide matrix, and the inorganic templating agent reacts with the nanoparticles to make the nanoparticles from the polyamid
  • the amine matrix is removed, and the polyimide does not react with the inorganic template, and the structure remains unchanged, leaving micropores at the position of the original nanoparticles, thereby forming the polyimide microporous membrane.
  • the organic-inorganic composite film can be treated in the template remover solution at 30 ° C to 80 ° C for 0.5 hours to 24 hours.
  • the obtained polyimide microporous membrane can be further purified, and can be repeatedly washed with deionized water, and vacuum-treated at 80 ° C to 120 ° C for 1 hour to 24 hours to obtain a polyimide microporous membrane product. .
  • the inorganic template is used as a template to prepare a high temperature resistant polyimide microporous membrane material for a battery by a template method.
  • a separator material is prepared by using a high temperature resistant polyimide substrate.
  • the temperature resistance of the separator can reach 150 °C or higher.
  • the film can be made with soluble polyimide to achieve lower temperature film formation, avoiding the high temperature treatment of nearly 400 °C in the preparation of traditional polyimide materials. The process reduces the production complexity and energy consumption.
  • the film formation at a lower temperature can avoid the problem of organic and inorganic phase separation of the separator caused by the difference in thermal expansion coefficient during high temperature treatment, and improve the doping amount and dispersion uniformity of the inorganic substance;
  • the flexible monomer structure and the surface modification of the templating agent can greatly increase the doping amount of the template material and effectively increase the porosity of the subsequent microporous separator.
  • the final prepared membrane has a porosity of 50%, and the heat shrinkage rate at 150 °C is almost zero, which can greatly improve the safety performance of the lithium ion battery.
  • the resulting microporous membrane was tested by batteries to show good rate performance.
  • the prepared microporous membrane has important application value in the fields of lithium ion battery, sodium ion battery, membrane separation, sensor and the like.
  • the raw materials used in the invention are simple and easy to obtain, the cost is low, the preparation process is easy to control, and is suitable for large-scale industrial production.
  • the above-mentioned film-forming liquid crucible was coated on the surface of the substrate by a casting method, and maintained at a temperature of 50 ° C for 24 hours, and then treated at 120 ° C for 0.5 hour, and then released to obtain an organic-inorganic composite film.
  • the above organic-inorganic composite membrane was placed in a 5% hydrofluoric acid (HF) aqueous solution bath, treated at 30 ° C for 24 hours, and then repeatedly washed with deionized water, and vacuum-treated at 120 ° C for 1 hour to obtain a polyamid.
  • HF hydrofluoric acid
  • the amine microporous membrane, the performance of the polyimide microporous membrane is shown in Table 1.
  • the diamine monomer of the formula (2-2) and 10.0 g of the diamine monomer of the formula (2-3) are added to 240 g of sulfolane and stirred at room temperature for 1 hour, and the dianhydride monomer and the diamine monomer are added. After fully dissolved, 0.6 g of benzoic acid was added, and the temperature was slowly raised to 200 ° C.
  • the reaction was stirred for 24 hours, and the obtained viscous polymer solution was precipitated in an excess of 5 wt% of an aqueous methanol solution, washed repeatedly, and dried to obtain a soluble polyamid.
  • the amine was dissolved in dimercaptoacetamide and placed in a 5 wt% polyimide solution for use.
  • nano-Ti0 2 particles were added to 100 g of dimercaptosulfoxide, stirred and dispersed, and 1.5 g of butadiene-based triethoxysilane was added thereto, and the mixture was heated to 80 degrees for 8 hours to obtain an inorganic template dispersion.
  • the film forming solution was coated on the surface of the substrate by a casting method, and maintained at a temperature of 80 ° C for 0.5 hour, and then treated at 100 ° C for 24 hours, and then released to obtain an organic-inorganic composite film.
  • the organic-inorganic composite membrane was placed in a 20 wt% HF solution, treated at 80 ° C for 0.5 hour, and then repeatedly washed with deionized water and then vacuum-treated at 80 ° C for 24 hours to obtain a polyimide microporous membrane.
  • the performance of polyimide microporous membrane is shown in Table 1.
  • the reaction was stirred for 24 hours, and the obtained viscous polymer solution was precipitated in an excess of 99 wt% aqueous ethanol solution, washed repeatedly, dried to obtain a soluble polyimide, and an appropriate amount of the above polyimide was dissolved in dimercaptoamide. 10% by weight of polyimide solution was used.
  • the film forming solution was coated on the surface of the substrate by a casting method, and maintained at a temperature of 70 ° C for 5 hours, and then treated at 110 ° C for 20 hours, and then released to obtain an organic-inorganic composite film.
  • the above composite membrane was placed in a solution of HF/niobic acid (having a molar ratio of HF to tannic acid of 1:9) having a total acid concentration of 40% by weight, treated at 60 ° C for 5 hours, and then repeatedly washed with deionized water, 100.
  • the polyimide microporous separator was obtained by vacuum heat treatment at ° C for 16 hours. The properties of the polyimide microporous separator are shown in Table 1.
  • the above-mentioned film forming solution was coated on the substrate by a spray coating method, and after maintaining at 60 ° C for 12 hours, and then at 100 ° C for 16 hours, the film was removed to obtain an organic-inorganic composite film.
  • the above organic-inorganic composite membrane was placed in a hydrochloric acid (HC1) solution having a concentration of 6 wt%, treated at 65 ° C for 6 hours, and then repeatedly washed with deionized water, and vacuum-treated at 90 ° C for 18 hours to obtain a polyimide.
  • HC1 hydrochloric acid
  • Microporous separator its performance is shown in Table 1.
  • the polyimide microporous membrane of the fourth embodiment is assembled into a 2032 type lithium ion battery, the positive active material is lithium cobaltate (LiCo0 2 ), and the negative electrode is a lithium sheet.
  • the rate performance of the lithium ion battery is as shown in the figure. 1 is shown.

Abstract

提供一种聚酰亚胺微孔隔膜的制备方法,包括以下步骤:采用可溶性单体以一步法制备可溶性聚酰亚胺,并形成聚酰亚胺溶液。将表面处理后的无机模板剂分散在有机溶剂中形成无机模板剂分散液。将该聚酰亚胺溶液和无机模板剂分散液混合并超声处理形成制膜液,涂覆在基板表面并烘干形成有机无机复合膜,将其置于模板脱除剂溶液中,得到聚酰亚胺微孔隔膜。

Description

聚酰亚胺微孔隔膜的制备方法
技术领域
本发明属于化学材料制备技术领域,具体涉及一种聚酰亚胺微孔隔膜的 制备方法。 背景技术
随着锂离子电池在移动电话、电动车与能量储存系统等新能源应用领域 的快速发展, 锂离子电池的安全性问题显得尤为重要。 基于对锂离子电池安 全问题的原因分析, 可以从以下几方面来提高锂离子电池的安全性: 一是通 过优化锂离子电池的设计和管理等 ,对锂离子电池充放电过程进行实时监控 和处理, 保证锂离子电池的使用安全, 二是改进或开发新的电极材料, 提高 电池本征安全性能, 三是使用新型安全性的电解质和隔膜体系, 提高电池安 全性能。
隔膜是锂离子电池结构中的关键的内层组件之一,其作用是能使电解质 离子通过、分隔阴极与阳极接触防止短路。传统的锂离子电池隔膜是聚烯烃, 如聚丙烯 (PP)及聚乙烯 (PE)经物理 (如拉伸法) 或化学 (如萃取法) 制孔工 艺制备的多孔薄膜, 如日本旭化成 Asahi、 东燃化学 Tonen、 宇部 Ube、 美 国 Celgard等外国公司的隔膜产品。 作为隔膜的基体聚合物, 聚烯烃具有强 度高、 耐酸碱性好、 耐溶剂性好等优点, 但缺点是熔点较低(聚乙烯熔点约 为 130°C , 聚丙烯约为 160°C ), 高温易收缩或熔断。 当电池发生热失控, 温 度达到聚合物熔点附近, 隔膜发生大幅收缩及熔融破裂, 电池正负极短路, 加速电池的热失控, 进而导致电池起火、 爆炸等安全事故。
因此, 制备和使用耐高温的锂离子电池隔膜, 是提高锂离子电池安全性 能的重要措施之一。 发明内容
有鉴于此, 确有必要提供一种耐高温的聚酰亚胺微孔隔膜的制备方法。 一种聚酰亚胺微孔隔膜的制备方法, 包括以下步骤: 釆用柔性单体, 以 一步法制备可溶性聚酰亚胺, 并形成聚酰亚胺溶液; 提供无机模板剂, 该无 机模板剂为无机纳米颗粒, 在有机溶剂中通过表面处理剂对该无机模板剂进 行表面处理, 使无机模板剂分散在该有机溶剂中, 形成无机模板剂分散液; 将该聚酰亚胺溶液和无机模板剂分散液混合并超声处理, 形成制膜液; 将该 制膜液涂覆在基板表面并烘干, 形成有机无机复合膜; 以及将该有机无机复 合膜置于模板脱除剂溶液中, 该有机无机复合膜中的无机模板剂与该模板脱 除剂反应, 从而去除该有机无机复合膜中的无机模板剂, 得到该聚酰亚胺微 孔隔膜。 该聚酰亚胺溶液的制备包括: 在保护气氛下, 将二酐单体及二胺单 体加入有机溶剂形成混合液, 搅拌该混合液使该二酐单体及二胺单体在该有 机溶剂中溶解后, 加入催化剂, 在 160 °C至 200 °C温度下充分反应, 生成聚 酰亚胺, 以及将所得聚酰亚胺溶于有机溶剂配置成聚酰亚胺溶液。
相较于现有技术, 本发明提供的聚酰亚胺微孔隔膜的制备方法, 以表面 处理剂对无机模板剂进行表面修饰, 使无机模板剂具有疏水性, 然后将表面 修饰后的无机模板剂与聚酰亚胺溶液混合, 制备得到有机无机杂化膜, 然后 以模板脱除剂脱除该无机模板剂, 烘干得到聚酰亚胺微孔隔膜。 该聚酰亚胺 微孔隔膜具有耐高温特性, 在 150 °C热收缩率几乎为 0 , 从而可以提高锂离 子电池的安全性能。 附图说明
图 1为聚酰亚胺微孔隔膜制备的 2032型扣式电池倍率性能。 具体实施方式
下面将结合附图及具体实施例对本发明提供的聚酰亚胺微孔隔膜的制 备方法作进一步的详细说明。
本发明实施例提供的所述聚酰亚胺微孔隔膜的制备方法包括以下步骤: 步骤一, 釆用柔性单体, 以一步法制备可溶性聚酰亚胺, 并形成聚酰亚 胺溶液;
步骤二, 提供无机模板剂, 在有机溶剂中通过表面处理剂对该无机模板 剂进行表面处理, 使无机模板剂分散在该有机溶剂中, 形成无机模板剂分散 液;
步骤三, 将该聚酰亚胺溶液和无机模板剂分散液混合并超声处理, 形成 制膜液;
步骤四, 将该制膜液涂覆在基板表面并烘干, 形成有机无机复合膜; 以 及
步骤五, 将该有机无机复合膜置于模板脱除剂溶液中, 该有机无机复合 膜中的无机模板剂与该模板脱除剂反应, 从而去除该有机无机复合膜中的无 机模板剂, 得到该聚酰亚胺微孔隔膜。
传统的聚酰亚胺多为两步法制备,首先二酐单体与二酸单体在常温下聚 合得到中间体聚酰胺酸, 然后在高温 (如 300 °C至 400 °C ) 下热处理使聚酰 胺酸亚胺化, 得到聚酰亚胺。 然而在高温处理时容易形成分子链间的交联, 使该方法得到的聚酰亚胺多为难溶物质, 不适于与无机模板剂复合得到复合 膜。 此外, 单体选择也很重要, 一些刚性较大的单体所制备得到的聚酰亚胺 也是难溶的。
在步骤一中, 本发明釆用柔性单体, 以中温一步法得到可溶性聚酰亚胺 并形成聚酰亚胺溶液, 具体包括以下步骤:
511 , 在保护气氛下, 将二酐单体及二胺单体加入有机溶剂形成混合液;
512 , 搅拌该混合液使该二酐单体及二胺单体在该有机溶剂中充分溶解 后, 加入催化剂, 在 160 °C至 200 °C温度下充分反应, 生成聚酰亚胺;
513 , 将所得聚酰亚胺溶于有机溶剂配置成聚酰亚胺溶液。
在步骤 S11中, 该保护气氛可以为氮气或惰性气体, 如氩气, 该二酐单 体、 二胺单体及溶剂的用量按照聚合体系的固含量为 4-20wt%计算。 该固含 量是指聚合物的固含量, 因为聚合物由两种单体聚合得到, 聚合物后质量基 本不变, 因此固含量也是二胺单体和二酐单体的总重量占混合液总质量的质 量百分比。
该二酐单体及二胺单体为柔性单体, 该二酐单体为结构式由式 (1-1 )、 式 (1-2 ) 及式 (1-3 )表示的化合物中的一种或几种的混合物。
Figure imgf000005_0001
Figure imgf000006_0001
所述二胺单体为结构式由式 (2-1)、 式 (2-2)、 式 (2-3)、 式 (2-4)、 式 (2-5)、 式 (2-6)、 式 (2-7)、 式 (2-8)、 式 (2-9) 及式 (2-10) 表示的 化合物的一种或几种的混合物。
Figure imgf000006_0002
(2-1 )
Figure imgf000006_0003
(2-4)
Figure imgf000006_0004
Figure imgf000007_0001
所述二胺单体总摩尔数与二酐单体总摩尔数比例为 1 : 1至 1 : 1.05。
所述有机溶剂为二曱基曱酰胺、 二曱基乙酰胺、 1,2-二氯乙烷、 二曱基 亚砜、 二苯砜、 环丁砜和 N-曱基吡咯烷酮中的一种或多种。
在步骤 S12中, 该混合液可先在室温下搅拌, 加入催化剂后, 可緩慢的 升温至 160 °C至 200 °C温度, 然后搅拌反应 12小时至 48小时, 如 24小时。
通过选择柔性的二酐单体及二胺单体, 并控制加热温度, 该二酐单体及 二胺单体可以通过在该 160 °C至 200 °C温度下的一步反应直接生成可溶性聚 酰亚胺。 该可溶性聚酰亚胺可溶于非质子性强极性溶剂。 生成的聚酰亚胺为 粘稠的聚合物溶液。
在该步骤 S12后, 可进一步将该可溶性聚酰亚胺提纯, 具体为将该粘稠 的聚合物溶液通过一洗涤试剂进行洗涤并烘千, 得到可溶性聚酰亚胺固体。 该催化剂溶于该洗涤试剂, 而该聚酰亚胺在该洗涤试剂中不溶, 从而形成沉 淀。 该洗涤试剂可以为水、 曱醇水溶液或乙醇水溶液(曱醇或乙醇的浓度为
5-99wt% )。
所述催化剂为苯曱酸、 苯磺酸、 曱基苯磺酸、 苯乙酸、 吡啶、 喹啉、 异 喹啉、 8-羟基异喹啉、 吡咯、 咪唑中的一种或多种, 催化剂的加入量为二酐 单体与二胺单体总质量的 0.1-5wt%。
当该催化剂为碱性催化剂时, 可进一步加入共沸脱水剂。
所述共沸脱水剂为苯、 正己烷、 曱苯、 间二曱苯、 对二曱苯、 邻二曱苯 中的一种或多种,共沸脱水剂加入质量为二酐单体与二胺单体总质量的 2-20 倍, 酸性催化剂体系可不加共沸脱水剂。
在步骤 S13中, 该聚酰亚胺在溶液中的质量百分含量为 5-20wt%。 该步 骤 S13 中的有机溶剂可以为非质子性强极性溶剂, 具体可以为二曱基曱酰 胺、 二曱基乙酰胺、 1 , 2-二氯乙烷、 二曱基亚砜、 二苯砜、 环丁砜和 N-曱 基吡咯烷酮中的一种或多种。
所述步骤二具体可以包括: 将该无机模板剂及表面处理剂在有机溶剂中 均匀混合, 升温至 40 °C至 80 °C度后超声处理 2小时至 8小时。
所述无机模板剂为无机纳米颗粒, 材料可以为金属氧化物, 且该金属氧 化物与聚酰亚胺溶液不发生反应。 具体地, 该无机模板剂可以为纳米二氧化 硅 (Si02) 颗粒、 纳米二氧化钛 (Ti02) 颗粒、 纳米三氧化二铝 (A1203)颗粒、 纳 米碳酸钙 (CaC03 )颗粒、 纳米氢氧化镁(Mg(OH)2 )、 纳米氧化镁 (MgO)、 纳米碳酸镁(MgC03 )、 纳米碳酸钡 (BaC03 )、 纳米氢氧化辞 (Zn(OH)2 )、 纳米碳酸辞 (ZnC03)中的一种或多种及不同粒径颗粒的混合物。 该无机模板 剂的与有机溶剂质量比可以为 0.05: 1至 0.5: 1。
所述表面处理剂作用是使无机模板剂具有疏水性,从而改善无机模板剂 在有机体系中的分散性, 所用表面处理剂可以为硅烷偶联剂。 具体地, 所述 表面处理剂可以为乙烯基三曱氧基硅烷、 乙烯基三乙氧基硅烷、 γ- (曱基丙 烯酰氧) 丙基三曱氧基硅烷、 γ- (曱基丙烯酰氧) 丙基三乙氧基硅烷、 曱基 三曱氧基硅烷、 3-缩水甘油醚氧基丙基三曱氧基硅烷、 γ—氨丙基三乙氧基硅 烷、 异丁基三乙氧基硅及丁二烯基三乙氧基硅烷中的一种或多种。 所述表面 处理剂与无机模板剂的质量比为 0.001 : 1 至 0.05: 1。
该步骤二所用的有机溶剂可以选用与步骤一同类的有机溶剂, 即可以为 二曱基曱酰胺、 二曱基乙酰胺、 1 , 2-二氯乙烷、 二曱基亚砜、 二苯砜、 环 丁砜和 N -曱基吡咯烷酮中的一种或多种。
在所述步骤三中,该聚酰亚胺溶液和无机模板剂分散液混合后得到的溶 液可通过超声分散处理, 超声分散时间为 0.5小时至 8小时。 所述聚酰亚胺 溶液和无机模板剂分散液按照无机模板剂与聚酰亚胺干物质质量比为 0.3 : 1 至 2: 1混合。 由于所述无机模板剂通过所述表面处理剂处理后具有疏水性, 可以在有机体系中具有较好的分散性, 因此当将聚酰亚胺溶液和无机模板剂 分散液混合时, 该无机模板剂可以均匀的分散在该聚酰亚胺溶液中。
在所述步骤四中, 该制膜液可釆用刮涂、 喷涂、 流延等方法涂覆在基板 表面, 在 50 °C至 80 °C温度下, 保持 0.5小时至 24小时后, 再在 100 °C至 120 温度下, 烘干 0.5小时至 24小时后脱膜得到有机无机复合膜。该脱模 的步骤可以是将该有机无机复合膜从该基板表面取下。 该有机无机复合膜包 括聚酰亚胺基体及分散在该聚酰亚胺基体中的无机模板剂。
在所述步骤五中,该模板脱除剂为与该无机模板剂发生化学反应使无机 模板剂去除, 且不与该聚酰亚胺发生反应的物质。 具体地, 该模板脱除剂可 以为酸, 包括盐酸、 氢氟酸、 石克酸、 硝酸、 乙酸及曱酸中的一种或多种的混 合物。该酸可以溶于溶剂中形成溶液,如溶于水中。该酸溶液浓度为 5-40wt%。
在该有机无机复合膜中,该无机模板剂为均勾分散在该聚酰亚胺基体中 的纳米颗粒, 则通过该无机模板剂与这些纳米颗粒的反应, 可以使这些纳米 颗粒从聚酰亚胺基体中去除, 而聚酰亚胺不与该无机模板剂反应, 结构保持 不变, 则在原有的纳米颗粒所在位置留下微孔, 从而形成该聚酰亚胺微孔隔 膜。
具体地, 该有机无机复合膜可在该模板脱除剂溶液中, 在 30 °C至 80 °C 下处理 0.5小时至 24小时。得到的聚酰亚胺微孔隔膜可进一步纯化, 具体可 以用去离子水反复洗涤, 在 80 °C至 120 °C下真空热处理 1小时至 24小时除 水, 得到聚酰亚胺微孔隔膜产品。
本发明实施例将该无机模板剂作为模板,通过模板法制备电池用耐高温 聚酰亚胺微孔隔膜材料, 首先, 釆用耐高温的聚酰亚胺基体制备隔膜材料, 可使隔膜的耐温等级达到 150 °C以上; 其次, 釆用可溶性聚酰亚胺制膜, 可 实现较低温度制膜, 避免传统聚酰亚胺材料制备过程中的近 400 °C高温处理 过程, 降低生产复杂度及能耗, 同时较低温度制膜可使有机无机组分避免高 温处理时的热膨胀系数不同导致的隔膜有机无机分相问题, 提高无机物掺杂 量及分散均匀性; 第三, 柔性的单体结构及模板剂的表面改性, 可大幅提高 模板物质掺杂量, 有效提高后续微孔隔膜的孔隙率。 最终制备的隔膜孔隙率 可达到 50%, 150 °C热收缩率几乎为零, 可大幅提高锂离子电池安全性能。 所得微孔隔膜经电池测试表明具有良好的倍率性能。 所制备的微孔隔膜在锂 离子电池、 钠离子电池、 膜分离、 传感器等领域具有重要应用价值。 本发明 使用的原料简单易得、 成本较低, 制备工艺过程易控制, 适合于大规模工业 生产。
实施例 1
在氮气气氛保护下, 将 4.02g结构式为式 (1-3 ) 的二酐单体, 2.0g结构 式为式(2-1 )的二胺单体加入 114g 二曱基乙酰胺 /二苯砜(质量比 1 : 1 )中, 室温搅拌 0.5小时,待二酐单体及二胺单体充分溶解后,加入苯曱酸 0.006g, 緩慢升温至 180 °C ,搅拌反应 24小时,将所得粘稠聚合物溶液沉淀于过量水 中, 反复洗涤, 烘干得到可溶性聚酰亚胺, 将所得聚酰亚胺溶于 N-曱基吡 咯烷酮配置成 20wt%聚酰亚胺溶液备用。
将纳米 Si02颗粒 20g加入 400g N-曱基吡咯烷酮, 搅拌分散均勾, 加入 表面处理剂乙烯基三曱氧基硅烷 0.02g, 升温至 60 °C超声处理 2小时, 得到 无机模板剂分散液备用。
取上述聚酰亚胺溶液 5g和无机模板剂分散液 42g, 搅拌混合 30分钟, 超声分散 0.5小时, 得到制膜液。
将上述制膜液釆用流延方法涂覆在基板表面, 在 50 °C温度下, 保持 24 小时后, 再在 120 °C温度下, 处理 0.5小时后脱膜得到有机无机复合膜。
将上述有机无机复合膜置于 5% 氢氟酸 (HF)水溶液浴内, 在 30 °C下处 理 24小时, 然后用去离子水反复洗涤后, 120 °C下真空热处理 1小时得到聚 酰亚胺微孔隔膜, 该聚酰亚胺微孔隔膜性能见表 1。
实施例 2
在氩气氛保护下, 将 31.0g结构式为式(1-2 )的二酐单体, 20.5g结构式 为式(2-2 )的二胺单体和 10.0g结构式为式(2-3 )的二胺单体,加入 240g 环 丁砜中, 室温搅拌 1小时, 待该二酐单体及二胺单体充分溶解后, 加入苯横 酸 0.6g, 緩慢升温至 200 °C , 搅拌反应 24小时, 将所得粘稠聚合物溶液沉淀 于过量 5wt%曱醇水溶液中, 反复洗涤, 烘干得到可溶性聚酰亚胺, 将所得 聚酰亚胺溶于二曱基乙酰胺, 配置成 5wt%聚酰亚胺溶液备用。
将纳米 Ti02颗粒 30g加入 100g 二曱基亚砜中, 搅拌分散均勾, 加入 1.5g丁二烯基三乙氧基硅烷, 升温至 80度超声处理 8小时, 得到无机模板 剂分散液备用。
将上述无机模板剂分散液 13g和聚酰亚胺溶液 200g, 搅拌混合 60分钟 后, 超声分散 8小时, 得到制膜液。
将上述制膜液釆用流延法涂覆基板表面, 在 80°C温度下, 保持 0.5小时 后, 再在 100 °C下处理 24小时后, 脱膜得到有机无机复合膜。
将上述有机无机复合膜置于 20wt%HF溶液内,在 80 °C下处理 0.5小时, 然后用去离子水反复洗涤后, 80 °C下真空热处理 24 小时得到聚酰亚胺微孔 隔膜, 该聚酰亚胺微孔隔膜性能见表 1。
实施例 3
在氩气氛保护下, 将 4.44 g结构式为式 (1-1 ) 的二酐单体, 3.36 g结构 式为式( 2-5 )的二胺单体和 4.28 g结构式为式( 2-8 )的二胺单体,加入 288g 二苯砜中, 室温搅拌 50分钟待该二酐单体及二胺单体充分溶解后, 加入异 喹啉 0.24 g及二曱苯 240g, 緩慢升温至 160 °C , 搅拌反应 24小时, 将所得 粘稠聚合物溶液沉淀于过量 99wt%乙醇水溶液中, 反复洗涤, 烘干得到可溶 性聚酰亚胺, 将适量上述聚酰亚胺溶于二曱基曱酰胺中, 配置成 10wt%聚酰 亚胺溶液备用。
将纳米 A1203颗粒 20g加入 40g 二曱基曱酰胺中, 搅拌分散均勾, 加入 l .Og Y- (曱基丙烯酰氧)丙基三乙氧基硅烷, 升温至 60度后超声处理 4小时, 得到无机模板剂分散液备用。
将上述无机模板剂分散液 30g和聚酰亚胺溶液 100g, 搅拌混合 60分钟 后, 超声分散 8小时, 得到制膜液。
将上述制膜液釆用流延法涂覆基板表面,在 70 °C温度下,保持 5小时后, 再在 110 °C下处理 20小时后, 脱膜得到有机无机复合膜。 将上述复合膜置于总酸浓度 40wt%的 HF/曱酸( HF与曱酸摩尔比为 1 :9 ) 溶液内, 在 60 °C下处理 5小时, 然后用去离子水反复洗涤后, 100 °C下真空 热处理 16小时得到聚酰亚胺微孔隔膜, 该聚酰亚胺微孔隔膜性能见表 1。
实施例 4
在氩气氛保护下, 将 44.4 g结构式为式(1-1 ) 的二酐单体, 31.0g结构 式为式 (1-2 ) 的二酐单体, 19.8 g结构式为式 (2-9 ) 的二胺单体和 50.4 g 结构式为式 (2-10 ) 的二胺单体, 加入 2000g环丁砜中, 室温搅拌 40分钟 待该二酐单体及二胺单体充分溶解后,加入 8羟基异喹啉 3.0 g及曱苯 500g, 緩慢升温至 190 °C , 搅拌反应 24 小时, 将所得粘稠聚合物溶液沉淀于过量 50wt%曱醇水溶液中, 反复洗涤, 烘干得到可溶性聚酰亚胺, 将适量上述聚 酰亚胺溶于二曱基乙酰胺中, 配置成 15wt%聚酰亚胺溶液备用。
将纳米 A1203颗粒 30g加入 270g二曱基乙酰胺中, 搅拌分散均匀, 加 入 0.3g 3-缩水甘油醚氧基丙基三曱氧基硅烷,升温至 50度超声处理 7小时, 得到无机模板剂分散液备用。
将上述无机模板剂分散液 200g和聚酰亚胺溶液 40g, 搅拌混合 60分钟 后, 超声分散 7小时, 得到制膜液。
将上述制膜液釆用喷涂法涂覆基板上,在 60 温度下,保持 12小时后, 再在 100 °C下处理 16小时后, 脱膜得到有机无机复合膜。
将上述有机无机复合膜置于浓度 6wt%的盐酸 (HC1)溶液内,在 65 °C下处 理 6小时, 然后用去离子水反复洗涤后, 90 °C下真空热处理 18小时得到聚 酰亚胺微孔隔膜, 其性能见表 1。
釆用该实施例 4的聚酰亚胺微孔隔膜组装成 2032型扣式锂离子电池, 正极活性材料为钴酸锂 (LiCo02) , 负极为锂片, 该锂离子电池的倍率性能如 图 1所示。
表 1.聚酰亚胺微孔隔膜的常规物化指标
膜厚度 吸液率 拉伸强度 离子传导率 150 °C热收 ( μ m) (%) (MPa) (mS/cm) 缩率 实施例 1 36 79 19 0.80 ~0 实施例 2 29 52 27 0.35 ~0 实施例 3 25 65 22 0.51 ~0 实施例 4 32 70 18 0.65 ~0 表 1 中隔膜性能测试方法本专业领域人员参照相关专业文献可以容易 的获得。
另外, 本领域技术人员还可在本发明精神内做其他变化, 当然, 这些依 据本发明精神所做的变化, 都应包含在本发明所要求保护的范围之内。

Claims

权 利 要 求 书
1. 一种聚酰亚胺微孔隔膜的制备方法, 包括以下步骤:
釆用柔性单体, 以一步法制备可溶性聚酰亚胺, 并形成聚酰亚胺溶液, 包括:
在保护气氛下, 将二酐单体及二胺单体加入有机溶剂形成混合液, 搅拌该混合液使该二酐单体及二胺单体在该有机溶剂中溶解后, 加 入催化剂, 在 160 °C至 200 °C温度下充分反应, 生成聚酰亚胺, 以 及
将所得聚酰亚胺溶于有机溶剂配置成聚酰亚胺溶液;
提供无机模板剂, 该无机模板剂为无机纳米颗粒, 在有机溶剂中通过表 面处理剂对该无机模板剂进行表面处理, 使无机模板剂分散在该有机溶剂 中, 形成无机模板剂分散液;
将该聚酰亚胺溶液和无机模板剂分散液混合并超声处理, 形成制膜液; 将该制膜液涂覆在基板表面并烘干, 形成有机无机复合膜; 以及
将该有机无机复合膜置于模板脱除剂溶液中, 该有机无机复合膜中的无 机模板剂与该模板脱除剂反应, 从而去除该有机无机复合膜中的无机模板 剂, 得到该聚酰亚胺微孔隔膜。
2. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述的 二酐 体选自结构式为
Figure imgf000014_0001
中的至少一种。
3. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述的
-胺单体选自结构式为
Figure imgf000015_0002
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000016_0002
中的至少一种。
4. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述二 胺单体总摩尔数与二酐单体总摩尔数的比例为 1 : 1至 1 : 1 .05。
5. 如权利要求 1 所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述 催化剂为苯曱酸、 苯磺酸、 曱基苯磺酸、 苯乙酸、 吡啶、 喹啉、 异喹啉、 8- 羟基异喹啉、 吡咯和咪唑中的一种或多种。
6. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 当所述 催化剂为碱性催化剂时, 在该混合液中进一步加入共沸脱水剂, 该共沸脱水 剂为苯、 正己烷、 曱苯、 间二曱苯、 对二曱苯和邻二曱苯中的一种或多种。
7. 如权利要求 1 所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述 无机模板剂为纳米二氧化硅颗粒、 纳米二氧化钛颗粒、 纳米三氧化二铝颗粒 中、 纳米碳酸钙颗粒、 纳米氢氧化镁、 纳米氧化镁、 纳米碳酸镁、 纳米碳酸 钡、纳米氢氧化辞及纳米碳酸辞中的一种或多种,在该无机模板剂分散液中, 所述无机模板剂与有机溶剂的质量比为 0.05 : 1至 0.5 : 1。
8. 如权利要求 1 所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述 表面处理剂为乙烯基三曱氧基硅烷、 乙烯基三乙氧基硅烷、 γ- (曱基丙烯酰 氧) 丙基三曱氧基硅烷、 γ- (曱基丙烯酰氧) 丙基三乙氧基硅烷、 曱基三曱 氧基硅烷、 3-缩水甘油醚氧基丙基三曱氧基硅烷、 γ—氨丙基三乙氧基硅烷、 异丁基三乙氧基硅及丁二烯基三乙氧基硅烷中的一种或多种。
9. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 所述有 机溶剂为二曱基曱酰胺、 二曱基乙酰胺、 1 , 2-二氯乙烷、 二曱基亚砜、 二 苯砜、 环丁砜和 N-曱基吡咯烷酮中的一种或多种。
10. 如权利要求 1所述的聚酰亚胺微孔隔膜的制备方法, 其特征在于, 在所 述制膜液中, 所述无机模板剂与聚酰亚胺的质量比为 0.3: 1至 2: 1。
PCT/CN2014/080843 2013-06-27 2014-06-26 聚酰亚胺微孔隔膜的制备方法 WO2014206315A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016522226A JP6073528B2 (ja) 2013-06-27 2014-06-26 ポリイミド微孔隔膜の製造方法
US14/980,487 US20160111696A1 (en) 2013-06-27 2015-12-28 Method for making polyimide microporous separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310262980.8 2013-06-27
CN201310262980.8A CN103383996B (zh) 2013-06-27 2013-06-27 聚酰亚胺微孔隔膜的制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,487 Continuation US20160111696A1 (en) 2013-06-27 2015-12-28 Method for making polyimide microporous separator

Publications (1)

Publication Number Publication Date
WO2014206315A1 true WO2014206315A1 (zh) 2014-12-31

Family

ID=49491740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/080843 WO2014206315A1 (zh) 2013-06-27 2014-06-26 聚酰亚胺微孔隔膜的制备方法

Country Status (4)

Country Link
US (1) US20160111696A1 (zh)
JP (1) JP6073528B2 (zh)
CN (1) CN103383996B (zh)
WO (1) WO2014206315A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383996B (zh) * 2013-06-27 2015-07-22 江苏华东锂电技术研究院有限公司 聚酰亚胺微孔隔膜的制备方法
CN104088155B (zh) * 2014-06-25 2016-05-04 江苏华东锂电技术研究院有限公司 复合隔膜及其制备方法,以及锂离子电池
CN105322118A (zh) * 2014-07-16 2016-02-10 中国科学院青岛生物能源与过程研究所 一种耐高温锂离子电池隔膜及其制备工艺
CN105609780B (zh) * 2014-10-29 2019-01-25 江苏华东锂电技术研究院有限公司 电极粘结剂、正极材料以及锂离子电池
JP6729403B2 (ja) * 2015-02-10 2020-07-22 日産化学株式会社 剥離層形成用組成物
CN104752665B (zh) * 2015-03-31 2017-03-08 渤海大学 一种聚酰亚胺多孔纳米纤维电极隔膜的制备方法
CN106340652B (zh) 2015-07-17 2019-03-08 江苏华东锂电技术研究院有限公司 正极材料及锂硫电池
CN106700070A (zh) * 2015-07-31 2017-05-24 中科院广州化学有限公司南雄材料生产基地 一种含酚羟基的可溶性聚酰亚胺及其制备方法与应用
CN105990037A (zh) * 2016-01-27 2016-10-05 安徽旭峰电容器有限公司 一种增强型无纺布静电纺丝纤维膜复合隔膜材料
CN106229445A (zh) * 2016-07-28 2016-12-14 华南理工大学 一种锂离子电池隔膜及其制备方法和锂离子电池
CN106784544A (zh) * 2016-11-23 2017-05-31 德阳九鼎智远知识产权运营有限公司 一种聚酰亚胺锂离子电池隔膜及其电池
CN106750434B (zh) * 2016-12-23 2020-02-21 桂林电器科学研究院有限公司 一种聚酰亚胺多孔薄膜的制备方法
CN107099048B (zh) * 2017-03-13 2020-05-08 桂林电器科学研究院有限公司 一种耐溶剂的多孔聚酰亚胺薄膜的制备方法
CN108539097A (zh) * 2018-04-10 2018-09-14 深圳市摩码科技有限公司 一种锂电池隔膜、其制备方法及锂电池
US11028242B2 (en) 2019-06-03 2021-06-08 Enevate Corporation Modified silicon particles for silicon-carbon composite electrodes
CN109411682B (zh) * 2018-12-11 2022-01-28 广东永邦新能源股份有限公司 一种高热稳定性的锂电池隔膜及其制备方法
CN112086606A (zh) * 2019-06-13 2020-12-15 南京林业大学 一种分级多孔聚酰亚胺锂电池隔膜的制备方法
CN111430649B (zh) * 2020-05-08 2022-11-08 赣州拓远新能源有限公司 一种锂离子电池隔膜的制备方法及锂离子电池
CN111705683B (zh) * 2020-05-20 2021-11-23 中国路桥工程有限责任公司 大型悬索桥主缆除湿防腐方法
CN114272764B (zh) * 2021-12-15 2023-01-17 北京市科学技术研究院城市安全与环境科学研究所 一种聚四氟乙烯微孔膜及其制备方法与应用
CN114687000A (zh) * 2022-02-22 2022-07-01 江西师范大学 一种聚多巴胺@TiO2@PI纳米纤维膜及其制备方法
CN114709558A (zh) * 2022-03-25 2022-07-05 中材锂膜有限公司 一种高耐热聚酰胺酰亚胺复合隔膜及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361097A (zh) * 2000-12-27 2002-07-31 中国科学院化学研究所 一种含氟有机二胺及其衍生物和它们的制备方法及用途
CN101921480A (zh) * 2010-05-10 2010-12-22 东北师范大学 纳/微米孔结构聚酰亚胺杂化质子交换膜的制备方法
CN103383996A (zh) * 2013-06-27 2013-11-06 江苏华东锂电技术研究院有限公司 聚酰亚胺微孔隔膜的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10302749A (ja) * 1997-04-25 1998-11-13 Nissan Motor Co Ltd 非水電解液二次電池
US6280873B1 (en) * 1999-04-08 2001-08-28 Quallion, Llc Wound battery and method for making it
US6214746B1 (en) * 1999-05-07 2001-04-10 Honeywell International Inc. Nanoporous material fabricated using a dissolvable reagent
CN101355143B (zh) * 2007-07-27 2010-09-29 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101393976B (zh) * 2007-09-19 2011-01-12 比亚迪股份有限公司 一种电池隔膜及其制备方法
CN101420018B (zh) * 2007-10-26 2011-07-13 比亚迪股份有限公司 一种锂离子二次电池隔膜及其制备方法
JP4978602B2 (ja) * 2008-09-30 2012-07-18 宇部興産株式会社 非対称中空糸ガス分離膜、及びガス分離方法
JP6058250B2 (ja) * 2010-04-12 2017-01-11 日東電工株式会社 粒子分散樹脂組成物、粒子分散樹脂成形体およびそれらの製造方法
CN102746511A (zh) * 2011-04-18 2012-10-24 中国科学院宁波材料技术与工程研究所 耐水解磺化聚酰亚胺及其制备方法和应用
CN102354733B (zh) * 2011-08-23 2013-11-06 浙江大学 利用离子模版效应制备锂离子电池隔膜的方法
JP2013109842A (ja) * 2011-11-17 2013-06-06 Ibiden Co Ltd リチウムイオン電池用セパレータの製造方法
WO2013084368A1 (ja) * 2011-12-09 2013-06-13 公立大学法人首都大学東京 リチウム二次電池用セパレータ及びその製造方法
CN102522528B (zh) * 2011-12-31 2014-08-27 宁波长阳科技有限公司 一种电池隔膜的制备方法
CN102655228A (zh) * 2012-05-08 2012-09-05 江苏科技大学 一种耐高温的聚酰亚胺电池隔膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1361097A (zh) * 2000-12-27 2002-07-31 中国科学院化学研究所 一种含氟有机二胺及其衍生物和它们的制备方法及用途
CN101921480A (zh) * 2010-05-10 2010-12-22 东北师范大学 纳/微米孔结构聚酰亚胺杂化质子交换膜的制备方法
CN103383996A (zh) * 2013-06-27 2013-11-06 江苏华东锂电技术研究院有限公司 聚酰亚胺微孔隔膜的制备方法

Also Published As

Publication number Publication date
CN103383996B (zh) 2015-07-22
JP2016523300A (ja) 2016-08-08
JP6073528B2 (ja) 2017-02-01
US20160111696A1 (en) 2016-04-21
CN103383996A (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2014206315A1 (zh) 聚酰亚胺微孔隔膜的制备方法
JP6498228B2 (ja) 多孔質層
CN103474609B (zh) 一种叠涂复合锂电池隔膜
CN102888016B (zh) 具有交联结构复合层的锂离子二次电池隔膜的制备方法
WO2016029740A1 (zh) 复合隔膜的制备方法
CN104425788B (zh) 一种锂离子电池隔膜及其制备方法和含有该隔膜的锂离子电池
JP6398298B2 (ja) 芳香族ポリアミド/芳香族ポリイミド複合多孔質膜および非水電解液系二次電池用セパレータならびに非水電解液系二次電池
CN110048063A (zh) 无机纳米颗粒改性芳纶浆液及芳纶涂覆的锂电池复合隔膜
CN103682217B (zh) 一种动力锂离子电池用耐高温无纺布复合隔膜及其制备方法
CN103296240A (zh) 锂离子电池用高性能柔性复合无纺布膜及制备方法与应用
TW201014016A (en) Sodium secondary battery
WO2014079177A1 (zh) 用于锂离子二次电池隔膜的涂层组合物及该隔膜的制造方法
JP6166575B2 (ja) 電極一体型セパレータ及びその製造方法
CN107099048A (zh) 一种耐溶剂的多孔聚酰亚胺薄膜的制备方法
Yoo et al. Lithium-ion polymer cells assembled with a reactive composite separator containing vinyl-functionalized SiO2 particles
CN108400272B (zh) 一种复合有水羟硅钠石-二氧化硅气凝胶的锂电池聚丙烯隔膜
CN102993452A (zh) 一种锂离子电池用改性聚乙烯隔膜的制备方法
WO2016029741A1 (zh) 纳米单离子导体的制备方法
Zhang et al. Enhanced thermostability and electrochemical performance of separators based on an organic-inorganic composite binder composed of polyvinyl alcohol and inorganic phosphate for lithium ion batteries
Hu et al. Anchoring porous F-TiO2 particles by directed-assembly on PMIA separators for enhancing safety and electrochemical performances of Li-ion batteries
CN103915593A (zh) 一种聚酰亚胺纳米锂离子电池隔膜的制备方法及其产品
JP5587555B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
TW202109943A (zh) 二次電池的陰極的製備方法
CN111509176A (zh) 一种交联型聚酰亚胺/陶瓷复合隔膜及其制备方法
JP2002170541A (ja) 非水電解質二次電池用多孔質膜の製造方法、非水電解質二次電池用電極の製造方法、非水電解質二次電池用多孔質膜および非水電解質二次電池用電極並びに非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14817446

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016522226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14817446

Country of ref document: EP

Kind code of ref document: A1