WO2014189140A1 - 塗膜防水材用ウレタン組成物 - Google Patents

塗膜防水材用ウレタン組成物 Download PDF

Info

Publication number
WO2014189140A1
WO2014189140A1 PCT/JP2014/063741 JP2014063741W WO2014189140A1 WO 2014189140 A1 WO2014189140 A1 WO 2014189140A1 JP 2014063741 W JP2014063741 W JP 2014063741W WO 2014189140 A1 WO2014189140 A1 WO 2014189140A1
Authority
WO
WIPO (PCT)
Prior art keywords
waterproofing
coating film
urethane
mass
experimental example
Prior art date
Application number
PCT/JP2014/063741
Other languages
English (en)
French (fr)
Inventor
吉野 兼司
洋一 甲斐
Original Assignee
株式会社ダイフレックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51933690&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014189140(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社ダイフレックス filed Critical 株式会社ダイフレックス
Priority to EP14801396.4A priority Critical patent/EP3006524A4/en
Priority to US14/891,543 priority patent/US10066120B2/en
Priority to AU2014269389A priority patent/AU2014269389B2/en
Publication of WO2014189140A1 publication Critical patent/WO2014189140A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • B05D7/26Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials synthetic lacquers or varnishes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • C08G18/3237Polyamines aromatic
    • C08G18/324Polyamines aromatic containing only one aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4804Two or more polyethers of different physical or chemical nature
    • C08G18/4812Mixtures of polyetherdiols with polyetherpolyols having at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D7/00Roof covering exclusively consisting of sealing masses applied in situ; Gravelling of flat roofs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2503/00Polyurethanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]

Definitions

  • the present invention relates to a urethane composition for waterproofing coating film, and more particularly to a urethane composition for waterproofing coating film that is non-bleed type and suitable for high-strength, high-extension type hand coating.
  • Urethane film waterproofing materials are used in a wide range of applications including waterproofing and anticorrosion materials for rooftops, outer walls, floors, bottom slabs, floor slabs, pits, etc. of various structures including civil engineering buildings.
  • Urethane coating waterproofing material is a two-component composition in which an isocyanate prepolymer (main material) and a compound (curing material) in which a plasticizer, a filler, a pigment and a reaction catalyst are added to a polyol and a polyamine are mixed and stirred to be cured. Apply reactive type and isocyanate prepolymer to which dry filler, plasticizer, pigment, reaction catalyst and moisture latent curing agent such as ketimine or oxazolidine are added (main material).
  • reaction type urethane coating waterproofing material for example, water is added to an isocyanate prepolymer to which a filler, a plasticizer, a pigment, a reaction catalyst and magnesium oxide are added (main material). And a type in which the carbon dioxide generated is adsorbed on magnesium oxide and cured by mixing and stirring.
  • Examples of general-purpose two-component reaction type waterproofing urethane film include the following two types.
  • Tolylene diisocyanate hereinafter sometimes abbreviated as “TDI”
  • PPG polypropylene glycol having two or more hydroxyl groups
  • TDI prepolymer main material having two or more isocyanate groups, and 3,3′-dichloro-4,4′-diaminodiphenyl having two or more amino groups.
  • MOCA methane
  • DETDA diethyltoluenediamine
  • a material, pigment, solvent, anti-aging agent, anti-foaming agent, and curing material containing a reaction catalyst are mixed and stirred with a stirrer and applied using a spatula or roller.
  • MDI diphenylmethane diisocyanate
  • a hardened material containing a plasticizer, an anti-aging agent and a reaction catalyst, and a mixture of pigment mixed with a plasticizer and kneaded in advance are heated by a special machine while feeding the hose to the tip of the hose.
  • Ultra-fast curing type that mixes, stirs and sprays.
  • Urethane coating waterproof material can be easily applied after curing to a complex shaped substrate by coating with a scissors or spatula, roller coating or spray coating at room temperature. Therefore, urethane film waterproofing materials are widely used from new construction to renovation of various structures.
  • waterproofing coatings for roofs and waterproofing coatings for exterior walls is defined in Japanese Industrial Standard (JIS) JIS A 6021 “Painting Waterproofing Materials for Buildings”. Yes.
  • JIS Japanese Industrial Standard
  • Highly stretchable (formerly Class 1) roofing waterproofing material for roofs is specified to have a tensile strength at 23 ° C. of 2.3 N / mm 2 or more and an elongation at break between marked lines of 450% or more.
  • a high-strength waterproofing membrane for roofs is specified to have a tensile strength at 23 ° C. of 10.0 N / mm 2 or more and an elongation at break between marked lines of 200% or more.
  • High-elongation type (formerly 1) roofing waterproofing material for roofs is used for building balconies and rooftop waterproofing as a general-purpose waterproofing material.
  • high-strength roofing waterproofing materials for roofs are used for rooftop parking lots, slate roofs, underground structures, rooftops for planting, and other applications that require strength, water resistance and warm water resistance.
  • urethane film waterproofing materials those with high elongation (formerly Class 1) are a combination of TDI prepolymer and MOCA (DETDA), which are mixed and stirred with a stirrer.
  • the coating waterproof material belonging to the type (1) to be worked on has been commercialized.
  • the weight of the main material and the hardener is measured with a scale and divided into containers, and mixed and stirred with a stirrer, so the ratio between the main material and the hardener is easy to measure.
  • the mass ratio is 1: 1 and 1: 2.
  • the proportion of NCO in the main material as a reaction component is about 3.3 to 3.8%.
  • the MDI prepolymer and DETDA are separately heated by a special machine while feeding the hose, mixing and stirring at the tip of the hose.
  • An ultrafast curing type waterproofing coating material belonging to the above-mentioned type (2) to be applied is commercialized.
  • the main material and hardener are pumped from a container with a fixed volume to the hose with a pump, mixed at the tip of the hose, stirred and sprayed.
  • the ratio is 1: 1.
  • the ratio of NCO in the main material as the reaction component is 10.0% or more. This difference in the amount of NCO is the difference in crosslink density.
  • a high-stretch type waterproofing material with a relatively low NCO amount (formerly Class 1) has a high elongation rate, low strength, and a high-strength type waterproofing membrane with a relatively high NCO ratio has a high elongation type. (Old Class 1) The strength is higher than the waterproof coating material, but the elongation is low.
  • TDI and MOCA are Class 2 substances (substances that cause chronic and late-onset disorders such as cancer) in the Occupational Safety and Health Law specific chemical substance prevention rules (hereinafter abbreviated as “specialization rules”).
  • Special rules For companies and workers who handle these in the manufacturing process and civil engineering construction sites, prohibiting smoking from eating and drinking in the workplace (Article 38-2 of the Special Rules), regular air concentration Measurement (special rules 36 to 36-4), establishment of break rooms (special rules 37), and installation of washing and washing facilities (special rules 38) are required.
  • the high-strength form of super-fast curing in which the MDI prepolymer and DETDA are separately heated with a dedicated machine, pumped by a hose, mixed at the tip of the hose, stirred and spray-coated, is a special rule.
  • the substance which conflicts with is not used.
  • there are many restrictions such as the need for a large-scale curing because the dedicated machine is large and the mist is scattered during spray coating.
  • PPG occupying most of the above-mentioned high elongation type (formerly 1) waterproof membrane and high strength urethane waterproof membrane has a hydrophobic methyl group (—CH 2 ) and a hydrophilic ether in the main chain. Since there is a group (—O—), the SP (Solubility Parameter, solubility parameter) value is calculated to be 12.0 (molecular weight: 1,000 functional groups: 2.0).
  • Plasticizers used for urethane coating waterproofing materials include dibutyl phthalate (9.41), diheptyl phthalate (9.0), dioctyl phthalate (8.90), butyl benzyl phthalate (9.86).
  • Dioctyl adipate (8.50), chlorinated paraffin (9.21), tris- ⁇ -chloropropyl phosphate, etc., which are not reactive with isocyanates (NCO groups) and have a high viscosity reducing effect. in use.
  • the numerical values in parentheses are SP values.
  • High-extension type (formerly 1) urethane coating waterproof material contains a large amount of extender pigment as a filler, and this filler absorbs plasticizer. For this reason, in addition to the amount for obtaining the effect of reducing the viscosity, a large amount of plasticizer is added in consideration of the amount of oil absorption to the filler. On the other hand, since the high-strength urethane waterproof membrane does not contain a filler, it contains a small amount of plasticizer that matches the viscosity reduction effect and volume ratio.
  • Urethane film waterproofing material is coated to become a waterproof layer, but when used outdoors, both high stretch type (formerly 1 type) and high strength type waterproofing film waterproofing material are to protect this waterproof layer from solar radiation.
  • a finish paint (top coat) is applied on the waterproof layer.
  • topcoats based on acrylic urethane resin, those based on acrylic silicone resin, and those based on fluororesin. Strong solvent type, weak solvent type, and water-based type are also available. There is. Regardless of the type of top coat, the durability committee of the Architectural Institute reports that the deterioration of the top coat is accelerated when used on a waterproof layer formed of a highly stretchable (formerly Class 1) waterproof membrane. Has been.
  • asphalt having the oldest history as a waterproofing material includes natural asphalt and crude oil vacuum residue asphalt. These have high softening points with high-temperature air, hardly flow at room temperature, and are used for road paving and the like.
  • Asphalt is a polymer hydrocarbon called asphaltenes dispersed in a colloidal form in the marten component.
  • the asphaltene is a component that is insoluble in light hydrocarbons such as hexane and is a condensed ring aromatic hydrocarbon. It is a polymer compound produced by cross-linking, and the marten component is a component containing a resin that is soluble in light hydrocarbons such as hexane and an oil.
  • asphalt has a complicated component content, and the component and ratio differ depending on the production area, so the SP value cannot be calculated.
  • the SP value of asphaltenes is 9.0 to 10.0, and the SP value of the marten component is about 8.0. This SP value is close to the SP value of the plasticizer used in the urethane coating film waterproof material, and is highly compatible with the plasticizer.
  • Adhesion can be obtained by applying a high-extension urethane film waterproofing material (formerly Class 1) after applying a general-purpose TDI-based primer, but the asphalt low fraction is transferred to a urethane film waterproofing material (formerly Class 1). Resulting in. The transition is not suppressed even when the top coat is applied, and the transition to the top coat causes discoloration and promotes the deterioration of the top coat.
  • the present invention has been made in view of the above circumstances, does not contain any specific chemical substance, can be constructed in the same manner as a general-purpose high-extension urethane coating waterproof material (formerly Class 1), and is a high-extension urethane.
  • a general-purpose high-extension urethane coating waterproof material (formerly Class 1), and is a high-extension urethane.
  • Has the same degree of elongation as the waterproofing coating film possesses the same physical strength as the high-strength urethane waterproofing film, and does not degrade the weather resistance of the topcoat by the plasticizer, and has a low asphalt content.
  • An object is to provide a urethane composition for waterproofing coating film that is not affected by the transition of the film.
  • the urethane composition for waterproofing coating film of the present invention is an isophorone produced by reacting polypropylene glycol having a hydroxyl group equivalent of 1,500 or more and a short-chain polyhydric alcohol having a hydroxyl equivalent weight of 1,500 or more and isophorone diisocyanate.
  • the polypropylene glycol is preferably a low monomer type. It is a low monool type with a small amount of by-products (containing unsaturated monool), and preferably has an unsaturation degree of 0.05 meq / g or less.
  • the short-chain polyhydric alcohol is ethylene glycol, dipropylene glycol, 1,3-propanediol, 2-methyl 1,3-propanediol, 1,4-butane. It is preferably at least one selected from the group consisting of diol, 3-methyl 1,5-pentanediol, 1,6-hexanediol, glycerin, and trimethylolpropane.
  • the urethane composition for waterproofing coating film according to the present invention has the same elongation rate as that of a general-purpose high-extension urethane waterproofing film (formerly Class 1), and can be constructed in the same manner, while being high-strength urethane. It has the strength of a waterproof coating material. Therefore, we offer physical properties according to applications, from high-extension urethane film waterproofing material (formerly Class 1) used for general roofing to high-strength type used as exposed waterproofing for rooftop parking lots. can do. In addition, since the weather resistance of the top coat is not reduced by the plasticizer, it can be provided for applications that require long-term durability such as properties and parts that are not easily maintained.
  • the urethane composition for waterproofing coating film of the present invention can also be used for applications such as bathrooms and kitchens where concrete and mortar are required to have water resistance.
  • the urethane composition for waterproofing coating film of the present invention does not contain any specific chemical substances of the Industrial Safety and Health Act, the impact on the health of workers who handle these in the manufacturing process or civil engineering construction site is also reduced. .
  • the urethane composition for waterproofing coating film of the present invention contains an isophorone diisocyanate prepolymer produced by reacting a polypropylene glycol having a hydroxyl group equivalent of 1,500 or more and a short chain diol having two or more hydroxyl groups with isophorone diisocyanate.
  • Main material (A) Polypropylene glycols having two or more hydroxyl groups and having a hydroxyl equivalent weight of 1,500 or more include D-4000 (ACCLAIM 4200: Bayer, Preminol S-4004: Asahi Glass), T-5000 (ACTCOL MN5000 Mitsui). Chemicals, Sunnix GH-5000NS, GP-5000: Sanyo Chemical Industries, Ltd.) are preferably used.
  • PPG having an equivalent weight of 1,500 or more the amount of isophorone diisocyanate (hereinafter sometimes referred to as “IPDI”), which is an expensive isocyanate, is reduced, and the NCO% in the main material (A) is reduced. Can be suppressed.
  • IPDI isophorone diisocyanate
  • the amount of IPDI used is increased and the product cost is increased.
  • PPG having a number average molecular weight of 3,000 to 6,000 is preferred.
  • PPG having a hydroxyl value (OH value) of 28 to 57 is preferable.
  • PPG with a high number average molecular weight it is preferable that it is a low monomer type with few by-products (unsaturated monol content).
  • the polyhydric alcohol (polypropylene glycol or short-chain polyhydric alcohol having two or more hydroxyl groups and having a hydroxyl group equivalent of 1,500 or more) is not particularly limited, and examples thereof include ethylene glycol and dipropylene glycol. 1,3-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 3-methyl 1,5-pentanediol, 1,6-hexanediol, glycerin, trimethylolpropane Is preferred.
  • 1,3-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, etc. are used in view of the strength of the cured product of the urethane composition for waterproofing coating film.
  • Short chain diols are more preferred.
  • the blend ratio of PPG and short-chain diol having two or more hydroxyl groups and having a hydroxyl group equivalent of 1,500 or more, which constitutes the IPDI prepolymer is a PPG hydroxyl group (OH group) and an IPDI isocyanate group.
  • the molar equivalent ratio (NCO / OH) to (NCO group) is preferably 1.8 to 2.2, more preferably 1.9 to 2.1.
  • the viscosity of the IPDI prepolymer increases, and the amount of solvent diluted for preparing the main material (A) increases.
  • the NCO% in the main material (A) is reduced, and the amount of PPG having diethyl toluenediamine, which is a liquid reaction component of the curing material (B), and a hydroxyl equivalent of 1,500 or more is reduced.
  • the compounding ratio of the main material (A) and the curing material (B) is 1: 1 (weight ratio)
  • a polyoxyalkylene monoalkyl ether acetate plasticizer which is a liquid component
  • the solvent will increase, causing a decrease in the physical properties of the cured product and curing shrinkage.
  • a curing catalyst may be added to the main material (A).
  • the curing catalyst include dibutyltin dilaurate or dibutyltin diacetate.
  • the mixing ratio of a divalent PPG having two or more hydroxyl groups and an equivalent hydroxyl group of 1,500 or more, a trivalent PPG, and a short-chain diol is 8: 3: 0 to 3: 3: 0 in an equivalent ratio. Is preferably 5: 3: 2 to 4: 3: 3.
  • reaction time for heating the liquid mixture is preferably 80 to 95 ° C., more preferably 85 to 90 ° C.
  • the time for heating the liquid mixture is preferably 1.0 to 3.0 hours, and more preferably 1.5 to 2.0 hours.
  • the obtained IPDI prepolymer contains 98 to 100% by mass of a urethane prepolymer obtained by adding IPDI to PPG.
  • the main material (A) may be diluted by adding a solvent to adjust properties such as the viscosity of the main material (A).
  • the solvent is not particularly limited as long as it dissolves the IPDI prepolymer, and examples thereof include Swaclean (manufactured by Maruzen Chemical Co., Ltd.) from the viewpoint of the environment.
  • the main material (A) obtained by adding 1.0 to 4.0% by mass of a solvent to the IPDI prepolymer contains 2.4 to 3.0% by mass of an isocyanate group.
  • “Curing material (B)” Diethyltoluenediamine having two or more amino groups (hereinafter sometimes abbreviated as “DETDA”) is currently used in combination with a super-fast-curing MDI-based prepolymer, which is a high-strength urethane film waterproofing material. It has been. DETDA has higher reactivity and higher physical properties than MOCA used in combination with TDI prepolymer. However, when DETDA is combined with MDI or TDI, a sufficient pot life cannot be obtained for hand-coating.
  • the same PPG used for the main material (A) is used.
  • PPG having a hydroxyl group equivalent of 1,500 or more when the compounding ratio of the main material (A) and the curing material (B) in the product is 1: 1 (weight ratio), the hydroxyl group equivalent is small but reactive. A high product can be obtained. Furthermore, even when the amount of DETDA used to ensure high physical properties is increased, the liquid content can be ensured.
  • the ratio of the isocyanate (NCO) equivalent of the main material (A) and the equivalent of the amino group (NH 2 ) equivalent and the hydroxyl group (OH) equivalent of the curing material (B) is preferably 1.0 to 1.3, more preferably 1.1 to 1.2.
  • (NCO equivalent) / (NH 2 + OH equivalent) is less than 1.0, the physical properties of the cured product of the urethane composition for waterproofing coating film are deteriorated, and it tends to cause curing failure, and adhesion to the top coat. Also gets worse.
  • the equivalent ratio of the NH 2 equivalents of water can react with the isocyanate, and the OH equivalent of the PPG having a hydroxyl group
  • NH 2 equivalents of DETDA: NH 2 equivalent of water: OH equivalent of PPG 90: 0: 10 to 50:30:20 is preferable, and 85: 0: 15 to 70:15:15 is more preferable.
  • the NH 2 equivalent of DETDA exceeds 90, urea bonds increase in the cured product of the urethane composition for waterproofing coating film, and high physical properties are obtained.
  • the blending ratio of the main material (A) and the curing material (B) is 1: 1 (weight ratio) as a product
  • the molecular weight of the PPG used increases and the product viscosity increases.
  • the curability is excellent in winter, but sufficient pot life cannot be obtained in the construction in summer.
  • the NH 2 equivalent of DETDA is less than 70, high physical properties cannot be obtained in the cured product of the urethane composition for waterproofing coating film.
  • Non-bleed, high strength, high elongation type hand-painted urethane coating film waterproofing composition tends to foam when cured.
  • the blending amount of the terminal esterified polyfunctional polyether or polyoxyalkylene monoalkyl ether acetate plasticizer in the curing material (B) is 0 to 8.0% by mass of the total amount of the curing material (B). Preferably, the content is 2.0 to 4.0% by mass.
  • the amount of the terminal esterified polyfunctional polyether or polyoxyalkylene monoalkyl ether acetate plasticizer is 0% by mass, high physical properties can be obtained, but the product viscosity becomes high.
  • the blending amount of the terminal esterified polyfunctional polyether or polyoxyalkylene monoalkyl ether acetate plasticizer exceeds 8.0 mass, the product viscosity is lowered but high physical properties cannot be obtained.
  • An inorganic filler such as calcium carbonate, talc, kaolin, zeolite, or diatomaceous earth may be added to the hardener (B).
  • the curing material (B) may be diluted by adding a solvent to adjust properties such as the viscosity of the curing material (B).
  • a solvent as long as it dissolves diethyl toluenediamine, polypropylene glycol having a hydroxyl group equivalent of 1,500 or more, terminal esterified polyfunctional polyether, polyoxyalkylene monoalkyl ether acetate plasticizer
  • Swaclean manufactured by Maruzen Chemical Co., Ltd.
  • Swaclean manufactured by Maruzen Chemical Co., Ltd.
  • an antifoaming agent and an anti-aging agent may be added to the curing material (B).
  • the curing material (B) includes, for example, DETDA, PPG having a hydroxyl group equivalent of 1,500 or more having two or more hydroxyl groups, terminal esterified polyfunctional polyether or polyoxyalkylene monoalkyl ether acetate plastic under a nitrogen atmosphere.
  • the agent is mixed at the above-mentioned mixing ratio, and these mixtures are prepared by stirring at room temperature.
  • an inorganic filler and a moisture latent curing agent may be added.
  • the time for stirring the above mixture is preferably 0.25 to 1.0 hour, more preferably 0.4 to 0.6 hour. After the above mixture is uniformly mixed, it is preferable to add an antifoaming agent, an anti-aging agent and a solvent and further stir for about 0.1 hour.
  • the urethane composition for waterproofing coating film is prepared, for example, by adding the curing agent (B) to the main material (A) and stirring and mixing the mixture at room temperature.
  • the mixing ratio of the main material (A) and the curing material (B) is preferably 1.1: 0.9 to 0.9: 1.0, and 1.05: 0.95 to 0.0. More preferably, it is 95: 1.05.
  • the obtained urethane composition for waterproofing coating film is considered that 75 to 85% of NCO and NH 2 form urea bonds in the reaction of the main material (A) and the curing agent (B). It is done.
  • the urethane composition for waterproofing coating film of the present invention has the same workability as a general-purpose high-extension urethane coating waterproofing material (old type 1), but has a high-extending urethane waterproofing material (old type 1). Because it has the strength of high-strength urethane film waterproofing material, it can be used for roofing parking lots for high-extension urethane film waterproofing material (formerly Class 1) used for general roofing. Up to the high-strength type used as an exposed waterproof for water, it is possible to provide physical properties according to the application. In addition, since the weather resistance of the top coat is not reduced by the plasticizer, it can be provided for applications that require long-term durability such as properties and parts that are not easily maintained.
  • the urethane composition for waterproofing coating film of the present invention is hydrophobic having an SP value in which asphalt is uniformly dispersed, it is also applicable to applications such as bathrooms and kitchens where concrete and mortar are required to have water resistance. Can be used.
  • the urethane composition for waterproofing coating film of the present invention does not contain any specific chemical substances of the Industrial Safety and Health Act, the impact on the health of workers who handle these in the manufacturing process or civil engineering construction site is also reduced. .
  • FIG. 1 is a schematic cross-sectional view showing a concrete roof that has been waterproof-coated using the urethane composition for waterproofing coating film of the present invention.
  • reference numeral 1 is roof concrete
  • 2 is a primer
  • 3 is a waterproof layer
  • 4 is a top coat.
  • the waterproof layer 3 is formed by applying the urethane composition for waterproof coating material of the present invention to the surface of the roof concrete 1 via the primer 2 and curing the coating film.
  • FIG. 2 is a schematic cross-sectional view showing indoor waterproofing of a concrete structure waterproof-coated with the urethane composition for waterproofing coating film of the present invention.
  • reference numeral 11 is floor slab concrete
  • 12 is a primer
  • 13 is a waterproof layer
  • 14 is an interlayer adhesive
  • 15 is finished concrete.
  • the waterproof layer 13 is formed by applying the urethane composition for waterproof coating material of the present invention to the surface of the floor slab concrete 11 via the primer 12 and curing the coating film.
  • Preparation Example 1 Preparation of main material (A)]
  • Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., polypropylene glycol having a number average molecular weight of 2000 (D-2000, trade name: Diol 2000, hydroxyl group equivalent 965-1040, OH number 56 ⁇ 2, manufactured by Mitsui Chemicals Co., Ltd.) was weighed and mixed at a mass ratio of 25.7: 34.5: 25.9, and the water content in polypropylene glycol was added to give a number average molecular weight of 222.
  • IPDI having a molar equivalent ratio (NCO / OH) of 2.00 (trade name: IPDI, Hyuru) was added to 13.8% by mass with respect to 100% by mass of the main material to make a liquid mixture, and the liquid mixture was heated with stirring to form catalyst formate S-9 (Mitsui Chemicals). 0.1 part) was added and reacted at 95 ° C. for 2.5 hours to obtain a urethane prepolymer.
  • a solvent trade name: Swaclean 150, manufactured by Maruzen Petrochemical Co., Ltd.
  • This urethane prepolymer has 28.6% of IPDI added to D-4000, 39.1% of IPDI added to T-5000, and 31.6% of IPDI added to D-2000. , Containing 0.6% IPDI monomer and 2.60% isocyanate group.
  • Preparation Example 2 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, manufactured by Sanyo Kasei Co., Ltd., polypropylene glycol having a number average molecular weight of 1000 (D-1000, trade name: Diol 1000, hydroxyl group equivalent 485-515, A flowable urethane prepolymer (mainly) in the same manner as in Preparation Example 1 except that OH number 112 ⁇ 3, manufactured by Mitsui Chemicals Co., Ltd.) was weighed and mixed at a mass ratio of 44.2: 33.2: 8.8.
  • Material (A) (b shown in Table 1) was obtained.
  • This urethane prepolymer has 49.5% IPDI added to D-4000, 37.8% IPT added to T-5000, and 12.1% IPDI added to D-1000. , Containing 0.6% IPDI monomer and 2.60% isocyanate group.
  • Preparation Example 3 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., polypropylene glycol having a number average molecular weight of 400 (D-400, trade name: Diol 400, hydroxyl group equivalent 190-210, A fluid urethane prepolymer (mainly similar to Preparation Example 1) except that OH number 280 ⁇ 10, manufactured by Mitsui Chemicals Co., Ltd.) was weighed and mixed at a mass ratio of 50.0: 33.2: 2.9.
  • D-4000 trade name: Pre
  • Preparation Example 4 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., number average molecular weight 200 polypropylene glycol (D-200, trade name: PP-200, hydroxyl group equivalent 95- 105, OH value of 560 ⁇ 15, manufactured by Sanyo Chemical Co., Ltd.) in the same manner as in Preparation Example 1 except that they were weighed and mixed at a mass ratio of 51.5: 33.3: 1.4.
  • D-4000 trade name: Preminol S-4004, hydroxyl group equivalent of 18
  • Preparation Example 5 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 1,4-butanediol having a number average molecular weight of 90 (1,4-BD, hydroxyl group equivalent 45, OH) No.
  • Preparation Example 6 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) Trade name: GP-5000, hydroxyl group equivalent 1600 to 1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 2-methyl 1,3-propanediol (2-MPD, hydroxyl group equivalent 45, number average molecular weight 90) A fluid urethane prepolymer (main material (A) (main material (A)) (OH number 1223 ⁇ 20) was prepared in the same manner as in Preparation Example 1, except that 53.9: 31.7: 0.6 was measured and mixed.
  • This urethane prepolymer has 60.0% of IPDI added to D-4000, 35.9% of IPDI added to T-5000, and IPDI added to 2-methyl-1,3-propanediol. 3.6%, IPDI monomer 0.5% and isocyanate groups 2.60%.
  • Preparation Example 7 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 1,3-propanediol having a number average molecular weight of 90 (1-PD, hydroxyl group equivalent 45, OH value 1474) A fluid urethane prepolymer (main material (A)) in the same manner as in Preparation Example 1, except that ⁇ 20, manufactured by DuPont) was weighed and mixed at a mass ratio of 53.9: 31.7: 0.5.
  • D-4000 trade name: Preminol S-4004
  • This urethane prepolymer has 60.1% of IPDI added to D-4000, 35.9% of IPDI added to T-5000, and 3 of IPDI added to 1,3-propanediol. 0.5%, IPDI monomer 0.5% and isocyanate groups 2.60%.
  • Preparation Example 8 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: PP-4000, hydroxyl equivalents 1865 to 2155, OH number 28 ⁇ 2, manufactured by Sanyo Chemical Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 1,4-butanediol having a number average molecular weight of 90 (1,4-BD, hydroxyl group equivalent 45, OH) No. 1247, manufactured by Mitsubishi Chemical Co., Ltd.
  • Preparation Example 9 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: PP-4000, hydroxyl equivalents 1865 to 2155, OH number 28 ⁇ 2, manufactured by Sanyo Chemical Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 1,4-butanediol having a number average molecular weight of 90 (1,4-BD, hydroxyl group equivalent 45, OH) No.
  • Preparation Example 10 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, hydroxyl group equivalent of 1865 to 2155, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000) , Trade name: GP-5000, hydroxyl group equivalent 1600-1810, OH number 33 ⁇ 2, Sanyo Kasei Co., Ltd., 1,4-butanediol having a number average molecular weight of 90 (1,4-BD, hydroxyl group equivalent 45, OH) Tolylene diisocyanate having a number average molecular weight of 174 (TDI-80, manufactured by Mitsui Chemicals, Inc.) was measured and mixed at a mass ratio of 55.5: 33.1: 0.5.
  • TDI-80 TDI-80, manufactured by Mitsu
  • Preparation Example 11 Preparation of main material (A)] Polypropylene glycol having a number average molecular weight of 4000 (D-4000, trade name: Preminol S-4004, OH number 28 ⁇ 2, manufactured by Asahi Glass Co., Ltd.), polypropylene glycol having a number average molecular weight of 5000 (T-5000, trade name: GP- 5000, OH value 33 ⁇ 2, Sanyo Chemical Co., Ltd.), 1,4-butanediol having a number average molecular weight of 90 (1,4-BD, OH value 1247, manufactured by Mitsubishi Chemical Corporation) 55.5: 33.1 : Tolylene diisocyanate having a number average molecular weight of 174 (TDI-100, 2,4-TDI (100%) manufactured by Mitsui Chemicals, Inc.) was mixed at a molar equivalent ratio (NCO / OH) was added at a mass ratio of 10.8 so that OH was 2.00, and in the same manner as in
  • This urethane prepolymer has 60.7% of D-4000 added with TDI-100, 36.6% of T-5000 added with TDI-100, and 1,4-butanediol with TDI-100. Added 2.2%, TDI-100 monomer 0.4%, and isocyanate group 2.56%.
  • Preparation Example 13 Preparation of curing material (B)] Add 19.2 parts by mass of 5000 polypropylene glycol (trade name: FA703, OH number 33 ⁇ 2, manufactured by Sanyo Kasei Co., Ltd.) and 4.0 parts by mass of DETDA (trade name: Etacure 100, manufactured by Albemarle). A cured material (B) (y shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that.
  • Preparation Example 14 Preparation of curing material (B)] 21.6 parts by mass of polypropylene glycol having a number average molecular weight of 5000 (trade name: FA703, OH number 33 ⁇ 2, manufactured by Sanyo Kasei Co., Ltd.) and 3.9 parts by mass of DETDA (trade name: EtaCure 100, manufactured by Albemarle) A cured material (B) (z shown in Table 3) was prepared in the same manner as in Preparation Example 12 except for the addition.
  • Preparation Example 16 Preparation of curing material (B)]
  • the cured material (B) (shown in Table 3) was prepared in the same manner as in Preparation Example 12, except that 5.0 parts by mass of DOP (trade name: DOP, manufactured by Taoka Chemical Co., Ltd.) was added as a plasticizer instead of SK-500. t-2.5) was prepared.
  • DOP trade name: DOP, manufactured by Taoka Chemical Co., Ltd.
  • Preparation Example 17 Preparation of curing material (B)]
  • the cured material (B) (shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that 10.0 parts by mass of DOP (trade name: DOP, manufactured by Taoka Chemical Co., Ltd.) was added as a plasticizer instead of SK-500. t-5.0) was prepared.
  • DOP trade name: DOP, manufactured by Taoka Chemical Co., Ltd.
  • Preparation Example 18 Preparation of curing material (B)]
  • the cured material (B) (shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that 15.0 parts by mass of DOP (trade name: DOP, manufactured by Taoka Chemical Co., Ltd.) was added as a plasticizer instead of SK-500. t-7.5) was prepared.
  • DOP trade name: DOP, manufactured by Taoka Chemical Co., Ltd.
  • Preparation Example 20 Preparation of curing material (B)
  • Curing material (B) (shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that 10.0 parts by mass of a terminal esterified polyfunctional polyether plasticizer (trade name: SK-500, manufactured by Sanyo Chemical Co., Ltd.) was added. u-5.0) was prepared.
  • a terminal esterified polyfunctional polyether plasticizer trade name: SK-500, manufactured by Sanyo Chemical Co., Ltd.
  • Preparation Example 21 Preparation of curing material (B)
  • Curing material (B) (shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that 15.0 parts by mass of a terminal esterified polyfunctional polyether plasticizer (trade name: SK-500, manufactured by Sanyo Chemical Co., Ltd.) was added. u-7.5) was prepared.
  • a terminal esterified polyfunctional polyether plasticizer trade name: SK-500, manufactured by Sanyo Chemical Co., Ltd.
  • Preparation Example 23 Preparation of curing material (B)] Curing in the same manner as in Preparation Example 12 except that 3.0 parts by mass of DETDA (trade name: Etacure 100, manufactured by Albemarle), 0.13 parts by mass of water, and 0.1 parts by mass of water were further added. Material (B) (w shown in Table 3) was prepared.
  • Preparation Example 24 Preparation of curing material (B)] 19.8 parts by mass of polypropylene glycol having a number average molecular weight of 5000 (trade name: FA703, OH number 33 ⁇ 2, manufactured by Sanyo Kasei Co., Ltd.) and 4.9 parts by mass of DETDA (trade name: EtaCure 100, manufactured by Albemarle)
  • a cured material (B) (r shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that it was added.
  • Preparation Example 25 Preparation of curing material (B)]
  • a curing material (B) (m shown in Table 3) was prepared in the same manner as in Preparation Example 12 except that 0.1 part of catalyst formate S-9 (Mitsui Chemicals) was added.
  • Preparation Example 26 Preparation of Curing Material (B)] 1.7 parts by mass of polypropylene glycol having a number average molecular weight of 5000 (trade name: FA703, OH number 33 ⁇ 2, manufactured by Sanyo Chemical Co., Ltd.) was added, and further catalyst formate S-9 (manufactured by Mitsui Chemicals) was added. A cured material (B) (n shown in Table 3) was prepared in the same manner as Preparation Example 12 except that 1 part was added.
  • Example 2 Except for adding 100 parts by mass of the above-mentioned hardener (B) (y shown in Table 3) to 100 parts by mass of the main material (A) (b shown in Table 1), the same as Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 2 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 4 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned hardener (B) (y shown in Table 3) was added to 100 parts by mass of the above main material (A) (d shown in Table 1). Thus, the urethane composition for waterproofing coating film of Experimental Example 4 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 5 Except for adding 100 parts by mass of the above-mentioned hardener (B) (x shown in Table 3) to 100 parts by mass of the main material (A) (e shown in Table 1), the same as Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 5 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for coating-film waterproofing materials of Experimental example 5, the elongation rate between marked lines, and tear strength. The results are shown in Table 4.
  • Example 6 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned hardener (B) (y shown in Table 3) was added to 100 parts by mass of the above main material (A) (e shown in Table 1). Thus, a urethane composition for waterproofing coating film of Experimental Example 6 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 7 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned hardener (B) (z shown in Table 3) was added to 100 parts by mass of the above main material (A) (e shown in Table 1). Thus, a urethane composition for waterproofing coating film of Experimental Example 7 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 8 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned hardener (B) (y shown in Table 3) was added to 100 parts by mass of the above main material (A) (f shown in Table 1). Thus, a urethane composition for waterproofing coating film of Experimental Example 8 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 9 Except for adding 100 parts by mass of the above-mentioned cured material (B) (y shown in Table 3) to 100 parts by mass of the main material (A) (g shown in Table 1), the same as in Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 9 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 10 The same as Experimental Example 1 except that 100 parts by mass of the above-mentioned cured material (B) (s shown in Table 3) was added to 100 parts by mass of the above main material (A) (g shown in Table 1). Thus, a urethane composition for waterproofing coating film of Experimental Example 10 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 11 An experiment was conducted except that 100 parts by mass of the above-mentioned hardener (B) (t-2.5 shown in Table 3) was added to 100 parts by mass of the above main material (A) (g shown in Table 1).
  • the urethane composition for waterproofing coating film of Experimental Example 11 was prepared.
  • Example 12 An experiment was conducted except that 100 parts by mass of the above-mentioned main material (A) (g shown in Table 1) and 100 parts by mass of the above-mentioned cured material (B) (t-5.0 shown in Table 3) were added.
  • the urethane composition for waterproofing coating film of Experimental Example 12 was prepared.
  • Example 13 An experiment was conducted except that 100 parts by mass of the above-mentioned main material (A) (g shown in Table 1) was added at a ratio of 100 parts by mass of the above-mentioned cured material (B) (t-7.5 shown in Table 3).
  • the urethane composition for waterproofing coating film of Experimental Example 13 was prepared.
  • Example 14 An experiment was conducted except that 100 parts by mass of the above-mentioned main material (A) (g shown in Table 1) and 100 parts by mass of the above-mentioned cured material (B) (u-2.5 shown in Table 3) were added.
  • the urethane composition for waterproofing coating film of Experimental Example 14 was prepared.
  • Example 15 An experiment was conducted except that 100 parts by mass of the above-mentioned hardener (B) (u-5.0 shown in Table 3) was added to 100 parts by mass of the above main material (A) (g shown in Table 1).
  • the urethane composition for waterproofing coating film of Experimental Example 15 was prepared.
  • Example 16 An experiment was conducted except that 100 parts by mass of the above-mentioned main material (A) (g shown in Table 1) and 100 parts by mass of the above-mentioned curing material (B) (u-7.5 shown in Table 3) were added.
  • the urethane composition for waterproofing coating film of Experimental Example 16 was prepared. Further, in the same manner as in Experimental Example 1, the tensile strength, the elongation between marked lines, and the tear strength of the urethane composition for waterproofing coating film of Experimental Example 16 were measured. The results are shown in Table 5.
  • Example 17 Except for adding 100 parts by mass of the above-mentioned hardener (B) (v shown in Table 3) to 100 parts by mass of the main material (A) (e shown in Table 1), the same as Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 17 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for coating-film waterproofing materials of Experimental example 17, the elongation rate between marked lines, and tear strength. The results are shown in Table 5.
  • Example 18 Except for adding 100 parts by mass of the above-mentioned hardener (B) (w shown in Table 3) to 100 parts by mass of the main material (A) (e shown in Table 1), the same as in Experimental Example 1 Thus, the urethane composition for waterproofing coating film of Experimental Example 18 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 19 Except for adding 100 parts by mass of the above-mentioned hardener (B) (x shown in Table 3) to 100 parts by mass of the main material (A) (h shown in Table 1), the same as Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 19 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 20 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned main material (A) (i shown in Table 1) was added at a ratio of 100 parts by mass of the above-mentioned curing material (B) (r shown in Table 3). Thus, a urethane composition for waterproofing coating film of Experimental Example 20 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Example 21 Similar to Experimental Example 1 except that 100 parts by mass of the above-mentioned hardener (B) (m shown in Table 3) was added to 100 parts by mass of the main material (A) (j shown in Table 2). Thus, a urethane composition for waterproofing coating film of Experimental Example 21 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for coating-film waterproof materials of Experimental example 21, the elongation rate between marked lines, and tear strength. The results are shown in Table 5.
  • Example 22 Except for adding 100 parts by mass of the above-mentioned hardener (B) (n shown in Table 3) to 100 parts by mass of the main material (A) (l shown in Table 2), the same as Experimental Example 1 Thus, a urethane composition for waterproofing coating film of Experimental Example 22 was prepared. Moreover, it carried out similarly to Experimental example 1, and measured the tensile strength regarding the urethane composition for waterproofing
  • Preparation Example 27 Preparation of curing material (B)]
  • a cured material (B) (x-2 shown in Table 6) was prepared in the same manner as in Preparation Example 12 except that 4.0 parts by mass of a solvent (trade name: Swagel 150, manufactured by Maruzen Petrochemical Co., Ltd.) was added. .
  • Preparation Example 28 Preparation of curing material (B)] Prepared except that 4.0 parts by mass of solvent (trade name: Suwaclean 150, manufactured by Maruzen Petrochemical Co., Ltd.) and 0.1 part by mass of pb-24 (trade name: pb-24, manufactured by Active Materials Chemical Co., Ltd.) were added. In the same manner as in Example 12, a curing material (B) (x-3 shown in Table 6) was prepared.
  • solvent trade name: Suwaclean 150, manufactured by Maruzen Petrochemical Co., Ltd.
  • pb-24 trade name: pb-24, manufactured by Active Materials Chemical Co., Ltd.
  • Preparation Example 29 Preparation of curing material (B)] Preparation Example except that 4.0 parts by mass of a solvent (trade name: Swaclean 150, manufactured by Maruzen Petrochemical Co., Ltd.) was added and pb-24 (trade name: pb-24, manufactured by Active Materials Chemical Co., Ltd.) was not added. In the same manner as in No. 12, a hardener (B) (x-4 shown in Table 6) was prepared.
  • a solvent trade name: Swaclean 150, manufactured by Maruzen Petrochemical Co., Ltd.
  • pb-24 trade name: pb-24, manufactured by Active Materials Chemical Co., Ltd.
  • Preparation Example 30 Preparation of curing material (B)]
  • a cured material (B) (x-5 shown in Table 6) was prepared in the same manner as Preparation Example 12 except that pb-24 (trade name: pb-24, manufactured by Active Materials Chemical Co., Ltd.) was not added.
  • Example 29 Similar to Experimental Example 23, except that 100 parts by mass of the above-mentioned hardener (B) (w shown in Table 3) was added to 100 parts by mass of the above main material (A) (e shown in Table 1). Thus, the pot life of the urethane composition for waterproofing coating film of Experimental Example 29 was evaluated. The results are shown in Table 7.
  • the urethane composition for waterproofing coating film of the present invention has the same workability as a general-purpose high-extension urethane coating waterproofing material (old type 1), but has a high-extending urethane waterproofing material (old type 1). Because it has the strength of high-strength urethane film waterproofing material, it can be used for roofing parking lots for high-extension urethane film waterproofing material (formerly Class 1) used for general roofing. Even high-strength types used as exposed waterproofing can be provided with physical properties according to the application. In addition, since the weather resistance of the top coat is not reduced by the plasticizer, it can be provided for applications that require long-term durability such as properties and parts that are not easily maintained.
  • the urethane composition for waterproofing coating film of the present invention is hydrophobic having an SP value in which asphalt is uniformly dispersed, it is also applicable to applications such as bathrooms and kitchens where concrete and mortar are required to have water resistance. Can be used.
  • the urethane composition for waterproofing coating film of the present invention does not contain any specific chemical substances of the Industrial Safety and Health Act, the impact on the health of workers who handle these in the manufacturing process or civil engineering construction site is also reduced. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

 特定化学物質を全く含まず、汎用的な高伸長形ウレタン塗膜防水材と同じ施工性、高伸長形ウレタン塗膜防水材の伸び率、高強度形ウレタン塗膜防水材の強度を有し、可塑剤によるトップコートの耐候性低下がなく、アスファルト低溜分の移行の影響を受けないノンブリードタイプの手塗りに適した塗膜防水材用ウレタン組成物を提供することを目的とし、本発明は、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールおよび短鎖の多価アルコールと、イソホロンジイソシアネートとを反応させて生成したイソホロンジイソシアネートプレポリマーとを配合してなる主材(A)と、「ジエチルトルエンジアミンと、水と、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールと、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤とを含む硬化材(B)とを少なくとも含有してなることを特徴とする塗膜防水材用ウレタン組成物を提供する。

Description

塗膜防水材用ウレタン組成物
 本発明は、塗膜防水材用ウレタン組成物に関するものであり、特にノンブリードタイプであり、かつ高強度・高伸長形の手塗に適する塗膜防水用ウレタン組成物に関するものである。
 本願は、2013年5月24日に、日本に出願された特願2013-110108号に基づき優先権を主張し、その内容をここに援用する。
 ウレタン塗膜防水材は、土木建築を含む各種構造物の屋上・外壁・床・底版・床版・ピット等の防水材や防食材等を含む幅広い用途に用いられている。
 ウレタン塗膜防水材は、イソシアネートプレポリマー(主材)と、ポリオールおよびポリアミンに、可塑剤、充填材、顔料および反応触媒を加えたコンパウンド(硬化材)とを混合、攪拌して硬化させる2成分反応形のタイプのものと、イソシアネートプレポリマーに、乾燥させた充填材、可塑剤、顔料、反応触媒、およびケチミンやオキサゾリジン等の湿気潜在性硬化剤を添加したもの(主材)を塗布することによって、空気中の湿気によって硬化する1成分形のタイプのものとに大別される。
 また、2成分反応形のタイプのウレタン塗膜防水材としては、例えば、イソシアネートプレポリマーに、充填材、可塑剤、顔料、反応触媒および酸化マグネシウムを添加したもの(主材)に、水を加えて混合、攪拌して反応させ、発生する炭酸ガスを酸化マグネシウムに吸着させ硬化させるタイプのものが挙げられる。
 汎用的な2成分反応形のタイプのウレタン塗膜防水材としては、以下の2つのタイプのものが挙げられる。
(1)トリレンジイソシアネート(以下、「TDI」と略すこともある。)と、水酸基を2個以上有するポリプロピレングリコール(以下、「PPG」と略すこともある。)とを混合し、加熱、攪拌することにより反応させて得られた、イソシアネート基を2個以上有するTDI系プレポリマー(主材)と、アミノ基を2個以上有する、3,3’-ジクロロ-4,4’-ジアミノジフエニルメタン(以下、「MOCA」と略すこともある。)やジエチルトルエンジアミン(以下、「DETDA」と略すこともある。)等の芳香族アミンに、水酸基を2個以上有するPPG、可塑剤、充填材、顔料、溶剤、老化防止剤、消泡剤および反応触媒を配合した硬化材とを、攪拌機にて混合、攪拌して、ヘラおよびローラー等を用いて塗布するタイプ。 
(2)水酸基を2個以上有するPPGの水酸基当量に対して、過剰な当量比のジフェニルメタンジイソシアネート(以下、「MDI」と略すこともある。)を混合し、加熱、攪拌することにより反応させて得られた、イソシアネート基を2個以上有するMDI系プレポリマーに可塑剤を加えたもの(主材)と、アミノ基を2個以上有するDETDAやジェファーミン等のアミン、水酸基を2個以上有するPPG、可塑剤、老化防止剤および反応触媒を配合した硬化材に、可塑剤を加えて混練した顔料を予め混合したものとを、専用の機械にて加温しながら、ホース圧送してホース先端にて混合、攪拌して吹付け塗工する超速硬化タイプ。
 ウレタン塗膜防水材は、常温にて、鏝やヘラによる塗工、ローラー塗工または吹付け塗工することにより、複雑な形状の下地にも、硬化後にシームレスな防水層を容易に施工できる。そのため、ウレタン塗膜防水材は、各種構造物の新築から改修に至るまで多用されている。
 また、建築用塗膜防水材のうち、屋根用塗膜防水材および外壁用塗膜防水材の性能は、日本工業規格(JIS)のJIS A 6021「建築用塗膜防水材」に規定されている。
 日本工業規格(JIS)のJIS A 6021に規定されている屋根用塗膜防水材には、ウレタンゴム系として、高伸長形(旧1類)と高強度形との2種類がある。
 高伸長形(旧1類)の屋根用塗膜防水材は、23℃における引張強さが2.3N/mm以上、標線間の破断時の伸び率が450%以上と規定されている。
 高強度形の屋根用塗膜防水材は、23℃における引張強さが10.0N/mm以上、標線間の破断時の伸び率が200%以上と規定されている。
 高伸長形(旧1類)の屋根用塗膜防水材は、汎用的な防水材として、建築物のバルコニーや屋上防水に使用されている。それに対し、高強度形の屋根用塗膜防水材は、屋上駐車場、スレート屋根、地下構造物、植栽用屋上等強度や耐水性・耐温水性が求められる用途に使用されている。
 ウレタン塗膜防水材のうち高伸長形(旧1類)のものとしては、TDIプレポリマーとMOCA(DETDA)とを組合せて攪拌機にて混合、攪拌して、鏝やヘラによる塗工またはローラー塗工する、上記タイプ(1)に属する塗膜防水材が製品化されている。このタイプは、主材と硬化材との重量を秤で計測して容器に取分け、攪拌機にて混合、攪拌して使用するため、計測を行いやすいように主材と硬化材との比率は、質量比で1:1および1:2の比率となっている。反応成分である主材のNCOの割合は、3.3~3.8%程である。
 また、ウレタン塗膜防水材のうち高強度形のものとしては、MDI系プレポリマーとDETDAとを専用の機械にて別々に加温しながらホース圧送してホース先端にて混合、攪拌して吹付け塗工する、上記タイプ(2)に属する超速硬化タイプの塗膜防水材が製品化されている。このタイプは、主材と硬化材とを一定容積の容器からポンプにてホースに圧送してホース先端にて混合、攪拌して吹付け塗工するため、主剤と硬化剤との比率は容積比で1:1の比率となっている。反応成分である主材のNCOの割合は、10.0%以上である。
 このNCO量の違いが、架橋密度の差となる。このため、NCO量が比較的少ない高伸長形(旧1類)塗膜防水材は、伸び率が大きく、強度が低く、NCO割合が比較的多い高強度形塗膜防水材は、高伸長形(旧1類)塗膜防水材よりも強度は高いが伸び率が低い。
 ウレタン塗膜防水材としては、上記の高伸長形(旧1類)のタイプのものが最も汎用的に用いられている。しかしながら、TDIやMOCAは、労働安全衛生法の特定化学物質障害予防規則(以下、「特化則」と略す。)の第2類物質(がん等の慢性・遅発性障害を引き起こす物質)に指定されていることから、製造工程や土木建築現場でこれらを取扱う企業や作業者に対して、作業場での喫煙飲食の禁止(特化則38条の2)、定期的な空気中濃度の測定(特化則36条~36条の4)、休憩室の設置(特化則37条)、洗浄洗濯設備の設置(特化則38条)が義務付けられている。
 さらに、第1類物質および第2類物質のうち、がん原性物質またはその疑いのある物質については特別管理物質とされており、名称、注意事項などの掲示(特化則38条の3)や、空気中濃度の測定結果と労働者の作業や健康診断の記録を30年間保存すること(特化則38条の4)が求められている。
 また、MDI系プレポリマーとDETDAとを専用の機械にて別々に加温しながらホース圧送してホース先端にて混合、攪拌して吹付け塗工する超速硬化の高強度形は、特化則に抵触する物質を用いていない。しかし、専用の機械が大掛りであることや、吹付け塗工時のミストが飛散することから、大掛りな養生が必要となるなど、制約が多かった。
 上述の高伸長形(旧1類)塗膜防水材および高強度形ウレタン塗膜防水材の大部分を占めるPPGには、主鎖に疎水性のメチル基(-CH)と親水性のエーテル基(-O-)とがあるため、SP(Solubility Parameter、溶解パラメーター)値は計算値で12.0(分子量:1,000 官能基:2.0)となる。
 ウレタン塗膜防水材に用いられている可塑剤としては、フタル酸ジブチル(9.41)、フタル酸ジヘプチル(9.0)、フタル酸ジオクチル(8.90)、フタル酸ブチルベンジル(9.86)、アジピン酸ジオクチル(8.50)、塩素化パラフィン(9.21)、トリス-β-クロロプロピルホスフェート等の主剤中のイソシアネート(NCO基)と反応性がなく、粘度低減効果の高いものが使用されている。なお、カッコ内の数値はSP値である。
 高伸長形(旧1類)ウレタン塗膜防水材は、充填材として体質顔料を多量に配合しており、この充填材が可塑剤を吸油する。このため、粘度低減効果を得るための量に加え、充填剤への吸油量を加味した多目の可塑剤量を配合している。これに対して高強度形ウレタン塗膜防水材は、充填材を配合しないため、粘度低減効果および容積比を合わせる程度の少量の可塑剤量を配合している。
 ウレタン塗膜防水材は塗工されて防水層となるが、屋外で使用する場合、高伸長形(旧1類)・高強度形塗膜防水材共に、この防水層を日射から保護するために、防水層上に仕上塗料(トップコート)が塗布される。トップコートの種類は、アクリルウレタン樹脂を主成分とするもの、アクリルシリコン樹脂を主成分とするもの、およびフッ素樹脂を主成分とするものがあり、さらにそれぞれ強溶剤形、弱溶剤形、水系形がある。トップコートの種類にかかわらず、高伸長形(旧1類)塗膜防水材で形成された防水層上に使用した場合、トップコートの劣化が早くなることが建築学会の耐久性委員会から報告されている。
 一方、防水材として最も歴史の古いアスファルトとしては、天然アスファルトと原油の減圧残油アスファルトとが挙げられる。これらは、高温の空気で軟化点を高くしたものであり、常温ではほとんど流動せず、道路の舗装などに用いられている。
 また、アスファルトは、アスファルテンと呼ばれる高分子炭化水素がマルテン成分中にコロイド状に分散したものであり、上記アスファルテンとはヘキサンなどの軽質の炭化水素に溶けない成分で縮合環の芳香族炭化水素が架橋結合して生成した高分子化合物であり、上記マルテン成分とはヘキサンなどの軽質の炭化水素に溶けるレジンと、油分とを含有する成分である。
 このように、アスファルトは成分内容が複雑であり、かつ、産地によっても成分や比率が異なることから、SP値を算出することはできない。しかしながら、アスファルテンのSP値は9.0~10.0、マルテン成分のSP値は8.0程度と推定されている。このSP値は、ウレタン塗膜防水材に用いられている可塑剤のSP値に近く、可塑剤との相溶性が高い。
 アスファルト防水改修時などに、アスファルト下地に直接ウレタン塗膜防水材を塗布しても、両者は接着しない。汎用的なTDI系プライマーを塗布した後に高伸長形ウレタン塗膜防水材(旧1類)を塗布すると接着力は得られるが、アスファルト低溜分がウレタン塗膜防水材(旧1類)に移行してしまう。その移行は、トップコートを塗布しても抑えられず、トップコートにまで移行して変色するとともにトップコートの劣化を促進してしまう。
 そこで、汎用的な高伸長形ウレタン塗膜防水材(旧1類)と同じ施工性でありながら、高伸長形ウレタン塗膜防水材(旧1類)の伸び率を有し、高強度形ウレタン塗膜防水材の強度を有した物性強度を保有し、可塑剤によるトップコートの耐候性低下を招かず、アスファルト低溜分の移行による影響を受けることなく、特定化学物質のTDIやMOCAを使用しない耐水・耐温水性が高いウレタン塗膜防水材が望まれている。
特許第3592479号公報
JIS A 6021 建築用塗膜防水材 2006 建築工事標準仕様書・同解説 JASS8 防水工事 第6版 公共建築工事標準仕様書(建築工事編)平成19年
 本発明は、上記事情に鑑みてなされたものであって、特定化学物質を全く含まず、汎用的な高伸長形ウレタン塗膜防水材(旧1類)と同様に施工でき、高伸長形ウレタン塗膜防水材と同程度の伸び率を有し、高強度形ウレタン塗膜防水材の強度を有した物性強度を保有し、可塑剤によるトップコートの耐候性低下を招かず、アスファルト低溜分の移行による影響を受けることのない、塗膜防水材用ウレタン組成物を提供することを目的とする。
 本発明の塗膜防水材用ウレタン組成物は、水酸基を2個以上有し、水酸基当量が1,500以上のポリプロピレングリコールおよび短鎖の多価アルコールと、イソホロンジイソシアネートとを反応させて生成したイソホロンジイソシアネートプレポリマーとを配合してなる主材(A)と、
 ジエチルトルエンジアミンと、水と、水酸基を2個以上有し、水酸基当量が1,500以上のポリプロピレングリコールと、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤とを含む硬化材(B)とを少なくとも含有してなることを特徴とする。
 本発明の塗膜防水材用ウレタン組成物において、前記ポリプロピレングリコールは、ローモノマータイプであることが好ましい。副生成物(不飽和モノオール含有)の少ないローモノオールタイプであり、例えば不飽和度0.05meq/g以下のものが好ましい。
 本発明の塗膜防水材用ウレタン組成物において、前記短鎖多価アルコールは、エチレングリコール、ジプロピレングリコール、1,3-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、3-メチル1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン、およびトリメチロールプロパンからなるグループから選択される少なくとも1種であることが好ましい。
 本発明の塗膜防水材用ウレタン組成物は、汎用的な高伸長形ウレタン塗膜防水材(旧1類)と同程度の伸び率を有し、かつ同様に施工できながら、高強度形ウレタン塗膜防水材の強度を有している。したがって、一般屋根用として用いられる高伸長形ウレタン塗膜防水材(旧1類)用途から、屋上駐車場用の露出防水として用いられている高強度形まで、用途に応じた物性のものを提供することができる。
 また、可塑剤によるトップコートの耐候性低下を招かないことから、メンテナンスが容易でない物件や部位など、長期の耐久性を求められる用途に提供することができる。
 また、アスファルト低溜分の移行による影響を受けることがないため、露出アスファルト防水工法などの改修や補修用途にも、塗膜防水材として提供することができる。
 現在、特定化学物質であるTDIやMOCAを使用しない耐水性、耐温水性が高いウレタン塗膜防水材が望まれている。本発明の塗膜防水材用ウレタン組成物は、耐水性が求められるコンクリートやモルタルが打設される浴室や厨房などの用途にも用いることができる。
 また、本発明の塗膜防水材用ウレタン組成物は、労働安全衛生法の特定化学物質を全く含まないので、製造工程や土木建築現場でこれらを取扱う作業者の健康への影響も低減される。
本発明の塗膜防水材用ウレタン組成物を用いて防水塗装されたコンクリート屋根を示す概略断面図である。 本発明の塗膜防水材用ウレタン組成物を用いて防水塗装されたコンクリート構造物の室内防水を示す概略断面図である。
 本発明の塗膜防水材用ウレタン組成物の実施の形態について説明する。
 なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[塗膜防水材用ウレタン組成物] 
 本発明の塗膜防水材用ウレタン組成物は、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールおよび短鎖のジオールと、イソホロンジイソシアネートとを反応させて生成したイソホロンジイソシアネートプレポリマーを含有してなる主材(A)と、
 ジエチルトルエンジアミンと、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールと、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステルを含有する可塑剤とを含む硬化材(B)とを少なくとも含有してなることを特徴とする。
「主材(A)」 
 水酸基を2個以上有し、かつ水酸基当量が1,500以上のポリプロピレングリコールとしては、D-4000(ACCLAIM 4200:Bayer社製、プレミノールS-4004:旭硝子社製)、T-5000(ACTCOL MN5000三井化学社製、Sunnix GH-5000NS、GP-5000:三洋化成工業社製 )が好ましく用いられる。
 当量が1,500以上のPPGを用いることにより、高価なイソシアネートであるイソホロンジイソシアネート(以下、「IPDI」と略すこともある。)の使用量を削減し、主材(A)におけるNCO%を低く抑えることができる。一方、水酸基当量が1,500未満のPPGを用いた場合、IPDI使用量が多くなり、製品コストが高くなる。
 PPGとしては、数平均分子量が3,000~6,000のものが好ましい。
 また、PPGとしては、水酸基価(OH価)が28~57のものが好ましい。
 また、数平均分子量が高いPPGにおいては、副生物(不飽和モノール含量)の少ないローモノマータイプであることが好ましい。
 多価アルコール(水酸基を2個以上有し、水酸基当量が1,500以上のポリプロピレングリコールまたは短鎖の多価アルコール)としては、特に限定されるものではないが、例えば、エチレングリコール、ジプロピレングリコール、1,3-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、3-メチル1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン、トリメチロールプロパンであることが好ましい。
 これらの多価アルコールの中でも、塗膜防水材用ウレタン組成物の硬化物の強度の点から、1,3-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオールなどの短鎖ジオールがより好ましい。
 IPDIプレポリマーを構成する、水酸基を2個以上有し、かつ水酸基当量1,500以上のPPGおよび短鎖ジオールと、IPDIとの配合比は、PPGの水酸基(OH基)と、IPDIのイソシアネート基(NCO基)とのモル当量比(NCO/OH)で1.8~2.2であることが好ましく、1.9~2.1であることがより好ましい。
 上記のモル当量比(NCO/OH)が1.8未満では、IPDIプレポリマーの粘度が高くなり、主材(A)を調製するための溶剤の希釈量が多くなる。また、主材(A)におけるNCO%が低くなり、硬化材(B)の液状反応成分であるジエチルトルエンジアミン、水酸基当量1,500以上のPPGの使用量が減る。このため、製品として、主材(A)と硬化材(B)との配合比を1:1(重量比)とする場合、液状成分である、ポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤や溶剤が増加することとなり、硬化物の物性の低下や硬化収縮を引起す。一方、上記のモル当量比(NCO/OH)が2.2を超えると、高価なIPDIの使用量が増加し、製品コストが高くなる。さらに、反応性が異なるイソシアネート基を2個以上有するIPDIのモノマー量が増加してしまい、硬化材との硬化性に影響を与え、硬化物の物性も低下する。
 主材(A)には、硬化触媒を添加してもよい。
 硬化触媒としては、ジブチルスズジラウレートまたはジブチルスズジアセタートなどが挙げられる。
 水酸基を2個以上有する水酸基当量1,500以上の2価のPPGと、3価のPPGと、短鎖ジオールとの配合比は当量比で8:3:0~3:3:0であることが好ましく、5:3:2~4:3:3であることがより好ましい。
 IPDIプレポリマーを生成するには、水酸基を2個以上有する水酸基当量1,500以上のPPGおよび短鎖のジオールと、IPDIと、硬化触媒とを、上記の配合比で混合し、その液状の混合物を攪拌しながら加熱して、反応させる。
 上記の液状の混合物を加熱する温度(反応時間)は、80~95℃であることが好ましく、85~90℃であることがより好ましい。
 また、上記の液状の混合物を加熱する時間(反応時間)は、1.0~3.0時間であることが好ましく、1.5~2.0時間であることがより好ましい。
 この反応により、常温にて流動性があるIPDIプレポリマーが得られる。得られたIPDIプレポリマーは、PPGにIPDIが付加したウレタンプレポリマーを98~100質量%含むものである。
 また、主材(A)に溶剤を添加して希釈し、主材(A)の粘度などの性状を調整してもよい。
 溶剤としては、IPDIプレポリマーを溶解するものであれば特に限定されるものではないが、例えば、環境の点からスワクリーン(丸善化学社製)などが挙げられる。
 IPDIプレポリマーに溶剤を1.0~4.0質量%加えた主材(A)は、イソシアネート基を2.4~3.0質量%含むものである。
「硬化材(B)」 
 アミノ基を2個以上有するジエチルトルエンジアミン(以下、「DETDA」と略すこともある。)は、現在、高強度形ウレタン塗膜防水材である、超速硬化のMDI系プレポリマーと組み合わされて用いられている。
 DETDAは、TDIプレポリマーとの組合せで使用されているMOCAと比較して反応性が高く、高物性が得られる。しかし、DETDAは、MDIやTDIとの組合せた場合、手塗を行うために十分な可使時間が得られない。
 水酸基を2個以上有する水酸基当量1,500以上のPPGとしては、主材(A)に用いられるPPGと同様のものが用いられる。
 水酸基当量が1,500以上のPPGを用いることにより、製品における主材(A)と硬化材(B)との配合比を1:1(重量比)とする場合、水酸基当量は小さいが反応性が高い製品が得られる。さらに、高物性を確保するためのDETDAの使用量を増やした場合にも、液状分を確保することができる。一方、水酸基当量が1,500未満のPPGを用いた場合、反応成分以外の末端エステル化多官能ポリエーテルやポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤の使用量が多くなり、高物性が得られない。
 主材(A)のイソシアネート(NCO)当量と、硬化材(B)のアミノ基(NH)当量と水酸基(OH)当量とを合わせた当量との比(当量比:(NCO当量)/(NH+OH当量))は1.0~1.3であることが好ましく、1.1~1.2であることがより好ましい。(NCO当量)/(NH+OH当量)が1.0未満では、塗膜防水材用ウレタン組成物の硬化物の物性が低下して、硬化不良を起こしやすくなる上に、トップコートとの接着も悪くなる。また、(NCO当量)/(NH+OH当量)が1.3を超えると、高温多湿下での施工において、水分の影響によって塗膜防水材用ウレタン組成物の硬化物が発泡し易くなる。
 硬化材(B)において、アミノ基を有するDETDAのNH当量と、水がイソシアネートと反応してできるNH当量と、水酸基を有するPPGのOH当量との当量比は、DETDAのNH当量:水のNH当量:PPGのOH当量=90:0:10~50:30:20であることが好ましく、85:0:15~70:15:15であることがより好ましい。
 DETDAのNH当量が90を超えると、塗膜防水材用ウレタン組成物の硬化物においてウレア結合が増加して高物性が得られる。しかし、製品として、主材(A)と硬化材(B)との配合比を1:1(重量比)とする場合、使用するPPGの分子量が大きくなり、製品粘度が高くなってしまう。また、反応性が早くなるため、冬期に硬化性には優れるが、夏期の施工において十分な可使時間が得られない。また、DETDAのNH当量が70未満では、塗膜防水材用ウレタン組成物の硬化物において高物性が得られなくなる。
 DETDAのNH当量と、水がイソシアネートと反応してできるNH当量とが、70~55になると反応性が低下し、夏期の施工において十分な可使時間が得られるが、55より低くなると、ノンブリード高強度・高伸長形手塗ウレタン塗膜防水組成物の硬化時に発泡しやすくなってしまう。
 硬化材(B)における末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤の配合量は、硬化材(B)の全体量の0~8.0質量%であることが好ましく、2.0~4.0質量%であることがより好ましい。
 末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤の配合量が0質量%では、高物性が得られるが製品粘度が高くなってしまう。一方、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤の配合量が8.0質量を超えると、製品粘度は低くなるが高物性が得られない。
 硬化材(B)には、炭酸カルシウム、タルク、カオリン、ゼオライト、珪藻土などの無機充填材を添加してもよい。
 また、硬化材(B)に溶剤を添加して希釈し、硬化材(B)の粘度などの性状を調整してもよい。
 溶剤としては、ジエチルトルエンジアミン、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコール、末端エステル化多官能ポリエーテル、ポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤を溶解するものであれば特に限定されるものではないが、例えば、環境の点からスワクリーン(丸善化学社製)などが挙げられる。
 また、硬化材(B)には、消泡剤、老化防止剤を添加してもよい。
 硬化材(B)は、例えば、窒素雰囲気下、DETDAと、水酸基を2個以上有する水酸基当量1,500以上のPPGと、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤とを、上記の配合比で混合し、これらの混合物を、常温で攪拌することによって調製される。
 なお、硬化剤(B)を調製する際、無機充填材、湿気潜在性硬化剤を添加してもよい。
 上記の混合物を攪拌する時間は、0.25~1.0時間であることが好ましく、0.4~0.6時間であることがより好ましい。
 上記の混合物が均一に混合された後、消泡剤、老化防止剤、溶剤を添加して、さらに、0.1時間程度攪拌することが好ましい。
「塗膜防水材用ウレタン組成物」 
 塗膜防水材用ウレタン組成物は、例えば、主材(A)に、硬化剤(B)を添加し、これらの混合物を、室温にて攪拌、混合することによって調製される。
 主材(A)と硬化材(B)の配合比は、質量比で1.1:0.9~0.9:1.0であることが好ましく、1.05:0.95~0.95:1.05であることがより好ましい。
 得られた塗膜防水材用ウレタン組成物は、主材(A)と硬化剤(B)との反応において、NCOとNHとの75~85%がウレア結合を形成しているものと考えられる。
 本発明の塗膜防水材用ウレタン組成物は、汎用的な高伸長形ウレタン塗膜防水材(旧1類)と同じ施工性でありながら、高伸長形ウレタン塗膜防水材(旧1類)の伸び率を有し、高強度形ウレタン塗膜防水材の強度を有していることから、一般屋根用として用いられる高伸長形ウレタン塗膜防水材(旧1類)用途から、屋上駐車場用の露出防水として用いられている高強度形まで、用途に応じた物性のものを提供することができる。
 また、可塑剤によるトップコートの耐候性低下を招かないことから、メンテナンスが容易でない物件や部位など、長期の耐久性を求められる用途に提供することができる。
 また、アスファルト低溜分の移行による影響を受けることがないため、露出アスファルト防水工法などの改修や補修用途にも、塗膜防水材として提供することができる。
 現在、特定化学物質であるTDIやMOCAを使用しない耐水性、耐温水性が高いウレタン塗膜防水材が望まれている。本発明の塗膜防水材用ウレタン組成物は、アスファルトが均一に分散するSP値を有する疎水性であるので、耐水性が求められるコンクリートやモルタルが打設される浴室や厨房などの用途にも用いることができる。
 また、本発明の塗膜防水材用ウレタン組成物は、労働安全衛生法の特定化学物質を全く含まないので、製造工程や土木建築現場でこれらを取扱う作業者の健康への影響も低減される。
[塗膜防水材用ウレタン組成物の使用例] 
 次に、本発明の塗膜防水材用ウレタン組成物の使用例を説明する。
 図1は、本発明の塗膜防水材用ウレタン組成物を用いて防水塗装されたコンクリート屋根を示す概略断面図である。
 図1中、符号1は屋根部コンクリート、2はプライマー、3は防水層、4はトップコートを示す。
 防水層3は、屋根部コンクリート1の表面に、プライマー2を介して、本発明の塗膜防水材用ウレタン組成物を塗装し、その塗膜を硬化されて形成されたものである。
 図2は、本発明の塗膜防水材用ウレタン組成物を用いて防水塗装されたコンクリート構造物の室内防水を示す概略断面図である。
 図2中、符号11は床スラブコンクリート、12はプライマー、13は防水層、14は層間接着剤、15は仕上げコンクリートを示す。
 防水層13は、床スラブコンクリート11の表面に、プライマー12を介して、本発明の塗膜防水材用ウレタン組成物を塗装し、その塗膜を硬化されて形成されたものである。
 以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。
[調製例1:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が2000のポリプロピレングリコール(D-2000、商品名:Diol2000、水酸基当量965~1040、OH価56±2、三井化学社製)を25.7:34.5:25.9の質量比で計量し混合した溶液に、ポリプロピレングリコール中の水分量を加味して、数平均分子量が222であり、モル当量比(NCO/OH)が2.00であるIPDI(商品名:IPDI、ヒユルス社製)を主材100質量%に対して13.8質量%となるように添加して液状混合物とした後、その液状混合物を攪拌しながら加熱し、触媒フォーメイトS-9(三井化学社製)を0.1部添加し、95℃にて2.5時間反応させて、ウレタンプレポリマーを得た。
 ウレタンプレポリマー液を冷却し、40℃になった時点で、溶剤(商品名:スワクリーン150、丸善石油化学社製)2.5質量部を攪拌しながら加えて、流動性のあるウレタンプレポリマー(主材(A)(表1に示すa))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを28.6%、T-5000にIPDIが付加したものを39.1%、D-2000にIPDIが付加したものを31.6%、IPDIモノマーを0.6%含み、イソシアネート基を2.60%含んでいた。
[調製例2:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が1000のポリプロピレングリコール(D-1000、商品名:Diol1000、水酸基当量485~515、OH価112±3、三井化学社製)を44.2:33.2:8.8の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すb))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを49.5%、T-5000にIPDIが付加したものを37.8%、D-1000にIPDIが付加したものを12.1%、IPDIモノマーを0.6%含み、イソシアネート基を2.60%含んでいた。
[調製例3:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が400のポリプロピレングリコール(D-400、商品名:Diol400、水酸基当量190~210、OH価280±10、三井化学社製)を50.0:33.2:2.9の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すc))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを55.9%、T-5000にIPDIが付加したものを37.7%、D-400にIPDIが付加したものを5.9%、IPDIモノマーを0.6%含み、イソシアネート基を2.60%含んでいた。
[調製例4:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が200のポリプロピレングリコール(D-200、商品名:PP-200、水酸基当量95~105、OH価560±15、三洋化成社製)を51.5:33.3:1.4の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すd))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを57.4%、T-5000にIPDIが付加したものを37.7%、D-200にIPDIが付加したものを4.3%、IPDIモノマーを0.6%含み、イソシアネート基を2.61%含んでいた。
[調製例5:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の1,4-ブタンジオール(1,4-BD、水酸基当量45、OH価1247、三菱化学社製)を53.9:31.6:0.6の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すe))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを60.0%、T-5000にIPDIが付加したものを35.9%、1,4-ブタンジオールにIPDIが付加したものを3.6%、IPDIモノマーを0.6%含み、イソシアネート基を2.58%含んでいた。
[調製例6:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の2-メチル1,3-プロパンジオール(2-MPD、水酸基当量45、OH価1223±20)を53.9:31.7:0.6の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すf))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを60.0%、T-5000にIPDIが付加したものを35.9%、2-メチル1,3-プロパンジオールにIPDIが付加したものを3.6%、IPDIモノマーを0.5%含み、イソシアネート基を2.60%含んでいた。
[調製例7:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の1,3-プロパンジオール(1-PD、水酸基当量45、OH価1474±20、デュポン社製)を53.9:31.7:0.5の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すg))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを60.1%、T-5000にIPDIが付加したものを35.9%、1,3-プロパンジオールにIPDIが付加したものを3.5%、IPDIモノマーを0.5%含み、イソシアネート基を2.60%含んでいた。
[調製例8:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:PP-4000、水酸基当量1865~2155、OH価28±2、三洋化成社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の1,4-ブタンジオール(1,4-BD、水酸基当量45、OH価1247、三菱化学社製)を53.9:31.7:0.6の質量比で計量し混合した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すh))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを60.2%、T-5000にIPDIが付加したものを35.8%、1,4-ブタンジオールにIPDIが付加したものを3.5%、IPDIモノマーを0.6%含み、イソシアネート基を2.60%含んでいた。
[調製例9:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:PP-4000、水酸基当量1865~2155、OH価28±2、三洋化成社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の1,4-ブタンジオール(1,4-BD、水酸基当量45、OH価1247、三菱化学社製)を44.6:37.7:1.2の質量比で計量し混合し、さらにIPDIの添加量を13.8質量%から16.4質量%に変更した以外は調製例1と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すi))を得た。
 このウレタンプレポリマーは、D-4000にIPDIが付加したものを49.8%、T-5000にIPDIが付加したものを42.8%、1,4-ブタンジオールにIPDIが付加したものを6.8%、IPDIモノマーを0.6%含み、イソシアネート基を3.07%含んでいた。
[調製例10:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、水酸基当量1865~2155、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、水酸基当量1600~1810、OH価33±2、三洋化成社製)、数平均分子量が90の1,4-ブタンジオール(1,4-BD、水酸基当量45、OH価1247、三菱化学社製)を55.5:33.1:0.5の質量比で計量し混合した溶液に、数平均分子量が174のトリレンジイソシアネート(TDI-80、三井化学社製(2,4-TDI(80%)と2,6‐TDI(20%)との異性体混合物)をモル当量比(NCO/OH)が2.00となるように10.8の質量比で添加して液状混合物とした後、その液状混合物を攪拌しながら加熱し、90℃にて2.5時間反応させて、ウレタンプレポリマーを得た。
 このウレタンプレポリマーは、D-4000にTDI-80が付加したものを60.7%、T-5000にTDI-80が付加したものを36.6%、1,4-ブタンジオールにTDI-80が付加したものを2.2%、TDI-80モノマーを0.4%含み、イソシアネート基を2.57%含んでいた。
[調製例11:主材(A)の調製] 
 数平均分子量が4000のポリプロピレングリコール(D-4000、商品名:プレミノールS-4004、OH価28±2、旭硝子社製)、数平均分子量が5000のポリプロピレングリコール(T-5000、商品名:GP-5000、OH価33±2、三洋化成社製)、数平均分子量が90の1,4-ブタンジオール(1,4-BD、OH価1247、三菱化学社製)を55.5:33.1:0.5の質量比で計量し混合した溶液に数平均分子量が174のトリレンジイソシアネート(TDI-100、三井化学社製 2,4-TDI(100%))を、モル当量比(NCO/OH)が2.00となるように10.8の質量比で添加して、調製例10と同様にして、流動性のあるウレタンプレポリマー(主材(A)(表1に示すj))を得た。
 このウレタンプレポリマーは、D-4000にTDI-100が付加したものを60.7%、T-5000にTDI-100が付加したものを36.6%、1,4-ブタンジオールにTDI-100が付加したものを2.2%、TDI-100モノマーを0.4%含み、イソシアネート基を2.56%含んでいた。
[調製例12:硬化材(B)の調製] 
 窒素雰囲気下、数平均分子量が5000のポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を16.8質量部と、DETDA(商品名:エタキュア100、アルベマール社製)を4.1質量部と、末端エステル化多官能ポリエーテル可塑剤(商品名:SK-500、三洋化成社製)を5.00質量部と、湿潤分散剤(商品名:DA-234、楠本化成社製)を0.50質量部と、顔料(商品名:VT-U08ブラック、大日精化社製)を0.10質量部と、老化防止剤(商品名:EVERSORB S2、ソート社製)を0.20質量部とを添加し、これらを攪拌して均一な液状混合物とした後、その液状混合物に、炭酸カルシウム(商品名:NS#200、白石カルシウム社製)68.4質量部を加えて、30分間、攪拌、混合した。
 次に、上記の混合物に、溶剤(商品名:スワクリーン150、丸善石油化学社製)を2.0質量部、消泡剤(商品名:LUCANT H-100、三井化学社製)0.5質量部と、硬化促進触媒(商品名:pb-24、活材ケミカル社製)0.4質量部と、商品名Mineral Sprit(モリタファインケミカル社製)2.0質量部とを加えて、10分間、攪拌、混合し、硬化材(B)(表3に示すx)を調製した。
[調製例13:硬化材(B)の調製] 
 数平均分子量が5000ポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を19.2質量部、DETDA(商品名:エタキュア100、アルベマール社製)を4.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すy)を調製した。
[調製例14:硬化材(B)の調製] 
 数平均分子量が5000のポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を21.6質量部、DETDA(商品名:エタキュア100、アルベマール社製)を3.9質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すz)を調製した。
[調製例15:硬化材(B)の調製] 
 数平均分子量が5000のポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を16.8質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すs)を調製した。
[調製例16:硬化材(B)の調製] 
 SK-500に替えて可塑剤としてDOP(商品名:DOP、田岡化学工業社製)を5.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すt-2.5)を調製した。
[調製例17:硬化材(B)の調製] 
 SK-500に替えて可塑剤としてDOP(商品名:DOP、田岡化学工業社製)を10.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すt-5.0)を調製した。
[調製例18:硬化材(B)の調製] 
 SK-500に替えて可塑剤としてDOP(商品名:DOP、田岡化学工業社製)を15.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すt-7.5)を調製した。
[調製例19:硬化材(B)の調製] 
 調製例12と同様の組成物硬化材(B)(表3に示すu-2.5)を再調製した。
[調製例20:硬化材(B)の調製] 
 末端エステル化多官能ポリエーテル可塑剤(商品名:SK-500、三洋化成社製)を10.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すu-5.0)を調製した。
[調製例21:硬化材(B)の調製] 
 末端エステル化多官能ポリエーテル可塑剤(商品名:SK-500、三洋化成社製)を15.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すu-7.5)を調製した。
[調製例22:硬化材(B)の調製] 
 DETDA(商品名:エタキュア100、アルベマール社製)を3.7質量部、水を0.07質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すv)を調製した。
[調製例23:硬化材(B)の調製] 
 DETDA(商品名:エタキュア100、アルベマール社製)を3.0質量部、水を0.13質量部添加し、さらに水を0.1質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すw)を調製した。
[調製例24:硬化材(B)の調製] 
 数平均分子量が5000のポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を19.8質量部、DETDA(商品名:エタキュア100、アルベマール社製)を4.9質量部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すr)を調製した。
[調製例25:硬化材(B)の調製] 
 触媒フォーメイトS-9(三井化学社製)を0.1部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すm)を調製した。
[調製例26:硬化材(B)の調製] 
 数平均分子量が5000のポリプロピレングリコール(商品名:FA703、OH価33±2、三洋化成社製)を1.7質量部添加し、さらに触媒フォーメイトS-9(三井化学社製)を0.1部添加した以外は調製例12と同様にして、硬化材(B)(表3に示すn)を調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実験例1]
「塗膜防水材用ウレタン組成物の調製」 
 上記の主材(A)(表1に示すa)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加し、1,000rpmにて約3分間混合し、真空脱泡した後、離型剤を塗布したガラス板に流し込み、実験例1の塗膜防水材用ウレタン組成物を調製した。
 得られた塗膜防水材用ウレタン組成物は、主材(A)と硬化剤(B)との反応において、NCOとNHとがウレア結合を形成していた。
「評価」 
 実験例1の塗膜防水材用ウレタン組成物を、23℃で24間硬化させた後、60℃で24時間加熱して、硬化させた後、JIS A 6021 建築用塗膜防水材、ウレタン塗膜防水材に準拠する引張試験用の試料と、JIS A 6021 建築用塗膜防水材、ウレタン塗膜防水材に準拠する引裂き強さ試験用の試料とを作製した。
 引張試験用の試料を用いて、JIS A 6021 建築用塗膜防水材、ウレタン塗膜防水材に準拠する方法により、引張強さと標線間伸び率を測定した。結果を表4に示す。
 また、引裂き強さ試験用の試料を用いて、JIS A 6021 建築用塗膜防水材、ウレタン塗膜防水材に準拠する方法により、引裂き強さを測定した。結果を表4に示す。
[実験例2] 
 上記の主材(A)(表1に示すb)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例2の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例2の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例3] 
上記の主材(A)(表1に示すc)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例3の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例3の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例4] 
 上記の主材(A)(表1に示すd)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例4の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例4の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例5] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すx)100質量部の割合で添加した以外は実験例1と同様にして、実験例5の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例5の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例6] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例6の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例6の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例7] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すz)100質量部の割合で添加した以外は実験例1と同様にして、実験例7の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例7の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例8] 
 上記の主材(A)(表1に示すf)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例8の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例8の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例9] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すy)100質量部の割合で添加した以外は実験例1と同様にして、実験例9の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例9の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例10] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すs)100質量部の割合で添加した以外は実験例1と同様にして、実験例10の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例10の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例11] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すt-2.5)100質量部の割合で添加した以外は実験例1と同様にして、実験例11の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例11の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表4に示す。
[実験例12] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すt-5.0)100質量部の割合で添加した以外は実験例1と同様にして、実験例12の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例12の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例13] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すt-7.5)100質量部の割合で添加した以外は実験例1と同様にして、実験例13の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例13の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例14] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すu-2.5)100質量部の割合で添加した以外は実験例1と同様にして、実験例14の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例14の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例15] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すu-5.0)100質量部の割合で添加した以外は実験例1と同様にして、実験例15の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例15の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例16] 
 上記の主材(A)(表1に示すg)100質量部に対して、上記の硬化材(B)(表3に示すu-7.5)100質量部の割合で添加した以外は実験例1と同様にして、実験例16の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例16の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例17] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すv)100質量部の割合で添加した以外は実験例1と同様にして、実験例17の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例17の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例18] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すw)100質量部の割合で添加した以外は実験例1と同様にして、実験例18の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例18の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例19] 
 上記の主材(A)(表1に示すh)100質量部に対して、上記の硬化材(B)(表3に示すx)100質量部の割合で添加した以外は実験例1と同様にして、実験例19の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例19の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例20] 
 上記の主材(A)(表1に示すi)100質量部に対して、上記の硬化材(B)(表3に示すr)100質量部の割合で添加した以外は実験例1と同様にして、実験例20の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例20の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例21] 
 上記の主材(A)(表2に示すj)100質量部に対して、上記の硬化材(B)(表3に示すm)100質量部の割合で添加した以外は実験例1と同様にして、実験例21の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例21の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
[実験例22] 
 上記の主材(A)(表2に示すl)100質量部に対して、上記の硬化材(B)(表3に示すn)100質量部の割合で添加した以外は実験例1と同様にして、実験例22の塗膜防水材用ウレタン組成物を調製した。
 また、実験例1と同様にして、実験例22の塗膜防水材用ウレタン組成物に関する引張強さと標線間伸び率、および引裂き強さを測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4および表5の結果から、実験例5,6,7,9,10,11,12,14,15,16,17,18の塗膜防水材用ウレタン組成物は、引張強さと標線間伸び率、および引裂き強さに優れる防水塗膜を形成できることを確認できた。
 なお、本実験例では、引張強さが10.0N/mm以上、引裂き強さが30.0N/mm以上、標線間伸び率が450%以上のものを耐ブリード性に優れる塗膜防水材用ウレタン組成物とした。
[調製例27:硬化材(B)の調製] 
 溶剤(商品名:スワクリーン150、丸善石油化学社製)を4.0質量部添加した以外は調製例12と同様にして、硬化材(B)(表6に示すx-2)を調製した。
[調製例28:硬化材(B)の調製] 
 溶剤(商品名:スワクリーン150、丸善石油化学社製)を4.0質量部、pb-24(商品名:pb-24、活材ケミカル社製)を0.1質量部添加した以外は調製例12と同様にして、硬化材(B)(表6に示すx-3)を調製した。
[調製例29:硬化材(B)の調製] 
 溶剤(商品名:スワクリーン150、丸善石油化学社製)を4.0質量部添加し、pb-24(商品名:pb-24、活材ケミカル社製)を添加しなかった以外は調製例12と同様にして、硬化材(B)(表6に示すx-4)を調製した。
[調製例30:硬化材(B)の調製] 
 pb-24(商品名:pb-24、活材ケミカル社製)を添加しなかった以外は調製例12と同様にして、硬化材(B)(表6に示すx-5)を調製した。
[実験例23]
「塗膜防水材用ウレタン組成物の可使時間の評価」 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すx)100質量部の割合で添加し、BH型粘度計を用い5分毎に20回転/分で粘度を測定することにより、実験例23の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例24] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表6に示すx-2)100質量部の割合で添加した以外は実験例23と同様にして、実験例24の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例25] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表6に示すx-3)100質量部の割合で添加した以外は実験例23と同様にして、実験例25の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例26] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表6に示すx-4)100質量部の割合で添加した以外は実験例23と同様にして、実験例26の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例27] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表6に示すx-5)100質量部の割合で添加した以外は実験例23と同様にして、実験例27の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例28] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すv)100質量部の割合で添加した以外は実験例23と同様にして、実験例28の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例29] 
 上記の主材(A)(表1に示すe)100質量部に対して、上記の硬化材(B)(表3に示すw)100質量部の割合で添加した以外は実験例23と同様にして、実験例29の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例30] 
 上記の主材(A)(表2に示すj)100質量部に対して、上記の硬化材(B)(表6に示すx-5)100質量部の割合で添加した以外は実験例23と同様にして、実験例30の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
[実験例31] 
 上記の主材(A)(表2に示すl)100質量部に対して、上記の硬化材(B)(表6に示すx-5)100質量部の割合で添加した以外は実験例23と同様にして、実験例31の塗膜防水材用ウレタン組成物の可使時間を評価した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表7の結果から、実験例25~29の塗膜防水材用ウレタン組成物は、可使時間が長く手塗り放水の施工に適していることが確認された。特に、実験例28と実験例29は可使時間が長く、夏期の手塗り施工に適している。
 本発明の塗膜防水材用ウレタン組成物は、汎用的な高伸長形ウレタン塗膜防水材(旧1類)と同じ施工性でありながら、高伸長形ウレタン塗膜防水材(旧1類)の伸び率を有し、高強度形ウレタン塗膜防水材の強度を有していることから、一般屋根用として用いられる高伸長形ウレタン塗膜防水材(旧1類)用途から、屋上駐車場用の露出防水として用いられている高強度形まで、用途に応じた物性のものを提供することができる。
 また、可塑剤によるトップコートの耐候性低下を招かないことから、メンテナンスが容易でない物件や部位など、長期の耐久性を求められる用途に提供することができる。
 また、アスファルト低溜分の移行による影響を受けることがないため、露出アスファルト防水工法などの改修や補修用途にも、塗膜防水材として提供することができる。現在、特定化学物質であるTDIやMOCAを使用しない耐水性、耐温水性が高いウレタン塗膜防水材が望まれている。
 本発明の塗膜防水材用ウレタン組成物は、アスファルトが均一に分散するSP値を有する疎水性であるので、耐水性が求められるコンクリートやモルタルが打設される浴室や厨房などの用途にも用いることができる。
 また、本発明の塗膜防水材用ウレタン組成物は、労働安全衛生法の特定化学物質を全く含まないので、製造工程や土木建築現場でこれらを取扱う作業者の健康への影響も低減される。
1・・・屋根部コンクリート、
2・・・プライマー、
3・・・防水層、
4・・・トップコート、
11・・・床スラブコンクリート、
12・・・プライマー、
13・・・防水層、
14・・層間接着剤、
15・・・仕上げコンクリート。

Claims (3)

  1.  水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールおよび短鎖の多価アルコールと、イソホロンジイソシアネートとを反応させて生成したイソホロンジイソシアネートプレポリマーとを配合してなる主材(A)と、
     ジエチルトルエンジアミンと、水と、水酸基を2個以上有する水酸基当量1,500以上のポリプロピレングリコールと、末端エステル化多官能ポリエーテルまたはポリオキシアルキレンモノアルキルエーテル酢酸エステル系可塑剤とを含む硬化材(B)とを少なくとも含有してなることを特徴とする塗膜防水材用ウレタン組成物。
  2.  前記ポリプロピレングリコールは、ローモノマータイプであることを特徴とする請求項1に記載塗膜防水材用ウレタン組成物。
  3.  前記多価アルコールは、エチレングリコール、ジプロピレングリコール、1,3-プロパンジオール、2-メチル1,3-プロパンジオール、1,4-ブタンジオール、3-メチル1,5-ペンタンジオール、1,6-ヘキサンジオール、グリセリン、およびトリメチロールプロパンからなるグループから選択される少なくとも1種であることを特徴とする請求項1または2に記載の塗膜防水材用ウレタン組成物。
PCT/JP2014/063741 2013-05-24 2014-05-23 塗膜防水材用ウレタン組成物 WO2014189140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14801396.4A EP3006524A4 (en) 2013-05-24 2014-05-23 Urethane composition for coating film waterproof material
US14/891,543 US10066120B2 (en) 2013-05-24 2014-05-23 Urethane composition for coating film waterproof material
AU2014269389A AU2014269389B2 (en) 2013-05-24 2014-05-23 Urethane composition for coating film waterproof material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-110108 2013-05-24
JP2013110108A JP6077932B2 (ja) 2013-05-24 2013-05-24 ノンブリード高強度・高伸張形手塗ウレタン塗膜防水材組成物

Publications (1)

Publication Number Publication Date
WO2014189140A1 true WO2014189140A1 (ja) 2014-11-27

Family

ID=51933690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063741 WO2014189140A1 (ja) 2013-05-24 2014-05-23 塗膜防水材用ウレタン組成物

Country Status (5)

Country Link
US (1) US10066120B2 (ja)
EP (1) EP3006524A4 (ja)
JP (1) JP6077932B2 (ja)
AU (1) AU2014269389B2 (ja)
WO (1) WO2014189140A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845519A (zh) * 2015-05-27 2015-08-19 湖州大周高分子材料有限公司 聚氨酯防水涂料
US20170138053A1 (en) * 2015-11-12 2017-05-18 Industrial Waterproof Systems Ltd. Inverted roofing system and method
JP2017206680A (ja) * 2016-04-21 2017-11-24 有限会社ヨシカネ ポリウレア形成組成物、ポリウレア塗膜及び塗膜形成方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142084A (ja) * 2015-02-04 2016-08-08 多摩防水技研株式会社 ウレタン防水層の施工法および断熱防水材
JP6706887B2 (ja) * 2015-08-28 2020-06-10 アイシーケイ株式会社 高強度2液型環境対応手塗り用ウレタン防水材組成物およびウレタン防水工法
JP6799390B2 (ja) * 2016-06-03 2020-12-16 アイシーケイ株式会社 高抗張積2液型環境対応手塗り用ウレタン防水材組成物およびウレタン防水工法
JP6879712B2 (ja) * 2016-11-04 2021-06-02 アイシーケイ株式会社 2液型環境対応手塗り用ウレタン防水材組成物およびウレタン防水工法
WO2018100685A1 (ja) * 2016-11-30 2018-06-07 日立化成株式会社 二液硬化型ウレタン系組成物
JP6914127B2 (ja) * 2017-07-14 2021-08-04 アイシーケイ株式会社 2液常温硬化型環境対応手塗り用ウレタン防水材組成物およびウレタン防水工法
ES2927656T3 (es) 2018-05-11 2022-11-10 Baxter Int Sistema, aparatos y métodos de asociación retroactiva de datos en dispositivos médicos
JP7123004B2 (ja) * 2018-05-16 2022-08-22 Ube三菱セメント株式会社 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
CN112409909B (zh) * 2018-08-29 2021-09-07 江苏凯伦建材股份有限公司 一种快干型无溶剂抗流挂聚氨酯防水涂料的制备方法
PE20211913A1 (es) * 2018-11-14 2021-09-28 Sika Tech Ag Composicion curable para sustratos alcalinos
CN110003795B (zh) * 2019-03-04 2021-06-29 大禹九鼎新材料科技有限公司 一种免加热沥青基非固化防水涂料及其制备和施工方法
JP7020449B2 (ja) * 2019-03-28 2022-02-16 宇部興産株式会社 コーティング用樹脂組成物、硬化膜、コンクリートコーティング構造体、及びコンクリート構造体の表面コーティング方法
CN110646592A (zh) * 2019-10-31 2020-01-03 浙江鲁班建材科技股份有限公司 一种反应式冷刮非固化防水涂料的性能测试方法
CN112143307A (zh) * 2020-01-23 2020-12-29 四川新三亚建材科技股份有限公司 水性自愈性沥青防水涂料及其制备方法
CN115491114A (zh) * 2022-10-20 2022-12-20 衡阳拓创聚合新材料有限公司 一种硅烷改性单组分聚脲防水材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298896A (ja) * 1993-02-18 1994-10-25 Asahi Glass Co Ltd スプレー硬化用低粘度組成物
JP2001329042A (ja) * 2000-05-25 2001-11-27 Nippon Polyurethane Ind Co Ltd 高反発高振動吸収性軟質ポリウレタンフォームの製造方法
JP2003313538A (ja) * 2002-04-22 2003-11-06 I C K Kk ポリウレタン塗膜防水材
JP3592479B2 (ja) 1997-03-14 2004-11-24 保土谷化学工業株式会社 常温硬化型ポリウレタン防水材の製造方法
JP2011080018A (ja) * 2009-10-09 2011-04-21 Dyflex Corp 手塗り施工用塗工剤

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8725217D0 (en) * 1987-10-28 1987-12-02 Ici Plc Polyisocyanate prepolymer
JPH01275617A (ja) 1988-04-27 1989-11-06 Sanyo Chem Ind Ltd ポリウレタン樹脂の製法および制振材
JPH04213367A (ja) 1990-11-05 1992-08-04 Sanyo Chem Ind Ltd 防水シートおよび接着剤
JPH04292683A (ja) 1991-03-20 1992-10-16 Sanyo Chem Ind Ltd 湿気硬化型シーラント
US5824738A (en) * 1994-10-07 1998-10-20 Davidson Textron Inc. Light stable aliphatic thermoplastic urethane elastomers and method of making same
JP3835858B2 (ja) * 1996-06-28 2006-10-18 保土谷化学工業株式会社 ポリウレタン塗膜材の製造方法
JP2001072862A (ja) 1999-06-30 2001-03-21 Nichireki Co Ltd アスファルト組成物とその製造方法並びに用途
JP4696190B2 (ja) 2000-12-06 2011-06-08 三井化学株式会社 路面補修用瀝青組成物及びそれを用いた路面の補修法
JP2005048118A (ja) * 2003-07-31 2005-02-24 Asahi Glass Polyurethane Material Co Ltd ポリウレタン系塗膜用組成物
JP2007009102A (ja) * 2005-07-01 2007-01-18 Raito Black:Kk 芳香族鎖長延長剤を含有する2液型ポリウレア樹脂形成用組成物
JP5669813B2 (ja) * 2011-12-07 2015-02-18 アイシーケイ株式会社 2液型環境対応ウレタン防水材組成物
KR101197201B1 (ko) * 2012-04-09 2012-11-05 (주)새론테크 방식 ? 방청성과 내화학성 및 강인성이 우수한 속건성 폴리우레아 도료 조성물 및 이를 이용한 시공방법
WO2013163799A1 (zh) 2012-05-02 2013-11-07 烟台万华聚氨酯股份有限公司 沥青用聚氨酯改性剂、使用该改性剂的改性沥青及其用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06298896A (ja) * 1993-02-18 1994-10-25 Asahi Glass Co Ltd スプレー硬化用低粘度組成物
JP3592479B2 (ja) 1997-03-14 2004-11-24 保土谷化学工業株式会社 常温硬化型ポリウレタン防水材の製造方法
JP2001329042A (ja) * 2000-05-25 2001-11-27 Nippon Polyurethane Ind Co Ltd 高反発高振動吸収性軟質ポリウレタンフォームの製造方法
JP2003313538A (ja) * 2002-04-22 2003-11-06 I C K Kk ポリウレタン塗膜防水材
JP2011080018A (ja) * 2009-10-09 2011-04-21 Dyflex Corp 手塗り施工用塗工剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Building Construction Standard Specification and explanation JASS8, waterproof construction"
"Coating Film Waterproof Material for Architecture", JIS A 6021, 2006
"Public Building Construction Standard Specification", 2007
See also references of EP3006524A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104845519A (zh) * 2015-05-27 2015-08-19 湖州大周高分子材料有限公司 聚氨酯防水涂料
US20170138053A1 (en) * 2015-11-12 2017-05-18 Industrial Waterproof Systems Ltd. Inverted roofing system and method
US10081946B2 (en) * 2015-11-12 2018-09-25 Industrial Waterproof Systems Ltd. Inverted roofing system and method
JP2017206680A (ja) * 2016-04-21 2017-11-24 有限会社ヨシカネ ポリウレア形成組成物、ポリウレア塗膜及び塗膜形成方法

Also Published As

Publication number Publication date
EP3006524A4 (en) 2017-03-01
JP2014227522A (ja) 2014-12-08
US10066120B2 (en) 2018-09-04
US20160096976A1 (en) 2016-04-07
AU2014269389A1 (en) 2015-11-19
EP3006524A1 (en) 2016-04-13
AU2014269389B2 (en) 2017-06-29
JP6077932B2 (ja) 2017-02-08

Similar Documents

Publication Publication Date Title
WO2014189140A1 (ja) 塗膜防水材用ウレタン組成物
US6271305B1 (en) Bituminous polyurethane interpenetrating elastomeric network compositions as coatings and sealants for roofing and other applications
KR101310615B1 (ko) 폴리우레탄 도막 방수재 조성물 및 그 조성물을 이용한 스프레이형 도장방법
JP2017206680A (ja) ポリウレア形成組成物、ポリウレア塗膜及び塗膜形成方法
WO2014189141A1 (ja) アスファルト・ウレタン組成物
JP6799390B2 (ja) 高抗張積2液型環境対応手塗り用ウレタン防水材組成物およびウレタン防水工法
CN106488936A (zh) 用于屋顶的液体施用的防水膜
JP2003524693A (ja) 亀裂封止コーティングシステム用配合剤における水性ポリウレタン分散液の使用
CN108368232A (zh) 具有低增塑剂迁移的聚氨酯组合物
KR102220289B1 (ko) 구조물의 도장 방법
JP2019199545A (ja) 樹脂組成物、硬化物、土木建築構造物、及びコーティング方法
KR20110131717A (ko) 친환경 탄성접착제용 습기경화형 폴리우레탄 수지 조성물 및 그 제조방법
KR20150110490A (ko) 지붕용의 액체 도포 방수막
US9365743B2 (en) Stable, ready-to-use liquid polyurethane resin composition and uses thereof
JP2019199544A (ja) 樹脂組成物、硬化物、土木建築構造物、及びコーティング方法
JP6939699B2 (ja) 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP2019199541A (ja) 樹脂組成物、樹脂組成物の製造方法、硬化物、土木建築構造物、及びコーティング方法
JP4562415B2 (ja) ウレタン防水構造とこれに用いる湿気硬化型ウレタンプライマー。
JP7123004B2 (ja) 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP7020449B2 (ja) コーティング用樹脂組成物、硬化膜、コンクリートコーティング構造体、及びコンクリート構造体の表面コーティング方法
JP6939698B2 (ja) 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP7075813B2 (ja) 土木建築用コーティング樹脂組成物、硬化物、土木建築構造物、及び土木建築構造物のコーティング方法
JP4350140B2 (ja) 雑草の生育を抑制する雑草生育抑制工法及び雑草生育抑制用組成物
JP4051638B2 (ja) ウレタン組成物及びそれを含む防水材
KR101704438B1 (ko) 무황변 타입의 1액형 우레탄 상도 도료 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14801396

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14891543

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014269389

Country of ref document: AU

Date of ref document: 20140523

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014801396

Country of ref document: EP