WO2022240091A1 - 파장 변환 부재 및 이를 포함하는 발광장치 - Google Patents

파장 변환 부재 및 이를 포함하는 발광장치 Download PDF

Info

Publication number
WO2022240091A1
WO2022240091A1 PCT/KR2022/006559 KR2022006559W WO2022240091A1 WO 2022240091 A1 WO2022240091 A1 WO 2022240091A1 KR 2022006559 W KR2022006559 W KR 2022006559W WO 2022240091 A1 WO2022240091 A1 WO 2022240091A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
powder
silica filler
spherical silica
Prior art date
Application number
PCT/KR2022/006559
Other languages
English (en)
French (fr)
Inventor
김연
이정규
장순욱
장재원
임중규
Original Assignee
대주전자재료 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대주전자재료 주식회사 filed Critical 대주전자재료 주식회사
Priority to EP22807739.2A priority Critical patent/EP4339661A1/en
Priority to US18/560,195 priority patent/US20240243233A1/en
Priority to CN202280046330.7A priority patent/CN117677869A/zh
Priority to JP2023569957A priority patent/JP2024522334A/ja
Publication of WO2022240091A1 publication Critical patent/WO2022240091A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/16Microcrystallites, e.g. of optically or electrically active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package

Definitions

  • the present invention relates to a wavelength conversion member and a light emitting device including the same, and more particularly, to a wavelength conversion member including a spherical silica filler powder having a particle size distribution in a specific range and a light emitting device including the same.
  • Such a light emitting device generally includes a blue LED and a wavelength conversion member that absorbs blue light emitted from the LED and emits yellow, green, or red light to produce white light.
  • the wavelength conversion member is generally in an organic or inorganic matrix. It has a structure in which phosphor powder is dispersed.
  • a wavelength conversion member in which phosphor powder is dispersed in a resin matrix has been used.
  • the wavelength conversion member there is a problem in that the resin is deteriorated or the luminance of the light emitting device is reduced due to heat or irradiation light of an excitation light source.
  • Japanese Patent Publication No. 2003-258308 and Japanese Patent Registration No. 4895541 disclose a manufacturing method of a wavelength conversion member in which phosphor powder is dispersed in a glass matrix.
  • some phosphors may deteriorate due to a high sintering temperature during the manufacture of the wavelength conversion member, resulting in deterioration in optical properties and discoloration, and there are restrictions on the use of the phosphor, so the wavelength conversion member with high color rendering property There is a problem that is difficult to implement.
  • such a wavelength conversion member may not sufficiently scatter excitation light of the LED inside the wavelength conversion member, in which case light emitted from the light emitting device is not uniform and fluorescence intensity is reduced.
  • Patent Document 1 Japanese Laid-open Patent No. 2003-258308
  • Patent Document 2 Japanese Patent Registration No. 4895541
  • the present invention was devised to solve the problems of the prior art, and the technical problem to be solved by the present invention is high fluorescence intensity, excellent light characteristics, and especially when irradiated with high power excitation light, the emission intensity over time It is to provide a wavelength conversion member capable of suppressing deterioration and a manufacturing method thereof.
  • Another technical problem to be solved by the present invention is to provide a light emitting device including the wavelength conversion member.
  • the present invention is a glass matrix; and the phosphor powder and the spherical silica filler powder dispersed in the glass matrix, and the particle diameters corresponding to 10%, 50%, and 90% of the cumulative volume (%) in the particle size distribution measured by laser diffraction are D10, respectively.
  • D50 and D90 the D50 of the spherical silica filler powder is 1.0 to 15.0 ⁇ m, and the span (SPAN) value of 1.0 to 5.0 in the following formula 1 provides a wavelength conversion member:
  • the present invention provides a first step of obtaining a composition for a wavelength conversion member comprising glass powder, phosphor powder and spherical silica filler powder; a second step of applying the composition for a wavelength conversion member onto a substrate to obtain a green sheet for a wavelength conversion member; and a third step of firing the green sheet for the wavelength conversion member.
  • the present invention is the wavelength conversion member; and a light source for irradiating excitation light onto the wavelength conversion member.
  • the wavelength conversion member of the present invention has high fluorescence intensity, excellent light characteristics such as light transmittance, light flux and converted light flux, and can suppress the decrease in light emission intensity over time when irradiated with high power excitation light. It can be usefully used for light emitting devices.
  • 1 is a schematic plan view of a wavelength conversion member according to an embodiment of the present invention.
  • FIG. 3 is a process flow diagram illustrating a method of manufacturing a wavelength conversion member according to an embodiment of the present invention.
  • the present invention is not limited to the contents disclosed below, and may be modified in various forms as long as the gist of the invention is not changed.
  • a wavelength conversion member includes a glass matrix; and the phosphor powder and the spherical silica filler powder dispersed in the glass matrix, and the particle diameters corresponding to 10%, 50%, and 90% of the cumulative volume (%) in the particle size distribution measured by laser diffraction are D10, respectively.
  • D50 and D90 the D50 of the spherical silica filler powder is 1.0 to 15.0 ⁇ m, and the span (SPAN) value of Equation 1 below is 1.0 to 5.0:
  • a wavelength conversion member includes a glass matrix; And a phosphor powder and a spherical silica filler powder dispersed in the glass matrix, and in particular, the spherical silica filler powder has a D50 and a span value in a specific range, so that the fluorescence intensity is high and the optical properties are excellent. , In particular, in the case of irradiation with high-output excitation light, a decrease in luminescence intensity over time can be suppressed.
  • the spherical silica filler powder has a high melting point of 1400 ° C. or more, has heat resistance to a firing temperature when manufacturing a wavelength conversion member, is chemically stable, and is easily adsorbed to a phosphor. Therefore, in manufacturing the wavelength conversion member, shrinkage of the wavelength conversion member generated during firing can be suppressed, and uniform dispersibility of the phosphor particles in the wavelength conversion member can be well maintained.
  • a wavelength conversion member according to an embodiment of the present invention includes a glass matrix.
  • the glass matrix may be a base material of a wavelength conversion member obtained by molding and firing glass powder as a raw material.
  • Phosphor powder and spherical silica filler powder may be dispersed and included in the glass matrix.
  • the glass matrix may be obtained by applying a composition for a wavelength conversion member including glass powder, phosphor powder, and spherical silica filler powder onto a substrate to obtain a sheet shape and firing the composition.
  • the glass matrix may be obtained by putting phosphor powder, spherical silica filler powder, and glass powder into a molding mold, compression molding, and firing at, for example, 450 to 950°C.
  • the glass matrix may serve as a medium for stably maintaining the phosphor powder and the spherical silica filler powder in a uniformly dispersed state in the glass matrix.
  • phosphor powder 120 and spherical silica filler powder 130 may be evenly dispersed in the glass matrix 110 .
  • the composition of the glass powder is important.
  • the glass matrix preferably contains P 2 O 5 , ZnO, SiO 2 and B 2 O 3 as main components.
  • the glass matrix may be derived from a glass powder having a specific composition.
  • the glass powder contains 2 to 10 mol% of P 2 O 5 , 30 to 50 mol% of ZnO, 10 to 25 mol% of SiO 2 , and 15 to 25 mol% of B 2 O 3 based on the total number of moles of the glass powder.
  • the glass powder can be sufficiently sintered even when the content of the phosphor powder is high, and the decrease in luminance of light can be suppressed even when the wavelength conversion member is used for a long time.
  • the wavelength conversion member has excellent water resistance and can realize an excellent light absorption rate.
  • the P 2 O 5 is a component that forms a glass skeleton and improves water resistance, and the content of P 2 O 5 is 2 to 10 mol%, preferably 2 to 6 mol%, based on the total number of moles of the glass powder.
  • ZnO is a component that improves solubility by lowering the melting temperature, and the content of ZnO may be 30 to 50 mol%, preferably 30 to 40 mol%, based on the total number of moles of the glass powder.
  • SiO 2 is a component constituting the glass skeleton, and the content of SiO 2 may be 10 to 25 mol%, preferably 15 to 25 mol%.
  • the B 2 O 3 is a component constituting the glass skeleton, can improve solubility by lowering the melting temperature, and improves light diffusivity, and the content of B 2 O 3 is based on the total number of moles of the glass powder. , 15 to 25 mol%, preferably 15 to 20 mol%.
  • the glass powder contains 1 to 10 mol% of Al 2 O 3 , 0.1 to 7 mol% of SnO 2 , 1 to 5 mol% of BaO, 0.1 to 5 mol% of SrO, and 1 to 10 mol% of CaO. 5 mol%, Li 2 O 1 to 5 mol%, Na 2 O 1 to 7 mol%, and K 2 O 1 to 5 mol% of at least one selected from the group consisting of components may be further included.
  • the Al 2 O 3 is a component that improves chemical durability, and the content of the Al 2 O 3 may be 1 to 10 mol%, preferably 2 to 6 mol%, based on the total number of moles of the glass powder.
  • the effect of improving chemical durability may be insignificant, and when the Al 2 O 3 content exceeds the above range, the meltability of the glass may tend to deteriorate.
  • the SnO 2 is a component capable of lowering the physical property temperature (thermal physical property temperature) for heat such as glass transition temperature, yield point, and softening point (Ts), and the content of SnO 2 is 0.1 to 0.1 to 0.1 to the total number of moles of the glass powder. 7 mol%, more preferably 0.2 to 6 mol%.
  • the effect of lowering the thermophysical temperature may be insignificant, and when the content of SnO 2 exceeds the above range, devitrification due to Sn in the glass during melting ) water (particularly, tetravalent tin) tends to precipitate and the transmittance decreases, and as a result, it may be difficult to obtain a wavelength conversion member having high luminous efficiency, and it may be difficult to vitrify by melting separation.
  • BaO is a component that improves solubility by lowering the melting temperature, and has the effect of promoting glass powder phase and suppressing the reaction with phosphor powder.
  • the content of BaO may be 1 to 5 mol%, preferably 1 to 4 mol%.
  • the effect of improving solubility may be insignificant, and when the content of BaO exceeds the above range, chemical durability is lowered and the tendency to glass phase is excessively increased, even with a small change in heat treatment temperature.
  • the state of the separated phase may fluctuate greatly, causing variation (imbalance) in light diffusivity between lots of wavelength conversion members.
  • SrO is a component that lowers the melting temperature to improve solubility, and has an effect of promoting glass powder phase and suppressing the reaction with phosphor powder.
  • the content of SrO may be 0.1 to 5 mol%, preferably 0.1 to 4 mol%.
  • the effect of improving the solubility may be insignificant, and when the content of SrO exceeds the above range, chemical durability is lowered and the tendency of glass phase phase is excessively increased, even with a small change in heat treatment temperature.
  • the state of the separated phase may fluctuate greatly, and it may be easy to cause variations in light diffusivity between lots of wavelength conversion members.
  • CaO is a component that lowers the melting temperature and improves the solubility, and has an effect of promoting the glass phase and suppressing the reaction with the phosphor powder.
  • the CaO content may be 1 to 5 mol%, preferably 1 to 4 mol%.
  • the effect of improving solubility may be insignificant, and when the content of CaO exceeds the above range, chemical durability is lowered and the tendency of glass phase phase is excessively increased, even with a small change in heat treatment temperature.
  • the state of the separated phase may fluctuate greatly, and it may be easy to cause variations in light diffusivity between lots of wavelength conversion members.
  • Li 2 O is a component that lowers the softening point.
  • the content of Li 2 O may be preferably 1 to 5 mol%, preferably 2 to 5 mol%, based on the total number of moles of the glass powder.
  • Na 2 O is a component that lowers the softening point.
  • the content of Na 2 O may be preferably 1 to 7 mol%, preferably 2 to 6 mol%, based on the total number of moles of the glass powder.
  • K 2 O is a component that lowers the softening point.
  • the content of K 2 O may be preferably 1 to 5 mol%, preferably 2 to 5 mol%, based on the total number of moles of the glass powder.
  • the glass powder may further include SnO 2 0.1 to 7 mol%, such as 0.2 to 6 mol%, and Al 2 O 3 1 to 10 mol%, such as 2 to 6 mol%, based on the total number of moles of the glass powder. have.
  • the glass powder may further include 1 to 5 mol% of BaO, 0.1 to 5 mol% of SrO, and 1 to 5 mol% of CaO based on the total number of moles of the glass powder.
  • the glass powder may further include 1 to 5 mol% of K 2 O, 1 to 5 mol% of Na 2 O, and 1 to 5 mol% of Li 2 O based on the total number of moles of the glass powder.
  • the glass powder may further include Na 2 O and K 2 O, Na 2 O and Li 2 O, or Li 2 O and K 2 O as alkali metal oxides.
  • the glass powder contains the components in the above combination, it is preferable to appropriately adjust the total content of these components in the range of 2 to 15 mol%, preferably 3 to 10 mol%.
  • the glass powder may have an average particle diameter (D50) of 2 to 15 ⁇ m, preferably 5 to 15 ⁇ m.
  • the average particle diameter (D50) of the glass powder is less than the above range, the amount of bubbles generated during firing increases, and bubbles may remain in the wavelength conversion member.
  • the porosity of the wavelength conversion member is preferably 5% or less, 3% or less, particularly 1% or less. If the porosity exceeds the above range, optical properties may be deteriorated. In addition, if a large number of bubbles are included in the wavelength conversion member, light scattering may be excessive and fluorescence intensity may be reduced due to scattering loss.
  • the average particle diameter (D50) of the glass powder exceeds the above range, it is difficult to uniformly disperse the phosphor powder in the wavelength conversion member, and as a result, fluorescence intensity of the wavelength conversion member may decrease or chromaticity deviation may occur.
  • the glass matrix may have a refractive index of 1.44 to 1.89. Specifically, the glass matrix may preferably have 1.57 to 1.85, more preferably 1.60 to 1.84.
  • the glass matrix may have a softening point (Ts) of 550 to 850°C.
  • the softening point (Ts) of the glass matrix may be preferably 550 to 630 °C, more preferably 550 to 600 °C.
  • the glass matrix preferably has a softening point (Ts) of 550°C or higher.
  • softening point (Ts) examples include boron silicate glass and P 2 O 5 -ZnO-SiO 2 -B 2 O 3 glass.
  • the phosphor powder may be present while being uniformly dispersed in the glass matrix.
  • a wavelength conversion member having excellent heat resistance can be provided.
  • the phosphor powder may include a phosphor powder that exhibits fluorescence of a wavelength longer than the wavelength of the excitation light when ultraviolet or visible light excitation light is incident thereon.
  • a phosphor powder that exhibits fluorescence of a wavelength longer than the wavelength of the excitation light when ultraviolet or visible light excitation light is incident thereon.
  • white light is obtained by mixing the transmitted excitation light and fluorescence of the phosphor powder, so white LEDs are used. can be easily manufactured.
  • excitation light of visible light has a dominant wavelength of 430 to 490 nm and fluorescence of the phosphor powder has a dominant wavelength of 530 to 590 nm, it may be advantageous to provide white light.
  • the phosphor powder may have an average particle diameter (D 50 ) of 3 to 30 ⁇ m, preferably 3 to 30 ⁇ m.
  • D 50 average particle diameter of the phosphor powder
  • the phosphor powders are easily aggregated and the luminous intensity may decrease
  • the average particle diameter (D 50 ) of the phosphor powder exceeds the above range, wavelength conversion This is undesirable because the efficiency of the member is lowered and color deviation is increased.
  • the type of the phosphor powder is not particularly limited.
  • nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder including garnet phosphor powder such as YAG phosphor powder), sulfide phosphor powder, oxysulfide phosphor powder, halide phosphor powder (fluoride and chloride, etc.) and Aluminic acid chloride phosphor powder etc. are mentioned.
  • nitride phosphor powder, oxynitride phosphor powder, and oxide phosphor powder have high heat resistance and are not easily deteriorated during firing, and are particularly suitable as phosphor powders used in wavelength conversion members for white LED devices.
  • the phosphor powder is preferably an oxide phosphor powder or an aluminate chloride phosphor powder.
  • the oxide phosphor or aluminate chloride phosphor includes yttrium-aluminium-garnet (YAG), lutetium-aluminium-garnet (LuAG), nitride, and sulfide ( It may include at least one type of phosphor powder selected from the group consisting of sulfide-based and silicate-based materials.
  • the phosphor powder may be a phosphor powder having a visible light wavelength range, for example, a light emission wavelength range of 380 nm to 780 nm.
  • the phosphor powder may include at least one selected from blue, green, red, and yellow light emitting particles.
  • the blue, green, red, and yellow light-emitting particles mean particles that emit blue, green, red, and yellow fluorescence, respectively.
  • the blue light emitting particles include a phosphor powder having a light emitting wavelength range of 440 nm to 480 nm
  • the green light emitting particles include a phosphor powder having a light emitting wavelength range of 500 nm to 540 nm
  • the yellow light emitting particles include a phosphor powder having a light emitting wavelength range of 540 nm to 540 nm.
  • the red emission particles may include phosphor powder having an emission wavelength range of 660 nm to 700 nm.
  • the blue light-emitting particles are (Sr,Ba)MgAl 10 O 17 :Eu 2+ ; (Sr,Ba) 3 MgSi 2 O 8 :Eu 2+ and the like.
  • the green light-emitting particles are SrAl 2 O 4 :Eu 2+ ; SrBaSiO 4 :Eu 2+ ; (Y,Lu) 3 (Al,Gd) 5 O 12 :Ce 3+ ; SrSiON:Eu 2+ ; BaMgAl 10 O 17 : Eu 2+ , Mn 2+ ; Ba 2 MgSi 2 O 7 Eu 2+ ; Ba 2 SiO 4 :Eu 2+ ; Ba 2 Li 2 Si 2 O 7 :Eu 2+ ; BaAl 2 O 4 :Eu 2+ and the like, and when irradiated with blue excitation light having a wavelength of 440 nm to 480 nm, the green light-emitting particles are SrAl 2 O 4 :Eu 2+ ; SrBaSiO 4
  • the yellow light-emitting particles may include La 3 Si 6 N 11 :Ce 3+ , and blue excitation light having a wavelength of 440 nm to 480 nm
  • the yellow luminescent particles are (Y,Lu) 3 (Al,Gd) 5 O 12 :Ce 3+ ; and Sr 2 SiO 4 :Eu 2+ .
  • the red light-emitting particles are CaGa 2 S 4 :Mn 2+ ; MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ ; Ca 2 MgSi 2 O 7 :Eu 2+ and Mn 2+ , and when irradiated with blue excitation light having a wavelength of 440 nm to 480 nm, the red light-emitting particles are CaAlSiN 3 : Eu 2+ ; CaSiN 3 :Eu 2+ ; (Ca,Sr) 2 Si 5 N 8 : Eu 2+ ; ⁇ -SiAlON: Eu 2+ and the like.
  • various phosphor powders may be mixed and used according to excitation light and emission wavelengths.
  • a phosphor powder including blue, green, yellow, or red light emitting particles may be used.
  • the phosphor powder may have a refractive index of 1.5 to 2.4.
  • the difference in refractive index between the glass matrix and the phosphor powder may be, for example, less than 0.05, preferably less than 0.03.
  • the difference in refractive index between the glass matrix and the phosphor powder is small, appropriate scattering and light diffusion are achieved, which may be more advantageous in realizing desired effects in the present invention.
  • the content of the phosphor powder in the wavelength conversion member is 5 to 50% by weight, preferably 10 to 40% by weight, based on the total weight of the glass matrix, the spherical silica filler powder and the phosphor powder. , more preferably 10 to 30% by weight.
  • the content of the phosphor powder is too small, it is difficult to obtain desired white light due to an insufficient amount of light emission, and if the content of the phosphor powder is too large, sintering is difficult and the excitation light is not sufficiently irradiated to the entire phosphor powder, resulting in a decrease in fluorescence intensity. there is In addition, pores are easily generated in the wavelength conversion member, and it may be difficult to obtain a dense structure.
  • the wavelength conversion member includes a spherical silica filler powder.
  • the wavelength conversion member including the spherical silica filler powder since both the glass matrix and the spherical silica filler powder are made of glass, generation of a heterogeneous layer or a void at an interface between them can be minimized.
  • the spherical silica filler powder may be present while being uniformly dispersed in the glass matrix.
  • heat resistance may be improved, and decrease in fluorescence intensity and occurrence of chromaticity deviation may be minimized.
  • the wavelength conversion member of the present invention includes a spherical silica filler powder, and is particularly characterized by having a particle size distribution in a specific range, that is, a D50 of 1.0 to 15.0 ⁇ m and a span value of 1.0 to 5.0.
  • the D50 of the spherical silica filler powder may be 1.0 to 15.0 ⁇ m, preferably 1.2 to 13.2 ⁇ m, and more preferably 2.0 to 6.0 ⁇ m.
  • the D50 of the spherical silica filler powder is less than the above range, aggregation of the spherical silica filler powder may occur and the light transmittance of the wavelength conversion member may decrease.
  • the D50 of the spherical silica filler powder exceeds the above range, the distribution of the spherical silica filler powder in the wavelength conversion member is not uniform, and thus fluorescence intensity of the wavelength conversion member may decrease or chromaticity deviation may increase.
  • the spherical silica filler powder satisfies D50 in the above range, the distance between the spherical silica filler powders or between the spherical silica filler powder and the phosphor powder is shortened, so that heat can be effectively discharged to the outside.
  • the spherical silica filler powder may have a SPAN value of 1.0 to 5.0, preferably 1.0 to 4.5, and more preferably 1.0 to 3.0.
  • the SPAN value is an index representing the distribution (particle size distribution) of the particle size of the spherical silica filler powder.
  • the span (SPAN) value is an index of the ratio of the particle size and amount of the silica powder mainly present as fine particles and the silica powder present as slightly larger particles in the spherical silica powder.
  • the SPAN value is less than the above range, the spherical silica powder is re-agglomerated and large-sized agglomerates are likely to be generated when the wavelength conversion member is manufactured. In this case, it is undesirable because excessive scattering may occur outside the effective range and at a level that blocks light transmission.
  • the SPAN value of the spherical silica filler powder exceeds the above range, the ratio of the fine silica filler powder to the coarse silica filler powder is relatively large, making it difficult to form a paste.
  • the particle diameter of the spherical silica filler powder was measured using Microtreac's S3500 equipment.
  • D10, D50 and D90 are the particle diameter (D10) when the cumulative volume concentration (%) is 10% and the cumulative volume concentration (%) is 50% in the particle size distribution measurement by laser light diffraction, respectively. It was measured as the particle diameter (D50) at the time and the particle diameter (D90) when the cumulative volume concentration (%) reached 90%, and the span (SPAN) value can be calculated using Equation 1 above.
  • the spherical silica filler powder may have a D90/D10 (DSPAN) of 1.5 to 15, preferably 1.5 to 13, and more preferably 1.5 to 10.
  • DSPAN D90/D10
  • the D90/D10 (DSPAN) value of the spherical silica filler powder is an index representing the distribution (particle size distribution) ratio to the particle size of the spherical silica filler powder.
  • the D90 / D10 (DSPAN) value is an index of the ratio of the particle size and amount of the silica powder mainly present as fine particles and the silica powder present as slightly larger particles in the spherical silica powder .
  • the D90 / D10 (DSPAN) value satisfies the upper limit of the range, the particle size distribution curve of the spherical silica filler powder exhibits a sharp shape, and the D90 / D10 (DSPAN) value of the spherical silica filler powder
  • shrinkage of the wavelength conversion member can be suppressed during firing, and uniform dispersibility of the phosphor particles in the wavelength conversion member can be maintained, which is preferable.
  • the specific surface area (Brunauer-Emmett-Teller; BET) of the spherical silica filler powder may be 1.0 to 6.5 m2/g, preferably 2.0 to 5.0 m2/g, and more preferably 2.0 to 4.0 m2/g.
  • the specific surface area of the spherical silica filler powder is less than the above range, the aggregation of the silica filler powder increases, and the light transmittance of the wavelength conversion member may decrease.
  • the specific surface area of the spherical silica filler powder exceeds the above range, dispersibility of the spherical silica filler powder in the wavelength conversion member may deteriorate, and fluorescence intensity of the wavelength conversion member may decrease or chromaticity deviation may increase.
  • the specific surface area can be measured by the BET method by nitrogen adsorption, and for example, a specific surface area measuring device commonly used in the art (Mountech's Macsorb HM (model 1210) or MicrotracBEL's Belsorp-mini II, etc.) available.
  • a specific surface area measuring device commonly used in the art (Mountech's Macsorb HM (model 1210) or MicrotracBEL's Belsorp-mini II, etc.) available.
  • the spherical silica filler powder has a spherical shape, it may be advantageous to obtain a wavelength conversion member capable of increasing light scattering property (scattering property of excitation light) and consequently emitting homogeneous light with high fluorescence intensity.
  • the spherical silica filler powder may have an average sphericity of 2.0 or less, preferably 1.5 or less.
  • the definition of the "sphericity” means “the diameter of the major axis (L max ) / the diameter of the minor axis (L min )” for the particles observed with a scanning electron microscope (SEM).
  • the diameter of the major axis (L max ) refers to the length (L max ) of the longest straight line when connecting two random points on the outline of the spherical silica filler powder 130 with a straight line. It may mean, and the diameter of the minor axis (L min ) may mean the length of the shortest straight line (L min ) when connecting two arbitrary points on the outline of the spherical silica filler powder with a straight line.
  • the spherical silica filler powder may have a certain number of particles having a relatively small particle diameter.
  • silica filler powder having a relatively small particle diameter enters the gaps between these particles to fill the gaps.
  • the average sphericity of the spherical silica filler powder may be 1.1 to 1.5.
  • the refractive index of the spherical silica filler powder may be 1.44 to 1.47.
  • the difference in refractive index between the glass matrix and the spherical silica filler powder may be 0.01 to 0.52, preferably 0.12 to 0.50, and more preferably 0.33 to 0.40.
  • the difference in refractive index between the glass matrix and the spherical silica filler powder is too large, the light reflectance at the interface between the glass matrix and the spherical silica filler powder increases, and light scattering becomes excessive, which may decrease light efficiency, and the excitation light may be converted to a wavelength conversion member. It is difficult to irradiate the phosphor powder inside and the fluorescence intensity may decrease. If the difference in refractive index between the glass matrix and the spherical silica filler powder is too small, it may be difficult to obtain sufficient light scattering properties, and luminous intensity may decrease, and it may be difficult to obtain desired effects in the present invention.
  • the softening point (Ts) of the spherical silica filler powder is preferably 500° C. or more higher than the softening point (Ts) of the glass matrix.
  • the softening point (Ts) of the spherical silica filler powder may be 1,400 to 1,700 °C, preferably 1,400 to 1,600 °C.
  • the amount of the spherical silica filler powder may be 0.5 to 50% by weight based on the total weight of the glass matrix, the spherical silica filler powder, and the phosphor powder.
  • the content of the spherical silica filler powder may be preferably 0.5 to 30% by weight, more preferably 1 to 20% by weight.
  • the content of the silica powder in consideration of the difference in refractive index between the phosphor powder and the glass matrix.
  • the content of the glass powder and the spherical silica filler powder forming the glass matrix may vary depending on the content of the phosphor powder.
  • the weight ratio (X:Y) of the content of the mixture (X) of the glass powder and the spherical silica filler powder and the phosphor powder (Y) is 60 to 95:5 to 40, preferably 70 to 95:5 to may be 30
  • the mixture (X) of the glass powder and the spherical silica filler powder is less than the above range, the sinterability is deteriorated, the transmittance of the wavelength conversion member is lowered, and desired white light cannot be obtained.
  • the weight ratio (X:Y) of the mixture (X) of the glass powder and the spherical silica filler powder and the phosphor powder (Y) satisfies the above range, the light transmittance from the light source and the light conversion amount of the phosphor powder are balanced.
  • shrinkage with respect to the size of the wavelength conversion member can be suppressed, thereby minimizing the occurrence of spots in the photoconversion chromaticity.
  • the weight ratio of the phosphor powder and the spherical silica filler powder may be 1:0.1 to 5.
  • the wavelength conversion member according to an embodiment of the present invention may have a thickness of 100 to 800 ⁇ m, preferably 150 to 500 ⁇ m.
  • the thickness of the wavelength conversion member is equal to or greater than the lower limit of the range, handling is easy, and cracks can be prevented when the wavelength conversion member is cut into a desired size.
  • the thickness of the wavelength conversion member is equal to or less than the lower limit of the range, the amount of light flux passing through the wavelength conversion member may be maintained high. If the thickness of the wavelength conversion member is too thick beyond the above range, the luminous efficiency of the phosphor may be lowered.
  • the wavelength conversion member may have a light transmittance of 70 to 95%. Specifically, the wavelength conversion member may have a light transmittance of 72 to 92% or 72.2 to 85%.
  • the wavelength conversion member may have a light flux ⁇ v of 66 to 80 lm. Specifically, the wavelength conversion member may have a light flux ⁇ v of 73 to 80 lm or 74 to 80 lm.
  • the wavelength conversion member may have a converted luminous flux of 98% to 105%. Specifically, the wavelength conversion member may have a converted luminous flux of 98% to 103% or 100% to 103%.
  • the luminous flux and the converted luminous flux can be obtained by measuring the chromaticity distribution using an integrating sphere measuring instrument (LMS-200, J&C Tech.) using a 445 nm excitation light source.
  • LMS-200 integrating sphere measuring instrument
  • the wavelength conversion member may have parallel light (straight line) transmittance measured according to JIS K7105 of 20% or less, preferably 10% or less.
  • parallel light transmittance measured according to JIS K7105 of 20% or less, preferably 10% or less.
  • the wavelength conversion member may have a haze of 70% or more, preferably 75% or more, as measured according to JIS K7105.
  • the present invention provides a method for manufacturing the wavelength conversion member.
  • a method for manufacturing a wavelength conversion member includes a first step ( S110 ) of obtaining a composition for a wavelength conversion member including glass powder, phosphor powder, and spherical silica filler powder; a second step (S120) of obtaining a green sheet for a wavelength conversion member by applying the composition for a wavelength conversion member on a substrate; and a third step (S130) of firing the green sheet for the wavelength conversion member.
  • the first step ( S110 ) includes obtaining a composition for a wavelength conversion member including glass powder, phosphor powder, and spherical silica filler powder.
  • compositions including glass powder capable of forming a glass matrix, phosphor powder, and spherical silica filler powder may be prepared.
  • the types and contents of the glass powder, phosphor powder, and spherical silica filler powder are as described above.
  • the content of each component in the composition for the wavelength conversion member may be considered equal to the content of each component included in the wavelength conversion member after firing.
  • composition for the wavelength conversion member may further include a binder resin and a solvent.
  • the binder resin may include at least one selected from the group consisting of polyvinyl butyral (PVB), polyvinyl alcohol (PVA), and polyvinyl acetate (PVAc).
  • the binder resin may include polyvinyl butyral (PVB) or polyvinyl alcohol (PVA).
  • the binder resin may have a weight average molecular weight of 1,000 to 70,000 g/mol. Specifically, the binder resin may have a weight average molecular weight of 20,000 to 60,000 g/mol.
  • the solvent may have a low boiling point for rapid production of green sheets. Specifically, the solvent may have a boiling point of 30 to 150 °C. More specifically, the solvent may have a boiling point of 60 to 130 °C.
  • the solvent may include at least one selected from the group consisting of toluene, ethanol, butanol, acetone, and methanol.
  • the solvent may include at least one selected from the group consisting of toluene, ethanol and butanol.
  • the solvent may include toluene, ethanol and butanol.
  • the solvent may be included in an amount suitable for the characteristics and drying conditions of the composition. Specifically, the solvent may be included in an amount of 30 to 50% by weight based on the total weight of the composition for the wavelength conversion member.
  • the composition for the wavelength conversion member may further include a plasticizer.
  • the plasticizer may include at least one selected from the group consisting of DOP (dioctyl phthalate), DOA (dioctyl adipate), and TCP (tricresyl phosphate).
  • the plasticizer may include dioctyl phthalate (DOP) and dioctyl adipate (DOA).
  • the plasticizer may be included in an amount of 10 to 200 parts by weight based on 100 parts by weight of the binder resin. Specifically, the plasticizer may be included in an amount of 30 to 90 parts by weight based on 100 parts by weight of the binder resin.
  • the composition for the wavelength conversion member may be prepared by mixing a solvent and a binder resin, removing bubbles to obtain a binder solution, and then mixing the binder solution, glass powder, phosphor powder, spherical silica filler powder, and a plasticizer.
  • the binder resin and the solvent may be mixed at room temperature when preparing the composition for the wavelength conversion member.
  • the second step ( S120 ) includes applying the composition for a wavelength conversion member on a substrate to obtain a green sheet for a wavelength conversion member.
  • the composition for a wavelength conversion member obtained in the first step is applied onto the substrate.
  • the application may be performed using a tape casting method or a doctor blade.
  • a polyester-based substrate may be used as the substrate, and for example, a resin film such as polyethylene terephthalate (PET) may be used.
  • PET polyethylene terephthalate
  • the green sheet for the wavelength conversion member may be a single sheet, or may be formed by stacking and compressing a plurality of green sheets for the wavelength conversion member manufactured by casting.
  • the number of laminated green sheets for the wavelength converting member is not particularly limited, and for example, the green sheets for the wavelength converting member may be laminated to have a thickness of 50 to 1,500 ⁇ m after compression.
  • the compression may be performed at a pressure of 1 to 100 MPa. Specifically, the compression may be performed at a pressure of 2 to 50 MPa.
  • the third step ( S130 ) may include firing the green sheet for the wavelength conversion member.
  • the firing temperature is preferably within ⁇ 100 ° C of the softening point of the glass matrix, specifically within ⁇ 50 ° C of the softening point of the glass matrix. If the sintering temperature is too low, fusion of each layer may be difficult, sintering of the glass powder may be insufficient, or mechanical strength of the wavelength conversion member may decrease. On the other hand, if the firing temperature is too high, the emission intensity of the wavelength conversion member may decrease.
  • the firing temperature may be performed at 450 to 950° C. for 10 minutes to 72 hours. Specifically, the firing may be performed at 600 to 800 °C for 10 to 52 hours.
  • a degreasing process of removing organic materials may be performed before firing, that is, before firing after compressing the green sheet for the wavelength conversion member.
  • a degreasing process of removing organic materials may be performed before firing, that is, before firing after compressing the green sheet for the wavelength conversion member.
  • the layers when the layers are stacked, they may be appropriately heat-compressed to increase adhesion to each other.
  • a processing step by grinding, polishing, re-press, etc. may be further included as needed after firing among the above manufacturing methods.
  • An embodiment of the present invention is the wavelength conversion member; and a light source for irradiating excitation light onto the wavelength conversion member.
  • a light emitting device by combining the wavelength conversion member with a light source for irradiating excitation light of phosphor powder.
  • a light source a semiconductor light emitting device such as a light emitting diode (LED) and a laser diode (LD) may be used.
  • a plurality of the semiconductor light emitting devices may be used.
  • the wavelength conversion member may be disposed to directly contact the semiconductor light emitting device.
  • the semiconductor light emitting device and the wavelength conversion member may have a sequentially stacked structure.
  • the semiconductor light emitting element may be disposed to be surrounded by the wavelength conversion member, or the wavelength conversion member may be disposed to be surrounded by the semiconductor light emitting element.
  • the semiconductor light emitting device and the wavelength conversion member may be spaced apart from each other.
  • Each component was mixed to have the composition shown in Table 1 below, and melted at 1,200° C. to prepare a glass product.
  • the prepared glass material was pulverized to prepare a glass powder having an average particle diameter of 5.9 ⁇ m.
  • Example 1 Manufacture of a wavelength conversion member
  • the binder solution is dissolved by putting 27 g of polyvinyl butyral (PVB, weight average molecular weight: 50,000 g/mol) in 81 g of a solvent (including toluene and butanol in a volume ratio of 3: 2) at room temperature for 1 hour.
  • PVB polyvinyl butyral
  • a solvent including toluene and butanol in a volume ratio of 3: 2
  • composition for a wavelength conversion member obtained in 1-1 was applied on a PET film according to a tape casting method and molded into a sheet shape to obtain a green sheet for a wavelength conversion member having a thickness of 50 ⁇ m. Twenty-one sheets of the above green sheets were stacked and pressed at a pressure of 14 MPa to obtain a green sheet for a wavelength conversion member.
  • the green sheet for a wavelength conversion member obtained in 1-2 was fired at 600° C. for 12 hours to obtain a wavelength conversion member.
  • Example 1 As shown in Table 2 below, Example 1, except that spherical silica filler powder having a different particle diameter distribution was used in 1-1 of Example 1 and the contents of the glass powder, the spherical silica filler powder, and the phosphor powder were adjusted.
  • a wavelength conversion member was manufactured in the same manner as described above.
  • a wavelength conversion member was prepared in the same manner as in Example 1, except that the spherical silica filler powder was not used and the glass powder content was changed to 90% by weight in 1-1 of Example 1. manufactured.
  • Example 2 As shown in Table 2 below, except that prismatic silica filler powder (Amotech / abp-05) was used instead of the spherical silica filler powder in 1-1 of Example 1, the wavelength conversion member was manufactured in the same manner as in Example 1 did
  • Example 1 1-1 As shown in Table 2 below, spherical fumed silica filler powder (Evonik/Aerosil R-202) having a different particle size distribution in Example 1 1-1 was used instead of the spherical silica filler powder in Example 1 1-1 A wavelength conversion member was manufactured in the same manner as in Example 1 except for the above.
  • Example 1 As shown in Table 2 below, in 1-1 of Example 1, the same method as in Example 1 was performed, except that spherical silica filler powders having SPAN values of 1.4 and 5.4 and different particle diameter distributions were used. A conversion member was prepared.
  • Ts Softening point
  • the softening point (softening temperature) was measured in the range from room temperature to 1,000 °C at a heating rate of 10 °C.
  • the measurement was performed using Professional Gemstone Refractometers (Kruess model ER601 LED, Germany). During measurement, the specimen was processed to a thickness of 1 mm (1T), and then a certain amount of refractory liquid was applied to the specimen measurement position so that it was completely adhered to the measurement part. The refraction gauge value was visually confirmed.
  • the particle size was measured using Microtreac's S3500 equipment.
  • D10, D50, and D90 of the analysis values are the particle diameter (D10) when the cumulative volume concentration (%) is 10% and the cumulative volume concentration (%) is 50%, respectively, in the particle size distribution measurement by the laser light diffraction method. It was measured as a particle diameter (D50) when , and a particle diameter (D90) when the cumulative volume concentration (%) reached 90%.
  • the specific surface area of the silica filler powder used in the above Examples and Comparative Examples was BET 1 while flowing a mixed gas of nitrogen and helium (N 2 : 30 vol%, He: 70 vol%) through MOUNTECH's Macsorb HM (model 1210). It was measured by the point method.
  • the light transmittance of light having a reference wavelength of 550 nm was measured using a Perkinelmer uv/vis spectrometer (Lambda35, USA), and a condition without a sample was taken as 100%.
  • Chromaticity distribution was measured by placing a wavelength conversion member on a 445 nm excitation light source using an integrating sphere measuring instrument (LMS-200, J&C Tech.).
  • the wavelength conversion member includes a phosphor powder and a spherical silica filler powder dispersed in a glass matrix, the spherical silica filler powder has a D50 of 1.23 to 13.2 ⁇ m, and a SPAN value of 1.1 to 1.1 ⁇ m. It was confirmed that the wavelength conversion members of Examples 1 to 7 having a value of 4.5 were generally excellent in light properties such as light transmittance, light flux, and converted light flux.
  • the wavelength conversion members of Examples 1 to 7 had a light transmittance of 72.3 to 72.7%, a light flux of 73.6 to 78.6lm, and a converted light flux of 100.3 to 102.2%, all of which were excellent.
  • Comparative Example 1 without silica filler powder, Comparative Example 2 containing prismatic silica filler powder, Comparative Example 3 using any of the D50 and SPAN values of the spherical silica filler powder outside the scope of the present invention It was confirmed that the wavelength conversion members of Examples 1 to 5 had lower optical properties, such as light transmittance, light flux, and converted light flux, compared to the wavelength conversion members of Examples 1 to 7.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 유리 매트릭스; 및 상기 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고, 상기 구형 실리카 필러 분말이 특정 범위의 D50 및 스팬(SPAN) 값을 갖는, 파장 변환 부재 및 이의 제조 방법에 관한 것이다. 상기 파장 변환 부재는 형광 강도가 높고, 광투과율, 광 선속 및 환산 광속 등의 광 특성이 우수함은 물론, 고출력의 여기 광을 조사한 경우, 시간에 따른 발광 강도의 저하를 억제할 수 있어서, 발광장치에 유용하게 사용될 수 있다.

Description

파장 변환 부재 및 이를 포함하는 발광장치
본 발명은 파장 변환 부재 및 이를 포함하는 발광장치에 관한 것으로서, 보다 상세하게는 특정 범위의 입경분포를 갖는 구형 실리카 필러 분말을 포함하는 파장 변환 부재 및 이를 포함하는 발광장치에 관한 것이다.
최근 차세대 발광장치로서, 저전력, 경량화 및 용이한 광량 조절이라는 관점에서 발광 다이오드(light emitting diode, LED) 등의 여기 광원을 이용한 발광장치에 대한 관심이 높아지고 있다.
이러한 발광장치는 일반적으로 청색 LED와 상기 LED로부터 발광되는 청색을 흡수하여 황색, 녹색 또는 적색의 발광을 통해 백색을 구현하는 파장 변환 부재를 포함하며, 상기 파장 변환 부재는 일반적으로 유기 또는 무기 매트릭스 중에 형광체 분말이 분산된 구조를 갖는다.
구체적으로, 수지 매트릭스 중에 형광체 분말을 분산시킨 파장 변환 부재가 사용된 바 있다. 그러나 상기 파장 변환 부재의 경우 여기 광원의 열이나 조사 광에 의해 수지가 열화되거나 발광장치의 휘도가 감소하는 문제점이 있다.
한편, 일본공개특허 제2003-258308호 및 일본등록특허 제4895541호에는 유리 매트릭스 중에 형광체 분말이 분산된 파장 변환 부재의 제조방법이 개시되어 있다. 그러나, 유리 매트릭스를 사용하는 경우, 파장 변환 부재의 제조시 고온의 소결 온도에 의해 일부 형광체가 열화되어, 광특성 저하 및 변색이 발생될 수 있고, 형광체 사용에 제약이 있어서 연색성이 높은 파장 변환 부재를 구현하기 어렵다는 문제점이 있다.
또한, 이러한 파장 변환 부재는 LED의 여기 광이 파장 변환 부재의 내부에서 충분히 산란하지 않을 수 있고, 이 경우 발광장치로부터 출사되는 빛이 균질하지 않고, 형광 강도가 저하되는 문제점이 있다.
이러한 문제점을 해결하기 위해 형광체 분말의 함량을 증가시키는 방법이 연구되었으나, 이 경우, 파장 변환 부재 내부에서 빛이 산란하는 양은 증가시킬 수 있지만, 색도 편차가 크고, 만족할만한 색을 구현하는데 한계가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본공개특허 제2003-258308호
(특허문헌 2) 일본등록특허 제4895541호
본 발명은 상기 종래 기술의 문제를 해결하기 위해 고안된 것으로, 본 발명이 해결하고자 하는 기술적 과제는 형광 강도가 높고, 광 특성이 우수하고, 특히 고출력의 여기 광을 조사한 경우, 시간에 따른 발광 강도의 저하를 억제할 수 있는 파장 변환 부재 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 또 다른 기술적 과제는 상기 파장 변환 부재를 포함하는 발광장치를 제공하는 것이다.
본 발명은 유리 매트릭스; 및 상기 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고, 레이저 회절법에 의해 측정한 입도 분포에 있어서의 누적 부피(%)의 10%, 50% 및 90%가 되는 입경을 각각 D10, D50 및 D90이라 할 때, 상기 구형 실리카 필러 분말의 D50이 1.0 내지 15.0㎛고, 하기 식 1의 스팬(SPAN) 값이 1.0 내지 5.0인, 파장 변환 부재를 제공한다:
[식 1]
스팬(SPAN) = (D90-D10)/D50.
또한, 본 발명은 유리 분말, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 파장 변환 부재용 조성물을 얻는 제 1 단계; 상기 파장 변환 부재용 조성물을 기재 상에 도포하여 파장 변환 부재용 그린 시트를 얻는 제 2 단계; 및 상기 파장 변환 부재용 그린 시트를 소성하는 제 3 단계를 포함하는 상기 파장 변환 부재의 제조방법을 제공한다.
나아가, 본 발명은 상기 파장 변환 부재; 및 상기 파장 변환 부재에 여기 광을 조사하는 광원을 포함하는, 발광장치를 제공한다.
본 발명의 파장 변환 부재는 형광 강도가 높고, 광투과율, 광 선속 및 환산 광속 등의 광 특성이 우수함은 물론, 고출력의 여기 광을 조사한 경우, 시간에 따른 발광 강도의 저하를 억제할 수 있으므로, 발광장치에 유용하게 사용될 수 있다.
이하 첨부된 아래의 도면을 통해 본 발명을 보다 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 파장 변환 부재의 평면도를 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 구형 실리카 필러 분말의 장축 및 단축 직경을 측정하는 방법을 기재한 것이다.
도 3은 본 발명의 일 실시예에 따른 파장 변환 부재의 제조방법을 나타내는 공정 흐름도이다.
본 발명은 이하에 개시된 내용에 한정되는 것이 아니라, 발명의 요지가 변경되지 않는 한 다양한 형태로 변형될 수 있다.
본 명세서에서 "포함"한다는 것은 특별한 기재가 없는 한 다른 구성요소를 더 포함할 수 있음을 의미한다.
본 명세서에서 단수 표현은 특별한 설명이 없으면 문맥상 해석되는 단수 또는 복수를 포함하는 의미로 해석된다.
또한, 본 명세서에 기재된 구성성분의 양, 반응 조건 등을 나타내는 모든 숫자 및 표현은 특별한 기재가 없는 한 모든 경우에 "약"이라는 용어로써 수식되는 것으로 이해하여야 한다.
또한, 본 명세서에서, 층 또는 막 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
또한, 도면에서의 각 구성요소들의 크기는 설명을 위하여 과장될 수 있으며, 실제로 적용되는 크기를 의미하는 것은 아니다. 또한, 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
[파장 변환 부재]
본 발명의 일 실시예에 따른 파장 변환 부재는 유리 매트릭스; 및 상기 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고, 레이저 회절법에 의해 측정한 입도 분포에 있어서의 누적 부피(%)의 10%, 50% 및 90%가 되는 입경을 각각 D10, D50 및 D90이라 할 때, 상기 구형 실리카 필러 분말의 D50이 1.0 내지 15.0㎛이고, 하기 식 1의 스팬(SPAN) 값이 1.0 내지 5.0이다:
[식 1]
스팬(SPAN) = (D90-D10)/D50.
본 발명의 일 실시예에 따른 파장 변환 부재는 유리 매트릭스; 및 상기 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고, 특히, 상기 구형 실리카 필러 분말이 특정 범위의 D50 및 스팬(SPAN) 값을 가짐으로써, 형광 강도가 높고, 광 특성이 우수하고, 특히 고출력의 여기 광을 조사한 경우, 시간에 따른 발광 강도의 저하를 억제할 수 있다.
또한, 상기 구형 실리카 필러 분말은 융점이 1400℃ 이상으로 높아, 파장 변환 부재의 제조시 소성 온도에 대해 내열성을 가져 화학적으로 안정하고, 형광체에 쉽게 흡착되는 특징이 있다. 따라서, 파장 변환 부재의 제조에 있어서 소성 시 발생하는 파장 변환 부재의 수축을 억제할 수 있음은 물론, 파장 변환 부재 내에서 형광체 입자의 균일한 분산성을 양호하게 유지할 수 있다.
이하 상기 파장 변환 부재의 각 구성 요소별로 구체적으로 설명한다.
유리 매트릭스
본 발명의 일 실시예에 따른 파장 변환 부재는 유리 매트릭스를 포함한다. 상기 유리 매트릭스는 원료 재료인 유리 분말을 성형 및 소성하여 얻은 파장 변환 부재의 모재일 수 있다. 이러한 유리 매트릭스에 형광체 분말 및 구형 실리카 필러 분말이 분산되어 포함될 수 있다.
구체적으로, 상기 유리 매트릭스는, 유리 분말, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 파장 변환 부재용 조성물을 기재 상에 도포하여 시트 형상을 얻고 소성하여 얻을 수 있다. 또한, 상기 유리 매트릭스는 형광체 분말, 구형 실리카 필러 분말, 및 유리분말을 성형 몰드에 투입하여 압축 성형한 후, 예를 들어 450 내지 950℃에서 소성하여 얻을 수 있다.
상기 유리 매트릭스는 형광체 분말 및 구형 실리카 필러 분말을 상기 유리 매트릭스 중에 균일하게 분산된 상태로 안정적으로 유지시키기 위한 매체로서의 역할을 할 수 있다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 상기 파장 변환 부재(100)는 상기 유리 매트릭스(110) 중에 형광체 분말(120) 및 구형 실리카 필러 분말(130)이 고르게 분산되어 있을 수 있다.
또한, 상기 유리 매트릭스를 형성하는 원료 재료인 유리 분말의 조성에 따라 유리 분말과 형광체 분말과의 반응성에 차이가 발생할 수 있기 때문에, 사용하는 형광체 분말에 적합한 유리 분말의 조성을 선택하는 것이 중요하다. 예컨대, 상기 파장 변환 부재 제조 시, 소성 온도가 높아지면 유리 매트릭스와 형광체가 반응하여 파장 변환 부재의 양자 변환 수율이 저하될 우려가 있으므로, 이를 방지하기 위해 유리 분말의 조성이 중요하다.
본 발명의 일 실시예에 따르면, 상기 유리 매트릭스는 P2O5, ZnO, SiO2 및 B2O3를 주성분으로 포함하는 것이 바람직하다.
구체적으로, 상기 유리 매트릭스는 특정 조성을 갖는 유리 분말로부터 유도될 수 있다.
상기 유리 분말은 유리 분말 총 몰수를 기준으로 2 내지 10 mol%의 P2O5, 30 내지 50 mol%의 ZnO, 10 내지 25 mol%의 SiO2, 및 15 내지 25 mol%의 B2O3를 포함할 수 있다.
상기 유리 분말이 상기 조성을 가짐으로써, 형광체 분말의 함량이 많은 경우에도 유리 분말의 소결이 충분히 이루어질 수 있고, 파장 변환 부재를 장시간 사용하여도 빛의 휘도가 저하되는 것을 억제할 수 있다. 또한, 습기가 많은 환경에서도 파장 변환 부재는 내수성이 뛰어나, 우수한 광흡수율을 구현할 수 있다.
구체적으로, 상기 P2O5는 유리골격을 형성하고 내수성을 향상시키는 성분으로서, P2O5의 함량은 유리 분말 총 몰수를 기준으로, 2 내지 10 mol%, 바람직하게는 2 내지 6 mol%일 수 있다.
상기 P2O5의 함량이 상기 범위 미만인 경우, 유리화되기 어려울 수 있고, 상기 범위를 초과하는 경우, 연화점(Ts)이 상승하고 내후성이 저하될 수 있다.
ZnO는 용융 온도를 저하시켜 용해성을 개선하는 성분으로서, ZnO의 함량은 유리 분말 총 몰수를 기준으로, 30 내지 50 mol%, 바람직하게는 30 내지 40 mol%일 수 있다.
상기 ZnO의 함량이 상기 범위 미만인 경우, 용해성을 개선하는 효과가 미미할 수 있고, 상기 범위를 초과하는 경우, 내후성이 저하될 수 있고, 투과율이 저하되어 발광 강도가 감소할 수 있다.
SiO2는 유리골격을 구성하는 성분으로서, 상기 SiO2의 함량은 10 내지 25 mol%, 바람직하게는 15 내지 25 mol%일 수 있다.
상기 SiO2의 함량이 상기 범위 미만인 경우, 내후성 및 기계적 강도가 저하될 수 있고, 상기 범위를 초과하는 경우, 파장 변환 부재 제조 시 고온에서의 소결에 의해 형광체 분말이 열화될 수 있다.
상기 B2O3는 유리골격을 구성하는 성분으로서, 용융 온도를 저하시켜 용해성을 개선할 수 있고, 광확산성을 향상시키는 성분으로서, 상기 B2O3의 함량은 유리 분말 총 몰수를 기준으로, 15 내지 25 mol%, 바람직하게는 15 내지 20 mol%일 수 있다.
상기 B2O3의 함량이 상기 범위 미만인 경우, 상기 효과를 달성하는 데에 어려움이 있을 수 있으며, 상기 범위를 초과하는 경우, 화학적 내구성이 저하될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 상기 유리 분말은 Al2O3 1 내지 10 mol%, SnO2 0.1 내지 7 mol%, BaO 1 내지 5 mol%, SrO 0.1 내지 5 mol%, CaO 1 내지 5 mol%, Li2O 1 내지 5 mol%, Na2O 1 내지 7 mol%, 및 K2O 1 내지 5 mol%의 성분 중에서 선택된 1종 이상을 더 포함할 수 있다.
상기 Al2O3는 화학적 내구성을 향상시키는 성분으로서, 상기 Al2O3의 함량은 유리 분말 총 몰수를 기준으로, 1 내지 10 mol%, 바람직하게는 2 내지 6 mol%일 수 있다.
상기 Al2O3의 함량이 상기 범위 미만인 경우, 화학적 내구성 향상 효과가 미미할 수 있고, 상기 Al2O3의 함량이 상기 범위를 초과하는 경우, 유리의 용융성이 악화되는 경향이 있을 수 있다.
상기 SnO2는 유리전이 온도, 굴복점, 연화점(Ts) 등의 열에 대한 물성 온도(열물성 온도)를 저하시킬 수 있는 성분으로서, 상기 SnO2의 함량은 유리 분말 총 몰수를 기준으로, 0.1 내지 7 mol%, 더 바람직하게는 0.2 내지 6 mol%일 수 있다.
상기 SnO2의 함량이 상기 범위 미만인 경우, 열물성 온도를 저하시키는 효과가 미미할 수 있고, 상기 SnO2의 함량이 상기 범위를 초과하는 경우, 용융 시 유리 중에 Sn에 기인하는 실투(失透, devitrification)물(특히, 4가의 주석물)이 석출되어 투과율이 저하되는 경향이 있어, 결과적으로, 높은 발광 효율을 갖는 파장 변환 부재가 얻어지기 어려울 수 있으며, 용융 분리에 의해 유리화되기 어려워질 수 있다.
BaO는 용융 온도를 저하시켜 용해성을 개선하는 성분으로서, 유리 분상을 촉진하고, 형광체 분말과의 반응을 억제하는 효과도 있다.
상기 BaO의 함량은 1 내지 5 mol%, 바람직하게는 1 내지 4 mol%일 수 있다. 상기 BaO의 함량이 상기 범위 미만인 경우, 용해성을 개선하는 효과가 미미할 수 있고, 상기 BaO의 함량이 상기 범위를 초과하는 경우, 화학적 내구성이 저하되고, 유리 분상 경향이 지나치게 커져 열처리 온도의 작은 변화에도 분상의 상태가 크게 변동할 수 있어, 파장 변환 부재의 로트(lot) 사이에서의 광확산성에 편차(불균형)가 생길 수 있다.
SrO는 용융 온도를 저하시켜 용해성을 개선하는 성분으로서, 유리 분상을 촉진하고, 형광체 분말과의 반응을 억제하는 효과도 있다.
상기 SrO의 함량은 0.1 내지 5 mol%, 바람직하게는 0.1 내지 4 mol%일 수 있다. 상기 SrO의 함량이 상기 범위 미만인 경우, 용해성을 개선하는 효과가 미미할 수 있고, 상기 SrO의 함량이 상기 범위를 초과하는 경우, 화학적 내구성이 저하되고, 유리 분상 경향이 지나치게 커져 열처리 온도의 작은 변화에도 분상의 상태가 크게 변동할 수 있어, 파장 변환 부재의 로트 사이에서의 광확산성에 편차가 생기기 쉬울 수 있다.
CaO는 용융 온도를 저하시켜 용해성을 개선하는 성분으로서, 유리 분상을 촉진하고, 형광체 분말과의 반응을 억제하는 효과도 있다.
상기 CaO의 함량은 1 내지 5 mol%, 바람직하게는 1 내지 4 mol%일 수 있다. 상기 CaO의 함량이 상기 범위 미만인 경우, 용해성을 개선하는 효과가 미미할 수 있고, 상기 CaO의 함량이 상기 범위를 초과하는 경우, 화학적 내구성이 저하되고, 유리 분상 경향이 지나치게 커져 열처리 온도의 작은 변화에도 분상의 상태가 크게 변동할 수 있어, 파장 변환 부재의 로트 사이에서의 광확산성에 편차가 생기기 쉬울 수 있다.
Li2O는 연화점을 저하시키는 성분이다. 상기 Li2O의 함량은 유리 분말 총 몰수를 기준으로, 바람직하게는 1 내지 5 mol%, 바람직하게는 2 내지 5 mol%일 수 있다.
상기 Li2O의 함량이 상기 범위 미만인 경우, 상기 효과가 미미할 수 있고, 상기 Li2O의 함량이 상기 범위를 초과하는 경우, 화학적 내구성이 저하될 수 있고, 유리 분상 경향이 지나치게 커져 광산란 손실이 커질 수 있다. 또한, 내후성이 저하되고 발광 다이오드(LED)나 레이저 다이오드(LD)의 광 조사에 의해 발광 강도가 경시적으로 저하되는 문제가 있을 수 있다.
Na2O는 연화점을 저하시키는 성분이다. 상기 Na2O의 함량은 유리 분말 총 몰수를 기준으로, 바람직하게는 1 내지 7 mol%, 바람직하게는 2 내지 6 mol%일 수 있다.
상기 Na2O의 함량이 상기 범위 미만인 경우, 상기 효과가 미미할 수 있고, 상기 Na2O의 함량이 상기 범위를 초과하는, 화학적 내구성이 저하될 수 있고, 유리 분상 경향이 지나치게 커져 광산란 손실이 커질 수 있다. 또한, 내후성이 저하되고 LED나 LD의 광 조사에 의해 발광 강도가 경시적으로 저하되는 문제가 있을 수 있다.
K2O는 연화점을 저하시키는 성분이다. 상기 K2O의 함량은 유리 분말 총 몰수를 기준으로, 바람직하게는 1 내지 5 mol%, 바람직하게는 2 내지 5 mol%일 수 있다.
상기 K2O의 함량이 상기 범위 미만인 경우, 상기 효과가 미미할 수 있고, 상기 K2O의 함량이 상기 범위를 초과하는 경우, 화학적 내구성이 저하될 수 있고, 유리 분상 경향이 지나치게 커져 광산란 손실이 커질 수 있다. 또한, 내후성이 저하되고 LED나 LD의 광 조사에 의해 발광 강도가 경시적으로 저하되는 문제가 있을 수 있다.
구체적으로, 상기 유리 분말은 유리 분말 총 몰수를 기준으로 SnO2 0.1 내지 7 mol%, 예컨대 0.2 내지 6 mol% 및 Al2O3 1 내지 10 mol%, 예컨대 2 내지 6 mol%를 더 포함할 수 있다.
상기 유리 분말은 유리 분말 총 몰수를 기준으로 BaO 1 내지 5 mol%, SrO 0.1 내지 5 mol%, 및 CaO 1 내지 5 mol%를 더 포함할 수 있다.
상기 유리 분말은 유리 분말 총 몰수를 기준으로 K2O 1 내지 5 mol%, Na2O 1 내지 5 mol%, 및 Li2O 1 내지 5 mol%를 더 포함할 수 있다.
또는, 상기 유리 분말은 알칼리 금속 산화물로서 Na2O 및 K2O, Na2O 및 Li2O, 또는 Li2O 및 K2O를 더 포함할 수 있다. 상기 유리 분말이 상기와 같은 조합으로 상기 성분들을 포함하는 경우, 이들 성분의 총 함량을 2 내지 15 mol%, 바람직하게는 3 내지 10 mol%의 범위에서 적절하게 조정하는 것이 바람직하다.
상기 유리 분말은 평균 입경(D50)이 2 내지 15㎛, 바람직하게는 5 내지 15㎛일 수 있다.
만일, 상기 유리 분말의 평균 입경(D50)이 상기 범위 미만인 경우, 소성시 기포의 발생량이 많아지고, 파장 변환 부재 중에 기포가 잔존할 수 있다. 파장 변환 부재의 기공율은 5% 이하, 3% 이하, 특히 1% 이하인 것이 바람직하다. 만일, 상기 기공율이 상기 범위를 초과하는 경우, 광 특성을 저하시킬 수 있다. 또한 상기 파장 변환 부재 중에 기포가 많이 포함되면 광산란이 과잉되고 산란 손실(scattering loss)에 의해 형광 강도가 저하될 수 있다.
또한, 수분 등이 파장 변환 부재 내부에 침입하기 쉬워져 화학적 내구성이 저하될 우려가 있다. 만일 상기 유리 분말의 평균 입경(D50)이 상기 범위를 초과하는 경우, 파장 변환 부재 중에 형광체 분말이 균일하게 분산되기 어렵게 되고, 결과적으로 파장 변환 부재의 형광 강도가 저하되거나 색도 편차가 생길 수 있다.
상기 유리 매트릭스는 1.44 내지 1.89의 굴절률을 가질 수 있다. 구체적으로, 상기 유리 매트릭스는 바람직하게는 1.57 내지 1.85, 보다 바람직하게는 1.60 내지 1.84일 수 있다.
한편, 상기 유리 매트릭스는, 연화점(Ts)이 550 내지 850℃일 수 있다.
구체적으로, 상기 유리 매트릭스의 연화점(Ts)은 바람직하게는 550 내지 630℃, 더욱 바람직하게는 550 내지 600℃일 수 있다.
상기 유리 매트릭스의 연화점(Ts)이 너무 낮으면, 파장 변환 부재의 기계적 강도 및 화학적 내구성이 저하될 수 있다. 또한 유리 매트릭스 자체의 내열성이 낮기 때문에 형광체에서 발생하는 열에 의해 유리 매트릭스가 열을 흡수하여 녹아서 형상이 변형되는 연화 변형이 발생할 수 있다. 한편, 유리 매트릭스의 연화점(Ts)이 너무 높으면, 소성 시 형광체 분말이 열화되어 파장 변환 부재의 발광 강도가 저하될 수 있다. 또한, 상기 파장 변환 부재의 화학적 안정성 및 기계적 강도를 높이는 관점에서 상기 유리 매트릭스의 연화점(Ts)은 550℃ 이상인 것이 바람직하다. 이러한 유리로는 붕소 규산염계, P2O5-ZnO-SiO2-B2O3계 유리를 들 수 있다.
형광체 분말
본 발명의 일 실시예에 따르면, 상기 형광체 분말은 상기 유리 매트릭스 중에 균일하게 분산되어 존재할 수 있다. 상기 형광체 분말이 상기 유리 매트릭스 중에 균일하게 분산될 경우, 내열성이 뛰어난 파장 변환 부재를 제공할 수 있다.
상기 형광체 분말은 자외선 또는 가시광선의 여기 광을 입사하면 해당 여기 광의 파장보다 긴 파장의 형광을 나타내는 형광체 분말을 포함할 수 있다. 예를 들어, 가시광선의 여기 광을 입사하고, 해당 여기 광의 색상과 보색의 형광을 나타내는 형광체 분말을 이용하는 경우, 투과된 여기 광과 형광체 분말의 형광과의 혼색에 의해 백색광이 얻어지기 때문에 백색 LED를 용이하게 제조할 수 있다. 구체적으로, 가시광선의 여기 광이 430 내지 490 nm의 주파장을 갖고, 형광체 분말의 형광이 530 내지 590 nm의 주파장을 갖는 경우, 백색광을 제공하는 데에 유리할 수 있다.
상기 형광체 분말은 3 내지 30㎛, 바람직하게는 3 내지 30㎛의 평균 입경(D50)을 가질 수 있다. 상기 형광체 분말의 평균 입경(D50)이 상기 범위 미만인 경우, 형광체 분말끼리 쉽게 응집되어, 발광 강도가 감소할 수 있고, 상기 형광체 분말의 평균 입경(D50)이 상기 범위를 초과하는 경우, 파장 변환 부재의 효율이 저하되고 색상 편차가 커져 바람직하지 않다.
상기 형광체 분말의 종류는 특별히 한정되지 않는다. 예를 들어, 질화물 형광체 분말, 산 질화물 형광체 분말, 산화물 형광체 분말(YAG 형광체 분말 등의 가넷 계 형광체 분말을 포함), 황화물 형광체 분말, 산 황화물 형광체 분말, 할로겐화물 형광체 분말(불화물 및 염화물 등) 및 알루민산 염화물 형광체 분말 등을 들 수 있다. 이러한 형광체 분말 중 질화물 형광체 분말, 산 질화물 형광체 분말 및 산화물 형광체 분말은 내열성이 높고 소성 시에 쉽게 열화되지 않고, 특히 백색 LED 소자용 파장 변환 부재에 사용되는 형광체 분말로 적합하다.
또한 양자 변환 효율을 높이는 관점에서, 상기 형광체 분말은 산화물 형광체 분말 또는 알루민산 염화물 형광체 분말이 바람직하다.
상기 산화물 형광체 또는 알루민산 염화물 형광체로는 이트륨-알루미늄-가넷(yttrium-aluminium-garnet; YAG)계, 루테튬-알루미늄-가넷(Lutetium-aluminium-garnet; LuAG)계, 질화물(nitride)계, 황화물(sulfide)계 및 규산염(silicate)계 물질로 이루어진 군으로부터 선택된 1종 이상의 형광체 분말을 포함할 수 있다.
상기 형광체 분말은 가시광역 파장 범위, 예를 들어 380 nm 내지 780 nm의 발광 파장 범위를 갖는 형광체 분말일 수 있다.
구체적으로, 상기 형광체 분말은 청색, 녹색, 적색, 및 황색 발광 입자 중에서 선택된 1종 이상을 포함할 수 있다. 이때, 상기 청색, 녹색, 적색, 및 황색 발광 입자는 각각 청색, 녹색, 적색, 및 황색의 형광을 나타내는 입자를 의미한다.
상기 청색 발광 입자는 440 nm 내지 480 nm의 발광 파장 범위를 갖는 형광체 분말을 포함하고, 상기 녹색 발광 입자는 500 nm 내지 540 nm의 발광 파장 범위를 갖는 형광체 분말을 포함하고, 상기 황색 발광 입자는 540 nm 초과 내지 595 nm 이하의 발광 파장 범위를 갖는 형광체 분말을 포함하고, 상기 적색 발광 입자는 660 nm 내지 700 nm의 발광 파장 범위를 갖는 형광체 분말을 포함할 수 있다.
구체적으로, 파장 300 nm 내지 440 nm의 자외선 내지 근자외선의 여기 광을 조사할 때, 상기 청색 발광 입자는 (Sr,Ba)MgAl10O17:Eu2+ ; (Sr,Ba)3 MgSi2O8:Eu2+ 등을 들 수 있다.  
파장 300 nm 내지 440 nm의 자외선 내지 근자외선의 여기 광을 조사할 때, 상기 녹색 발광 입자는 SrAl2O4:Eu2+ ; SrBaSiO4:Eu2+ ; (Y,Lu)3(Al,Gd)5O12:Ce3+; SrSiON:Eu2+ ; BaMgAl10O17:Eu2+ , Mn2+; Ba2MgSi2O7Eu2+ ; Ba2SiO4:Eu2+ ; Ba2Li2Si2O7 :Eu2+ ; BaAl2O4:Eu2+ 등을 들 수 있고, 파장 440 nm 내지 480 nm의 청색 여기 광을 조사할 때, 상기 녹색 발광 입자는 SrAl2O4:Eu2+ ; SrBaSiO4 :Eu2+ ; (Y,Lu)3(Al,Gd)5O12:Ce3+; SrSiON:Eu2+ ; β-SiAlON: Eu2+ 등을 들 수 있다.
파장 300 nm 내지 440 nm의 자외선 내지 근자외선의 여기 광을 조사할 때, 상기 황색 발광 입자는 La3Si6N11:Ce3+를 들 수 있고, 파장 440 nm 내지 480 nm의 청색 여기 광을 조사할 때, 상기 황색 발광 입자는 (Y,Lu)3(Al,Gd)5O12:Ce3+ ; Sr2SiO4:Eu2+ 등을 들 수 있다 .
파장 300 nm 내지 440 nm의 자외선 내지 근자외선의 여기 광을 조사할 때, 상기 적색 발광 입자는 CaGa2S4:Mn2+; MgSr3Si2O8:Eu2+ , Mn2+; Ca2MgSi2O7:Eu2+ , Mn2+를 들 수 있고, 파장 440 nm 내지 480 nm의 청색 여기 광을 조사할 때, 상기 적색 발광 입자는 CaAlSiN3 :Eu2+ ; CaSiN3:Eu2+ ; (Ca,Sr)2Si5N8: Eu2+ ; α-SiAlON: Eu2+ 등을 들 수 있다.
본 발명의 일 실시예에 따르면, 여기 광과 발광 파장에 따라 다양한 형광체 분말을 혼합하여 사용할 수 있다. 예를 들어, 자외선 영역의 여기 광을 조사하여 백색광을 얻는 경우, 청색, 녹색, 황색 또는 적색 발광 입자를 포함하는 형광체 분말을 사용할 수 있다.
상기 형광체 분말은 1.5 내지 2.4의 굴절률을 가질 수 있다.
또한, 본 발명의 파장 변환 부재는 유리 매트릭스와 형광체 분말의 굴절률 차이가 예컨대 0.05 미만, 바람직하게는 0.03 미만일 수 있다. 상기 유리 매트릭스와 형광체 분말의 굴절률 차이가 적은 경우, 적절한 산란 및 광확산이 이루어져, 본 발명에서 목적하는 효과를 구현하는 데에 더욱 유리할 수 있다.
 본 발명의 일 실시예에 따르면, 상기 파장 변환 부재 중의 형광체 분말의 함량은, 유리 매트릭스, 구형 실리카 필러 분말 및 형광체 분말의 총 중량에 대해, 5 내지 50 중량%, 바람직하게는 10 내지 40 중량%, 더욱 바람직하게는 10 내지 30 중량%일 수 있다.
상기 형광체 분말의 함량이 너무 적으면 발광량이 불충분하여 원하는 백색광을 얻는데 어려움이 있고, 상기 형광체 분말의 함량이 너무 많으면 소결이 어려워지고 여기 광이 형광체 분말 전체에 충분히 조사되지 않아 형광 강도가 저하 될 우려가 있다. 또한 파장 변환 부재 내에 기공이 발생하기 쉬워 치밀한 구조를 얻는데 어려움이 있을 수 있다.
구형 실리카 필러 분말
본 발명의 일 실시예에 따르면, 상기 파장 변환 부재는 구형 실리카 필러 분말을 포함한다.
상기 구형 실리카 필러 분말을 포함하는 파장 변환 부재는, 상기 유리 매트릭스와 상기 구형 실리카 필러 분말이 모두 유리로 되어 있기 때문에 이들의 계면에 이질층이나 공극 발생을 최소화할 수 있다.
상기 구형 실리카 필러 분말은 상기 유리 매트릭스 중에 균일하게 분산되어 존재할 수 있다. 상기 구형 실리카 필러 분말이 상기 유리 매트릭스 중에 균일하게 분산될 경우, 내열성을 향상시키고, 형광 강도의 저하와 색도 편차의 발생을 최소화할 수 있다.
본 발명의 파장 변환 부재는 구형 실리카 필러 분말을 포함하고, 특히 특정 범위의 입도 분포, 즉 1.0 내지 15.0㎛의 D50 및 1.0 내지 5.0의 스팬(SPAN) 값을 갖는 것을 특징으로 한다.
구체적으로, 상기 구형 실리카 필러 분말의 D50은 1.0 내지 15.0㎛, 바람직하게는 1.2 내지 13.2㎛, 더욱 바람직하게는 2.0 내지 6.0㎛일 수 있다. 상기 구형 실리카 필러 분말의 D50이 상기 범위 미만인 경우, 상기 구형 실리카 필러 분말의 응집이 생겨 파장 변환 부재의 광투과율이 저하될 우려 있다. 한편, 상기 구형 실리카 필러 분말의 D50이 상기 범위를 초과하는 경우, 파장 변환 부재 중의 구형 실리카 필러 분말의 분포가 균일하지 못하여, 파장 변환 부재의 형광 강도가 저하되거나 색도 편차가 증가할 수 있다. 또한, 소성 시 파장 변환 부재의 수축이 발생할 우려가 있다. 한편, 상기 구형 실리카 필러 분말이 상기 범위의 D50을 만족하는 경우, 구형 실리카 필러 분말들 간 또는 구형 실리카 필러 분말과 형광체 분말간의 거리가 짧아져 열을 외부로 효과적으로 방출할 수 있다.
상기 구형 실리카 필러 분말의 스팬(SPAN) 값은 1.0 내지 5.0, 바람직하게는 1.0 내지 4.5, 더욱 바람직하게는 1.0 내지 3.0일 수 있다.
상기 스팬(SPAN) 값은 상기 구형 실리카 필러 분말의 입자 크기에 대한 분포(입도 분포)를 나타내는 지표이다. 구체적으로, 상기 스팬(SPAN) 값은 상기 구형 실리카 분말에서 주로 미립자로서 존재하는 실리카 분말과 약간 큰 입자로서 존재하는 실리카 분말의 입경 및 양에 관하여 어느 정도의 비율로 되어 있는지의 지표가 된다.
상기 스팬(SPAN) 값이 상기 범위를 만족함으로써, 상기 파장 변환 부재의 형광강도가 저하 또는 색도 불균형이 억제될 수 있으므로 바람직하다.
만일, 상기 스팬(SPAN) 값이 상기 범위 미만인 경우, 파장 변환 부재의 제작 시, 구형 실리카 분말이 재응집되어 크기가 큰 응집체가 생성되기 쉽다. 이 경우, 유효한 범위에서 벗어나 광 투과를 막는 수준의 지나치게 많은 산란이 일어날 수 있으므로 바람직하지 않다. 한편, 상기 구형 실리카 필러 분말의 스팬(SPAN) 값이 상기 범위를 초과하는 경우, 미세한 실리카 필러 분말과 조대한 실리카 필러 분말의 비율이 상대적으로 많아져 페이스트화가 어려울 수 있다.
상기 스팬(SPAN) 값이 상기 범위를 만족하는 경우, 입도 분포가 좌우대칭인 입도 분포를 얻을 수 있거나, 또는 조분측의 저변이 짧고 미분측의 저변이 길어, 입도 분포가 좌우대칭이 되지 않는 입도 분포를 얻을 수 있다.
본 발명에서 상기 구형 실리카 필러 분말의 입경은, Microtreac사의 S3500 장비를 이용하여 입경을 측정하였다. 상기 D10, D50 및 D90은 각각 레이저 광 회절법에 의한 입도 분포 측정에 있어서, 누적 부피농도(%)가 10%가 될 때의 입자 직경(D10), 누적 부피농도(%)가 50%가 될 때의 입자 직경(D50), 및 누적 부피농도(%)가 90%가 될 때의 입자 직경(D90)으로서 측정하였고, 상기 식 1을 이용하여 스팬(SPAN) 값을 산출할 수 있다.
또한, 상기 구형 실리카 필러 분말의 D90/D10(DSPAN)이 1.5 내지 15, 바람직하게는 1.5 내지 13, 더욱 바람직하게는 1.5 내지 10일 수 있다.
상기 구형 실리카 필러 분말의 D90/D10(DSPAN) 값은 상기 구형 실리카 필러 분말의 입자 크기에 대한 분포(입도 분포) 비율을 나타내는 지표이다. 구체적으로, 상기 D90/D10(DSPAN) 값은 상기 구형 실리카 분말에서 주로 미립자로서 존재하는 실리카 분말과 약간 큰 입자로서 존재하는 실리카 분말의 입경 및 양에 관하여 어느 정도의 비율로 되어 있는지의 지표가 된다.
상기 D90/D10(DSPAN) 값이 상기 범위의 상한값을 만족하는 경우, 상기 구형 실리카 필러 분말의 입도 분포 곡선은 샤프(sharp)한 형상을 나타내며, 상기 구형 실리카 필러 분말의 D90/D10(DSPAN) 값이 상기 범위를 만족하는 경우, 소성 시 파장 변환 부재의 수축을 억제하여 파장 변환 부재 중에 형광체 입자의 균일한 분산성을 유지할 수 있기 때문에 바람직하다.
상기 구형 실리카 필러 분말의 비표면적(Brunauer-Emmett-Teller; BET)은 1.0 내지 6.5 ㎡/g, 바람직하게는 2.0 내지 5.0 ㎡/g, 더욱 바람직하게는 2.0 내지 4.0 ㎡/g일 수 있다.
상기 구형 실리카 필러 분말의 비표면적이 상기 범위 미만인 경우, 실리카 필러 분말의 응집이 많아져, 파장 변환 부재의 광투과율이 저하될 우려가 있다. 한편, 상기 구형 실리카 필러 분말의 비표면적이 상기 범위를 초과하는 경우, 파장 변환 부재 중의 구형 실리카 필러 분말의 분산성이 나빠지고, 파장 변환 부재의 형광 강도가 저하되거나 색도 편차가 증가할 수 있다.
상기 비표면적은 질소 흡착에 의한 BET법에 의해 측정할 수 있고, 예를 들어 당업계에서 일반적으로 사용하는 비표면적 측정 기기(MOUNTECH사의 Macsorb HM(model 1210) 또는 MicrotracBEL사의 Belsorp-mini Ⅱ 등)를 이용할 수 있다.
상기 구형 실리카 필러 분말은 구형이어서, 광산란성(여기 광의 산란 성)을 높여 결과적으로 균질하고 형광 강도 높은 빛을 조사할 수 있는 파장 변환 부재를 얻는 데에 유리할 수 있다.
한편, 상기 구형 실리카 필러 분말은 평균 구형도가 2.0 이하, 바람직하게는 1.5 이하일 수 있다.
본 발명에 있어서, 상기 "구형도"의 정의는, 주사형 전자 현미경 (SEM)으로 관찰한 입자에 대해 "장축의 직경(Lmax)/단축의 직경(Lmin)"을 의미한다.
도 2를 참조하면, 상기 장축의 직경(Lmax)이란, 구형 실리카 필러 분말(130)의 외곽선 상에 있는 임의의 점 2개를 직선으로 연결할 때 길이가 가장 긴 직선의 길이(Lmax)를 의미할 수 있고, 단축의 직경(Lmin)이란 구형 실리카 필러 분말의 외곽선 상에 있는 임의의 점 2개를 직선으로 연결할 때 길이가 가장 짧은 직선의 길이(Lmin)를 의미할 수 있다.
본 발명의 일 실시예에 따르면, 상기 구형 실리카 필러 분말은 비교적 작은 입경을 갖는 입자도 일정 수 존재할 수 있다. 이 경우, 상기 구형 실리카 필러 분말이 완전한 구형이 아닌 경우에, 이들 입자들 틈에 비교적 작은 입경을 갖는 실리카 필러 분말이 들어가 틈이 충전될 수 있다. 이를 고려하면 상기 구형 실리카 필러 분말의 평균 구형도는 1.1 내지 1.5일 수 있다.
한편, 상기 구형 실리카 필러 분말의 굴절률은 1.44 내지 1.47일 수 있다.
또한, 상기 유리 매트릭스와 상기 구형 실리카 필러 분말의 굴절률 차이는 0.01 내지 0.52, 바람직하게는 0.12 내지 0.50, 더욱 바람직하게는 0.33 내지 0.40 일 수 있다.
상기 유리 매트릭스와 상기 구형 실리카 필러 분말의 굴절률 차이가 너무 크면 유리 매트릭스와 구형 실리카 필러 분말의 계면에서의 광반사율이 증가하여 광산란이 과잉화 되어 광 효율이 저하될 수 있고, 여기 광이 파장 변환 부재 내부의 형광체 분말에 조사되기 어려워지고 형광 강도가 저하되는 문제가 발생할 수 있다. 상기 유리 매트릭스와 상기 구형 실리카 필러 분말의 굴절률 차이가 너무 적으면 충분한 광산란성을 얻기 어려워져, 발광 강도가 저하될 수 있으며, 본 발명에서 목적하는 효과를 얻는 데에 어려움이 있을 수 있다.
한편, 상기 구형 실리카 필러 분말의 연화점(Ts)은 상기 유리 매트릭스의 연화점(Ts)보다 500℃ 이상 높은 것이 바람직하다. 이 경우, 파장 변환 부재 제작 시, 실리카 분말이 연화 유동하고 광확산성이 저하되는 것을 억제할 수 있다. 구체적으로, 상기 구형 실리카 필러 분말의 연화점(Ts)은 1,400 내지 1,700℃, 바람직하게는 1,400 내지 1,600℃일 수 있다.
상기 구형 실리카 필러 분말의 함량은 상기 유리 매트릭스, 구형 실리카 필러 분말 및 형광체 분말의 총 중량에 대해 0.5 내지 50 중량%일 수 있다. 구체적으로, 상기 구형 실리카 필러 분말의 함량은 바람직하게는 0.5 내지 30 중량%, 더욱 바람직하게는 1 내지 20 중량%일 수 있다. 상기 구형 실리카 필러 분말의 함량이 상기 범위 미만인 경우, 필러에 의한 효과를 충분히 얻을 수 없고, 상기 구형 실리카 필러 분말의 함량이 상기 범위를 초과하는 경우, 빛의 산란이 과잉화 되어 손실이 커져 광 효율이 저하될 수 있다.
또한, 상기 형광체 분말과 유리 매트릭스의 굴절률 차이가 비교적 큰 경우, 빛의 산란이 생기기 쉬운 상태에 있기 때문에 상기 구형 실리카 필러 분말을 첨가하더라도 필러에 의한 효과를 얻기 힘들 수 있다.
따라서, 상기 형광체 분말과 유리 매트릭스의 굴절률 차이를 고려하여 실리카 분말의 함량을 적절히 선택하는 것이 바람직하다.
본 발명의 일 실시예에 따르면, 상기 유리 매트릭스를 형성하는 유리 분말과 구형 실리카 필러 분말의 함량은 형광체 분말의 함량에 따라 달라질 수 있다.
구체적으로, 상기 유리 분말과 구형 실리카 필러 분말의 혼합물(X)의 함량 및 상기 형광체 분말(Y)의 중량비(X:Y)는 60 내지 95 : 5 내지 40, 바람직하게는 70 내지 95 : 5 내지 30일 수 있다. 상기 유리 분말과 구형 실리카 필러 분말의 혼합물(X)이 상기 범위 미만인 경우, 소결성이 악화되어 파장 변환 부재의 투과율이 낮아지고, 원하는 백색광을 얻을 수 없다.
상기 유리 분말과 구형 실리카 필러 분말의 혼합물(X) 및 상기 형광체 분말(Y)의 중량비(X:Y)를 상기 범위를 만족하는 경우, 광원으로부터의 빛의 투과율 및 형광체 분말의 광변환량을 균형 있게 제어할 수 있고, 파장 변환 부재의 제조 시, 파장 변환 부재의 크기에 대한 수축을 억제하여 광변환 색도의 얼룩 발생을 최소화할 수 있다.
본 발명의 일 실시예에 따르면, 상기 형광체 분말과 상기 구형 실리카 필러 분말의 중량비는 1:0.1 내지 5일 수 있다.
파장 변환 부재의 특성
본 발명의 일 실시예에 따른 파장 변환 부재는 100 내지 800㎛, 바람직하게는 150 내지 500㎛의 두께를 가질 수 있다. 상기 파장 변환 부재의 두께가 상기 범위의 하한값 이상인 경우, 취급이 용이하고, 상기 파장 변환 부재를 원하는 크기로 잘랐을 때 균열을 방지할 수 있다. 또한, 상기 파장 변환 부재의 두께가 상기 범위의 하한값 이하인 경우, 상기 파장 변환 부재를 투과하는 광속량을 높게 유지할 수 있다. 만일, 상기 파장 변환 부재의 두께가 상기 범위를 초과하여 너무 두꺼우면 형광체의 발광 효율이 낮아질 수 있다.
상기 파장 변환 부재는 70 내지 95%의 광투과율을 가질 수 있다. 구체적으로, 상기 파장 변환 부재는 72 내지 92%, 또는 72.2 내지 85%의 광투과율을 가질 수 있다.
상기 파장 변환 부재는 66 내지 80lm의 광 선속(Φv)을 가질 수 있다. 구체적으로, 상기 파장 변환 부재는 73 내지 80lm, 또는 74 내지 80lm의 광 선속(Φv)을 가질 수 있다.
상기 파장 변환 부재는 98% 내지 105%의 환산광속을 가질 수 있다. 구체적으로, 상기 파장 변환 부재는 98% 내지 103%, 또는 100% 내지 103%의 환산광속을 가질 수 있다.
상기 광 선속 및 환산광속은 적분구 측정 장비(LMS-200, J&C Tech.)를 사용하여 445 nm의 여기 광원을 이용하여 색도 분포도를 측정하여 얻을 수 있다.
한편, 상기 파장 변환 부재는 JIS K7105에 따라 측정한 평행 광선(직선) 투과율이 20% 이하, 바람직하게는 10% 이하일 수 있다. 상기 평행 광선 투과율이 너무 큰 경우, 광 직진성이 너무 커져 형광 강도의 저하와 색상 편차가 발생할 수 있다.
또한, 상기 파장 변환 부재는 JIS K7105에 따라 측정한 헤이즈가 70% 이상, 바람직하게는 75% 이상일 수 있다.
[파장 변환 부재의 제조방법]
본 발명은 상기 파장 변환 부재의 제조방법을 제공한다.
도 3을 참조하면, 본 발명의 일 실시예에 따른 파장 변환 부재의 제조 방법은, 유리 분말, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 파장 변환 부재용 조성물을 얻는 제 1 단계(S110); 상기 파장 변환 부재용 조성물을 기재 상에 도포하여 파장 변환 부재용 그린 시트를 얻는 제 2 단계(S120); 및 상기 파장 변환 부재용 그린 시트를 소성하는 제 3 단계(S130);를 포함할 수 있다.
구체적으로, 상기 제 1 단계(S110)는 유리 분말, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 파장 변환 부재용 조성물을 얻는 단계를 포함한다.
구체적으로, 유리 매트릭스를 형성할 수 있는 유리 분말과, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 조성물을 준비할 수 있다. 상기 유리 분말, 형광체 분말 및 구형 실리카 필러 분말의 각 종류 및 함량 등은 상술한 바와 같다.
본 발명의 일 실시예에 따르면, 상기 파장 변환 부재용 조성물 중의 각 성분의 함량은 소성 후 상기 파장 변환 부재에 포함되는 각 성분의 함량과 동일하다고 간주할 수 있다.
또한, 상기 파장 변환 부재용 조성물은 바인더 수지 및 용제를 더 포함할 수 있다.
상기 바인더 수지는 폴리비닐부티랄(PVB), 폴리비닐알코올(PVA) 및 폴리비닐아세테이트(PVAc)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 바인더 수지는 폴리비닐부티랄(PVB) 또는 폴리비닐알코올(PVA) 를 포함할 수 있다.
상기 바인더 수지는 중량평균분자량이 1,000 내지 70,000 g/mol일 수 있다. 구체적으로, 상기 바인더 수지는 중량평균분자량이 20,000내지 60,000 g/mol일 수 있다.
상기 용제는 그린 시트의 빠른 제조를 위해 낮은 비점을 가질 수 있다. 구체적으로, 상기 용제는 30 내지 150℃의 비점을 가질 수 있다. 보다 구체적으로, 상기 용제는 60 내지 130℃의 비점을 가질 수 있다.
또한, 상기 용제는 톨루엔, 에탄올, 부탄올, 아세톤 및 메탄올로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 용제는 톨루엔, 에탄올 및 부탄올로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 예컨대, 상기 용제는 톨루엔, 에탄올 및 부탄올을 포함할 수 있다.
상기 용제는 조성물의 특성 및 건조 조건에 적합한 함량으로 포함될 수 있다. 구체적으로, 상기 용제는 상기 파장 변환 부재용 조성물 총 중량을 기준으로 30 내지 50 중량%의 양으로 포함될 수 있다.
또한, 상기 파장 변환 부재용 조성물은 가소제를 추가로 포함할 수 있다. 상기 가소제는 DOP(다이옥틸프탈레이트), DOA(다이옥틸아디페이트), TCP(트라이크레실포스테이트)로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 구체적으로, 상기 가소제는 DOP(다이옥틸프탈레이트), DOA(다이옥틸아디페이트)를 포함할 수 있다.
또한, 상기 가소제는 바인더 수지 100 중량부를 기준으로 10 내지 200 중량부의 양으로 포함될 수 있다. 구체적으로, 상기 가소제는 바인더 수지 100 중량부를 기준으로 30 내지 90 중량부의 양으로 포함될 수 있다.
상기 파장 변환 부재용 조성물은 용제와 바인더 수지를 혼합하고 기포를 제거하여 바인더 용액을 얻은 후, 상기 바인더 용액, 유리 분말, 형광체 분말, 구형 실리카 필러 분말 및 가소제 등을 혼합하여 제조될 수 있다. 본 발명은 비점이 낮은 용제를 사용하고 있어, 상기 파장 변환 부재용 조성물 제조시 바인더 수지와 용제를 상온에서 혼합할 수 있다.
상기 제 2 단계(S120)는 상기 파장 변환 부재용 조성물을 기재 상에 도포하여 파장 변환 부재용 그린 시트를 얻는 단계를 포함한다.
구체적으로, 상기 제 1 단계에서 얻은 파장 변환 부재용 조성물을 기재상에 도포하는데, 이때, 상기 도포는 테이프 캐스팅(tape casting) 방법 또는 닥터 블레이드를 이용하여 수행될 수 있다.
상기 기재는 폴리에스테르계 기재를 사용할 수 있으며, 예컨대 폴리에틸렌테레프탈레이트(PET) 등의 수지 필름을 이용할 수 있다.
본 발명의 일 실시예에 따르면, 상기 파장 변환 부재용 그린 시트는 한 장일 수도 있고, 캐스팅하여 제조된 한 장의 상기 파장 변환 부재용 그린 시트를 다수 개 적층한 후 압축한 것일 수 있다. 이때, 상기 파장 변환 부재용 그린 시트의 적층수는 특별히 제한하지 않으며, 예를 들어, 압축 후 파장 변환 부재 용 그린 시트의 두께가 50 내지 1,500㎛가 되도록 적층할 수 있다.
상기 압축은 1 내지 100 ㎫의 압력으로 수행될 수 있다. 구체적으로, 상기 압축은 2 내지 50 ㎫의 압력으로 수행될 수 있다.
상기 제 3 단계(S130)는 상기 파장 변환 부재용 그린 시트를 소성하는 단계를 포함할 수 있다.
상기 소성 온도는 유리 매트릭스의 연화점의 ± 100℃의 범위 내, 구체적으로 유리 매트릭스의 연화점의 ± 50℃의 범위 내인 것이 바람직하다. 상기 소성 온도가 너무 낮으면 각층의 융착이 어려워질 수 있고, 유리 분말의 소결이 불충분하거나, 파장 변환 부재의 기계적 강도가 저하될 수 있다. 한편, 상기 소성 온도가 너무 높으면 파장 변환 부재의 발광 강도가 저하될 수 있다.
상기 소성 온도는 450 내지 950℃에서 10 분 내지 72 시간 동안 수행될 수 있다. 구체적으로, 상기 소성은 600 내지 800℃에서 10 내지 52 시간 동안 수행될 수 있다.
한편, 상기의 각 제조 방법에 있어서 상기 소성 전, 즉 상기 파장 변환 부재용 그린 시트를 압축한 후 소성 전에 유기물을 제거하는 탈지 공정을 수행할 수 있다. 또한 상기 파장 변환 부재용 그린 시트를 복수개 포함하는 경우, 각층의 적층 시, 서로의 밀착성을 높이기 위해 적절하게 가열 압착하여도 좋다.
또한, 상기 제조 방법 중 소성 후, 필요에 따라 연삭, 연마 및 리프레스(re-press) 등에 의한 가공 단계를 더 포함할 수 있다.
[발광장치]
본 발명의 일 실시예는 상기 파장 변환 부재; 및 상기 파장 변환 부재에 여기 광을 조사하는 광원을 포함하는, 발광장치를 제공한다.
구체적으로, 상기 파장 변환 부재에 형광체 분말의 여기 광을 조사하는 광원과 결합하여 발광장치로 사용할 수 있다. 상기 광원으로는 발광 다이오드(light emitting diode, LED)와 레이저 다이오드(laser diode, LD) 등의 반도체 발광 소자를 사용할 수 있다. 상기 반도체 발광 소자는 복수개 사용할 수 있다.
상기 발광장치는 상기 파장 변환 부재가 상기 반도체 발광 소자에 직접 접하도록 배치될 수 있다. 예컨대, 상기 반도체 발광 소자 및 상기 파장 변환 부재가 순차적으로 적층된 구조를 가질 수 있다. 또는, 상기 반도체 발광 소자가 상기 파장 변환 부재에 둘러싸이도록 배치되거나, 상기 파장 변환 부재가 상기 반도체 발광 소자에 둘러싸이도록 배치될 수 있다.
또한, 상기 반도체 발광 소자 및 상기 파장 변환 부재가 서로 이격되어 존재할 수 있다.
이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.
제조예 1. 유리 분말의 제조
하기 표 1의 조성을 갖도록 각각의 성분을 혼합하고, 1,200℃에서 용융하여 유리물을 제조하였다. 제조된 유리물을 분쇄하여 5.9㎛의 평균 입경을 갖는 유리 분말을 제조하였다.
Figure PCTKR2022006559-appb-T000001
실시예 1. 파장 변환 부재의 제조
1-1: 파장 변환 부재 형성용 조성물을 얻는 단계
하기 표 2에 나타낸 바와 같이, 80 중량%의 제조예 1의 유리 분말, 10 중량% YAG계 형광체 분말(평균 입경(D50): 25㎛, 제조사: 대주전자재료, 제품명: DLP-Y62-25), 10 중량%의 구형 실리카 필러 분말(DENKA/FB-7SDX), 및 바인더 용액 및 가소제를 85:15 중량비로 혼합하여 파장 변환 부재용 조성물를 제조하였다.
이때, 상기 바인더 용액은 폴리비닐부티랄(PVB, 중량평균분자량: 50,000 g/mol) 27 g을 81 g의 용제(톨루엔, 부탄올을 3 : 2의 부피비로 포함)에 넣고 상온에서 1시간 동안 용해시켜 제조하였고, 상기 가소제는 프탈레이트계 가소제를 사용하였다.
1-2: 파장 변환 부재 형성용 그린 시트를 얻는 단계
상기 1-1에서 얻은 파장 변환 부재용 조성물을 테이프 캐스팅(tape casting)법에 따라 PET 필름 상에 도포하여 시트 형상으로 성형하여 두께 50㎛의 파장 변환 부재용 그린 시트를 얻었다. 상기 그린 시트 21 장을 적층하고 14 ㎫의 압력으로 가압하여 파장 변환 부재용 그린 시트를 얻었다.
1-3: 파장 변환 부재용 그린 시트를 소성하는 단계
상기 1-2에서 얻은 파장 변환 부재용 그린 시트를 600℃에서 12 시간 동안 소성하여 파장 변환 부재를 얻었다.
실시예 2 내지 7
하기 표 2와 같이, 상기 실시예 1의 1-1에서 입경 분포가 다른 구형 실리카 필러 분말을 사용하고, 유리 분말, 구형 실리카 필러 분말 및 형광체 분말의 함량을 조절한 것을 제외하고는, 실시예 1과 동일한 방법으로 파장 변환 부재를 제조하였다.
비교예 1
하기 표 2와 같이, 상기 실시예 1의 1-1에서 구형 실리카 필러 분말을 사용하지 않고, 유리 분말 함량을 90 중량%로 변경한 것을 제외하고는, 실시예 1과 동일한 방법으로 파장 변환 부재를 제조하였다.
비교예 2
하기 표 2와 같이, 상기 실시예 1의 1-1에서 구형 실리카 필러 분말 대신 각형 실리카 필러 분말(아모텍/abp-05)을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 파장 변환 부재를 제조하였다.
비교예 3
하기 표 2와 같이, 상기 실시예 1의 1-1에서 구형 실리카 필러 분말 대신 실시예 1의 1-1에서 입경 분포가 다른 구형의 흄드 실리카 필러 분말(Evonik사/Aerosil R-202)을 사용 한 것을 제외하고는 실시예 1과 동일한 방법으로 파장 변환 부재를 제조하였다.
비교예 4 및 5
하기 표 2와 같이, 상기 실시예 1의 1-1에서 스팬(SPAN) 값이 각각 1.4 및 5.4이고, 입경 분포가 다른 구형 실리카 필러 분말을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 파장 변환 부재를 제조하였다.
시험예
실시예 및 비교예에서 사용한 각 성분, 또는 실시예 및 비교예에서 제조된 파장 변환 부재의 물성을 하기와 같은 방법으로 평가하였으며, 그 결과를 표 1 내지 3에 나타냈다.
(1) 연화점(Ts)
열분석기(SDT: Q600, TA Instruments, 미국)를 사용하여 승온속도 10℃로 상온에서부터 1,000℃까지의 범위에서 연화점(연화 온도)를 측정하였다.
(2) 굴절률
Professional Gemstone Refractometers(Kruess model ER601 LED, Germany)를 이용하여 측정하였으며, 측정시 시편은 두께를 1㎜(1T)로 가공 후 시편측정위치에 일정량의 굴절액을 도포하여 측정부분과 완전히 밀착되게 하여, 굴절 게이지 값을 육안으로 확인하였다.
(3) 입자 직경
Microtreac사의 S3500 장비를 이용하여 입경을 측정하였다. 분석값의 D10, D50 및 D90은 각각 레이저 광 회절법에 의한 입도 분포 측정에 있어서, 누적 부피농도(%)가 10%가 될 때의 입자 직경(D10), 누적 부피농도(%)가 50%가 될 때의 입자 직경(D50), 및 누적 부피농도(%)가 90%가 될 때의 입자 직경(D90)으로서 측정하였다.
(4) BET
상기 실시예 및 비교예에서 사용한 실리카 필러 분말의 비표면적은, MOUNTECH사의 Macsorb HM(model 1210)으로 질소와 헬륨의 혼합 가스(N2: 30 부피%, He: 70 부피%)를 흘리면서, BET 1점법에 의해 측정하였다.
(5) 광투과율(%)
Perkinelmer사의 uv/vis spectrometer(Lambda35, USA)을 사용하여 기준파장 550 nm의 빛의 광투과율을 측정하였으며, 시료가 없는 상태를 100%로 하였다.
(6) 색도 분포도(Cx, Cy, 광 선속(Φv, 루멘(lm)) 및 환산 광속(%))
색도 분포도를 적분구 측정 장비(LMS-200, J&C Tech.)를 사용하여 445 nm의 여기 광원 위에 파장 변환 부재를 올려놓고 측정하였다.
Figure PCTKR2022006559-appb-T000002
Figure PCTKR2022006559-appb-T000003
상기 표 3에서 보는 바와 같이, 파장 변환 부재가 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고, 상기 구형 실리카 필러 분말의 D50이 1.23 내지 13.2㎛이고, 스팬(SPAN) 값이 1.1 내지 4.5인 실시예 1 내지 7의 파장 변환 부재는 광투과율, 광 선속 및 환산 광속 등의 광 특성이 전반적으로 우수함을 확인하였다.
구체적으로, 실시예 1 내지 7의 파장 변환 부재는 광투과율이 72.3 내지 72.7%이고, 광 선속이 73.6 내지 78.6lm이며, 환산 광속이 100.3 내지 102.2%로 모두 우수하였다.
반면, 실리카 필러 분말을 포함하지 않은 비교예 1, 각형 실리카 필러 분말을 포함하는 비교예 2, 상기 구형 실리카 필러 분말의 D50 및 스팬(SPAN) 값 중 하나라도 본 발명의 범위에 벗어나는 사용한 비교예 3 내지 5의 파장 변환 부재는 실시예 1 내지 7의 파장 변환 부재에 비해 광투과율, 광 선속 및 환산 광속 등의 광 특성이 모두 저하됨을 확인하였다.
[부호의 설명]
100: 파장 변환 부재
110: 유리 매트릭스
120: 형광체 분말
130: 구형 실리카 필러 분말
Lmax: 장축의 직경
Lmin: 단축의 직경

Claims (12)

  1. 유리 매트릭스; 및
    상기 유리 매트릭스 중에 분산된 형광체 분말 및 구형 실리카 필러 분말을 포함하고,
    레이저 회절법에 의해 측정한 입도 분포에 있어서의 누적 부피(%)의 10%, 50% 및 90%가 되는 입경을 각각 D10, D50 및 D90이라 할 때, 상기 구형 실리카 필러 분말의 D50이 1.0 내지 15.0㎛이고, 하기 식 1의 스팬(SPAN) 값이 1.0 내지 5.0인, 파장 변환 부재:
    [식 1]
    스팬(SPAN) = (D90-D10)/D50.
  2. 제 1 항에 있어서,
    상기 구형 실리카 필러 분말의 D90/D10이 1.5 내지 15인, 파장 변환 부재.
  3. 제 1 항에 있어서,
    상기 구형 실리카 필러 분말의 비표면적(Brunauer-Emmett-Teller; BET)이 1.0 내지 6.5 ㎡/g인, 파장 변환 부재.
     
  4. 제 1 항에 있어서,
    상기 유리 매트릭스와 상기 구형 실리카 필러 분말의 굴절률 차이가 0.01 내지 0.52인, 파장 변환 부재.
  5. 제 4 항에 있어서,
    상기 유리 매트릭스의 굴절률이 1.44 내지 1.89이고, 연화점(Ts)이 550 내지 850℃인, 파장 변환 부재.
  6. 제 1 항에 있어서,
    상기 형광체 분말의 평균 입경(D50)이 3 내지 30㎛인, 파장 변환 부재.
  7. 제 1 항에 있어서,
    상기 구형 실리카 필러 분말의 함량이 상기 유리 매트릭스, 구형 실리카 필러 분말 및 형광체 분말의 총 중량에 대해 0.5 내지 50 중량%인, 파장 변환 부재.
  8. 제 1 항에 있어서,
    상기 형광체 분말과 상기 구형 실리카 필러 분말의 중량비가 1:0.1 내지 5인, 파장 변환 부재.
  9. 제 1 항에 있어서,
    상기 유리 매트릭스가 평균 입경(D50)이 2 내지 15㎛인 유리 분말로부터 유도되고,
    상기 유리 분말이 유리 분말 총 몰수를 기준으로 하기 조성을 갖는, 파장 변환 부재:
    P2O5 2 내지 10 mol%,
    ZnO 30 내지 50 mol%,
    SiO2 10 내지 25 mol%, 및
    B2O3 15 내지 25 mol%.
  10. 제 9 항에 있어서,
    상기 유리 분말이 하기 성분 중에서 선택된 1종 이상을 더 포함하는, 파장 변환 부재:
    Al2O3 1 내지 10 mol%,
    SnO2 0.1 내지 7 mol%,
    BaO 1 내지 5 mol%,
    SrO 0.1 내지 5 mol%,
    CaO 1 내지 5 mol%,
    Li2O 1 내지 5 mol%,
    Na2O 1 내지 7 mol%, 및
    K2O 1 내지 5 mol%.
  11. 유리 분말, 형광체 분말 및 구형 실리카 필러 분말을 포함하는 파장 변환 부재용 조성물을 얻는 제 1 단계;
    상기 파장 변환 부재용 조성물을 기재 상에 도포하여 파장 변환 부재용 그린 시트를 얻는 제 2 단계; 및
    상기 파장 변환 부재용 그린 시트를 소성하는 제 3 단계
    를 포함하는, 제 1 항의 파장 변환 부재의 제조방법.
  12. 제 1 항 내지 제 10 항 중 어느 한 항의 파장 변환 부재; 및
    상기 파장 변환 부재에 여기 광을 조사하는 광원
    을 포함하는, 발광장치.
PCT/KR2022/006559 2021-05-11 2022-05-09 파장 변환 부재 및 이를 포함하는 발광장치 WO2022240091A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22807739.2A EP4339661A1 (en) 2021-05-11 2022-05-09 Wavelength conversion member and light-emitting apparatus
US18/560,195 US20240243233A1 (en) 2021-05-11 2022-05-09 Wavelength conversion member and light-emitting apparatus
CN202280046330.7A CN117677869A (zh) 2021-05-11 2022-05-09 波长转换构件及发光器件
JP2023569957A JP2024522334A (ja) 2021-05-11 2022-05-09 波長変換部材および発光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0060656 2021-05-11
KR1020210060656A KR102576253B1 (ko) 2021-05-11 2021-05-11 파장 변환 부재 및 이를 포함하는 발광장치

Publications (1)

Publication Number Publication Date
WO2022240091A1 true WO2022240091A1 (ko) 2022-11-17

Family

ID=84029290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/006559 WO2022240091A1 (ko) 2021-05-11 2022-05-09 파장 변환 부재 및 이를 포함하는 발광장치

Country Status (6)

Country Link
US (1) US20240243233A1 (ko)
EP (1) EP4339661A1 (ko)
JP (1) JP2024522334A (ko)
KR (1) KR102576253B1 (ko)
CN (1) CN117677869A (ko)
WO (1) WO2022240091A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258308A (ja) 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd 発光色変換部材
JP4895541B2 (ja) 2005-07-08 2012-03-14 シャープ株式会社 波長変換部材、発光装置及び波長変換部材の製造方法
KR20150092213A (ko) * 2013-12-26 2015-08-12 신에쯔 세끼에이 가부시키가이샤 파장 변환용 석영 유리 부재 및 그 제조 방법
JP2015147705A (ja) * 2014-02-06 2015-08-20 日本電気硝子株式会社 ガラス部材及びその製造方法
KR101588220B1 (ko) * 2014-11-12 2016-01-25 주식회사 다온씨엔티 광학 시트
KR20160097152A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 색변환 필름 및 이를 포함하는 백라이트 유닛
WO2020184562A1 (ja) * 2019-03-12 2020-09-17 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250660Y2 (ko) 1972-02-17 1977-11-17
WO2013161098A1 (ja) * 2012-04-27 2013-10-31 積水化成品工業株式会社 重合体粒子、その製造方法、及び、その用途
KR101676298B1 (ko) * 2016-05-04 2016-11-15 주식회사 씨케이머티리얼즈랩 재분산성이 향상된 자기유변유체 평가방법
JP7376022B2 (ja) * 2019-08-02 2023-11-08 国立大学法人横浜国立大学 蛍光体粒子分散ガラスおよび発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258308A (ja) 2002-03-06 2003-09-12 Nippon Electric Glass Co Ltd 発光色変換部材
JP4895541B2 (ja) 2005-07-08 2012-03-14 シャープ株式会社 波長変換部材、発光装置及び波長変換部材の製造方法
KR20150092213A (ko) * 2013-12-26 2015-08-12 신에쯔 세끼에이 가부시키가이샤 파장 변환용 석영 유리 부재 및 그 제조 방법
JP2015147705A (ja) * 2014-02-06 2015-08-20 日本電気硝子株式会社 ガラス部材及びその製造方法
KR101588220B1 (ko) * 2014-11-12 2016-01-25 주식회사 다온씨엔티 광학 시트
KR20160097152A (ko) * 2015-02-06 2016-08-17 주식회사 엘지화학 색변환 필름 및 이를 포함하는 백라이트 유닛
WO2020184562A1 (ja) * 2019-03-12 2020-09-17 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置及び波長変換用樹脂組成物

Also Published As

Publication number Publication date
KR20220153278A (ko) 2022-11-18
JP2024522334A (ja) 2024-06-18
EP4339661A1 (en) 2024-03-20
CN117677869A (zh) 2024-03-08
US20240243233A1 (en) 2024-07-18
KR102576253B1 (ko) 2023-09-11

Similar Documents

Publication Publication Date Title
WO2011099800A2 (ko) 형광체, 발광장치, 면광원장치, 디스플레이 장치 및 조명장치
WO2016056837A1 (ko) 발광 장치
WO2010018999A2 (ko) β-사이알론 형광체 제조방법
WO2015072766A1 (ko) 청녹색 형광체, 이를 포함하는 발광 소자 패키지 및 조명 장치
WO2013122337A1 (en) Light emitting package
US9175834B2 (en) Glass ceramic body, substrate for mounting light emitting element, and light emitting device
WO2017010788A1 (ko) 섬유상-웹 구조의 양자점 시트, 이의 제조방법 및 이를 포함하는 백라이트 유닛
WO2019139329A1 (ko) 디스플레이 장치
WO2017073815A1 (ko) 형광체 및 이를 포함하는 발광 장치
WO2012039566A2 (ko) 사이알론 형광체, 그 제조방법 및 이를 이용한 발광소자 패키지
WO2013141044A1 (ja) ガラスおよび当該ガラスを用いた波長変換部材
US20100086771A1 (en) Substrate for Lighting Device and Production Thereof
WO2010074391A1 (ko) 산질화물 형광체, 그 제조방법 및 발광장치
CN101374929A (zh) 光致发光材料
WO2022240091A1 (ko) 파장 변환 부재 및 이를 포함하는 발광장치
WO2023277579A1 (ko) 파장 변환 부재 및 이를 포함하는 발광장치
WO2017146420A1 (ko) 적색 유무기 복합 발광 재료를 포함하는 led 패키지 및 이를 적용한 백라이트 유닛
WO2023022575A1 (en) Color stable mn-activated oxidofluorides as conversion luminescent materials for led-based solid state light sources
WO2016006773A1 (ko) 경화형 폴리오르가노실록산 조성물, 봉지재, 및 광학기기
WO2012111929A2 (ko) 형광체 및 이의 제조방법
WO2017043851A1 (ko) 발광 장치
WO2010134711A9 (ko) 형광체 및 이를 이용한 발광장치
WO2017010730A1 (ko) 유리 프릿을 활용한 색변환 소재를 포함하는 led 칩 스케일 패키지 및 그 제조방법
US20200079684A1 (en) Laminated body for preparing wavelength conversion member and preparation method of wavelength conversion member
WO2017111401A1 (ko) 광 변환 부재 및 이를 포함하는 표시장치 및 발광소자 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18560195

Country of ref document: US

Ref document number: 2023569957

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022807739

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022807739

Country of ref document: EP

Effective date: 20231211

WWE Wipo information: entry into national phase

Ref document number: 202280046330.7

Country of ref document: CN