WO2016056837A1 - 발광 장치 - Google Patents

발광 장치 Download PDF

Info

Publication number
WO2016056837A1
WO2016056837A1 PCT/KR2015/010590 KR2015010590W WO2016056837A1 WO 2016056837 A1 WO2016056837 A1 WO 2016056837A1 KR 2015010590 W KR2015010590 W KR 2015010590W WO 2016056837 A1 WO2016056837 A1 WO 2016056837A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
light emitting
wavelength
emitting diode
Prior art date
Application number
PCT/KR2015/010590
Other languages
English (en)
French (fr)
Inventor
김명진
오광용
남기범
오지연
박상신
임마이클
Original Assignee
서울반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140136095A external-priority patent/KR102256593B1/ko
Priority claimed from KR1020150008213A external-priority patent/KR102354843B1/ko
Priority claimed from KR1020150008212A external-priority patent/KR20160088743A/ko
Priority to JP2017518810A priority Critical patent/JP7073102B2/ja
Priority to CN201910232719.0A priority patent/CN110003891B/zh
Priority to US15/518,170 priority patent/US10811572B2/en
Application filed by 서울반도체 주식회사 filed Critical 서울반도체 주식회사
Priority to CN201910233767.1A priority patent/CN110055059B/zh
Priority to CN201580055014.6A priority patent/CN106796976B/zh
Priority to EP15849447.6A priority patent/EP3206240B1/en
Priority to EP19175632.9A priority patent/EP3546544A1/en
Publication of WO2016056837A1 publication Critical patent/WO2016056837A1/ko
Priority to US17/071,374 priority patent/US11545599B2/en
Priority to US17/980,499 priority patent/US20230056190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to a light emitting device. Specifically, the present invention relates to a light emitting device having improved reliability, color rendering, and light quantity.
  • a light emitting diode (LED) package is a compound semiconductor having a p-n junction structure of a semiconductor and refers to a device that emits predetermined light by recombination of minority carriers (electrons or holes).
  • the light emitting device including the light emitting diode has a low power consumption, a long life, and can be miniaturized.
  • the light emitting device may implement white light using a phosphor that is a wavelength conversion means. That is, the phosphor may be disposed on the LED chip to implement white light through a mixture of a part of the primary light of the LED chip and the secondary light wavelength-converted by the phosphor.
  • White light emitting devices having such a structure are widely used because of their low cost and simple principle and structure.
  • white light may be obtained by coating a phosphor emitting yellow green or yellow by absorbing a part of blue light as excitation light on a blue light emitting diode chip.
  • a part of the light is attached to a yellow-green to yellow light-emitting phosphor as an excitation source on the light-emitting diode chip emitting blue light, and thus the blue light of the light-emitting diode and the yellow-green to yellow light-emitting of the phosphor. Accordingly, a light emitting diode emitting white light is disclosed.
  • the white light emitting device using this method utilizes the light emission of the yellow phosphor, and thus the color rendering is low due to the spectral deficiency of the green and red regions of the emitted light.
  • the white light emitting device using this method utilizes the light emission of the yellow phosphor, and thus the color rendering is low due to the spectral deficiency of the green and red regions of the emitted light.
  • a light emitting diode is manufactured by using a blue light emitting diode chip and phosphors emitting green and red light as excitation light. That is, white light having a high color rendering property can be realized through a mixture of green light and red light excited by blue light and blue light.
  • white light emitting diode is used as the backlight unit, since the match with the color filter is very high, an image closer to the natural color can be realized.
  • a light emitting diode using a blue light emitting diode chip has a relatively high intensity of blue light, there is a high possibility that various side effects, for example, sleep disorders, may occur when the light emitting diode is used as illumination. For example, inhibition of melatonin can be caused, whereby biocycle rhythm can be affected. For example, there is a high risk of sleep disorders.
  • an ultraviolet light emitting diode chip may be used instead of the blue light emitting diode chip.
  • a light emitting device using an ultraviolet light emitting diode chip can implement high color rendering, and can easily convert color temperature according to a combination of phosphors and can have excellent yield.
  • the ultraviolet light emitting diode chip emits light of a wavelength having a relatively high energy, degradation or cracking of the encapsulant may occur, and further, discoloration of the plated lead frame, etc. Problems may arise. Therefore, the light emitting device including the ultraviolet light emitting diode chip has a problem of the reliability of the light emitting device.
  • R9 is an indicator of strong redness and is important in areas related to skin color, artwork, clothing, foodstuffs, and the like.
  • a CASN-based phosphor having a peak wavelength in a long wavelength region is applied to have a CRI of 90 or more and R9 of 50 or more.
  • R9 increases, but there is a problem in that the amount of light decreases by more than 4%, thereby limiting the application.
  • the problem to be solved by the present invention is to provide a light emitting device having improved reliability and color rendering.
  • Another object of the present invention is to provide a light emitting device having improved visibility and amount of light.
  • the problem to be solved by the present invention is to provide a light emitting device having an improved CRI, R9 value.
  • a light emitting device includes a housing; A light emitting diode chip disposed in the housing; A wavelength conversion unit disposed on the light emitting diode chip; A first phosphor distributed in the wavelength conversion unit and emitting light having a peak wavelength of a green light band; And a second phosphor distributed in the wavelength converter and emitting light having a peak wavelength of a red light band, wherein the peak wavelength of light emitted from the light emitting diode chip may be located within a wavelength range of 415 to 430 nm.
  • the first phosphor may include at least one of LuAG, YAG, nitride, and silicate-based phosphors.
  • the second phosphor may include at least one of CASN, CASON, and SCASN series phosphors.
  • the peak wavelength of the green light band of the light emitted by the first phosphor may be located within a wavelength range of 500 to 540 nm, and the peak wavelength of the red light band of the light emitted by the second phosphor may be located within a wavelength range of 600 to 650 nm.
  • the light emitting device may further include a third phosphor distributed in the wavelength conversion unit and emitting light of a blue light band, wherein the third phosphor may include at least one of SBCA, BAM, silicate, and nitride series phosphors. Can be.
  • the peak wavelength of the blue light band of the light emitted by the third phosphor may be located within a wavelength range of 450 to 480 nm.
  • White light may be formed by synthesizing light emitted from each of the light emitting diode chip, the first phosphor, and the second phosphor, and the color rendering index (CRI) of the white light may be 85 or more.
  • CRI color rendering index
  • the wavelength conversion unit may include at least one of silicon, epoxy, PMMA, PE, and PS.
  • a buffer unit may be further included between the wavelength converter and the light emitting diode chip, and the buffer unit may have a lower hardness than the wavelength converter.
  • the wavelength conversion unit may include a first wavelength conversion unit covering the light emitting diode chip; And a second wavelength converter covering the first wavelength converter, wherein the first wavelength converter includes the second phosphor, and the second wavelength converter includes the first phosphor.
  • the housing may further include a reflector reflecting light emitted from the LED chip.
  • the housing may further include a barrier reflector covering the reflector.
  • a light emitting device is excited by the light emitting diode chip, the first phosphor for emitting light of the cyan light band; And a second phosphor excited by the light emitting diode chip to emit light of a red light band, wherein a peak wavelength of light emitted by the light emitting diode chip is located within a wavelength range of 415 to 430 nm, and the light emitting diode chip is provided.
  • a white light is formed by synthesizing light emitted from each of the phosphor and the second phosphor, and the light spectrum of the white light may be distributed over 40% within a wavelength range of 500 to 600 nm.
  • the peak wavelength of the cyan light band of the light emitted by the first phosphor may be located within the wavelength range of 500 to 540 nm, and the peak wavelength of the red light band of the light emitted by the second phosphor may be located within the wavelength range of 600 to 650 nm. .
  • the color rendering index (CRI) of the white light may be 85 or more.
  • the first phosphor may include at least one of LuAG, YAG, nitride, and silicate-based phosphors.
  • the second phosphor may include at least one of CASN, CASON, and SCASN series phosphors.
  • a third phosphor which is excited by the light emitting diode chip and emits light having a peak wavelength in a blue light band, wherein the third phosphor is at least one of SBCA, BAM, silicate and nitride series phosphors. It may include.
  • the peak wavelength of the blue light band of the light emitted by the third phosphor may be located within a wavelength range of 450 to 480 nm.
  • a light emitting device in another embodiment, includes a light emitting diode that emits light having a peak wavelength within a range of 415 nm to 435 nm, and a wavelength conversion part positioned on the light emitting diode.
  • the converting unit emits light having a peak wavelength of a first red phosphor and a second red phosphor emitting light having a peak wavelength of a red light band, a green phosphor emitting light having a peak wavelength of a green light band, and a peak wavelength of a cyan light band.
  • a cyan phosphor wherein the first red phosphor and the second red phosphor are different materials, and the light emitted from the light emitting device has a CRI value of 90 or more. Accordingly, a light emitting device not only excellent in color rendering property but also excellent in light quantity can be provided.
  • the first red phosphor may include a phosphor represented by the formula A 2 MF 6 : Mn, wherein A is any one selected from the group consisting of Li, Na, K, Rb, Ce, and NH 4 , and the M Is any one selected from the group consisting of Si, Ti, Nb and Ta.
  • the green phosphor may include a silicate-based phosphor.
  • the silicate-based phosphor may include a phosphor represented by the formula (Ba, Sr, Ca) 2 SiO 4 : EU.
  • the second red phosphor may include a CASN-based phosphor.
  • the CASN-based phosphor may include a phosphor represented by the formula (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU.
  • the cyan phosphor may include a LuAG-based phosphor.
  • the LuAG-based phosphor is represented by the formula Lu 3 Al 5 O 12 : Ce or some Al is substituted with another group III element, Lu 3 (Al, X) 5 O 12 : Ce (X is a group III element other than Al). It may include a phosphor.
  • the mass ratio of the cyan phosphor and the green phosphor may be 8 to 9.9: 0.1 to 2, and the mass ratio of the second red phosphor and the first red phosphor may be 2.5 to 5: 7.5 to 5.
  • a light emitting device having not only excellent color rendering property but also excellent light quantity can be provided.
  • the first red phosphor and the second red phosphor emit light having a wavelength of 600 to 660 nm
  • the green phosphor emits light having a wavelength of 520 to 550 nm
  • the cyan phosphor emits light having a wavelength of 490 to 550 nm. Can be released.
  • the wavelength conversion part may cover at least a portion of the light emitting diode.
  • a light emitting device includes: a light emitting diode emitting light having a peak wavelength within a range of 415 to 435 nm; And a wavelength converting part positioned on the light emitting diode, wherein the wavelength converting part comprises a first red phosphor represented by A 2 MF 6 : Mn formula, (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU formula 2nd red phosphor represented, (Ba, Sr, Ca) 2 SiO 4 : Green phosphor represented by EU chemical formula, and Lu 3 Al 5 O 12 : Lu 3 (Al in which Ce or some Al is substituted with another group 3 element , X) 5 O 12 : Ce (X is a group of elements other than Al) includes a cyan phosphor, wherein the mass ratio of the cyan phosphor and the green phosphor is 8 to 9.9: 0.1 to 2, the second red The mass ratio of the phosphor and the first red phosphor may be
  • a light emitting device in another embodiment, includes a light emitting diode emitting light having a peak wavelength within a range of 415 nm to 435 nm, and a wavelength converting part positioned on the light emitting diode.
  • the conversion unit includes a red phosphor emitting light having a peak wavelength in a red light band, a green phosphor emitting light having a peak wavelength in a green light band, and a cyan phosphor emitting light having a peak wavelength in a cyan light band.
  • the light emitted from the device has a CRI value of 90 or more, and a light emitting device having a light amount change rate of Equation 1 above 100% may be provided.
  • Lu 3 Al 5 O 12 Ce or some Al is substituted with other Group 3 elements Lu 3 (Al, X) 5 O 12 : Ce (X is a group of elements other than Al) represented by the formula
  • a light emitting device includes: a light emitting diode emitting light having a peak wavelength within a range of 415 nm to 435 nm; And a wavelength converting part disposed on the light emitting diode, wherein the wavelength converting part emits light having a peak wavelength of a first red phosphor and a second red phosphor and a cyan light band which emit light having a peak wavelength of a red light band. And a cyan phosphor, wherein the first red phosphor and the second red phosphor are different materials, and the light emitted from the light emitting device has a CRI value of 90 or more and an R9 value of 50 or more. Accordingly, a light emitting device not only excellent in color rendering property but also excellent in light quantity can be provided.
  • the first red phosphor may include a phosphor represented by A 2 MF 6 : Mn formula.
  • A is any one selected from the group consisting of Li, Na, K, Rb, Ce and NH 4
  • M is any one selected from the group consisting of Si, Ti, Nb and Ta.
  • the second red phosphor may include a CASN-based phosphor.
  • the CASN-based phosphor may include a phosphor represented by (Sr, Ca) AlSiN 3 : EU chemical formula.
  • the cyan phosphor may include a LuAG-based phosphor.
  • the LuAG-based phosphor is represented by the formula Lu 3 Al 5 O 12 : Ce or some Al is substituted with another group III element, Lu 3 (Al, X) 5 O 12 : Ce (X is a group III element other than Al). It may include a phosphor.
  • the mass ratio of the second red phosphor and the first red phosphor may be 0.5 to 4: 6.5 to 9.5. Accordingly, a light emitting device not only excellent in color rendering property but also excellent in light quantity can be provided.
  • the first red phosphor and the second red phosphor may emit light having a wavelength of 600 to 660 nm, and the cyan phosphor may emit light having a wavelength of 490 to 550 nm.
  • the wavelength conversion part may cover at least a portion of the light emitting diode.
  • a light emitting device includes: a light emitting diode emitting light having a peak wavelength within a range of 415 to 435 nm; And a wavelength converting part positioned on the light emitting diode, wherein the wavelength converting part comprises: a first red phosphor represented by A 2 MF 6 : Mn formula, and a second red represented by (Sr, Ca) AlSiN 3 : EU formula And a cyan phosphor represented by Lu 3 Al 5 O 12 : Ce or Lu 3 (Al, X) 5 O 12 : Ce, in which Ce or some Al is substituted with another group III element, and the second red phosphor.
  • the mass ratio of the first red phosphor may be 0.5 to 4: 6.5 to 9.5.
  • A is any one selected from the group consisting of Li, Na, K, Rb, Ce and NH 4
  • M is any one selected from the group consisting of Si, Ti, Nb and Ta
  • X is other than Al. It is a group III element.
  • a light emitting device is a white light emitting device
  • a light emitting diode emitting light having a peak wavelength within a range of 415 to 435 nm
  • It includes a wavelength conversion unit located on the light emitting diode,
  • the wavelength conversion part includes a red phosphor emitting light having a peak wavelength in a red light band, and a cyan phosphor emitting light having a peak wavelength in a cyan light band.
  • the light emitted from the light emitting device has a CRI value of 90 or more, an R9 value of 50 or more,
  • the light-emitting device whose light quantity change rate of Formula 1 is 98.8% or more.
  • F 0 Phosphor, (Sr, Ca) AlSiN 3 : Lu 3 (Al, X) in which CASN-based phosphors represented by EU chemical formula and Lu 3 Al 5 O 12 : Ce or some Al are substituted with other group 3 elements 5 O 12 : Light amount of light emitted from a light emitting device having a wavelength changing part including only LuAG-based phosphors represented by Ce (X is a Group III element other than Al).
  • the light emitting device can emit light having a light spectrum concentrated in a wavelength range having a high visibility, thereby improving visibility and amount of light.
  • a light emitting diode chip having a peak wavelength in the visible light wavelength range the reliability of the light emitting device can be improved, and the color rendering of the white light emitted from the light emitting device can be improved.
  • the light emitting device has high color rendering property and can emit light having a high light quantity at the same time.
  • the light emitting device has high CRI and R9 values, and can emit light having a high amount of light at the same time.
  • FIG. 1 is a schematic cross-sectional view for describing a light emitting device according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view for describing a light emitting device according to another embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view for describing a light emitting device according to another embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • FIG. 7 is a graph for comparing the spectrum of light emitted from the light emitting device according to the present invention and the light emitting device according to the prior art.
  • FIG. 8 is a cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view for describing a light emitting device according to an embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converter 104, a first phosphor 105, and a second phosphor 106.
  • the light emitting diode chip 102, the wavelength converter 104, the first phosphor 105 and the second phosphor 106 may be disposed on the housing 101.
  • the housing 101 may be provided with lead terminals (not shown) for inputting power to the LED chip 102.
  • the housing 101 may include a mounting area for mounting the LED chip 102, and the LED chip 102 may be mounted on the mounting area through a paste or the like.
  • the first and second phosphors 105 and 106 may be distributed in the wavelength converter 104, and the wavelength converter 104 may cover at least a portion of the light emitting diode chip 102.
  • the housing 101 may be formed of a general plastic including polymer, acrylonitrile butadiene styrene (ABS), liquid crystalline polymer (LCP), polyamide (PA), polyphenylene sulfide (IPS), or thermoplastic elastomer (TPE), or the like. It may be formed of a ceramic. However, the material forming the housing 101 is not limited thereto.
  • the housing 101 may include an inclined inner wall for reflection of light emitted from the light emitting diode chip 102 and the first and second phosphors 105 and 106.
  • the wavelength converter 104 may be formed of a material including at least one of a silicon series, an epoxy series, a polymethyl methacrylate (PMMA) series, a polyethylene (PE) series, and a polystyrene (PS) series.
  • the wavelength converter 104 may be formed through an injection process using a mixture of the above-described material and the first and second phosphors 105 and 106. In addition, after manufacturing using a separate mold, it can be formed by converting the wavelength conversion unit 104 by pressing or heat treatment.
  • the wavelength converter 104 may be formed in various shapes such as a convex lens shape, a flat plate shape (not shown), and a shape having predetermined irregularities on the surface thereof.
  • the light emitting device according to the present invention discloses a wavelength converter 104 having a convex lens shape, the shape of the wavelength converter 104 is not limited thereto.
  • the light emitting diode chip 102 may emit light having a peak wavelength located within a wavelength range of 415 to 430 nm.
  • the full width half maxium (FWHM) of the peak wavelength of the light emitted by the LED chip 102 may be 40 nm or less.
  • the light emitting device is illustrated as including one light emitting diode chip 102, but is not limited thereto. Accordingly, the light emitting device according to the present invention may further include at least one light emitting diode chip emitting light having the same peak wavelength or a different peak wavelength as the illustrated light emitting diode chip 102.
  • the first phosphor 105 and the second phosphor 106 may be excited through light emitted from the light emitting diode chip 102.
  • the first phosphor 105 may be excited to emit light having a peak wavelength in the cyan light band
  • the second phosphor 106 may be excited to emit light having a peak wavelength in the red light band.
  • the peak wavelength of the cyan light band of the light emitted by the first phosphor 105 may be located within a wavelength range of 500 to 540 nm.
  • the first phosphor 105 may include at least one of a LuAG series, a YAG series, a beta-SiAlON series, a nitride series, and a silicate series, but is not limited thereto. Therefore, any phosphor that is excited through the light emitting diode chip 102 and can emit light having a peak wavelength in the cyan light band located in the wavelength range of 500 to 540 nm, may be the first phosphor without limitation of its kind. Application to 105 is possible.
  • the LuAG-based phosphor may be a phosphor represented by the formula Lu x Al y O z : Ce or Lu x (Al, Ga) y O z : Ce. Can be.
  • the peak wavelength of the red light band of the light emitted by the second phosphor 106 may be located within a wavelength range of 600 to 650 nm.
  • the second phosphor 106 may be a nitride-based phosphor represented by CASN, CASON, and SCASN, but is not limited thereto.
  • the electromagnetic wave that the human eye feels light has a wavelength range of 380 to 760 nm, and the human eye feels the brightest green light having a wavelength of 555 nm.
  • the visibility of the light is called the maximum visibility. Therefore, in order to increase the amount of light felt by the human eye with respect to the white light emitted from the light emitting device, that is, the visibility, the light emitting device must emit light having a dense light spectrum around the 555 nm wavelength.
  • the light emitting diode chip 102 may emit light in which the peak wavelength is located within a wavelength range of 415 to 430 nm, and the first phosphor 105 may pass through the light emitted from the light emitting diode chip 102. Excited to emit light in which the peak wavelength is located in the wavelength range of 500 to 540 nm, and the second phosphor 106 is also excited through the light emitted from the light emitting diode chip 102, so that the peak wavelength is in the wavelength range of 600 to 650 nm. It emits light that is located.
  • the white light emitted by the light emitting device has a light spectrum concentrated around light having the maximum visibility, that is, green light having a wavelength of 555 nm. More specifically, the light spectrum of the white light emitted by the light emitting diode according to the present invention may be distributed at least 40% or more within the wavelength range of 500 to 600nm centering on the 555nm wavelength.
  • the light emitting device using the blue light emitting diode chip according to the prior art uses a phosphor that emits light having a peak wavelength of a red light band having a relatively long wavelength, as compared with the light emitting device according to the present invention. Therefore, the light emitting device according to the prior art is difficult to emit white light having a dense light spectrum around light having a wavelength of 555 nm. Therefore, the light emitting device according to the present invention can emit white light having a high visibility and a light amount, as compared with the light emitting device according to the prior art.
  • the light emitting device according to the present invention does not include the ultraviolet light emitting diode chip, it is possible to prevent the structure of the package from being damaged by the ultraviolet light emitted from the ultraviolet light emitting diode chip.
  • the light emitted by the light emitting device according to the present invention may have a color rendering index (CRI) of 85 or more.
  • the light emitted by the light emitting device according to the present invention may have a color rendering index (CRI) of 90 or more.
  • Sample 1 is a light emitting device according to the prior art, a light emitting diode chip that emits light having a peak wavelength of 450nm, a Cyan phosphor represented by Lu 3 Al 5 O 12 : Ce formula and CaAlSiN 3 : Eu formula And a red phosphor.
  • Sample 2 is a light emitting device according to an embodiment of the present invention, a light emitting diode chip that emits light having a peak wavelength of 425nm, Cyan phosphor represented by Lu 3 (Al, Ga) 5 O 12 : Ce chemical formula and a red phosphor (second phosphor) which is represented by the general formula Eu: (the first phosphor), (Sr, Ca) AlSiN 3.
  • the current applied to the two light emitting device samples was 100 mA, and the experiment was conducted under the same conditions except for the above-mentioned conditions.
  • Sample 1 showed a visibility of 109.5 lm / W
  • Sample 2 showed a visibility of 115.1 lm / W.
  • sample 1 showed a flux of 33.35 lm
  • sample 2 showed a flux of 36.08 lm.
  • CRI color rendering index
  • sample 1 showed the color rendering index 90
  • sample 2 showed the color rendering index 92.5. That is, compared to the light emitting device according to the prior art, the light emitting device according to an embodiment of the present invention, it can be seen that improved in both the visibility, the amount of light and color rendering index (CRI). In particular, it was confirmed that the visibility was improved by 5.1% and the flux by 8.2%.
  • FIG. 2 is a schematic cross-sectional view for describing a light emitting device according to another embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converter 104, a first phosphor 105, a second phosphor 106, and a third phosphor 107. do.
  • the light emitting device according to the present embodiment is the same as the light emitting device according to the present embodiment except that the third phosphor 107 is included. Therefore, duplicate description of the same configuration is omitted.
  • the light emitting device includes a third phosphor.
  • the third phosphor 107 may emit light having a peak wavelength of the blue light band.
  • the third phosphor 107 may be excited through light emitted from the light emitting diode chip 102 to emit light having a peak wavelength located within a wavelength range of 450 to 480 nm.
  • the third phosphor 107 may include at least one of an SBCA series, a Ba-Al-Mg (BAM) series, a silicate series, and a nitride series, but is not limited thereto.
  • the current applied to the two light emitting device samples was 100 mA, and the experiment was conducted under the same conditions except for the above-mentioned conditions.
  • the white light of Sample 1 showed a visibility of 109.5 lm / W
  • the white light of Sample 3 showed a visibility of 116.5 lm / W.
  • the light quantity Flux of the white light of Sample 1 showed 33.35 lm
  • the light quantity Flux of the white light of Sample 3 represented 36.57 lm.
  • the color rendering index (CRI) of the white light of Sample 1 was 90
  • the color rendering index (CRI) of the white light of Sample 3 was 92.
  • FIG. 7 is a graph for comparing the light spectrum of the light emitting device according to the present embodiment and the light emitting device according to the prior art.
  • line a represents the light spectrum of Sample 1, which is a light emitting device sample according to the prior art
  • line b represents the light spectrum of Sample 3, a light emitting device sample according to the present embodiment.
  • the light spectrum of Sample 3 is more dense compared to the prior art centering on the wavelength of 555 nm, which is the wavelength having the maximum visibility.
  • FIG. 3 is a schematic diagram illustrating a light emitting device according to still another embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converting unit 104, a first phosphor 105, a second phosphor 106, and a buffer unit 109.
  • the light emitting device according to the present exemplary embodiment is generally similar to the light emitting device according to the exemplary embodiment except for the buffer unit 109, and thus, redundant descriptions of the same components will be omitted.
  • the buffer unit 109 may be disposed between the light emitting diode chip 102 and the wavelength converter 104.
  • the buffer part may be formed of a material including at least one of silicone, epoxy, polymethyl methacrylate (PMMA), polyethylene (PE), and polystyrene (PS).
  • PMMA polymethyl methacrylate
  • PE polyethylene
  • PS polystyrene
  • the hardness of the buffer unit 109 may be smaller than the wavelength converter 104.
  • the buffer unit 109 it is possible to prevent thermal stress of the wavelength conversion unit 104 due to heat generated from the light emitting diode chip 102.
  • the buffer unit 109 according to the present embodiment has been disclosed in the case of being disposed in the area around the LED chip 102, the buffer unit 109 may be disposed in a wide area so as to contact both the left and right walls of the housing 101.
  • FIG. 4 is a schematic cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converting unit 104, a first phosphor 105, a second phosphor 106, and a reflector 111. ) And barrier reflector 112.
  • the light emitting device according to the present exemplary embodiment is generally similar to the light emitting device according to the exemplary embodiment except for the reflector 111 and the barrier reflector 112, and thus, duplicate descriptions of the same components will be omitted.
  • the reflector 111 may be spaced apart from the light emitting diode chip 102 and disposed on a side surface thereof.
  • the reflector 111 may increase light emission efficiency by maximizing reflection of light emitted from the light emitting diode chip 102 and the first and second phosphors 105 and 106.
  • the reflector 111 may be formed of any one of a reflective coating film and a reflective coating material layer.
  • the reflector 111 may be formed of at least one of an inorganic material, an organic material, a metal material, and a metal oxide material having excellent heat resistance and light resistance.
  • the reflector 111 may include a metal or a metal oxide having high reflectance such as aluminum (Al), silver (Ag), gold (Au), titanium dioxide (TiO 2 ), or the like.
  • the reflector 111 may be formed by depositing or coating a metal or metal oxide on the housing 101, or may be formed by printing a metal ink.
  • the reflector 111 may be formed by adhering a reflective film or a reflective sheet on the housing 101.
  • the barrier reflector 112 may cover the reflector 111.
  • the barrier reflector 112 may prevent deterioration of the reflector 111 due to heat emitted from the light emitting diode chip 102.
  • the barrier reflector 112 may be formed of an inorganic material or a metal material having high light resistance and high reflectance.
  • FIG. 5 is a cross-sectional view illustrating a light emitting device according to still another embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converting unit 104, a first phosphor 105, and a second phosphor 106.
  • the wavelength converter 104 may further include a first wavelength converter 104b and a second wavelength converter 104a.
  • the light emitting device according to the present exemplary embodiment is generally similar to the light emitting device according to the exemplary embodiment except for the first wavelength converting unit 104b and the second wavelength converting unit 104a, and thus a redundant description thereof will be omitted.
  • the first wavelength converter 104b may cover the first and second light emitting diode chips 102 and 103.
  • the second wavelength converter 104a may cover the first wavelength converter 104b.
  • the first wavelength converter 104b may be formed of a material having the same hardness as the second wavelength converter 104a or may be formed of a material having a different hardness. In the present exemplary embodiment, the hardness of the first wavelength converter 104b may be lower than that of the second wavelength converter 104a.
  • the LED chips (the same as the buffer unit 109 of the above-described embodiment) may be used. 102, 103) can be alleviated.
  • the first wavelength converter 104b may include a second phosphor 106 that emits light having a peak wavelength of a red light band.
  • the second wavelength converter 104a may include a first phosphor 105 that emits light having a peak wavelength of a cyan light band.
  • FIG. 6 is a schematic cross-sectional view for describing a light emitting device according to still another embodiment of the present invention.
  • the light emitting device includes a housing 101, a light emitting diode chip 102, a wavelength converting unit 104, a first phosphor 105, a second phosphor 106, and a phosphor plate 118.
  • the light emitting device according to the present exemplary embodiment is generally similar to the light emitting device according to the exemplary embodiment except for the phosphor plate 118, and thus, redundant descriptions of the same components will be omitted.
  • the phosphor plate 118 is spaced apart from the light emitting diode chip 102 and disposed on the wavelength converter 104, and may include first and second phosphors 105 and 106.
  • the phosphor plate 118 may be formed of the same material or a material having a high hardness as the wavelength converter 104 according to an embodiment of the present invention.
  • first and second phosphors 105 and 106 are disposed to be spaced apart from the light emitting diode chip 102, damage caused by heat or light of the first and second phosphors 105 and 106 and the phosphor plate 118 is caused. Can be reduced. Therefore, the reliability of the first and second phosphors 105 and 106 can be improved. Meanwhile, an empty space may be formed between the phosphor plate 118 and the light emitting diode chip 102 instead of the wavelength converter 104.
  • FIG. 8 is a cross-sectional view illustrating a light emitting device according to an embodiment of the present invention.
  • the light emitting device may include a light emitting diode 102 and a wavelength converter 130, and may further include a base 101.
  • the light emitting diode 102 may be disposed on the base 101.
  • Base 101 may be, for example, a housing as shown.
  • the housing may include a cavity opened in an upward direction, and a light emitting diode 102 may be mounted in the cavity.
  • the side surface of the cavity may be formed to be inclined, so that the light emitted from the light emitting diode 102 may be reflected to improve the luminous efficiency of the light emitting device of this embodiment.
  • a reflective material may be further disposed on an inner side surface of the cavity.
  • the housing may include a general plastic including polymer, acrylonitrile butadiene styrene (ABS), liquid crystalline polymer (LCP), polyamide (PA), polyphenylene sulfide (IPS), or thermoplastic elastomer. ) Or may be formed of metal or ceramic.
  • ABS acrylonitrile butadiene styrene
  • LCP liquid crystalline polymer
  • PA polyamide
  • IPS polyphenylene sulfide
  • thermoplastic elastomer or thermoplastic elastomer.
  • the present invention is not limited thereto.
  • the base 101 may include at least two lead terminals, and the lead terminal and the light emitting diode 102 may be electrically connected to each other.
  • the lead terminal may allow the light emitting device to be connected to an external power source.
  • the light emitting diode 102 may be located on the lead terminal.
  • the base 101 is not limited thereto, and the base 101 is not limited as long as it can support the light emitting diode 102, and may include various known configurations.
  • the base 101 may include a conductive or insulating substrate on which the light emitting diode 102 is mounted, such as a lead frame, a PCB, and a heat sink that emits heat generated from the light emitting diode 102. It may further include.
  • the light emitting diode 102 may include a n-type semiconductor layer and a p-type semiconductor layer to have a structure capable of emitting light through a combination of holes and electrons.
  • the light emitting diode 102 may have a structure such as a horizontal type, a vertical type, or a flip chip type, and the configuration and shape of the light emitting diode 102 is not limited.
  • the light emitting diode 102 may emit light having a peak wavelength in the visible light region, and in particular, may emit light having a peak wavelength located in a range of 415 to 435 nm.
  • a light emitting diode 102 that emits light having a peak wavelength in the above-described range, it is possible to prevent the reliability and luminous efficiency of the light emitting device from being lowered by the ultraviolet rays emitted from the light emitting diode, and further, about 450 nm By minimizing the light in the wavelength band can be harmful to the human body.
  • the wavelength converter 130 may be positioned on the light emitting diode 102, and may further cover the light emitting diode 102 at least partially, and may further encapsulate the light emitting diode 102. That is, the wavelength converter 130 may be located on the light emission path of the light emitting diode 102.
  • the wavelength converting unit 130 may include a supporting unit 131, a red phosphor 135, a green phosphor 137, and a cyan phosphor 139 that are irregularly distributed in the supporting unit 131.
  • the supporting part 131 is not limited as long as it is a material capable of supporting the phosphors 135, 137, and 139, and may have a transparent or translucent property.
  • the supporting part 131 is formed of, for example, a polymer including at least one of a silicone series, an epoxy series, a polymethyl methacrylate (PMMA) series, a polyethylene (PE) series, and a PS (polystyrene) series. It may also be formed of an inorganic material such as glass.
  • the wavelength conversion part 130 may serve as an encapsulant for encapsulating the light emitting diode 102 in addition to the wavelength conversion of light emitted from the light emitting diode 102. have.
  • the wavelength conversion unit 130 may be located on the base 101, and as shown in the present embodiment, when the base 101 includes a cavity, the wavelength conversion unit 130 may be disposed in the cavity.
  • the upper surface of the wavelength conversion unit 130 may be formed in various shapes such as a convex lens shape, a flat plate shape (not shown), and a shape having predetermined irregularities on the surface. According to the present embodiment, the wavelength converter 130 is disclosed as having a convex lens shape, but is not limited thereto.
  • the red phosphor 135, the green phosphor 137, and the cyan phosphor 139 may be arranged to be irregularly dispersed in the supporting portion 131.
  • the red phosphor 135 may excite incident light to emit red light
  • the green phosphor 137 may excite incident light to emit green light
  • the cyan phosphor 139 may be incident light.
  • the light emitting device of the present invention is the violet light emitted from the light emitting diode 102, the red light excited by the red phosphor 135, the green light excited by the green phosphor 137, and the cyan phosphor 139 The cyan light excited by) may be mixed to emit white light.
  • the white light emitted by the light emitting device of this embodiment may have a CRI value of 90 or more.
  • the peak wavelength of the red light emitted from the red phosphor 135 may be located within the 600 to 660 nm wavelength range.
  • the red phosphor 135 includes a first red phosphor 133 and a second red phosphor 134.
  • the first red phosphor 133 includes a phosphor represented by the formula A 2 MF 6 : Mn, wherein A is any one selected from the group consisting of Li, Na, K, Rb, Ce, and NH 4 . M is any one selected from the group consisting of Si, Ti, Nb and Ta.
  • the first red phosphor 133 used in the present invention may have a peak wavelength in a wavelength range of 625 to 660 nm.
  • the second red phosphor 134 may include a CASN-based phosphor.
  • the CASN-based phosphor used in the present invention may have a peak wavelength in the wavelength range of 600 to 650 nm.
  • the CASN-based phosphor may include a phosphor represented by the formula (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU.
  • the green phosphor 137 may include a silicate-based phosphor.
  • the silicate-based phosphor used in the present invention may have a peak wavelength in the wavelength range of 520 to 550 nm.
  • the silicate-based phosphor may include a phosphor represented by the formula (Ba, Sr, Ca) 2 SiO 4 : EU.
  • the cyan phosphor 139 may include a LuAG-based phosphor.
  • LuAG-based phosphors used in the present invention may have a peak wavelength in the wavelength range of 490nm to 550nm.
  • LuAG-based phosphors include Lu 3 Al 5 O 12 : Ce or Lu 3 (Al, X) 5 O 12 : Ce (X is a group other than Al in which some Al is substituted with the same group element, for example, Ga, In, etc.) Element) a phosphor represented by the chemical formula.
  • the LuAG-based phosphor may include a phosphor represented by Lu 3 (Al, Ga) 5 O 12 : Ce formula in which some Al is substituted with Ga.
  • the phosphor represented by the Lu 3 (Al, Ga) 5 O 12 : Ce formula in which some Al is substituted with Ga may have a peak wavelength in a wavelength range of 490 to 520 nm, and specifically, a peak wavelength of about 505 nm. May have
  • the mass ratio of the second red phosphor 134 and the first red phosphor 133 in the wavelength converter may be 2.5 to 5: 7.5 to 5.
  • the mass ratio of the phosphor represented by the formula (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU and the phosphor represented by the formula A 2 MF 6 : Mn may be 2.5 to 5: 7.5 to 5 in the wavelength conversion portion.
  • A is any one selected from the group consisting of Li, Na, K, Rb, Ce, and NH 4
  • M is any one selected from the group consisting of Si, Ti, Nb, and Ta.
  • the mass ratio of the LuAG-based phosphor and the silicate-based phosphor in the wavelength conversion unit may be 8 to 9.9: 0.1 to 2.
  • Lu 3 Al 5 O 12 Ce in the wavelength conversion portion or part of Al is substituted with other Group 3 elements Lu 3 (Al, X) 5 O 12 : Ce (X is Group 3 elements other than Al) represented by the formula
  • the mass ratio of the phosphor to (Ba, Sr, Ca) 2 SiO 4 : phosphor represented by the EU chemical formula may be 8 to 9.9: 0.1 to 2.
  • a light emitting device having a CRI of 90 or more and having an excellent light amount can be provided.
  • the light amount change rate of Equation 1 may be greater than 100%.
  • a rectangular light emitting chip having a size of 860 ⁇ m ⁇ 540 ⁇ m as a light emitting diode emitting a peak wavelength of about 425 nm was mounted on a lead frame (not shown).
  • a housing having a cavity on top of the lead frame was formed by transfer molding using an epoxy molding compound (EMC).
  • EMC epoxy molding compound
  • the wavelength change part includes a second red phosphor represented by (Sr, Ca) AlSiN 3 : EU formula and a first red phosphor represented by K 2 SiF 6 : Mn formula in a mass ratio of 4: 6.
  • Lu 3 (Al, Ga) 5 O 12 LuAG-based phosphor represented by Ce formula
  • (Ba, Sr, Ca) 2 SiO 4 silicate-based phosphor represented by EU formula at 9: 1 mass ratio
  • Example 1 the mass ratio of (Sr, Ca) AlSiN 3 : second red phosphor represented by the EU formula and the first red phosphor represented by the K 2 SiF 6 : Mn formula is 7: 3 instead of 4: 6. Except for including a light emitting device was manufactured in the same manner as in Example 1.
  • Example 1 the second red phosphor represented by (Sr, Ca) AlSiN 3 : EU and the first red phosphor represented by K 2 SiF 6 : Mn are represented by a mass ratio of 2: 8 instead of 4: 6. Except for including a light emitting device was manufactured in the same manner as in Example 1.
  • Example 1 except that the first red phosphor represented by the K 2 SiF 6 : Mn formula and the silicate-based phosphor represented by the EU formula (Ba, Sr, Ca) 2 SiO 4 : was not used
  • the light emitting device was manufactured by the same method as 1.
  • the power source (rated current of 100 mA, voltage of 6.1 V) was supplied to the light emitting devices of Example 1 and Comparative Examples 1 to 3 to measure the CRI value and R9.
  • the light emitting device has a CRI of 90 or more and at the same time a change in light quantity (%) of 104.4%, thus increasing the flux compared to Comparative Example 3 without using the first red phosphor. You can see that.
  • the CRI is 90 or more, but the light quantity change rate is 99.0%, indicating that the light quantity is lowered.
  • Comparative Example 1 since the light quantity change rate was 105.4%, the light quantity was gained, but the CRI was only 89.1, indicating that the color rendering was lowered.
  • the numerical value of the comparative example 3 is a criterion for evaluation, and the confirmation about the comparative example 3 is meaningless.
  • FIG. 9 is a cross-sectional view for describing a light-emitting device according to still another embodiment of the present invention.
  • the light emitting device may include a light emitting diode 102 and a wavelength converter 130, and further include a base 101.
  • the light emitting diode 102 may be disposed on the base 101.
  • Base 101 may be, for example, a housing as shown.
  • the housing may include a cavity opened in an upward direction, and a light emitting diode 102 may be mounted in the cavity.
  • the side surface of the cavity may be formed to be inclined, so that the light emitted from the light emitting diode 102 may be reflected to improve the luminous efficiency of the light emitting device of this embodiment.
  • a reflective material may be further disposed on an inner side surface of the cavity.
  • the housing may include a general plastic including polymer, acrylonitrile butadiene styrene (ABS), liquid crystalline polymer (LCP), polyamide (PA), polyphenylene sulfide (IPS), or thermoplastic elastomer. ) Or may be formed of metal or ceramic.
  • ABS acrylonitrile butadiene styrene
  • LCP liquid crystalline polymer
  • PA polyamide
  • IPS polyphenylene sulfide
  • thermoplastic elastomer or thermoplastic elastomer.
  • the present invention is not limited thereto.
  • the base 101 may include at least two lead terminals, and the lead terminal and the light emitting diode 102 may be electrically connected to each other.
  • the lead terminal may allow the light emitting device to be connected to an external power source.
  • the light emitting diode 102 may be located on the lead terminal.
  • the base 101 is not limited thereto, and the base 101 is not limited as long as it can support the light emitting diode 102, and may include various known configurations.
  • the base 101 may include a conductive or insulating substrate on which the light emitting diode 102 is mounted, such as a lead frame, a PCB, and a heat sink that emits heat generated from the light emitting diode 102. It may further include.
  • the light emitting diode 102 may include a n-type semiconductor layer and a p-type semiconductor layer to have a structure capable of emitting light through a combination of holes and electrons.
  • the light emitting diode 102 may have a structure such as a horizontal type, a vertical type, or a flip chip type, and the configuration and shape of the light emitting diode 102 is not limited.
  • the light emitting diode 102 may emit light having a peak wavelength in the visible light region, and in particular, may emit light having a peak wavelength located in a range of 415 to 435 nm.
  • a light emitting diode 102 that emits light having a peak wavelength in the above-described range, it is possible to prevent the reliability and luminous efficiency of the light emitting device from being lowered by the ultraviolet rays emitted from the light emitting diode, and further, about 450 nm By minimizing the light in the wavelength band can be harmful to the human body.
  • the wavelength converter 130 may be positioned on the light emitting diode 102, and may further cover the light emitting diode 102 at least partially, and may further encapsulate the light emitting diode 102. That is, the wavelength converter 130 may be located on the light emission path of the light emitting diode 102.
  • the wavelength converting unit 130 may include a supporting unit 131, a red phosphor 134 and a cyan phosphor 139 irregularly disposed in the supporting unit 131.
  • the supporting part 131 is not limited as long as it is a material capable of supporting the first and red phosphors 133 and 135, and may have a transparent or translucent property.
  • the supporting part 131 is formed of, for example, a polymer including at least one of a silicone series, an epoxy series, a polymethyl methacrylate (PMMA) series, a polyethylene (PE) series, and a PS (polystyrene) series. It may also be formed of an inorganic material such as glass.
  • the wavelength conversion part 130 may serve as an encapsulant for encapsulating the light emitting diode 102 in addition to the wavelength conversion of light emitted from the light emitting diode 102. have.
  • the wavelength conversion unit 130 may be located on the base 101, and as shown in the present embodiment, when the base 101 includes a cavity, the wavelength conversion unit 130 may be disposed in the cavity.
  • the upper surface of the wavelength conversion unit 130 may be formed in various shapes such as a convex lens shape, a flat plate shape (not shown), and a shape having predetermined irregularities on the surface. According to the present embodiment, the wavelength converter 130 is disclosed as having a convex lens shape, but is not limited thereto.
  • the red phosphor 134 and the cyan phosphor 139 may be irregularly dispersed in the supporting portion 131.
  • the red phosphor 134 may excite incident light to emit red light
  • the cyan phosphor 139 may excite incident light to emit cyan light. Accordingly, in the light emitting device of the present invention, the violet light emitted from the light emitting diode 102, the red light excited by the red phosphor 134, and the cyan light excited by the cyan phosphor 139 are mixed with white light. Can emit.
  • the white light emitted by the light emitting device of this embodiment may have a CRI value of 90 or more.
  • the white light emitted by the light emitting device of this embodiment may have an R9 value of 50 or more.
  • the peak wavelength of the red light emitted from the red phosphor 134 may be located in the 600 to 660 nm wavelength range.
  • the red phosphor 134 includes a first red phosphor 133 and a second red phosphor 134.
  • the first red phosphor 133 includes a phosphor represented by the formula A 2 MF 6 : Mn, wherein A is any one selected from the group consisting of Li, Na, K, Rb, Ce, and NH 4 . M is any one selected from the group consisting of Si, Ti, Nb and Ta.
  • the first red phosphor 133 used in the present invention may have a peak wavelength in a wavelength range of 625 to 660 nm.
  • the second red phosphor 134 may further include a CASN-based phosphor.
  • the CASN-based phosphor used in the present invention may have a peak wavelength in the wavelength range of 600 to 650 nm.
  • the CASN-based phosphor may include a phosphor represented by the formula (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU.
  • the cyan phosphor 139 may include a LuAG-based phosphor.
  • LuAG-based phosphors used in the present invention may have a peak wavelength in the wavelength range of 490nm to 550nm.
  • LuAG-based phosphors include Lu 3 Al 5 O 12 : Ce, or some Al in the same group element, for example, Lu 3 (Al, X) 5 O 12 : Ce (X is a Group 3 element other than Al) It may include a phosphor represented by the formula.
  • the LuAG-based phosphor may include a phosphor represented by Lu 3 (Al, Ga) 5 O 12 : Ce formula in which some Al is substituted with Ga.
  • the phosphor represented by the Lu 3 (Al, Ga) 5 O 12 : Ce formula in which some Al is substituted with Ga may have a peak wavelength in a wavelength range of 490 to 520 nm, and specifically, a peak wavelength of about 505 nm. May have
  • the mass ratio of the second red phosphor 134 and the first red phosphor 133 in the wavelength converter may be 0.5 to 4: 6.5 to 9.5.
  • the mass ratio of the phosphor represented by the (Sr, Ca) AlSiN 3 : EU or CaAlSiN 3 : EU formula and the phosphor represented by the A 2 MF 6 : Mn formula in the wavelength conversion portion may be 0.5 to 4: 6.5 to 9.5.
  • A is any one selected from the group consisting of Li, Na, K, Rb, Ce, and NH 4
  • M is any one selected from the group consisting of Si, Ti, Nb, and Ta.
  • the embodiment of the present invention it is possible to provide a light emitting device having a CRI of 90 or more, an R9 of 50 or more, and an excellent light quantity. Specifically, since the light emitting device of the present invention has a CRI of 90 or more, an R9 of 50 or more, and at the same time, the amount of light drops only 1% or less compared to a conventional light emitting device using only a short wavelength CASN-based red phosphor in a violet light emitting diode. As a result, the amount of light is also excellent.
  • the light amount change rate of Equation 1 may be 98.8% or more.
  • F 0 Phosphor, (Sr, Ca) AlSiN 3 : Lu 3 (Al, X) in which CASN-based phosphors represented by EU chemical formula and Lu 3 Al 5 O 12 : Ce or some Al are substituted with other group 3 elements 5 O 12 : Light amount of light emitted from a light emitting device having a wavelength changing part including only LuAG-based phosphors represented by Ce (X is a Group III element other than Al).
  • a rectangular light emitting chip having a size of 860 ⁇ m ⁇ 540 ⁇ m as a light emitting diode emitting a peak wavelength of about 425 nm was mounted on a lead frame (not shown).
  • a housing having a cavity on top of the lead frame was formed by transfer molding using an epoxy molding compound (EMC).
  • EMC epoxy molding compound
  • silicone resin 90 weight% was mixed with the fluorescent substance of this invention based on the total weight of a wavelength conversion part, the slurry was prepared, and it was dripped at the cavity of a housing
  • the wavelength conversion unit includes a second red phosphor represented by (Sr, Ca) AlSiN 3 : EU and a first red phosphor represented by K 2 SiF 6 : Mn in a mass ratio of 3: 7. , Lu 3 (Al, Ga) 5 O 12 It was prepared to include a LuAG-based phosphor represented by the Ce formula.
  • Example 2 the second red phosphor represented by (Sr, Ca) AlSiN 3 : EU and the first red phosphor represented by K 2 SiF 6 : Mn are represented by a mass ratio of 2: 8 instead of 3: 7.
  • a light emitting device was manufactured in the same manner as in Example 2, except that the light emitting device was included.
  • a light emitting device was manufactured according to the same method as Example 2 except for not using the first red phosphor represented by K 2 SiF 6 : Mn formula in Example 2.
  • Example 2 instead of the first red phosphor represented by the K 2 SiF 6 : Mn formula, a CaAlSiN 3 : CaSN series phosphor represented by the EU formula is used, and (Sr, Ca) AlSiN 3 : A formula represented by the EU formula A light emitting device was manufactured in the same manner as in Example 2, except for including a red phosphor and a CaNSi 3 : CAS-based phosphor represented by EU in a mass ratio of 7: 3.
  • Example 2 a mass ratio of (Sr, Ca) AlSiN 3 : a second red phosphor represented by the EU formula and a first red phosphor represented by the K 2 SiF 6 : Mn formula, not to a 3: 7 mass ratio of 4: 6.
  • a light emitting device was manufactured in the same manner as in Example 2, except that the light emitting device was included.
  • Example 2 the mass ratio of (Sr, Ca) AlSiN 3 : second red phosphor represented by EU formula and first red phosphor represented by K 2 SiF 6 : Mn formula is 7: 3 instead of 3: 7.
  • a light emitting device was manufactured in the same manner as in Example 2, except that the light emitting device was included.
  • Example 2 0.460 0.416 68.4 68.4 99.7 93.0 53.4
  • Example 3 0.460 0.416 67.9 67.9 99.0 93.7 61.2
  • Comparative Example 4 0.460 0.416 68.0 68.6 100.0 92.4 43.6
  • Comparative Example 5 0.460 0.416 65.5 65.5 95.5 93.6 53.1
  • Comparative Example 6 0.460 0.410 67.9 69.2 100.9 92.5 48.2
  • Comparative Example 7 0.460 0.413 68.6 69.3 101.0 92.9 45.5
  • the light emitting devices of Examples 2 and 3 of the present invention have a CRI of 90 or more, an R9 of 50 or more, and a light quantity change rate of 99.0 or 99.7%. Therefore, compared with Comparative Example 4 without using the first red phosphor, the amount of light is only lowered to 1% or less, and thus it is understood that the amount of light is also excellent.
  • Comparative Examples 4, 3, and 4 have a CRI of 90 or more and R9 of 50 or less
  • Comparative Example 5 has a CRI of 90 or more and R9 of 50 or more, but the light quantity change rate is 95.5%, so that the first red phosphor is not used.
  • a light emitting device having a CRI of 90 or more and a R9 of 50 or more and excellent light amount may be provided only when the phosphors are blended in a specific mass ratio.

Abstract

본 발명은 형광체를 포함하는 발광 다이오드 패키지에 관한 것이다. 본 발명에 따른 발광 다이오드 패키지는 하우징; 하우징에 배치되는 발광 다이오드 칩; 발광 다이오드 칩 상에 배치되는 파장변환부; 파장변환부 내에 분포되고, 시안(Cyan)광 대역의 피크 파장을 갖는 광을 방출하는 제1 형광체; 파장변환부 내에 분포되고, 적색광 대역의 피크 파장을 갖는 광을 방출하는 제2 형광체를 포함하고, 발광 다이오드 칩이 방출하는 광의 피크 파장은 415 내지 430nm 범위 내에 위치한다.

Description

발광 장치
본 발명은 발광 장치에 관한 것이다. 구체적으로, 본 발명은 신뢰성, 연색성 및 광량이 향상된 발광 장치에 관한 것이다.
발광 다이오드(Light Emitting Diode: LED) 패키지는 반도체의 p-n 접합 구조를 가지는 화합물 반도체로서 소수 캐리어(전자 또는 정공)들의 재결합에 의하여 소정의 광을 발산하는 소자를 지칭한다. 발광 다이오드를 포함하는 발광 장치는 소비 전력이 적고 수명이 길며, 소형화가 가능하다.
발광 장치는 파장 변환 수단인 형광체를 사용하여 백색광을 구현할 수 있다. 즉, 형광체를 발광 다이오드 칩 상에 배치하여, 발광 다이오드 칩의 1차 광의 일부와 형광체에 의해 파장 변환된 2차 광의 혼색을 통하여 백색광을 구현할 수 있다. 이런 구조의 백색 발광 장치는 가격이 싸고, 원리적 및 구조적으로 간단하기 때문에 널리 이용되고 있다.
구체적으로, 청색 발광 다이오드 칩 상에 청색광의 일부를 여기광으로 흡수하여 황록색 또는 황색을 발광하는 형광체를 도포하여 백색광을 얻을 수 있다. 대한민국 공개특허 10-2004-0032456호를 참조하면, 청색으로 발광하는 발광 다이오드 칩 위에 그 광의 일부를 여기원으로서 황록색 내지 황색 발광하는 형광체를 부착하여 발광 다이오드의 청색 발광과 형광체의 황록색 내지 황색 발광에 따라 백색 발광하는 발광 다이오드를 개시하고 있다.
그러나, 이러한 방식을 사용하는 백색 발광 장치는 황색 형광체의 발광을 활용하므로, 방출되는 광의 녹색 및 적색 영역의 스펙트럼 결핍으로 인해 연색성이 낮다. 특히, 백라이트 유닛(backlight unit)으로 사용 시, 색 필터를 투과한 이후의 낮은 색순도로 인하여 자연색에 가까운 색 구현이 어렵다.
이러한 문제점을 해결하기 위해, 청색 발광 다이오드 칩과 청색광을 여기광으로 하여 녹색 및 적색을 발광하는 형광체들을 사용하여 발광 다이오드를 제조한다. 즉, 청색광과 청색광에 의해 여기되어 나오는 녹색광 및 적색광의 혼색을 통하여, 높은 연색성을 가지는 백색광을 구현할 수 있다. 이러한, 백색 발광 다이오드를 백라이트 유닛으로 사용할 경우, 색 필터와의 일치도가 매우 높기 때문에 자연색에 보다 가까운 영상을 구현할 수 있다. 그러나, 청색 발광 다이오드 칩을 사용하는 발광 다이오드는 청색광의 강도가 상대적으로 강하기 때문에, 이를 조명으로 사용하는 경우 인체에 여러가지 부작용, 예를 들어 수면 장애 등이 발생할 우려가 높다. 예를 들어, 멜라토닌의 억제가 야기될 수 있으며, 이에 의해 생체 주기 리듬이 영향받을 수 있다. 예를 들어 수면 장애 등이 발생할 우려가 높다.
한편, 백색광을 구현하기 위해서, 청색 발광 다이오드 칩을 대신하여, 자외선 발광 다이오드 칩을 사용할 수 있다. 자외선 발광 다이오드 칩을 사용하는 발광 장치는 높은 연색성을 구현 할 수 있으며, 형광체의 조합에 따른 색온도의 변환이 용이할 뿐 아니라, 우수한 수율을 가질 수 있다. 그러나, 자외선 발광 다이오드 칩은 상대적으로 높은 에너지를 가지는 파장의 광을 방출하므로, 봉지재의 열화(decomposition) 현상 또는 크랙(crack) 현상 등이 발생할 수 있으며, 더 나아가, 도금된 리드 프레임의 변색 등의 문제점이 발생할 수 있다. 따라서, 자외선 발광 다이오드 칩을 포함하는 발광 장치는 발광 장치의 신뢰성이 문제된다.
이에 따라, 상술한 문제점들을 해결할 수 있는 발광 장치의 개발이 요구된다.
한편, R9은 강한 적색에 대한 지표로써, 피부색, 미술작품, 의류, 식료품 등과 관계된 분야에서 중요하다. 자색에 가까운 광을 방출하는 발광 다이오드 칩을 사용하는 경우, CRI가 90이상이면서 R9이 50이상의 값을 가지기 위해 장파장 영역에서 피크 파장을 가지는 CASN 계열 형광체를 적용한다. 그러나, 장파장의 CASN 계열 형광체 사용 시, R9은 증가하지만, 광량이 4% 이상 감소하는 문제가 있어서 적용의 한계가 있다.
본 발명이 해결하고자 하는 과제는 향상된 신뢰성 및 연색성을 가지는 발광 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는 향상된 시감도 및 광량을 가지는 발광 장치를 제공하는 것이다.
본 발명이 해결하고자 하는 과제는 향상된 CRI, R9 수치를 가지는 발광 장치를 제공하는 것이다.
본 발명의 일 실시예에 따른 발광 장치는 하우징; 상기 하우징에 배치되는 발광 다이오드 칩; 상기 발광 다이오드 칩 상에 배치되는 파장변환부; 상기 파장변환부 내에 분포되고, 녹색광 대역의 피크 파장을 갖는 광을 방출하는 제1 형광체; 상기 파장변환부 내에 분포되고, 적색광 대역의 피크 파장을 갖는 광을 방출하는 제2 형광체를 포함하되, 상기 발광 다이오드 칩이 방출하는 광의 피크 파장은 415 내지 430nm 파장범위 내에 위치할 수 있다.
또한, 상기 제1 형광체는 LuAG, YAG, 질화물(Nitride) 및 실리케이트(Silicate) 계열의 형광체들 중에 적어도 하나를 포함할 수 있다.
상기 제2 형광체는 CASN, CASON 및 SCASN 계열 형광체들 중 적어도 하나를 포함할 수 있다.
상기 제1 형광체가 방출하는 광의 녹색광 대역의 피크 파장은 500 내지 540nm 파장범위 내에 위치하고, 상기 제2 형광체가 방출하는 광의 적색광 대역의 피크 파장은 600 내지 650nm 파장범위 내에 위치할 수 있다.
상기 파장변환부 내에 분포되고, 청색광 대역의 광을 방출하는 제3 형광체를 더 포함하되, 상기 제3 형광체는 SBCA, BAM, 실리케이트(Silicate) 및 질화물(Nitride) 계열 형광체들 중 적어도 하나를 포함할 수 있다.
상기 제3 형광체가 방출하는 광의 청색광 대역의 피크 파장은 450 내지 480nm 파장범위 내에 위치할 수 있다.
상기 발광 다이오드 칩, 상기 제1 형광체 및 상기 제2 형광체 각각에서 방출되는 광의 합성에 의해 백색광이 형성되고, 상기 백색광의 연색지수(CRI)는 85이상일 수 있다.
상기 파장변환부는 실리콘, 에폭시, PMMA, PE 및 PS 중 적어도 하나를 포함할 수 있다.
상기 파장변환부와 상기 발광 다이오드 칩 사이에 배치되는 버퍼부를 더 포함하되, 상기 버퍼부는 상기 파장변환부보다 낮은 경도를 가질 수 있다.
상기 파장변환부는 상기 발광 다이오드 칩을 덮는 제1 파장변환부; 및 상기 제1 파장변환부를 덮는 제2 파장변환부를 포함하되, 상기 제1 파장변환부는 상기 제2 형광체를 함유하고, 상기 제2 파장변환부는 상기 제1 형광체를 함유할 수 있다.
상기 하우징은 상기 발광 다이오드 칩에서 방출된 광을 반사하는 리플렉터를 더 포함할 수 있다.
상기 하우징은 상기 리플렉터를 덮는 베리어 리플렉터를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 발광 장치는 상기 발광 다이오드 칩에 여기되어, 시안(Cyan)광 대역의 광을 방출하는 제1 형광체; 및 상기 발광 다이오드 칩에 여기되어, 적색광 대역의 광을 방출하는 제2 형광체를 포함하되, 상기 발광 다이오드 칩이 방출하는 광의 피크 파장은 415 내지 430nm 파장범위 내에 위치하고, 상기 발광 다이오드 칩, 상기 제1 형광체 및 상기 제2 형광체 각각이 방출하는 광의 합성으로 백색광이 형성되고, 상기 백색광의 광 스펙트럼은 500 내지 600nm 파장 범위 내에서 40% 이상이 분포할 수 있다.
상기 제1 형광체가 방출하는 광의 시안(Cyan)광 대역의 피크 파장은 500 내지 540nm 파장범위 내에 위치하고, 상기 제2 형광체가 방출하는 광의 적색광 대역의 피크 파장은 600 내지 650nm 파장범위 내에 위치할 수 있다.
상기 백색광의 연색지수(CRI)는 85이상일 수 있다.
상기 제1 형광체는 LuAG, YAG, 질화물(Nitride) 및 실리케이트(Silicate) 계열의 형광체들 중에 적어도 하나를 포함할 수 있다.
상기 제2 형광체는 CASN, CASON 및 SCASN 계열 형광체들 중 적어도 하나를 포함할 수 있다.
상기 발광 다이오드 칩에 여기되어 청색광 대역의 피크 파장을 갖는 광을 방출하는 제3 형광체를 더 포함하되, 상기 제3 형광체는 SBCA, BAM, 실리케이트(Silicate) 및 질화물(Nitride) 계열 형광체들 중 적어도 하나를 포함할 수 있다.
상기 제3 형광체가 방출하는 광의 청색광 대역의 피크 파장은 450 내지 480nm 파장범위 내에 위치할 수 있다.
본 발명의 또 다른 실시예에 따른 발광 장치는, 백색 발광 장치에 있어서, 415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드 및 상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고, 상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 제1 레드 형광체 및 제2 레드 형광체, 녹색광 대역의 피크 파장을 갖는 광을 방출하는 그린 형광체, 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며, 상기 제1 레드 형광체와 상기 제2 레드 형광체는 다른 물질이고, 상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 갖는다. 이에 따라, 연색성이 우수할 뿐만 아니라 광량이 우수한 발광 장치가 제공될 수 있다.
상기 제1 레드 형광체는 A2MF6: Mn 화학식으로 표현되는 형광체를 포함할 수 있으며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.
상기 그린 형광체는 실리케이트 계열의 형광체를 포함할 수 있다.
상기 실리케이트 계열의 형광체는 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
상기 제2 레드 형광체는 CASN 계열의 형광체를 포함할 수 있다.
상기 CASN 계열의 형광체는 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
상기 시안 형광체는 LuAG 계열의 형광체를 포함할 수 있다.
상기 LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 형광체를 포함할 수 있다.
상기 시안 형광체와 상기 그린 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2이며, 상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 2.5 내지 5 : 7.5 내지 5일 수 있다. 상기 질량비들을 만족하는 경우, 연색성이 우수할 뿐만 아니라 광량이 우수한 발광 장치가 제공될 수 있다.
상기 제1 레드 형광체 및 상기 제2 레드 형광체는 600 내지 660nm 파장을 갖는 광을 방출하고, 상기 녹색 형광체는 520 내지 550nm 파장을 갖는 광을 방출하고, 상기 시안 형광체는 490 내지 550nm 파장을 갖는 광을 방출할 수 있다.
상기 파장변환부는 상기 발광 다이오드의 적어도 일부를 덮을 수 있다.
본 발명의 또 다른 실시예에 따른 발광 장치는 백색 발광 장치에 있어서, 415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및 상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고, 상기 파장변환부는, A2MF6: Mn 화학식으로 표현되는 제1 레드 형광체, (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 제2 레드 형광체, (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 그린 형광체, 및 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 시안 형광체를 포함하며, 상기 시안 형광체와 상기 그린 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2이며, 상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 2.5 내지 5 : 7.5 내지 5일 수 있으며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이며, 상기 X는 Al외 3족 원소이다. 이에 따라, 연색성이 우수할 뿐만 아니라 광량이 우수한 발광 장치가 제공될 수 있다.
본 발명의 또 다른 실시예에 따른 발광 장치는 백색 발광 장치에 있어서, 415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드, 및 상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고, 상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 레드 형광체, 녹색광 대역의 피크 파장을 갖는 광을 방출하는 그린 형광체 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며, 상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지며, 하기 식 1의 광량 변화율이 100% 초과인 발광 장치가 제공될 수 있다.
[식 1]
광량 변화율(%) = [F1/F0]×100
F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
F0 : 형광체로, Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 LuAG 계열의 형광체와 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
본 발명의 또 다른 실시예에 따른 발광 장치는, 백색 발광 장치에 있어서, 415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및 상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고, 상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 제1 레드 형광체 및 제2 레드 형광체 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며, 상기 제1 레드 형광체와 상기 제2 레드 형광체는 서로 다른 물질이고, 상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지며, 50 이상의 R9 값을 가질 수 있다. 이에 따라, 연색성이 우수할 뿐만 아니라 광량이 우수한 발광 장치가 제공될 수 있다.
상기 제1 레드 형광체는 A2MF6: Mn 화학식으로 표현되는 형광체를 포함할 수 있다. 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.
상기 제2 레드 형광체는 CASN 계열의 형광체를 포함할 수 있다.
상기 CASN 계열의 형광체는 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
상기 시안 형광체는 LuAG 계열의 형광체를 포함할 수 있다.
상기 LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 형광체를 포함할 수 있다.
상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 0.5 내지 4 : 6.5 내지 9.5일 수 있다. 이에 따라, 연색성이 우수할 뿐만 아니라 광량이 우수한 발광 장치가 제공될 수 있다.
상기 제1 레드 형광체 및 제2 레드 형광체는 600 내지 660nm 파장을 갖는 광을 방출하고, 상기 시안 형광체는 490 내지 550nm 파장을 갖는 광을 방출할 수 있다.
상기 파장변환부는 상기 발광 다이오드의 적어도 일부를 덮을 수 있다.
본 발명의 또 다른 실시예에 따른 발광 장치는 백색 발광 장치에 있어서, 415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및 상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고, 상기 파장변환부는, A2MF6: Mn 화학식으로 표현되는 제1 레드 형광체, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체, 및 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce 화학식으로 표현되는 시안 형광체를 포함하며, 상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 0.5 내지 4 : 6.5 내지 9.5일 수 있다. 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이며, 상기 X는 Al외 3족 원소이다.
본 발명의 또 다른 실시예에 따른 발광 장치는 백색 발광 장치에 있어서,
415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 레드 형광체, 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며,
상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지고, 50 이상의 R9 값을 가지며,
하기 식 1의 광량 변화율이 98.8% 이상인 발광 장치.
[식 1]
광량 변화율(%) = [F1/F0]×100
F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
F0 : 형광체로, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체와 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 LuAG 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
본 발명에 따른 발광 장치는, 높은 시감도를 가지는 파장 영역 대에 밀집되어 있는 광 스펙트럼을 가지는 광을 방출할 수 있으므로, 시감도 및 광량을 향상시킬 수 있다. 또한, 가시광선 파장 영역 내에서 피크 파장을 가지는 발광 다이오드 칩을 사용함으로써, 발광 장치의 신뢰성을 향상시킬 수 있고, 발광 장치에서 방출되는 백색광의 연색성을 향상시킬 수 있다.
본 발명에 따른 발광 장치는 높은 연색성을 가지며, 동시에 높은 광량을 가지는 광을 방출할 수 있다.
본 발명에 따른 발광 장치는 높은 CRI 및 R9 값을 가지며, 동시에 높은 광량을 가지는 광을 방출할 수 있다.
도 1은 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 2는 본 발명의 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 3은 본 발명의 또 따른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 4는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 5는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 6은 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 7은 본 발명에 따른 발광 장치와 종래 기술에 따른 발광 장치에서 방출하는 광의 스펙트럼을 비교하기 위한 그래프이다.
도 8은 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 9는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 있는 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 1을 참조하면, 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105) 및 제2 형광체(106)를 포함한다.
본 실시예에 있어서, 하우징(101) 상에 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105) 및 제2 형광체(106)가 배치될 수 있다. 하우징(101)에는 발광 다이오드 칩(102)에 전력을 입력하기 위한 리드 단자들(미도시)이 설치될 수 있다. 하우징(101)은 상기 리드 단자들은 발광 다이오드 칩(102)의 실장을 위한 실장영역을 포함할 수 있으며, 발광 다이오드 칩(102)은 페이스트 등을 통하여 상기 실장영역 상에 실장될 수 있다. 제1 및 제2 형광체(105, 106)들은 파장변환부(104) 내에 분포될 수 있으며, 파장변환부(104)는 발광 다이오드 칩(102)의 적어도 일부 영역을 덮을 수 있다.
하우징(101)은 폴리머 등을 포함하는 일반적인 플라스틱, ABS(acrylonitrile butadiene styrene), LCP(liquid crystalline polymer), PA(polyamide), IPS(polyphenylene sulfide) 또는 TPE(thermoplastic elastomer) 등으로 형성되거나, 메탈 또는 세라믹으로 형성될 수도 있다. 다만, 하우징(101)을 형성하는 물질이 이에 제한되는 것은 아니다. 한편, 하우징(101)은 발광 다이오드 칩(102), 제1 및 제2 형광체(105, 106)들에서 방출되는 광의 반사를 위하여 경사진 내벽을 포함할 수 있다.
파장변환부(104)는 실리콘(silicone) 계열, 에폭시(epoxy) 계열, PMMA(polymethyl methacrylate) 계열, PE(polyethylene) 계열 및 PS(polystyrene) 계열 중 적어도 하나를 포함하는 물질로 형성될 수 있다. 파장변환부(104)는 상술한 물질과 제1 및 제2 형광체(105, 106)들의 혼합물을 이용한 사출 공정을 통해 형성할 수 있다. 또한 별도의 주형을 이용하여 제작한 다음, 이를 가압 또는 열처리하여 파장변환부(104)를 형성할 수 있다. 파장변환부(104)는 볼록 렌즈 형태, 평판 형태(미도시) 및 표면에 소정의 요철을 갖는 형태 등 다양한 형상으로 형성할 수 있다. 본 발명에 따른 발광 장치는 볼록 렌즈 형태를 가지는 파장변환부(104)를 개시하였지만, 파장변환부(104)의 형상은 이에 국한되지 않는다.
본 발명에 있어서, 발광 다이오드 칩(102)은 415 내지 430nm의 파장 범위 내에 위치하는 피크 파장을 가지는 광을 방출할 수 있다. 또한, 발광 다이오드 칩(102)이 방출하는 광의 피크 파장의 반치폭(full width half maxium: FWHM)은 40nm 이하일 수 있다.
본 실시예에 있어서, 발광 장치가 한 개의 발광 다이오드 칩(102)을 포함하는 것으로 도시하였지만, 이에 제한되는 것은 아니다. 따라서, 본 발명에 따른 발광 장치는 도시된 발광 다이오드 칩(102)과 동일한 피크 파장 또는 다른 피크 파장의 광을 방출하는 적어도 하나의 발광 다이오드 칩을 더 포함할 수 있다.
발광 다이오드 칩(102)에서 방출되는 광을 통하여, 제1 형광체(105) 및 제2 형광체(106)가 여기될 수 있다. 제1 형광체(105)는 여기되어 시안(Cyan)광 대역의 피크 파장을 갖는 광을 방출할 수 있고, 제2 형광체(106)는 여기되어 적색광 대역의 피크 파장을 갖는 광을 방출할 수 있다.
제1 형광체(105)가 방출하는 광의 시안(Cyan)광 대역의 피크 파장은 500 내지 540nm의 파장 범위 내에 위치할 수 있다. 제1 형광체(105)는 LuAG 계열, YAG 계열, 베타-사이알론(beta-SiAlON) 계열, 질화물(Nitride) 계열 및 실리케이트(Silicate) 계열 중 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. 따라서, 발광 다이오드 칩(102)을 통해 여기되어, 500 내지 540nm의 파장 범위 내에 위치하는 시안(Cyan)광 대역의 피크 파장을 가지는 광을 방출할 수 있는 형광체라면, 그 종류의 제한 없이 제1 형광체(105)로의 적용이 가능하다. 한편, 제1 형광체(105)가 LuAG 계열 형광체를 포함하는 경우에, 상기 LuAG 계열 형광체는 LuxAlyOz: Ce 또는 Lux(Al,Ga)yOz: Ce 화학식으로 표현되는 형광체일 수 있다.
제2 형광체(106)가 방출하는 광의 적색광 대역의 피크 파장은 600 내지 650nm의 파장 범위 내에 위치할 수 있다. 제2 형광체(106)는 CASN, CASON 및 SCASN로 표현되는 질화물계 형광체일 수 있으나, 이에 제한되는 것은 아니다.
사람의 눈이 빛을 느끼는 전자파는 380 내지 760nm 파장 범위를 가지며, 사람의 눈은 555nm의 파장을 가지는 녹색의 빛을 가장 밝게 느낀다. 따라서, 사람의 눈은 555nm 파장보다 길거나 짧은 파장을 가지는 빛에 대해서는 어두워짐을 느끼게 된다. 이는 파장 λ의 광속 Fλ[단위: lm]를 그에 대한 방사속ρ[단위: W]로 나눈 값, 즉, Fλ/ρ[lm/W]로 표현될 수 있으며, 상기 555nm 파장을 가지는 녹색의 빛에 대한 시감도를 최대 시감도라 한다. 그러므로, 발광 장치에서 방출되는 백색광에 대하여 사람의 눈이 느끼는 광량, 즉 시감도를 높이기 위해서는, 발광 장치는 555nm 파장을 중심으로 밀집된 광 스펙트럼을 가지는 광을 방출해야 한다.
본 발명에 있어서, 발광 다이오드 칩(102)은 415 내지 430nm의 파장 범위 내에 피크 파장이 위치하는 광을 방출할 수 있고, 제1 형광체(105)는 발광 다이오드 칩(102)에서 방출되는 광을 통해 여기되어, 500 내지 540nm 파장 범위에 피크 파장이 위치하는 광을 방출하고, 제2 형광체(106) 역시 발광 다이오드 칩(102)에서 방출되는 광을 통해 여기되어, 600 내지 650nm의 파장 범위에 피크 파장이 위치하는 광을 방출한다. 이에 따라, 본 발명에 따른 발광 장치가 방출하는 백색광은 상술한 최대 시감도를 가지는 빛, 즉 555nm 파장을 가지는 녹색의 빛을 중심으로 밀집된 광 스펙트럼을 가진다. 보다 구체적으로는, 본 발명에 따른 발광 다이오드가 방출하는 백색광의 광 스펙트럼은 555nm 파장을 중심으로, 500 내지 600nm 파장 범위 내에서 적어도 40% 이상이 분포할 수 있다.
종래 기술에 따른 청색 발광 다이오드 칩을 이용한 발광 장치는 본 발명에 따른 발광 장치와 비교하여, 상대적으로 장 파장을 가지는 적색광 대역의 피크 파장을 가지는 광을 방출하는 형광체를 이용한다. 따라서, 종래 기술에 따른 발광 장치는 555nm 파장을 가지는 빛을 중심으로 밀집된 광 스펙트럼을 가지는 백색광을 방출하기 어렵다. 따라서, 본 발명에 따른 발광 장치는 종래 기술에 따른 발광 장치와 비교하여, 높은 시감도 및 광량을 가지는 백색광을 방출할 수 있다. 나아가, 본 발명에 따른 발광 장치는 자외선 발광 다이오드 칩을 포함하지 않으므로, 자외선 발광 다이오드 칩에서 방출되는 자외선으로 인해 패키지의 구성이 손상되는 것을 방지할 수 있다. 한편, 본 발명에 따른 발광 장치가 방출하는 광은 연색지수(CRI) 85 이상일 수 있다. 나아가, 본 발명에 따른 발광 장치가 방출하는 광은 연색지수(CRI) 90 이상일 수도 있다.
[실험예 1]
상술한 본 발명의 발광 장치의 시감도 및 광량 등의 향상을 확인하기 위하여 하기와 같은 실험을 실시하였다. 우선, 비교를 위하여, 두 개의 발광 장치 샘플을 준비한다. 샘플 1은 종래 기술에 따른 발광 장치로써, 450nm의 피크 파장을 가지는 광을 방출하는 발광 다이오드 칩, Lu3Al5O12: Ce 화학식으로 표현되는 시안(Cyan) 형광체 및 CaAlSiN3:Eu 화학식으로 표현되는 적색 형광체를 포함한다. 샘플 2는 본 발명의 일 실시예에 따른 발광 장치로써, 425nm의 피크 파장을 가지는 광을 방출하는 발광 다이오드 칩, Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 시안(Cyan) 형광체(제1 형광체), (Sr, Ca)AlSiN3: Eu 화학식으로 표현되는 적색 형광체(제2 형광체)를 포함한다. 두 개의 발광 장치 샘플에 인가되는 전류는 100mA이며, 상술한 조건을 제외한 모든 조건이 동일한 상태에서 실험을 실시하였다.
샘플 1 및 샘플 2에서 방출되는 백색광을 분석한 결과, 샘플 1은 109.5 lm/W의 시감도를 나타냈고, 샘플 2는 115.1 lm/W의 시감도를 나타냈다. 또한, 색좌표가 동일한 경우에, 샘플 1은 33.35 lm의 광량(flux)을 나타냈고, 샘플 2는 36.08 lm의 광량(flux)을 나타냈다. 한편, 연색 지수 CRI(color rendering index)에 있어서, 샘플 1은 연색 지수 90을 나타냈고, 샘플 2는 연색 지수 92.5를 나타냈다. 즉, 본 발명의 일 실시예에 따른 발광 장치는 종래 기술에 따른 발광 장치와 비교하여, 시감도, 광량 및 연색 지수(CRI)에 있어서 모두 향상됨을 확인할 수 있었다. 특히, 시감도에 있어서는 5.1%, 광량(flux)에 있어서는 8.2% 향상됨을 확인할 수 있었다.
도 2는 본 발명의 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 2를 참조하면, 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105), 제2 형광체(106) 및 제3 형광체(107)를 포함한다. 본 실시예에 따른 발광 장치는 본 발명의 일 실시예에 따른 발광 장치와 비교하여, 제3 형광체(107)를 포함하는 것을 제외하고 동일하다. 따라서, 동일한 구성에 대한 중복되는 설명은 생략한다.
도 2를 참조하면, 본 실시예에 따른 발광 장치는 제3 형광체를 포함한다. 제3 형광체(107)는 청색광 대역의 피크 파장을 가지는 광을 방출할 수 있다. 구체적으로, 제3 형광체(107)는 발광 다이오드 칩(102)에서 방출되는 광을 통해 여기되어, 450 내지 480nm의 파장 범위 내에 위치하는 피크 파장을 가지는 광을 방출할 수 있다. 제3 형광체(107)는 SBCA 계열, BAM(Ba-Al-Mg) 계열, 실리케이트(Silicate) 계열, 및 질화물계(Nitride) 계열 중 적어도 하나를 포함할 수 있으나, 이에 제한되는 것은 아니다. 따라서, 발광 다이오드 칩(102)에서 방출되는 415 내지 430nm 파장 범위에 피크 파장이 위치하는 광을 통해 여기되어, 450 내지 480nm의 파장 범위 내에 위치하는 피크 파장을 가지는 광을 방출할 수 있는 형광체라면, 그 종류의 제한없이 제3 형광체(107)에 적용될 수 있다.
[실험예 2]
제3 형광체(107)을 더 포함하는 본 실시예에 따른 발광 장치의 시감도 및 광량 등이 향상됨을 확인하기 위하여, 하기와 같은 실험을 실시하였다. 종래 기술에 따른 발광 장치 샘플로는, 상술한 실험예 1의 샘플 1을 준비하였다. 이어서, 본 실시예에 따른 발광 장치 샘플로 샘플 3을 준비하였고, 상기 샘플 3은 425nm의 피크 파장을 가지는 광을 방출하는 발광 다이오드 칩, Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 시안(Cyan) 형광체(제1 형광체), (Sr, Ca)AlSiN3: Eu 화학식으로 표현되는 적색 형광체(제2 형광체) 및 (Sr, Ba)10(PO4)6Cl2: Eu 화학식으로 표현되는 청색 형광체(제3 형광체)를 포함하는 발광 장치다. 두 개의 발광 장치 샘플에 인가되는 전류는 100mA이며, 상술한 조건을 제외한 모든 조건이 동일한 상태에서 실험을 실시하였다.
샘플 1 및 샘플 3에서 방출되는 백색광을 분석한 결과, 샘플 1의 백색광은 109.5 lm/W의 시감도를 나타냈고, 샘플 3의 백색광은 116.5 lm/W의 시감도를 나타냈다. 색좌표가 동일한 상태에서, 샘플 1의 백색광의 광량(Flux)은 33.35 lm을 나타냈고, 샘플 3의 백색광의 광량(Flux)은 36.57 lm을 나타냈다. 한편, 샘플 1의 백색광의 연색 지수(CRI)는 90을 나타냈고, 샘플 3의 백색광의 연색 지수(CRI)는 92를 나타냈다. 즉, 본 실시예에 따른 발광 장치는 종래 기술에 따른 발광 장치와 비교하여, 시감도 및 광량의 향상은 물론 연색 지수도 향상됨을 확인할 수 있었다. 구체적으로, 시감도는 6.4% 정도, 광량(Flux)는 9.7% 정도 향상됨을 확인할 수 있었다. 도 7은 본 실시예에 따른 발광 장치와 종래 기술에 따른 발광 장치의 광 스펙트럼을 비교하기 위한 그래프이다. 도 7을 참조하면, 선 a는 종래 기술에 따른 발광 장치 샘플인 샘플 1의 광 스펙트럼을, 선 b는 본 실시예에 따른 발광 장치 샘플인 샘플 3의 광 스펙트럼을 나타낸다. 그래프로 나타난 바와 같이, 샘플 3의 광 스펙트럼은 최대 시감도를 가지는 파장인 555nm 파장을 중심으로 종래 기술과 비교하여, 보다 밀집되어 있음을 알 수 있다.
도 3은 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략도이다.
도 3을 참조하면, 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105), 제2 형광체(106) 및 버퍼부(109)를 포함한다. 본 실시예에 따른 발광 장치는 버퍼부(109)를 제외하면, 상기 일 실시예에 따른 발광 장치와 대체로 유사하며, 따라서 동일한 구성요소에 대한 중복되는 설명은 생략한다.
버퍼부(109)는 발광 다이오드 칩(102)과 파장변환부(104) 사이에 배치될 수 있다. 버퍼부는 silicone, epoxy, PMMA(polymethyl methacrylate), PE(polyethylene) 및 PS(polystyrene) 중 적어도 하나를 포함하는 물질로 형성될 수 있다. 버퍼부(109)의 경도는 파장변환부(104)보다 작을 수 있다. 버퍼부(109)을 이용하여, 발광 다이오드 칩(102)에서 발생하는 열로 인한 파장변환부(104)의 열적 스트레스를 방지할 수 있다. 본 실시예에 따른 버퍼부(109)는 발광 다이오드 칩(102) 주변 영역에 배치된 경우를 개시하였지만, 하우징(101)의 좌측벽과 우측벽 모두와 접하도록 넓은 영역에 배치될 수 도 있다.
도 4는 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 4를 참조하면, 본 실시예에 따른 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105), 제2 형광체(106), 리플렉터(111) 및 베리어 리플렉터(112)를 포함할 수 있다. 본 실시예에 따른 발광 장치는 리플렉터(111) 및 베리어 리플렉터(112)를 제외하면, 상기 일 실시예에 따른 발광 장치와 대체로 유사하며, 따라서 동일한 구성요소에 대한 중복되는 설명은 생략한다.
리플렉터(111)는 발광 다이오드 칩(102)과 이격되어 측면에 배치될 수 있다. 리플렉터(111)는 발광 다이오드 칩(102), 제1 및 2 형광체(105, 106)에서 방출되는 광의 반사를 극대화하여 발광 효율을 증대시킬 수 있다. 리플렉터(111)는 반사 코팅 필름 및 반사 코팅 물질층 중 어느 하나로 형성될 수 있다. 리플렉터(111)는 내열성 및 내광성이 우수한 무기 재료, 유기 재료, 금속 재료 및 금속 산화물 재료 중에서 적어도 하나로 형성될 수 있다. 일례로, 리플렉터(111)는 알루미늄(Al), 은(Ag), 금(Au), 이산화 티타늄(TiO2) 등과 같이 높은 반사율을 가지는 금속 또는 금속 산화물을 포함하여 구성될 수 있다. 리플렉터(111)는 하우징(101) 상에 금속 또는 금속 산화물을 증착 또는 코팅하여 형성할 수 있으며, 금속 잉크를 인쇄하여 형성할 수도 있다. 또한, 리플렉터(111)는 하우징(101) 상에 반사 필름 또는 반사 시트(sheet)를 접착하여 형성할 수도 있다.
베리어 리플렉터(112)는 리플렉터(111)를 덮을 수 있다. 베리어 리플렉터(112)는 발광 다이오드 칩(102)에서 방출되는 열로 인한 리플렉터(111)의 열화 등을 방지할 수 있다. 베리어 리플렉터(112)는 내광성 및 반사율이 높은 무기 재료 또는 금속 재료로 형성될 수 있다.
도 5는 본 발명의 또 다른 실시예에 따른 발광 장치를 나타내는 단면도이다.
도 5를 참조하면, 본 실시예에 따른 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105) 및 제2 형광체(106)를 포함하고, 파장변환부(104)는 제1 파장변환부(104b) 및 제2 파장변환부(104a)를 더 포함할 수 있다. 본 실시예에 따른 발광 장치는 제1 파장변환부(104b) 및 제2 파장변환부(104a)를 제외하면, 상기 일 실시예에 따른 발광 장치와 대체로 유사하며, 따라서 중복되는 설명은 생략한다.
제1 파장변환부(104b)는 제1 및 제2 발광 다이오드 칩(102, 103)을 덮을 수 있다. 제2 파장변환부(104a)는 제1 파장변환부(104b)를 덮을 수 있다. 제1 파장변환부(104b)는 제2 파장변환부(104a)와 동일한 경도를 가지는 물질로 형성되거나, 다른 경도를 가지는 물질로 형성될 수 있다. 본 실시예에 있어서, 제1 파장변환부(104b)의 경도는 제2 파장변환부(104a)보다 낮을 수 있으며, 이 경우, 상술한 실시예의 버퍼부(109)와 동일하게, 발광 다이오드 칩들(102, 103)에 인한 열 스트레스를 완화할 수 있다.
제1 파장변환부(104b)는 적색광 대역의 피크 파장을 가지는 광을 방출하는 제2 형광체(106)를 함유할 수 있다. 제2 파장변환부(104a)는 시안(Cyan)광 대역의 피크 파장을 가지는 광을 방출하는 제1 형광체(105)를 함유할 수 있다. 장파장을 방출하는 형광체들을 하부에 배치하고, 단파장을 방출하는 형광체들을 상부에 배치하여, 제1 형광체(105)에서 발광된 시안(Cyan)광이 제2 형광체(106)에 다시 흡수되어 손실되는 것을 방지할 수 있다.
도 6은 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 개략적인 단면도이다.
도 6을 참조하면, 발광 장치는 하우징(101), 발광 다이오드 칩(102), 파장변환부(104), 제1 형광체(105), 제2 형광체(106) 및 형광체 플레이트(118)를 포함한다. 본 실시예에 따른 발광 장치는 형광체 플레이트(118)를 제외하면, 상기 일 실시예에 따른 발광 장치와 대체로 유사하며, 따라서 동일한 구성요소에 대한 중복되는 설명은 생략한다.
형광체 플레이트(118)는 발광 다이오드 칩(102)과 이격되어 파장변환부(104) 상부에 배치되고, 제1 및 제2 형광체(105, 106)들을 포함할 수 있다. 상기 형광체 플레이트(118)은 본 발명의 일 실시예에 따른 파장변환부(104)와 동일한 물질 또는 높은 경도를 가지는 물질로 형성될 수 있다.
제1 및 제2 형광체(105, 106)들이 발광 다이오드 칩(102)과 이격되어 배치되기 때문에, 제1 및 제2 형광체(105, 106)들 및 형광체 플레이트(118)의 열 또는 광에 의한 손상을 줄일 수 있다. 따라서, 제1 및 제2 형광체(105, 106)들의 신뢰성을 향상시킬 수 있다. 한편, 형광체 플레이트(118)와 발광 다이오드 칩(102) 사이에는 파장변환부(104) 대신에 빈공간이 형성될 수도 있다.
도 8은 본 발명의 일 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 8을 참조하면, 상기 발광 장치는, 발광 다이오드(102) 및 파장변환부(130)를 포함하고, 나아가, 베이스(101)를 더 포함할 수 있다.
본 실시예에 있어서, 발광 다이오드(102)는 베이스(101)상에 배치될 수 있다. 베이스(101)는, 예를 들어, 도시된 바와 같은 하우징일 수 있다.
상기 하우징은 상부 방향으로 개구된 캐비티를 포함할 수 있으며, 상기 캐비티 내에 발광 다이오드(102)가 실장될 수 있다. 상기 캐비티의 측면은 경사지도록 형성될 수 있으며, 이에 따라 발광 다이오드(102)에서 방출된 광이 반사되어 본 실시예의 발광 장치의 발광 효율을 향상시킬 수 있다. 나아가, 상기 캐비티의 내부 측면에는 반사성 물질이 더 위치할 수 있다.
베이스(101)가 하우징으로 형성된 경우, 상기 하우징은 폴리머 등을 포함하는 일반적인 플라스틱, ABS(acrylonitrile butadiene styrene), LCP(liquid crystalline polymer), PA(polyamide), IPS(polyphenylene sulfide) 또는 TPE(thermoplastic elastomer) 등으로 형성되거나, 메탈 또는 세라믹으로 형성될 수도 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 베이스(101)는 적어도 두 개의 리드 단자를 포함할 수 있으며, 상기 리드 단자와 발광 다이오드(102)는 전기적으로 연결될 수 있다. 상기 리드 단자는 발광 장치가 외부의 전원에 연결되도록 할 수 있다. 발광 다이오드(102)는 상기 리드 단자 상에 위치할 수도 있다.
한편, 베이스(101)는 이에 한정되는 것은 아니며, 발광 다이오드(102)를 지지할 수 있는 구성이면 제한되지 않고, 다양한 공지의 구성을 포함할 수도 있다. 예를 들어, 베이스(101)는 리드 프렘임과 같이 발광 다이오드(102)가 실장되는 도전성 또는 절연성의 기판, PCB를 포함할 수 있으며, 발광 다이오드(102)로부터 발생된 열을 방출하는 히트 싱크 등을 더 포함할 수도 있다.
발광 다이오드(102)는 n형 반도체층과 p형 반도체층을 포함하여 정공과 전자의 결합을 통해 광을 방출할 수 있는 구조를 가질 수 있다. 발광 다이오드(102)는 수평형, 수직형 또는 플립칩형 등의 구조를 가질 수 있으며, 발광 다이오드(102)의 구성 및 형태는 제한되지 않는다.
발광 다이오드(102)는 가시광영역의 피크 파장을 갖는 광을 방출할 수 있으며, 특히, 415 내지 435nm의 범위 내에 위치하는 피크 파장을 갖는 광을 방출할 수 있다. 상술한 범위의 피크 파장을 갖는 광을 방출하는 발광 다이오드(102)를 포함함으로써, 발광 다이오드로부터 방출된 자외선에 의해 발광 장치의 신뢰성 및 발광 효율이 저하되는 것을 방지할 수 있으며, 또한, 약 450nm의 파장대의 광을 최소화하여 인체에 대한 유해성을 최소화할 수 있다.
파장변환부(130)는 발광 다이오드(102) 상에 위치할 수 있고, 나아가, 발광 다이오드(102)를 적어도 부분적으로 덮을 수 있으며, 더 나아가, 발광 다이오드(102)를 봉지할 수도 있다. 즉, 파장변환부(130)는 발광 다이오드(102)의 광 방출 경로 상에 위치할 수 있다.
파장변환부(130)는 담지부(131), 상기 담지부(131) 내에 불규칙적으로 분산 배치된 레드 형광체(135), 그린 형광체(137), 및 시안 형광체(139)를 포함할 수 있다.
담지부(131)는 형광체(135, 137, 139)를 담지할 수 있는 물질이면 제한되지 않으며, 투명 또는 반투명 특성을 가질 수 있다. 담지부(131)는, 예를 들어, 실리콘(silicone) 계열, 에폭시(epoxy) 계열, PMMA(polymethyl methacrylate) 계열, PE(polyethylene) 계열 및 PS(polystyrene) 계열 중 적어도 하나를 포함하는 고분자로 형성될 수 있고, 또한, 유리와 같은 무기물로 형성될 수도 있다.
담지부(131)가 고분자 물질로 형성된 경우, 파장변환부(130)는 발광 다이오드(102)로부터 방출된 광을 파장변환하는 역할과 더불어, 발광 다이오드(102)를 봉지하는 봉지재 역할을 할 수도 있다. 또한, 파장변환부(130)는 베이스(101) 상에 위치할 수 있고, 본 실시예와 같이, 베이스(101)가 캐비티를 포함하는 경우 파장변환부(130)는 상기 캐비티 내에 배치될 수 있다. 나아가, 파장변환부(130)의 상면은 볼록 렌즈 형태, 평판 형태(미도시) 및 표면에 소정의 요철을 갖는 형태 등 다양한 형상으로 형성될 수 있다. 본 실시예에 따르면, 파장변환부(130)는 볼록 렌즈 형태를 가지는 것으로 개시되었으나, 이에 한정되는 것은 아니다.
레드 형광체(135), 그린 형광체(137), 및 시안 형광체(139)는 담지부(131) 내에 불규칙적으로 분산되어 배치될 수 있다.
구체적으로, 레드 형광체(135)는 입사된 광을 여기시켜 적색광을 방출할 수 있고, 그린 형광체(137)는 입사된 광을 여기시켜 녹색광을 방출할 수 있으며, 시안 형광체(139)는 입사된 광을 여기시켜 시안(cyan)광을 방출할 수 있다. 이에 따라, 본 발명의 발광 장치는 발광 다이오드(102)로부터 방출된 자색(violet)광, 레드 형광체(135)에 의해 여기된 적색광, 그린 형광체(137)에 의해 여기된 녹색광, 및 시안 형광체(139)에 의해 여기된 시안광이 혼색되어 백색광을 방출할 수 있다.
한편, 본 실시예의 발광 장치에 의해 방출된 백색광은 90 이상의 CRI값을 가질 수 있다.
레드 형광체(135)로부터 방출되는 레드광의 피크 파장은 600 내지 660nm 파장 범위 내에 위치할 수 있다. 레드 형광체(135)는 제1 레드 형광체(133) 및 제2 레드 형광체(134)를 포함한다.
상기 제1 레드 형광체(133)은 A2MF6: Mn 화학식으로 표현되는 형광체를 포함하며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다. 본 발명에서 사용되는 제1 레드 형광체(133)는 625 내지 660nm의 파장 범위에서 피크 파장을 가질 수 있다. 제2 레드 형광체(134)는 CASN 계열 형광체를 포함할 수 있다. 본 발명에서 사용되는 CASN 계열 형광체는 600 내지 650nm의 파장 범위에서 피크 파장을 가질 수 있다. CASN 계열 형광체는 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
그린 형광체(137)는 실리케이트 계열의 형광체를 포함할 수 있다. 본 발명에서 사용되는 실리케이트 계열의 형광체는 520 내지 550nm의 파장 범위에서 피크 파장을 가질 수 있다. 실리케이트 계열의 형광체는 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
시안 형광체(139)는 LuAG 계열의 형광체를 포함할 수 있다. 본 발명에서 사용되는 LuAG 계열의 형광체는 490 내지 550nm의 파장 범위에서 피크 파장을 가질 수 있다. LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 같은 족 원소, 예를 들어 Ga, In 등으로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 형광체를 포함할 수 있다. 구체적으로, LuAG 계열의 형광체는 일부 Al이 Ga으로 치환된 Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 형광체를 포함할 수 있다. 특히, 일부 Al이 Ga으로 치환된 Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 형광체는 490 내지 520nm의 파장 범위에서 피크 파장을 가질 수 있으며, 구체적으로, 약 505nm의 피크 파장을 가질 수도 있다.
파장변환부 내의 제2 레드 형광체(134)와 제1 레드 형광체(133)의 질량비는 2.5 내지 5 : 7.5 내지 5일 수 있다. 구체적으로, 파장변환부 내의 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체와 A2MF6: Mn 화학식으로 표현되는 형광체의 질량비는 2.5 내지 5 : 7.5 내지 5일 수 있으며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.
파장변환부 내의 LuAG 계열의 형광체와 실리케이트 계열의 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2일 수 있다. 구체적으로, 파장변환부 내의 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 형광체와 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2일 수 있다.
본 발명의 실시예에 따르면, CRI가 90이상이며, 광량이 우수한 발광 장치를 제공할 수 있다.
구체적으로, 본 발명의 실시예에 따른 백색 발광 장치는 하기 식 1의 광량 변화율이 100% 초과일 수 있다.
[식 1]
광량 변화율(%) = [F1/F0]×100
F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
F0 : 형광체로, Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 LuAG 계열의 형광체와 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
실시예 비교예
실시예 1 : 발광 장치의 제조
도 8을 참조하면, 약 425nm의 피크 파장을 방출하는 발광 다이오드로서 크기가 860㎛×540㎛인 사각형의 발광 칩을 리드 프레임(미도시) 상에 실장시켰다.
리드 프레임 상단에 캐비티를 가지는 하우징을 EMC(Epoxy Molding Compound)를 사용하여 트랜스퍼 몰딩 방법으로 형성시켰다.
본 발명의 형광체에 파장변환부 전체 중량 기준으로 90 중량%의 실리콘 수지를 혼합하여, 슬러리를 제작한 후에, 하우징의 캐비티에 적하하였다. 그 후, 150℃의 온도에서 열처리하여 실리콘 수지를 경화하여 파장변환부를 포함하는 발광 장치를 제조하였다. 상기 공정에서, 형광체는 LED 램프의 색도(CIE)가 x=0.458 내지 0.462, y=0.412 내지 0.417의 범위로 들어가도록, 미리 필요한 수량의 형광체를 준비해 두고, 슬러리 제조를 행하는 것으로 하였다. 또한, 상기 공정에서 파장변화부가, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 4:6의 질량비로 포함하고, Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 LuAG 계열의 형광체와 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 실리케이트 계열의 형광체를 9:1의 질량비로 포함하도록 제조하였다.
비교예 1 : 발광 장치의 제조
상기 실시예 1에서 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 4:6의 질량비가 아닌 7:3의 질량비로 포함하는 것을 제외하고는 실시예 1과 동일한 방법으로 발광 장치를 제조하였다.
비교예 2 : 발광 장치의 제조
상기 실시예 1에서 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 4:6의 질량비가 아닌 2:8의 질량비로 포함하는 것을 제외하고는 실시예 1과 동일한 방법으로 발광 장치를 제조하였다.
비교예 3 : 발광 장치의 제조
상기 실시예 1에서 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체와 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 실리케이트 계열의 형광체를 사용하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 발광 장치를 제조하였다.
실험예
실시예 1 및 비교예 1 내지 3의 발광 장치에 대해 전원(100mA의 정격 전류, 6.1V의 전압)을 공급하여 CRI 값, R9을 측정하였다. 또한 실시예 1 및 비교예 1 내지 3의 Flux(lm)를 측정하여 비교예 3의 Flux를 100% 기준으로 했을 때의 각 실시예 및 비교예의 광량 변화율(Δ)을 % 단위로 표현하였다. 상기 수치들은 하기 표 1에 나타낸다.
CIE x CIE y L/Flux(lm) @equal CIE x,y CRI R9
Flux(lm) Δ(%)
실시예 1 0.460 0.413 71.0 71.7 104.4 91.1 40.0
비교예 1 0.460 0.416 72.3 72.3 105.4 89.1 33.5
비교예 2 0.460 0.416 67.9 67.9 99.0 94.5 60.2
비교예 3 0.460 0.416 68.0 68.6 100 92.4 43.6
상기 표 1을 참조하면, 본 발명의 실시예에 따른 발광 장치는 CRI가 90이상이며, 동시에 광량 변화율(%)이 104.4%이므로, 제1 레드 형광체를 사용하지 않은 비교예 3에 비해 Flux가 증가하는 것을 확인할 수 있다. 반면, 비교예 2는 CRI가 90이상이나 광량 변화율이 99.0%로 나타나, 광량이 저하됨을 확인할 수 있다. 비교예 1은 광량 변화율은 105.4%이므로, 광량은 이득이 있었으나, CRI가 89.1에 그쳐, 연색성이 저하됨을 확인할 수 있다. 비교예 3의 수치는 평가를 위한 기준으로 비교예 3에 대한 확인은 의미가 없다.
도 9은 본 발명의 또 다른 실시예에 따른 발광 장치를 설명하기 위한 단면도이다.
도 9을 참조하면, 상기 발광 장치는, 발광 다이오드(102) 및 파장변환부(130)를 포함하고, 나아가, 베이스(101)를 더 포함할 수 있다.
본 실시예에 있어서, 발광 다이오드(102)는 베이스(101)상에 배치될 수 있다. 베이스(101)는, 예를 들어, 도시된 바와 같은 하우징일 수 있다.
상기 하우징은 상부 방향으로 개구된 캐비티를 포함할 수 있으며, 상기 캐비티 내에 발광 다이오드(102)가 실장될 수 있다. 상기 캐비티의 측면은 경사지도록 형성될 수 있으며, 이에 따라 발광 다이오드(102)에서 방출된 광이 반사되어 본 실시예의 발광 장치의 발광 효율을 향상시킬 수 있다. 나아가, 상기 캐비티의 내부 측면에는 반사성 물질이 더 위치할 수 있다.
베이스(101)가 하우징으로 형성된 경우, 상기 하우징은 폴리머 등을 포함하는 일반적인 플라스틱, ABS(acrylonitrile butadiene styrene), LCP(liquid crystalline polymer), PA(polyamide), IPS(polyphenylene sulfide) 또는 TPE(thermoplastic elastomer) 등으로 형성되거나, 메탈 또는 세라믹으로 형성될 수도 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
또한, 베이스(101)는 적어도 두 개의 리드 단자를 포함할 수 있으며, 상기 리드 단자와 발광 다이오드(102)는 전기적으로 연결될 수 있다. 상기 리드 단자는 발광 장치가 외부의 전원에 연결되도록 할 수 있다. 발광 다이오드(102)는 상기 리드 단자 상에 위치할 수도 있다.
한편, 베이스(101)는 이에 한정되는 것은 아니며, 발광 다이오드(102)를 지지할 수 있는 구성이면 제한되지 않고, 다양한 공지의 구성을 포함할 수도 있다. 예를 들어, 베이스(101)는 리드 프레임과 같이 발광 다이오드(102)가 실장되는 도전성 또는 절연성의 기판, PCB를 포함할 수 있으며, 발광 다이오드(102)로부터 발생된 열을 방출하는 히트 싱크 등을 더 포함할 수도 있다.
발광 다이오드(102)는 n형 반도체층과 p형 반도체층을 포함하여 정공과 전자의 결합을 통해 광을 방출할 수 있는 구조를 가질 수 있다. 발광 다이오드(102)는 수평형, 수직형 또는 플립칩형 등의 구조를 가질 수 있으며, 발광 다이오드(102)의 구성 및 형태는 제한되지 않는다.
발광 다이오드(102)는 가시광영역의 피크 파장을 갖는 광을 방출할 수 있으며, 특히, 415 내지 435nm의 범위 내에 위치하는 피크 파장을 갖는 광을 방출할 수 있다. 상술한 범위의 피크 파장을 갖는 광을 방출하는 발광 다이오드(102)를 포함함으로써, 발광 다이오드로부터 방출된 자외선에 의해 발광 장치의 신뢰성 및 발광 효율이 저하되는 것을 방지할 수 있으며, 또한, 약 450nm의 파장대의 광을 최소화하여 인체에 대한 유해성을 최소화할 수 있다.
파장변환부(130)는 발광 다이오드(102) 상에 위치할 수 있고, 나아가, 발광 다이오드(102)를 적어도 부분적으로 덮을 수 있으며, 더 나아가, 발광 다이오드(102)를 봉지할 수도 있다. 즉, 파장변환부(130)는 발광 다이오드(102)의 광 방출 경로 상에 위치할 수 있다.
파장변환부(130)는 담지부(131), 상기 담지부(131) 내에 불규칙적으로 분산 배치된 레드 형광체(134), 및 시안 형광체(139)를 포함할 수 있다.
담지부(131)는 제1 및 레드 형광체(133, 135)를 담지할 수 있는 물질이면 제한되지 않으며, 투명 또는 반투명 특성을 가질 수 있다. 담지부(131)는, 예를 들어, 실리콘(silicone) 계열, 에폭시(epoxy) 계열, PMMA(polymethyl methacrylate) 계열, PE(polyethylene) 계열 및 PS(polystyrene) 계열 중 적어도 하나를 포함하는 고분자로 형성될 수 있고, 또한, 유리와 같은 무기물로 형성될 수도 있다.
담지부(131)가 고분자 물질로 형성된 경우, 파장변환부(130)는 발광 다이오드(102)로부터 방출된 광을 파장변환하는 역할과 더불어, 발광 다이오드(102)를 봉지하는 봉지재 역할을 할 수도 있다. 또한, 파장변환부(130)는 베이스(101) 상에 위치할 수 있고, 본 실시예와 같이, 베이스(101)가 캐비티를 포함하는 경우 파장변환부(130)는 상기 캐비티 내에 배치될 수 있다. 나아가, 파장변환부(130)의 상면은 볼록 렌즈 형태, 평판 형태(미도시) 및 표면에 소정의 요철을 갖는 형태 등 다양한 형상으로 형성될 수 있다. 본 실시예에 따르면, 파장변환부(130)는 볼록 렌즈 형태를 가지는 것으로 개시되었으나, 이에 한정되는 것은 아니다.
레드 형광체(134), 및 시안 형광체(139)는 담지부(131) 내에 불규칙적으로 분산되어 배치될 수 있다.
구체적으로, 레드 형광체(134)는 입사된 광을 여기시켜 적색광을 방출할 수 있고, 시안 형광체(139)는 입사된 광을 여기시켜 시안(cyan)광을 방출할 수 있다. 이에 따라, 본 발명의 발광 장치는 발광 다이오드(102)로부터 방출된 자색(violet)광, 레드 형광체(134)에 의해 여기된 적색광, 및 시안 형광체(139)에 의해 여기된 시안광이 혼색되어 백색광을 방출할 수 있다.
한편, 본 실시예의 발광 장치에 의해 방출된 백색광은 90 이상의 CRI값을 가질 수 있다. 또한, 본 실시예의 발광 장치에 의해 방출된 백색광은 50 이상의 R9값을 가질 수 있다.
레드 형광체(134)로부터 방출되는 레드광의 피크 파장은 600 내지 660nm 파장 범위 내에 위치할 수 있다. 레드 형광체(134)는 제1 레드 형광체(133) 및 제2 레드 형광체(134)를 포함한다.
상기 제1 레드 형광체(133)는 A2MF6: Mn 화학식으로 표현되는 형광체를 포함하며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다. 본 발명에서 사용되는 제1 레드 형광체(133)는 625 내지 660nm의 파장 범위에서 피크 파장을 가질 수 있다.
제2 레드 형광체(134)는 CASN 계열 형광체를 더 포함할 수 있다. 본 발명에서 사용되는 CASN 계열 형광체는 600 내지 650nm의 파장 범위에서 피크 파장을 가질 수 있다. CASN 계열 형광체는 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체를 포함할 수 있다.
시안 형광체(139)는 LuAG 계열의 형광체를 포함할 수 있다. 본 발명에서 사용되는 LuAG 계열의 형광체는 490 내지 550nm의 파장 범위에서 피크 파장을 가질 수 있다. LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 같은 족 원소, 예를 들어 Ga, In으로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 형광체를 포함할 수 있다. 구체적으로, LuAG 계열의 형광체는 일부 Al이 Ga으로 치환된 Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 형광체를 포함할 수 있다. 특히, 일부 Al이 Ga으로 치환된 Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 형광체는 490 내지 520nm의 파장 범위에서 피크 파장을 가질 수 있으며, 구체적으로, 약 505nm의 피크 파장을 가질 수도 있다.
파장변환부 내의 제2 레드 형광체(134)와 제1 레드 형광체(133)의 질량비는 0.5 내지 4 : 6.5 내지 9.5일 수 있다. 구체적으로, 파장변환부 내의 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체와 A2MF6: Mn 화학식으로 표현되는 형광체의 질량비는 0.5 내지 4 : 6.5 내지 9.5일 수 있으며, 상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.
본 발명의 실시예에 따르면, CRI가 90이상이며, R9이 50이상이며, 광량이 우수한 발광 장치를 제공할 수 있다. 구체적으로, 본 발명의 발광 장치는 CRI가 90이상이며, R9이 50이상이고, 동시에 자색 발광 다이오드에 단파장 CASN 계열의 레드 형광체만 사용하는 종래 발광 장치에 비해 광량이 불과 1% 이하로 떨어질 뿐이므로, 결과적으로 광량도 우수하다.
구체적으로, 본 발명의 실시예에 따른 백색 발광 장치는 하기 식 1의 광량 변화율이 98.8% 이상일 수 있다.
[식 1]
광량 변화율(%) = [F1/F0]×100
F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
F0 : 형광체로, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체와 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al외 3족 원소)화학식으로 표현되는 LuAG 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
실시예 비교예
실시예 2 : 발광 장치의 제조
도 9을 참조하면, 약 425nm의 피크 파장을 방출하는 발광 다이오드로서 크기가 860㎛×540㎛인 사각형의 발광 칩을 리드 프레임(미도시) 상에 실장시켰다.
리드 프레임 상단에 캐비티를 가지는 하우징을 EMC(Epoxy Molding Compound)를 사용하여 트랜스퍼 몰딩 방법으로 형성시켰다.
본 발명의 형광체에 파장변환부 전체 중량 기준으로 90 중량%의 실리콘 수지를 혼합하여, 슬러리를 제작한 후에, 하우징의 캐비티에 적하하였다. 그 후, 150℃의 온도에서 열처리하여 실리콘 수지를 경화하여 파장변환부를 포함하는 발광 장치를 제조하였다. 상기 공정에서, 형광체는 LED 램프의 색도(CIE)가 x=0.458 내지 0.462, y=0.409 내지 0.417의 범위로 들어가도록, 미리 필요한 수량의 형광체를 준비해 두고, 슬러리 제조를 행하는 것으로 하였다.
또한, 상기 공정에서 파장변환부가, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 3:7의 질량비로 포함하고, Lu3(Al,Ga)5O12: Ce 화학식으로 표현되는 LuAG 계열의 형광체를 포함하도록 제조하였다.
실시예 3: 발광 장치의 제조
상기 실시예 2에서 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 3:7의 질량비가 아닌 2:8의 질량비로 포함하는 것을 제외하고는 실시예 2과 동일한 방법으로 발광 장치를 제조하였다.
비교예 4 : 발광 장치의 제조
상기 실시예 2에서 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 사용하지 않은 것을 제외하고는 실시예 2과 동일한 방법으로 발광 장치를 제조하였다.
비교예 5 : 발광 장치의 제조
상기 실시예 2에서 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체 대신 CaAlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체를 사용하며, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 CaAlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체를 7:3의 질량비로 포함하는 것을 제외하고는 실시예 2과 동일한 방법으로 발광 장치를 제조하였다.
비교예 6 : 발광 장치의 제조
상기 실시예 2에서 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 3:7의 질량비가 아닌 4:6의 질량비로 포함하는 것을 제외하고는 실시예 2과 동일한 방법으로 발광 장치를 제조하였다.
비교예 7 : 발광 장치의 제조
상기 실시예 2에서 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체와 K2SiF6: Mn 화학식으로 표현되는 제1 레드 형광체를 3:7의 질량비가 아닌 7:3의 질량비로 포함하는 것을 제외하고는 실시예 2과 동일한 방법으로 발광 장치를 제조하였다.
실험예
실시예 2 및 비교예 4 내지 4의 발광 장치에 대해 전원(100mA의 정격 전류, 6.1V의 전압)을 공급하여 CRI 값, R9 값을 측정하였다. 또한 실시예 2 및 비교예 4 내지 4의 Flux(lm)를 측정하여 비교예 4의 Flux를 100% 기준으로 했을 때의 광량 변화율(Δ)을 % 단위로 표현하였다. 상기 수치들은 하기 표 2에 나타낸다.
CIE x CIE y L/Flux(lm) @equal CIE x,y CRI R9
Flux(lm) Δ(%)
실시예 2 0.460 0.416 68.4 68.4 99.7 93.0 53.4
실시예 3 0.460 0.416 67.9 67.9 99.0 93.7 61.2
비교예 4 0.460 0.416 68.0 68.6 100.0 92.4 43.6
비교예 5 0.460 0.416 65.5 65.5 95.5 93.6 53.1
비교예 6 0.460 0.410 67.9 69.2 100.9 92.5 48.2
비교예 7 0.460 0.413 68.6 69.3 101.0 92.9 45.5
상기 표 2을 참조하면, 본 발명의 실시예 2 및 3에 따른 발광 장치는 CRI가 90 이상이며, R9이 50 이상이고, 동시에 광량 변화율이 99.0 또는 99.7%이다. 따라서, 제1 레드 형광체를 사용하지 않은 비교예 4에 비해 광량이 1% 이하로 저하되는 것에 그치므로 광량도 우수함을 알 수 있다. 반면, 비교예 4, 3 및 4는 CRI 90이상이나 R9이 50이하이며, 비교예 5는 CRI가 90 이상이며, R9이 50 이상이나, 광량 변화율이 95.5%이므로, 제1 레드 형광체를 사용하지 않은 비교예 4에 비해 광량이 4% 이상 저하되는 문제가 있음을 확인할 수 있다. 따라서, 특정 질량비로 형광체를 배합하여야 CRI가 90 이상이며, R9이 50 이상이면서 광량이 우수한 발광 장치가 제공될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서, 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (43)

  1. 하우징;
    상기 하우징에 배치되는 발광 다이오드 칩;
    상기 발광 다이오드 칩 A상에 배치되는 파장변환부;
    상기 파장변환부 내에 분포되고, 시안(Cyan)광 대역의 피크 파장을 갖는 광을 방출하는 제1 형광체; 및
    상기 파장변환부 내에 분포되고, 적색광 대역의 피크 파장을 갖는 광을 방출하는 제2 형광체를 포함하고,
    상기 발광 다이오드 칩이 방출하는 광의 피크 파장은 415 내지 430nm 파장범위 내에 위치하는 발광 장치.
  2. 청구항 1에 있어서,
    상기 제1 형광체는 LuAG, YAG, 질화물(Nitride) 및 실리케이트(Silicate) 계열의 형광체들 중에 적어도 하나를 포함하는 발광 장치.
  3. 청구항 1에 있어서,
    상기 제2 형광체는 CASN, CASON 및 SCASN 계열 형광체들 중 적어도 하나를 포함하는 발광 장치.
  4. 청구항 1에 있어서,
    상기 제1 형광체가 방출하는 광의 시안(Cyan)광 대역의 피크 파장은 500 내지 540nm 파장범위 내에 위치하고, 상기 제2 형광체가 방출하는 광의 적색광 대역의 피크 파장은 600 내지 650nm 파장범위 내에 위치하는 발광 장치.
  5. 청구항 1에 있어서,
    상기 파장변환부 내에 분포되고, 청색광 대역의 피크 파장을 갖는 광을 방출하는 제3 형광체를 더 포함하되,
    상기 제3 형광체는 SBCA, BAM, 실리케이트(Silicate) 및 질화물(Nitride) 계열 형광체들 중 적어도 하나를 포함하는 발광 장치.
  6. 청구항 5에 있어서,
    상기 제3 형광체가 방출하는 광의 청색광 대역의 피크 파장은 450 내지 480nm 파장범위 내에 위치하는 발광 장치.
  7. 청구항 1에 있어서,
    상기 발광 다이오드 칩, 상기 제1 형광체 및 상기 제2 형광체 각각에서 방출되는 광의 합성에 의해 백색광이 형성되고,
    상기 백색광의 연색 지수(CRI)는 85이상인 발광 장치.
  8. 청구항 1에 있어서,
    상기 파장변환부는 실리콘, 에폭시, PMMA, PE 및 PS 중 적어도 하나를 포함하는 발광 장치.
  9. 청구항 1에 있어서,
    상기 파장변환부와 상기 발광 다이오드 칩 사이에 배치되는 버퍼부를 더 포함하되, 상기 버퍼부는 상기 파장변환부보다 낮은 경도를 가지는 발광 장치.
  10. 청구항 1에 잇어서,
    상기 파장변환부는 상기 발광 다이오드 칩을 덮는 제1 파장변환부; 및 상기 제1 파장변환부를 덮는 제2 파장변환부를 포함하되,
    상기 제1 파장변환부는 상기 제2 형광체를 함유하고, 상기 제2 파장변환부는 상기 제1 형광체를 함유하는 발광 장치.
  11. 청구항 1에 있어서,
    상기 하우징은 상기 발광 다이오드 칩에서 방출된 광을 반사하는 리플렉터를 포함하는 발광 장치.
  12. 청구항 11에 있어서,
    상기 하우징은 상기 리플렉터를 덮는 베리어 리플렉터를 더 포함하는 발광 장치.
  13. 발광 다이오드 칩;
    상기 발광 다이오드 칩에 여기되어, 시안(Cyan)광 대역의 피크 파장을 갖는 광을 방출하는 제1 형광체; 및
    상기 발광 다이오드 칩에 여기되어, 적색광 대역의 피크 파장을 갖는 광을 방출하는 제2 형광체를 포함하고,
    상기 발광 다이오드 칩이 방출하는 광의 피크 파장은 415 내지 430nm 파장범위 내에 위치하되,
    상기 발광 다이오드 칩, 상기 제1 형광체 및 상기 제2 형광체가 방출하는 광의 합성으로 백색광이 형성되고, 상기 백색광의 광 스펙트럼은 500 내지 600nm 파장 범위 내에서 40% 이상이 분포하는 발광 장치.
  14. 청구항 13에 있어서,
    상기 제1 형광체가 방출하는 광의 시안(Cyan)광 대역의 피크 파장은 500 내지 540nm 파장범위 내에 위치하고, 상기 제2 형광체가 방출하는 광의 적색광 대역의 피크 파장은 600 내지 650nm 파장범위 내에 위치하는 발광 장치.
  15. 청구항 13에 있어서,
    상기 백색광의 연색지수(CRI)는 85이상인 발광 장치.
  16. 청구항 13에 있어서,
    상기 제1 형광체는 LuAG, YAG, 질화물(Nitride) 및 실리케이트(Silicate) 계열의 형광체들 중에 적어도 하나를 포함하는 발광 장치.
  17. 청구항 13에 있어서,
    상기 제2 형광체는 CASN, CASON 및 SCASN 계열 형광체들 중 적어도 하나를 포함하는 발광 장치.
  18. 청구항 13에 있어서,
    상기 발광 다이오드 칩에 여기되어 청색광 대역의 피크 파장을 갖는 광을 방출하는 제3 형광체를 더 포함하되,
    상기 제3 형광체는 SBCA, BAM, 실리케이트(Silicate) 및 질화물(Nitride) 계열 형광체들 중 적어도 하나를 포함하는 발광 장치.
  19. 청구항 18에 있어서,
    상기 제3 형광체가 방출하는 광의 청색광 대역의 피크 파장은 450 내지 480nm 파장범위 내에 위치하는 발광 장치.
  20. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 제1 레드 형광체 및 제2 레드 형광체, 녹색광 대역의 피크 파장을 갖는 광을 방출하는 그린 형광체, 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며,
    상기 제1 레드 형광체와 상기 제2 레드 형광체는 서로 다른 물질이고,
    상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 갖는 발광 장치.
  21. 청구항 20에 있어서,
    상기 제1 레드 형광체는 A2MF6: Mn 화학식으로 표현되는 형광체를 포함하는 발광 장치.
    (상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.)
  22. 청구항 20에 있어서,
    상기 그린 형광체는 실리케이트 계열의 형광체를 포함하는 발광 장치.
  23. 청구항 22에 있어서,
    상기 실리케이트 계열의 형광체는 (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 형광체인 발광 장치.
  24. 청구항 20에 있어서,
    상기 제2 레드 형광체는 CASN 계열의 형광체를 포함하는 발광 장치.
  25. 청구항 24에 있어서,
    상기 CASN 계열의 형광체는 (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 형광체인 발광 장치.
  26. 청구항 20에 있어서,
    상기 시안 형광체는 LuAG 계열의 형광체를 포함하는 발광 장치.
  27. 청구항 26에 있어서,
    상기 LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al 이외의 3족 원소)화학식으로 표현되는 형광체인 발광 장치.
  28. 청구항 20에 있어서,
    상기 시안 형광체와 상기 그린 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2이며,
    상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 2.5 내지 5 : 7.5 내지 5인 발광 장치.
  29. 청구항 20에 있어서,
    상기 제1 레드 형광체 및 상기 제2 레드 형광체는 600 내지 630nm 파장을 갖는 광을 방출하고, 상기 그린 형광체는 520 내지 550nm 파장을 갖는 광을 방출하고, 상기 시안 형광체는 490 내지 550nm 파장을 갖는 광을 방출하는 발광 장치.
  30. 청구항 20에 있어서,
    상기 파장변환부는 상기 발광 다이오드의 적어도 일부를 덮는 발광 장치.
  31. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는,
    A2MF6: Mn 화학식으로 표현되는 제1 레드 형광체,
    (Sr,Ca)AlSiN3: EU 또는 CaAlSiN3: EU 화학식으로 표현되는 제2 레드 형광체,
    (Ba,Sr,Ca)2SiO4: EU 화학식으로 표현되는 그린 형광체, 및
    Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce 화학식으로 표현되는 시안 형광체를 포함하며,
    상기 시안 형광체와 상기 그린 형광체의 질량비는 8 내지 9.9 : 0.1 내지 2이며,
    상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 2.5 내지 5 : 7.5 내지 5인 발광 장치.
    (상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이며, 상기 X는 Al외 3족 원소이다.)
  32. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 레드 형광체, 녹색광 대역의 피크 파장을 갖는 광을 방출하는 그린 형광체 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며,
    상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지며,
    하기 식 1의 광량 변화율이 100% 초과인 발광 장치.
    [식 1]
    광량 변화율(%) = [F1/F0]×100
    F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
    F0 : 형광체로, Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al 이외의 3족 원소)화학식으로 표현되는 LuAG 계열의 형광체와 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
  33. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 제1 레드 형광체 및 제2 레드 형광체 및 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며,
    상기 제1 레드 형광체와 상기 제2 레드 형광체는 서로 다른 물질이고,
    상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지며, 50 이상의 R9 값을 가지는 발광 장치.
  34. 청구항 33에 있어서,
    상기 제1 레드 형광체는 A2MF6: Mn 화학식으로 표현되는 형광체를 포함하는 발광 장치.
    (상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이다.)
  35. 청구항 33에 있어서,
    상기 제2 레드 형광체는 CASN 계열의 형광체를 포함하는 발광 장치.
  36. 청구항 35에 있어서,
    상기 CASN 계열의 형광체는 (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 형광체를 포함하는 발광 장치.
  37. 청구항 33에 있어서,
    상기 시안 형광체는 LuAG 계열의 형광체를 포함하는 발광 장치.
  38. 청구항 37에 있어서,
    상기 LuAG 계열의 형광체는 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al 이외의 3족 원소)화학식으로 표현되는 형광체를 포함하는 발광 장치.
  39. 청구항 33에 있어서,
    상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 0.5 내지 4 : 6.5 내지 9.5인 발광 장치.
  40. 청구항 33에 있어서,
    상기 제1 레드 형광체 및 상기 제2 레드 형광체는 600 내지 660nm 파장을 갖는 광을 방출하고, 상기 시안 형광체는 490 내지 550nm 파장을 갖는 광을 방출하는 발광 장치.
  41. 청구항 33에 있어서,
    상기 파장변환부는 상기 발광 다이오드의 적어도 일부를 덮는 발광 장치.
  42. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는,
    A2MF6: Mn 화학식으로 표현되는 제1 레드 형광체,
    (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 제2 레드 형광체, 및
    Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce 화학식으로 표현되는 시안 형광체를 포함하며,
    상기 제2 레드 형광체와 상기 제1 레드 형광체의 질량비는 0.5 내지 4 : 6.5 내지 9.5인 발광 장치.
    (상기 A는 Li, Na, K, Rb, Ce 및 NH4로 이루어진 군에서 선택되는 어느 하나이고, 상기 M은 Si, Ti, Nb 및 Ta로 이루어진 군에서 선택되는 어느 하나이며, 상기 X는 Al외 3족 원소이다.)
  43. 백색 발광 장치에 있어서,
    415 내지 435nm 범위 내의 피크 파장을 갖는 광을 방출하는 발광 다이오드; 및
    상기 발광 다이오드 상에 위치하는 파장변환부를 포함하고,
    상기 파장변환부는 적색광 대역의 피크 파장을 갖는 광을 방출하는 레드 형광체, 시안광 대역의 피크 파장을 갖는 광을 방출하는 시안 형광체를 포함하며,
    상기 발광 장치로부터 방출된 광은 90 이상의 CRI 값을 가지고, 50 이상의 R9 값을 가지며,
    하기 식 1의 광량 변화율이 98.8% 이상인 발광 장치.
    [식 1]
    광량 변화율(%) = [F1/F0]×100
    F1 : 상기 발광 장치에서 방출된 광의 광량(lm)
    F0 : 형광체로, (Sr,Ca)AlSiN3: EU 화학식으로 표현되는 CASN 계열의 형광체와 Lu3Al5O12: Ce 또는 일부 Al이 다른 3족 원소로 치환된 Lu3(Al,X)5O12: Ce (X는 Al 이외의 3족 원소)화학식으로 표현되는 LuAG 계열의 형광체만을 포함하는 파장변화부를 갖는 발광 장치에서 방출된 광의 광량(lm)
PCT/KR2015/010590 2014-10-08 2015-10-07 발광 장치 WO2016056837A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP19175632.9A EP3546544A1 (en) 2014-10-08 2015-10-07 Light emitting device
EP15849447.6A EP3206240B1 (en) 2014-10-08 2015-10-07 Light emitting device
CN201580055014.6A CN106796976B (zh) 2014-10-08 2015-10-07 发光装置
CN201910232719.0A CN110003891B (zh) 2014-10-08 2015-10-07 发光装置
US15/518,170 US10811572B2 (en) 2014-10-08 2015-10-07 Light emitting device
JP2017518810A JP7073102B2 (ja) 2014-10-08 2015-10-07 発光装置
CN201910233767.1A CN110055059B (zh) 2014-10-08 2015-10-07 发光装置
US17/071,374 US11545599B2 (en) 2014-10-08 2020-10-15 Light emitting device
US17/980,499 US20230056190A1 (en) 2014-10-08 2022-11-03 Light emitting device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140136095A KR102256593B1 (ko) 2014-10-08 2014-10-08 발광 다이오드 패키지
KR10-2014-0136095 2014-10-08
KR1020150008212A KR20160088743A (ko) 2015-01-16 2015-01-16 발광 장치
KR1020150008213A KR102354843B1 (ko) 2015-01-16 2015-01-16 발광 장치
KR10-2015-0008213 2015-01-16
KR10-2015-0008212 2015-01-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/518,170 A-371-Of-International US10811572B2 (en) 2014-10-08 2015-10-07 Light emitting device
US17/071,374 Continuation US11545599B2 (en) 2014-10-08 2020-10-15 Light emitting device

Publications (1)

Publication Number Publication Date
WO2016056837A1 true WO2016056837A1 (ko) 2016-04-14

Family

ID=55653382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010590 WO2016056837A1 (ko) 2014-10-08 2015-10-07 발광 장치

Country Status (5)

Country Link
US (3) US10811572B2 (ko)
EP (2) EP3206240B1 (ko)
JP (2) JP7073102B2 (ko)
CN (3) CN110003891B (ko)
WO (1) WO2016056837A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104389A1 (de) * 2016-12-09 2018-06-14 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement
JP2020536381A (ja) * 2017-10-04 2020-12-10 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH 蛍光体混合物、変換要素および光電子部品

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10811572B2 (en) * 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
EP3499302B1 (en) 2014-12-03 2020-03-18 Samsung Electronics Co., Ltd. White light emitting device and display device using the same
WO2017131693A1 (en) 2016-01-28 2017-08-03 Ecosense Lighting Inc Compositions for led light conversions
EP3427307A4 (en) 2016-03-08 2020-01-01 Lilibrand LLC LIGHTING SYSTEM COMPRISING A LENS ASSEMBLY
US10193043B2 (en) * 2016-07-28 2019-01-29 Lumileds Llc Light emitting device package with reflective side coating
CN110998880A (zh) 2017-01-27 2020-04-10 莉莉布兰德有限责任公司 具有高显色指数和均匀平面照明的照明系统
KR20180090002A (ko) * 2017-02-02 2018-08-10 서울반도체 주식회사 발광 다이오드 패키지
US20180328552A1 (en) 2017-03-09 2018-11-15 Lilibrand Llc Fixtures and lighting accessories for lighting devices
JP7221653B2 (ja) * 2017-11-09 2023-02-14 日本特殊陶業株式会社 光波長変換部品の製造方法及び発光装置
CN108048079A (zh) * 2017-11-27 2018-05-18 广东晶科电子股份有限公司 一种红色荧光粉、白光发光二极管及背光模组
CN107946434B (zh) * 2017-11-27 2021-03-26 广东晶科电子股份有限公司 白光发光二极管及背光模组
JP6773018B2 (ja) 2017-12-26 2020-10-21 日亜化学工業株式会社 発光装置
DE102018101428A1 (de) * 2018-01-23 2019-07-25 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement
US10991855B2 (en) 2018-04-16 2021-04-27 Lextar Electronics Corporation White light emitting device
CN114981592A (zh) 2018-05-01 2022-08-30 生态照明公司 具有中央硅酮模块的照明系统及装置
EP3788119A1 (en) * 2018-05-04 2021-03-10 Intematix Corporation High color rendering white light emitting devices and high color rendering photoluminescence compositions
EP3576168B1 (en) * 2018-05-31 2023-05-31 Nichia Corporation Light emitting device
KR102654335B1 (ko) * 2018-08-17 2024-04-04 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지
US11233180B2 (en) 2018-08-31 2022-01-25 Lumileds Llc Phosphor converted LED with high color quality
JP7303822B2 (ja) * 2018-09-12 2023-07-05 デンカ株式会社 蛍光体及び発光装置
US11253721B2 (en) * 2018-12-07 2022-02-22 Seoul Viosys Co., Ltd. LED lighting apparatus having sterilizing function
US11353200B2 (en) 2018-12-17 2022-06-07 Korrus, Inc. Strip lighting system for direct input of high voltage driving power
US10887960B2 (en) * 2019-03-28 2021-01-05 Lumileds Llc Color tunable light emitting diode (LED) systems, LED lighting systems, and methods
WO2021199752A1 (ja) * 2020-03-31 2021-10-07 日亜化学工業株式会社 発光装置及びそれを備えた灯具
JP7174266B2 (ja) 2020-06-30 2022-11-17 日亜化学工業株式会社 発光装置
JP7185146B2 (ja) * 2020-09-15 2022-12-07 日亜化学工業株式会社 発光装置
CN115948162B (zh) * 2022-12-23 2023-12-12 江苏博睿光电股份有限公司 一种高显色荧光粉组合物以及led封装器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080198573A1 (en) * 2005-06-02 2008-08-21 Koninklijke Philips Electronics, N.V. Illumination System Comprising Color Deficiency Compensating Luminescent Material
JP2009289957A (ja) * 2008-05-29 2009-12-10 Yamaguchi Univ 半導体発光装置、および撮像装置
KR20100132968A (ko) * 2008-03-07 2010-12-20 인터매틱스 코포레이션 백색광 방출 다이오드들(leds)을 위한 멀티플-칩 여기 시스템들
KR20110018391A (ko) * 2008-05-30 2011-02-23 가부시끼가이샤 도시바 백색 led 및 그를 사용한 백라이트 및 액정 표시 장치
JP2014060283A (ja) * 2012-09-18 2014-04-03 Panasonic Corp 白色発光デバイス、ならびにこれを用いた撮像装置、照明装置および液晶ディスプレイ装置

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100558080B1 (ko) 2002-10-09 2006-03-07 서울반도체 주식회사 형광체 및 그것을 이용한 발광 다이오드 및 그 제조방법
JP2005285800A (ja) 2004-03-26 2005-10-13 Kyocera Corp 発光装置
JP4776175B2 (ja) 2004-04-27 2011-09-21 京セラ株式会社 発光素子収納用パッケージおよびその製造方法および発光装置および照明装置
TW200614548A (en) 2004-07-09 2006-05-01 Matsushita Electric Ind Co Ltd Light-emitting device
WO2006095949A1 (en) 2005-03-11 2006-09-14 Seoul Semiconductor Co., Ltd. Led package having an array of light emitting cells coupled in series
JP4638761B2 (ja) 2005-04-14 2011-02-23 日本特殊陶業株式会社 配線基板
JP2007103512A (ja) 2005-09-30 2007-04-19 Kyocera Corp 発光装置
JP2007173397A (ja) 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 発光モジュールとこれを用いた表示装置及び照明装置
JP5174125B2 (ja) 2006-01-30 2013-04-03 京セラ株式会社 発光装置および照明装置
US7923928B2 (en) * 2006-06-27 2011-04-12 Mitsubishi Chemical Corporation Illuminating device
US8133461B2 (en) * 2006-10-20 2012-03-13 Intematix Corporation Nano-YAG:Ce phosphor compositions and their methods of preparation
US8475683B2 (en) 2006-10-20 2013-07-02 Intematix Corporation Yellow-green to yellow-emitting phosphors based on halogenated-aluminates
JP2008166782A (ja) 2006-12-26 2008-07-17 Seoul Semiconductor Co Ltd 発光素子
DE102007010719A1 (de) * 2007-03-06 2008-09-11 Merck Patent Gmbh Leuchtstoffe bestehend aus dotierten Granaten für pcLEDs
WO2009028656A1 (ja) 2007-08-30 2009-03-05 Nichia Corporation 発光装置
JP2009188274A (ja) 2008-02-07 2009-08-20 Sharp Corp 発光装置およびその製造方法
CN101939402A (zh) 2008-02-11 2011-01-05 皇家飞利浦电子股份有限公司 提高色彩饱和度的基于led的光源
JP5682104B2 (ja) 2008-09-05 2015-03-11 三菱化学株式会社 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
WO2010035944A2 (ko) * 2008-09-29 2010-04-01 서울반도체 주식회사 발광 장치
US8288785B2 (en) * 2008-12-03 2012-10-16 Seoul Semiconductor Co., Ltd. Lead frame having light-reflecting layer, light emitting diode having the lead frame, and backlight unit having the light emitting diode
JP5195415B2 (ja) * 2008-12-26 2013-05-08 三菱化学株式会社 半導体発光装置
JP2011029497A (ja) 2009-07-28 2011-02-10 Mitsubishi Chemicals Corp 白色発光装置およびそれを用いた照明装置
CN102405538A (zh) * 2009-08-26 2012-04-04 三菱化学株式会社 白色半导体发光装置
WO2011095915A1 (en) * 2010-02-03 2011-08-11 Koninklijke Philips Electronics N.V. Phosphor converted led
EP2546897B1 (en) * 2010-03-12 2019-01-23 Kabushiki Kaisha Toshiba White lighting device
DE102010021341A1 (de) 2010-05-22 2011-11-24 Merck Patent Gmbh Leuchtstoffe
JP5319743B2 (ja) 2010-09-08 2013-10-16 株式会社東芝 発光装置
CN102986044B (zh) 2010-10-15 2015-05-06 三菱化学株式会社 白色发光装置及照明器具
JP5864851B2 (ja) 2010-12-09 2016-02-17 シャープ株式会社 発光装置
KR101673627B1 (ko) * 2011-08-31 2016-11-07 엘지이노텍 주식회사 광학 부재 및 표시장치
JP2013147195A (ja) * 2012-01-20 2013-08-01 Railway Technical Research Institute 戸挟み検出装置
WO2013147195A1 (ja) * 2012-03-30 2013-10-03 三菱化学株式会社 半導体発光装置、及び照明装置
TWI563690B (en) * 2012-07-20 2016-12-21 Mitsubishi Eng Plastics Corp A wavelength conversion member and application thereof
WO2014068440A1 (en) * 2012-11-01 2014-05-08 Koninklijke Philips Electronics N.V. Led-based device with wide color gamut
KR101644052B1 (ko) 2012-11-12 2016-08-01 삼성전자 주식회사 백색 발광 소자
KR102202309B1 (ko) 2012-12-28 2021-01-14 신에쓰 가가꾸 고교 가부시끼가이샤 파장 변환 부재 및 발광 장치
CN105324860A (zh) 2013-06-18 2016-02-10 夏普株式会社 发光装置
KR20150007885A (ko) * 2013-07-12 2015-01-21 엘지이노텍 주식회사 형광체 및 이를 구비한 발광 소자
CN105706256B (zh) * 2013-11-08 2018-03-13 夏普株式会社 发光装置以及照明装置
US9215761B2 (en) * 2014-05-15 2015-12-15 Cree, Inc. Solid state lighting devices with color point non-coincident with blackbody locus
US10811572B2 (en) * 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080198573A1 (en) * 2005-06-02 2008-08-21 Koninklijke Philips Electronics, N.V. Illumination System Comprising Color Deficiency Compensating Luminescent Material
KR20100132968A (ko) * 2008-03-07 2010-12-20 인터매틱스 코포레이션 백색광 방출 다이오드들(leds)을 위한 멀티플-칩 여기 시스템들
JP2009289957A (ja) * 2008-05-29 2009-12-10 Yamaguchi Univ 半導体発光装置、および撮像装置
KR20110018391A (ko) * 2008-05-30 2011-02-23 가부시끼가이샤 도시바 백색 led 및 그를 사용한 백라이트 및 액정 표시 장치
JP2014060283A (ja) * 2012-09-18 2014-04-03 Panasonic Corp 白色発光デバイス、ならびにこれを用いた撮像装置、照明装置および液晶ディスプレイ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3206240A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018104389A1 (de) * 2016-12-09 2018-06-14 Osram Opto Semiconductors Gmbh Optoelektronisches bauelement
US10910527B2 (en) 2016-12-09 2021-02-02 Osram Oled Gmbh Optoelectronic component
JP2020536381A (ja) * 2017-10-04 2020-12-10 オスラム オーエルイーディー ゲゼルシャフト ミット ベシュレンクテル ハフツングOSRAM OLED GmbH 蛍光体混合物、変換要素および光電子部品
US11611022B2 (en) 2017-10-04 2023-03-21 Osram Oled Gmbh Phosphor mixture, conversion element and optoelectronic component

Also Published As

Publication number Publication date
JP2021108381A (ja) 2021-07-29
US20230056190A1 (en) 2023-02-23
CN106796976B (zh) 2019-04-19
US20170309795A1 (en) 2017-10-26
CN110055059A (zh) 2019-07-26
EP3206240B1 (en) 2019-06-19
CN106796976A (zh) 2017-05-31
US10811572B2 (en) 2020-10-20
EP3546544A1 (en) 2019-10-02
JP7284208B2 (ja) 2023-05-30
JP7073102B2 (ja) 2022-05-23
CN110003891B (zh) 2023-05-23
JP2017531324A (ja) 2017-10-19
CN110055059B (zh) 2022-12-27
CN110003891A (zh) 2019-07-12
US20210028334A1 (en) 2021-01-28
EP3206240A4 (en) 2018-05-23
US11545599B2 (en) 2023-01-03
EP3206240A1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2016056837A1 (ko) 발광 장치
WO2011145794A1 (ko) 파장변환층을 갖는 발광 다이오드 칩과 그 제조 방법, 및 그것을 포함하는 패키지 및 그 제조 방법
WO2018097667A1 (ko) 반도체 소자 및 이를 포함하는 표시 장치
WO2013069924A1 (en) Light emitting device
WO2013036070A2 (en) Lighting device and lighting control method
WO2011099800A2 (ko) 형광체, 발광장치, 면광원장치, 디스플레이 장치 및 조명장치
WO2010018999A2 (ko) β-사이알론 형광체 제조방법
WO2013042896A2 (ko) 조명 장치
WO2015060693A1 (ko) Led 봉지재
WO2016032167A1 (ko) 발광 소자 패키지
WO2017188795A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 장치
WO2013122337A1 (en) Light emitting package
WO2017200341A2 (ko) 플래시 모듈 및 이를 포함하는 단말기
WO2017078441A1 (ko) 반도체 소자
WO2017074035A1 (ko) 발광소자 패키지, 및 이를 포함하는 조명시스템
WO2015149546A1 (zh) 一种具有全发射角的led模块、制作方法及led灯具
WO2019088704A1 (ko) 발광소자 패키지 및 이를 구비한 조명 장치
WO2019112397A1 (ko) 백라이트 유닛
WO2017164644A1 (ko) 발광 소자 및 이를 구비한 발광 모듈
WO2016032178A1 (ko) 형광체 조성물, 이를 포함하는 발광 소자 패키지 및 조명 시스템
WO2017043851A1 (ko) 발광 장치
WO2019054750A1 (ko) 발광소자 패키지 및 광원 장치
WO2018016918A1 (ko) 튜브형 엘이디 조명 장치
WO2017082623A1 (ko) 발광 소자 및 이를 구비한 조명 장치
WO2020032373A1 (ko) 발광소자 패키지 및 광원 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849447

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017518810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15518170

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015849447

Country of ref document: EP