JP2009289957A - 半導体発光装置、および撮像装置 - Google Patents

半導体発光装置、および撮像装置 Download PDF

Info

Publication number
JP2009289957A
JP2009289957A JP2008140667A JP2008140667A JP2009289957A JP 2009289957 A JP2009289957 A JP 2009289957A JP 2008140667 A JP2008140667 A JP 2008140667A JP 2008140667 A JP2008140667 A JP 2008140667A JP 2009289957 A JP2009289957 A JP 2009289957A
Authority
JP
Japan
Prior art keywords
light
phosphor
light emitting
cyan
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008140667A
Other languages
English (en)
Inventor
Tsunemasa Taguchi
常正 田口
Yuji Uchida
裕士 内田
Yoshito Sato
義人 佐藤
Akio Kasakura
暁夫 笠倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Yamaguchi University NUC
Original Assignee
Mitsubishi Chemical Corp
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Yamaguchi University NUC filed Critical Mitsubishi Chemical Corp
Priority to JP2008140667A priority Critical patent/JP2009289957A/ja
Publication of JP2009289957A publication Critical patent/JP2009289957A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

【課題】半導体発光素子を用いて、観察の対象となる生体対象物のための光源となる半導体発光装置であって、生体対象物内の観察対象部位の物体色を、より詳細に認識することが可能となるように照明を行う半導体発光装置を提供する。
【解決手段】半導体発光装置において、半導体発光素子からの発光に基づいて、生体対象物に対して、ベースとなる所定の白色光を出射する白色光出射部と、白色光出射部による所定の白色光の出射とともに、生体対象物の物体色であってマンセル表色系の色相がR領域又はRP領域の物体色の補色に相当する、マンセル表色系の色相がBG領域又はG領域の所定のシアン色光を出射するシアン色光出射部と、を備える。
【選択図】図2

Description

本発明は、半導体発光素子からの発光により外部に対して発光し、特に観察の対象となる生体対象物のための光源となる半導体発光装置に関する。
昨今においては、省エネルギー性やその他の様々な目的のために、従来の照明装置に代えて半導体発光素子である発光ダイオード(LED)を用いた照明装置が広く提案されてきている。また、従来の光源では実現困難であった色調可変照明の光源としてもLEDは期待されている。その一例として、赤色LED、緑色LED、青色LEDを一つのパッケージにすることで白色光を出力する照明装置が開示されている(例えば、特許文献1を参照。)。この技術においては、上記三種類のLEDに供給される駆動電流を各LEDの順方向電圧に応じて調整することで、各LEDの発光効率を一定にし、白色光の輝度の安定化を図るために、また様々な色調の光を出射するように工夫されている。
また、LEDを利用した照明技術として、青色LEDと赤色および緑色発色のための蛍光体を用いて赤色、青色、緑色の光を発光する半導体発光装置を組み合わせて、LEDの出力を制御することで、黒体輻射軌跡をトレースし、自然光に近い白色光を出射する技術が開示されている(例えば、特許文献2、3を参照。)。
このようにLEDを組み込んだ照明装置は医療分野においても利用され始めており、特に人体等の生体の内部の撮像を行う内視鏡装置における光源として有用である(例えば、特許文献4、5を参照。)。
特開2007−59260号公報 特開2007−265818号公報 特開2007−299590号公報 特開2008−48905号公報 特開2008−36287号公報
半導体発光素子を用いた発光装置で対象物の照明を行おうとする場合、一般に、その対象物の演色性を出すために、ベースとなる白色光にその物体色に近い色の光を加えて該対象物に照射することが行われている。しかし、医療分野において観察の対象となる生体対象物に対する照明では、その対象物の物体色は、血液の色の影響を受けていわば赤系統の色であり、そのような生体対象物に対して従来の通り演色性を求めた照明を行っても、対象の凹凸による陰影はある程度は認識されるものの、特に観察を行いたい血管やその周辺部位を詳細に認識することは極めて困難な状況にある。
本発明では、上記した問題に鑑み、半導体発光素子を用いて、観察の対象となる生体対象物のための光源となる半導体発光装置であって、生体対象物内の観察対象部位の物体色を、より詳細に認識することが可能となるように照明を行う半導体発光装置を提供することを目的とする。
上記課題を解決するために、出願人は、観察の対象となる対象物の物体色と補色の関係にある色の光を含む、白色ベースの光源を用いて該対象物に照射することで、該対象物を詳細に観察することができることを見出した。特に、対象物が生体内の血管等となる医療
分野においては、血液の色によって多くの生体対象物の物体色が決定され、即ち、生体対象物が同系の赤一色となる。従って、医療分野において生体対象物の照明を行う場合、生体対象物の物体色である赤色の補色関係にあるシアン色を含む白色ベースの光源が有効である。そして、これを具現化することにより生体内の様々な目的部位の詳細まで画像認識することが可能となり、特に血管の詳細を確認することまでできるに至った。
詳細には、本発明は、一又は複数の半導体発光素子からの発光により、観察の対象となる生体対象物のための光源となる半導体発光装置であって、前記半導体発光素子からの発光に基づいて、前記生体対象物に対して、色温度が2400Kから6500Kの間であって、且つUCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02である所定の白色光を出射する白色光出射部と、前記白色光出射部による前記所定の白色光の出射とともに、前記生体対象物の物体色であってマンセル表色系の色相がR領域又はRP領域の物体色の補色に相当する、マンセル表色系の色相がBG領域又はG領域の所定のシアン色光を出射するシアン色光出射部と、を備える。
本発明に係る半導体発光装置においては、白色光出射部からの所定の白色光の出射とシアン色光出射部からの所定のシアン光の出射とが、生体対象物に対して行われる。尚、出射された所定の白色光と出射された所定のシアン色光は、最終的に観察の対象となる生体対象物上で両出射光が合成されればよく、従って、白色光出射部とシアン色光出射部とは、互いに分離して形成されてもよく、また一体的に形成されてもよい。
ここで、上記所定の白色光は、色温度が2400Kから6500Kの間であって、且つUCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02である。尚、この黒体輻射軌跡からの偏差duvは、JIS Z8725(光源の分布温度及び色温度・相関色温度の測定方法)の5.4項の備考の定義に従う。このようにすることで、本発明に係る半導体発光装置において、白色光の色温度を安定的に維持し、生体対象物の観察に必要な光のベースを供給することが可能となる。
そして、この所定の白色光に加えて、所定のシアン色光が出射される。所定のシアン色光は、生体対象物の物体色(例えば、生体中の血管の物体色)であるマンセル表色系の色相がR領域又はRP領域の血管色の補色に相当する、マンセル表色系の色相がBG領域又はG領域に属するシアン色光である。即ち、本発明に係る半導体発光装置においては、シアン色光出射部により生体対象物の血管等の物体色と同類の色ではなく、その補色となるシアン色が供給されることになる。本出願人は、従来のように血管等の赤色と同類のマンセル表色系のR領域又はRP領域の色を出射し、生体対象物の演色性を高めようとしても、生体対象物内では血管等をその周囲と区別して認識させることには貢献し難いことを認識した。一方で、血管等の物体色の補色となるシアン色を利用することが該血管等とその周囲との区別には大きく貢献することを見出した。言い換えると、本出願人は、敢えて生体対象物に関する補色を照明として利用することが、生体対象物の観察が極めて容易に行われることに帰結することを見出し、それを踏まえて本発明に係る半導体発光装置を構成したものである。
ここで、前記生体対象物の血管の物体色の彩度は、所定の彩度以上である場合に、前記白色光出射部による前記所定の白色光の出射とともに、前記シアン色光出射部が前記所定のシアン色光の出射を行うことで、前記生体対象物の前記血管の周囲の部位であって且つ該血管と同じようにマンセル表色系の色相がR領域又はRP領域である物体色を有する血管周辺部位と、該血管とのコントラストを強調するものであってもよい。
即ち、本出願人は、上記シアン色光出射部からの所定のシアン色光による、血管とその周辺部位の区別化については、マンセル表色系のR領域又はRP領域の色の彩度が重要であることを見出した。そして、生体対象物の特に血管の色が所定の彩度以上であるときは、上記所定のシアン色光によって、血管の周辺部位であってその彩度が所定の彩度より低い部位とのコントラストがより強くなり、生体対象物の観察をより良好に行うことができる。
また、上述までの半導体発光装置において、前記所定の白色光は、380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が440nm〜460nmである青色蛍光体、380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が520nm〜540nmである緑色蛍光体、および380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が610nm〜650nmである赤色蛍光体を含む白色光用蛍光体からの発光で構成されてもよい。また、前記所定のシアン色光は、380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が480nm〜515nmであるシアン色蛍光体からの発光で構成されてもよい。
そして、前記シアン色光出射部は、前記半導体素子からの発光により励起する、ハロ燐酸塩系シアン色蛍光体、燐酸塩系シアン色蛍光体、ケイ酸塩系シアン色蛍光体、アルミン酸塩系シアン色蛍光体および酸窒化物系シアン色蛍光体から選ばれた1または2以上のシアン色蛍光体からの発光で構成される前記所定のシアン色光を出射するように構成されてもよい。
また、前記所定のシアン色光については、別の手法として、上記のように励起可能波長範囲及び主発光ピーク波長が規定される前記青色発光体及び前記緑色発光体からの発光を混合することで構成するようにしてもよい。これにより、所定のシアン色光を発光するための蛍光体を改めて準備する必要を省くことができる。
ここで、上述までの半導体発光装置は、前記半導体発光素子に加えて更にパッケージ、及び蛍光体を有し、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置であって、その場合、前記パッケージは、前記白色光出射部による前記所定の白色光の出射と、前記シアン色光出射部による前記所定のシアン色光の出射とを行うための共通の半導体発光素子と、前記半導体発光素子に電力を供給する電力供給部と、を備え、更に、前記共通の半導体発光素子からの発光で励起し、前記所定の白色光を発光する白色光用蛍光体と前記所定のシアン色光を発光するシアン色光用蛍光体と前記パッケージを封止する透光性材料とを含む蛍光体、を備えるように構成されてもよい。
即ち、パッケージの中に、所定の白色光用の蛍光体と所定のシアン色光用の蛍光体とを、所定の白色光用と所定のシアン色光用に共通の半導体発光素子と合わせてまとめて封入することで、換言すると上記白色光出射部と上記シアン色出射部とをパッケージ内で一体的に形成することで、生体対象物の観察が良好に行われ得る。また、このように共通の半導体発光素子を使うことで、半導体発光装置の構成を簡素なものにすることが可能となる。尚、上記白色光用蛍光体は、半導体発光素子からの励起光との組合せに応じて、一又は複数の蛍光体の中から適宜適切な蛍光体を一又は複数選択すればよい。
一方で、上述までの半導体発光装置は、前記半導体発光素子に加えて更にパッケージ、及び蛍光体を有し、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置であって、その場合、前記パッケ
ージは、前記半導体発光装置の出射方向に開口する開口部と、該パッケージ内部を分割して画定される二つの分割領域部とを有し、該分割領域部の各々は前記開口部の一部である分割開口部において開口するように構成されてもよい。そして、前記二つの分割領域部の各々は、一又は複数の前記半導体発光素子と、前記半導体発光素子に電力を供給する電力供給部と、前記蛍光体と、前記分割領域部を封止する透光性材料とを含む蛍光体と、を有し、その状態において、前記白色光出射部は、前記二つの分割領域部のうち一方で前記所定の白色光を出射し、前記シアン色出射部は、前記二つの分割領域部のうち他方で前記所定のシアン色光を出射するようにしてもよい。
即ち、パッケージの中を、所定の白色光出射用の領域部と所定のシアン色光出射用の領域部とに分割して、各領域部に、所定の白色光用の蛍光体と、半導体発光素子を設けることで、換言すると上記白色光出射部と上記シアン色出射部とをパッケージ内に並列に形成することで、生体対象物の観察が良好に行われ得る。また、このようにパッケージ内の出射する光に対応して領域部を形成することで、所定の白色光と所定のシアン色光との比率を適宜調整することが可能となり、生体対象物の良好な観察に資する。
ここで、上述までの半導体発光装置において、前記半導体発光素子は、近紫外領域又は紫外領域に発光領域を有するものであってもよい。近紫外領域又は紫外領域に発光領域を有する半導体発光素子は、物理的性質として、蛍光体を介した出力光の色温度に対する輝度が安定している傾向があるため、半導体発光装置の出力光の輝度安定と、色調の調整容易化を図ることが可能となる。
そして、上述までの半導体発光装置を用いて構成される、医療用の照明装置も有用であり、また、該半導体発光装置と、該半導体発光装置からの発光の下で前記生体対象物を撮像する撮像部と、を備える撮像装置、特に医療用の撮像装置も有用である。
また、本発明に係る半導体発光装置は、観察の対象を生態対象物に限る必要は必ずしも無く、その場合においても、観察の対象となる対象物の目的部位の物体色の補色となる光を、照明のベースとなる白色光と合わせて該対象物に照射することで、該目的部位と、その周辺部位との区別をしやすくなる。即ち、本発明に係る半導体発光装置は、一又は複数の半導体発光素子からの発光により、観察の対象となる対象物のための光源となる半導体発光装置であって、前記半導体発光素子からの発光に基づいて、前記生体対象物に対してベースとなる所定の白色光を出射する白色光出射部と、前記白色光出射部による前記所定の白色光の出射とともに、前記対象物の目的部位の物体色の補色である所定の補色光を出射する補色光出射部と、を備えるように構成することもできる。
このように構成される半導体発光装置では、ベースとなる白色光に加えて所定の補色光が照射されることになる。この所定の補色光は、対象物の目的部位の物体色と補色の関係にあることから、上述した血管色の補色である所定のシアン色の光を生体対象物に照射する場合と同様に、対象物の目的部位を鮮明に認識することに大きく貢献する。尚、この補色光出射部は、予め決められている対象物の目的部位の物体色に対応させて、一色の所定の補色光を出射する形態でもよく、また観察の状況に応じて目的部位の物体色にあわせて適宜所定の補色光を調整できる形態でもよい。
また、上記白色光出射部によって出射される所定の白色光は、対象物の観察の都合に合わせた適切な白色光を選択すればよいが、好ましくは色温度が2400Kから6500Kの間であって、且つUCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02である白色光が選択できる。この白色光により、対象物の観察を良好に行うことができる。
また、上記半導体発光装置において、前記対象物の目的部位の物体色の彩度は、所定の彩度以上であって、その結果、前記白色光出射部による前記所定の白色光の出射とともに、前記補色光出射部が前記所定の補色光の出射を行うことで、前記対象物の目的部位の周囲の部位であって且つ該目的部位と同じようにマンセル表色系の色相が同じ領域である物体色を有する周辺部位と、該目的部位とのコントラストを強調するように構成されてもよい。これにより、対象物の目的部位の観察が円滑に行われ得る。
半導体発光素子を用いて、観察の対象となる生体対象物のための光源となる半導体発光装置であって、生体対象物内の観察対象部位の物体色を、より詳細に認識することが可能となるように照明を行う半導体発光装置を提供することが可能となる。
ここで、本発明に係る半導体発光装置の実施例について、明細書添付の図面に基づいて説明する。尚、当該実施例は本発明に係る半導体発光装置の一例を示すものであり、本発明の権利範囲をそれに限定するものではない。
ここで、図1は、本発明に係る半導体発光装置8(以下、単に「発光装置」と言う。)から成る発光モジュール8’を照明装置として備える、医療用の顕微内視鏡(以下、単に「内視鏡」と言う。)100の概略構成を示し、図2は、発光装置8を構成するパッケージ1、半導体発素子3、該半導体発光装置3への電力供給のための配線20等の配置を概略的に示している。ここで、顕微内視鏡100は、その先端に観察の対象である生体対象物(例えば、人体の胃壁組織等)200の撮像を行う顕微CCDカメラ110と、その照明装置としての発光モジュール8’を有している。尚、図1に示す状態では、生体対象物200は正常部位210と癌細胞等の異常部位220で構成されるものとする。そして、内視鏡100には、生体対象物の組織の一部を採取等するためのカンシ口120も設けられている。顕微CCDカメラ110やカンシ口120については、本発明に係る半導体発光装置に関する技術的思想とは直接的な関連性が無いため、本明細書ではこれらの詳細な説明は割愛する。
ここで、発光モジュール8’は、本発明に係る複数台の発光装置8によって形成されている。図2に示すように、発光装置8は、パッケージ1を含んで構成され、該パッケージ1は、基板2上に配置された環状且つ円錐台形状のリフレクタ10を有する。このリフレクタ10は半導体発行素子であり近紫外光を出力光とする複数の近紫外半導体発光素子3からの出力光を、発光装置8の出射方向に導く機能を有するとともに、パッケージ1の本体としての機能も果たす。尚、リフレクタ10の円錐台形状の上面側は、発光装置8による光の出射方向となり、開口部13を形成している。一方で、リフレクタ10の円錐台形状の下面側は基板2が配置され、詳細は省略するが各近紫外半導体発光素子3への電力供給のための配線20が敷設されている。
また、近紫外半導体発光素子3は、電力が供給されることにより近紫外領域(主として、発光波長380nm〜420nmの領域)の光を発光し、後述する蛍光体14を励起するものである。中でも、GaN系化合物半導体を使用したGaN系半導体発光素子が好ましい。なぜなら、GaN系半導体発光素子は、この領域の光を発するのに、発光出力や外部量子効率が格段に大きく、後述の蛍光体と組み合わせることによって、非常に低電力で非常に明るい発光が得られるからである。GaN系半導体発光素子においては、AlxGayN発光層、GaN発光層、またはInxGayN発光層を有しているものが好ましい。GaN系半導体発光素子においては、それらの中でInxGayN発光層を有するものが、発光強度が非常に強いので、特に好ましく、InxGayN層とGaN層の多重量子井戸構造のものが、発光強度が非常に強いので、特に好ましい。
なお、上記組成式においてx+yの値は通常0.8〜1.2の範囲の値である。GaN系半導体発光素子において、これら発光層にZnやSiをドープしたものやドーパント無しのものが発光特性を調節する上で好ましい。
GaN系半導体発光素子はこれら発光層、p層、n層、電極、及び基板を基本構成要素としたものであり、発光層をn型とp型のAlxGayN層、GaN層、またはInxGayN層などでサンドイッチにしたヘテロ構造を有しているものが、発光効率が高く、好ましく、さらにヘテロ構造を量子井戸構造にしたものが、発光効率がさらに高く、より好ましい。
また、GaN系半導体発光素子を形成するためのGaN系結晶層の成長方法としては、HVPE法、MOVPE法、MBE法などが挙げられる。厚膜を形成する場合はHVPE法が好ましいが、薄膜を形成する場合はMOVPE法やMBE法が好ましい。
そして、図2に示すように、基板2上には、この近紫外半導体発光素子3から発せられる光の一部を吸収して異なる波長の光を発する複数の蛍光体14及び前記蛍光体を封止する透光性材料15が、近紫外半導体発光素子3を覆って設けられている。尚、図2においては、蛍光体14は、その発光色に応じてR(赤)、G(緑)、B(青)、C(シアン)の4種類の記号が付されており、このように4種類の蛍光体がリフレクタ10内の領域に混在した状態となっている。各蛍光体の詳細については後述する。近紫外半導体発光素子3から発せられた光の一部は、蛍光体14に励起光として一部又は全部が吸収される。
次に、蛍光体14について詳細に説明する。本実施例に係る発光装置8は、生体対象物100の照明のベースとなる白色光(本発明における所定の白色光)を出力することを目的とし、特に、発光装置8の発光色が、UCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02であって、色温度が2400Kから6500Kの間となる条件を満たすように、赤色蛍光体、緑色蛍光体、青色蛍光体の3数種の蛍光体を採用する。具体的には以下に挙げられるものを使用することができる。以下、蛍光体の具体例を例示する場合、例示の一般式においては、構造の一部のみが異なる蛍光体を、適宜省略して示している。例えば、「Y2Si
5:Ce3+」、「Y2SiO5:Tb3+」及び「Y2SiO5:Ce3+,Tb3+」を「Y2SiO5:Ce3+,Tb3+」と、「La22S:Eu」、「Y22S:Eu」及び「(La,Y)22S:Eu」を「(La,Y)22S:Eu」とまとめて示している。省略箇所はカ
ンマ(,)で区切って示す。
本発明に好適な赤色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常570nm以上、好ましくは580nm以上、特に好ましくは610nm以上であり、また、通常700nm以下、好ましくは680nm以下、特に好ましくは650nm以下である。また、主発光ピークの半値幅は、通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上であり、また通常120nm以下、好ましくは110nm以下、特に好ましくは100nm以下である。
赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色領域の発光を行なう(Mg,Ca,Sr,Ba)2Si58:Euで表されるユウロピウム付活ア
ルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう(Y,La,Gd,Lu)22S:Euで表されるユウロピウム付活希土類オキシカルコゲナイド系蛍光体等が挙げられる。
さらに、Ti、Zr、Hf、Nb、Ta、W、及びMoよりなる群から選ばれる少なく
も1種の元素を含有する酸窒化物および/または酸硫化物を含有する蛍光体であって、Al元素の一部または全てがGa元素で置換されたアルファサイアロン構造をもつ酸窒化物を含有する蛍光体も用いることができる。なお、これらは酸窒化物および/または酸硫化物を含有する蛍光体である。
また、そのほか、赤色蛍光体としては、(La,Y)22S:Eu等のEu付活酸硫化物蛍光体、Y(V,P)O4:Eu、Y23:Eu等のEu付活酸化物蛍光体、(Ba,Sr,Ca,Mg)2SiO4:Eu,Mn、(Ba,Mg)2SiO4:Eu,Mn等のEu,Mn
付活珪酸塩蛍光体、(Ca,Sr)S:Eu等のEu付活硫化物蛍光体、YAlO3:Eu
等のEu付活アルミン酸塩蛍光体、LiY9(SiO4)62:Eu、Ca28(SiO4)62:Eu、(Sr,Ba,Ca)3SiO5:Eu、Sr2BaSiO5:Eu等のEu付活珪
酸塩蛍光体、(Y,Gd)3Al512:Ce、(Tb,Gd)3Al512:Ce等のCe付活アルミン酸塩蛍光体、(Ca,Sr,Ba)2Si58:Eu、(Mg,Ca,Sr,Ba)
SiN2:Eu、(Mg,Ca,Sr,Ba)AlSiN3:Eu等のEu付活窒化物蛍光体、(Mg,Ca,Sr,Ba)AlSiN3:Ce等のCe付活窒化物蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、Ba3MgSi28:Eu,Mn、(Ba,Sr,Ca,Mg)3(Zn,Mg)Si28:Eu,Mn等のEu,Mn付活珪酸塩蛍光体、3.5MgO・0.5MgF2・GeO2:Mn等のMn付活ゲルマン酸塩蛍光体、Eu付活αサイアロン等のEu付活酸窒化物蛍光体、(Gd,Y,Lu,La)23:Eu,Bi等のEu,Bi付活酸化物蛍光体、(Gd,Y
,Lu,La)22S:Eu,Bi等のEu,Bi付活酸硫化物蛍光体、(Gd,Y,Lu,La)VO4:Eu,Bi等のEu,Bi付活バナジン酸塩蛍光体、SrY24:Eu,Ce等のEu,Ce付活硫化物蛍光体、CaLa24:Ce等のCe付活硫化物蛍光体、(Ba,Sr,Ca)MgP27:Eu,Mn、(Sr,Ca,Ba,Mg,Zn)227
:Eu,Mn等のEu,Mn付活リン酸塩蛍光体、(Y,Lu)2WO6:Eu,Mo等のEu,Mo付活タングステン酸塩蛍光体、(Ba,Sr,Ca)xSiyz:Eu,Ce(但
し、x、y、zは、1以上の整数)等のEu,Ce付活窒化物蛍光体、(Ca,Sr,B
a,Mg)10(PO4)6(F,Cl,Br,OH)2:Eu,Mn等のEu,Mn付活ハロリン酸塩蛍光体、((Y,Lu,Gd,Tb)1-xScxCey)2(Ca,Mg)1-r(Mg,Zn)2+rSiz-qGeqO12+δ等のCe付活珪酸塩蛍光体等を用いることも可能である。
また、赤色蛍光体としては、β−ジケトネート、β−ジケトン、芳香族カルボン酸、または、ブレンステッド酸等のアニオンを配位子とする希土類元素イオン錯体からなる赤色有機蛍光体、ペリレン系顔料(例えば、ジベンゾ{[f,f']−4,4',7,7'−テトラフェニル}ジインデノ[1,2,3−cd:1',2',3'−lm]ペリレン)、アントラキノン系顔料、レーキ系顔料、アゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソインドリノン系顔料、フタロシアニン系顔料、トリフェニルメタン系塩基性染料、インダンスロン系顔料、インドフェノール系顔料、シアニン系顔料、ジオキサジン系顔料を用いることも可能である。
本発明に好適な緑色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常500nm以上、好ましくは510nm以上、特に好ましくは520nm以上であり、また、通常580nm以下、好ましくは570nm以下、特に好ましくは540nm以下である。また、主発光ピークの半値幅が通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上であり、また、通常120nm以下、好ましくは90nm以下、特に好ましくは60nm以下である。
このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑色領域の発光を行なう(Mg,Ca,Sr,Ba)Si222:Euで表されるユウロピウム
付活アルカリ土類シリコンオキシナイトライド系蛍光体、破断面を有する破断粒子から構
成され、緑色領域の発光を行なう(Ba,Ca,Sr,Mg)2SiO4:Euで表されるユウロピウム付活アルカリ土類シリケート系蛍光体等が挙げられる。
また、そのほか、緑色蛍光体としては、Sr4Al1425:Eu、(Ba,Sr,Ca)
Al24:Eu等のEu付活アルミン酸塩蛍光体、(Sr,Ba)Al2Si28:Eu、(Ba,Mg)2SiO4:Eu、(Ba,Sr,Ca,Mg)2SiO4:Eu、(Ba,Sr,Ca)2(Mg,Zn)Si27:Eu等のEu付活珪酸塩蛍光体、Y2SiO5:Ce,Tb等のCe,Tb付活珪酸塩蛍光体、Sr227−Sr225:Eu等のEu付活硼酸リン酸塩蛍光体、Sr2Si38−2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体、Zn2SiO4:Mn等のMn付活珪酸塩蛍光体、CeMgAl1119:Tb、Y3Al512
Tb等のTb付活アルミン酸塩蛍光体、Ca28(SiO4)62:Tb、La3Ga5Si
14:Tb等のTb付活珪酸塩蛍光体、(Sr,Ba,Ca)Ga24:Eu,Tb,Sm等のEu,Tb,Sm付活チオガレート蛍光体、Y3(Al,Ga)512:Ce、(Y,G
a,Tb,La,Sm,Pr,Lu)3(Al,Ga)512:Ce等のCe付活アルミン酸
塩蛍光体、Ca3Sc2Si312:Ce、Ca3(Sc,Mg,Na,Li)2Si312:Ce等のCe付活珪酸塩蛍光体、CaSc24:Ce等のCe付活酸化物蛍光体、SrSi222:Eu、(Sr,Ba,Ca)Si222:Eu、Eu付活βサイアロン等のEu付活酸窒化物蛍光体、BaMgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、SrAl24:Eu等のEu付活アルミン酸塩蛍光体、(La,Gd,Y)22S:Tb等のTb付活酸硫化物蛍光体、LaPO4:Ce,Tb等のCe,Tb付活リン酸
塩蛍光体、ZnS:Cu,Al、ZnS:Cu,Au,Al等の硫化物蛍光体、(Y,G
a,Lu,Sc,La)BO3:Ce,Tb、Na2Gd227:Ce,Tb、(Ba,S
r)2(Ca,Mg,Zn)B26:K,Ce,Tb等のCe,Tb付活硼酸塩蛍光体、Ca8Mg(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体、(Sr,Ca
,Ba)(Al,Ga,In)24:Eu等のEu付活チオアルミネート蛍光体やチオガレ
ート蛍光体、(Ca,Sr)8(Mg,Zn)(SiO4)4Cl2:Eu,Mn等のEu,Mn付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、緑色蛍光体としては、ピリジン−フタルイミド縮合誘導体、ベンゾオキサジノン系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テルビウム錯体等の有機蛍光体を用いることも可能である。
本発明に好適な青色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長が通常430nm以上、好ましくは440nm以上であり、また、通常480nm以下、好ましくは460nm以下である。また、主発光ピークの半値幅が通常1nm以上、好ましくは10nm以上、特に好ましくは30nm以上で有り、また通常100nm以下、好ましくは80nm以下、特に好ましくは70nm以下である。
このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有する成長粒子から構成され、青色領域の発光を行なうBaMgAl1017:Euで表されるユウロピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)5(PO4)3Cl:Euで表されるユウロピウム付活ハロリン酸カルシウム系蛍光体、規則
的な結晶成長形状としてほぼ立方体形状を有する成長粒子から構成され、青色領域の発光を行なう(Ca,Sr,Ba)259Cl:Euで表されるユウロピウム付活アルカリ土
類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域の発光を行なう(Sr,Ca,Ba)Al24:Euまたは(Sr,Ca,Ba)4Al1425:Eu
で表されるユウロピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
また、そのほか、青色蛍光体としては、Sr227:Sn等のSn付活リン酸塩蛍光
体、Sr4Al1425:Eu、BaMgAl1017:Eu、BaAl813:Eu等のEu付活アルミン酸塩蛍光体、SrGa24:Ce、CaGa24:Ce等のCe付活チオガレート蛍光体、(Ba,Sr,Ca)MgAl1017:Eu、BaMgAl1017:Eu,Tb,Sm等のEu,Tb,Sm付活アルミン酸塩蛍光体、(Ba,Sr,Ca)MgAl1017:Eu,Mn等のEu,Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg)10(PO4)6Cl2:Eu、(Ba,Sr,Ca)5(PO4)3(Cl,F,Br,OH):Eu,Mn,Sb等のEu,Tb,Sm付活ハロリン酸塩蛍光体、BaAl2Si28:Eu、(Sr,Ba)3MgSi28:Eu等のEu付活珪酸塩蛍光体、Sr227:Eu等のE
u付活リン酸塩蛍光体、ZnS:Ag、ZnS:Ag,Al等の硫化物蛍光体、Y2Si
5:Ce等のCe付活珪酸塩蛍光体、CaWO4等のタングステン酸塩蛍光体、(Ba,
Sr,Ca)BPO5:Eu,Mn、(Sr,Ca)10(PO4)6・nB23:Eu、2SrO・0.84P25・0.16B23:Eu等のEu,Mn付活硼酸リン酸塩蛍光体、Sr2Si38・2SrCl2:Eu等のEu付活ハロ珪酸塩蛍光体等を用いることも可能である。
また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾオキサゾール系、スチリル系、クマリン系、ピラゾリン系、トリアゾール系化合物の蛍光色素、ツリウム錯体等の有機蛍光体等を用いることも可能である。
なお、発光装置8において所定の白色光を出射するために、上述の赤色、緑色、青色蛍光体を、所望の発光スペクトル、色温度、色度座標、演色性、発光効率などに応じて適宜組み合わせて用いればよい。
次に、発光装置8の蛍光体14には、上記所定の白色光用のR、G、Bの蛍光体の他に、本発明の所定のシアン色光に相当するシアン色光を発光するための蛍光体(図2中、Cの記号で示される蛍光体)が含まれる。このシアン色光用の蛍光体は、上記白色光用の蛍光体とともに、リフレクタ10の内部の領域に混ぜて存在する。ここで、本発明に好適なシアン色蛍光体が発する蛍光の具体的な波長の範囲を例示すると、主発光ピーク波長は好ましくは480nm以上であり、また、好ましくは515nm以下である。また、主発光ピークの半値幅は特に制限はないが、通常100nm以下である。半値幅が大きすぎると、近傍の他色に影響を与えることがあるため、設計には十分注意する必要がある。
このようなシアン色蛍光体としては、例えば(Ba,Ca,Mg)10(PO46Cl2
:Eu2+(ピーク波長483nm)などのハロ燐酸塩系蛍光体、2SrO・0.84P2
5・0.16B23:Eu2+(ピーク波長480nm)などの燐酸塩系蛍光体、Sr2Si38・2SrCl2:Eu2+ピーク波長490nm)などのケイ酸塩系蛍光体、BaA
813:Eu2+(ピーク波長 480nm)、BaMg2Al1627:Eu2+,Mn2+(ピーク波長 450nm、515nm)、SrMgAl1017:Eu2+(ピーク波長 480nm程度)、Sr4Al1425:Eu2+(ピーク波長 480nm程度)などのアル
ミン酸塩系蛍光体、BaSi222:Eu2+(ピーク波長 480nm程度)などの酸
窒化物系蛍光体などを挙げることができる。なお、本発明の所定のシアン色光に相当するシアン色光を発光するための蛍光体は、前記シアン蛍光体の1または2以上で構成されていても良いが、前記青色蛍光体、前記緑色蛍光体を適宜混合することにより、これら蛍光体からの発光の混合により構成される光がシアン色になる構成を採用してもよい。
本発明の発光装置8は、上述の近紫外半導体発光素子3および蛍光体14(R、G、B、C)を備えていればよく、そのほかの構成は特に制限されない。近紫外半導体発光素子3および蛍光体14は、通常、近紫外半導体発光素子3の発光によって蛍光体が励起されて発光を生じ、この発光が、外部に取り出されるように配置されることになる。このような構造を有する場合、上述の近紫外半導体発光素子3および蛍光体14は、通常は透光性
材料(封止材料)で封止保護される。具体的には、この封止材料は、上記蛍光体14を分散させて発光部分を構成したり、近紫外半導体発光素子3、蛍光体14および基板2間を接着したりする目的で採用される。
そして、使用される透光性材料としては、通常、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂等が挙げられるが、近紫外半導体発光素子3はその出力光の波長が380nm〜420nmの近紫外領域にあるため、その出力光に対して充分な透明性と耐久性のある樹脂が封止材料として好ましい。そこで、封止材料として、具体的には、ポリ(メタ)アクリル酸メチル等の(メタ)アクリル樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体等のスチレン樹脂;ポリカーボネート樹脂;ポリエステル樹脂;フェノキシ樹脂;ブチラール樹脂;ポリビニルアルコール;エチルセルロース、セルロースアセテート、セルロースアセテートブチレート等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;シリコーン樹脂等が挙げられる。また、無機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液又はこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料やガラスを用いることもできる。
これらのうち、耐熱性、耐紫外線(UV)性等の点から、珪素含有化合物であるシリコーン樹脂や金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル−ゲル法により加水分解重合して成る溶液またはこれらの組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料が好ましい。特に、以下の特徴(1)〜(3)のうち1つ以上を、好ましくは全てを有するシリコーン系材料やシリコーン樹脂(以下「本発明のシリコーン系材料」と称す場合がある。)が好ましい。
(1)固体Si−核磁気共鳴(NMR)スペクトルにおいて、下記(i)および/または(ii)のピークを少なくとも1つ有する。
(i)ピークトップの位置がケミカルシフト−40ppm以上、0ppm以下の領域にあり、ピークの半値幅が0.3ppm以上、3.0ppm以下であるピーク。
(ii)ピークトップの位置がケミカルシフト−80ppm以上、−40ppm未満の領域にあり、ピークの半値幅が0.3ppm以上5.0ppm以下であるピーク。
(2)珪素含有率が20重量%以上である。
(3)シラノール含有率が0.01重量%以上、10重量%以下である。
ここで、上記封止剤としてのシリコーン系材料については、上記の通り、珪素含有率が20重量%以上であるものが好ましい。従来のシリコーン系材料の基本骨格は炭素−炭素及び炭素−酸素結合を基本骨格としたエポキシ樹脂等の有機樹脂であるが、これに対し本発明のシリコーン系材料の基本骨格はガラス(ケイ酸塩ガラス)などと同じ無機質のシロキサン結合である。このシロキサン結合を有するシリコーン系材料は、(I)結合エネルギーが大きく、熱分解・光分解しにくいため、耐光性が良好である、(II)電気的に若干分極している、(III)鎖状構造の自由度は大きく、フレキシブル性に富む構造が可能で
あり、シロキサン鎖中心に自由回転可能である、(IV)酸化度が大きく、これ以上酸化されない、(V)電気絶縁性に富む等の優れた特徴を有する。
これらの特徴から、シロキサン結合が3次元的に、しかも高架橋度で結合した骨格で形成されるシリコーン系材料は、ガラス或いは岩石などの無機質に近く、耐熱性・耐光性に富む保護皮膜となることが理解できる。特にメチル基を置換基とするシリコーン系材料は、紫外領域に吸収を持たないため光分解が起こりにくく、耐光性に優れる。
本発明のシリコーン系材料の珪素含有率は、上述の様に20重量%以上であるが、中でも25重量%以上が好ましく、30重量%以上がより好ましい。一方、上限としては、S
iO2のみからなるガラスの珪素含有率が47重量%であるという理由から、通常47重
量%以下の範囲である。
このように構成される発光装置8では、配線20を介して近紫外半導体発光素子3に電力が供給されると、そこから近紫外の出力光が各蛍光体に吸収され、その結果、R、G、Bの蛍光体から出射される赤色光、緑色光、青色光で合成される所定の白色光(当該白色光は、従来からの白色光であり、図3中等においては「通常白色光」と記載されている。)に、同様に近紫外で励起されCの蛍光体から出射される所定のシアン色光が合成されて「シアニッシュ白色光」として、生体対象物200に照射されることになる。ここで、図3に、通常白色光とシアニッシュ白色光のスペクトル変化を示す。このように、シアン色光の主発光ピーク波長480nm〜515nm近傍の発光強度について、シアニッシュ白色光の方が通常白色光より増加しているのが分かる。
また、図4は、R、G、B、Cの各蛍光体に対応する出射光の色度点PR、PG、PB
Cをxy色度図(CIE1931)上にプロットしたものであり、参考として黄色(Y
)とマゼンダ(M)の出射光の色度点PY、PMもプロットされている。更に、図4に示すxy色度図には、通常白色光の色度点PW及びシアニッシュ白色光の色度点PWCが黒体輻
射軌跡BBLとともに示されている。次に、図5は、図4の要部拡大図であり、図中に示されている黒体輻射からの偏差の範囲−0.02≦duv≦0.02は、UCS表色系(CIE1960)からxy色度図(CIE1931)上へ変換したものである。
このように、R、G、Bの各蛍光体からの発光で合成される通常白色光は、図5に示すように、色温度が2400Kから6500Kの範囲に属し、且つその色度点PWは、黒体
輻射軌跡BBLからの偏差duvが−0.02≦duv≦0.02に収められる。換言すると、上記通常白色光は、実質的に黒体輻射軌跡BBLに沿っているといってよい状態である。その結果、人間の視覚に対して極めて自然に近い白色光を提供することができる。また、この通常白色光とCの蛍光体からの発光との合成光であるシアニッシュ白色光の色度点PWCは、この通常白色光PWの色度点とシアン光の色度点PCとの間に位置する。
ここで、Cの蛍光体によるシアン色光の色度点PCは、図4に示すxy色度図上のEE
W(Equal Energy White:図4において座標(0.33,0.33)で示される)を挟んでRの蛍光体
による赤色光の色度点PRや生体対象物200の物体色である赤色の色度点と対向する関
係にある。即ち、該シアン色光は、該赤色光と補色関係にある。このことは、Gの蛍光体による緑色光と参考例示した黄色光、及びBの蛍光体による青色光と参考例示したマゼンダ色光においても同様である。従って、上記発光装置8によって照射されるシアニッシュ白色光は、通常白色光に赤色光の補色であるシアン色光が合成された光であると言える。
ここで、生体対象物200の物体色である赤色とCの蛍光体によるシアン色光との関係について説明する。発光装置8の観察対象である生体対象物200においては、そこを流れる血液に主に起因して、生体対象物200全体の物体色は、通常白色光の下ではいわゆるマンセル表色系のR領域に属する。即ち、生体対象物200の正常部位210においてもその物体色は該R領域に属し、異常部位においてもその物体色は該R領域属する。そのため、生体対象物200に対して通常白色光を照射しても正常部位210と異常部位220を区別して認識するのは難しい場合がある。また、一般に、観察対象の演色性を高めるために、対象物が有する物体色に類似する色を有する光を照射することが行われるが、生体対象物200に対して赤色光を照射しても、やはり正常部位210と異常部位220とを区別して識別するのは難しい。
ここで、癌細胞等の異常部位はその成長のため正常部位よりも多くの血管を集めるという特性があることを考慮すると、異常部位220は正常部位210よりも血の色で赤色が
鮮明となると考えられる。即ち、異常部位220の赤色の彩度は、正常部位210の赤色の彩度より高くなる。図6には、マンセル表色系のR領域である2.5Rのマンセル色票(横軸が彩度C(Chroma)、縦軸が明度V(Value))を示す。このマンセル色票において、
正常部位210の物体色の彩度は6、異常部位220の物体色の彩度は14であり、異常部位220の物体色の方が高彩度側に位置する。
ここで、正常部位210の物体色である彩度6の赤色の反射スペクトルを図7Aに示し、異常部位220の物体色である彩度14の赤色の反射スペクトルを図7Bに示す。マンセル表色系において2.5R、5Vという条件下であれば、580nm近傍を超える波長領域での反射率の上昇が弱くなると、物体色全体が赤色とは逆色側に位置する580nmより波長の短い領域の影響を受けやすくなり、その結果として物体色としての赤色の白色性が強くなり、その彩度が低くなる。言い換えると、高彩度側の14Cの赤色では、580nm近傍を超える波長領域での反射率の上昇は、図7Bに示すように極めて高い状態である。
ここで、光源である発光装置8からの照射を受けた生体対象物200の物体色は、該発光装置8からの出射光のスペクトル(図3を参照)と、該生体対象物200における反射スペクトル(図7A、図7Bを参照)の積で表される。そこで、図8Aに通常白色光の照射を受けた場合の、低彩度(彩度Cが6)である正常部位210の物体色の波長スペクトル(図3に示す通常白色光のスペクトルと、図7Aに示す反射スペクトルの積で表される)を示し、図8Bには、シアニッシュ白色光の照射を受けた場合の、低彩度である正常部位210の物体色の波長スペクトル(図3に示すシアニッシュ白色光のスペクトルと、図7Aに示す反射スペクトルの積で表される)を示す。また、図9Aに通常白色光の照射を受けた場合の、高彩度(彩度Cが14)である異常部位220の物体色の波長スペクトル(図3に示す通常白色光のスペクトルと、図7Bに示す反射スペクトルの積で表される)を示し、図9Bには、シアニッシュ白色光の照射を受けた場合の、高彩度である異常部位220の物体色の波長スペクトル(図3に示すシアニッシュ白色光のスペクトルと、図7Bに示す反射スペクトルの積で表される)を示す。
図8A、図8Bに示すように、低彩度の正常部位210では、シアニッシュ白色光が照射された場合では、通常白色光が照射された場合と比べて、480nm近傍の領域の強度が上昇する一方で、赤色のベースとなる580nm〜680nmの領域の強度は大きく変化しない。そのため正常部位210の物体色全体としては、480nm近傍の領域の影響が強くなり、白色化が促進され、通常白色光下での物体色との色変化が強く生じることになる。一方で、図9A、図9Bに示すように、高彩度の異常部位220では、シアニッシュ白色光が照射された場合では、通常白色光が照射された場合と比べて、480nm近傍の領域の強度はわずかに上昇するが、赤色のベースとなる580nm〜680nmの領域の強度は480nm近傍領域の強度に比べて極めて大きいため、シアニッシュ白色光におけるシアン色光の影響は極めて弱いものとなる。そのため異常部位220の物体色全体としては、480nm近傍の領域の影響は弱くなり、通常白色光下での物体色との色変化は小さい。
シアニッシュ白色光と通常白色光による正常部位210と異常部位220の物体色の変化を、図10中のxy色度図(CIE1931)上で示す。図10中で線L1で結ばれている三点は、光源としてのシアニッシュ白色光、及び該シアニッシュ白色光が照射されたときの正常部位210(彩度Cが6)と異常部位220(彩度Cが14)の物体色の色度点である。一方で、線L2で結ばれている三点は、光源としての通常白色光、及び該通常白色光が照射されたときの正常部位210(彩度Cが6)と異常部位220(彩度Cが14)の物体色の色度点である。
図10からも分かるように、シアニッシュ白色光が照射されることで、彩度Cが低い正常部位210側でも彩度Cが高い異常部位側でも色変化は生じるが、彩度Cが低い正常部位210の照射後の物体色の方が強く無彩色化されるため、換言すると該正常部位210の物体色が照射によってBBLに大きく近づくため、シアニッシュ白色光の照射条件下では、彩度Cが低い正常部位210の方が色の変化量が大きくなる。従って、上述のように正常部位210と異常部位220は、物体色は同色系の赤色に属しているが、シアニッシュ白色光を照射することで、正常部位210の物体色だけが大きく無彩色化する方向に色変化するため、正常部位210と異常部位220とを区別して識別することが容易となる。
ここで、複数の発光装置8からなる発光モジュール8’によって、生体対象物の照明実験を行った場合の、生体対象物の物体色の状態を図11A及び図11Bに示す。当該照明実験の生体対象物は、人体の手のひらであり、該手のひらが彩度の低い上記正常部位に相当する。また、上記異常部位に相当するものとして彩度Cが14程度の赤色のマーキングを該手のひらに施した。ここで、図11Aは、通常白色光を照射したときのマーキングと手のひらの物体色の状態を示している。この場合、マーキングと手のひらの物体色の赤色が保護色状態となり、両者を区別しにくい。一方で、図11Bは、シアニッシュ白色光を照射したときのマーキングと手のひらの物体色の状態を示している。この場合、彩度の低い手のひらは無彩色化(白色化)するが、彩度の高いマーキングは通常白色光の場合と大きく変わらない。そのため、図11Bに示すように、シアニッシュ白色光下では、同色系の手のひらとマーキングとのコントラストが強調されることになる。
以上をまとめると、本発明に係る発光装置8は、シアニッシュ白色光を照射することにより同色系の赤色の正常部位210の中から彩度の高い異常部位220を容易に識別することが可能となる。このとき、上記無彩色化が生じる赤色の彩度の閾値は、マンセル色票の彩度Cが6と14の間の何れかに存在すると考えられる。そして、該彩度の閾値は、Cの蛍光体から出射されるシアン色光のスペクトル特性と相関関係にあるものであるから、観察したい対象物が決定している場合には、その物体色と該対象物の周囲の物体色の関係から、通常白色光と合成されるシアン色光のスペクトル特性を適切に決定することで、当該対象物の観察を好適に行うことが可能となる。
尚、上記発光装置8では、観察対象である生体対象物が赤色系統(マンセル表色系の色相がR領域又はRP領域の物体色)であったので、その補色としてシアン色光(マンセル表色系の色相がBG領域又はG領域)を通常白色光と合成させたが、例えば観察対象の物体色がマンセル表色系のB領域に属する場合には、それと補色関係にある黄色光を通常白色光に合成させればよく、また観察対象の物体色がマンセル表色系のG領域に属する場合には、それと補色関係にあるマゼンダ色光を通常白色光に合成させればよい。このようにすることで、マンセル表色系のR領域以外の対象物の観察も良好に行うことができる。
<発光装置のその他の構成>
図12Aに発光装置8の第二の形態を示す。尚、図12Aに示す発光装置8と図2に示す発光装置で共通する構成については同一の参照番号を付し、その詳細な説明は省略する。図12Aに示す発光装置8では、環状のリフレクタ10の内部の空間を均等に二つの領域に分割する間仕切り11が、基板2に対して垂直に設けられている。この間仕切り11によって、リフレクタ10内に2つの分割領域部12W、12Cが画定される。分割領域部12Cの開口部は、リフレクタ10の開口部13の右半分を占め、分割領域部12Wの開口部は、リフレクタ10の開口部13の左半分を占めることになる。本出願においては、分割領域部12Cの開口部を、分割開口部13Cと称し、分割領域部12Wの開口部を、分割開口部13Wと称する。即ち、開口部13は、間仕切り11によって分割開口部13Cと13Wに分割されたことになる。
この分割領域部12Wには、通常白色光用の蛍光体14W(上記R、G、Bの蛍光体)と、これらの蛍光体を励起するための近紫外半導体発光素子3Wが封止剤である透光材料15Wによって封止されている。尚、近紫外半導体発光素子3Wは配線20Wから電力供給を受ける。一方で、分割領域部12Cには、シアン色光用の蛍光体14C(上記Cの蛍光体)と、この蛍光体を励起するための近紫外半導体発光素子3Cが封止剤である透光材料15Cによって封止されている。尚、近紫外半導体発光素子3Cは配線20Cから電力供給を受ける。
このように構成される発光装置8は、間仕切り11で分割された二つの分割領域部12W、12Cに通常白色光を出射するための近紫外半導体発光素子3Cと、シアン色光を出射するための近紫外半導体発光素子3Wがそれぞれ設けられた結果、通常白色光とシアン白色光が、それぞれ分割開口部13W、13Cから外部に出射される。ここで、この分割開口部から放出される通常白色光とシアン色光は、蛍光体14W、14C及び透光材料15W、15Cを介して得られるため、近紫外半導体発光素子3W、3Cからの出力光が充分に散乱され、配光がランバーシアン的となり出射される。これにより均一な合成光が得られ、以て発光装置8が発する合成光においては均一なシアニッシュ白色光と照度が得られることになる。
また、図12Aに示すように、通常白色光とシアン色光の出射用の近紫外半導体素子をそれぞれ設けることにより、発光装置8の出力光を容易に調整することができる。従って、必要に応じて通常白色光のみの照射を行ったり、通常白色光とシアン色光の比率を調整することで観察の対象となる対象物の物体色の赤色の彩度に応じて適切なシアニッシュ白色光を形成したりすることが可能となる。
次に、図12Bに発光装置8の第三の形態を示す。尚、図12Bに示す発光装置8と図2に示す発光装置で共通する構成については同一の参照番号を付し、その詳細な説明は省略する。図12Bに示す発光装置8は、通常白色光を出射するパッケージを1Wとし、シアン色光を出射するパッケージを1Cとするものである。即ち、図12Aでは一つのパッケージ1の中に、通常白色光を出射する分割領域部12Wとシアン色光を出射する分割領域部12Cとを設けるようにしたが、図12Bに示す発光装置8では、それぞれの出射光用に独立したパッケージを準備し、最終的に両者を束ねることで本発明に係る発光装置8を形成するものである。従って、この第三の形態に係る発光装置8においても、第二の形態の場合と同様に、該発光装置8からのシアニッシュ白色光の調整が容易に行い得る。更には、通常白色光を出射するパッケージについては、従来から存在する白色光パッケージを利用することも可能である。
また、図12Cに発光装置8の第四の形態を示す。尚、図12Bに示す発光装置8と図2に示す発光装置で共通する構成については同一の参照番号を付し、その詳細な説明は省略する。図12Bに示す発光装置8は、シアニッシュ白色光を合成するために用いられる上記4種類の蛍光体(R、G、B、C)毎にパッケージを準備し、それぞれ1R、1G
1B、1Cとする。即ち、図12Bに示す第三の形態と比べて、通常白色光を合成するためのパッケージを細分化した形態である。このようにすることで、更に、シアニッシュ白色光を細かく調整することが可能となる。
本発明に係る半導体発光装置を備える医療用顕微内視鏡の概略構成を示す図である。 本発明に係る半導体発光装置の概略構成を示す図である。 本発明に係る半導体発光装置から照射されるシアニッシュ白色光のスペクトル変化と、通常白色光のスペクトル変化を比較して示す図である。 本発明の実施例に係る半導体発光装置において、各蛍光体からの発光に対応する色度点と、シアニッシュ白色光及び通常白色光の色度点とを、黒体輻射軌跡と合わせてxy色度図(CIE1931)上にプロットした図である。 図4に示す通常白色光の色度点と黒体輻射軌跡との関係についての要部拡大図である。 マンセル表色系のR領域である2.5Rのマンセル色票を示す図である。 図1に示す医療用顕微内視鏡の観察対象である生体対象物の正常部位の物体色である彩度6の赤色の反射スペクトルを示す図である。 図1に示す医療用顕微内視鏡の観察対象である生体対象物の異常部位の物体色である彩度14の赤色の反射スペクトルを示す図である。 通常白色光の照射を受けた場合の、低彩度である正常部位の物体色の波長スペクトルを示す図である。 シアニッシュ白色光の照射を受けた場合の、低彩度である正常部位の物体色の波長スペクトルを示す図である。 通常白色光の照射を受けた場合の、高彩度である異常部位の物体色の波長スペクトルを示す図である。 シアニッシュ白色光の照射を受けた場合の、高彩度である異常部位の物体色の波長スペクトルを示す図である。 シアニッシュ白色光と通常白色光による正常部位と異常部位の物体色の変化を、xy色度図(CIE1931)上で示す図である。 サンプルであるマーキング付きの手のひらに通常白色光を照射した状態を示す図である。 本発明に係る半導体発光装置からなる発光モジュールでサンプルであるマーキング付きの手のひらにシアニッシュ白色光を照射した状態を示す図である。 本発明に係る半導体発光装置の概略構成を示す第二の図である。 本発明に係る半導体発光装置の概略構成を示す第三の図である。 本発明に係る半導体発光装置の概略構成を示す第四の図である。
符号の説明
1・・・・パッケージ
2・・・・基板
3、3C、3W・・・・近紫外半導体発光素子
8・・・・半導体発光装置(発光装置)
8’・・・・発光モジュール
10・・・・リフレクタ
13・・・・開口部
14・・・・蛍光体(R、G、B、C)
20・・・・配線
100・・・・顕微内視鏡
200・・・・生体対象物
210・・・・正常部位
220・・・・異常部位

Claims (9)

  1. 一又は複数の半導体発光素子からの発光により、観察の対象となる生体対象物のための光源となる半導体発光装置であって、
    前記半導体発光素子からの発光に基づいて、前記生体対象物に対して、色温度が2400Kから6500Kの間であって、且つUCS(u、v)表色系(CIE1960)のuv色度図において、黒体輻射軌跡からの偏差duvが、−0.02≦duv≦0.02である所定の白色光を出射する白色光出射部と、
    前記白色光出射部による前記所定の白色光の出射とともに、前記生体対象物の物体色であってマンセル表色系の色相がR領域又はRP領域の物体色の補色に相当する、マンセル表色系の色相がBG領域又はG領域の所定のシアン色光を出射するシアン色光出射部と、
    を備える、半導体発光装置。
  2. 前記生体対象物は生体の血管であり、該血管の物体色の彩度は、所定の彩度以上であって、
    前記白色光出射部による前記所定の白色光の出射とともに、前記シアン色光出射部が前記所定のシアン色光の出射を行うことで、前記生体対象物の前記血管の周囲の部位であって且つ該血管と同じようにマンセル表色系の色相がR領域又はRP領域である物体色を有する血管周辺部位と、該血管とのコントラストを強調する、
    請求項1に記載の半導体発光装置。
  3. 前記所定の白色光は、
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が440nm〜460nmである青色蛍光体、
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が520nm〜540nmである緑色蛍光体、および
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が610nm〜650nmである赤色蛍光体を含む白色光用蛍光体からの発光で構成され、
    前記所定のシアン色光は、
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が480nm〜515nmであるシアン色蛍光体からの発光で構成される、
    請求項1又は請求項2に記載の半導体発光装置。
  4. 前記シアン色光出射部は、前記半導体素子からの発光により励起する、ハロ燐酸塩系シアン色蛍光体、燐酸塩系シアン色蛍光体、ケイ酸塩系シアン色蛍光体、アルミン酸塩系シアン色蛍光体および酸窒化物系シアン色蛍光体から選ばれた1または2以上のシアン色蛍光体からの発光で構成される前記所定のシアン色光を出射する、
    請求項1から請求項3の何れかに記載の半導体発光装置。
  5. 前記所定の白色光は、
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が440nm〜460nmである青色蛍光体、
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が520nm〜540nmである緑色蛍光体、および
    380nm〜420nmの波長範囲で励起可能であり、主発光ピーク波長が610nm〜650nmである赤色蛍光体を含む白色光用蛍光体からの発光で構成され、
    前記所定のシアン色光は、
    前記青色蛍光体及び前記緑色蛍光体からの発光の混合により構成される、
    請求項1又は請求項2に記載の半導体発光装置。
  6. 前記半導体発光装置は、前記半導体発光素子に加えて更にパッケージ、及び蛍光体を有し、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置であって、
    前記パッケージは、
    前記白色光出射部による前記所定の白色光の出射と、前記シアン色光出射部による前記所定のシアン色光の出射とを行うための共通の半導体発光素子と、
    前記半導体発光素子に電力を供給する電力供給部と、
    前記共通の半導体発光素子からの発光で励起し、前記所定の白色光を発光する白色光用蛍光体と、前記所定のシアン色光を発光するシアン色光用蛍光体と、前記パッケージを封止する透光性材料とを含む蛍光体と、
    を備える、
    請求項1又は請求項2に記載の半導体発光装置。
  7. 前記半導体発光装置は、前記半導体発光素子に加えて更にパッケージ、及び蛍光体を有し、該半導体発光素子からの発光及び該発光で励起し蛍光する該蛍光体からの発光により、もしくは該半導体発光素子からの発光で励起し蛍光する該蛍光体からの発光により、外部に対して光を出射する半導体発光装置であって、
    前記パッケージは、前記半導体発光装置の出射方向に開口する開口部と、該パッケージ内部を分割して画定される二つの分割領域部とを有し、該分割領域部の各々は前記開口部の一部である分割開口部において開口しており、
    前記二つの分割領域部の各々は、
    一又は複数の前記半導体発光素子と、
    前記半導体発光素子に電力を供給する電力供給部と、
    前記蛍光体と、前記分割領域部を封止する透光性材料とを含む蛍光体と、を有し、
    前記白色光出射部は、前記二つの分割領域部のうち一方で前記所定の白色光を出射し、
    前記シアン色出射部は、前記二つの分割領域部のうち他方で前記所定のシアン色光を出射する、
    請求項1又は請求項2に記載の半導体発光装置。
  8. 前記半導体発光素子は、近紫外領域又は紫外領域に発光領域を有する、
    請求項1から請求項7の何れかに記載の半導体発光装置。
  9. 請求項1から請求項8の何れかに記載の半導体発光装置と、
    前記半導体発光装置からの発光の下で、前記生体対象物を撮像する撮像部と、を備える撮像装置。
JP2008140667A 2008-05-29 2008-05-29 半導体発光装置、および撮像装置 Pending JP2009289957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140667A JP2009289957A (ja) 2008-05-29 2008-05-29 半導体発光装置、および撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140667A JP2009289957A (ja) 2008-05-29 2008-05-29 半導体発光装置、および撮像装置

Publications (1)

Publication Number Publication Date
JP2009289957A true JP2009289957A (ja) 2009-12-10

Family

ID=41458895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140667A Pending JP2009289957A (ja) 2008-05-29 2008-05-29 半導体発光装置、および撮像装置

Country Status (1)

Country Link
JP (1) JP2009289957A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144087A1 (ja) * 2011-04-22 2012-10-26 株式会社東芝 白色光源およびそれを用いた白色光源システム
JP2015115507A (ja) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 光源モジュール及び光源ユニット
WO2016056837A1 (ko) * 2014-10-08 2016-04-14 서울반도체 주식회사 발광 장치
JP2016184761A (ja) * 2011-09-02 2016-10-20 シチズン電子株式会社 照明方法及び発光装置
JP2018046113A (ja) * 2016-09-13 2018-03-22 シチズン電子株式会社 発光装置
JP2018056474A (ja) * 2016-09-30 2018-04-05 日亜化学工業株式会社 発光装置及び発光装置の製造方法
KR20180122244A (ko) * 2017-05-02 2018-11-12 삼성전자주식회사 백색 발광장치 및 조명 장치
US10141484B2 (en) 2016-05-26 2018-11-27 Nichia Corporation Light emitting device
JP2019062193A (ja) * 2012-11-30 2019-04-18 株式会社東芝 医療用光源およびそれを用いた医療用光源システム
US10493175B2 (en) 2017-09-28 2019-12-03 Nichia Corporation Method for manufacturing light-emitting device
JP2021006909A (ja) * 2016-05-26 2021-01-21 日亜化学工業株式会社 発光装置
CN113692652A (zh) * 2018-12-18 2021-11-23 亮锐有限责任公司 青色磷光体转换led模块
JP2022553459A (ja) * 2020-09-14 2022-12-23 オーリックス シーオー., エルティーディー. 波長可変型の超広帯域近赤外発光装置

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216085A (ja) * 1997-02-06 1998-08-18 Olympus Optical Co Ltd 内視鏡
JP2002171000A (ja) * 2000-09-21 2002-06-14 Sharp Corp 半導体発光装置およびそれを用いた発光表示装置
JP2002289004A (ja) * 2001-03-28 2002-10-04 Toyoda Gosei Co Ltd Led蛍光灯
WO2002091487A1 (fr) * 2001-05-02 2002-11-14 Kansai Technology Licensing Organization Co., Ltd. Appareil emetteur de lumiere
JP2004065728A (ja) * 2002-08-08 2004-03-04 Fuji Photo Optical Co Ltd 内視鏡装置
JP2005502083A (ja) * 2001-08-31 2005-01-20 スミス アンド ネフュー インコーポレーテッド 固体光源
JP2006049799A (ja) * 2004-04-27 2006-02-16 Matsushita Electric Ind Co Ltd 発光装置
JP2007059260A (ja) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp 照明装置及び照明器具
JP2007080996A (ja) * 2005-09-13 2007-03-29 Sony Corp GaN系半導体発光素子及びその製造方法
JP2007080880A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 発光装置
JP2007088261A (ja) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd 発光装置
JP2007511065A (ja) * 2003-11-04 2007-04-26 松下電器産業株式会社 半導体発光装置、照明モジュール、照明装置、および半導体発光装置の製造方法
JP2007141737A (ja) * 2005-11-21 2007-06-07 Sharp Corp 照明装置、液晶表示装置、照明装置の制御方法、照明装置制御プログラム、および記録媒体
JP2007265818A (ja) * 2006-03-29 2007-10-11 Fujikura Ltd 照明器具
JP2007287384A (ja) * 2006-04-13 2007-11-01 Epson Imaging Devices Corp 照明装置、液晶装置、及び電子機器
JP2007299590A (ja) * 2006-04-28 2007-11-15 Toshiba Lighting & Technology Corp 照明装置、照明器具および照明制御システム
JP2008036287A (ja) * 2006-08-09 2008-02-21 Olympus Medical Systems Corp カプセル型内視鏡
JP2008048905A (ja) * 2006-08-24 2008-03-06 Olympus Medical Systems Corp 内視鏡装置
JP2008523583A (ja) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンパクトな色可変光源としてのシングルチップled

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10216085A (ja) * 1997-02-06 1998-08-18 Olympus Optical Co Ltd 内視鏡
JP2002171000A (ja) * 2000-09-21 2002-06-14 Sharp Corp 半導体発光装置およびそれを用いた発光表示装置
JP2002289004A (ja) * 2001-03-28 2002-10-04 Toyoda Gosei Co Ltd Led蛍光灯
WO2002091487A1 (fr) * 2001-05-02 2002-11-14 Kansai Technology Licensing Organization Co., Ltd. Appareil emetteur de lumiere
JP2005502083A (ja) * 2001-08-31 2005-01-20 スミス アンド ネフュー インコーポレーテッド 固体光源
JP2004065728A (ja) * 2002-08-08 2004-03-04 Fuji Photo Optical Co Ltd 内視鏡装置
JP2007511065A (ja) * 2003-11-04 2007-04-26 松下電器産業株式会社 半導体発光装置、照明モジュール、照明装置、および半導体発光装置の製造方法
JP2006049799A (ja) * 2004-04-27 2006-02-16 Matsushita Electric Ind Co Ltd 発光装置
JP2008523583A (ja) * 2004-12-06 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コンパクトな色可変光源としてのシングルチップled
JP2007059260A (ja) * 2005-08-25 2007-03-08 Toshiba Lighting & Technology Corp 照明装置及び照明器具
JP2007080880A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd 発光装置
JP2007080996A (ja) * 2005-09-13 2007-03-29 Sony Corp GaN系半導体発光素子及びその製造方法
JP2007088261A (ja) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd 発光装置
JP2007141737A (ja) * 2005-11-21 2007-06-07 Sharp Corp 照明装置、液晶表示装置、照明装置の制御方法、照明装置制御プログラム、および記録媒体
JP2007265818A (ja) * 2006-03-29 2007-10-11 Fujikura Ltd 照明器具
JP2007287384A (ja) * 2006-04-13 2007-11-01 Epson Imaging Devices Corp 照明装置、液晶装置、及び電子機器
JP2007299590A (ja) * 2006-04-28 2007-11-15 Toshiba Lighting & Technology Corp 照明装置、照明器具および照明制御システム
JP2008036287A (ja) * 2006-08-09 2008-02-21 Olympus Medical Systems Corp カプセル型内視鏡
JP2008048905A (ja) * 2006-08-24 2008-03-06 Olympus Medical Systems Corp 内視鏡装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144087A1 (ja) * 2011-04-22 2012-10-26 株式会社東芝 白色光源およびそれを用いた白色光源システム
US9109762B2 (en) 2011-04-22 2015-08-18 Kabushiki Kaisha Toshiba White light source and white light source system including the same
JP2016184761A (ja) * 2011-09-02 2016-10-20 シチズン電子株式会社 照明方法及び発光装置
JP2019062193A (ja) * 2012-11-30 2019-04-18 株式会社東芝 医療用光源およびそれを用いた医療用光源システム
JP2015115507A (ja) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 光源モジュール及び光源ユニット
WO2016056837A1 (ko) * 2014-10-08 2016-04-14 서울반도체 주식회사 발광 장치
CN106796976A (zh) * 2014-10-08 2017-05-31 首尔半导体株式会社 发光装置
US11545599B2 (en) 2014-10-08 2023-01-03 Seoul Semiconductor Co., Ltd. Light emitting device
US10811572B2 (en) 2014-10-08 2020-10-20 Seoul Semiconductor Co., Ltd. Light emitting device
JP7239841B2 (ja) 2016-05-26 2023-03-15 日亜化学工業株式会社 発光装置
US10141484B2 (en) 2016-05-26 2018-11-27 Nichia Corporation Light emitting device
JP2021006909A (ja) * 2016-05-26 2021-01-21 日亜化学工業株式会社 発光装置
US11011684B2 (en) 2016-05-26 2021-05-18 Nichia Corporation Light emitting device
US10559725B2 (en) 2016-05-26 2020-02-11 Nichia Corporation Light emitting device
JP2018046113A (ja) * 2016-09-13 2018-03-22 シチズン電子株式会社 発光装置
US10903399B2 (en) 2016-09-30 2021-01-26 Nichia Corporation Method for manufacturing a light emitting device comprising at least two first light emitting diodes and a second light emitting diodes interposed therebetween
JP2018056474A (ja) * 2016-09-30 2018-04-05 日亜化学工業株式会社 発光装置及び発光装置の製造方法
KR102373817B1 (ko) 2017-05-02 2022-03-14 삼성전자주식회사 백색 발광장치 및 조명 장치
KR20180122244A (ko) * 2017-05-02 2018-11-12 삼성전자주식회사 백색 발광장치 및 조명 장치
US10806809B2 (en) 2017-09-28 2020-10-20 Nichia Corporation Light-emitting device
US10493175B2 (en) 2017-09-28 2019-12-03 Nichia Corporation Method for manufacturing light-emitting device
CN113692652A (zh) * 2018-12-18 2021-11-23 亮锐有限责任公司 青色磷光体转换led模块
JP2022511983A (ja) * 2018-12-18 2022-02-01 ルミレッズ リミテッド ライアビリティ カンパニー シアン蛍光体変換されたledモジュール
JP7108793B2 (ja) 2018-12-18 2022-07-28 ルミレッズ リミテッド ライアビリティ カンパニー シアン蛍光体変換されたledモジュール
CN113692652B (zh) * 2018-12-18 2022-10-21 亮锐有限责任公司 青色磷光体转换led模块
JP2022553459A (ja) * 2020-09-14 2022-12-23 オーリックス シーオー., エルティーディー. 波長可変型の超広帯域近赤外発光装置

Similar Documents

Publication Publication Date Title
JP2009289957A (ja) 半導体発光装置、および撮像装置
JP2009231525A (ja) 発光モジュール、および照明装置
JP5320993B2 (ja) 照明装置
TWI403570B (zh) 螢光體與其製造方法,含螢光體組成物,發光裝置及其用途
KR101184957B1 (ko) 형광체 및 그 제조 방법, 형광체 함유 조성물, 발광 장치, 그리고 화상 표시 장치 및 조명 장치
US8348456B2 (en) Illuminating device
US6657379B2 (en) Illumination unit having at least one LED as light source
JP5176665B2 (ja) 発光装置、画像表示装置、照明装置及び複合酸窒化物
JP5135812B2 (ja) 窒化物又は酸窒化物を母体とする蛍光体、及びその製造方法、並びにそれを使用した蛍光体含有組成物、発光装置、照明装置、及び画像表示装置
JP5029203B2 (ja) 照明装置
EP2141215A1 (en) Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, image display device, and illuminating device
JP5104621B2 (ja) 植物育成用の照明装置
JP2008034188A (ja) 照明装置
JP2008095091A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2011159809A (ja) 白色発光装置
JP2007059898A (ja) 半導体発光装置
JP2009040944A (ja) 蛍光体、蛍光体含有組成物、発光装置、照明装置、及び、画像表示装置
JP5590092B2 (ja) 蛍光体、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP2009074077A (ja) 蛍光体、該蛍光体を含有する組成物、発光装置、照明装置及び画像表示装置
JP2008174621A (ja) 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、及び照明装置
JP2008266410A (ja) 蛍光体、蛍光体含有組成物、蛍光体の製造方法、発光装置、画像表示装置及び照明装置
JP4923728B2 (ja) 蛍光体含有組成物、発光装置、照明装置、および画像表示装置
JP5648667B2 (ja) 植物育成用の照明装置
JP2022511983A (ja) シアン蛍光体変換されたledモジュール
DE20122557U1 (de) Beleuchtungseinheit mit mindestens einer LED als Lichtquelle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806