WO2014194864A1 - 一种波长转换装置及其制作方法、相关发光装置 - Google Patents
一种波长转换装置及其制作方法、相关发光装置 Download PDFInfo
- Publication number
- WO2014194864A1 WO2014194864A1 PCT/CN2014/079428 CN2014079428W WO2014194864A1 WO 2014194864 A1 WO2014194864 A1 WO 2014194864A1 CN 2014079428 W CN2014079428 W CN 2014079428W WO 2014194864 A1 WO2014194864 A1 WO 2014194864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- phosphor
- diffuse reflection
- reflection layer
- layer
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 238000005286 illumination Methods 0.000 title abstract description 5
- 239000000758 substrate Substances 0.000 claims abstract description 178
- 239000002245 particle Substances 0.000 claims abstract description 108
- 239000000843 powder Substances 0.000 claims abstract description 57
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 20
- 229910052582 BN Inorganic materials 0.000 claims abstract description 10
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 10
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 140
- 239000011521 glass Substances 0.000 claims description 120
- 238000005245 sintering Methods 0.000 claims description 55
- 239000002002 slurry Substances 0.000 claims description 36
- 230000005284 excitation Effects 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 29
- 238000002844 melting Methods 0.000 claims description 16
- 230000008018 melting Effects 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 6
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 229910001925 ruthenium oxide Inorganic materials 0.000 claims description 5
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims description 3
- 239000000395 magnesium oxide Substances 0.000 claims description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 3
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 238000002310 reflectometry Methods 0.000 abstract description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 abstract 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 216
- 229920002545 silicone oil Polymers 0.000 description 35
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 31
- 229910052782 aluminium Inorganic materials 0.000 description 30
- 239000000919 ceramic Substances 0.000 description 27
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 19
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 14
- 239000000741 silica gel Substances 0.000 description 11
- 229910002027 silica gel Inorganic materials 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000000853 adhesive Substances 0.000 description 9
- 230000001070 adhesive effect Effects 0.000 description 9
- 239000011148 porous material Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 235000019353 potassium silicate Nutrition 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003292 glue Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- JNDMLEXHDPKVFC-UHFFFAOYSA-N aluminum;oxygen(2-);yttrium(3+) Chemical compound [O-2].[O-2].[O-2].[Al+3].[Y+3] JNDMLEXHDPKVFC-UHFFFAOYSA-N 0.000 description 3
- 239000005388 borosilicate glass Substances 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- 229910019901 yttrium aluminum garnet Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 125000005375 organosiloxane group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/70—Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/30—Elements containing photoluminescent material distinct from or spaced from the light source
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5022—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5031—Alumina
- C04B41/5032—Aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/02—Use of particular materials as binders, particle coatings or suspension media therefor
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V13/00—Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
- F21V13/02—Combinations of only two kinds of elements
- F21V13/08—Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V29/00—Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
- F21V29/50—Cooling arrangements
- F21V29/502—Cooling arrangements characterised by the adaptation for cooling of specific components
- F21V29/505—Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0284—Diffusing elements; Afocal elements characterized by the use used in reflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0808—Mirrors having a single reflecting layer
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/16—Cooling; Preventing overheating
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
- G03B21/20—Lamp housings
- G03B21/2006—Lamp housings characterised by the light source
- G03B21/2033—LED or laser light sources
- G03B21/204—LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
Definitions
- the present invention relates to the field of illumination and display technologies, and in particular, to a wavelength conversion device, a method of fabricating the same, and a related illumination device.
- the equal light source excites the phosphor to obtain predetermined monochromatic light or multi-color light, which is a technical solution widely used in the fields of illumination light source, projection display and the like. This technical solution often uses laser or LED
- the exiting light is incident on a high-speed rotating fluorescent pink wheel for good heat dissipation.
- the prior art color wheel comprises a two-layer structure: the lower layer is a mirrored aluminum substrate, and the upper layer is a phosphor sheet coated on an aluminum substrate.
- the mirror aluminum substrate mainly serves as reflection and heat conduction.
- the mirror aluminum substrate generally has a three-layer structure: an aluminum substrate, a high reflective layer and a surface dielectric protective layer, wherein the high reflective layer is generally made of high purity aluminum or high purity silver on the surface of the highly reflective layer.
- the dielectric layer is plated with a low refractive index MgF 2 or SiO 2 and a high refractive index layer material TiO 2 to protect and enhance the reflection of the high purity aluminum/silver layer.
- MgF 2 or SiO 2 low refractive index
- TiO 2 high refractive index layer material
- the technical problem mainly solved by the embodiments of the present invention is to provide a wavelength conversion device capable of withstanding higher temperature, a manufacturing method thereof, and a related illuminating device .
- the embodiment of the invention provides a wavelength conversion device, which comprises:
- the phosphor layer comprising a phosphor
- a diffuse reflective layer comprising white scattering particles, the white scattering particles being used to scatter incident light;
- the high thermal conductivity substrate is one of an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, a boron nitride substrate, and a ruthenium oxide substrate;
- the phosphor layer, the diffuse reflection layer, and the high thermal conductivity substrate are sequentially stacked and fixed.
- the high thermal conductivity substrate has a thermal conductivity greater than or equal to 100 W/mK.
- the diffusely reflective layer comprises a first glass frit, the first glass frit being used to bond white scattering particles.
- the phosphor layer further comprises a second glass frit for bonding the phosphor.
- the white scattering particles include at least one of barium sulfate powder, alumina powder, magnesium oxide powder, titanium oxide powder, and zirconia powder.
- the diffuse reflection layer comprises a first glass frit
- the first glass frit is used to bond white scattering particles
- the first glass frit and the second glass frit are the same high melting point glass frit.
- the embodiment of the present invention further provides a light emitting device, comprising: the wavelength conversion device, wherein the light emitting device further comprises an excitation light source for emitting excitation light, wherein the phosphor is used to absorb the excitation light to generate a laser beam.
- the diffuse reflection layer is used for scattering reflection of the laser light or the mixed light of the laser light and the unabsorbed excitation light.
- the embodiment of the invention further provides a method for fabricating a wavelength conversion device, which is characterized in that:
- the high thermal conductive substrate is one of an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, a boron nitride substrate, and a ruthenium oxide substrate;
- the diffuse reflection layer comprises white scattering particles, and the white scattering particles are used for scattering incident light;
- the phosphor layer, the diffuse reflection layer, and the high thermal conductivity substrate are sequentially stacked and fixed.
- step B and step D comprise:
- the diffuse reflection layer comprising white scattering particles and a first glass frit
- the sintering temperature is lower than the melting point of the high thermal conductive substrate
- the phosphor layer is fixed on the surface of the substrate The surface of the diffuse layer.
- step B, step C and step D comprise:
- the sintering temperature is lower than the melting point of the high thermal conductive substrate, and the diffuse reflection layer on the surface of the high thermal conductive substrate
- the surface is sintered with a phosphor layer comprising a second glass frit and a phosphor, and the sintering temperature T3 ⁇ Tf + 400 ° C, where Tf is the softening temperature of the first glass frit.
- sintering a diffuse reflective layer on the surface of the highly thermally conductive substrate comprises:
- the high thermal conductive substrate coated with the scattering particle slurry is sintered to obtain a diffuse reflection layer.
- sintering a phosphor layer on the surface of the diffuse reflection layer on the surface of the substrate comprises:
- a step is further included between step B3 and step B4: placing a highly thermally conductive substrate coated with the scattering particle slurry on the T1 The temperature is heated for more than 0.2 hours, wherein Tb-100 ° C ⁇ T1 ⁇ Tb + 200 ° C, and Tb is the complete decomposition temperature of the organic carrier.
- the embodiment of the invention has the following beneficial effects:
- the wavelength conversion device uses a diffuse reflection layer and a high thermal conductivity substrate instead of the conventional mirror aluminum substrate.
- the diffuse reflection layer includes white scattering particles, and the white scattering particles scatter the incident light to replace the specular reflection of the conventional metal reflection layer by diffuse reflection, thereby realizing reflection of incident light.
- the white scattering particles do not oxidize at high temperatures to absorb the incident light, so the diffuse reflection layer does not lower the reflectance at a higher temperature and can withstand high temperatures.
- the high thermal conductivity substrate is one of aluminum nitride, silicon nitride, silicon carbide, boron nitride, and antimony oxide, these ceramic materials have a melting point much higher than that of metal aluminum, and can withstand higher temperatures than aluminum. Therefore, the wavelength conversion device in the embodiment of the present invention can withstand higher temperatures.
- 1a is a schematic structural view of an embodiment of a wavelength conversion device according to the present invention.
- Figure 1b A schematic diagram of a relative luminous intensity curve of a wavelength conversion device of a mirror aluminum substrate and a wavelength conversion device of an aluminum nitride ceramic substrate under different power excitation light irradiation;
- Diffuse reflective layer 120 For reflecting incident light, which includes white scattering particles.
- the white scattering particles are generally salt or oxide powders such as barium sulfate powder, alumina powder, magnesium oxide powder, titanium oxide powder, zirconia powder, etc., which do not substantially absorb light, and the properties of white scattering materials. Stable, does not oxidize at high temperatures. In view of the need for a better heat dissipation effect of the diffuse reflection layer, it is preferred to select an alumina powder having a higher thermal conductivity.
- the white scattering material needs to have a certain density and thickness in the diffuse reflection layer 120, and the density and thickness can be determined experimentally.
- the thermal conductivity of the silicon carbide substrate is only 80W/mK, but it has been experimentally proven to be used as a high thermal conductivity substrate.
- These high thermal conductivity substrate materials have melting points above 1500 °C, much higher than the melting point of aluminum (700 °C), can withstand higher temperatures.
- the wavelength conversion device utilizes a diffuse reflection layer and a highly thermally conductive substrate in place of a conventional mirror metal plate.
- the diffuse reflection layer includes white scattering particles, and the white scattering particles scatter the incident light to replace the specular reflection of the conventional metal reflection layer by diffuse reflection, thereby realizing reflection of incident light.
- the white scattering particles do not oxidize at high temperatures to absorb incident light, so the diffuse reflection layer does not lower the reflectance at high temperatures and can withstand higher temperatures.
- the high thermal conductive substrate is one of an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, a boron nitride substrate, and a yttria substrate, it can withstand higher temperatures than metallic aluminum. Therefore, the wavelength conversion device in the embodiment of the present invention can withstand higher temperatures.
- the surface is relatively smooth.
- the surface of the phosphor layer contacting the substrate shrinks, and part of the surface is separated from the substrate, so that the phosphor layer and the mirror aluminum substrate are formed.
- the contact area is small, so the interface thermal resistance between the phosphor layer and the mirror aluminum substrate is relatively large.
- the wavelength conversion device of the aluminum nitride ceramic substrate since the surfaces of the ceramic substrate and the diffuse reflection layer are relatively rough, the contact area between the phosphor layer and the diffuse reflection layer, and between the diffuse reflection layer and the ceramic substrate is compared. Larger, the interface thermal resistance after molding of the wavelength conversion device is smaller, so that the heat of the phosphor layer can be more transmitted to the ceramic substrate, so that the wavelength conversion device can withstand higher temperatures.
- the phosphor is generally encapsulated into a whole by a binder.
- the most commonly used silicone adhesive is chemically stable and has high mechanical strength. However, as mentioned earlier, the silicone adhesive can withstand lower temperatures, generally 300 degrees Celsius to 500 degrees Celsius .
- an inorganic binder may be used to bond the phosphor into a whole, and the inorganic binder may be water glass, glass powder, or the like to achieve high-temperature reflective fluorescence. Powder wheel.
- the phosphor layer 110 The adhesive is a second glass frit, which is an amorphous granular glass homogenate with high transparency and chemical stability.
- the second glass frit and the phosphor may be subjected to a process of sintering to form the phosphor layer 110 and the diffuse reflection layer
- the bond between 120 is very strong, and the formed phosphor layer 110 is highly transparent and can withstand higher temperatures.
- Figure 1c A schematic diagram of a relative luminous intensity curve of a wavelength conversion device for a phosphor encapsulated phosphor layer and a phosphor conversion device for a glass powder package under different power excitation light irradiation, the substrate of which is an aluminum nitride ceramic substrate, as shown in FIG. 1c
- the abscissa of the coordinate axis is different excitation light power, and its maximum power is 14W.
- the ordinate of the coordinate axis is the relative luminous intensity at which the laser is generated.
- the sintering temperature T3 should satisfy: T3 ⁇ Tf + 400 ° C, where Tf is the softening temperature of the first glass frit.
- the first glass frit and the second glass frit may be the same kind of glass frit.
- the sintering temperature at the second sintering is controlled as described above, the diffuse reflection layer 120 or the phosphor which is first sintered is not destroyed. Layer 110 Therefore, the two sinterings can even be the same temperature.
- both the first glass frit and the second glass frit are high melting point glass frits, such as silicate glass frit. Compared with the low-melting glass frit, the high-melting glass frit has good light transmittance and can reduce light loss.
- the first glass frit and the second glass frit are required to be capable of transmitting incident light while conducting heat, and therefore preferably, the first frit powder and / Or the second glass frit is borosilicate glass powder, the borosilicate glass powder has stable properties, high transmittance, and has high thermal conductivity relative to other glass powders.
- the glass frit can be used as the first glass frit and the second glass frit. A medium softening temperature.
- the high thermal conductivity substrate 130 A composite structure in which a ceramic substrate is coated with copper can be used.
- the composite structure can be realized by forming a diffuse reflection layer on the surface of the ceramic substrate and then applying copper on the other surface of the ceramic substrate, thereby avoiding oxidation and deformation of the copper.
- an embodiment of the present invention further provides a method for fabricating a wavelength conversion device.
- a method for fabricating a wavelength conversion device Please refer to Figure 2 and Figure 2 A schematic flowchart of an embodiment of a method for fabricating a wavelength conversion device of the present invention. As shown in FIG. 2, the steps of this embodiment include:
- the phosphor layer includes a phosphor.
- the phosphor may be bonded together by an adhesive, and the adhesive may be silica gel, water glass, glass frit or the like.
- the method of forming the phosphor layer is generally related to the binder.
- the phosphor may be formed by a method of mixing and coating with silica gel, or may be formed by a deposition method after mixing with water glass.
- Step S14 may also be combined with step S11, step S12, and step S13.
- the diffuse reflection layer is bonded and fixed to the high thermal conductive substrate, and then the phosphor layer is obtained, and the phosphor layer and the diffuse reflection layer are bonded and fixed; or, the diffuse reflection layer is obtained.
- the two are first bonded and fixed, and then the high thermal conductive substrate is obtained, and the highly thermally conductive substrate and the diffuse reflection layer are bonded and fixed.
- the acquisition of the diffuse reflection layer and the bonding process of the diffuse reflection layer to the highly thermally conductive substrate can be performed simultaneously, for example, directly forming the diffuse reflection layer on the surface of the highly thermally conductive substrate.
- the acquisition of the diffuse reflection layer and the bonding process of the diffuse reflection layer and the phosphor layer can also be performed simultaneously, for example, directly forming the diffuse reflection layer on the surface of the phosphor layer.
- the acquisition of the phosphor layer and the bonding process of the diffuse reflection layer and the phosphor layer can also be performed simultaneously, for example, directly forming the phosphor layer on the surface of the diffuse reflection layer.
- step S23 step S13 and step S14 in the manufacturing method shown in FIG. 2 are performed. At the same time. Also, the steps are simplified and the interface thermal resistance due to bonding such as glue is eliminated.
- the phosphor layer herein comprises a second glass powder and a phosphor, and the second glass powder is far more resistant to high temperatures than the silica gel and the bonding force between the glass and the glass. The adhesion between the glass and the silica gel is much higher, thus increasing the bonding force between the diffuse reflection layer and the phosphor layer, so the glass powder encapsulating the phosphor layer is a preferred mode.
- the sintering temperature of this step T3 is to satisfy T3 ⁇ Tf + 400 ° C, where Tf is the softening temperature of the first glass frit.
- the amount of methyl silicone oil should be at least sufficient to soak the white scattering particles and the first glass powder to mix the three into one.
- the amount of the white scattering particles and the first glass frit can be selected according to actual needs, and only the first glass powder can be used to bond the white scattering particles into a single body in the subsequent sintering.
- the highly thermally conductive ceramic substrate is a carrier for the scattering particle slurry.
- the scattering particle slurry may be coated on the highly thermally conductive ceramic substrate by knife coating or the like, and preferably, the scattering particle slurry may be applied by screen printing, and the screen printing may be applied to the surface of the highly thermally conductive ceramic substrate.
- the scattering particle slurry is more uniform in thickness and has less thermal stress after sintering.
- the sintering temperature should be above the softening temperature of the first glass frit in the scattering particle slurry, so that the glass powder forms a liquid phase, which is favorable for sintering with the scattering particles into a dense diffuse reflection layer; It should not be too high, otherwise a certain amount of white scattering particles will chemically react with the glass powder to affect the diffuse reflectance. It has been found through experiments that the sintering temperature T2 can be formed relatively easily in the range of Tf ⁇ T2 ⁇ Tf + 400 ° C, where Tf is the softening temperature of the first glass frit.
- the silicone oil is a mixture of polyorganosiloxanes of different polymerization degrees, and the polyorganosiloxanes of different polymerization degrees have different flash points, so in the process of heating the silicone oil, the organosiloxanes of different polymerization degrees are sequentially volatilized. At this time, although some of the silicone oil volatilizes, the white scattering particles, the first glass frit and the remaining silicone oil still have fluidity, and the white scattering particles and the first glass powder are close to each other to fill the position of the volatile silicone oil, thereby reducing the pores. produce. Therefore, silicone oil is a relatively preferred organic vehicle.
- the heating temperature T1 is less than the sintering temperature T2 in step S15.
- the volatilization speed of the silicone oil can be slowed down, so it is necessary to set T2 to be larger than T1.
- T2 and T1 When the temperature is relatively close, there is no significant difference in the volatilization rate of the silicone oil during the two heatings. The effect of removing the silicone oil at low temperature is not obvious, so the temperature T1 and T2 here preferably satisfy T2 - T1 ⁇ 100 °C.
- This step S36 does not have a certain order relationship with the previous steps, and the order may be arbitrary.
- This step S36 The effect of the methyl silicone oil is the same as that of the step S32, except that the phosphor and the second glass powder are obtained.
- step S37 is similar to step S33 in that the methyl silicone oil functions as a carrier for the phosphor and the second glass frit.
- the diffuse reflection layer is a carrier of the phosphor slurry, and the coating method is the same as the step S34.
- the sintering method in this step is the same as step S35, except that the sintering temperature satisfies T3 ⁇ Tf + 400 ° C, wherein Tf is the softening temperature of the first glass frit. Also, similarly, the step of preliminarily removing the silicone oil can be increased at a low temperature.
- the organic carrier silicone oil is used as a carrier to make the mixing of different substances more uniform, and it is easy to understand that the diffuse reflection layer and the fluorescence are easily understood.
- the formation of the powder layers is independent of each other, and the organic carriers can be used individually to assist molding during the molding process.
- the embodiment of the invention further provides a light-emitting device comprising the wavelength conversion device of the above embodiment, and further comprising an excitation light source for emitting excitation light.
- the phosphor is used to absorb the excitation light to generate a laser
- the diffuse reflection layer is used for scattering and reflecting the laser or the mixed light of the laser and the unabsorbed excitation light
- the high thermal conductivity substrate is used to conduct the diffuse reflection layer. The heat is released into the air.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Dispersion Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Multimedia (AREA)
- Led Device Packages (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Optical Filters (AREA)
- Luminescent Compositions (AREA)
- Optical Elements Other Than Lenses (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
Abstract
Description
Claims (13)
- 一种波长转换装置,其特征在于,包括:荧光粉层,该荧光粉层包括荧光粉;漫反射层,包括白色散射粒子,所述白色散射粒子用于对入射光进行散射;高导热基板,该高导热基板为氮化铝基板、氮化硅基板、碳化硅基板、氮化硼基板、氧化铍基板中的一种;所述荧光粉层、漫反射层、高导热基板依次层叠设置并固定。
- 根据权利要求 1 所述的波长转换装置,其特征在于:所述高导热基板的导热系数大于等于 100W/mK 。
- 根据权利要求 1 所述的波长转换装置,其特征在于:所述漫反射层包括第一玻璃粉,所述第一玻璃粉用于粘接所述白色散射粒子。
- 根据权利要求 1 至 3 任一项所述的波长转换装置,其特征在于:所述荧光粉层还包括第二玻璃粉,该第二玻璃粉用于粘接所述荧光粉。
- 根据权利要求 4 所述的波长转换装置,其特征在于:所述白色散射粒子包括硫酸钡粉末、氧化铝粉末、氧化镁粉末、氧化钛粉末、氧化锆粉末中的至少一种。
- 根据权利要求 4 所述的波长转换装置,其特征在于:所述漫反射层包括第一玻璃粉,所述第一玻璃粉用于粘接所述白色散射粒子,所述第一玻璃粉和第二玻璃粉为同一种高熔点玻璃。
- 一种波长转换装置的制作方法,其特征在于,该制作方法包括:A 、获取高导热基板,该高导热基板为氮化铝基板、氮化硅基板、碳化硅基板、氮化硼基板、氧化铍基板中的一种;B 、获取漫反射层,该漫反射层包括白色散射粒子,所述白色散射粒子用于对入射光进行散射;C 、获取荧光粉层,该荧光粉层包括荧光粉;D 、将所述荧光粉层、漫反射层、高导热基板依次层叠设置并固定。
- 根据权利要求 7 所述的制作方法,其特征在于,所述步骤 B 与步骤 D 包括:在所述高导热基板表面上烧结一层漫反射层,该漫反射层包括白色散射粒子以及第一玻璃粉,所述烧结的温度低于所述高导热基板的熔点,并将所述荧光粉层固定在该基板表面上的所述漫反射层的表面。
- 根据权利要求 7 所述的制作方法,其特征在于,所述步骤 B 、步骤 C 与步骤 D 包括:在所述高导热基板表面上烧结一层漫反射层,该漫反射层包括白色散射粒子以及第一玻璃粉,所述烧结的温度低于所述高导热基板的熔点,并在该高导热基板表面上的所述漫反射层的表面烧结一层荧光粉层,该荧光粉层包括第二玻璃粉和荧光粉,且烧结温度 ,T3 ≤ Tf+400℃, 其中 Tf 为所述第一玻璃粉的软化温度。
- 根据权利要求 8 或 9 所述的制作方法,其特征在于,所述在所述高导热基板表面上烧结一层漫反射层包括:B1 、获取白色散射粒子、第一玻璃粉、有机载体;B2 、将所述白色散射粒子、第一玻璃粉、有机载体混合,以得到散射粒子浆体;B3 、将所述散射粒子浆体涂覆在所述高导热基板上;B4 、将所述被散射粒子浆体涂覆的高导热基板进行烧结成型,以得到漫反射层。
- 根据权利要求 9 所述的制作方法,其特征在于,所述在该基板表面上的所述漫反射层的表面烧结一层荧光粉层包括:C1 、获取所述第二玻璃粉、荧光粉、有机载体;C2 、将所述第二玻璃粉、荧光粉、有机载体混合,以形成荧光粉浆;C3 、将所述荧光粉浆涂覆在所述高导热基板表面上的所述漫反射层的表面;C4 、将涂覆有荧光粉浆的高导热基板烧结成型,以得到荧光粉层,且烧结温度满足 ,T3 ≤ Tf+400℃, 其中 Tf 为所述第一玻璃粉的软化温度。
- 根据权利要求 10 所述的制作方法,其特征在于,所述步骤 B3 与步骤 B4 之间还包括步骤:将所述被散射粒子浆体涂覆的高导热基板放置在 T1 温度加热 0.2 小时以上,其中Tb-100℃≤T1 ≤ Tb+200℃,Tb为所述有机载体的完全分解温度。
- 一种发光装置,其特征在于,包括如权利要求 1 至 6 任一项所述的波长转换装置,该发光装置还包括一用于出射激发光的激发光源,所述荧光粉用于吸收该激发光以产生受激光,所述漫反射层用于对该受激光或者受激光与未被吸收的激发光的混合光进行散射反射。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/895,926 US11022276B2 (en) | 2013-06-08 | 2014-06-07 | Wavelength conversion device, manufacturing method thereof, and related illumination device |
JP2016517154A JP6178003B2 (ja) | 2013-06-08 | 2014-06-07 | 波長変換装置及びその作製方法、関連する発光装置 |
KR1020157036667A KR101739909B1 (ko) | 2013-06-08 | 2014-06-07 | 파장 변환 장치 및 그 제작 방법, 관련 발광 장치 |
EP14808214.2A EP3006823B1 (en) | 2013-06-08 | 2014-06-07 | Wavelength conversion device, manufacturing method thereof, and related illumination device |
US17/332,900 US20210404631A1 (en) | 2013-06-08 | 2021-05-27 | Wavelength conversion device, manufacturing method thereof, and related illumination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310228456.9A CN104100933B (zh) | 2013-04-04 | 2013-06-08 | 一种波长转换装置及其制作方法、相关发光装置 |
CN201310228456.9 | 2013-06-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/895,926 A-371-Of-International US11022276B2 (en) | 2013-06-08 | 2014-06-07 | Wavelength conversion device, manufacturing method thereof, and related illumination device |
US17/332,900 Division US20210404631A1 (en) | 2013-06-08 | 2021-05-27 | Wavelength conversion device, manufacturing method thereof, and related illumination device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014194864A1 true WO2014194864A1 (zh) | 2014-12-11 |
Family
ID=52008790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/079428 WO2014194864A1 (zh) | 2013-06-08 | 2014-06-07 | 一种波长转换装置及其制作方法、相关发光装置 |
Country Status (7)
Country | Link |
---|---|
US (2) | US11022276B2 (zh) |
EP (1) | EP3006823B1 (zh) |
JP (2) | JP6178003B2 (zh) |
KR (1) | KR101739909B1 (zh) |
CN (2) | CN104100933B (zh) |
TW (1) | TWI524130B (zh) |
WO (1) | WO2014194864A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI579589B (zh) * | 2015-08-31 | 2017-04-21 | 中強光電股份有限公司 | 波長轉換裝置及投影機 |
JPWO2016125611A1 (ja) * | 2015-02-03 | 2017-11-16 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光デバイス |
CN107664906A (zh) * | 2016-07-28 | 2018-02-06 | 松下知识产权经营株式会社 | 荧光体基板、荧光体轮、光源装置、投射型影像显示装置 |
JP2018025750A (ja) * | 2016-07-28 | 2018-02-15 | パナソニックIpマネジメント株式会社 | 蛍光体基板、蛍光体ホイール、光源装置、投写型映像表示装置、及び蛍光体基板の製造方法 |
JP2019501419A (ja) * | 2015-12-15 | 2019-01-17 | マテリオン コーポレイション | 改良された波長変換デバイス |
Families Citing this family (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111208700A (zh) * | 2018-11-21 | 2020-05-29 | 台达电子工业股份有限公司 | 荧光剂装置 |
US10688527B2 (en) | 2011-09-22 | 2020-06-23 | Delta Electronics, Inc. | Phosphor device comprising plural phosphor agents for converting waveband light into plural color lights with different wavelength peaks |
DE102013013296B4 (de) * | 2013-08-12 | 2020-08-06 | Schott Ag | Konverter-Kühlkörperverbund mit metallischer Lotverbindung und Verfahren zu dessen Herstellung |
CN104566229B (zh) * | 2013-10-15 | 2016-06-08 | 深圳市光峰光电技术有限公司 | 波长转换装置的制造方法 |
CN104566230B (zh) | 2013-10-15 | 2017-07-11 | 深圳市光峰光电技术有限公司 | 波长转换装置及其光源系统、投影系统 |
CN103912848B (zh) * | 2014-02-24 | 2016-07-06 | 扬州吉新光电有限公司 | 一种利用漫反射基板进行光学设计的荧光粉色轮及其制作方法 |
CN105276525A (zh) * | 2014-07-09 | 2016-01-27 | 深圳市绎立锐光科技开发有限公司 | 波长转换装置及光源系统 |
JP6387787B2 (ja) * | 2014-10-24 | 2018-09-12 | 日亜化学工業株式会社 | 発光装置、パッケージ及びそれらの製造方法 |
CN105738994B (zh) * | 2014-12-10 | 2019-07-02 | 深圳光峰科技股份有限公司 | 波长转换装置及相关照明装置、荧光色轮和投影装置 |
CN105737103B (zh) * | 2014-12-10 | 2018-07-20 | 深圳市光峰光电技术有限公司 | 波长转换装置及相关荧光色轮和投影装置 |
CN105732118B (zh) * | 2014-12-11 | 2020-03-24 | 深圳光峰科技股份有限公司 | 漫反射材料、漫反射层、波长转换装置以及光源系统 |
CN104516177B (zh) * | 2014-12-18 | 2016-08-17 | 苏州佳世达光电有限公司 | 色轮及投影装置 |
CN105805699B (zh) * | 2014-12-30 | 2019-01-08 | 深圳市光峰光电技术有限公司 | 波长转换装置的制备方法 |
CN104713035B (zh) * | 2015-02-03 | 2016-06-29 | 深圳市光峰光电技术有限公司 | 波长转换装置、其制作方法及发光装置 |
JP6613583B2 (ja) * | 2015-03-13 | 2019-12-04 | セイコーエプソン株式会社 | 波長変換素子、光源装置及びプロジェクター |
CN106154365B (zh) * | 2015-04-16 | 2019-01-08 | 深圳市光峰光电技术有限公司 | 一种漫反射层的制备方法及波长转换装置 |
CN106195925A (zh) * | 2015-04-29 | 2016-12-07 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、发光装置及投影装置 |
CN106287580A (zh) * | 2015-06-02 | 2017-01-04 | 深圳市光峰光电技术有限公司 | 波长转换装置及其制备方法、相关发光装置和投影系统 |
CN105072812B (zh) * | 2015-08-06 | 2018-12-21 | 深圳市环基实业有限公司 | 一种孔壁反光导热pcb板制造方法 |
EP3398211B1 (en) | 2015-12-29 | 2020-07-29 | Lumileds Holding B.V. | Flip chip led with side reflectors and phosphor |
JP6974324B2 (ja) | 2015-12-29 | 2021-12-01 | ルミレッズ ホールディング ベーフェー | 側面反射器と蛍光体とを備えるフリップチップled |
CN106931331A (zh) * | 2015-12-31 | 2017-07-07 | 深圳市光峰光电技术有限公司 | 一种散热基座及其制备方法、相关发光模块及制备方法 |
CN105693108A (zh) * | 2016-01-13 | 2016-06-22 | 南京大学 | 一种反射式荧光玻璃光转换组件的制备及应用 |
CN105884203A (zh) * | 2016-04-07 | 2016-08-24 | 薛信培 | 复合高硼硅玻璃及其制备方法和led灯饰 |
CN105716039B (zh) * | 2016-04-12 | 2018-06-15 | 杨阳 | 光转换装置及其制备方法和应用 |
CN107305921A (zh) * | 2016-04-20 | 2017-10-31 | 松下知识产权经营株式会社 | 波长转换部件、光源以及车辆用前照灯 |
CN107631272B (zh) | 2016-07-13 | 2021-08-20 | 深圳光峰科技股份有限公司 | 一种波长转换装置及其制备方法 |
KR101869230B1 (ko) * | 2016-07-28 | 2018-07-19 | 주식회사 제이케이리서치 | 파장선택성 나노다공 구조체 |
CN107689554B (zh) * | 2016-08-06 | 2020-10-20 | 深圳光峰科技股份有限公司 | 一种波长转换装置及其制备方法、发光装置和投影装置 |
CN108300473A (zh) * | 2016-08-10 | 2018-07-20 | 深圳市光峰光电技术有限公司 | 一种波长转换装置及其制备方法、发光装置和投影装置 |
JP6648660B2 (ja) * | 2016-09-21 | 2020-02-14 | 日亜化学工業株式会社 | 蛍光体含有部材及び蛍光体含有部材を備える発光装置 |
CN108105604B (zh) * | 2016-11-25 | 2020-05-29 | 深圳光峰科技股份有限公司 | 发光陶瓷结构及其制备方法、相关发光装置和投影装置 |
CN206929725U (zh) * | 2017-05-12 | 2018-01-26 | 深圳市光峰光电技术有限公司 | 波长转换装置和激光荧光转换型光源 |
CN108954039B (zh) * | 2017-05-19 | 2020-07-03 | 深圳光峰科技股份有限公司 | 波长转换装置及其制备方法 |
JP6891648B2 (ja) | 2017-06-07 | 2021-06-18 | セイコーエプソン株式会社 | 波長変換素子、波長変換装置、光源装置およびプロジェクター |
CN109424941B (zh) * | 2017-07-05 | 2020-10-16 | 深圳光峰科技股份有限公司 | 波长转换装置和激光荧光转换型光源 |
CN109282169B (zh) * | 2017-07-21 | 2021-10-26 | 深圳光峰科技股份有限公司 | 波长转换装置、包含其的光源及投影装置 |
CN112305844B (zh) * | 2017-08-03 | 2022-03-01 | 深圳光峰科技股份有限公司 | 荧光芯片及其制造方法和发光装置 |
US10802385B2 (en) | 2017-08-08 | 2020-10-13 | Panasonic Intellectual Property Management Co., Ltd. | Phosphor plate, light source apparatus, and projection display apparatus |
JP6919434B2 (ja) * | 2017-09-06 | 2021-08-18 | セイコーエプソン株式会社 | 波長変換素子、光源装置およびプロジェクター |
CN109654391B (zh) * | 2017-10-10 | 2020-09-11 | 深圳光峰科技股份有限公司 | 波长转换装置 |
CN109696792B (zh) * | 2017-10-24 | 2022-03-29 | 中强光电股份有限公司 | 投影机及波长转换装置 |
JP2019090856A (ja) * | 2017-11-10 | 2019-06-13 | パナソニックIpマネジメント株式会社 | 波長変換デバイス、光源装置、照明装置、及び、投写型映像表示装置 |
WO2019131730A1 (ja) * | 2017-12-27 | 2019-07-04 | 京セラ株式会社 | カラーホイール、およびプロジェクタ |
KR102602233B1 (ko) * | 2018-02-21 | 2023-11-15 | 삼성디스플레이 주식회사 | 레이저 조사 장치 |
CN108231981A (zh) * | 2018-03-10 | 2018-06-29 | 扬州吉新光电有限公司 | 一种高效荧光轮及其制作方法 |
CN110261942A (zh) * | 2018-03-12 | 2019-09-20 | 深圳光峰科技股份有限公司 | 波长转换装置及其制备方法 |
JP7102843B2 (ja) * | 2018-03-27 | 2022-07-20 | セイコーエプソン株式会社 | 光源装置およびプロジェクター |
JP7119486B2 (ja) * | 2018-03-27 | 2022-08-17 | セイコーエプソン株式会社 | 波長変換素子、照明装置およびプロジェクター |
CN110389489B (zh) * | 2018-04-19 | 2021-10-12 | 深圳光峰科技股份有限公司 | 光源系统、投影设备及色轮 |
CN108439943A (zh) * | 2018-04-20 | 2018-08-24 | 浙江世明光学科技有限公司 | 一次烧结成型的无机蓄光发光墙地砖及其制备方法 |
CN110488560B (zh) * | 2018-05-14 | 2021-10-26 | 中强光电股份有限公司 | 波长转换元件及其形成方法、波长转换模块以及投影装置 |
CN208239722U (zh) | 2018-05-24 | 2018-12-14 | 中强光电股份有限公司 | 波长转换轮、照明系统及投影装置 |
CN110579932B (zh) * | 2018-06-11 | 2023-12-05 | 中强光电股份有限公司 | 波长转换元件、投影装置及波长转换元件的制作方法 |
CN110579933B (zh) | 2018-06-11 | 2022-06-14 | 中强光电股份有限公司 | 波长转换元件、投影装置及波长转换元件的制作方法 |
US10811581B2 (en) | 2018-06-15 | 2020-10-20 | Nichia Corporation | Method of manufacturing semiconductor device |
CN110703551B (zh) * | 2018-07-09 | 2021-07-27 | 中强光电股份有限公司 | 波长转换元件、投影装置及波长转换元件的制作方法 |
CN110716376B (zh) * | 2018-07-13 | 2021-11-09 | 中强光电股份有限公司 | 波长转换元件、投影装置及波长转换元件的制作方法 |
JP7097255B2 (ja) * | 2018-07-25 | 2022-07-07 | クアーズテック株式会社 | 反射部材接合波長変換部材 |
JP7187879B2 (ja) * | 2018-08-08 | 2022-12-13 | セイコーエプソン株式会社 | 波長変換素子、光源装置およびプロジェクター |
CN110927844B (zh) * | 2018-09-20 | 2021-12-14 | 深圳光峰科技股份有限公司 | 一种漫反射装置及其制备方法、波长转换装置 |
CN111123629A (zh) * | 2018-11-01 | 2020-05-08 | 深圳光峰科技股份有限公司 | 波长转换装置及其制备方法、发光装置和投影装置 |
CN111413841B (zh) * | 2019-01-04 | 2023-08-11 | 深圳光峰科技股份有限公司 | 波长转换装置、光源系统与显示设备 |
CN109703120B (zh) * | 2019-01-23 | 2020-09-18 | 厦门大学 | 一种反射式蓝光激光照明组件 |
CN109827096A (zh) * | 2019-01-23 | 2019-05-31 | 厦门大学 | 一种使用空心氧化铝微球的激光照明组件及其制造方法 |
US11762190B2 (en) | 2019-04-19 | 2023-09-19 | Materion Precision Optics (Shanghai) Limited | High temperature resistant reflective layer for wavelength conversion devices |
CN117486586A (zh) * | 2019-08-15 | 2024-02-02 | 万腾荣公司 | 氧化铍基座 |
CN112578551A (zh) | 2019-09-30 | 2021-03-30 | 台达电子工业股份有限公司 | 波长转换装置 |
CN112578552A (zh) | 2019-09-30 | 2021-03-30 | 台达电子工业股份有限公司 | 波长转换装置 |
CN112666780B (zh) * | 2019-10-15 | 2022-06-24 | 台达电子工业股份有限公司 | 波长转换装置 |
CN112802946A (zh) * | 2019-11-13 | 2021-05-14 | 深圳市绎立锐光科技开发有限公司 | 红光发光模块及其制备方法 |
CN111076103A (zh) * | 2019-11-28 | 2020-04-28 | 中国科学院宁波材料技术与工程研究所 | 一种荧光模组及激光照明系统 |
CN111129261B (zh) * | 2019-12-18 | 2021-06-01 | 华中科技大学鄂州工业技术研究院 | 一种白光led的制备工艺方法及白光led |
US11320570B2 (en) * | 2020-04-08 | 2022-05-03 | Delta Electronics, Inc. | Wavelength converting device |
WO2021208668A1 (zh) * | 2020-04-15 | 2021-10-21 | 青岛海信激光显示股份有限公司 | 光源装置、光源装置的驱动方法以及投影仪 |
DE102021114225A1 (de) | 2021-06-01 | 2022-12-01 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Beleuchtungseinrichtung |
CN114315342A (zh) * | 2021-12-02 | 2022-04-12 | 中山大学 | 一种减弱激光散斑的高导热高反射复合材料及其制备方法和应用 |
CN114836195A (zh) * | 2022-03-24 | 2022-08-02 | 中国计量大学 | 一种荧光复合玻璃薄膜的制备方法及其应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140479A (ja) * | 2010-12-28 | 2012-07-26 | Mitsuboshi Belting Ltd | 反射膜形成用組成物およびこの組成物を用いた反射性基板 |
CN102633440A (zh) * | 2012-04-26 | 2012-08-15 | 南通脉锐光电科技有限公司 | 包含荧光体的玻璃涂层及其制造方法、发光器件及其制造方法 |
CN102800791A (zh) * | 2011-05-20 | 2012-11-28 | 斯坦雷电气株式会社 | 光源装置和照明装置 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3459574A (en) * | 1964-11-20 | 1969-08-05 | Du Pont | Opacifying pigment glass composition |
JPS5177169A (ja) * | 1974-12-27 | 1976-07-03 | Nippon Electric Kagoshima Ltd | Taketakeikohyojikannoseizohoho |
JPS6352102A (ja) * | 1986-08-22 | 1988-03-05 | Akihiro Fujita | 電子線硬化による乱反射板 |
US5999281A (en) * | 1997-02-28 | 1999-12-07 | Polaroid Corporation | Holographic projection screen combining an elliptical holographic diffuser and a cylindrical light-collimator |
US20040119400A1 (en) * | 2001-03-29 | 2004-06-24 | Kenji Takahashi | Electroluminescence device |
CN100511732C (zh) * | 2003-06-18 | 2009-07-08 | 丰田合成株式会社 | 发光器件 |
US7070300B2 (en) * | 2004-06-04 | 2006-07-04 | Philips Lumileds Lighting Company, Llc | Remote wavelength conversion in an illumination device |
US7296916B2 (en) * | 2004-12-21 | 2007-11-20 | 3M Innovative Properties Company | Illumination assembly and method of making same |
JP5219331B2 (ja) * | 2005-09-13 | 2013-06-26 | 株式会社住田光学ガラス | 固体素子デバイスの製造方法 |
JP4638837B2 (ja) | 2006-05-30 | 2011-02-23 | 日本電気硝子株式会社 | 光部品及び発光装置 |
US7963817B2 (en) * | 2007-09-18 | 2011-06-21 | Nichia Corporation | Phosphor-containing molded member, method of manufacturing the same, and light emitting device having the same |
CN201129667Y (zh) * | 2007-11-26 | 2008-10-08 | 上海广电光电子有限公司 | 一种使用led光源的侧光式背光模组 |
JP5345363B2 (ja) * | 2008-06-24 | 2013-11-20 | シャープ株式会社 | 発光装置 |
JP2010103034A (ja) * | 2008-10-27 | 2010-05-06 | Ushio Inc | 線状光源装置 |
JP2011071404A (ja) | 2009-09-28 | 2011-04-07 | Kyocera Corp | 発光装置および照明装置 |
JP5530165B2 (ja) | 2009-12-17 | 2014-06-25 | スタンレー電気株式会社 | 光源装置および照明装置 |
US8556437B2 (en) | 2009-12-17 | 2013-10-15 | Stanley Electric Co., Ltd. | Semiconductor light source apparatus and lighting unit |
JP5586260B2 (ja) | 2010-02-12 | 2014-09-10 | スタンレー電気株式会社 | 光源装置および照明装置 |
CN102194807A (zh) * | 2010-03-12 | 2011-09-21 | 展晶科技(深圳)有限公司 | 发光二极管封装结构及其制造方法 |
JP5255023B2 (ja) * | 2010-03-18 | 2013-08-07 | ビジョン開発株式会社 | ダイヤモンドを含有する光散乱膜、及びそれを形成する方法 |
US8723409B2 (en) * | 2010-04-07 | 2014-05-13 | Nichia Corporation | Light emitting device |
JPWO2011151954A1 (ja) * | 2010-05-31 | 2013-07-25 | パナソニック株式会社 | 固体発光素子を光源とするランプ、及び照明装置 |
JP5701523B2 (ja) * | 2010-06-22 | 2015-04-15 | 日東電工株式会社 | 半導体発光装置 |
DE102010027253B4 (de) * | 2010-07-15 | 2022-05-12 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Halbleiterbauteil |
US8604678B2 (en) | 2010-10-05 | 2013-12-10 | Intematix Corporation | Wavelength conversion component with a diffusing layer |
JP2012185980A (ja) | 2011-03-04 | 2012-09-27 | Nippon Electric Glass Co Ltd | 波長変換素子、それを備える光源およびその製造方法 |
CN102267268B (zh) * | 2011-06-17 | 2013-04-17 | 武汉金牛经济发展有限公司 | 一种高反射率的反射膜及其制造方法 |
US8629608B2 (en) * | 2011-12-02 | 2014-01-14 | General Electric Company | Fluorescent lamp of improved lumen maintenance and mercury consumption |
CN102606981A (zh) * | 2012-03-30 | 2012-07-25 | 昆山市诚泰电气股份有限公司 | 反射片 |
CN104837783A (zh) * | 2012-10-12 | 2015-08-12 | 旭硝子株式会社 | 分相玻璃的制造方法和分相玻璃 |
CN103968332B (zh) * | 2013-01-25 | 2015-10-07 | 深圳市光峰光电技术有限公司 | 一种波长转换装置、发光装置及投影系统 |
JP6171401B2 (ja) * | 2013-02-28 | 2017-08-02 | コニカミノルタ株式会社 | シンチレータパネル |
CN104566230B (zh) * | 2013-10-15 | 2017-07-11 | 深圳市光峰光电技术有限公司 | 波长转换装置及其光源系统、投影系统 |
-
2013
- 2013-06-08 CN CN201310228456.9A patent/CN104100933B/zh active Active
- 2013-06-08 CN CN201610605449.XA patent/CN106195924B/zh active Active
-
2014
- 2014-05-23 TW TW103118100A patent/TWI524130B/zh active
- 2014-06-07 WO PCT/CN2014/079428 patent/WO2014194864A1/zh active Application Filing
- 2014-06-07 EP EP14808214.2A patent/EP3006823B1/en active Active
- 2014-06-07 JP JP2016517154A patent/JP6178003B2/ja active Active
- 2014-06-07 US US14/895,926 patent/US11022276B2/en active Active
- 2014-06-07 KR KR1020157036667A patent/KR101739909B1/ko active IP Right Grant
-
2017
- 2017-07-11 JP JP2017135191A patent/JP6677680B2/ja active Active
-
2021
- 2021-05-27 US US17/332,900 patent/US20210404631A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012140479A (ja) * | 2010-12-28 | 2012-07-26 | Mitsuboshi Belting Ltd | 反射膜形成用組成物およびこの組成物を用いた反射性基板 |
CN102800791A (zh) * | 2011-05-20 | 2012-11-28 | 斯坦雷电气株式会社 | 光源装置和照明装置 |
CN102633440A (zh) * | 2012-04-26 | 2012-08-15 | 南通脉锐光电科技有限公司 | 包含荧光体的玻璃涂层及其制造方法、发光器件及其制造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3006823A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016125611A1 (ja) * | 2015-02-03 | 2017-11-16 | 日本電気硝子株式会社 | 波長変換部材及びそれを用いた発光デバイス |
TWI579589B (zh) * | 2015-08-31 | 2017-04-21 | 中強光電股份有限公司 | 波長轉換裝置及投影機 |
US10281808B2 (en) | 2015-08-31 | 2019-05-07 | Coretronic Corporation | Multilayer wavelength conversion device and projector |
JP2019501419A (ja) * | 2015-12-15 | 2019-01-17 | マテリオン コーポレイション | 改良された波長変換デバイス |
JP7227004B2 (ja) | 2015-12-15 | 2023-02-21 | マテリオン コーポレイション | 改良された波長変換デバイス |
CN107664906A (zh) * | 2016-07-28 | 2018-02-06 | 松下知识产权经营株式会社 | 荧光体基板、荧光体轮、光源装置、投射型影像显示装置 |
JP2018025750A (ja) * | 2016-07-28 | 2018-02-15 | パナソニックIpマネジメント株式会社 | 蛍光体基板、蛍光体ホイール、光源装置、投写型映像表示装置、及び蛍光体基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI524130B (zh) | 2016-03-01 |
US11022276B2 (en) | 2021-06-01 |
JP2016526191A (ja) | 2016-09-01 |
KR20160013181A (ko) | 2016-02-03 |
CN106195924B (zh) | 2019-05-03 |
EP3006823B1 (en) | 2023-06-07 |
JP2017216244A (ja) | 2017-12-07 |
JP6677680B2 (ja) | 2020-04-08 |
TW201447464A (zh) | 2014-12-16 |
EP3006823A1 (en) | 2016-04-13 |
CN104100933B (zh) | 2016-08-10 |
JP6178003B2 (ja) | 2017-08-09 |
EP3006823A4 (en) | 2016-06-15 |
US20160123557A1 (en) | 2016-05-05 |
KR101739909B1 (ko) | 2017-05-26 |
CN104100933A (zh) | 2014-10-15 |
US20210404631A1 (en) | 2021-12-30 |
CN106195924A (zh) | 2016-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014194864A1 (zh) | 一种波长转换装置及其制作方法、相关发光装置 | |
JP6826559B2 (ja) | 多層構造のガラス蛍光体シート | |
WO2015180630A1 (zh) | 波长转换装置及其相关发光装置 | |
US10044169B2 (en) | Optical component and its method of manufacture, and light emitting device and its method of manufacture | |
KR102315807B1 (ko) | 솔더 부착을 갖는 인광체 요소를 사용하는 높은 광출력 광 변환 장치 | |
TW201341335A (zh) | 用於led螢光體的硼酸鉍玻璃封裝材料 | |
TW201606885A (zh) | 封裝基板、封裝、及電子裝置 | |
JP2009164311A (ja) | 発光素子搭載用基板およびその製造方法およびそれを用いた発光装置 | |
JP2007299997A (ja) | 発光装置の製造方法 | |
KR20120125452A (ko) | 발광 소자 탑재용 지지체 및 발광 장치 | |
JP7418621B2 (ja) | 波長変換部材及びそれを備える光源装置 | |
WO2023166638A1 (ja) | コンポジットセラミックス、蛍光体素子、レーザー照明装置、およびコンポジットセラミックスの製造方法 | |
JP2013105647A (ja) | 光源装置、発光色度調整方法、光源装置の製造方法 | |
JP2009164309A (ja) | 発光素子搭載用基板およびその製造方法およびそれを用いた発光装置 | |
EP4194947A1 (en) | Wavelength conversion apparatus and manufacturing method therefor | |
WO2022240091A1 (ko) | 파장 변환 부재 및 이를 포함하는 발광장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14808214 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14895926 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016517154 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014808214 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20157036667 Country of ref document: KR Kind code of ref document: A |