WO2014182094A1 - 인쇄회로기판의 제조방법 및 인쇄회로기판 - Google Patents

인쇄회로기판의 제조방법 및 인쇄회로기판 Download PDF

Info

Publication number
WO2014182094A1
WO2014182094A1 PCT/KR2014/004109 KR2014004109W WO2014182094A1 WO 2014182094 A1 WO2014182094 A1 WO 2014182094A1 KR 2014004109 W KR2014004109 W KR 2014004109W WO 2014182094 A1 WO2014182094 A1 WO 2014182094A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
layer
plating
forming
hole
Prior art date
Application number
PCT/KR2014/004109
Other languages
English (en)
French (fr)
Inventor
정광춘
윤광백
한영구
윤동국
김수한
Original Assignee
주식회사 잉크테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 잉크테크 filed Critical 주식회사 잉크테크
Priority to CN201480038435.3A priority Critical patent/CN105379436B/zh
Publication of WO2014182094A1 publication Critical patent/WO2014182094A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4038Through-connections; Vertical interconnect access [VIA] connections
    • H05K3/4053Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques
    • H05K3/4069Through-connections; Vertical interconnect access [VIA] connections by thick-film techniques for via connections in organic insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/425Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern
    • H05K3/427Plated through-holes or plated via connections characterised by the sequence of steps for plating the through-holes or via connections in relation to the conductive pattern initial plating of through-holes in metal-clad substrates

Definitions

  • the present invention relates to a method of manufacturing a printed circuit board and a printed circuit board, and more particularly, to a method of manufacturing a printed circuit board capable of forming a circuit pattern having precise and excellent conduction characteristics and at the same time reducing raw materials and shortening processes. It relates to a printed circuit board.
  • a printed circuit board is a board-type electronic component that is electrically mounted by mounting various electronic components.
  • Printed circuit boards are largely divided into rigid printed circuit boards and flexible printed circuit boards according to flexible materials of substrates, and recently, flexible composite printed circuit boards have also appeared.
  • printed circuit boards there are various types of printed circuit boards, such as single layer, double sided, and multilayer type, depending on the circuit pattern layer of the wiring structure.
  • the printed circuit board is designed and manufactured according to the structure and function of the electronic device and applied to the product.
  • flexible printed circuit boards enable the miniaturization and light weight of electronic products, and have excellent flexibility and flexibility, which allows the flexible printed circuit board to freely connect two non-adjacent circuits or components while serving as a printed circuit board. It is widely used in general industrial machinery including medical equipment, military equipment, as well as electronic devices such as mobile phones, MP3s, camcorder printers and displays. In particular, as the number of products requiring bending characteristics of circuit boards such as mobile phones, camcorders, notebooks, displays, etc. increases, the demand for flexible circuit boards is increasing.
  • a typical method for manufacturing a double-sided printed circuit board of such a printed circuit board will be described using a double-sided flexible printed circuit board as an example.
  • a double-sided copper clad laminate (CCL) film fabric in which thin copper (Cu) is laminated on both sides of an insulating film such as a polyimide film or a polyester film, the copper
  • a via hole is formed at a predetermined position of the CCL film by using a drill or the like, and the via hole is plated so that the copper (Cu) layers are electrically connected to each other. To be connected.
  • each copper (Cu) layer is processed into a predetermined circuit pattern through exposure, development, etching, and peeling process.
  • a flexible circuit board will be manufactured.
  • copper foil laminated film is divided into 3-layer fabric and 2-layer fabric. In the case of 3-layer coating an adhesive layer on a polyimide film and laminating copper foil, it is not easy to control the thickness of the adhesive layer and copper foil layer in the middle.
  • Thin film type double-sided printed circuit boards are difficult to cope with, and in case of 2-layer fabrics, casting method of casting polyimide varnish on copper foil and ionizing target metal using vacuum plasma Ionized) sputtering (sputtering) method is manufactured in the case of the casting method requires a separate heating device and may cause oxidation problems of copper foil during high temperature process. In addition, the thickness control of the copper foil layer is not easy.
  • the physical strength is weak compared to other manufacturing methods, and in particular, there is a disadvantage that environmental pollution is caused by using chromium or cobalt.
  • the copper foil layer, the nickel layer, and the chromium layer must be separately processed. However, residuals of the nickel layer remain to cause electrical defects.
  • the conventional manufacturing method has the advantage that the fine pattern can be formed, but the manufacturing process is complicated, the raw material loss is severe, the problem of environmental pollution has emerged. Recently, due to the development of printed electronic technology, a method of manufacturing a printed circuit board using a printing method has been developed. However, the current printing technology has a limitation in printed wiring width.
  • the manufacturing method forms a through hole in the portion to be electrically connected between the front and back surfaces of the film substrate, and deposits a metal foil on the entire surface of one surface of the film substrate, and removes the metal foil by an etching process in a predetermined pattern.
  • a wiring conductor portion is formed, and a closure plate portion that blocks a portion of the through hole is formed.
  • Conductive paste is deposited on the opposite side of the film substrate by the printing method to form the printed wiring conductor portion, and the conductive paste is filled in the through-holes, and the wiring conductor portion formed by the etching process and the printed wiring conductor portion formed by the printing method are electrically
  • the present invention relates to a method for manufacturing a double-sided flexible printed circuit board by connecting.
  • the conductive paste must be filled with the conductive paste at the same time as the conductive paste is printed by the printing method, but the conductive paste filled with the through hole to form the bumps is a printing method for forming the printed wiring conductor part.
  • Conductive paste which is extremely limited and conversely easy to form printed wiring, is filled in the through-holes and is difficult to bump.
  • the flexible printed circuit board manufactured by the above method has a disadvantage in that a connection part formed in the through hole is likely to be disconnected due to shrinkage or cracking even under thermal or physical impact, and in the process, the conductive paste filled in the through hole leaks.
  • an object of the present invention is to solve such a conventional problem, and implements the circuit pattern through the conventional photolithography process of the limitation and electrical characteristics of the precision circuit pattern implementation in the conventional circuit forming process due to the printing method.
  • the present invention provides a method of manufacturing a printed circuit board and a printed circuit board which can improve raw materials, reduce process, and improve productivity while improving precision and electrical characteristics.
  • the plating may include electroless plating the inner wall surfaces of the first coating layer, the second coating layer, and the through hole; And electroplating the inner wall surface of the electroless plated through hole to form a plating layer.
  • the forming of the conductive layer may include filling conductive ink in the through hole; And heat treating the conductive ink filled in the through hole to contract to form a conductive layer along the inner wall surface of the through hole.
  • the temporary finishing layer for closing the through hole by bonding a temporary finishing layer to at least one of the first coating layer or the second coating layer so that the conductive ink filled in the conductive layer forming step does not escape from the inside of the through hole. Conjugation step; And removing the temporary layer after removing the conductive layer forming step.
  • the drilling step may include forming a through hole by drilling the reinforcing layer, the first coating layer, the substrate, and the second coating layer. have.
  • the forming of the conductive layer may include filling conductive ink in the through hole; The through-holes contracted by the conductive ink filled in the through-holes to form a conductive layer along the inner wall surface of the through-holes so that the through-holes are electrically connected to the plating layer plated on the first coating layer and the plated plated on the second coating layer. And heat treating the conductive ink therein.
  • the forming of the second coating layer may include coating the substrate with a conductive ink material and filling the inside of the through hole with conductive ink; And heat treating the conductive ink filled in the through hole to contract to form a conductive layer along the inner wall surface of the through hole.
  • a perforating step of forming a through hole by perforating the substrate Forming a first coating layer on the one surface of the substrate with conductive ink and filling at least a portion of the inside of the through hole with the conductive ink; Forming a second coating layer with a conductive ink on the other surface of the substrate and simultaneously filling the inside of the through hole with conductive ink so that the first coating layer and the second coating layer are connected to each other;
  • a circuit pattern may be formed on the first coating layer and the plating layer plated thereon or the second coating layer and the plating layer plated thereon.
  • a circuit pattern may be formed by printing a conductive ink on the substrate in the first coating layer forming step or the second coating layer forming step.
  • the method may further include a circuit pattern forming step of forming the circuit pattern by patterning the first coating layer or the second coating layer through photolithography.
  • the method may further include a circuit pattern forming step of forming a circuit pattern by patterning the first coating layer and the plating layer stacked thereon or the second coating layer and the plating layer stacked thereon through photolithography after the plating step.
  • a protective layer removing step of removing the protective layer after the circuit pattern forming step may further include.
  • a substrate through-hole is formed; A first coating layer formed on one surface of the substrate; A second coating layer formed on the other surface of the substrate; It is achieved by a printed circuit board comprising a plating layer which is plated on the inner wall surface of the first coating layer, the second coating layer and the through hole, connecting the first coating layer and the second coating layer.
  • a substrate through-hole is formed; A first coating layer formed on one surface of the substrate; A second coating layer formed on the other surface of the substrate; A conductive layer formed on an inner wall surface of the through hole and interconnecting the first coating layer and the second coating layer; It is achieved by a printed circuit board comprising a; plating layer to be plated on the first coating layer, the second coating layer.
  • the plating layer may be plated on the first coating layer, the second coating layer and the conductive layer.
  • a circuit pattern may be formed on the first coating layer and the plating layer plated thereon or the second coating layer and the plating layer plated thereon.
  • a method for manufacturing a printed circuit board which can produce a printed circuit board having precision and excellent conductivity.
  • the layers formed on both sides of the substrate may be electrically connected to each other.
  • one end of the through hole may be finished with a temporary closing layer to prevent the conductive ink filled through the other end opened from flowing out.
  • damage to the circuit pattern that is already formed may be prevented by patterning the remaining coating layer in a state in which the protective layer is bonded only to the coating layer in which the circuit pattern is formed among the first coating layer or the second coating layer.
  • the conductive ink and the plating layer can be simultaneously patterned through a photolithography process, thereby shortening the process.
  • the first coating layer or the second coating layer on the substrate by printing a conductive ink, it is possible to easily form a circuit pattern without additional processing.
  • a circuit pattern may be fabricated by selectively using a photolithography process or a printing process, the advantages of the photolithography process or the printing process may be simultaneously realized, thereby establishing an efficient process.
  • FIG. 1 schematically shows a process flow of a method of manufacturing a printed circuit board according to the first embodiment of the present invention.
  • FIG. 2 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the second embodiment of the present invention.
  • FIG. 3 schematically illustrates a process flow of a modification of the method of manufacturing a printed circuit board according to the second embodiment of the present invention.
  • Figure 4 schematically shows the process flow of the method of manufacturing a printed circuit board according to the third embodiment of the present invention
  • FIG. 5 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to a fourth embodiment of the present invention.
  • FIG. 6 schematically shows a process flow of a method of manufacturing a printed circuit board according to the fifth embodiment of the present invention.
  • FIG. 7 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the sixth embodiment of the present invention.
  • FIG. 8 schematically shows a process flow of a modification of the method of manufacturing a printed circuit board according to the sixth embodiment of the present invention.
  • FIG. 9 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the seventh embodiment of the present invention.
  • FIG. 10 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to an eighth embodiment of the present invention.
  • FIG. 1 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the first embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S100) includes forming a first coating layer (S110), forming a second coating layer (S120), and drilling (S130). And a plating step (S140) and a circuit pattern forming step (S150).
  • the first coating layer forming step (S110) and the second coating layer forming step (S120) are steps of coating the first coating layer 20 and the second coating layer 30 on the top and bottom surfaces of the substrate 10, respectively.
  • the substrate 10 used in this step may be a polyimide film (PI), but is not limited thereto.
  • a conductive ink is coated on the prepared upper surface of the substrate 10 to form the first coating layer 20 and the second coating layer 30.
  • silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), or the like is used as the conductive ink, and any material having excellent electrical conductivity is not limited thereto.
  • the first coating layer 20 and the second coating layer 30 on the substrate 10 may be flexo, flat screen, gravure, slot die, comma coating, or rotary.
  • the coatings can be coated in a manner well known in the art such as screens.
  • the first coating layer 20 and the second coating layer 30 coated on the substrate 10 by the above-described various processes can be cured and baked and contracted through a heat treatment process,
  • the thickness of the first coating layer 20 and the second coating layer 30 can be adjusted from several tens of nanometers to several tens of micro scales, and the thicknesses of the first coating layer 20 and the second coating layer 30 have surface flatness and electrical characteristics. It is preferable to consider and decide.
  • the drilling step (S130) is a step of forming a through hole 11 completely penetrating the substrate 10 and the first coating layer 20 and the second coating layer 30 stacked on both surfaces thereof.
  • the drilling step (S130) is performed through a process known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the plating step (S140) is a step of forming the plating layer 40 by plating the inner wall surface of the through hole 11 and the outer surfaces of the first coating layer 20 and the second coating layer 30.
  • a plating pretreatment process is performed.
  • the electroless copper plating film 41 is formed through the electroless copper plating in the region where the conductive thin film is formed through the electroless plating.
  • the circuit pattern forming step (S150) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon through a photo lithography process which is well known in the art. .
  • the circuit pattern forming step (S150) is described as being performed after the plating step (S140), but in the modification of the present embodiment, the first coating layer 20 or the second is performed after the drilling step (S130) process. After the circuit pattern is formed on the coating layer 30, the printed circuit board may be manufactured by performing the plating step (S140).
  • the conductive ink is printed by a printing process in the first coating layer forming step S110 or the second coating layer forming step S120 without performing a separate circuit pattern forming step. Circuit patterns may also be formed.
  • any one of the first coating layer 20 or the second coating layer 30 is performed by a printing process to form a circuit pattern, and the other coating layer is a patterning process through a separate circuit pattern forming step. May be performed to form a circuit pattern.
  • a printed circuit board can be manufactured by using a direct printing process for forming a circuit pattern simultaneously with coating like inkjet printing or an indirect printing process for patterning a circuit pattern after coating such as a lithography process. Efficient process construction is possible.
  • FIG. 2 schematically shows a process flow of a method of manufacturing a printed circuit board according to the second embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S200) includes forming a first coating layer (S210), forming a second coating layer (S220), and drilling (S230). And a conductive layer forming step (S240), a plating step (S250), and a circuit pattern forming step (S260).
  • the first coating layer forming step (S210) and the second coating layer forming step (S220) are steps of coating the first coating layer 20 and the second coating layer 30 on the top and bottom surfaces of the substrate 10, respectively.
  • a polyimide film (PI) is used, but is not limited thereto.
  • Conductive ink is coated on both surfaces of the prepared substrate 10 to form the first coating layer 20 and the second coating layer 30.
  • silver (Ag), copper (Cu), nickel (Ni), aluminum (Al), or the like is used as the conductive ink, and any material having excellent electrical conductivity is not limited thereto.
  • first coating layer 20 and the second coating layer 30 formed on the substrate 10 in this step are flexo, flat screen, gravure, slot die, comma coating. It may be coated in a known manner, such as a rotary screen.
  • the first coating layer 20 and the second coating layer 30 coated on the substrate 10 by the above-described various processes can be cured and baked and contracted through a heat treatment process,
  • the thickness of the first coating layer 20 and the second coating layer 30 can be adjusted from several tens of nanometers to several tens of microscales. Meanwhile, the thicknesses of the first coating layer 20 and the second coating layer 30 may be determined in consideration of surface flatness and electrical characteristics.
  • the drilling step (S230) is a step of forming a through hole 11 penetrating completely through the substrate 10 and the first coating layer 20 and the second coating layer 30 stacked on both surfaces thereof.
  • the drilling step (S230) is performed through a process known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the conductive layer forming step (S240) is a step of forming the conductive layer 50 on the inner wall surface of the through hole 11.
  • the conductive ink of the same material as the first coating layer 20 and the second coating layer 30 is filled in the through hole 11 (S241).
  • the conductive ink inside the through hole 11 may be filled enough to electrically connect the first coating layer 20 and the second coating layer 30 to each other.
  • the conductive ink used in this step has been described as being the same as the material used in the first coating layer 20 and the second coating layer 30, it is not limited to the same, any one of a material having excellent electrical conductivity. You can select and use.
  • the conductive ink is heat-treated so that the conductive ink shrinks to form the conductive layer 50 formed along the inner wall of the through hole 11 (S242). ).
  • the conductive layer 50 connecting the first coating layer 20 and the second coating layer 30 is formed along the inner wall surface of the through hole 11.
  • the plating step (S250) is a step of forming the plating layer 40 on the outer surface of the first coating layer 20, the second coating layer 30 and the conductive layer 50 by plating.
  • the plating layer 40 is formed by electrolessly or electrolytic copper plating the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material.
  • the thickness of the plating layer 40 is preferably determined in consideration of the amount of current applied to the final printed circuit board.
  • the circuit pattern forming step (S260) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon through a photo lithography process which is well known in the art. .
  • FIG. 3 schematically illustrates a process flow of a modification of the method of manufacturing a printed circuit board according to the second embodiment of the present invention.
  • the circuit pattern forming step S260 is described as being performed after the plating step S250. However, as shown in FIG. 3, in the modification of the present embodiment, the circuit pattern forming step S260 is performed after the drilling step S230. After the circuit pattern is formed on the first coating layer 20 or the second coating layer 30, the printed circuit board may be manufactured by performing the plating step (S250).
  • a circuit pattern may be formed by printing a conductive ink through a printing process in a first coating layer forming step or a second coating layer forming step without performing a separate circuit pattern forming step.
  • one of the first coating layer and the second coating layer is formed by a printing process to form a circuit pattern, and the other coating layer performs a patterning process through a separate circuit pattern forming step to form a circuit pattern. It may be formed.
  • FIG. 4 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to a third embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S300) includes forming a first coating layer (S310), forming a second coating layer (S320), and drilling (S330). And a temporary finishing layer bonding step (S340), a conductive layer forming step (S350), a temporary finishing layer removing step (S360), a plating step (S370), and a circuit pattern forming step (S380).
  • the first coating layer forming step (S310) and the second coating layer forming step (S320) are steps of coating the first coating layer 20 and the second coating layer 30 on the top and bottom surfaces of the substrate 10, respectively.
  • a polyimide film (PI) may be used, but is not limited thereto.
  • the drilling step (S330) is a step of forming a through hole 11 penetrating completely through the substrate 10 and the first coating layer 20 and the second coating layer 30 stacked on both surfaces thereof.
  • the drilling step (S330) is carried out through a process well known in the art such as CNC drill, UV laser, YAG laser, CO 2 laser, roll to roll punching the substrate.
  • the temporary finishing layer bonding step (S340) is a step of finishing the end of the through hole 11 by bonding the temporary finishing layer 60 to the first coating layer 20.
  • the conductive ink filling the inside of the through hole 11 is bonded to the outer surface of the first coating layer 20 by bonding the temporary closing layer 60 to the first coating layer 20. By flowing out, it prevents the first coating layer 20 from being contaminated or excessive consumption of conductive ink.
  • a polyethylene terephthalate (PET) film may be used as the material of the temporary finishing layer bonded to the first coating layer 20, but is not limited thereto.
  • PET polyethylene terephthalate
  • conductive ink is transferred from the inside of the through hole 11 to the outer surface of the second coating layer 30 in such a manner that the temporary finishing layer 60 is bonded to the second coating layer 30 instead of the first coating layer 20. You can also prevent exposure.
  • the conductive layer forming step (S350) is a step of forming the conductive layer 50 on the inner wall surface of the through hole 11.
  • the conductive ink may be prevented from being exposed to the outside by the temporary closing layer 60 finishing the through hole 11.
  • the conductive layer 50 electrically connecting the first coating layer 20 and the second coating layer 30 to each other along the inner wall surface of the through hole 11 is formed.
  • the temporary finishing layer removing step (S360) is a step of removing the temporary finishing layer 60 closing the through hole 11 from the first coating layer 20.
  • the plating step (S370) is a step of forming the plating layer 40 on the outer surface of the first coating layer 20, the second coating layer 30 and the conductive layer 50.
  • the plating layer 40 is formed by electroless or electrolytic copper plating of the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material. At this time, the thickness of the plating layer 40 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the circuit pattern forming step (S380) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning a first coating layer, a second coating layer, and a plating layer plated thereon through a photolithography process which is well known in the art.
  • the temporary closing layer 60 by bonding the temporary closing layer 60 to block the end of the through hole 11, the conductive ink filled into the through hole 11 flows out to the opposite side, and thus the first coating layer 20 is applied.
  • the second coating layer 30 may be prevented from being contaminated, and at the same time, excessive consumption of the conductive ink may be prevented.
  • FIG. 5 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the fourth embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S400) includes forming a first coating layer (S410), forming a second coating layer (S420), and bonding a reinforcing layer (S430). ), A perforation step (S440), a conductive layer forming step (S450), a reinforcing layer removing step (S460), a plating step (S470), and a circuit pattern forming step (S480).
  • the first coating layer forming step (S410) and the second coating layer forming step (S420) are steps of coating the first coating layer 20 and the second coating layer 30 on the top and bottom surfaces of the substrate 10, respectively.
  • a polyimide film (PI) may be used, but is not limited thereto.
  • the reinforcing layer bonding step (S430) is a step of bonding a separate reinforcing layer 70 to the first coating layer 20 and the second coating layer 30.
  • the reinforcing layer 70 is bonded to the first coating layer 20 and the second coating layer 30, and the first coating layer 20 and the second coating layer 30 coated with a thin film on the substrate 10.
  • the conductive ink filled in the through hole 11 flows to the outer surface of the first coating layer 20 in the conductive layer forming step 450 to be described later. By preventing it, the precision of the circuit pattern finally formed can be improved.
  • PET polyethylene terephthalate
  • the drilling step (S440) forms a through hole (11) penetrating completely through the first coating layer (20), the second coating layer (30), and the reinforcing layer (70) stacked on both sides of the substrate (10). It's a step.
  • the drilling step (S440) is performed through a process well known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the through hole 11 can be stably formed. have.
  • the conductive layer forming step (S450) is a step of forming the conductive layer 50 on the inner wall surface of the through hole 11.
  • the reinforcing layer 70 prevents the conductive ink from flowing into the outer surfaces of the first coating layer 20 and the second coating layer 30, so that the first coating layer 20 having a uniform surface than the case where the conductive ink is filled without the reinforcing layer. ) And the second coating layer 30 can be secured.
  • the conductive ink is contracted to heat-process the conductive ink so that the conductive layer 50 may be formed along the inner wall surface of the through hole 11 ( S452).
  • a conductive layer 50 is formed to electrically connect the first coating layer 20 and the second coating layer 30 along the inner wall surface of the through hole 11.
  • the reinforcing layer 70 is stacked so that conductive ink is deposited between the substrate 10 and the first coating layer 20 or between the substrate 10 and the second coating layer 30. By preventing the inflow, the surfaces of the first coating layer 20 and the second coating layer 30 may be planarized.
  • the reinforcing layer removing step (S460) is a step of removing the reinforcing layer 70 from the first coating layer 20 and the second coating layer 30.
  • the plating step (S470) is a step of forming the plating layer 40 on the outer surface of the first coating layer 20, the second coating layer 30 and the conductive layer 50.
  • the plating layer 40 is formed by electroless or electrolytic copper plating of the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material. At this time, the thickness of the plating layer 40 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the circuit pattern forming step (S480) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 50 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon through a photo lithography process which is well known in the art. .
  • FIG. 6 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the fifth embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S500) includes forming a first coating layer (S510), forming a second coating layer (S520), and plating (S530). And a punching step (S540), a conductive layer forming step (S550), and a circuit pattern forming step (S560).
  • the first coating layer forming step (S510) and the second coating layer forming step (S520) are steps of coating the first coating layer 20 and the second coating layer 30 on the top and bottom surfaces of the substrate 10, respectively.
  • a polyimide film (PI) is used, but is not limited thereto.
  • the plating step (S530) is a step of forming the plating layer 40 on the outer surfaces of the first coating layer 20 and the second coating layer 30.
  • the plating layer 40 is formed by electrolessly or electrolytic copper plating the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material. At this time, the thickness of the plating layer 40 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the drilling step S540 forms a through hole 11 that completely passes through the first coating layer 20, the second coating layer 30, and the plating layer 40 stacked on both surfaces of the substrate 10 and the substrate 10. It's a step.
  • the drilling step (S540) is performed through a process known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the plating layer 40 on the first coating layer 20 and the second coating layer 30, only the first coating layer 20 or the second coating layer 30 is formed on the substrate 10 alone. Since the drilling process is performed at this stage in a state where the rigidity and durability are further reinforced than in the case, the through hole 11 can be more stably formed.
  • the conductive layer forming step (S550) is a step of forming the conductive layer 50 on the inner wall surface of the through hole 11.
  • the conductive ink of the same material as the first coating layer 20 and the second coating layer 30 is filled in the through hole 11 (S551).
  • the conductive layer 50 interconnecting the first coating layer 20, the second coating layer 30, and the plating layer 40 is formed along the inner wall surface of the through hole 11.
  • the circuit pattern forming step (S560) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon through a photo lithography process which is well known in the art. .
  • the plating layer 40 is first formed on the first coating layer 20 and the second coating layer 30 to reinforce the overall durability first, then the through hole 11 is drilled, so that a more stable drilling operation is performed. This is possible.
  • FIG. 7 schematically shows a process flow of a method of manufacturing a printed circuit board according to the sixth embodiment of the present invention.
  • the method of manufacturing a printed circuit board (S600) includes forming a first coating layer (S610), drilling a step (S620), and forming a second coating layer (S630). And a plating step (S640) and a circuit pattern forming step (S650).
  • the first coating layer forming step (S610) is a step of coating the first coating layer 20 on one surface of the substrate 10.
  • a polyimide film (PI) is used, but is not limited thereto.
  • the drilling step (S620) is a step of forming a through hole 11 completely penetrating the substrate 10 and the first coating layer 20 stacked on the upper surface of the substrate 10.
  • the drilling step (S620) is performed through a process known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the second coating layer 30 is formed on the other surface of the substrate 10, and the conductive layer 50 is formed on the inner wall surface of the through hole 11. That is, in the second coating layer forming step of the above-described embodiment, unlike simply coating the second coating layer 30, in the second coating layer forming step (S630) of the present embodiment, while coating the second coating layer 30, conduction Form layer 50.
  • the bottom surface of the substrate 10 is coated with a conductive ink material to form the second coating layer 30, and at the same time, the through hole 11 The inside of the) is filled with a conductive ink (S631).
  • the conductive ink filled in the first coating layer 20, the second coating layer 30 and the through hole 11 coated on the substrate 10 by the above-described process is heat-treated (S632).
  • the first coating layer 20 and the second coating layer 30 are cured by the heat treatment process, and the conductive ink in the through hole 11 is also cured and shrunk, so that the conductive layer 50 is formed along the inner wall surface of the through hole 11. Is formed.
  • the second coating layer 30 is formed, and the conductive layer 50 interconnecting the first coating layer 20 and the second coating layer 30 along the inner wall surface of the through hole 11. Is formed.
  • the plating step (S640) is a step of forming the plating layer 40 by plating the first coating layer 20, the second coating layer 30, and the conductive layer 50.
  • the plating layer 40 is formed by electrolessly or electrolytic copper plating the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material.
  • the thickness of the plating layer 50 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the circuit pattern forming step (S650) is a step of forming a circuit pattern by patterning the first coating layer 20, the plating layer 40 plated thereon, the second coating layer 30, and the plating layer 40 plated thereon.
  • the first coating layer 20 and the plating layer 40 plated thereon, and the second coating layer 30 and the plating layer 40 plated thereon are simultaneously patterned to form circuit patterns, thereby improving process efficiency.
  • FIG. 8 schematically shows a process flow of a modification of the method of manufacturing a printed circuit board according to the sixth embodiment of the present invention.
  • the first coating layer 20 and the plated thereto are A process S651 ′ of patterning the plating layer 40 and a process 652 ′ of patterning the second coating layer 30 and the plating layer 40 to be plated thereon may be sequentially performed.
  • FIG. 9 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to the seventh embodiment of the present invention.
  • the first coating layer forming step (S710) is a step of coating the first coating layer 20 on one surface of the substrate 10.
  • a polyimide film (PI) is used, but is not limited thereto.
  • the drilling step S720 is a step of forming a through hole 11 that completely passes through the substrate 10 and the first coating layer 20 stacked on the upper surface of the substrate 10.
  • the drilling step (S720) is performed through a process known in the art, such as punching the substrate 10, CNC drill, UV laser, YAG laser, CO 2 laser, roll-to-roll punching.
  • the second coating layer forming step (S730) is a step of forming the second coating layer 30 on the other surface of the substrate 10 and forming the conductive layer 50 on the inner wall surface of the through hole 11.
  • the substrate 10 is turned upside down so that the first coating layer 20 faces the lower surface for the convenience of the process.
  • the bottom surface of the substrate 10 is coated with a conductive ink material to form a second coating layer 30, and the inside of the through hole 11 is filled with conductive ink (S731). ).
  • the second coating layer 30 is formed by printing conductive ink on the substrate 10 to form a circuit pattern on the second coating layer 30.
  • the conductive ink filled in the first coating layer 20, the second coating layer 30, and the through hole 11 coated on the substrate 10 is heat-treated (S732).
  • the first coating layer 20 and the second coating layer 30 are cured, and the conductive ink in the through hole 11 is also cured and shrunk so that the conductive layer 50 is formed along the inner wall surface of the through hole 11. ). Therefore, the conductive layer 50 formed along the inner wall surface of the through hole 11 interconnects the first coating layer 20 and the second coating layer 30.
  • the plating step (S740) is a step of forming the plating layer 40 by plating the first coating layer 20, the second coating layer 30, and the conductive layer 50.
  • the plating layer 40 is formed by electroless or electrolytic copper plating of the first coating layer 20, the second coating layer 30, and the conductive layer 50 formed of a conductive ink material.
  • the thickness of the plating layer 40 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the protective layer bonding step S750 may include a second coating layer in which a circuit pattern is already formed in order to protect the second coating layer 30 when the first coating layer 20 is patterned in the circuit pattern forming step S760 described later. A step of bonding the protective layer 80 on the 30 and the plating layer 40.
  • damage to the second coating layer 30 may occur during the photolithography process in the circuit pattern forming step S760 by bonding the protective layer 80 to the plating layer 40 formed on the second coating layer 30. prevent.
  • PET polyethylene terephthalate
  • the circuit pattern forming step (S760) is a step of forming a circuit pattern by patterning the first coating layer 20 and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20 and the plating layer 40 plated thereon through a photolithography process which is well known in the art.
  • the protective layer removing step (S770) is a step of removing the protective layer 80 that is temporarily bonded to the plating layer 40.
  • a separate protective layer 80 is bonded to the second coating layer 30 on which the circuit pattern is already formed, so that the second coating layer 30 may be generated when the first coating layer 20 is patterned.
  • FIG. 10 schematically illustrates a process flow of a method of manufacturing a printed circuit board according to an eighth embodiment of the present invention.
  • the method of manufacturing a printed circuit board according to the eighth embodiment of the present invention includes a punching step (S810), a first coating layer forming step (S820), and a second coating layer forming step (S830). And a heat treatment step (S840), a plating step (S850), and a circuit pattern forming step (S860).
  • the drilling step S810 is a step of forming a through hole 11 penetrating the substrate 10 to completely penetrate the substrate 10.
  • the drilling step 810 is performed through a process well known in the art, such as CNC drilling, UV laser, YAG laser, CO 2 laser, roll-to-roll punching the substrate 10.
  • a polyimide film may be used as the substrate 10 used in this step, but is not limited thereto.
  • the first coating layer 20 is formed on one surface of the substrate 10, and at least a portion of the inside of the through hole 11 formed in the substrate 10 is filled with conductive ink. It's a step.
  • the second coating layer 30 is formed on the other surface of the substrate 10, and the inside of the through hole 11 partially filled in the first coating layer forming step S820 is formed. , The step of completely filling with conductive ink through the opposite opening.
  • the first coating layer 20 and the second coating layer 30 are formed on both surfaces of the substrate 10 and at the same time, The conductive ink is completely filled in the hole 11.
  • the heat treatment step (S840) is a step of heat-treating the conductive ink filled in the first coating layer 20, the second coating layer 30 and the through hole (11).
  • the first coating layer 20 and the second coating layer 30 coated on the substrate 10 by the above-described various processes are cured, baked and shrunk through a heat treatment process.
  • the conductive ink filled in the through hole 11 is also heat treated, it is cured and shrunk to form a conductive layer 50 along the inner wall surface of the through hole 11, and the conductive layer 50 is
  • the first coating layer 20 and the second coating layer 30 formed on both surfaces of the substrate 10 are electrically connected.
  • the plating step (S850) is a step of forming the plating layer 40 on the outer surface of the first coating layer 20, the second coating layer 30 and the conductive layer 50.
  • the plating layer 40 is formed by electrolessly or electrolytic copper plating the first coating layer 20, the second coating layer 30, and the conductive layer 50 made of a conductive ink material. At this time, the thickness of the plating layer 40 is determined in consideration of the amount of current applied to the final printed circuit board.
  • the circuit pattern forming step (S860) is a step of forming a circuit pattern by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon.
  • a circuit pattern having a desired shape is formed by patterning the first coating layer 20, the second coating layer 30, and the plating layer 40 plated thereon through a photo lithography process which is well known in the art. .
  • a conductive ink used for forming the coating layer and the conductive layer may be a material having electrical conductivity such as Ag, Cu, Ni, Al, or the like.
  • a conductive ink including a metal complex compound, a metal precursor, spherical metal particles, metal flakes, or nanoparticles may be used.
  • a conductive ink including 30 to 90 wt% of at least one of the metal flakes and the metal nanoparticles may be used in 100 wt% of the total composition of the conductive ink, and the metal complex compound and the metal may be used in 100 wt% of the total composition of the conductive ink. It is also possible to use a conductive ink containing 1 to 30% by weight of at least one of the precursors.
  • a conductive paste including a conductive material such as Ag, Pb, Pt, Ni, Cu, Ag / Pb or an organometallic compound may be used as the conductive ink.
  • the organometallic compounds it may be preferable to use a conductive paste including an organic silver complex compound.
  • the reason for using an organic silver complex compound is that it is easy to form a layer because of its excellent stability and solubility in a solvent, and also has an advantage of being easily decomposed at a relatively low temperature.
  • the conductive paste including the organic silver complex compound may further include a conductive material such as a conductor or a metal precursor.
  • a conductive paste containing an organic silver complex compound having a special structure because it has a uniform thickness of the layer and excellent conductivity, and also has a low firing temperature, and there is no residue except the conductive material after firing.
  • the conductive paste is a conductive paste containing a silver complex compound obtained by reacting at least one silver compound of Formula 1 with at least one ammonium carbamate or ammonium carbonate compound of Formula 2, Formula 3, or Formula 4.
  • N is an integer of 1 to 4
  • X is oxygen, sulfur, halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoro Substituents selected from borate, acetylacetonate, carboxylate and derivatives thereof)
  • R 1 , R 2 , R 3 , R 4 , R 5 and R 6 may be the same or different from each other, each of hydrogen, an aliphatic or alicyclic alkyl group having 1 to 30 carbon atoms or an aryl group or aralkyl (ARALKYL) group,
  • a functional group is a substituent selected from an alkyl group and an aryl group, a heterocyclic compound group, a high molecular compound group and derivatives thereof.
  • the conductive paste including the organic silver complex compound may include a conductor, a metal precursor, or one or more thereof in the silver complex compound.
  • the type of the conductor for example, Ag, Au, Cu, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os ,
  • a group of transition metals such as Ir, or a group of metals such as Al, Ga, Ge, In, Sn, Sb, Pb, Bi, or actinides such as lanthanides such as Sm, Eu or Ac, Th ( actinides) at least one metal selected from the group of metals, or alloys or alloy oxides thereof.
  • conductive carbon black, graphite, carbon nanotubes, and conductive polymers such as polyacetylene, polypyrrole, polyaniline, polythiophene and derivatives thereof are included.
  • the metal precursor includes an organometallic compound or a metal salt, and may be represented by the general formula MnX, where M is selected from the group of metals in the conductor, n is an integer of 10 or less, and X is oxygen, sulfur , Halogen, cyano, cyanate, carbonate, nitrate, nitrite, sulfate, phosphate, thiocyanate, chlorate, perchlorate, tetrafluoroborate, acetylacetonate, flipto,
  • Amides, alkoxides, carboxylates and the like Specifically, for example, gold acetate, palladium oxalate, silver 2-ethylhexanoate, copper 2-ethylhexanoate, ironstearate, nickel formate, zinc citrate carboxylic acid metals such as (zinc citrate), silver nitrate, copper cyanide, cobalt carbonate, platinum chloride, gold chloride, tetrabutoxy titanium, dimethoxyzirconium dichloride, aluminum isopropoxide, tin tetrafluoroborate, vanadium Oxides, indium-tin oxides, ruthenium oxides, tantalum methoxides, bismuth acetates, metal compounds, such as dodecyl mercoxide, indium acetylacetonate, and the like can be selected and used together.
  • the shape of the conductor and the metal precursor may be spherical, linear, plate-shaped, or a mixture thereof, and may be in the form of particles containing nanoparticles, powders, flakes, and colloids. ), A hybrid, a paste, a sol, a solution, or a mixed form in which one or more of them are selected.
  • the size or the amount of the conductor or the metal precursor that is suitable for the characteristics of the conductive paste is preferably 50 ⁇ m or less, more preferably 1 nanometer (nm) or more and 25 ⁇ m or less, considering the thickness of the coating film after firing.
  • the amount used should not exceed a certain limit so that the firing temperature is too high or there is no problem in the coating or pattern forming process.
  • the amount used is preferably in the range of 1 to 90 percent, more preferably 10 to 70 percent by weight, based on the total paste composition.
  • the conductive paste composition used in the present invention is composed of the silver complex compound or the silver complex compound and the conductor or the metal precursor or at least one or more of these mixtures, and as necessary, a solvent, a stabilizer, a dispersant, and a binder resin.
  • Additives such as binder resins, reducing agents, surfactants, wetting agents, thixotropic agents, or leveling agents may be included as members of the conductive paste composition of the present invention.
  • conductive pastes comprising organic silver compositions.
  • the organic silver composition is dissolved by reacting silver oxide with a mixture of an amine compound, an organic compound which forms an organic silver by reacting with silver oxide, such as a lactone compound, a lactam compound, a carbonate compound, or a cyclic anhydride compound.
  • the conductive face including the same has advantages such as providing substrate adhesion, printability, and high conductivity when forming a layer.
  • the printing method may be printed by any method such as gravure printing, inkjet printing, offset printing, silkscreen printing, rotary screen printing, flexo printing, or imprinting method.
  • any method such as gravure printing, inkjet printing, offset printing, silkscreen printing, rotary screen printing, flexo printing, or imprinting method.
  • silk screen printing, rotary screen, or flexo printing method may be preferable in consideration of production efficiency and workability, printing resolution, efficiency and the like.
  • the layer thus obtained can also be used to form metal or metal oxide patterns through post-treatment processes such as oxidation or reduction, heat treatment, infrared, ultraviolet, electron beam, and laser treatment.
  • the post-treatment step may be heat treated under a normal inert atmosphere, but may be processed in air, nitrogen, carbon monoxide, or even a mixed gas of hydrogen and air or another inert gas, if necessary.
  • the heat treatment is usually carried out at 80 to 400 °C, preferably 90 to 300 °C, more preferably 100 to 250 °C heat treatment for the physical properties of the thin film.
  • heat treatment of two or more steps at low and high temperatures within the above range is also good for the uniformity of the thin film. For example, it is good to process for 1 to 30 minutes at 80-150 degreeC, and to process for 1 to 30 minutes at 150-300 degreeC.
  • the limitations and electrical characteristics of the existing precision circuit pattern implementation in the circuit forming process due to the printing method can improve the circuit pattern implementation precision and electrical characteristics through the conventional photolithography process, and reduce raw materials, process shortening, and productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

본 발명은 인쇄회로기판의 제조방법에 관한 것이며, 본 발명의 인쇄회로기판의 제조방법은 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계; 상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계; 상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 천공단계; 상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 한다. 따라서, 본 발명에 의하면, 기존에 인쇄방식으로 인한 회로형성공정에서 갖고 있는 정밀 회로패턴 구현의 한계 및 전기적 특성을 종래의 포토리소그라피공정을 통한 회로패턴 구현 정밀도 및 전기적 특성이 향상되는 동시에 원재료 절감, 공정단축 및 생산성 향상될 수 있는 인쇄회로기판의 제조방법 및 인쇄회로기판이 제공된다.

Description

인쇄회로기판의 제조방법 및 인쇄회로기판
본 발명은 인쇄회로기판의 제조방법 및 인쇄회로기판에 관한 것으로서, 보다 상세하게는 정밀하고 우수한 전도특성을 가지는 회로패턴 형성이 가능함과 동시에 원재료 절감, 공정단축 등이 가능한 인쇄회로기판의 제조방법 및 인쇄회로기판에 관한 것이다.
일반적으로 인쇄회로기판(Printed Circuit Board)은 각종 전자부품들을 탑재하여 전기적으로 연결시켜주는 기판 형태의 전자부품이다.
인쇄회로기판은 기재의 경연성의 재질에 따라 경성 인쇄회로기판(Rigid Printed Circuit Board)와 연성 인쇄회로기판(Flexible Printed Circuit Board)으로 크게 나뉘어지며, 최근에는 경연성 복합 인쇄회로기판도 등장하고 있다.
인쇄회로기판의 적용초기에는 단면에 인쇄배선이 형성된 것과 같은 비교적 구조가 간단한 제품이 주를 이루었으나 점차적으로 전자제품의 경량화, 소형화 및 다기능화, 복합기능화에 따라 연성회로기판 역시 배선밀도가 높아지고 구조가 복잡해지고 있으며, 다층제품으로 진화하는 추세이다.
인쇄회로기판은 배선구조의 회로패턴 층에 따라서 단층, 양면, 다층형 등과 같이 여러 종류가 있으며, 전자기기의 구조와 기능에 따라서 그에 적합한 인쇄회로기판을 설계 및 제작하여 제품에 적용하게 된다.
특히, 연성 인쇄회로기판은 전자제품의 소형화 및 경량화를 가능하게 하며, 우수한 굴곡성 및 유연성을 지니고 있어, 인쇄회로기판이 갖는 역할을 수행하면서 인접하지 않은 두 개의 회로나 부품을 자유롭게 연결할 수 있는 장점으로, 휴대폰, MP3, 캠코더 프린터, 디스플레이 등의 전자기기뿐만 아니라, 의료장비, 군사장비를 비롯한 일반 산업기계 등에도 폭넓게 사용되고 있다. 특히, 휴대폰, 캠코더, 노트북, 디스플레이등과 같이 회로기판의 굴곡특성이 필요한 제품이 늘어남에 따라 연성 회로기판의 수요도 증가하고 있다.
이와 같은 인쇄회로기판 중에서 양면 인쇄회로기판의 통상적인 제조방법을 양면 연성 인쇄회로기판을 예를 들어 설명하면 다음과 같다. 폴리이미드 필름(Polyimide Film) 혹은 폴리에스테르(Polyester)필름과 같은 절연성 필름의 양쪽면에 박막의 구리(Cu)가 각각 적층된 양면 동박적층(CCL:Copper Clad Laminate)필름 원단을 준비한 후, 상기 구리(Cu)층의 회로패턴이 형성 될 부분을 전기적으로 연결하기 위하여 CCL필름의 소정의 위치에 드릴 등을 이용하여 비아홀을 형성한 다음, 이 비아홀에 도금을 행하여 구리(Cu)층이 서로 전기적으로 연결되도록 한다. 그 다음, CCL필름의 양측 구리(Cu)층에 감광성 필름을 이용하거나 액을 도포하여 각각의 구리(Cu)층을 노광, 현상, 에칭, 박리공정을 통하여 소정의 회로패턴으로 가공하는 방법으로 양면 연성 회로기판을 제작하게 된다. 특히 동박적층필름의 경우 3-layer원단과 2-layer원단으로 나누어지는데 폴리이미드 필름에 접착제층을 코팅하고 동박을 라미네이팅하는 3-layer의 경우 중간에 접착제층과 동박층의 두께조절이 용이하지 않아 박막형 양면인쇄회로기판의 대응이 어려운 단점이 있으며, 2-layer원단의 경우에 동박에 폴리이미드 바니쉬를 캐스팅(Casting)하는 캐스팅법과 타겟금속(Target Metal)을 진공플라즈마(Plasma)를 이용하여 이온화(Ionized)시켜 제조하는 스퍼터링(Sputtering)법이 있는데 캐스팅법의 경우 별도의 가열장치가 필요하고 고온공정시 동박의 산화문제가 발생할 수 있다. 아울러 동박층의 두께조절 또한 용이하지 않다.
스퍼터링법의 경우 물리적 강도가 타 제조방법에 비하여 약하며 특히 크롬이나 코발트등을 사용하여 환경오염을 유발한다는 단점이 있다. 아울러 식각공정에서 동박층과 니켈, 크롬층을 별도로 진행해야 하며 그러하더라도 니켈층의 잔존물이 남아 전기적 특성불량을 야기하기도 한다.
상기 종래의 제조방법은 미세한 패턴형성이 가능하다는 장점이 있으나, 제조공정이 복잡 하고 원재료 손실이 심하며, 환경오염의 문제점이 대두되고 있다. 최근에는 인쇄전자기술의 발전에 힘입어 인쇄방식을 이용한 인쇄회로기판 제조방법이 개발되고 있으나, 현재 인쇄기술로서는 인쇄배선 폭에 한계가 있다.
한편, 상기의 에칭방법을 동시에 사용하여 양면 연성 인쇄회로기판을 제조하는 방법이 일본특허공개공보 평06-224528호에 공개되어 있다.
상기 제조방법은 필름기판의 표리면 간에 전기적으로 접속해야 할 부분에 관통홀을 형성함과 동시에, 필름 기판의 한 면의 전면에 금속박을 피착하고, 이 금속박을 소정의 패턴으로 에칭공정으로 제거하여 배선도체부를 형성하고, 관통홀의 부분을 막는 폐색판 부분을 형성한다. 필름기판의 반대측 면에는 전도성 페이스트를 인쇄방법으로 피착하여 인쇄배선 도체부를 형성하면서 관통홀에 전도성 페이스트를 충전하고, 이 전도성 페이스트에 의하여 에칭공정으로 형성된 배선도체부와 인쇄방법으로 형성된 인쇄배선 도체부를 전기적으로 접속시켜 양면 연성회로기판을 제조하는 방법에 관한 것이다.
그러나, 상기 방법은 전도성 페이스트를 인쇄방법으로 인쇄배선을 형성함과 동시에 관통 홀에 전도성 페이스트를 충전하여야 하나, 관통홀에 충전되어 범프를 형성하는 전도성 페이스트로서는 인쇄배선 도체부를 형성하기 위한 인쇄방법이 극히 제한적이며, 반대로 인쇄배선을 형성하기 용이한 전도성 페이스트는 관통홀에 충전되어 범프하기 어렵다. 또한 상기 방식으로 제조된 연성 인쇄회로기판은 관통홀에 형성된 접속부가 열적 또는 물리적 충격에도 수축 또는 크랙이 발생되어 단선될 가능성이 높다는 단점이 있으며, 공정상으로도 관통홀에 충전되는 전도성 페이스트가 새는 것을 방지하기 위한 별도의 폐색판 부분이 형성되도록 하는 공정이 추가되어야 하는 단점이 있기 때문에 산업적으로 이용되지 못하고 있는 실정이다. 또한 전도성 페이스트 층이 기재와의 접착력이 충분하지 않아 전도성 페이 스트에 의해 형성된 인쇄회로와 비아홀의 범프를 형성하는 접속도체부의 계면이 분리되거나 또는 탈리되는 현상이 많아 실질적으로 실용화되지 못하고 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 기존에 인쇄방식으로 인한 회로형성공정에서 갖고 있는 정밀 회로패턴 구현의 한계 및 전기적 특성을 종래의 포토리소그라피공정을 통한 회로패턴 구현 정밀도 및 전기적 특성이 향상되는 동시에 원재료 절감, 공정단축 및 생산성 향상될 수 있는 인쇄회로기판의 제조방법 및 인쇄회로기판을 제공함에 있다.
상기 목적은, 본 발명에 따라, 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계; 상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계; 상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 천공단계; 상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법에 의해 달성된다.
또한, 상기 도금단계는 상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면을 무전해 도금하는 단계; 무전해 도금된 쓰루홀의 내벽면을 전해도금하여 도금층을 형성하는 단계;를 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계; 상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계; 상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 천공단계; 상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 전도층 형성단계; 상기 제1코팅층과 상기 제2코팅층 및 상기 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법에 의해 달성된다.
또한, 상기 전도층 형성단계는 상기 쓰루홀의 내부에 전도성 잉크를 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 단계;를 포함할 수 있다.
또한, 상기 전도층 형성단계에서 충진되는 전도성 잉크가 상기 쓰루홀 내부로부터 이탈하지 않도록 상기 제1코팅층 또는 상기 제2코팅층 중 적어도 어느 하나에 임시마감층을 접합하여 상기 쓰루홀을 마감하는 임시마감층 접합단계; 상기 전도층 형성단계 이후에 상기 임시마감층을 제거하는 임시마감층 제거단계;를 더 포함할 수 있다.
또한, 상기 제1코팅층 및 상기 제2코팅층에 보강층을 접합하는 보강층 접합단계; 및 상기 전도층 형성단계 이후에 상기 보강층을 제거하는 보강층 제거단계;를 더 포함하고, 상기 천공단계는 상기 보강층, 상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계; 상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계; 상기 제1코팅층 및 상기 제2코팅층을 도금하여 도금층을 형성하는 도금단계; 상기 제1코팅층, 상기 기판, 상기 제2코팅층 및 상기 도금층을 천공하여 쓰루홀을 형성하는 천공단계; 상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법에 의해 달성된다.
또한, 상기 전도층 형성단계는 상기 쓰루홀의 내부에 전도성 잉크를 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성함으로써 상기 제1코팅층에 도금되는 도금층 및 상기 제2코팅층에 도금되는 도금층을 서로 전기적으로 연결하도록 상기 쓰루홀 내부의 전도성 잉크를 열처리하는 단계;를 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계; 상기 기판 및 상기 제1코팅층을 천공하여 쓰루홀을 형성하는 천공단계; 상기 기판의 타면에 전도성 잉크 소재로 제2코팅층을 형성하는 동시에, 상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 제2코팅층 형성단계; 상기 제1코팅층과 상기 제2코팅층 및 상기 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법에 의해 달성된다.
또한, 상기 제2코팅층 형성단계는 전도성 잉크 소재로 상기 기판을 코팅하는 동시에, 상기 쓰루홀의 내부를 전도성 잉크로 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 단계;를 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 기판을 천공하여 쓰루홀을 형성하는 천공단계; 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 동시에, 상기 쓰루홀의 내부의 적어도 일부를 전도성 잉크로 충진하는 제1코팅층 형성단계; 상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 동시에, 상기 제1코팅층과 상기 제2코팅층이 연결되도록 상기 쓰루홀의 내부를 전도성 잉크로 완전히 충진하는 제2코팅층 형성단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 열처리 단계; 상기 제1코팅층, 상기 제2코팅층 및 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법에 의해 달성된다.
또한, 상기 제1코팅층 및 이에 도금되는 도금층 또는 상기 제2코팅층 및 이에 도금되는 도금층에는 회로패턴이 형성될 수 있다.
또한, 상기 제1코팅층 형성단계 또는 상기 제2코팅층 형성단계에서 상기 기판에 전도성 잉크를 프린팅(printing)함으로써 회로패턴이 형성될 수 있다.
또한, 상기 제1코팅층 또는 상기 제2코팅층을 포토리소그래피를 통하여 패터닝함으로써 상기 회로패턴을 형성하는 회로패턴 형성단계를 더 포함할 수 있다.
또한, 상기 도금단계 이후에 상기 제1코팅층 및 이에 적층되는 도금층 또는 상기 제2코팅층 및 이에 적층되는 도금층을 포토리소그래피를 통하여 패터닝함으로써 회로패턴을 형성하는 회로패턴 형성단계를 더 포함할 수 있다.
또한, 상기 회로패턴 형성단계 이전에 상기 도금층을 보호하기 위하여 상기 도금층에 보호층을 접합하는 보호층 접합단계; 상기 회로패턴 형성단계 이후에 상기 보호층을 제거하는 보호층 제거단계;를 더 포함할 수 있다.
또한, 상기 목적은, 본 발명에 따라, 쓰루홀이 형성되는 기판; 상기 기판의 일면에 형성되는 제1코팅층; 상기 기판의 타면에 형성되는 제2코팅층; 상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면에 도금되어, 상기 제1코팅층과 상기 제2코팅층을 연결하는 도금층;을 포함하는 인쇄회로기판에 의해 달성된다.
또한, 상기 목적은, 본 발명에 따라, 쓰루홀이 형성되는 기판; 상기 기판의 일면에 형성되는 제1코팅층; 상기 기판의 타면에 형성되는 제2코팅층; 상기 쓰루홀의 내벽면에 형성되며, 상기 제1코팅층과 상기 제2코팅층을 상호 연결하는 전도층; 상기 제1코팅층, 상기 제2코팅층에 도금되는 도금층;을 포함하는 것을 특징으로 하는 인쇄회로기판에 의해 달성된다.
또한, 상기 도금층은 상기 제1코팅층, 상기 제2코팅층 및 상기 전도층에 도금될 수 있다.
또한, 상기 제1코팅층 및 이에 도금되는 도금층 또는 상기 제2코팅층 및 이에 도금되는 도금층에는 회로패턴이 형성될 수 있다.
본 발명에 따르면, 정밀하고 우수한 전도성을 가지는 인쇄회로기판을 제작할 수 있는 인쇄회로기판의 제조방법이 제공된다.
또한, 쓰루홀이 천공되는 기판의 양면에 전도성을 가지는 소재로 기판을 코팅하여, 이를 도금함으로써, 기판의 양면에 형성되는 레이어가 서로 전기적으로 연결되도록 할 수 있다.
또한, 도금을 통하여 기판에 형성되는 도금층의 두께를 용이하게 조절함으로써, 원가를 절감할 수 있으며, 원하는 특성을 가지는 인쇄회로기판의 제작이 가능하다.
또한, 쓰루홀의 일단부를 임시마감층으로 마감하여 개방된 타단부를 통하여 충진되는 전도성 잉크가 흘러나가지 못하도록 할 수 있다.
또한, 제1코팅층 및 제2코팅층에 보강층을 형성한 후에, 이를 천공하여 쓰루홀을 형성함으로써 안정적인 천공이 가능하다.
또한, 제1코팅층 또는 제2코팅층 중 회로패턴이 형성되는 코팅층에만 보호층을 접합한 상태에서 나머지 코팅층을 패터닝함으로써, 이미 형성되는 회로패턴의 손상을 방지할 수 있다.
또한, 기판에 전도성 잉크를 형성하고, 그 위를 도금하여 도금층을 형성함으로써, 포토리소그래피 공정을 통하여 전도성 잉크와 도금층을 동시에 패터닝할 수 있어, 공정이 단축될 수 있다.
또한, 전도성 잉크를 프린팅하는 방식으로 기판 상에 제1코팅층 또는 제2코팅층을 형성하여, 별도의 추가공정 없이 회로패턴을 쉽게 형성할 수 있다.
또한, 포토리소그래피 공정 또는 프린팅 공정을 선택적으로 이용하여 회로패턴을 제작할 수 있으므로, 포토리소그래피 공정 또는 프린팅 공정의 장점을 동시에 구현할 수 있으므로 효율적인 공정을 구축할 수 있다.
도 1은 본 발명의 제1실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 2는 본 발명의 제2실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 3은 본 발명의 제2실시예에 따른 인쇄회로기판의 제조방법의 변형례의 공정흐름을 개략적으로 도시한 것이고,
도 4는 본 발명의 제3실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 5는 본 발명의 제4실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 6은 본 발명의 제5실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 7는 본 발명의 제6실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 8은 본 발명의 제6실시예에 따른 인쇄회로기판의 제조방법의 변형례의 공정흐름을 개략적으로 도시한 것이고,
도 9는 본 발명의 제7실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이고,
도 10은 본 발명의 제8실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
제1실시예
도 1은 본 발명의 제1실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명의 제1실시예에 따른 인쇄회로기판의 제조방법(S100)은 제1코팅층 형성단계(S110)와 제2코팅층 형성단계(S120)와 천공단계(S130)와 도금단계(S140)와 회로패턴 형성단계(S150)를 포함한다.
상기 제1코팅층 형성단계(S110) 및 상기 제2코팅층 형성단계(S120)는 기판(10)의 상면 및 하면에 제1코팅층(20)과 제2코팅층(30)을 각각 코팅하는 단계이다. 한편, 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 되나, 이에 제한되는 것은 아니다.
준비된 기판(10)의 상면에 전도성 잉크를 코팅하여 제1코팅층(20)과 제2코팅층(30)을 형성한다. 이때, 전도성 잉크로는 은(Ag), 구리(Cu), 니켈(Ni), 알루미늄(Al) 등이 이용되며, 전기적으로 우수한 전도성을 가지는 소재라면, 이에 제한되는 것은 아니다.
또한, 본 단계에서 기판(10) 상에 제1코팅층(20) 및 제2코팅층(30)은 플렉소(Flexo), 플랫 스크린(Flat Screen), 그라비아(Gravure), 슬롯다이, 콤마코팅, 로터리 스크린 등의 기술분야에서 널리 알려진 방식으로 코팅될 수 있다.
이때, 상술한 다양한 공정에 의하여 기판(10) 상에 코팅된 제1코팅층(20)과 제2코팅층(30)은 열처리 공정을 통하여, 경화 및 소성되어 수축될 수 있고, 이러한 열처리 공정을 통하여 제1코팅층(20) 및 제2코팅층(30)의 두께는 수십 나노에서 수십 마이크로 스케일로 조절이 가능하며, 제1코팅층(20) 및 제2코팅층(30)의 두께는 표면 평탄도 및 전기적 특성을 고려하여 결정하는 것이 바람직하다.
상기 천공단계(S130)는 기판(10) 및 이의 양면에 적층되는 제1코팅층(20), 제2코팅층(30)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S130)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
상기 도금단계(S140)는 쓰루홀(11)의 내벽면 및 제1코팅층(20), 제2코팅층(30)의 외면을 도금하여 도금층(40)을 형성하는 단계이다.
본 단계에서는, 먼저, 전도성 수용액에 노출하여 전도성 박막을 형성한 후에 도금 전처리 공정을 수행한다. 다음으로, 무전해 도금을 통하여 전도성 박막이 형성된 영역을 무전해 동 도금을 통하여 무전해 동 도금막(41)을 형성한다.
다음으로, 구리의 전기 분해 반응을 이용하여 쓰루홀(11)의 내벽면 및 제1코팅층(20)과 제2코팅층(30)이 전도성 금속인 구리(42)로 도금되어 도금층(40)을 형성한다.(S142)
상기 회로패턴 형성단계(S150)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
본 실시예에서 회로패턴 형성단계(S150)는 도금단계(S140) 이후에 수행되는 것으로 설명하였으나, 본 실시예의 변형례에서는, 천공단계(S130) 공정 후에 수행하여 제1코팅층(20) 또는 제2코팅층(30)에 회로패턴을 형성한 후에 도금단계(S140)를 수행하는 방식으로 인쇄회로기판을 제작할 수도 있다.
또한, 본 실시예의 다른 변형례에서는 별도의 회로패턴 형성단계를 수행하지 않고 제1코팅층 형성단계(S110) 또는 제2코팅층 형성단계(S120) 내에서 프린팅(Printing) 공정을 통하여 전도성 잉크를 인쇄함으로써 회로패턴을 형성할 수도 있다.
또한, 다른 변형례예서는 제1코팅층(20) 또는 제2코팅층(30) 중 어느 하나는 프린팅 공정으로 수행하여 회로패턴을 형성하고, 나머지 하나의 코팅층은 별도의 회로패턴 형성단계를 통한 패터닝 공정을 수행하여 회로패턴을 형성할 수도 있다
따라서, 본 발명에 의하면, 잉크젯 프린팅과 같이 코팅과 동시에 회로패턴을 형성하는 직접 인쇄공정 또는 리소그래피 공정과 같이 코팅 후에 회로 패턴을 패터닝하는 간접 인쇄공정을 선택적으로 이용하여, 인쇄회로기판을 제작할 수 있으므로 효율적인 공정의 구축이 가능하다.
제2실시예
도 2는 본 발명의 제2실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 2에 도시된 바와 같이, 본 발명의 제2실시예에 따른 인쇄회로기판의 제조방법(S200)은 제1코팅층 형성단계(S210)와 제2코팅층 형성단계(S220)와 천공단계(S230)와 전도층 형성단계(S240)와 도금단계(S250)와 회로패턴 형성단계(S260)를 포함한다.
상기 제1코팅층 형성단계(S210) 및 상기 제2코팅층 형성단계(S220)는 기판(10)의 상면 및 하면에 제1코팅층(20)과 제2코팅층(30)을 각각 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용되나, 이에 제한되는 것은 아니다.
준비된 기판(10)의 양면에 전도성 잉크를 코팅하여 제1코팅층(20)과 제2코팅층(30)을 형성한다. 이때, 전도성 잉크로는 은(Ag), 구리(Cu), 니켈(Ni), 알루미늄(Al) 등이 이용되며, 전기적으로 우수한 전도성을 가지는 소재라면, 이에 제한되는 것은 아니다.
또한, 본 단계에서 기판(10) 상에 형성되는 제1코팅층(20) 및 제2코팅층(30)은 플렉소(Flexo), 플랫 스크린(Flat Screen), 그라비아(Gravure), 슬롯다이, 콤마코팅, 로터리 스크린 등의 공지된 방식으로 코팅될 수 있다.
이때, 상술한 다양한 공정에 의하여 기판(10) 상에 코팅된 제1코팅층(20)과 제2코팅층(30)은 열처리 공정을 통하여, 경화 및 소성되어 수축될 수 있고, 이러한 열처리 공정을 통하여 제1코팅층(20) 및 제2코팅층(30)의 두께는 수십 나노에서 수십 마이크로 스케일로 조절이 가능하다. 한편, 이러한 제1코팅층(20) 및 제2코팅층(30)의 두께는 표면 평탄도 및 전기적 특성을 고려하여 결정하는 것이 바람직하다.
상기 천공단계(S230)는 기판(10) 및 이의 양면에 적층되는 제1코팅층(20), 제2코팅층(30)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S230)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
상기 전도층 형성단계(S240)는 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다.
본 단계에서는, 먼저. 쓰루홀(11)의 내부에 제1코팅층(20) 및 제2코팅층(30)과 동일한 소재의 전도성 잉크를 충진한다(S241). 이때, 쓰루홀(11)의 내부의 전도성 잉크는 제1코팅층(20)과 제2코팅층(30)을 상호 전기적으로 연결할 수 있을 정도로 충진되면 충분하다. 또한, 본 단계에서 이용되는 전도성 잉크는 제1코팅층(20) 및 제2코팅층(30)에서 이용되는 소재와 동일한 것이라 설명하였으나, 동일한 것에 제한되는 제한되지 않고, 우수한 전기적 전도성을 가지는 소재 중 어느 하나를 선택하여 사용할 수 있다.
쓰루홀(11)의 내부에 전도성 잉크가 충진된 상태에서, 전도성 잉크가 수축하여 쓰루홀(11)의 내벽면을 따라 형성되는 전도층(50)이 형성될 수 있도록 전도성 잉크를 열처리한다(S242).
따라서, 본 단계를 수행하면, 쓰루홀(11)의 내벽면을 따라서 제1코팅층(20)과 제2코팅층(30)을 연결하는 전도층(50)이 형성된다.
상기 도금단계(S250)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)을 도금하여 이들의 외면에 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정하는 것이 바람직하다.
상기 회로패턴 형성단계(S260)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
도 3은 본 발명의 제2실시예에 따른 인쇄회로기판의 제조방법의 변형례의 공정흐름을 개략적으로 도시한 것이고,
본 실시예에서 회로패턴 형성단계(S260)는 도금단계(S250) 이후에 수행되는 것으로 설명하였으나, 도 3에 도시된 바와 같이, 본 실시예의 변형례에서는, 천공단계(S230) 공정 후에 수행하여 제1코팅층(20) 또는 제2코팅층(30)에 회로패턴을 형성한 후에 도금단계(S250)를 수행하는 방식으로 인쇄회로기판을 제작할 수도 있다.
또한, 본 실시예의 다른 변형례에서는 별도의 회로패턴 형성단계를 수행하지 않고 제1코팅층 형성단계 또는 제2코팅층 형성단계 내에서 프린팅(Printing) 공정을 통하여 전도성 잉크를 인쇄함으로써 회로패턴을 형성할 수도 있다.
또한, 다른 변형례예서는 제1코팅층 또는 제2코팅층 중 어느 하나는 프린팅 공정으로 수행하여 회로패턴을 형성하고, 나머지 하나의 코팅층은 별도의 회로패턴 형성단계를 통한 패터닝 공정을 수행하여 회로패턴을 형성할 수도 있다.
제3실시예
도 4는 본 발명의 제3실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 4에 도시된 바와 같이, 본 발명의 제3실시예에 따른 인쇄회로기판의 제조방법(S300)은 제1코팅층 형성단계(S310)와 제2코팅층 형성단계(S320)와 천공단계(S330)와 임시마감층 접합단계(S340)와 전도층 형성단계(S350)와 임시마감층 제거단계(S360)와 도금단계(S370)와 회로패턴 형성단계(S380)를 포함한다.
상기 제1코팅층 형성단계(S310) 및 상기 제2코팅층 형성단계(S320)는 기판(10)의 상면 및 하면에 제1코팅층(20)과 제2코팅층(30)을 각각 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)의 소재로는 폴리이미드 필름(PI:PolyImide Film)이 이용될 수 있으나, 이에 제한되는 것은 아니다.
상기 천공단계(S330)는 기판(10) 및 이의 양면에 적층되는 제1코팅층(20), 제2코팅층(30)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S330)는 기판을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
상기 임시마감층 접합단계(S340)는 제1코팅층(20)에 임시마감층(60)을 접합하여 천공된 쓰루홀(11)의 단부를 마감하는 단계이다.
즉, 제1코팅층(20)에 임시마감층(60)을 접합하여 후술하는 전도층 형성단계(S350)에서 쓰루홀(11)의 내부에 충진되는 전도성 잉크가 제1코팅층(20)의 외면으로 흘러나옴으로써, 제1코팅층(20)을 오염시키거나 또는 전도성 잉크가 과도하게 소모되는 것을 방지한다.
이때, 제1코팅층(20)에 접합되는 임시마감층의 소재로는 폴리에틸렌테레프타레이트(Polyethylene Terephthalate:PET)필름이 이용될 수 있으나, 이에 제한되는 것은 아니다. 또한, 임시마감층(60)을 제1코팅층(20)에 접합하는 대신 제2코팅층(30)에 접합하는 방식으로 쓰루홀(11)의 내부로부터 전도성 잉크가 제2코팅층(30)의 외면으로 노출되는 것을 방지할 수도 있다.
상기 전도층 형성단계(S350)는 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다.
본 단계에서는, 먼저. 임시마감층(60)에 의하여 마감되지 않은 쪽, 즉, 개방된 쪽을 통하여 쓰루홀(11)의 내부에 제1코팅층(20) 및 제2코팅층(30)과 동일한 소재의 전도성 잉크를 충진한다(S351).
이때, 쓰루홀(11)의 마감하는 임시마감층(60)에 의하여 전도성 잉크가 외부로 노출되는 것을 방지할 수 있다.
다음으로, 쓰루홀(11)의 내부에 전도성 잉크가 충진된 상태에서, 전도성 잉크가 수축하여 쓰루홀(11)의 내벽면을 따라 코팅되는 전도층(50)이 형성될 수 있도록 전도성 잉크를 열처리한다(S352).
따라서, 본 단계를 거치면, 쓰루홀(11)의 내벽면을 따라서 제1코팅층(20)과 제2코팅층(30)을 상호 전기적으로 연결하는 전도층(50)이 형성된다.
상기 임시마감층 제거단계(S360)는 쓰루홀(11)을 마감하는 임시마감층(60)을 제1코팅층(20)으로부터 제거하는 단계이다.
상기 도금단계(S370)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)의 외면에 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 회로패턴 형성단계(S380)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층, 제2코팅층 및 이에 도금되는 도금층을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
따라서, 본 실시예에 의하면, 임시마감층(60)을 접합하여 쓰루홀(11)의 단부를 차단함으로써, 쓰루홀(11)의 내부로 충진되는 전도성 잉크가 반대쪽으로 흘러나가 제1코팅층(20) 또는 제2코팅층(30)을 오염하는 것을 방지하는 동시에, 전도성 잉크의 과도한 소모를 방지할 수 있다.
제4실시예
도 5는 본 발명의 제4실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 5에 도시된 바와 같이, 본 발명의 제4실시예에 따른 인쇄회로기판의 제조방법(S400)은 제1코팅층 형성단계(S410)와 제2코팅층 형성단계(S420)와 보강층 접합단계(S430)와 천공단계(S440)와 전도층 형성단계(S450)와 보강층 제거단계(S460)와 도금단계(S470)와 회로패턴 형성단계(S480)를 포함한다.
상기 제1코팅층 형성단계(S410) 및 상기 제2코팅층 형성단계(S420)는 기판(10)의 상면 및 하면에 제1코팅층(20)과 제2코팅층(30)을 각각 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용될 수 있으나, 이에 제한되는 것은 아니다.
상기 보강층 접합단계(S430)는 제1코팅층(20) 및 제2코팅층(30)에 별도의 보강층(70)을 접합하는 단계이다.
즉, 본 단계에서는 제1코팅층(20)과 제2코팅층(30)에 보강층(70)을 접합하여, 기판(10) 상에 박막으로 코팅되는 제1코팅층(20), 제2코팅층(30)의 내구성을 향상시킴으로써, 후술하는 천공단계(S440)에서 쓰루홀(11)을 안정적으로 가공할 수 있다.
또한, 본 단계에서 형성되는 보강층(70)에 의하면, 후술하는 전도층 형성단계(450)에서 쓰루홀(11)의 내부에 충진되는 전도성 잉크가 제1코팅층(20)의 외면으로 흘러나오는 현상을 방지함으로써, 최종 형성되는 회로패턴의 정밀도를 향상시킬 수 있다.
이때, 제1코팅층(20) 및 제2코팅층(30)에 접합되는 보강층(70)의 소재로는 폴리에틸렌테레프타레이트(Polyethylene Terephthalate:PET)필름이 이용되나, 이에 제한되는 것은 아니다.
상기 천공단계(S440)는 기판(10) 및 이의 양면에 적층되는 제1코팅층(20), 제2코팅층(30) 및 보강층(70)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S440)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
본 단계에서는, 보강층(70)에 의하여 전체적으로 내구성이 강화된 상태에서 기판(10), 제1코팅층(20) 및 제2코팅층(30)을 가공하므로, 쓰루홀(11)을 안정적으로 형성할 수 있다.
상기 전도층 형성단계(S450)는 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다.
본 단계에서는, 먼저. 쓰루홀(11)의 내부에 제1코팅층(20) 및 제2코팅층(30)과 동일한 소재의 전도성 잉크를 충진한다(S451). 이때, 보강층(70)은 전도성 잉크가 제1코팅층(20) 및 제2코팅층(30)의 외면에 흘러들어가는 것을 방지하므로, 보강층 없이 전도성 잉크를 충진하는 경우보다 균일한 표면의 제1코팅층(20) 및 제2코팅층(30)을 확보할 수 있다.
다음으로, 쓰루홀(11)의 내부에 전도성 잉크가 충진된 상태에서, 전도성 잉크가 수축하여 쓰루홀(11)의 내벽면을 따라 전도층(50)이 형성될 수 있도록 전도성 잉크를 열처리한다(S452).
따라서, 본 단계를 거치면, 쓰루홀(11)의 내벽면을 따라서 제1코팅층(20)과 제2코팅층(30)을 전기적으로 연결하는 전도층(50)이 형성된다.
즉, 도 5의 'A'에서 개략적으로 도시된 바와 같이, 별도의 보강층을 적층하지 않는 경우에는 제1코팅층(20) 및 제2코팅층(30) 상에 전도성 잉크가 적층되어 평탄하지 않은 면이 형성되는 문제가 있는 반면에, 본 실시예에서 보강층(70)을 적층하여 전도성 잉크가 기판(10)과 제1코팅층(20)의 사이 또는 기판(10)과 제2코팅층(30)의 사이에 유입되는 것을 방지하여 제1코팅층(20) 및 제2코팅층(30)의 표면이 평탄화될 수 있도록 한다.
상기 보강층 제거단계(S460)는 보강층(70)을 제1코팅층(20) 및 제2코팅층(30)으로부터 제거하는 단계이다.
상기 도금단계(S470)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)의 외면에 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 회로패턴 형성단계(S480)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(50)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
제5실시예
도 6은 본 발명의 제5실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 6에 도시된 바와 같이, 본 발명의 제5실시예에 따른 인쇄회로기판의 제조방법(S500)은 제1코팅층 형성단계(S510)와 제2코팅층 형성단계(S520)와 도금단계(S530)와 천공단계(S540)와 전도층 형성단계(S550)와 회로패턴 형성단계(S560)를 포함한다.
상기 제1코팅층 형성단계(S510) 및 상기 제2코팅층 형성단계(S520)는 기판(10)의 상면 및 하면에 제1코팅층(20)과 제2코팅층(30)을 각각 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용되나, 이에 제한되는 것은 아니다.
상기 도금단계(S530)는 제1코팅층(20), 제2코팅층(30)의 외면에 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 천공단계(S540)는 기판(10) 및 이의 양면에 적층되는 제1코팅층(20), 제2코팅층(30) 및 도금층(40)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S540)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
이때, 본 실시예에서는 제1코팅층(20) 및 제2코팅층(30)에 도금층(40)을 도금함으로써, 기판(10)에 제1코팅층(20) 또는 제2코팅층(30)만 단독으로 형성된 경우보다 강성 및 내구성을 더욱 보강한 상태에서 본 단계에서의 천공공정이 이루어지므로, 보다 안정적으로 쓰루홀(11)을 형성할 수 있다.
상기 전도층 형성단계(S550)는 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다.
본 단계에서는, 먼저, 쓰루홀(11)의 내부에 제1코팅층(20) 및 제2코팅층(30)과 동일한 소재의 전도성 잉크를 충진한다(S551).
다음으로, 쓰루홀(11)의 내부에 전도성 잉크가 충진된 상태에서, 전도성 잉크가 수축하여 쓰루홀(11)의 내벽면을 따라 코팅되는 전도층(50)이 형성될 수 있도록 전도성 잉크를 열처리한다(S552).
따라서, 본 단계를 거치면, 쓰루홀(11)의 내벽면을 따라서 제1코팅층(20)과 제2코팅층(30) 및 도금층(40)을 상호 연결하는 전도층(50)이 형성된다.
상기 회로패턴 형성단계(S560)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
따라서, 본 실시예에 의하면, 제1코팅층(20) 및 제2코팅층(30)에 도금층(40)을 먼저 형성하여 전체적인 내구성을 먼저 보강한 후에 쓰루홀(11)을 천공하므로, 보다 안정적인 천공 작업이 가능하다.
제6실시예
도 7은 본 발명의 제6실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 7에 도시된 바와 같이, 본 발명의 제6실시예에 따른 인쇄회로기판의 제조방법(S600)은 제1코팅층 형성단계(S610)와 천공단계(S620)와 제2코팅층 형성단계(S630)와 도금단계(S640)와 회로패턴 형성단계(S650)를 포함한다.
상기 제1코팅층 형성단계(S610)는 기판(10)의 일면에 제1코팅층(20)을 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용되나, 이에 제한되는 것은 아니다.
상기 천공단계(S620)는 기판(10) 및 기판(10)의 상면에 적층되는 제1코팅층(20)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S620)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
상기 제2코팅층 형성단계(S630)는 기판(10)의 타면에 제2코팅층(30)을 형성하는 동시에, 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다. 즉, 앞서 설명한 실시예의 제2코팅층 형성단계에서는 단순히 제2코팅층(30)을 코팅하는 것과는 달리, 본 실시예의 제2코팅층 형성단계(S630)에서는 제2코팅층(30)을 코팅함과 동시에, 전도층(50)을 형성한다.
먼저, 제2코팅층(30)이 상측을 향하도록 기판(10)을 뒤집은 후에, 전도성 잉크 소재로 기판(10)의 하면을 코팅하여 제2코팅층(30)을 형성함과 동시에, 쓰루홀(11)의 내부를 전도성 잉크로 충진한다(S631).
다음으로, 상술한 공정에 의하여 기판(10) 상에 코팅된 제1코팅층(20), 제2코팅층(30) 및 쓰루홀(11) 내부에 충진된 전도성 잉크를 열처리한다(S632). 열처리 공정에 의하여 제1코팅층(20) 및 제2코팅층(30)은 경화되고, 쓰루홀(11) 내부의 전도성 잉크 역시 경화, 수축됨으로써 쓰루홀(11)의 내벽면을 따라 전도층(50)이 형성된다.
따라서, 본 단계에 의하면, 제2코팅층(30)이 형성되는 동시에, 쓰루홀(11)의 내벽면을 따라 제1코팅층(20)과 제2코팅층(30)을 상호 연결하는 전도층(50)이 형성된다.
상기 도금단계(S640)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)을 도금하여 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(50)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 회로패턴 형성단계(S650)는 제1코팅층(20) 및 이에 도금되는 도금층(40), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20) 및 이에 도금되는 도금층(40)과 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
한편, 본 단계에서 제1코팅층(20) 및 이에 도금되는 도금층(40)과, 제2코팅층(30) 및 이에 도금되는 도금층(40)은 동시에 패터닝되어 회로패턴을 형성함으로써 공정효율을 향상시킨다.
다만, 도 8은 본 발명의 제6실시예에 따른 인쇄회로기판의 제조방법의 변형례의 공정흐름을 개략적으로 도시된 바와 같이, 본 실시예의 변형례에서는 제1코팅층(20) 및 이에 도금되는 도금층(40)을 패터닝하는 공정(S651')과, 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하는 공정(652')이 각각 순차적으로 진행될 수도 있다.
제7실시예
도 9는 본 발명의 제7실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 9에 도시된 바와 같이, 본 발명의 제7실시예에 따른 인쇄회로기판의 제조방법(S700)은 제1코팅층 형성단계(S710)와 천공단계(S720)와 제2코팅층 형성단계(S730)와 도금단계(S740)와 보호층 접합단계(S750)와 회로패턴 형성단계(S760)와 보호층 제거단계(S770)를 포함한다.
상기 제1코팅층 형성단계(S710)는 기판(10)의 일면에 제1코팅층(20)을 코팅하는 단계이다. 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용되나, 이에 제한되는 것은 아니다.
상기 천공단계(S720)는 기판(10) 및 기판(10)의 상면에 적층되는 제1코팅층(20)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(S720)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
상기 제2코팅층 형성단계(S730)는 기판(10)의 타면에 제2코팅층(30)을 형성하는 동시에, 쓰루홀(11)의 내벽면에 전도층(50)을 형성하는 단계이다.
먼저, 공정의 편의를 위하여 제1코팅층(20)이 하면을 향하도록 기판(10)을 거꾸로 뒤집는다.
기판(10)의 상하가 뒤집힌 후에, 전도성 잉크 소재로 기판(10)의 하면을 코팅하여 제2코팅층(30)을 형성함과 동시에, 쓰루홀(11)의 내부를 전도성 잉크로 충진한다(S731). 이때, 본 실시예에서 제2코팅층(30)은 기판(10)에 전도성 잉크를 프린팅(printing) 하는 방식으로 형성됨으로써 제2코팅층(30)에는 회로패턴이 형성된다.
다음으로 상술한 공정에 의하여 기판(10) 상에 코팅된 제1코팅층(20), 제2코팅층(30)과 쓰루홀(11)의 내부에 충진된 전도성 잉크를 열처리한다(S732). 이러한 열처리 공정에 의하여 제1코팅층(20) 및 제2코팅층(30)은 경화되고, 쓰루홀(11) 내부의 전도성 잉크 역시 경화, 수축됨으로써 쓰루홀(11)의 내벽면을 따라 전도층(50)을 형성한다. 따라서, 쓰루홀(11)의 내벽면을 따라 형성되는 전도층(50)은 제1코팅층(20)과 제2코팅층(30)을 상호 연결한다.
상기 도금단계(S740)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)을 도금하여 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 형성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 보호층 접합단계(S750)는 후술하는 회로패턴 형성단계(S760)에서의 제1코팅층(20)의 패터닝 시에 제2코팅층(30)을 보호하기 위하여 이미 회로패턴이 형성되어 있는 제2코팅층(30) 및 도금층(40) 상에 보호층(80)을 접합하는 단계이다.
즉, 제2코팅층(30) 상에 형성되는 도금층(40)에 보호층(80)을 접합하여 회로패턴 형성단계(S760)에서의 포토리소그래피 공정시 제2코팅층(30)에 발생할 수 있는 손상이 방지한다.
이때, 제2코팅층(30)에 접합되는 보호층(80)의 소재로는 폴리에틸렌테레프타레이트(Polyethylene Terephthalate:PET)필름이 이용될 수 있으나, 이에 제한되는 것은 아니다.
상기 회로패턴 형성단계(S760)는 제1코팅층(20) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
상기 보호층 제거단계(S770)는 도금층(40)에 임시적으로 접합되어 있던 보호층(80)을 제거하는 단계이다.
따라서, 본 실시예에 의하면, 이미 회로패턴이 형성되는 제2코팅층(30)에 별도의 보호층(80)을 접합하여, 제1코팅층(20)의 패터닝시에 제2코팅층(30)에 발생할 수 있는 손상을 방지함으로써, 정밀한 회로패턴을 가지는 인쇄회로기판을 안정적으로 제작할 수 있다.
제8실시예
도 10은 본 발명의 제8실시예에 따른 인쇄회로기판의 제조방법의 공정흐름을 개략적으로 도시한 것이다.
도 10에 도시된 바와 같이, 본 발명의 제8실시예에 따른 인쇄회로기판의 제조방법(S800)은 천공단계(S810)와 제1코팅층 형성단계(S820)와 제2코팅층 형성단계(S830)와 열처리단계(S840)와 도금단계(S850)와 회로패턴 형성단계(S860)를 포함한다.
상기 천공단계(S810)는 기판(10)을 천공하여 기판(10)을 완전히 관통하는 쓰루홀(Through Hole)(11)을 형성하는 단계이다. 본 천공단계(810)는 기판(10)을 CNC드릴, UV레이저, YAG레이저, CO2 레이저, 롤투롤 펀칭 등 기술분야에서 널리 알려진 공정을 통하여 수행된다.
한편, 본 단계에서 이용되는 기판(10)으로는 폴리이미드 필름(PI:PolyImide Film)이 이용될 수 있으나, 이에 제한되는 것은 아니다.
상기 제1코팅층 형성단계(S820)는 기판(10)의 일면에 제1코팅층(20)을 형성하는 동시에, 기판(10)에 형성된 쓰루홀(11) 내부의 내부 중 적어도 일부를 전도성 잉크로 충진하는 단계이다.
상기 제2코팅층 형성단계(S830)는 기판(10)의 타면에 제2코팅층(30)을 형성하는 동시에, 상술한 제1코팅층 형성단계(S820)에서 일부 충진된 쓰루홀(11)의 내부를, 반대쪽 개구부를 통하여 전도성 잉크로 완전히 충진하는 단계이다.
즉, 상술한 제1코팅층 형성단계(S820)와 제2코팅층 형성단계(S830)에 의하면, 기판(10)의 양면에 제1코팅층(20)과 제2코팅층(30)이 형성됨과 동시에, 쓰루홀(11)의 내부에는 전도성 잉크가 완전히 충진된다.
상기 열처리단계(S840)는 제1코팅층(20), 2코팅층(30) 및 쓰루홀(11)의 내부에 충진되는 전도성 잉크를 열처리하는 단계이다.
본 단계에서는 상술한 다양한 공정에 의하여 기판(10) 상에 코팅된 제1코팅층(20)과 제2코팅층(30)은 열처리 공정을 통하여, 경화 및 소성되어 수축된다. 이와 동시에, 쓰루홀(11)의 내부에 충진된 전도성 잉크 역시 열처리됨에 따라, 경화 및 수축되어 쓰루홀(11)의 내벽면을 따라서 전도층(50)이 형성되고, 이러한 전도층(50)은 기판(10)의 양면에 형성되는 제1코팅층(20)과 제2코팅층(30)을 전기적으로 연결한다.
상기 도금단계(S850)는 제1코팅층(20), 제2코팅층(30) 및 전도층(50)의 외면에 도금층(40)을 형성하는 단계이다.
본 단계에서는 전도성 잉크 소재로 구성되는 제1코팅층(20), 제2코팅층(30), 전도층(50)을 무전해 또는 전해 동도금하여 도금층(40)을 형성한다. 이때, 도금층(40)의 두께는 최종 형성되는 인쇄회로기판에 인가되는 전류량을 고려하여 결정한다.
상기 회로패턴 형성단계(S860)는 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝하여 회로패턴을 형성하는 단계이다.
본 단계에서는 기술분야에서 널리 알려진 포토리소그래피(Photo Lithography) 공정을 통하여, 제1코팅층(20), 제2코팅층(30) 및 이에 도금되는 도금층(40)을 패터닝함으로써 원하는 형태의 회로패턴을 형성한다.
한편, 상술한 실시예들에서 코팅층 및 전도층 형성에 사용되는 전도성 잉크로는 Ag, Cu, Ni, Al 등 전기적으로 우수한 전도성을 가지는 소재를 사용할 수 있다.
전도성 잉크로는 금속착제 화합물, 금속 전구체, 구형 금속입자, 금속 플레이크, 또는 나노입자를 포함하는 전도성 잉크를 사용할 수 있다.
예컨대 전도성 잉크 전체 조성물 100중량%에 있어서 금속 플레이크 및 금속 나노입자 중 적어도 어느 하나를 30~90중량%를 포함하는 전도성 잉크를 사용할 수도 있고, 전도성 잉크 전체 조성물 100중량%에 있어서 금속착제화합물 및 금속 전구체 중 적어도 어느 하나를 1~30중량%를 포함하는 전도성 잉크를 사용할 수도 있다.
또한, 전도성 잉크로는 Ag, Pb, Pt, Ni, Cu, Ag/Pb 등의 전도성물질이나 유기금속화합물을 포함하는 전도성페이스트가 사용될 수 있다.
유기금속 화합물 중에서 유기 은 착체(Organic Silver Complex) 화합물을 포함하는 전도성페이스트를 사용하는 것이 바람직할 수 있다. 유기 은 착체화합물을 사용하는 것이 바람직한 이유는 안정성 및 용매에 대한 용해성이 우수하여 쉽게 층 형성이 가능하고, 또한 비교적 낮은 온도에서 분해되어 충 형성이 용이하다는 장점이 있기 때문이다. 또한, 상기 유기 은 착체화합물을 포함하는 전도성 페이스트는 도전체나 금속전구체 등의 전도성 물질을 더 포함할 수 있다.
특수한 구조를 가지는 유기 은 착체화합물을 포함하는 전도성 페이스트를 사용하는 것이 층의 균일한 두께 및 우수한 전도성, 또한 낮은 소성온도를 가지며, 소성 후에 전도성 물질을 제외한 잔류물이 없기 때문에 바람직하다.
전도성 페이스트는 하기 화학식 1의 하나 이상의 은 화합물과 하기 화학식 2, 화학식 3 또는 화학식 4의 하나 이상의 암모늄 카바메이트계 또는 암모늄 카보네이트계 화합물을 반응시켜 얻어지는 은 착체 화합물을 포함하는 전도성 페이스트이다.
화학식 1
(상기의 n은 1∼4의 정수이고, X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트라이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 퍼클로레이트, 테트라플로로 보레이트, 아세틸아세토네이트, 카복실레이트 및 그들의 유도체에서 선택되는 치환기이다)
화학식 2
Figure PCTKR2014004109-appb-C000002
화학식 3
Figure PCTKR2014004109-appb-C000003
화학식 4
Figure PCTKR2014004109-appb-C000004
(상기 R1, R2, R3, R4, R5 및 R6는 서로 같거나 다를 수 있으며, 각각 수소, 탄소수 1 내지 30개의 지방족이나 지환족 알킬기 또는 아릴기나 아랄킬(ARALKYL)기, 관능기가 치환된 알킬기 및 아릴기와 헤테로고리 화합물기와 고분자화합물기 및 그들의 유도체에서 선택되는 치환기이다.)
또한, 상기 유기 은 착체화합물을 포함하는 전도성페이스트는 상기의 은 착체화합물에 도전체, 금속 전구체 또는 1종 이상의 이들 혼합물을 포함할 수 있다.
상기 도전체의 종류로서 예를 들면 Ag, Au, Cu, Ni, Co, Pd, Pt, Ti, V, Mn, Fe, Cr, Zr, Nb, Mo, W, Ru, Cd, Ta, Re, Os, Ir과 같은 전이금속 군에서 선택되거나 Al, Ga, Ge, In, Sn, Sb, Pb, Bi와 같은 금속군, 또는 Sm, Eu와 같은 란타나이드(lanthanides)나 Ac, Th와 같은 액티나이드(actinides)계 금속군에서 선택된 적어도 1종의 금속, 또는 이들의 합금 또는 합금 산화물을 나타낸다. 이 이외에도 전도성 카본블랙, 그라파이트, 탄소나노튜브 그리고 폴리아세틸렌, 폴리피롤, 폴리아닐린, 폴리티오펜 및 그 유도체와 같은 전도성고분자 등이 포함된다.
또한, 상기의 금속 전구체의 경우 열처리, 산화 또는 환원처리, 적외선, 자외선, 전자 선(electron beam), 레이저(laser) 처리 등을 통하여 전도성을 나타내면 더욱 선호된다. 예를 들어, 금속 전구체는 유기금속화합물이나 금속염 등을 포함하며 일반식 MnX로 나타낼 수 있는데 여기서 M은 상기의 도전체 중에 금속 군에서 선택되고, n은 10 이하의 정수, 그리고 X는 산소, 황, 할로겐, 시아노, 시아네이트, 카보네이트, 니트레이트, 나이트라이트, 설페이트, 포스페이트, 티오시아네이트, 클로레이트, 퍼클로레이트, 테트라플로로 보레이트, 아세틸아세토네이트, 머켑토,
아미드, 알콕사이드, 카복실레이트 등을 나타낸다. 구체적으로 예를들면, 초산 금, 옥살산 팔라듐, 2-에틸 헥산산 은(silver 2-ethylhexanoate), 2-에틸 헥산산 구리(copper 2-ethylhexanoate), 스테아린산 철(ironstearate), 포름산 니켈, 아연 시트레이트(zinc citrate)와 같은 카르복실산 금속, 질산 은, 시안화 구리, 탄산코발트, 염화 백금, 염화금산, 테트라부톡시 티타늄, 디메톡시지르코늄 디클로라이드, 알루미늄 이소프로폭사이드, 주석 테트라플로로 보레이트, 바나듐 옥사이드, 인듐-주석 옥사이드, 루테늄 옥사이드, 탄탈륨 메톡사이드, 비스무스 아세테이트, 도데실 머켑토화 금, 인듐 아세틸아세토네이트와 같은 금속화합물 등을 한 종류 이상 선택하여 함께 사용 가능하다. 또한 상기에서 도전체 및 금속 전구체의 형태는 구형, 선형, 판상형 또는 이들의 혼합 형태로도 무방하고 나노 입자를 포함하는 입자(particle) 상태나, 분말(powder), 플레이크(flake), 콜로이드(colloid), 하이브리드(hybrid), 페이스트(paste), 졸(sol), 용액(solution) 상태 또는 이들을 한 종류 이상 선택한 혼합 형태 등 다양한 상태로 사용할 수 있다.
이러한 도전체 또는 금속 전구체의 크기나 사용량은 전도성 페이스트의 특성에 부합되는 그 크기는 소성 후 도막의 두께를 고려할 때 50㎛ 이하, 보다 좋게는 1나노미터(nm) 이상 25㎛ 이하가 바람직하며, 사용량은 일정 한도를 넘지 않아 소성온도가 너무 높아지거나 도포 또는 패턴 형성공정에 문제점이 생기지 않는 경우면 좋다. 보통 그 사용량은 전체 페이스트 조성물에 대하여 무게비로 1 ~ 90퍼센트, 보다 좋게는 10 ~ 70퍼센트 범위가 바람직하다.
상기와 같이 본 발명에 사용되는 전도성 페이스트 조성물은 상기의 은 착체 화합물이나 또는 은 착체화합물과 도전체나 금속 전구체 또는 최소한 1개 이상의 이들 혼합물로 구성되며 여기에 필요에 따라서 용매, 안정제, 분산제, 바인더 수지(binder resin), 환원제, 계면활성제(surfactant), 습윤제(wetting agent), 칙소제(thixotropic agent) 또는 레벨링(levelling)제와 같은 첨가제 등을 본 발명의 전도성 페이스트조성물의 구성원으로 포함시킬 수 있다.
또한, 유기 은 조성물을 포함하는 전도성 페이스트를 사용하는 것이 가능하다. 상기 유기 은 조성물은 아민계열 화합물과, 락톤계열 화합물, 락탐계열 화합물, 카보네이트계열 화합물, 환상 산 무수물계열 화합물과 같이 산화은과 반응하여 유기 은을 형성하는 유기 화합물과의 혼합물에 산화은을 반응시켜 용해하여 제조되는 것을 특징으로 하는 유기 은 조성물로서, 이를 포함하는 전도성페이스는 층 형성시에 기재부착성, 인쇄성 및 높은 전도성을 부여하는 등의 장점이 있다.
상기와 같은 전도성 페이스트를 이용하여, 프린팅하는 방법으로는 그라비아 프린팅, 잉크젯 프린팅, 옵셋 프린팅, 실크스크린 프린팅, 로터리스크린 프린팅, 플렉소 프린팅, 임프린팅 방법을 이용하는 등 어떠한 방법에 의해 프린팅해도 무방하며 이는 기재의 형태 및 재질에 따라 선택적이지만 생산효율 및 작업성, 인쇄 해상도, 효율 등을 고려할 때 실크스크린 프린팅, 로터리스크린, 또는 플렉소프린팅 방법이 바람직할 수 있다.
이와 같이 하여 얻어진 층을 산화 또는 환원 처리나 열처리, 적외선, 자외선, 전자 선, 레이저처리와 같은 후처리 공정을 통하여 금속 또는 금속산화물 패턴을 형성시키는데도 이용할 수 있다. 상기의 후처리 공정은 통상의 불활성 분위기 하에서 열처리할 수도 있지만 필요에 의해 공기, 질소, 일산화탄소 중에서 또는 수소와 공기 또는 다른 불활성 가스와의 혼합 가스에서도 처리가 가능하다. 열처리는 보통 80 ~ 400℃ 사이, 바람직하게는 90 ~ 300℃, 보다 바람직하게는 100 ~ 250℃에서 열처리하는 것이 박막의 물성을 위하여 좋다. 부가적으로, 상기 범위 내에서 저온과 고온에서 2단계 이상 가열 처리하는 것도 박막의 균일성을 위해서 좋다. 예를 들면 80 ~ 150℃에서 1 ~ 30분간 처리하고, 150 ~ 300℃에서 1 ~ 30분간 처리하는 것이 좋다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
기존에 인쇄방식으로 인한 회로형성공정에서 갖고 있는 정밀 회로패턴 구현의 한계 및 전기적 특성을 종래의 포토리소그라피공정을 통한 회로패턴 구현 정밀도 및 전기적 특성이 향상되는 동시에 원재료 절감, 공정단축 및 생산성 향상될 수 있는 인쇄회로기판의 제조방법 및 인쇄회로기판이 제공된다.

Claims (20)

  1. 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계;
    상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계;
    상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 천공단계;
    상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  2. 제1항에 있어서,
    상기 도금단계는 상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면을 무전해 도금하는 단계; 무전해 도금된 쓰루홀의 내벽면을 전해도금하여 도금층을 형성하는 단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  3. 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계;
    상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계;
    상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 천공단계;
    상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 전도층 형성단계;
    상기 제1코팅층과 상기 제2코팅층 및 상기 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  4. 제3항에 있어서,
    상기 전도층 형성단계는 상기 쓰루홀의 내부에 전도성 잉크를 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 단계;를 포함하는 것을 특징으로 하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  5. 제4항에 있어서,
    상기 전도층 형성단계에서 충진되는 전도성 잉크가 상기 쓰루홀 내부로부터 이탈하지 않도록 상기 제1코팅층 또는 상기 제2코팅층 중 적어도 어느 하나에 임시마감층을 접합하여 상기 쓰루홀을 마감하는 임시마감층 접합단계; 상기 전도층 형성단계 이후에 상기 임시마감층을 제거하는 임시마감층 제거단계;를 더 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  6. 제4항에 있어서,
    상기 제1코팅층 및 상기 제2코팅층에 보강층을 접합하는 보강층 접합단계; 및 상기 전도층 형성단계 이후에 상기 보강층을 제거하는 보강층 제거단계;를 더 포함하고,
    상기 천공단계는 상기 보강층, 상기 제1코팅층, 상기 기판, 상기 제2코팅층을 천공하여 쓰루홀을 형성하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  7. 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계;
    상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 제2코팅층 형성단계;
    상기 제1코팅층 및 상기 제2코팅층을 도금하여 도금층을 형성하는 도금단계;
    상기 제1코팅층, 상기 기판, 상기 제2코팅층 및 상기 도금층을 천공하여 쓰루홀을 형성하는 천공단계;
    상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 전도층 형성단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  8. 제7항에 있어서,
    상기 전도층 형성단계는 상기 쓰루홀의 내부에 전도성 잉크를 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성함으로써 상기 제1코팅층에 도금되는 도금층 및 상기 제2코팅층에 도금되는 도금층을 서로 전기적으로 연결하도록 상기 쓰루홀 내부의 전도성 잉크를 열처리하는 단계;를 포함하는 것을 특징으로 하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  9. 기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 제1코팅층 형성단계;
    상기 기판 및 상기 제1코팅층을 천공하여 쓰루홀을 형성하는 천공단계;
    상기 기판의 타면에 전도성 잉크 소재로 제2코팅층을 형성하는 동시에, 상기 제1코팅층과 상기 제2코팅층이 전기적으로 연결되도록 상기 쓰루홀의 내벽면에 전도층을 형성하는 제2코팅층 형성단계;
    상기 제1코팅층과 상기 제2코팅층 및 상기 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  10. 제9항에 있어서,
    상기 제2코팅층 형성단계는 전도성 잉크 소재로 상기 기판을 코팅하는 동시에, 상기 쓰루홀의 내부를 전도성 잉크로 충진하는 단계; 상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 단계;를 포함하는 것을 특징으로 하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  11. 기판을 천공하여 쓰루홀을 형성하는 천공단계;
    기판의 일면에 전도성 잉크로 제1코팅층을 형성하는 동시에, 상기 쓰루홀의 내부의 적어도 일부를 전도성 잉크로 충진하는 제1코팅층 형성단계;
    상기 기판의 타면에 전도성 잉크로 제2코팅층을 형성하는 동시에, 상기 제1코팅층과 상기 제2코팅층이 연결되도록 상기 쓰루홀의 내부를 전도성 잉크로 완전히 충진하는 제2코팅층 형성단계;
    상기 쓰루홀 내부에 충진된 전도성 잉크가 수축하여 상기 쓰루홀의 내벽면을 따라 전도층을 형성하도록 열처리하는 열처리 단계;
    상기 제1코팅층, 상기 제2코팅층 및 전도층을 도금하여 도금층을 형성하는 도금단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 제1코팅층 및 이에 도금되는 도금층 또는 상기 제2코팅층 및 이에 도금되는 도금층에는 회로패턴이 형성되는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  13. 제12항에 있어서,
    상기 제1코팅층 형성단계 또는 상기 제2코팅층 형성단계에서 상기 기판에 전도성 잉크를 프린팅(printing)함으로써 회로패턴이 형성되는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  14. 제12항에 있어서,
    상기 제1코팅층 또는 상기 제2코팅층을 포토리소그래피를 통하여 패터닝함으로써 상기 회로패턴을 형성하는 회로패턴 형성단계를 더 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  15. 제12항에 있어서,
    상기 도금단계 이후에 상기 제1코팅층 및 이에 적층되는 도금층 또는 상기 제2코팅층 및 이에 적층되는 도금층을 포토리소그래피를 통하여 패터닝함으로써 회로패턴을 형성하는 회로패턴 형성단계를 더 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  16. 제15항에 있어서,
    상기 회로패턴 형성단계 이전에 상기 도금층을 보호하기 위하여 상기 도금층에 보호층을 접합하는 보호층 접합단계; 상기 회로패턴 형성단계 이후에 상기 보호층을 제거하는 보호층 제거단계;를 더 포함하는 것을 특징으로 하는 인쇄회로기판의 제조방법.
  17. 쓰루홀이 형성되는 기판;
    상기 기판의 일면에 형성되는 제1코팅층;
    상기 기판의 타면에 형성되는 제2코팅층;
    상기 제1코팅층, 상기 제2코팅층 및 상기 쓰루홀의 내벽면에 도금되어, 상기 제1코팅층과 상기 제2코팅층을 연결하는 도금층;을 포함하는 인쇄회로기판.
  18. 쓰루홀이 형성되는 기판;
    상기 기판의 일면에 형성되는 제1코팅층;
    상기 기판의 타면에 형성되는 제2코팅층;
    상기 쓰루홀의 내벽면에 형성되며, 상기 제1코팅층과 상기 제2코팅층을 상호 연결하는 전도층;
    상기 제1코팅층, 상기 제2코팅층에 도금되는 도금층;을 포함하는 것을 특징으로 하는 인쇄회로기판.
  19. 제18항에 있어서,
    상기 도금층은 상기 제1코팅층, 상기 제2코팅층 및 상기 전도층에 도금되는 것을 특징으로 하는 인쇄회로기판.
  20. 제17항 내지 제19항 중 어느 한 항에 있어서,
    상기 제1코팅층 및 이에 도금되는 도금층 또는 상기 제2코팅층 및 이에 도금되는 도금층에는 회로패턴이 형성되는 것을 특징으로 하는 인쇄회로기판.
PCT/KR2014/004109 2013-05-08 2014-05-08 인쇄회로기판의 제조방법 및 인쇄회로기판 WO2014182094A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480038435.3A CN105379436B (zh) 2013-05-08 2014-05-08 印刷电路板的制造方法及印刷电路板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130052070 2013-05-08
KR10-2013-0052070 2013-05-08

Publications (1)

Publication Number Publication Date
WO2014182094A1 true WO2014182094A1 (ko) 2014-11-13

Family

ID=51867495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004109 WO2014182094A1 (ko) 2013-05-08 2014-05-08 인쇄회로기판의 제조방법 및 인쇄회로기판

Country Status (4)

Country Link
KR (2) KR101631746B1 (ko)
CN (1) CN105379436B (ko)
TW (1) TWI583280B (ko)
WO (1) WO2014182094A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566646B (zh) * 2015-10-06 2017-01-11 挺暉工業股份有限公司 柔性印刷電路板、連接器組件及電子裝置
CN109219259B (zh) * 2017-07-05 2021-09-14 宏启胜精密电子(秦皇岛)有限公司 柔性电路板及其制作方法
KR101957242B1 (ko) * 2017-07-26 2019-06-20 (주)잉크테크 인쇄회로기판 제조방법
KR102465117B1 (ko) * 2017-11-29 2022-11-11 주식회사 잉크테크 인쇄회로기판 제조방법
KR102081078B1 (ko) 2018-07-02 2020-02-25 도레이첨단소재 주식회사 연성동박적층필름 및 이의 제조방법
CN109475044B (zh) * 2018-12-07 2021-05-18 常熟东南相互电子有限公司 采用uv激光钻孔直接电镀制作fpc内层的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259226A (ja) * 1992-01-14 1993-10-08 Hitachi Cable Ltd スルーホール付電気回路構造物及びその製造方法
KR100674293B1 (ko) * 2005-09-09 2007-01-24 삼성전기주식회사 전자부품이 내장된 인쇄회로기판의 제조방법
JP2009135415A (ja) * 2007-10-29 2009-06-18 Mitsubishi Electric Corp プリント配線板およびその製造方法
JP2010123799A (ja) * 2008-11-20 2010-06-03 Fujitsu Ltd 回路基板および多層回路基板
KR20100109698A (ko) * 2009-04-01 2010-10-11 삼성전기주식회사 인쇄회로기판의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260756A (ja) * 1993-03-04 1994-09-16 Ibiden Co Ltd プリント配線板の製造方法
JP3207663B2 (ja) * 1994-03-22 2001-09-10 松下電器産業株式会社 プリント配線基板及びその製造方法
JP3279117B2 (ja) * 1995-03-01 2002-04-30 株式会社デンソー フレキシブル配線板の製造方法
CN1155827A (zh) * 1996-01-25 1997-07-30 金宝电子工业股份有限公司 纸质酚醛树脂线路板及其制造方法
US7345350B2 (en) * 2003-09-23 2008-03-18 Micron Technology, Inc. Process and integration scheme for fabricating conductive components, through-vias and semiconductor components including conductive through-wafer vias
US8143617B2 (en) * 2007-07-03 2012-03-27 Panasonic Corporation Semiconductor device, semiconductor device manufacturing method and image display device
EP2475234A3 (en) * 2009-04-24 2012-09-19 Sumitomo Electric Industries, Ltd. Substrate for printed wiring board, printed wiring board, and methods for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259226A (ja) * 1992-01-14 1993-10-08 Hitachi Cable Ltd スルーホール付電気回路構造物及びその製造方法
KR100674293B1 (ko) * 2005-09-09 2007-01-24 삼성전기주식회사 전자부품이 내장된 인쇄회로기판의 제조방법
JP2009135415A (ja) * 2007-10-29 2009-06-18 Mitsubishi Electric Corp プリント配線板およびその製造方法
JP2010123799A (ja) * 2008-11-20 2010-06-03 Fujitsu Ltd 回路基板および多層回路基板
KR20100109698A (ko) * 2009-04-01 2010-10-11 삼성전기주식회사 인쇄회로기판의 제조방법

Also Published As

Publication number Publication date
KR101631746B1 (ko) 2016-07-07
KR20150084724A (ko) 2015-07-22
TWI583280B (zh) 2017-05-11
KR20140133464A (ko) 2014-11-19
TW201509260A (zh) 2015-03-01
CN105379436B (zh) 2018-08-14
CN105379436A (zh) 2016-03-02
KR101631801B1 (ko) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2014182094A1 (ko) 인쇄회로기판의 제조방법 및 인쇄회로기판
WO2011122723A1 (ko) 양면 인쇄회로기판의 제조방법
WO2015106480A1 (zh) 电磁波屏蔽膜以及包含屏蔽膜的线路板的制作方法
US6379745B1 (en) Low temperature method and compositions for producing electrical conductors
US7115218B2 (en) Low temperature method and composition for producing electrical conductors
WO2015072775A1 (ko) 연성인쇄회로기판과 그 제조 방법
WO2014104846A1 (ko) 전도성 패턴의 형성방법, 전도성 필름, 전도성 패턴 및 투명 전도성 필름
WO2014178639A1 (ko) 연성인쇄회로기판 및 그 제조 방법
WO2018101503A1 (ko) 인쇄회로기판의 제조방법 및 그에 따라서 제조된 인쇄회로기판
WO2012087058A2 (en) Printed circuit board and method for manufacturing the same
WO2012087059A2 (en) Printed circuit board and method for manufacturing the same
WO2018151578A1 (ko) 시드층을 포함하는 전사필름 제조방법, 시드층의 선택적 에칭을 이용한 회로기판 제조방법 및 에칭액 조성물
KR101518394B1 (ko) 양면 인쇄회로기판의 제조방법
WO2019135533A1 (ko) 전자파 차폐 필름의 제조 방법
WO2017014605A1 (ko) 발열 및 비정질 특성을 갖는 금속 도금막 및 이의 제조방법, 이의 용도 및 이용한 저온 접합 방법
WO2018169250A1 (ko) 금속판, 증착용 마스크 및 이의 제조방법
WO2018147678A1 (ko) 시드층을 이용한 회로형성방법 및 시드층의 선택적 에칭을 위한 에칭액 조성물
WO2015102461A1 (ko) 수지 이중층 부착 동박, 이를 포함하는 다층 인쇄 회로 기판 및 그 제조 방법
WO2012087060A2 (en) Printed circuit board and method for manufacturing the same
WO2013176520A1 (en) Semiconductor package substrate, package system using the same and method for manufacturing thereof
WO2019107819A1 (ko) 인쇄회로기판 제조방법
WO2015156540A1 (ko) 미세배선용 양면 연성 동박 적층체, 이의 제조방법 및 미세배선용 인쇄회로기판
CA2451636A1 (en) Low temperature method and compositions for producing electrical conductors
WO2015099451A1 (ko) 연성 인쇄회로기판 형성용 절연 수지 시트 및 이의 제조방법, 이를 포함하는 인쇄회로기판
WO2020122370A1 (ko) 투명전도막의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794903

Country of ref document: EP

Kind code of ref document: A1