WO2014163004A1 - 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法 - Google Patents

含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法 Download PDF

Info

Publication number
WO2014163004A1
WO2014163004A1 PCT/JP2014/059140 JP2014059140W WO2014163004A1 WO 2014163004 A1 WO2014163004 A1 WO 2014163004A1 JP 2014059140 W JP2014059140 W JP 2014059140W WO 2014163004 A1 WO2014163004 A1 WO 2014163004A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
fluorine
containing ether
group
integer
Prior art date
Application number
PCT/JP2014/059140
Other languages
English (en)
French (fr)
Inventor
星野 泰輝
信行 音澤
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480019563.3A priority Critical patent/CN105102505B/zh
Priority to KR1020157023778A priority patent/KR20150138179A/ko
Priority to EP14778826.9A priority patent/EP2982702B1/en
Priority to JP2015510056A priority patent/JP6264371B2/ja
Publication of WO2014163004A1 publication Critical patent/WO2014163004A1/ja
Priority to US14/862,613 priority patent/US9587119B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/12Saturated ethers containing halogen
    • C07C43/126Saturated ethers containing halogen having more than one ether bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/13Saturated ethers containing hydroxy or O-metal groups
    • C07C43/137Saturated ethers containing hydroxy or O-metal groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/14Unsaturated ethers
    • C07C43/17Unsaturated ethers containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/125Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups
    • C07C59/135Saturated compounds having only one carboxyl group and containing ether groups, groups, groups, or groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/10Block or graft copolymers containing polysiloxane sequences
    • C09D183/12Block or graft copolymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences

Definitions

  • the present invention relates to a fluorinated ether compound that can be suitably used for a surface treatment that imparts water and oil repellency to the surface of a substrate, and a fluorinated ether composition or coating liquid containing the fluorinated ether compound.
  • the present invention relates to a method for producing a substrate having a surface layer using the fluorine-containing ether compound, the fluorine-containing ether composition or the coating liquid, and a substrate having a surface layer produced by the method.
  • the fluorine-containing compound exhibits high lubricity, water / oil repellency, etc.
  • it is preferably used as a surface treatment agent.
  • the surface treatment agent imparts water and oil repellency to the surface of the base material, it becomes easy to wipe off the dirt on the surface of the base material, and the dirt removability is improved.
  • a fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain in which an ether bond (—O—) is present in the middle of the perfluoroalkyl chain is particularly excellent in removal of dirt such as oils and fats.
  • the surface-treating agent containing the fluorine-containing ether compound has a performance (water resistance) in which water and oil repellency is hardly lowered even when repeatedly rubbed with a finger, and a performance that can easily remove a fingerprint attached to the surface by wiping (fingerprint stain).
  • a performance water resistance
  • it is used as a surface treatment agent for a member constituting a surface touched by a finger of a touch panel.
  • fluorinated ether compound examples include the following fluorinated ether compounds (1) to (3).
  • a fluorinated ether compound having a poly (oxyperfluoroalkylene) chain, a perfluoroalkyl group at one end, and a hydrolyzable silyl group at the other end Patent Documents 1 and 2.
  • a fluorine-containing ether compound having a poly (oxyperfluoroalkylene) chain and hydrolyzable silyl groups at both ends Patent Document 3).
  • JP 2000-143991 A Japanese Patent No. 28747715 JP 2003-238777 A JP 2011-116947 A
  • the fluorine-containing ether compound (1) has low solubility in a medium and is likely to aggregate in the coating liquid, or even when dissolved in the medium, After application, the surface layer is not sufficiently uniform (transparency, smoothness, little unevenness) because it tends to aggregate in the coating film during drying.
  • the fluorine-containing ether compounds (2) and (3) have insufficient surface layer lubricity (smoothness when the surface layer is touched with a finger) and friction resistance.
  • the present invention relates to a fluorinated ether compound that has a high initial water and oil repellency, can form a surface layer excellent in friction resistance, fingerprint stain removability, lubricity, and uniformity, and a fluorinated ether composition containing the fluorinated ether compound.
  • the object is to provide products and coating solutions.
  • An object of the present invention is to provide a base material having a surface layer that has high initial water and oil repellency, excellent friction resistance, fingerprint stain removability, lubricity, and uniformity, and a method for producing the same.
  • the present invention provides a fluorine-containing ether compound, a fluorine-containing ether composition and a coating liquid having the following constitutions [1] to [15], a substrate having a surface layer, and a method for producing the same.
  • a fluorine-containing ether compound represented by the following formula (1) D 1 —R f1 —O—CH 2 — (C m F 2m O) n —A (1)
  • D 1 is CF 3 — or CF 3 —O—
  • R f1 represents a fluoroalkylene group having 1 to 20 carbon atoms containing at least one hydrogen atom
  • An alkylene group having 1 to 20 carbon atoms, or an alkylene group having 2 to 20 carbon atoms having an etheric oxygen atom between carbon-carbon atoms, A is a group represented by the following formula (4), m is an integer from 1 to 6, n is an integer of 1 to 200, and when n is 2 or more, (C m F 2m O) n may be composed of two or more types of C m F 2m O different in m.
  • B is a single bond or —C g H 2g O—, —C h H 2h O—C ( ⁇ O) NH—, —C ( ⁇ O) —NH—, L is a hydrolyzable group, R is a hydrogen atom or a monovalent hydrocarbon group, a is an integer of 1 to 5, b is an integer of 1 to 10, c is an integer of 1 to 3, g is an integer of 1 to 5, h is an integer of 1 to 5.
  • n is —CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ (where n1 is 1 or more) N2 is an integer of 1 or more, n1 + n2 is an integer of 2 to 200, and the bonding order of n1 CF 2 O and n2 CF 2 CF 2 O is not limited.), [1 ] A fluorine-containing ether compound.
  • R f1 is a group represented by the following formula (3-1), a group represented by the following formula (3-2), or a group represented by the following formula (3-3): [1] or [2] fluorine-containing ether compound.
  • -R F -O-CHFCF 2- (3-1) -R F -CHFCF 2- (3-2) -R F -C z H 2z- (3-3)
  • R F is a single bond, a perfluoroalkylene group having 1 to 15 carbon atoms, or a perfluoroalkylene group having 2 to 15 carbon atoms having an etheric oxygen atom between carbon-carbon atoms
  • z is an integer of 1 to 4.
  • [4] The fluorine-containing ether compound according to any one of [1] to [3], which has a number average molecular weight of 2,000 to 10,000.
  • [5] A fluorine-containing ether comprising the fluorine-containing ether compound of any one of [1] to [4] and a fluorine-containing ether compound other than the fluorine-containing ether compound represented by the formula (1) Composition.
  • [6] The fluorine-containing ether composition according to [5], wherein the content of the fluorine-containing ether compound represented by the formula (1) is 70% by mass or more in the fluorine-containing ether composition (100% by mass).
  • D 2 and D 3 are each independently CF 3 — or CF 3 —O—
  • R f2 and R f3 are each independently a C 1-20 fluoroalkylene group or a C 2-20 fluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms
  • d is an integer of 1 to 5
  • p is an integer from 1 to 6
  • q is an integer of 1 to 200
  • (C p F 2p O) q may be composed of two or more types of C p F 2p O having different p .
  • fluorinated ether compound other than the fluorinated ether compound represented by the formula (1) is a fluorinated ether compound represented by the following formula (6):
  • a fluorine-containing ether composition R F1 —O— (C s F 2s O) t —R F2 (6)
  • R F1 and R F2 are each independently a C 1-6 perfluoroalkyl group, s is an integer from 1 to 6, t is an integer of 1 to 200, and when t is 2 or more, (C s F 2s O) t may be composed of two or more types of C s F 2s O having different s .
  • a coating liquid comprising the fluorinated ether compound of any one of [1] to [4] or the fluorinated ether composition of any of [5] to [9] and a medium.
  • the medium is at least one organic solvent selected from the group consisting of a fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether.
  • the fluorine-containing ether compound of any one of [1] to [4] or the fluorine-containing ether composition of any of [5] to [9] is vacuum-deposited on the surface of a substrate.
  • a method for producing a substrate having a surface layer A method for producing a substrate having a surface layer, wherein the coating liquid according to [10] or [11] is applied to a surface of the substrate and dried.
  • a surface layer comprising the fluorine-containing ether compound of any one of [1] to [4] or the fluorine-containing ether composition of any of [5] to [9]
  • a substrate having a surface layer formed from the fluorine-containing ether compound of any one of [1] to [4] or the fluorine-containing ether composition of any of [5] to [9] A touch panel characterized by comprising:
  • the fluorinated ether composition containing the fluorinated ether compound and the coating liquid, the initial water and oil repellency is high, and the friction resistance, fingerprint stain removability, lubricity and uniformity are high. It is possible to form a surface layer excellent in
  • the base material having the surface layer of the present invention has a surface layer having high initial water and oil repellency and excellent friction resistance, fingerprint stain removability, lubricity and uniformity.
  • the method for producing a substrate having a surface layer of the present invention it is possible to produce a substrate having a surface layer having high initial water and oil repellency and excellent in abrasion resistance, fingerprint stain removability, lubricity, and uniformity. .
  • a compound represented by the formula (1) is referred to as a compound (1).
  • the following definitions of terms apply throughout this specification and the claims.
  • the “hydrolyzable silyl group” means a group that can form a silanol group (Si—OH) by a hydrolysis reaction. For example, —SiL c R 3-c in formula (1).
  • the “etheric oxygen atom” means an oxygen atom that forms an ether bond (—O—) between carbon-carbon atoms.
  • the number average molecular weight of the fluorine-containing ether compound is calculated by the following method using NMR analysis.
  • “Fluoroalkylene group” means a group in which some or all of the hydrogen atoms of the alkylene group are substituted with fluorine atoms
  • “perfluoroalkylene group” means that all of the hydrogen atoms in the alkylene group are substituted with fluorine atoms. Means the group formed.
  • the “perfluoroalkyl group” means a group in which all hydrogen atoms of an alkyl group are substituted with fluorine atoms.
  • the chemical formula of the oxyperfluoroalkylene group is expressed by describing the oxygen atom on the right side of the perfluoroalkylene group.
  • “Surface layer” means a layer formed on the surface of a substrate from the fluorine-containing ether compound or fluorine-containing ether composition of the present invention.
  • the fluorine-containing ether compound of the present invention is a compound (1) represented by the following formula (1).
  • D 1 is CF 3 — or CF 3 —O—
  • R f1 represents a fluoroalkylene group having 1 to 20 carbon atoms containing at least one hydrogen atom
  • An alkylene group having 1 to 20 carbon atoms, or an alkylene group having 2 to 20 carbon atoms having an etheric oxygen atom between carbon-carbon atoms, A is a group represented by the following formula (4), m is an integer from 1 to 6, n is an integer of 1 to 200, and when n is 2 or more, (C m F 2m O) n may be composed of two or more types of C m F 2m O different in m.
  • B is a single bond or —C g H 2g O—, —C h H 2h O—C ( ⁇ O) NH—, —C ( ⁇ O) —NH—, L is a hydrolyzable group, R is a hydrogen atom or a monovalent hydrocarbon group, a is an integer of 1 to 5, b is an integer of 1 to 10, c is an integer of 1 to 3, g is an integer of 1 to 5, h is an integer of 1 to 5.
  • ((C m F 2m O) n) m is preferably an integer of 1 to 3 from the viewpoint of sufficiently imparting friction resistance and fingerprint stain removability to the surface layer, and is preferably 1 or 2 from the viewpoint of sufficiently imparting lubricity to the surface layer. preferable.
  • C m F 2m may be linear or branched. From the viewpoint of sufficiently imparting fingerprint stain removability and lubricity to the surface layer, a straight chain is preferable.
  • N is preferably an integer of 2 or more, more preferably an integer of 10 or more, and particularly preferably an integer of 20 or more from the viewpoint of sufficiently imparting initial water and oil repellency to the surface layer. If the number average molecular weight of the compound (1) is too large, the number of hydrolyzable silyl groups present per unit molecular weight is reduced, and the friction resistance is lowered. The following integer is more preferable, and an integer of 80 or less is particularly preferable.
  • (C m F 2m O) n may be composed of two or more types of C m F 2m O with different m .
  • (C m F 2m O) In n when two or more types of C m F 2m O having different m exist, the bonding order of each C m F 2m O is not limited. For example, when CF 2 O and CF 2 CF 2 O are present, CF 2 O and CF 2 CF 2 O may be randomly arranged, or CF 2 O and CF 2 CF 2 O may be alternately arranged. In addition, a block made of a plurality of CF 2 O and a block made of a plurality of CF 2 CF 2 O may be connected.
  • (C m F 2m O) n is preferably (CF 2 CF 2 O) n , (CF 2 CF 2 CF 2 O) n or (CF 2 CF 2 CF 2 O) n , particularly (CF 2 CF 2 O) n Is preferred.
  • n is ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ from the viewpoint of sufficiently imparting friction resistance, fingerprint stain removability and lubricity to the surface layer.
  • n1 is an integer of 1 or more
  • n2 is an integer of 1 or more
  • n1 + n2 is an integer of 2 to 200
  • the bonding order of n1 CF 2 O and n2 CF 2 CF 2 O Is not limited.
  • N1 is an integer of 1 or more.
  • n1 is preferably an integer of 2 or more, more preferably an integer of 5 or more, and an integer of 10 or more. Particularly preferred. If the number average molecular weight of the compound (1) is too large, n1 is preferably an integer of 100 or less, because the number of hydrolyzable silyl groups present per unit molecular weight decreases and the friction resistance decreases. The following integer is more preferable, and an integer of 50 or less is particularly preferable.
  • N2 is an integer of 1 or more.
  • n2 is preferably an integer of 2 or more, more preferably an integer of 5 or more, and an integer of 10 or more. Particularly preferred.
  • n2 is preferably an integer of 100 or less, because the number of hydrolyzable silyl groups present per unit molecular weight decreases and the friction resistance decreases. The following integer is more preferable, and an integer of 50 or less is particularly preferable.
  • the compound (1) is preferably a derivative of the following fluorine-containing diol because of its ease of production.
  • the derivative of the following fluorine-containing diol means a compound in which at least one group of both terminal groups —CF 2 CH 2 —OH is converted to another group.
  • a derivative in which a hydrogen atom of a hydroxyl group is converted to another group is preferable.
  • Compound (1) has a (C m F 2m O) n , the content of fluorine atoms is large. Therefore, it is possible to form a surface layer having high initial water and oil repellency, excellent friction resistance and fingerprint stain removability.
  • the number of hydrogen atoms in R f1 is 1 or more from the viewpoint of excellent uniformity of the surface layer, preferably 2 or more, and particularly preferably 3 or more.
  • the number of hydrogen atoms in R f1 is (the number of carbon atoms in R f1 ) ⁇ 2 or less, and is preferably (the number of carbon atoms in R f1 ) or less from the viewpoint of sufficiently imparting the initial water and oil repellency to the surface layer. .
  • R f1 has a hydrogen atom, the solubility of the compound (1) in the medium is increased.
  • the compound (1) is less likely to aggregate in the coating liquid, and the compound (1) is less likely to aggregate in the coating film after being applied to the surface of the base material and then dried, resulting in a uniform surface layer.
  • the conventional fluorine-containing ether compound in which R f1 does not have a hydrogen atom has insufficient surface layer uniformity.
  • R f1 is a group represented by the following formula (3-1), a group represented by the following formula (3-2), or a group represented by the following formula (3- The group represented by 3) is preferred.
  • R F is a group bonded to D 1 .
  • -R F -O-CHFCF 2- (3-1) -R F -CHFCF 2- (3-2) -R F -C z H 2z- (3-3)
  • R F is a single bond, a perfluoroalkylene group having 1 to 15 carbon atoms, or a perfluoroalkylene group having 2 to 15 carbon atoms having an etheric oxygen atom between carbon-carbon atoms
  • z is an integer of 1 to 4.
  • RF is a perfluoroalkylene group having 1 to 9 carbon atoms or an ether group between carbon-carbon atoms from the viewpoint of sufficiently imparting initial water and oil repellency, friction resistance and fingerprint stain removability to the surface layer.
  • a C 2-13 perfluoroalkylene group having an oxygen atom is preferred.
  • the perfluoroalkylene group may be linear or branched.
  • z is preferably an integer of 1 to 3. When z is 3 or 4, C z H 2z may be linear or branched, and is preferably linear.
  • D 1 -R f1 -group when R f1 is represented by the formula (3-1) include the following groups.
  • D 1 -R f1 -group when R f1 is represented by the formula (3-2) include the following groups. CF 3 -CHFCF 2- CF 3 —CF 2 —CHFCF 2 — CF 3 —CF 2 CF 2 —CHFCF 2 — CF 3 —CF 2 CF 2 —CHFCF 2 —
  • D 1 -R f1 -group when R f1 is represented by the formula (3-3) include the following groups. CF 3 —CH 2 — CF 3 —CF 2 —CH 2 — CF 3 —CF 2 CF 2 —CH 2 — CF 3 —CF 2 CF 2 CF 2 —CH 2 — CF 3 —CF 2 CF 2 CF 2 —CH 2 — CF 3 —CF 2 CF 2 CF 2 CF 2 —CH 2 — CF 3 —CF 2 CF 2 CF 2 CF 2 —CH 2 — CF 3 —CF 2 CF 2 CF 2 CF 2 CF 2 —CH 2 — CF 3 —CH 2 CH 2 — CF 3 —CF 2 —CH 2 CH 2 — CF 3 —CF 2 CF 2 —CH 2 CH 2 — CF 3 —CF 2 CF 2 —CH 2 CH 2 — CF 3 —CF 2 CF 2 —CH 2 CH 2 —
  • A is a group represented by the following formula (4). —C a F 2a —B—C b H 2b —SiL c R 3-c (4) B is a single bond or —C g H 2g O—, —C h H 2h O—C ( ⁇ O) NH—, —C ( ⁇ O) —NH—, L is a hydrolyzable group, R is a hydrogen atom or a monovalent hydrocarbon group, a is an integer of 1 to 5, b is an integer of 1 to 10, c is an integer of 1 to 3, g is an integer of 1 to 5, h is an integer of 1 to 5.
  • L is a hydrolyzable group.
  • the hydrolyzable group is a group that becomes a hydroxyl group by a hydrolysis reaction. That is, Si-L at the terminal of the compound (1) becomes a silanol group (Si—OH) by hydrolysis reaction. The silanol group further reacts between molecules to form a Si—O—Si bond. Further, the silanol group undergoes a dehydration condensation reaction with a hydroxyl group (base material-OH) on the surface of the base material to form a chemical bond (base material-O-Si). Since the compound (1) has a hydrolyzable silyl group at the terminal, the compound (1) is excellent in adhesion to the substrate, excellent in friction resistance, and capable of making the surface of the substrate water and oil repellency.
  • L examples include an alkoxy group, a halogen atom, an acyl group, an isocyanate group (—NCO) and the like.
  • alkoxy group an alkoxy group having 1 to 4 carbon atoms is preferable.
  • acyl group an acyl group having 2 to 5 carbon atoms is preferable.
  • L is preferably an alkoxy group having 1 to 4 carbon atoms or a halogen atom from the viewpoint of easy industrial production.
  • halogen atom a chlorine atom is particularly preferable.
  • L is preferably an alkoxy group having 1 to 4 carbon atoms from the viewpoint of less outgassing during coating and excellent storage stability of the compound (1), and when long-term storage stability of the compound (1) is required. Is particularly preferably an ethoxy group, and a methoxy group is particularly preferable when the reaction time after coating is short.
  • R is a hydrogen atom or a monovalent hydrocarbon group.
  • the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, and an aryl group.
  • R is preferably a monovalent hydrocarbon group, particularly preferably a monovalent saturated hydrocarbon group.
  • the number of carbon atoms of the monovalent saturated hydrocarbon group is preferably 1 to 6, more preferably 1 to 3, and particularly preferably 1 to 2.
  • R is preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and an alkyl group having 1 to 2 carbon atoms from the viewpoint of easy industrial production. Particularly preferred.
  • a is an integer of 1 to 5 depending on the number of m in C m F 2m O.
  • a is 1 when the compound (1) is a derivative of the compound (10).
  • b is preferably an integer of 1 to 6, particularly preferably 3 to 5.
  • C b H 2b may be linear or branched, and is preferably linear.
  • c is preferably 2 or 3, and particularly preferably 3.
  • g is preferably an integer of 1 to 3, and when g is 3 or more, C g H 2g may be linear or branched, and is preferably linear.
  • h is preferably an integer of 1 to 3, and when h is 3 or more, C h H 2h may be linear or branched, and is preferably linear.
  • the compound (1) is a derivative of the compound (10)
  • g and h are both 1.
  • -SiL c R 3-c includes -Si (OCH 3 ) 3 , -SiCH 3 (OCH 3 ) 2 , -Si (OCH 2 CH 3 ) 3 , -SiCl 3 , -Si (OCOCH 3 ) 3 ,- Si (NCO) 3 is preferred. From the viewpoint of easy handling in industrial production, —Si (OCH 3 ) 3 is particularly preferable.
  • a compound in which the above-mentioned preferable D 1 -R f1 group, preferable (C m F 2m O) n and a preferable A group are combined is preferable, and the following formulas (111) and (112 ), Formula (113), Formula (121), Formula (122), Formula (123), Formula (123), Formula (131), Formula (132), Formula (133) preferable.
  • Compound (111), Compound (112), Compound (113), Compound (121), Compound (122), Compound (123), Compound (131), Compound (132), and Compound (133) are compound (10) It is easy to produce industrially and is easy to handle, and can sufficiently impart initial water and oil repellency, friction resistance, fingerprint stain removability, lubricity and uniformity to the surface layer.
  • the compound (12) and HSiL c R 3-c are subjected to a hydrosilylation reaction to obtain the compound (111a) or a mixture of the compound (111a) and the compound (111b).
  • the hydrosilylation reaction is preferably performed using a transition metal catalyst such as platinum or a radical generator such as an organic peroxide.
  • Compound (111) can be produced as follows when b is 1 or more.
  • Compound (11) is obtained by reacting compound (11) with X—C b H 2b —SiL c R 3-c in the presence of a basic compound.
  • X is a leaving group, such as I, Br, Cl and the like.
  • D 1 R F —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C b H 2b —SiL c R 3-c (111)
  • Compound (112) can be produced as follows. In the presence of a urethanization catalyst, compound (11) is reacted with OCN—C b H 2b —SiL c R 3-c to obtain compound (112). D 1 —R F —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C ( ⁇ O) NH— C b H 2b —SiL c R 3-c (112)
  • Compound (113) can be produced as follows. Compound (11) is oxidized to obtain compound (13a). In some cases, compound (13a) is esterified to give compound (13b). R 1 is an alkyl group or the like. D 1 —R F —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OH (13a) D 1 —R F —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OR 1 ... (13b )
  • Compound (113) is obtained by reacting compound (13a) or compound (13b) with H 2 N—C b H 2b —SiL c R 3-c .
  • D 1 R F —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) —NH—C b H 2b -SiL c R 3-c (113)
  • the compound (121) can be produced as follows. In the presence of a basic compound, D 1 -R F —CF ⁇ CF 2 is reacted with compound (10) to obtain a mixture of compound (14), compound (22) and unreacted compound (10).
  • the compound (15) and HSiL c R 3-c are subjected to a hydrosilylation reaction to obtain the compound (121a) or a mixture of the compound (121a) and the compound (121b).
  • the hydrosilylation reaction is preferably performed using a transition metal catalyst such as platinum or a radical generator such as an organic peroxide.
  • the compound (121) can be produced as follows.
  • Compound (121) is obtained by reacting compound (14) with X—C b H 2b —SiL c R 3-c in the presence of a basic compound.
  • X is a leaving group, such as I, Br, Cl and the like.
  • D 1 R F —CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C b H 2b —SiL c R 3 -C (121)
  • Compound (122) can be produced as follows. In the presence of a urethanization catalyst, compound (14) is reacted with OCN—C b H 2b —SiL c R 3-c to obtain compound (122). D 1 —R F —CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C ( ⁇ O) NH—C b H 2b —SiL c R 3-c (122)
  • Compound (123) can be produced as follows. Compound (14) is oxidized to give compound (16a). In some cases, compound (16a) is esterified to give compound (16b).
  • R 1 is an alkyl group or the like. D 1 —R F —CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OH (16a) D 1 —R F —CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OR 1 (16b)
  • the compound (131) can be produced as follows when b is 3 or more.
  • Compound (10) is reacted with D 1 -R F —C z H 2z —Z in the presence of a basic compound to obtain a mixture of compound (17), compound (23) and unreacted compound (10).
  • Z is a leaving group, such as I, Br, Cl, OC ( ⁇ O) CF 3 , OSO 2 CH 3 , OSO 2 Ph (Ph is a phenyl group), and the like.
  • the compound (18) and HSiL c R 3-c are subjected to a hydrosilylation reaction to obtain the compound (131a) or a mixture of the compound (131a) and the compound (131b).
  • the hydrosilylation reaction is preferably performed using a transition metal catalyst such as platinum or a radical generator such as an organic peroxide.
  • the compound (131) can be produced as follows. In the presence of a basic compound, X—C b H 2b —SiL c R 3-c is reacted with compound (17) to give compound (131).
  • X is a leaving group, such as I, Br, Cl and the like.
  • D 1 R F —C z H 2z —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C b H 2b —SiL c R 3-c (131)
  • Compound (132) can be produced as follows. In the presence of a urethanization catalyst, the compound (17) is reacted with OCN—C b H 2b —SiL c R 3-c to obtain the compound (132). D 1 —R F —C z H 2z —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—C ( ⁇ O) NH— C b H 2b —SiL c R 3-c (132)
  • Compound (133) can be produced as follows. Compound (17) is oxidized to obtain compound (19a). In some cases, compound (19a) is esterified to give compound (19b).
  • R 1 is an alkyl group or the like. D 1 —R F —C z H 2z —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OH (19a) D 1 —R F —C z H 2z —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OR 1 (19b) )
  • the target compound (1) can be easily obtained by addition reaction or substitution reaction under mild conditions using a commercially available compound (10) as a raw material.
  • the compound (11), the compound (14), and the compound (17), which are intermediates for obtaining the compound (1) are alcohols having appropriate polarities at the ends, a normal column using silica gel is used. It can be easily isolated by purification. Thus, compound (11), compound (21) and unreacted compound (10) mixture, compound (14), compound (22) and unreacted compound (10) mixture, or compound (17), compound ( 23) and the target compound (11), compound (14) or compound (17) can be isolated from the mixture of the unreacted compound (10), and no unreacted compound (10) remains in the compound.
  • the fluorine-containing ether compound obtained from the unreacted compound (10) is hydrolyzable silyl group at both ends is not included in the finally obtained compound (1), or a slight amount is included. is there. Further, by isolating the compound (21), the compound (22) or the compound (23) which is the compound (2), the compound (2) is effectively used as one component added to the fluorine-containing ether composition described later. Can be used.
  • the compound (1) of the present invention may be a single compound composed of one kind of compound (1), and two or more kinds of D 1 , R f1 , (C m F 2m O) n , A and the like are different.
  • the mixture which consists of a compound (1) may be sufficient.
  • the compound (1) which is a single compound means the same compound group except that it has a distribution in the number of n.
  • the commercially available compound (10) is usually a compound that can be regarded as a single compound in the above-mentioned meaning, a derivative in which the ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ portion has not changed is As long as other parts (D 1 , R f1 , A, etc.) are the same, they can be regarded as a single compound.
  • the number average molecular weight of the compound (1) is preferably 2,000 to 10,000. When the number average molecular weight is within this range, the friction resistance is excellent.
  • the number average molecular weight of the compound (1) is preferably 2,100 to 9,000, particularly preferably 2,400 to 8,000. In general, in a fluorine-containing ether compound, it is considered that the smaller the number average molecular weight, the stronger the chemical bond with the substrate. The reason for this is considered that the number of hydrolyzable silyl groups present per unit molecular weight increases. However, the present inventors have confirmed that if the number average molecular weight is less than the lower limit of the above range, the friction resistance tends to decrease.
  • the fluorinated ether composition of the present invention (hereinafter referred to as the present composition) is a composition comprising the compound (1) and a fluorinated ether compound other than the compound (1).
  • a fluorine-containing ether compound other than the compound (1) hereinafter referred to as other fluorine-containing ether compound
  • known (particularly commercially available) fluorine-containing ether compounds and the like are compounds that are less likely to deteriorate the properties of the compound (1), and the relative content to the compound (1) in the composition decreases the properties of the compound (1).
  • the amount is less fearful.
  • the other fluorine-containing ether compound is a fluorine-containing ether compound by-produced in the production process of the compound (1)
  • the purification of the compound (1) in the production of the compound (1) is facilitated, and the purification process can be simplified. it can.
  • the other fluorine-containing ether compound is a known fluorine-containing ether compound used for the same application as that of the compound (1)
  • the following compound (2) and compound (6) are preferred because they are less likely to deteriorate the properties of the compound (1).
  • Compound (2) is a fluorine-containing ether compound represented by the following formula (2).
  • D 2 and D 3 are each independently CF 3 — or CF 3 —O—
  • R f2 and R f3 are each independently a C 1-20 fluoroalkylene group or a C 2-20 fluoroalkylene group having an etheric oxygen atom between carbon-carbon atoms
  • d is an integer of 1 to 5
  • p is an integer from 1 to 6
  • q is an integer of 1 to 200
  • (C p F 2p O) q may be composed of two or more types of C p F 2p O having different p .
  • C p F 2p O ((C p F 2p O) q) p is preferably the same as m in formula (1) from the viewpoint that a compound by-produced in the production process of compound (1) can be effectively used.
  • C p F 2p may be linear or branched. From the viewpoint of sufficiently imparting fingerprint stain removability and lubricity to the surface layer, a straight chain is preferable.
  • Q is preferably the same as n in Formula (1) from the viewpoint that a compound by-produced in the production process of Compound (1) can be effectively used.
  • (C p F 2p O) q may be composed of two or more types of C p F 2p O having different p .
  • (C p F 2p O) q if C p F 2p O of two or more having different p are present, binding order of C p F 2p O is not limited.
  • (C p F 2p O) q from the viewpoint of effective use of the compound (1) compound in the manufacturing process by-product of it is preferably the same as (C m F 2m O) n in the formula (1) .
  • the compound (1) is a compound having ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇
  • the compound (2) is also ⁇ (CF 2 O) n1 (CF 2 CF 2 O).
  • a compound having n2 ⁇ is particularly preferable.
  • the production process of the compound (1) from the viewpoint of ease of production of the compound (2) is preferably a derivative of the compound (10) from the viewpoint that the compound by-produced in can be effectively used.
  • —CH 2 — (C p F 2p O) q — represents —CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —
  • —C d F 2d — is —CF 2 —.
  • R f2 and R f3 groups examples and preferred examples of R f2 and R f3 are the same as those of R f1 .
  • R f2 and R f3 are represented by the group represented by the above formula (3-1) and the formula (3-2) from the viewpoint that the compound by-produced in the production process of the compound (1) can be effectively used. Or a group represented by formula (3-3) is preferred.
  • R f2 R F is a group bonded to D 2
  • R f3 R F is a group bonded to D 3 .
  • the compound (21), the compound (22), and the compound (23) are preferable from the viewpoint that the compound by-produced in the production process of the preferred embodiment of the compound (1) can be effectively used.
  • the types of the two R F groups in the formula may be the same or different.
  • Compound (6) is a fluorinated ether compound represented by the following formula (6).
  • R F1 and R F2 are each independently a C 1-6 perfluoroalkyl group, s is an integer from 1 to 6, t is an integer of 1 to 200, and when t is 2 or more, (C s F 2s O) t may be composed of two or more types of C s F 2s O having different s .
  • Compound (6) can be obtained by fluorinating compound (2) with fluorine gas. Moreover, a commercial item can be used. Commercially available products include FOMBLIN M, FOMBLIN Y, FOMBLIN Z (manufactured by Solvay Solexis), Krytox (manufactured by DuPont), demnum (manufactured by Daikin Industries), and the like. (C s F 2s O) FMBBLIN M and FOMBLIN Z in which t contains (CF 2 O) and (CF 2 CF 2 O) are preferable in terms of excellent lubricity.
  • the fluorine-containing ether composition of the present invention may contain impurities other than the compound (1) and other fluorine-containing ether compounds.
  • Impurities other than compound (1) and other fluorine-containing ether compounds mean compounds inevitable in the production of compound (1) and other fluorine-containing ether compounds, and fluorine-containing compounds such as (C m F 2m O) n It is a compound that does not contain an ether chain. Specifically, it is a by-product generated in the production process of the compound (1) and other fluorine-containing ether compounds, and a component mixed in the production process of the compound (1) and other fluorine-containing ether compounds.
  • the content of the compound (1) in the composition is the content of the compound (1) with respect to the total of impurities such as the compound (1), other fluorine-containing ether compounds and the by-products in the composition.
  • the total content of the other fluorine-containing ether compound and the impurity relative to the total of the compound (1), the other fluorine-containing ether compound and the impurity in the composition is preferably 30% by mass or less, A mass% or less is particularly preferred.
  • the surface layer is excellent in initial water / oil repellency, friction resistance, fingerprint stain removability, lubricity and uniformity.
  • the other fluorine-containing ether compounds are the compound (2) and the compound (6), as described above, these are compounds which are less likely to deteriorate the properties of the compound (1).
  • the preferable content of the compound (1) may be lower than the lower limit of the above content.
  • the total content of compound (1), compound (2) and compound (6) in this composition is 80% by mass or more. Preferably, 85 mass% or more is particularly preferable.
  • the total content of the compound (1), the compound (2) and the compound (6) in the present composition refers to the compound (1), other fluorine-containing ether compounds and the by-products in the present composition.
  • this composition contains a compound (2)
  • mass ratio (compound (1) / compound (2)) of the compound (1) and the compound (2) in this composition is 40/60 or more and 100/0. Is preferably less than 50/50 and less than 100/0.
  • the compound (1) / compound (2) is within the above range, the surface layer is excellent in initial water / oil repellency, friction resistance, fingerprint stain removability, lubricity and uniformity.
  • mass ratio (compound (1) / compound (6)) of the compound (1) and the compound (6) in this composition is 40/60 or more and 100/0. Is preferably less than 50/50 and less than 100/0.
  • the surface layer is excellent in initial water / oil repellency, friction resistance, fingerprint stain removability, lubricity and uniformity.
  • the mass ratio (compound (1) /) of the total amount of compound (1) and compound (2) and compound (6) in this composition [Compound (2) + Compound (6)]) is preferably from 40/60 to less than 100/0, particularly preferably from 50/50 to less than 100/0. If compound (1) / [compound (2) + compound (6)] is within this range, the surface layer is excellent in initial water and oil repellency, friction resistance, fingerprint stain removability, lubricity and uniformity. .
  • the coating liquid of the present invention contains the compound (1) or the present composition and a medium.
  • the medium is preferably liquid.
  • the coating liquid may be liquid, may be a solution, or may be a dispersion.
  • the present compound (1) and the present composition are collectively referred to as a compound (1) and the like.
  • This coating liquid should just contain compound (1) etc., and may contain impurities, such as a by-product produced
  • the concentration of the compound (1) and the like is preferably 0.001 to 10% by mass, particularly preferably 0.1 to 1% by mass in the present coating solution.
  • an organic solvent is preferable.
  • the organic solvent may be a fluorinated organic solvent, a non-fluorinated organic solvent, or may contain both solvents.
  • fluorinated organic solvent examples include fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, fluorinated alkylamines, and fluoroalcohols.
  • fluorinated alkane a compound having 4 to 8 carbon atoms is preferable.
  • commercially available products include C 6 F 13 H (AC-2000: product name, manufactured by Asahi Glass Co., Ltd.), C 6 F 13 C 2 H 5 (AC-6000: product name, manufactured by Asahi Glass Co., Ltd.), C 2 F 5 CHFCHFCCF. 3 (Bertrel: product name, manufactured by DuPont).
  • fluorinated aromatic compound examples include hexafluorobenzene, trifluoromethylbenzene, perfluorotoluene, and bis (trifluoromethyl) benzene.
  • fluoroalkyl ether a compound having 4 to 12 carbon atoms is preferable.
  • commercially available products include CF 3 CH 2 OCF 2 CF 2 H (AE-3000: product name, manufactured by Asahi Glass), C 4 F 9 OCH 3 (Novec-7100: product name, manufactured by 3M), C 4 F 9 OC 2 H 5 (Novec-7200: product name, manufactured by 3M), C 6 F 13 OCH 3 (Novec-7300: product name, manufactured by 3M), and the like.
  • fluorinated alkylamine examples include perfluorotripropylamine and perfluorotributylamine.
  • fluoroalcohol examples include 2,2,3,3-tetrafluoropropanol, 2,2,2-trifluoroethanol, hexafluoroisopropanol and the like.
  • the fluorinated organic solvent is preferably a fluorinated alkane, a fluorinated aromatic compound, or a fluoroalkyl ether, and particularly preferably a fluoroalkyl ether, from the viewpoint of solubility of the compound (1).
  • non-fluorine-based organic solvent a compound consisting only of a hydrogen atom and a carbon atom and a compound consisting only of a hydrogen atom, a carbon atom and an oxygen atom are preferable, a hydrocarbon-based organic solvent, an alcohol-based organic solvent, a ketone-based organic solvent, Examples include ether organic solvents and ester organic solvents.
  • a hydrocarbon organic solvent hexane, heptane, cyclohexane and the like are preferable.
  • alcohol organic solvent methanol, ethanol, 1-propanol, 2-propanol and the like are preferable.
  • ketone organic solvent acetone, methyl ethyl ketone, methyl isobutyl ketone and the like are preferable.
  • ether organic solvent diethyl ether, tetrahydrofuran, tetraethylene glycol dimethyl ether and the like are preferable.
  • ester organic solvent ethyl acetate, butyl acetate and the like are preferable.
  • non-fluorine organic solvent a ketone organic solvent is particularly preferable from the viewpoint of the solubility of the compound (1).
  • the medium is at least selected from the group consisting of fluorinated alkanes, fluorinated aromatic compounds, fluoroalkyl ethers, compounds consisting only of hydrogen atoms and carbon atoms, and compounds consisting only of hydrogen atoms, carbon atoms and oxygen atoms.
  • One organic solvent is preferred.
  • a fluorine-based organic solvent selected from a fluorinated alkane, a fluorinated aromatic compound, and a fluoroalkyl ether is preferable.
  • the medium is selected from the group consisting of fluorinated alkanes that are fluorinated organic solvents, fluorinated aromatic compounds, fluoroalkyl ethers, and non-fluorinated organic solvents that are composed only of hydrogen atoms, carbon atoms, and oxygen atoms. It is preferable that at least one organic solvent is contained in a total of 90% by mass or more of the whole medium in terms of enhancing the solubility of the compound (1).
  • the coating liquid preferably contains 90 to 99.999% by mass of the medium, and particularly preferably 99 to 99.9% by mass.
  • the present coating liquid may contain other components in addition to the compound (1) and the like and the medium as long as the effects of the present invention are not impaired.
  • the other components include known additives such as an acid catalyst and a basic catalyst that promote hydrolysis and condensation reaction of the hydrolyzable silyl group.
  • the acid catalyst include hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acid, methanesulfonic acid, p-toluenesulfonic acid and the like.
  • the basic catalyst include sodium hydroxide, potassium hydroxide, ammonia and the like.
  • the content of other components in the coating solution is preferably 10% by mass or less, and particularly preferably 1% by mass or less.
  • the solid content concentration of the present coating solution is preferably 0.001 to 10% by mass, particularly preferably 0.01 to 1% by mass.
  • the solid content concentration of the coating liquid is a value calculated from the mass of the coating liquid before heating and the mass after heating for 4 hours in a convection dryer at 120 ° C.
  • concentration of this composition is computable from solid content concentration and preparation amounts, such as this composition and a solvent.
  • the base material having the surface layer of the present invention has a surface layer formed from the compound (1) or the like.
  • a hydrolyzable silyl group (—SiL c R 3-c ) in the compound (1) undergoes a hydrolysis reaction to form a silanol group (Si—OH).
  • a Si—O—Si bond is formed by dehydration condensation reaction between molecules, or the silanol group is dehydrated and condensed with a hydroxyl group (substrate—OH) on the surface of the substrate to form a chemical bond (substrate—O—Si). ) Is formed. That is, the surface layer in the present invention contains the compound (1) in a state where a part or all of the hydrolyzable silyl group of the compound (1) has become a silanol group or a state in which a dehydration condensation reaction has occurred.
  • the substrate in the present invention is not particularly limited as long as it is a substrate that is required to be imparted with water and oil repellency.
  • Examples of the base material include metals, resins, glass, ceramics, stones, and composite materials thereof.
  • the base material having a surface layer obtained in this way has excellent initial water and oil repellency as well as excellent friction resistance, fingerprint stain removability, lubricity, and uniformity. Therefore, it is suitable as a member constituting the touch panel.
  • the touch panel means an input device of an input / display device (touch panel device) that combines a display device and a device that inputs contact position information by contact with a finger or the like.
  • the touch panel is composed of a base material and a transparent conductive film, an electrode, a wiring, an IC, and the like depending on the input detection method.
  • a touch panel having excellent friction resistance, fingerprint stain removability, lubricity, and uniformity can be obtained.
  • the material of the base material for touch panels has translucency. “Having translucency” means that the normal incidence visible light transmittance according to JIS R 3106 is 25% or more.
  • glass or transparent resin As a material of the base material for touch panels, glass or transparent resin is preferable.
  • soda lime glass, alkali aluminosilicate glass, borosilicate glass, alkali-free glass, crystal glass, and quartz glass are preferable, chemically strengthened soda lime glass, chemically strengthened alkali aluminosilicate glass, and chemically strengthened. Borosilicate glass is particularly preferred.
  • acrylic resin and polycarbonate are preferable.
  • a display substrate constituting the outermost surface of various displays such as a liquid crystal display, a CRT display, a projection display, a plasma display, and an EL display is also suitable. By forming the surface layer by a surface treatment using a liquid, a display having an excellent friction resistance, fingerprint stain removability, lubricity, and uniformity can be obtained.
  • Compound (1) and the like can be used as they are in a method for producing a substrate having a surface layer by treating the surface of the substrate by a dry coating method.
  • Compound (1) and the like are suitable for forming a surface layer having excellent adhesion by a dry coating method.
  • the dry coating method include vacuum deposition, CVD, sputtering, and the like. From the viewpoint of suppressing the decomposition of the compound (1) and the simplicity of the apparatus, a vacuum vapor deposition method can be suitably used.
  • the vacuum deposition method can be subdivided into resistance heating method, electron beam heating method, high frequency induction heating method, reactive deposition, molecular beam epitaxy method, hot wall deposition method, ion plating method, cluster ion beam method, etc. Any method can be applied.
  • the resistance heating method can be suitably used from the viewpoint of suppressing the decomposition of the compound (1) and the simplicity of the apparatus.
  • the vacuum deposition apparatus is not particularly limited, and a known apparatus can be used.
  • the film forming conditions when using the vacuum vapor deposition method vary depending on the type of vacuum vapor deposition method to be applied, but in the case of the resistance heating method, the degree of vacuum before vapor deposition is preferably 1 ⁇ 10 ⁇ 2 Pa or less, preferably 1 ⁇ 10 ⁇ 3 Pa.
  • the heating temperature of the vapor deposition source is not particularly limited as long as the vapor deposition source such as compound (1) has a sufficient vapor pressure. Specifically, 30 to 400 ° C is preferable, and 50 to 300 ° C is particularly preferable. When the heating temperature is equal to or higher than the lower limit of the above range, the film formation rate is good.
  • the substrate temperature is preferably in the range from room temperature (20 to 25 ° C.) to 200 ° C. When the substrate temperature is 200 ° C. or lower, the film formation rate is good.
  • the upper limit of the substrate temperature is more preferably 150 ° C. or less, and particularly preferably 100 ° C. or less.
  • the surface layer formed on the surface of the substrate by the treatment is preferably 1 to 100 nm as a film thickness. Particularly preferred. If the thickness of the surface layer is not less than the lower limit of the above range, the effect of the surface treatment can be sufficiently obtained. If it is below the upper limit of the said range, utilization efficiency is high.
  • the film thickness is calculated from the vibration period of the interference pattern obtained by obtaining an interference pattern of the reflected X-ray by the X-ray reflectivity method using, for example, an X-ray diffractometer ATX-G for thin film analysis (manufactured by Rigaku). it can.
  • the effect of improving the initial water / oil repellency, friction resistance and fingerprint stain removability is improved. large. This is because a by-product having a small molecular weight as an impurity is deposited on the surface of the base material prior to the compound (1), and as a result, the chemistry of the compound (1) responsible for the performance and the surface of the base material. It is considered that the binding is prevented because it is suppressed.
  • a substrate having a surface layer can be produced by applying the coating liquid to the surface of the substrate and drying it.
  • a method for applying the coating liquid a known method can be appropriately used.
  • Application methods include spin coating, wipe coating, spray coating, squeegee coating, dip coating, die coating, ink jet, flow coating, roll coating, casting, Langmuir-Blodgett or gravure coating.
  • the method is preferred.
  • the drying method may be any method that can dry and remove the medium, and a known method can be appropriately used.
  • the drying temperature is preferably from 10 to 300 ° C, particularly preferably from 20 to 200 ° C.
  • the surface layer formed on the surface of the substrate after drying and removing the medium is preferably 1 to 100 nm, particularly preferably 1 to 50 nm. If the thickness of the surface layer is not less than the lower limit of the above range, the effect of the surface treatment can be sufficiently obtained. If it is below the upper limit of the said range, utilization efficiency is high.
  • the film thickness can be measured in the same manner as the method for measuring the film thickness of the surface layer formed by the dry coating method.
  • the reaction between the compound (1) and the substrate is performed as necessary.
  • compounds in the surface layer that are not chemically bonded to other compounds or the substrate may be removed as necessary.
  • Specific examples of the method include a method of pouring a solvent over the surface layer and a method of wiping with a cloth soaked with a solvent.
  • % is “% by mass” unless otherwise specified.
  • a mixture composed of two or more kinds of compounds (1) is referred to as a “compound”, and a mixture composed of the compound (1) and another fluorine-containing ether compound is referred to as a “composition”.
  • Examples 1-2, 5-6, 11-12, 15-16, 21-24 are Examples, and Examples 3-4, 7, 13-14, and 17 are comparative examples.
  • Example 1 Production of compound (A)]
  • Example 1-1 In a 300 mL three-necked flask, 2.9 g of 20% KOH aqueous solution, 33 g of tert-butyl alcohol, 110 g of 1,3-bis (trifluoromethyl) benzene, compound (10) (FLUOROLINK D4000: product name, sorbet 220 g of isolexis) was added, and 14.6 g of CF 3 CF 2 CF 2 —O—CF ⁇ CF 2 was added. The mixture was stirred at 40 ° C. for 20 hours under a nitrogen atmosphere.
  • the average value of the structure of the terminal group and the number of structural units (n1-1, n2) was determined from the integrated values of 1 H-NMR and 19 F-NMR. As a result, it was confirmed that the crude product (a) contained 50 mol%, 25 mol% and 25 mol% of the compound (11-1), the compound (21-1) and the compound (10), respectively. all right. In addition, 105.1 g (yield 44.8%) of compound (11-1) and 55.4 g (yield 23.6%) of compound (21-1) were obtained.
  • Example 1-2 In a 100 mL two-necked eggplant flask, 52.0 g of the compound (11-1) obtained in Example 1-1, 0.52 g of tetrabutylammonium hydrogen sulfate, 4.4 g of allyl bromide, and 30% water 6.5 g of an aqueous sodium oxide solution was added and stirred at 60 ° C. for 8 hours. After completion of the reaction, 50 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution, and the organic phase was recovered.
  • CF 3 —CF 2 CF 2 —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—CH 2 CH 2 CH 2- Si (OCH 3 ) 3 (111a-1) CF 3 —CF 2 CF 2 —O—CHFCF 2 —O—CH 2 CF 2 —O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 CH 2 —O—CH 2 CH (CH 3 ) -Si (OCH 3 ) 3 (111b-1)
  • Example 2 Production of composition (B)] (Example 2-1) In a 100 mL tetrafluoroethylene-perfluoro (alkoxyvinyl ether) copolymer (PFA) eggplant flask, 25.0 g of the compound (12-1) obtained in Example 1-2, platinum / 1,3-divinyl-1, 0.16 g of xylene solution of 1,3,3-tetramethyldisiloxane complex (platinum content: 2%), 2.84 g of trimethoxysilane, and 12.5 g of AC-2000 were charged at 70 ° C. for 10 hours. Stir.
  • PFA tetrafluoroethylene-perfluoro (alkoxyvinyl ether) copolymer
  • Example 3 Production of composition (C)] (Example 3-1)
  • compound (10) 0.64 g of tetrabutylammonium hydrogen sulfate, 4.5 g of allyl bromide, and 6.0 g of 30% aqueous sodium hydroxide solution were added.
  • 30 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution, and the organic phase was recovered.
  • Example 3-2 In a 100 mL PFA eggplant flask, 29.6 g of the compound (31) obtained in Example 3-1 and a xylene solution of platinum / 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum). (Content: 2%) 0.42 g, trimethoxysilane 5.34 g and AC-2000 15 g were added, and the mixture was stirred at 70 ° C. for 10 hours. After completion of the reaction, the solvent and the like were distilled off under reduced pressure, 0.1 g of activated carbon was added to the residue, and the mixture was stirred for 1 hour, followed by filtration with a membrane filter having a pore size of 0.5 ⁇ m.
  • composition (C) contains 71 mol% of the compound (32), 26 mol% of the compound (33) and 3 mol% of the compound (34).
  • Example 4 Production of composition (D)] (Example 4-1)
  • a 100 mL eggplant flask 30.0 g of the compound (11-1) obtained in Example 1-1, 0.9 g of sodium fluoride powder, dichloropentafluoropropane (AK-225: product name, manufactured by Asahi Glass Co., Ltd.) 30 g was taken in and 3.5 g of CF 3 CF 2 CF 2 OCF (CF 3 ) COF was added.
  • the mixture was stirred at 50 ° C. for 24 hours under a nitrogen atmosphere. After removing the sodium fluoride powder with a pressure filter, excess CF 3 CF 2 CF 2 OCF (CF 3 ) COF and AK-225 were distilled off under reduced pressure.
  • Example 4-2 An autoclave (made of nickel, internal volume 1 L) was prepared, and a cooler maintained at 20 ° C., a NaF pellet packed layer, and a cooler maintained at 0 ° C. were installed in series at the gas outlet of the autoclave. In addition, a liquid return line for returning the liquid aggregated from the cooler maintained at 0 ° C. to the autoclave was installed. 750 g of ClCF 2 CFClCF 2 OCF 2 CF 2 Cl (hereinafter referred to as CFE-419) was added to the autoclave and stirred while maintaining at 25 ° C. After nitrogen gas was blown into the autoclave at 25 ° C. for 1 hour, 20% fluorine gas was blown in at 25 ° C.
  • CFE-419 ClCF 2 CFClCF 2 OCF 2 CF 2 Cl
  • Example 4-3 A PFA round bottom flask was charged with 30.0 g of the compound (36) obtained in Example 4-2 and 60 g of AK-225. The mixture was stirred while being cooled in an ice bath, and 2.0 g of methanol was slowly dropped from the dropping funnel under a nitrogen atmosphere. The mixture was stirred for 12 hours while bubbling with nitrogen. The reaction mixture was concentrated with an evaporator to obtain 27.6 g (yield 98.8%) of compound (37). CF 3 —CF 2 CF 2 —O—CF 2 CF 2 OCF 2 CF 2 O ⁇ (CF 2 O) n1 (CF 2 CF 2 O) n2 ⁇ —CF 2 C ( ⁇ O) OCH 3 (37) ).
  • Example 4-4 In a 100 mL three-necked eggplant flask, 0.18 g of lithium chloride was dissolved in 18.3 g of ethanol. To this was added 25.0 g of the compound (37) obtained in Example 4-3 and cooled in an ice bath, and a solution of 0.75 g of sodium borohydride dissolved in 22.5 g of ethanol was slowly added dropwise. . Thereafter, the ice bath was removed, and stirring was continued while slowly raising the temperature to room temperature. After stirring at room temperature for 12 hours, an aqueous hydrochloric acid solution was added dropwise until the liquid became acidic. 20 mL of AC-2000 was added, washed once with water and once with saturated brine, and the organic phase was recovered.
  • Example 4-5 In a 100 mL two-necked eggplant flask, 20.0 g of compound (38) obtained in Example 4-4, 0.21 g of tetrabutylammonium hydrogen sulfate, 1.76 g of allyl bromide, and 30% sodium hydroxide 2.6 g of the aqueous solution was added and stirred at 60 ° C. for 8 hours. After completion of the reaction, 20 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution to recover the organic phase. The collected organic phase was passed through a silica gel column, and the collected solution was concentrated by an evaporator to obtain 19.8 g (yield 98.2%) of compound (39).
  • Example 4-6 In a 100 mL PFA eggplant flask, 10.0 g of the compound (39) obtained in Example 4-5, a xylene solution of platinum / 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum) (Content: 2%) of 0.09 g, 1.48 g of trimethoxysilane and 5.0 g of AC-2000 were added and stirred at 70 ° C. for 10 hours. After completion of the reaction, the solvent and the like were distilled off under reduced pressure, 0.1 g of activated carbon was added to the residue and stirred for 1 hour, followed by filtration with a membrane filter having a pore size of 0.5 ⁇ m.
  • platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex
  • Example 5 Production of composition (E)] (Example 5-1) In a 200 mL three-necked flask, 1.5 g of 20% KOH aqueous solution, 15 g of tert-butyl alcohol, 50 g of 1,3-bis (trifluoromethyl) benzene, and 100 g of compound (10) were placed, and CF 3 CF 11.6 g of 2 CF 2 —O—CF (CF 3 ) CF 2 —O—CF ⁇ CF 2 was added. The mixture was stirred at 40 ° C. for 20 hours under a nitrogen atmosphere.
  • the crude product (b) contained 50 mol%, 25 mol% and 25 mol% of the compound (11-2), the compound (21-2) and the compound (10), respectively. all right.
  • 43.6 g (yield 39.1%) of compound (11-2) and 27.0 g (yield 24.2%) of compound (21-2) were obtained.
  • Example 5-2 In a 100 mL three-necked eggplant flask, 30.0 g of the compound (11-2) obtained in Example 5-1, 0.30 g of tetrabutylammonium hydrogen sulfate, 4.1 g of allyl bromide, and 30% water 3.6 g of an aqueous sodium oxide solution was added and stirred at 60 ° C. for 8 hours. After completion of the reaction, 50 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution, and the organic phase was recovered. The collected organic phase was passed through a silica gel column, and the collected solution was concentrated by an evaporator to obtain 28.6 g (yield 94.5%) of compound (12-2).
  • Example 5-3 10.0 g of the compound (12-2) obtained in Example 5-2, xylene solution of platinum / 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum content: 2%) 0.19 g, 1.37 g of trimethoxysilane and 5.0 g of AC-2000 were added and stirred at 70 ° C. for 10 hours.
  • Example 6 Production of composition (F)] (Example 6-1)
  • the following compound (10-3) was obtained by the method described in Examples 1 to 4 of International Publication No. 2004/035656.
  • NMR spectrum of compound (10-3) 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) ⁇ (ppm): 3.9 (4H).
  • 19 F-NMR 282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) ⁇ (ppm): ⁇ 81.4 (4F), ⁇ 89.5 (80F).
  • Average value of the number of units n 20. Number average molecular weight: 2500.
  • Example 6-2 In a 100 mL three-necked flask, 0.72 g of 20% KOH aqueous solution, 7.5 g of tert-butyl alcohol, 25 g of 1,3-bis (trifluoromethyl) benzene, the compound (10 -3) was added, and 5.40 g of CF 3 CF 2 CF 2 —O—CF ⁇ CF 2 was added. The mixture was stirred at 40 ° C. for 20 hours under a nitrogen atmosphere. It was washed once with a dilute hydrochloric acid aqueous solution, and the organic phase was collected and concentrated with an evaporator to obtain 53.8 g of a crude product (c).
  • the crude product (c) was diluted with 115 g of AC-2000, developed by silica gel column chromatography, and fractionated. As developing solvents, AC-2000, AC-2000 / AE-3000: (mass ratio 1/4), and AE-3000 / acetone (mass ratio 2/1) were used in this order. For each fraction, the average value of the structure of the terminal group and the number of structural units (n2) was determined from the integrated values of 1 H-NMR and 19 F-NMR. Thus, the crude product (c) contained 52 mol%, 24 mol% and 24 mol% of the compound (11-3), the compound (21-3) and the compound (10-3), respectively. I understood it.
  • Average value of the number of units n 20. Number average molecular weight: 2,800. NMR spectrum of compound (21-3); 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) ⁇ (ppm): 4.2 (4H), 5.8 to 6.0 (2H). 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) ⁇ (ppm): ⁇ 78.8 (4F), ⁇ 82.2 (6F), ⁇ 85.3 to ⁇ 88.2 ( 4F), -89.5 (80F), -90.0 to -91.5 (4F), -130.5 (4F), -145.1 (2F). Average value of the number of units n: 20. Number average molecular weight: 3,000.
  • Example 6-3 In a 100 mL two-necked eggplant flask, 20.0 g of the compound (11-3) obtained in Example 6-2, 0.31 g of tetrabutylammonium hydrogen sulfate, 4.4 g of allyl bromide, and 30% water 3.2 g of an aqueous sodium oxide solution was added and stirred at 60 ° C. for 8 hours. After completion of the reaction, 20 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution to recover the organic phase. The collected organic phase was passed through a silica gel column, and the collected solution was concentrated by an evaporator to obtain 20.0 g (yield 98.6%) of compound (12-3).
  • Example 6-4 In a 100 mL PFA eggplant flask, 18.0 g of the compound (12-3) obtained in Example 6-3, xylene solution of platinum / 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (Platinum content: 2%) 0.13 g, trimethoxysilane 2.27 g and AC-2000 10.0 g were added and stirred at 70 ° C. for 10 hours. After completion of the reaction, the solvent and the like were distilled off under reduced pressure, 0.1 g of activated carbon was added to the residue, and the mixture was stirred for 1 hour. 18.2 g (yield 96.9%) of composition (F) with 3) was obtained.
  • Example 7 Production of composition (G)]
  • Example 7-1 The following compound (42) (Uniox M-1000: product name, manufactured by NOF Corporation, average value of n2: 21) was used in the same manner as described in Example 1 of WO 2004/008380. (43) was obtained.
  • CH 3 O (CH 2 CH 2 O) n —CH 2 CH 2 —OH (42)
  • CF 3 O (CF 2 CF 2 O) n —CF 2 CH 2 —OH (43)
  • Example 7-2 In a 100 mL two-necked eggplant flask, 25.0 g of the compound (43) obtained in Example 7-1, 0.40 g of tetrabutylammonium hydrogen sulfate, 5.8 g of allyl bromide, and 30% sodium hydroxide 4.0g of aqueous solution was added and it stirred at 60 degreeC for 8 hours. After completion of the reaction, 20 g of AC-2000 was added and washed once with dilute hydrochloric acid aqueous solution to recover the organic phase. The collected organic phase was passed through a silica gel column, and the collected solution was concentrated by an evaporator to obtain 24.5 g (yield 96.4%) of compound (44).
  • Example 7-3 In a 100 mL eggplant flask made of PFA, 20.0 g of the compound (44) obtained in Example 7-3, a xylene solution of platinum / 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex (platinum) (Content: 2%) 0.14 g, 2.50 g of trimethoxysilane and 10.0 g of AC-2000 were added and stirred at 70 ° C. for 10 hours. After completion of the reaction, the solvent and the like were distilled off under reduced pressure, 0.1 g of activated carbon was added to the residue and stirred for 1 hour, followed by filtration with a membrane filter having a pore size of 0.5 ⁇ m.
  • platinum 1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex
  • Example 11 to 17 Production and evaluation of substrate having surface layer
  • Surface treatment of the base material was performed using each of the compounds and compositions obtained in Examples 1 to 7, and Examples 11 to 17 were obtained.
  • a substrate having a surface layer was produced using the following dry coating method, wet coating method, spin coating method and spray coating method, respectively. Chemically tempered glass was used as the substrate.
  • Dry coating was performed using a vacuum deposition apparatus (VTR-350M, manufactured by ULVAC) (vacuum deposition method).
  • VTR-350M vacuum deposition apparatus
  • 0.5 g of the compound or composition obtained in Examples 1 to 7 was filled in a molybdenum boat in a vacuum vapor deposition apparatus, and the inside of the vacuum vapor deposition apparatus was evacuated to 1 ⁇ 10 ⁇ 3 Pa or less.
  • the boat on which the compound or composition is placed is heated at a temperature rising rate of 10 ° C./min or less, and when the deposition rate by the quartz oscillation type film thickness meter exceeds 1 nm / second, the shutter is opened to the surface of the substrate. The film formation was started.
  • the shutter was closed to finish the film formation on the surface of the substrate.
  • the substrate on which the compound or composition was deposited was heat-treated at 200 ° C. for 30 minutes, and then washed with AK-225 to obtain a substrate having a surface layer.
  • ⁇ Fingerprint stain removal> After attaching an artificial fingerprint liquid (liquid consisting of oleic acid and squalene) to the flat surface of the silicone rubber stopper, the excess oil is wiped off with a non-woven fabric (Bencot M-3, manufactured by Asahi Kasei Co., Ltd.). Prepared a stamp. The fingerprint stamp was placed on a substrate having a surface layer and pressed with a load of 1 kg for 10 seconds. At this time, the haze of the portion where the fingerprint adhered was measured with a haze meter (manufactured by Toyo Seiki Co., Ltd.). The value at this time was used as the initial value.
  • a haze meter manufactured by Toyo Seiki Co., Ltd.
  • the portion where the fingerprint was attached was wiped off with a load of 500 g using a reciprocating traverse tester (manufactured by KT Corporation) equipped with tissue paper.
  • the value of haze was measured for each reciprocation of the wipe, and the test was accepted if the haze reached a numerical value that could not be visually confirmed during the 10 reciprocations.
  • ⁇ Dynamic friction coefficient> The dynamic friction coefficient for the artificial skin (PBZ13001, manufactured by Idemitsu Technofine Co., Ltd.) of the base material having the surface layer was measured using a load variable friction and wear test system HHS2000 (manufactured by Shinto Kagaku Co., Ltd.) with a contact area of 3 cm ⁇ 3 cm and a load of 100 g. Measured under conditions. The smaller the dynamic friction coefficient, the better the lubricity.
  • ⁇ Measurement method of surface roughness> The surface roughness (Ra) of the substrate having the surface layer was measured using a scanning probe microscope SPM400 (manufactured by SII Nanotechnology). The smaller the surface roughness (Ra), the better the uniformity of the surface layer.
  • ⁇ Measurement method of water contact angle> The contact angle of about 2 ⁇ L of distilled water placed on the surface of the surface layer was measured using a contact angle measuring device DM-500 (manufactured by Kyowa Interface Science Co., Ltd.). Measurement was performed at 10 different locations on the surface of the surface layer of the substrate, and the average value and standard deviation were calculated. The smaller the standard deviation, the smaller the contact angle difference at each measurement point and the better the surface layer uniformity.
  • Example 13 using the composition (C) (Example 3) containing a fluorine-containing ether compound having hydrolyzable silyl groups at both ends is inferior in the friction resistance and lubricity of the surface layer.
  • Example 21 to 24 Production and evaluation of substrate having surface layer
  • the composition (B) obtained in Example 2 and the compound (21-1) or compound (6-1) obtained in Example 1 having no hydrolyzable silyl group (FOMBLIN M03: product name, manufactured by Solvay Solexis) Were subjected to surface treatment using the composition obtained by mixing them at a mixing ratio shown in Table 2 to give Examples 21 to 24.
  • a substrate having a surface layer was produced using a dry coating method and a wet coating method, respectively, and evaluated in the same manner. The results are shown in Table 2.
  • Examples 21 to 24 using a composition obtained by adding the compound (2) or the compound (6-1) to the composition (B) (Example 2) as the present composition are the compositions (B) as the present composition. Similar to Example 12 using (Example 2), the surface layer has high initial water and oil repellency, and excellent friction resistance, fingerprint stain removability, and lubricity.
  • the fluorine-containing ether compound of the present invention can be suitably used for a surface treatment that imparts water / oil repellency to the surface of a substrate such as a member constituting a surface of a touch panel that is touched by a finger.
  • a substrate such as a member constituting a surface of a touch panel that is touched by a finger.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を形成できる含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法の提供。 D-Rf1-O-CH-(C2mO)-A(DはCF-/CF-O-、Rf1は水素原子を1個以上含む炭素数1~20のフルオロアルキレン基等、mは1~6、nは1~200、Aは-C2a-B-C2b-SiL3-c、Bは-C2gO-、-C2hO-C(=O)NH-等、Lは加水分解性基、Rは1価の炭化水素基等、aは1~5、bは1~10、cは1~3、gは1~5、hは1~5)で表される含フッ素エーテル化合物または、これを含む含フッ素エーテル組成物から形成されてなる表面層を有する基材およびその製造方法。

Description

含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法
 本発明は、基材の表面に撥水撥油性を付与する表面処理に好適に用いることができる含フッ素エーテル化合物、該含フッ素エーテル化合物を含む含フッ素エーテル組成物またはコーティング液に関する。本発明は、該含フッ素エーテル化合物、含フッ素エーテル組成物またはコーティング液を用いて、表面層を有する基材を製造する方法および該方法によって製造された表面層を有する基材に関する。
 含フッ素化合物は、高い潤滑性、撥水撥油性等を示すため、表面処理剤に好適に用いられる。該表面処理剤によって基材の表面に撥水撥油性を付与すると、基材の表面の汚れを拭き取りやすくなり、汚れの除去性が向上する。該含フッ素化合物の中でも、ペルフルオロアルキル鎖の途中にエーテル結合(-O-)が存在するポリ(オキシペルフルオロアルキレン)鎖を有する含フッ素エーテル化合物は、特に油脂等の汚れの除去性に優れる。
 該含フッ素エーテル化合物を含む表面処理剤は、指で繰り返し摩擦されても撥水撥油性が低下しにくい性能(耐摩擦性)および拭き取りによって表面に付着した指紋を容易に除去できる性能(指紋汚れ除去性)が長期間維持されることが求められる用途、たとえば、タッチパネルの、指で触れる面を構成する部材の表面処理剤として用いられる。
 含フッ素エーテル化合物としては、具体的には、下記(1)~(3)の含フッ素エーテル化合物が知られている。
 (1)ポリ(オキシペルフルオロアルキレン)鎖を有し、一方の末端にペルフルオロアルキル基を有し、他方の末端に加水分解性シリル基を有する含フッ素エーテル化合物(特許文献1、2)。
 (2)ポリ(オキシペルフルオロアルキレン)鎖を有し、両末端に加水分解性シリル基を有する含フッ素エーテル化合物(特許文献3)。
 (3)ポリ(オキシペルフルオロアルキレン)鎖を有し、一方の末端にペルフルオロアルキル基を有し、他方の末端に加水分解性シリル基を有する含フッ素エーテル化合物と、ポリ(オキシペルフルオロアルキレン)鎖を有し、両末端に加水分解性シリル基を有する含フッ素エーテル化合物との混合物(特許文献4)。
特開2000-143991号公報 特許第2874715号公報 特開2003-238577号公報 特開2011-116947号公報
 本発明者らの知見によれば、(1)の含フッ素エーテル化合物は、媒体への溶解性が低く、コーティング液中で凝集しやすい、または、媒体に溶解しても、基材の表面に塗布した後、乾燥させる途中に塗膜中で凝集しやすいため、表面層の均一性(透明性、平滑性、ムラの少なさ)が不充分である。
 (2)、(3)の含フッ素エーテル化合物では、表面層の潤滑性(表面層を指で触った際の滑らかさ)や耐摩擦性が不充分である。
 本発明は、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を形成できる含フッ素エーテル化合物、該含フッ素エーテル化合物を含む含フッ素エーテル組成物およびコーティング液の提供を目的とする。
 本発明は、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を有する基材およびその製造方法の提供を目的とする。
 本発明は、下記[1]~[15]の構成を有する含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法を提供する。
 [1]下式(1)で表される、含フッ素エーテル化合物。
 D-Rf1-O-CH-(C2mO)-A ・・・(1)
 ただし、
 DはCF-またはCF-O-であり、
 Rf1は、水素原子を1個以上含む炭素数1~20のフルオロアルキレン基、水素原子を1個以上含み、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基、炭素数1~20のアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のアルキレン基であり、
 Aは下式(4)で表される基であり、
 mは1~6の整数であり、
 nは1~200の整数であり、nが2以上のとき、(C2mO)は、mの異なる2種以上のC2mOからなるものであってもよい。
 -C2a-B-C2b-SiL3-c ・・・(4)
 Bは単結合または-C2gO-、-C2hO-C(=O)NH-、-C(=O)-NH-であり、
 Lは加水分解性基であり、
 Rは水素原子または1価の炭化水素基であり、
 aは1~5の整数であり、
 bは1~10の整数であり、
 cは1~3の整数であり、
 gは1~5の整数であり、
 hは1~5の整数である。
 [2]前記-CH-(C2mO)が、-CHCF-O{(CFO)n1(CFCFO)n2}である(ただし、n1は1以上の整数であり、n2は1以上の整数であり、n1+n2は2~200の整数であり、n1個のCFOおよびn2個のCFCFOの結合順序は限定されない。)、[1]の含フッ素エーテル化合物。
 [3]前記Rf1が、下式(3-1)で表される基、下式(3-2)で表される基または下式(3-3)で表される基である、[1]または[2]の含フッ素エーテル化合物。
 -R-O-CHFCF- ・・・(3-1)
 -R-CHFCF- ・・・(3-2)
 -R-C2z- ・・・(3-3)
 ただし、
 Rは、単結合、炭素数1~15のペルフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~15のペルフルオロアルキレン基であり、
 zは1~4の整数である。
 [4]数平均分子量が2,000~10,000である、[1]~[3]のいずれかの含フッ素エーテル化合物。
 [5]前記[1]~[4]のいずれかの含フッ素エーテル化合物と前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物とを含むことを特徴とする含フッ素エーテル組成物。
 [6]前記式(1)で表される含フッ素エーテル化合物の含有量が、含フッ素エーテル組成物(100質量%)中、70質量%以上である、[5]の含フッ素エーテル組成物。
 [7]前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物が、下式(2)で表される含フッ素エーテル化合物である、[5]または[6]の含フッ素エーテル組成物。
 D-Rf2-O-CH-(C2pO)-C2d-CH-O-Rf3-D ・・・(2)
 ただし、
 DおよびDは、それぞれ独立に、CF-またはCF-O-であり、
 Rf2およびRf3は、それぞれ独立に、炭素数1~20のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基であり、
 dは1~5の整数であり、
 pは1~6の整数であり、
 qは1~200の整数であり、qが2以上のとき、(C2pO)は、pの異なる2種以上のC2pOからなるものであってもよい。
 [8]前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物が、下式(6)で表される含フッ素エーテル化合物である、[5]~[7]のいずれかの含フッ素エーテル組成物。
 RF1-O-(C2sO)-RF2 ・・・(6)
 ただし、
 RF1およびRF2は、それぞれ独立に、炭素数1~6のペルフルオロアルキル基であり、
 sは1~6の整数であり、
 tは1~200の整数であり、tが2以上のとき、(C2sO)は、sの異なる2種以上のC2sOからなるものであってもよい。
 [9]前記式(1)で表される含フッ素エーテル化合物と前記式(2)で表される含フッ素エーテル化合物との合計の含有量(前記式(6)で表される含フッ素エーテル化合物を含む場合は、式(1)で表される含フッ素エーテル化合物と式(2)で表される含フッ素エーテル化合物と式(6)で表される含フッ素エーテル化合物との合計の含有量)が、含フッ素エーテル組成物(100質量%)中、80質量%以上である、[7]または[8]の含フッ素エーテル組成物。
 [10]前記[1]~[4]のいずれかの含フッ素エーテル化合物または[5]~[9]のいずれかの含フッ素エーテル組成物と、媒体とを含むことを特徴とするコーティング液。
 [11]前記媒体が、フッ素化アルカン、フッ素化芳香族化合物およびフルオロアルキルエーテルからなる群から選択される少なくとも1種の有機溶媒である、[10]のコーティング液。
 [12]前記[1]~[4]のいずれかの含フッ素エーテル化合物または[5]~[9]のいずれかの含フッ素エーテル組成物を基材の表面に真空蒸着することを特徴とする、表面層を有する基材の製造方法。
 [13]前記[10]または[11]のコーティング液を基材の表面に塗布し、乾燥させることを特徴とする、表面層を有する基材の製造方法。
 [14]前記[1]~[4]のいずれかの含フッ素エーテル化合物または[5]~[9]のいずれかの含フッ素エーテル組成物から形成されてなることを特徴とする、表面層を有する基材。
 [15]前記[1]~[4]のいずれかの含フッ素エーテル化合物または[5]~[9]のいずれかの含フッ素エーテル組成物から形成されてなる表面層を有する基材を入力面に有することを特徴とする、タッチパネル。
 本発明の含フッ素エーテル化合物、該含フッ素エーテル化合物を含む含フッ素エーテル組成物およびコーティング液によれば、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を形成できる。
 本発明の表面層を有する基材は、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を有する。
 本発明の表面層を有する基材の製造方法によれば、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる表面層を有する基材を製造できる。
 本明細書において、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「加水分解性シリル基」とは、加水分解反応することによってシラノール基(Si-OH)を形成し得る基を意味する。たとえば、式(1)中の-SiL3-cである。
 「エーテル性酸素原子」とは、炭素-炭素原子間においてエーテル結合(-O-)を形成する酸素原子を意味する。
 含フッ素エーテル化合物の数平均分子量は、NMR分析法を用い、下記の方法で算出される。
 H-NMRおよび19F-NMRによって、末端基を基準にしてオキシペルフルオロアルキレン基の数(平均値)を求めることによって算出される。末端基は、たとえば式(1)中のRf1またはAである。
 「フルオロアルキレン基」とは、アルキレン基の水素原子の一部またはすべてがフッ素原子に置換された基を意味し、「ペルフルオロアルキレン基」とは、アルキレン基の水素原子のすべてがフッ素原子に置換された基を意味する。
 「ペルフルオロアルキル基」とは、アルキル基の水素原子のすべてがフッ素原子に置換された基を意味する。
 オキシペルフルオロアルキレン基の化学式は、その酸素原子をペルフルオロアルキレン基の右側に記載して表すものとする。
 「表面層」とは、本発明の含フッ素エーテル化合物または含フッ素エーテル組成物から、基材の表面に形成される層を意味する。
[式(1)で表される含フッ素エーテル化合物]
 本発明の含フッ素エーテル化合物は、下式(1)で表される化合物(1)である。
 D-Rf1-O-CH-(C2mO)-A ・・・(1)
 ただし、
 DはCF-またはCF-O-であり、
 Rf1は、水素原子を1個以上含む炭素数1~20のフルオロアルキレン基、水素原子を1個以上含み、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基、炭素数1~20のアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のアルキレン基であり、
 Aは下式(4)で表される基であり、
 mは1~6の整数であり、
 nは1~200の整数であり、nが2以上のとき、(C2mO)は、mの異なる2種以上のC2mOからなるものであってもよい。
 -C2a-B-C2b-SiL3-c ・・・(4)
 Bは単結合または-C2gO-、-C2hO-C(=O)NH-、-C(=O)-NH-であり、
 Lは加水分解性基であり、
 Rは水素原子または1価の炭化水素基であり、
 aは1~5の整数であり、
 bは1~10の整数であり、
 cは1~3の整数であり、
 gは1~5の整数であり、
 hは1~5の整数である。
 (D基)
 Dが末端にCF-を有するため、化合物(1)の一方の末端がCF-となり、他方の末端が加水分解性シリル基となる。該構造の化合物(1)によれば、低表面エネルギーの表面層が形成できるため、該表面層は潤滑性や耐摩擦性に優れる。一方、両末端に加水分解性シリル基を有する従来の含フッ素エーテル化合物では、表面層の潤滑性や耐摩擦性が不充分である。
 ((C2mO)
 mは、表面層に耐摩擦性、指紋汚れ除去性を充分に付与する点からは、1~3の整数が好ましく、表面層に潤滑性を充分に付与する点からは、1または2がより好ましい。
 mが2以上の場合、C2mは直鎖状であってもよく、分岐状であってもよい。表面層に指紋汚れ除去性、潤滑性を充分に付与する点からは、直鎖状が好ましい。
 nは、表面層に初期の撥水撥油性を充分に付与する点からは、nは、2以上の整数が好ましく、10以上の整数がより好ましく、20以上の整数が特に好ましい。化合物(1)の数平均分子量が大きすぎると、単位分子量当たりに存在する加水分解性シリル基の数が減少し、耐摩擦性が低下する点から、nは、150以下の整数が好ましく、100以下の整数がより好ましく、80以下の整数が特に好ましい。
 nが2以上のとき、(C2mO)は、mの異なる2種以上のC2mOからなるものであってもよい。
 (C2mO)において、mの異なる2種以上のC2mOが存在する場合、各C2mOの結合順序は限定されない。たとえば、CFOとCFCFOが存在する場合、CFOとCFCFOがランダムに配置されてもよく、CFOとCFCFOが交互に配置されてもよく、複数のCFOからなるブロックと複数のCFCFOからなるブロックが連結してもよい。
 (C2mO)が1種のC2mOからなるものである場合、表面層に耐摩擦性、指紋汚れ除去性、潤滑性を充分に付与する点からは、(C2mO)は(CFCFO)、(CFCFCFO)または(CFCFCFCFO)が好ましく、特に(CFCFO)が好ましい。
 (C2mO)は、表面層に耐摩擦性、指紋汚れ除去性、潤滑性を充分に付与する点からは、{(CFO)n1(CFCFO)n2}である(ただし、n1は1以上の整数であり、n2は1以上の整数であり、n1+n2は2~200の整数であり、n1個のCFOおよびn2個のCFCFOの結合順序は限定されない。)ことが好ましい。
 n1は1以上の整数である。表面層に初期の撥水撥油性、耐摩擦性、指紋汚れ除去性を充分に付与する点からは、n1は、2の整数以上が好ましく、5以上の整数がより好ましく、10以上の整数が特に好ましい。化合物(1)の数平均分子量が大きすぎると、単位分子量当たりに存在する加水分解性シリル基の数が減少し、耐摩擦性が低下する点から、n1は、100以下の整数が好ましく、80以下の整数がより好ましく、50以下の整数が特に好ましい。
 n2は1以上の整数である。表面層に初期の撥水撥油性、耐摩擦性、指紋汚れ除去性を充分に付与する点からは、n2は、2の整数以上が好ましく、5以上の整数がより好ましく、10以上の整数が特に好ましい。化合物(1)の数平均分子量が大きすぎると、単位分子量当たりに存在する加水分解性シリル基の数が減少し、耐摩擦性が低下する点から、n2は、100以下の整数が好ましく、80以下の整数がより好ましく、50以下の整数が特に好ましい。
 化合物(1)としては、その製造のしやすさから、下記含フッ素ジオールの誘導体であることが好ましい。下記含フッ素ジオールの誘導体とは、両末端基-CFCH-OHの少なくとも一方の基が他の基に変換された化合物を意味する。特に水酸基の水素原子が他の基に変換された誘導体が好ましい。
 HO-CHCF-O(C2mO)-CFCH-OH
 たとえば、(C2mO)が{(CFO)n1(CFCFO)n2}である場合、化合物(1)の製造のしやすさの点から、化合物(1)は下記化合物(10)の誘導体であることが好ましい。
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(10)
 化合物(10)は市販されている化合物であり、また末端基が-CFC(O)F等である公知の含フッ素ポリエーテル化合物から還元反応等で末端基を-CFCHOHに変換して合成することができる。
 なお、化合物(1)が化合物(10)の誘導体の場合、-CH-(C2mO)-は、-CHCF-O{(CFO)n1(CFCFO)n2}-である。また、A中の-C2a-は-CF-であり、Bにおけるgおよびhはいずれも1である。
 化合物(1)は、(C2mO)を有するため、フッ素原子の含有量が多い。そのため、初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性に優れる表面層を形成できる。
 (Rf1基)
 Rf1における水素原子の数は、表面層の均一性に優れる点から、1以上であり、2以上が好ましく、3以上が特に好ましい。Rf1における水素原子の数は、(Rf1の炭素数)×2以下であり、表面層に初期の撥水撥油性を充分に付与する点からは、(Rf1の炭素数)以下が好ましい。
 Rf1が水素原子を有することによって、化合物(1)の媒体への溶解性が高くなる。そのため、コーティング液中で化合物(1)が凝集しにくく、また、基材の表面に塗布した後、乾燥させる途中に塗膜中で化合物(1)が凝集しにくいため、表面層の均一性に優れる。一方、Rf1が水素原子を有しない従来の含フッ素エーテル化合物では、表面層の均一性が不充分である。
 Rf1は、化合物(1)の製造のしやすさの点からは、下式(3-1)で表される基、下式(3-2)で表される基または下式(3-3)で表される基が好ましい。なお、RはDに結合する基である。
 -R-O-CHFCF- ・・・(3-1)
 -R-CHFCF- ・・・(3-2)
 -R-C2z- ・・・(3-3)
 ただし、
 Rは、単結合、炭素数1~15のペルフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~15のペルフルオロアルキレン基であり、
 zは1~4の整数である。
 Rは、表面層に初期の撥水撥油性、耐摩擦性、指紋汚れ除去性を充分に付与する点からは、炭素数1~9のペルフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~13のペルフルオロアルキレン基が好ましい。ペルフルオロアルキレン基は、直鎖状であってもよく、分岐状であってもよい。
 zは、1~3の整数が好ましい。zが3または4の場合、C2zは直鎖であっても分岐であってよく、直鎖が好ましい。
 Rf1が式(3-1)で表される場合のD-Rf1-基の具体例としては、下記基が挙げられる。
 CF-O-CHFCF
 CF-CF-O-CHFCF
 CF-CFCF-O-CHFCF
 CF-CFCFCF-O-CHFCF
 CF-CFCFCFCFCF-O-CHFCF
 CF-O-CFCF-O-CHFCF
 CF-CFOCFCF-O-CHFCF
 CF-O-CFCFOCFCF-O-CHFCF
 CF-CFOCFCFOCFCF-O-CHFCF
 CF-CFCFOCF(CF)CF-O-CHFCF
 CF-CFCFOCF(CF)CFOCF(CF)CF-O-CHFCF
 Rf1が式(3-2)で表される場合のD-Rf1-基の具体例としては、下記基が挙げられる。
 CF-CHFCF
 CF-CF-CHFCF
 CF-CFCF-CHFCF
 CF-CFCFCF-CHFCF
 Rf1が式(3-3)で表される場合のD-Rf1-基の具体例としては、下記基が挙げられる。
 CF-CH
 CF-CF-CH
 CF-CFCF-CH
 CF-CFCFCF-CH
 CF-CFCFCFCF-CH
 CF-CFCFCFCFCF-CH
 CF-CFCFCFCFCFCF-CH
 CF-CHCH
 CF-CF-CHCH
 CF-CFCF-CHCH
 CF-CFCFCF-CHCH
 CF-CFCFCFCF-CHCH
 CF-CFCFCFCFCF-CHCH
 CF-CFCFCFCFCFCF-CHCH
 CF-CHCHCH
 CF-CF-CHCHCH
 CF-CFCF-CHCHCH
 CF-CFCFCF-CHCHCH
 CF-CFCFCFCF-CHCHCH
 CF-CFCFCFCFCF-CHCHCH
 CF-CFCFCFCFCFCF-CHCHCH
 CF-O-CF-CH
 CF-CFOCF-CH
 CF-O-CFCFOCF-CH
 CF-CFOCFCFOCF-CH
 CF-O-CFCFOCFCFOCF-CH
 CF-CFOCFCFOCFCFOCF-CH
 (A基)
 Aは下式(4)で表される基である。
 -C2a-B-C2b-SiL3-c ・・・(4)
 Bは単結合または-C2gO-、-C2hO-C(=O)NH-、-C(=O)-NH-であり、
 Lは加水分解性基であり、
 Rは水素原子または1価の炭化水素基であり、
 aは1~5の整数であり、
 bは1~10の整数であり、
 cは1~3の整数であり、
 gは1~5の整数であり、
 hは1~5の整数である。
 Lは加水分解性基である。加水分解性基は、加水分解反応により水酸基となる基である。すなわち、化合物(1)の末端のSi-Lは、加水分解反応によりシラノール基(Si-OH)となる。シラノール基は、さらに分子間で反応してSi-O-Si結合を形成する。また、シラノール基は、基材の表面の水酸基(基材-OH)と脱水縮合反応して、化学結合(基材-O-Si)を形成する。化合物(1)は、末端に加水分解性シリル基を有するため、基材との密着性に優れ、かつ耐摩擦性に優れ、基材の表面の撥水撥油性化が可能な化合物である。
 Lとしては、アルコキシ基、ハロゲン原子、アシル基、イソシアナート基(-NCO)等が挙げられる。アルコキシ基としては、炭素数1~4のアルコキシ基が好ましい。アシル基としては、炭素数2~5のアシル基が好ましい。
 Lとしては、工業的な製造が容易な点から、炭素数1~4のアルコキシ基またはハロゲン原子が好ましい。ハロゲン原子としては、塩素原子が特に好ましい。Lとしては、塗布時のアウトガスが少なく、化合物(1)の保存安定性に優れる点から、炭素数1~4のアルコキシ基が好ましく、化合物(1)の長期の保存安定性が必要な場合にはエトキシ基が特に好ましく、塗布後の反応時間を短時間とする場合にはメトキシ基が特に好ましい。
 Rは水素原子または1価の炭化水素基である。1価の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリール基等が挙げられる。
 Rとしては、1価の炭化水素基が好ましく、1価の飽和炭化水素基が特に好ましい。1価の飽和炭化水素基の炭素数は、1~6が好ましく、1~3がより好ましく、1~2が特に好ましい。
 Rとしては、工業的な製造が容易である点から、炭素数が1~6のアルキル基が好ましく、炭素数が1~3のアルキル基がより好ましく、炭素数が1~2のアルキル基が特に好ましい。
 aは、C2mOのmの数に依存し、1~5の整数となる。たとえば、化合物(1)が化合物(10)の誘導体である場合である場合は、aは1である。
 bは、1~6の整数が好ましく、3~5が特に好ましい。bが3以上の場合、C2bは直鎖であっても分岐であってよく、直鎖が好ましい。
 cは、2または3が好ましく、3が特に好ましい。分子中にLが複数存在することによって、基材の表面との結合がより強固になる。
 cが2以上である場合、1分子中に存在する複数のLは互いに同じであってもよく、異なっていてもよい。原料の入手容易性や製造が容易な点からは、互いに同じであることが好ましい。
 gは1~3の整数が好ましく、gが3以上の場合、C2gは直鎖であっても分岐であってよく、直鎖が好ましい。
 hは1~3の整数が好ましく、hが3以上の場合、C2hは直鎖であっても分岐であってよく、直鎖が好ましい。
 なお、化合物(1)が化合物(10)の誘導体である場合である場合は、gおよびhはいずれも1である。
 -SiL3-cとしては、-Si(OCH、-SiCH(OCH、-Si(OCHCH、-SiCl、-Si(OCOCH、-Si(NCO)が好ましい。工業的な製造における取扱いやすさの点から、-Si(OCHが特に好ましい。
 (化合物(1)の好ましい態様)
 化合物(1)としては、上述した好ましいD-Rf1基と、好ましい(C2mO)と、好ましいA基とを組み合わせた化合物が好ましく、下式(111)、下式(112)、下式(113)、下式(121)、下式(122)、下式(123)、下式(131)、下式(132)、下式(133)で表される化合物が特に好ましい。化合物(111)、化合物(112)、化合物(113)、化合物(121)、化合物(122)、化合物(123)、化合物(131)、化合物(132)、化合物(133)は、化合物(10)の誘導体であることにより工業的に製造しやすく、取扱いやすく、表面層に初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性を充分に付与できる。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(111)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(112)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(113)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(121)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(122)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(123)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(131)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(132)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(133)
 (化合物(1)の製造方法)
 化合物(111)の製造方法:
 <方法i>化合物(111)は、bが3以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(10)にD-R-O-CF=CFを反応させて、化合物(11)、化合物(21)および未反応の化合物(10)の混合物を得る。
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(10)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(11)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-O-R-D ・・・(21)
 混合物から化合物(11)を単離し、塩基性化合物の存在下、化合物(11)にX-Cb-22(b-2)-CH=CHを反応させて、化合物(12)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH=CH ・・・(12)
 化合物(12)とHSiL3-cとをヒドロシリル化反応して、化合物(111a)、または化合物(111a)および化合物(111b)の混合物を得る。ヒドロシリル化反応は、白金等の遷移金属触媒または有機過酸化物等のラジカル発生剤を用いて行うことが好ましい。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CHCH-SiL3-c ・・・(111a)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH(CH)-SiL3-c ・・・(111b)
 <方法ii>化合物(111)は、bが1以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(11)にX-C2b-SiL3-cを反応させて、化合物(111)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(111)
 化合物(112)の製造方法:
 化合物(112)は、下記のようにして製造できる。
 ウレタン化触媒の存在下、化合物(11)にOCN-C2b-SiL3-cを反応させて、化合物(112)を得る。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(112)
 化合物(113)の製造方法:
 化合物(113)は、下記のようにして製造できる。
 化合物(11)を酸化して、化合物(13a)を得る。場合によっては、化合物(13a)をエステル化して化合物(13b)を得る。Rは、アルキル基等である。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OH ・・・(13a)
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OR ・・・(13b)
 化合物(13a)または化合物(13b)にHN-C2b-SiL3-cを反応させて、化合物(113)を得る。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(113)
 化合物(121)の製造方法:
 <方法i>化合物(121)は、bが3以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(10)にD-R-CF=CFを反応させて、化合物(14)、化合物(22)および未反応の化合物(10)の混合物を得る。
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(10)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(14)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-R-D ・・・(22)
 混合物から化合物(14)を単離し、塩基性化合物の存在下、化合物(14)にX-Cb-22(b-2)-CH=CHを反応させて、化合物(15)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH=CH ・・・(15)
 化合物(15)とHSiL3-cとをヒドロシリル化反応して、化合物(121a)、または化合物(121a)および化合物(121b)の混合物を得る。ヒドロシリル化反応は、白金等の遷移金属触媒または有機過酸化物等のラジカル発生剤を用いて行うことが好ましい。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CHCH-SiL3-c ・・・(121a)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH(CH)-SiL3-c ・・・(121b)
 <方法ii>化合物(121)は、bが1以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(14)にX-C2b-SiL3-cを反応させて、化合物(121)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(121)
 化合物(122)の製造方法:
 化合物(122)は、下記のようにして製造できる。
 ウレタン化触媒の存在下、化合物(14)にOCN-C2b-SiL3-cを反応させて、化合物(122)を得る。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(122)
 化合物(123)の製造方法:
 化合物(123)は、下記のようにして製造できる。
 化合物(14)を酸化して、化合物(16a)を得る。場合によっては、化合物(16a)をエステル化して化合物(16b)を得る。Rは、アルキル基等である。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OH ・・・(16a)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OR ・・・(16b)
 化合物(16a)または化合物(16b)にHN-C2b-SiL3-cを反応させて、化合物(123)を得る。
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(123)
 化合物(131)の製造方法:
 <方法i>化合物(131)は、bが3以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(10)にD-R-C2z-Zを反応させて、化合物(17)、化合物(23)および未反応の化合物(10)の混合物を得る。Zは、脱離基であり、I、Br、Cl、OC(=O)CF、OSOCH、OSOPh(Phはフェニル基である。)等である。
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(10)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(17)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2z-R-D ・・・(23)
 混合物から化合物(17)を単離し、塩基性化合物の存在下、化合物(17)にX-Cb-22(b-2)-CH=CHを反応させて、化合物(18)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH=CH ・・・(18)
 化合物(18)とHSiL3-cとをヒドロシリル化反応して、化合物(131a)、または化合物(131a)および化合物(131b)の混合物を得る。ヒドロシリル化反応は、白金等の遷移金属触媒または有機過酸化物等のラジカル発生剤を用いて行うことが好ましい。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CHCH-SiL3-c ・・・(121a)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-Cb-22(b-2)-CH(CH)-SiL3-c ・・・(121b)
 <方法ii>化合物(131)は、bが1以上の場合、下記のようにして製造できる。
 塩基性化合物の存在下、化合物(17)にX-C2b-SiL3-cを反応させて、化合物(131)を得る。Xは、脱離基であり、I、Br、Cl等である。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2b-SiL3-c ・・・(131)
 化合物(132)の製造方法:
 化合物(132)は、下記のようにして製造できる。
 ウレタン化触媒の存在下、化合物(17)にOCN-C2b-SiL3-cを反応させて、化合物(132)を得る。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C(=O)NH-C2b-SiL3-c ・・・(132)
 化合物(133)の製造方法:
 化合物(133)は、下記のようにして製造できる。
 化合物(17)を酸化して、化合物(19a)を得る。場合によっては、化合物(19a)をエステル化して化合物(19b)を得る。Rは、アルキル基等である。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OH ・・・(19a)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)OR ・・・(19b)
 化合物(19a)または化合物(19b)にHN-C2b-SiL3-cを反応させて、化合物(133)を得る。
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFC(=O)-NH-C2b-SiL3-c  ・・・(133)
 以上の化合物(1)の製造方法によれば、市販の化合物(10)を原料として用い、温和な条件による付加反応や置換反応によって、目的とする化合物(1)を簡便に得ることができる。
 また、化合物(1)を得るための中間体である、化合物(11)、化合物(14)、化合物(17)は、末端が適度な極性を有するアルコールであるため、シリカゲルを用いた通常のカラム精製によって容易に単離できる。よって、化合物(11)、化合物(21)および未反応の化合物(10)の混合物、化合物(14)、化合物(22)および未反応の化合物(10)の混合物、または化合物(17)、化合物(23)および未反応の化合物(10)の混合物から、目的とする化合物(11)、化合物(14)または化合物(17)を単離でき、該化合物に未反応の化合物(10)が残らない、または残ったとしてもわずかである。よって、未反応の化合物(10)から得られる両末端が加水分解性シリル基である含フッ素エーテル化合物が、最終的に得られる化合物(1)に含まれない、または含まれたとしてもわずかである。また、化合物(2)である化合物(21)、化合物(22)または化合物(23)を単離することによって、化合物(2)を後述する含フッ素エーテル組成物に添加される一成分として有効に利用することができる。
 本発明の化合物(1)は、1種の化合物(1)からなる単一化合物であってもよく、D、Rf1、(C2mO)、A等が異なる2種類以上の化合物(1)からなる混合物であってもよい。
 本発明において単一化合物である化合物(1)とは、nの数に分布を有する以外は同一の化合物群を意味する。(C2mO)が{(CFO)n1(CFCFO)n2}の場合、n1とn2に分布を有する以外は同一の化合物群および{(CFO)n1/n(CFCFO)n2/nで表した場合にnの数に分布を有する以外は同一の化合物群を意味する。市販の化合物(10)は通常上記の意味で単一化合物とみなしうる化合物であることより、その{(CFO)n1(CFCFO)n2}部分に変化を生じていない誘導体は、他の部分(D、Rf1、A等)が同一である限り、単一化合物とみなしうる。
 化合物(1)の数平均分子量は、2,000~10,000が好ましい。数平均分子量が該範囲内であれば、耐摩擦性に優れる。化合物(1)の数平均分子量は、2,100~9,000が好ましく、2,400~8,000が特に好ましい。
 通常、含フッ素エーテル化合物においては、数平均分子量が小さいほど、基材との化学結合が強固となると考えられる。この理由は、単位分子量当たりに存在する加水分解性シリル基の数が多くなるためと考えられる。しかしながら、数平均分子量が前記範囲の下限値未満であると、耐摩擦性が低下しやすいことを、本発明者等は確認した。また、数平均分子量が前記範囲の上限値を超えると、耐摩擦性が低下する。この理由は、単位分子量当たりに存在する加水分解性シリル基の数の減少による影響が大きくなるためであると考えられる。
[含フッ素エーテル組成物]
 本発明の含フッ素エーテル組成物(以下、本組成物と記す。)は、化合物(1)と化合物(1)以外の含フッ素エーテル化合物とを含む組成物である。化合物(1)以外の含フッ素エーテル化合物(以下、他の含フッ素エーテル化合物と記す。)としては、化合物(1)の製造過程で副生する含フッ素エーテル化合物や化合物(1)と同様の用途に使用される公知の(特に市販の)含フッ素エーテル化合物等が挙げられる。他の含フッ素エーテル化合物は、化合物(1)の特性を低下させるおそれが少ない化合物であって、かつ組成物中の化合物(1)に対する相対的な含有量が化合物(1)の特性を低下させるおそれが少ない量であることが好ましい。
 他の含フッ素エーテル化合物が化合物(1)の製造過程で副生する含フッ素エーテル化合物の場合、化合物(1)製造における化合物(1)の精製が容易となり、また精製工程を簡略化することができる。他の含フッ素エーテル化合物が化合物(1)と同様の用途に使用される公知の含フッ素エーテル化合物の場合、化合物(1)の特性を補う等の新たな作用効果が発揮される場合がある。
 他の含フッ素エーテル化合物としては、化合物(1)の特性を低下させるおそれが少ないことより、下記化合物(2)や化合物(6)が好ましい。
 (化合物(2))
 化合物(2)は、下式(2)で表される含フッ素エーテル化合物である。
 D-Rf2-O-CH-(C2pO)-C2d-CH-O-Rf3-D ・・・(2)
 ただし、
 DおよびDは、それぞれ独立に、CF-またはCF-O-であり、
 Rf2およびRf3は、それぞれ独立に、炭素数1~20のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基であり、
 dは1~5の整数であり、
 pは1~6の整数であり、
 qは1~200の整数であり、qが2以上のとき、(C2pO)は、pの異なる2種以上のC2pOからなるものであってもよい。
 ((C2pO)
 pは、化合物(1)の製造過程で副生する化合物を有効に利用できる点から、式(1)におけるmと同じであることが好ましい。
 pが2以上の場合、C2pは直鎖状であってもよく、分岐状であってもよい。表面層に指紋汚れ除去性、潤滑性を充分に付与する点からは、直鎖状が好ましい。
 qは、化合物(1)の製造過程で副生する化合物を有効に利用できる点から、式(1)におけるnと同じであることが好ましい。
 qが2以上のとき、(C2pO)は、pの異なる2種以上のC2pOからなるものであってもよい。
 (C2pO)において、pの異なる2種以上のC2pOが存在する場合、各C2pOの結合順序は限定されない。
 (C2pO)は、化合物(1)の製造過程で副生する化合物を有効に利用できる点から、式(1)における(C2mO)と同じであることが好ましい。たとえば、化合物(1)が{(CFO)n1(CFCFO)n2}を有する化合物である場合は、化合物(2)も{(CFO)n1(CFCFO)n2}を有する化合物であることが特に好ましい。
 化合物(2)が{(CFO)n1(CFCFO)n2}を有する化合物である場合、化合物(2)の製造のしやすさの点から、また化合物(1)の製造過程で副生する化合物を有効に利用できる点から、化合物(2)は前記化合物(10)の誘導体であることが好ましい。化合物(2)が化合物(10)の誘導体の場合、-CH-(C2pO)-は、-CHCF-O{(CFO)n1(CFCFO)n2}-であり、-C2d-は-CF-である。
 (Rf2およびRf3基)
 Rf2およびRf3の例示および好ましい例は前記Rf1と同様である。
 Rf2およびRf3は、化合物(1)の製造過程で副生する化合物を有効に利用できる点からは、上述した式(3-1)で表される基、式(3-2)で表される基または式(3-3)で表される基が好ましい。なお、Rf2においては、RはDに結合する基であり、Rf3においては、RはDに結合する基である。
 (化合物(2)の好ましい態様)
 化合物(2)としては、化合物(1)の好ましい態様の製造過程で副生する化合物を有効に利用できる点から、化合物(21)、化合物(22)、化合物(23)が好ましい。なお、式中の2つのR基の種類は同じでも異なっていてもよい。
 D-R-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-O-R-D ・・・(21)
 D-R-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-R-D ・・・(22)
 D-R-C2z-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-C2z-R-D ・・・(23)
 (化合物(6))
 化合物(6)は、下式(6)で表される含フッ素エーテル化合物である。
 RF1-O-(C2sO)-RF2 ・・・(6)
 ただし、
 RF1およびRF2は、それぞれ独立に、炭素数1~6のペルフルオロアルキル基であり、
 sは1~6の整数であり、
 tは1~200の整数であり、tが2以上のとき、(C2sO)は、sの異なる2種以上のC2sOからなるものであってもよい。
 化合物(6)は、化合物(2)をフッ素ガスでフッ素化することで得られる。また、市販品を用いることができる。市販品としては、FOMBLIN M、FOMBLIN Y、FOMBLIN Z(以上、ソルベイソレクシス社製)、Krytox(デュポン社製)、デムナム(ダイキン工業社製)等が挙げられる。(C2sO)が(CFO)と(CFCFO)とを含むFOMBLIN MおよびFOMBLIN Zが、潤滑性に優れる点で好ましい。
 本発明の含フッ素エーテル組成物は、化合物(1)および他の含フッ素エーテル化合物以外の不純物を含んでいてもよい。化合物(1)および他の含フッ素エーテル化合物以外の不純物とは、化合物(1)および他の含フッ素エーテル化合物の製造上不可避の化合物を意味し、(C2mO)等の含フッ素エーテル鎖を含まない化合物である。具体的には、化合物(1)および他の含フッ素エーテル化合物の製造過程で生成した副生成物、化合物(1)および他の含フッ素エーテル化合物の製造過程で混入した成分である。
 本組成物中の化合物(1)の含有量は、70質量%以上が好ましく、80質量%以上が特に好ましい。本組成物中の化合物(1)の含有量とは、本組成物中の化合物(1)と他の含フッ素エーテル化合物と前記副生成物等の不純物の合計に対する化合物(1)の含有量をいう。
 すなわち、本組成物中の化合物(1)と他の含フッ素エーテル化合物と前記不純物の合計に対しする他の含フッ素エーテル化合物と前記不純物の合計の含有量は、30質量%以下が好ましく、20質量%以下が特に好ましい。化合物(1)の含有量が前記範囲であれば、表面層の初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる。
 ただし、他の含フッ素エーテル化合物が化合物(2)と化合物(6)の場合は、前記のようにこれらが化合物(1)の特性を低下させるおそれが少ない化合物であることより、本組成物中の化合物(1)の好ましい含有量は上記含有量の下限よりも低い場合があってもよい。
 本組成物が化合物(2)と化合物(6)少なくとも一方を含む場合、本組成物中の化合物(1)、化合物(2)および化合物(6)の合計の含有量は、80質量%以上が好ましく、85質量%以上が特に好ましい。本組成物中の化合物(1)、化合物(2)および化合物(6)の合計の含有量とは、本組成物中の化合物(1)と他の含フッ素エーテル化合物と前記副生成物等の不純物の合計に対する化合物(1)、化合物(2)および化合物(6)の合計の含有量をいう。
 すなわち、前記化合物(2)および化合物(6)以外の他の含フッ素エーテル化合物と前記不純物の合計の含有量は、20質量%以下が好ましく、15質量%以下が特に好ましい。化合物(1)、化合物(2)および化合物(6)の合計の含有量が前記範囲であれば、表面層の初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる。
 本組成物が化合物(2)を含む場合、本組成物中の化合物(1)と化合物(2)との質量比(化合物(1)/化合物(2))は、40/60以上100/0未満が好ましく、50/50以上100/0未満が特に好ましい。化合物(1)/化合物(2)が該範囲内であれば、表面層の初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる。
 本組成物が化合物(6)である場合、本組成物中の化合物(1)と化合物(6)との質量比(化合物(1)/化合物(6))は、40/60以上100/0未満が好ましく、50/50以上100/0未満が特に好ましい。化合物(1)/化合物(6)が該範囲内であれば、表面層の初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる。
 本組成物が化合物(2)と化合物(6)とを含む場合、本組成物中の化合物(1)と化合物(2)および化合物(6)の合計量との質量比(化合物(1)/[化合物(2)+化合物(6)])は、40/60以上100/0未満が好ましく、50/50以上100/0未満が特に好ましい。化合物(1)/[化合物(2)+化合物(6)]が該範囲内であれば、表面層の初期の撥水撥油性、耐摩擦性、指紋汚れ除去性、潤滑性、均一性に優れる。
[コーティング液]
 本発明のコーティング液(以下、本コーティング液と記す。)は、化合物(1)または本組成物と媒体とを含む。媒体は、液状であることが好ましい。本コーティング液は、液状であればよく、溶液であってもよく、分散液であってもよい。以下、本化合物(1)と本組成物を総称して化合物(1)等と記す。
 本コーティング液は、化合物(1)等を含んでいればよく、化合物(1)の製造工程で生成した副生成物等の不純物を含んでもよい。
 化合物(1)等の濃度は、本コーティング液中、0.001~10質量%が好ましく、0.1~1質量%が特に好ましい。
 (媒体)
 媒体としては、有機溶媒が好ましい。有機溶媒は、フッ素系有機溶媒であってもよく、非フッ素系有機溶媒であってもよく、両溶媒を含んでもよい。
 フッ素系有機溶媒としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、フッ素化アルキルアミン、フルオロアルコール等が挙げられる。
 フッ素化アルカンとしては、炭素数4~8の化合物が好ましい。市販品としては、たとえばC13H(AC-2000:製品名、旭硝子社製)、C13(AC-6000:製品名、旭硝子社製)、CCHFCHFCF(バートレル:製品名、デュポン社製)等が挙げられる。
 フッ素化芳香族化合物としては、たとえばヘキサフルオロベンゼン、トリフルオロメチルベンゼン、ペルフルオロトルエン、ビス(トリフルオロメチル)ベンゼン等が挙げられる。
 フルオロアルキルエーテルとしては、炭素数4~12の化合物が好ましい。市販品としては、たとえばCFCHOCFCFH(AE-3000:製品名、旭硝子社製)、COCH(ノベック-7100:製品名、3M社製)、COC(ノベック-7200:製品名、3M社製)、C13OCH(ノベック-7300:製品名、3M社製)等が挙げられる。
 フッ素化アルキルアミンとしては、たとえばペルフルオロトリプロピルアミン、ペルフルオロトリブチルアミン等が挙げられる。
 フルオロアルコールとしては、たとえば2,2,3,3-テトラフルオロプロパノール、2,2,2-トリフルオロエタノール、ヘキサフルオロイソプロパノール等が挙げられる。
 フッ素系有機溶媒としては、化合物(1)の溶解性の点で、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテルが好ましく、フルオロアルキルエーテルが特に好ましい。
 非フッ素系有機溶媒としては、水素原子および炭素原子のみからなる化合物と、水素原子、炭素原子および酸素原子のみからなる化合物が好ましく、炭化水素系有機溶媒、アルコール系有機溶媒、ケトン系有機溶媒、エーテル系有機溶媒、エステル系有機溶媒が挙げられる。
 炭化水素系有機溶媒としては、ヘキサン、へプタン、シクロヘキサン等が好ましい。
 アルコール系有機溶媒としては、メタノール、エタノール、1-プロパノール、2-プロパノール等が好ましい。
 ケトン系有機溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等が好ましい。
 エーテル系有機溶媒としては、ジエチルエーテル、テトラヒドロフラン、テトラエチレングリコールジメチルエーテル等が好ましい。
 エステル系有機溶媒としては、酢酸エチル、酢酸ブチル等が好ましい。
 非フッ素系有機溶媒としては、化合物(1)の溶解性の点で、ケトン系有機溶媒が特に好ましい。
 媒体としては、フッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、水素原子および炭素原子のみからなる化合物、ならびに、水素原子、炭素原子および酸素原子のみからなる化合物からなる群から選択される少なくとも1種の有機溶媒が好ましい。特に、フッ素化アルカン、フッ素化芳香族化合物およびフルオロアルキルエーテルから選ばれるフッ素系有機溶媒が好ましい。
 媒体としては、フッ素系有機溶媒であるフッ素化アルカン、フッ素化芳香族化合物、フルオロアルキルエーテル、非フッ素系有機溶媒である水素原子、炭素原子および酸素原子のみからなる化合物からなる群から選択される少なくとも1種の有機溶媒を、合計で媒体全体の90質量%以上含むことが、化合物(1)の溶解性を高める点で好ましい。
 本コーティング液は、媒体を90~99.999質量%含むことが好ましく、99~99.9質量%で含むことが特に好ましい。
 本コーティング液は、化合物(1)等および媒体の他に、本発明の効果を損なわない範囲で、その他の成分を含んでいてもよい。
 その他の成分としては、たとえば、加水分解性シリル基の加水分解と縮合反応を促進する酸触媒や塩基性触媒等の公知の添加剤が挙げられる。
 酸触媒としては、塩酸、硝酸、酢酸、硫酸、燐酸、スルホン酸、メタンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 塩基性触媒としては、水酸化ナトリウム、水酸化カリウム、アンモニア等が挙げられる。
 本コーティング液における、その他の成分の含有量は、10質量%以下が好ましく、1質量%以下が特に好ましい。
 本コーティング液の固形分濃度は、0.001~10質量%が好ましく、0.01~1質量%が特に好ましい。コーティング液の固形分濃度は、加熱前のコーティング液の質量と、120℃の対流式乾燥機にて4時間加熱した後の質量とから算出する値である。また、本組成物の濃度は、固形分濃度と、本組成物および溶媒等の仕込み量とから算出可能である。
[表面層を有する基材]
 本発明の表面層を有する基材は、化合物(1)等から形成されてなる表面層を有する。
 (表面層)
 化合物(1)等においては、化合物(1)中の加水分解性シリル基(-SiL3-c)が加水分解反応することによってシラノール基(Si-OH)が形成され、該シラノール基は分子間で脱水縮合反応してSi-O-Si結合が形成され、または該シラノール基が基材の表面の水酸基(基材-OH)と脱水縮合反応して化学結合(基材-O-Si)が形成される。すなわち、本発明における表面層は、化合物(1)を、化合物(1)の加水分解性シリル基の一部または全部がシラノール基になった状態や脱水縮合反応した状態で含む。
 (基材)
 本発明における基材は、撥水撥油性の付与が求められている基材であれば特に限定されない。基材の材料としては、金属、樹脂、ガラス、セラミック、石、これらの複合材料が挙げられる。
 (タッチパネル)
 化合物(1)等から表面層が形成されることによって、優れた初期の撥水撥油性が付与されるとともに、該表面が繰り返し摩擦されても撥水撥油性が低下しにくい優れた耐摩擦性、該表面の指紋汚れを容易に除去できる性能(指紋汚れ除去性)、該表面を指で触った際の滑らかさ(潤滑性)、表面層の均一性(透明性、平滑性、ムラの少なさ)が得られる。したがって、このようにして得られる、表面層を有する基材は、表面層が優れた初期の撥水撥油性を有するとともに、優れた耐摩擦性、指紋汚れ除去性、潤滑性、均一性を有するため、タッチパネルを構成する部材として好適である。タッチパネルとは、指等による接触によってその接触位置情報を入力する装置と表示装置とを組み合わせた入力/表示装置(タッチパネル装置)の、入力装置を意味する。タッチパネルは、基材と、入力検出方式に応じて、透明導電膜、電極、配線、IC等とから構成されている。基材の表面層を有する面をタッチパネルの入力面とすることにより、表面層が優れた耐摩擦性、指紋汚れ除去性、潤滑性、均一性を有するタッチパネルが得られる。
 タッチパネル用基材の材質は、透光性を有する。「透光性を有する」とは、JIS R 3106に準じた垂直入射型可視光透過率が25%以上であることを意味する。
 タッチパネル用基材の材質としては、ガラスまたは透明樹脂が好ましい。ガラスとしては、ソーダライムガラス、アルカリアルミノケイ酸塩ガラス、ホウ珪酸ガラス、無アルカリガラス、クリスタルガラス、石英ガラスが好ましく、化学強化したソーダライムガラス、化学強化したアルカリアルミノケイ酸塩ガラス、および化学強化したホウ珪酸ガラスが特に好ましい。透明樹脂としては、アクリル樹脂、ポリカーボネートが好ましい。
 また、本発明における基材として、液晶ディスプレイ、CRTディスプレイ、プロジェクションディスプレイ、プラズマディスプレイ、ELディスプレイ等の各種ディスプレイの最表面を構成するディスプレイ用基材も好適であり、化合物(1)等または本コーティング液を用いた表面処理によって表面層を形成することによって、表面層が優れた耐摩擦性、指紋汚れ除去性、潤滑性、均一性を有するディスプレイが得られる。
[表面層を有する基材の製造方法]
 (ドライコーティング法)
 化合物(1)等は、ドライコーティング法によって基材の表面を処理して、表面層を有する基材を製造する方法に、そのまま用いることができる。化合物(1)等は、ドライコーティング法によって密着性に優れた表面層を形成するのに好適である。ドライコーティング法としては、真空蒸着、CVD、スパッタリング等の手法が挙げられる。化合物(1)の分解を抑える点、および装置の簡便さの点から、真空蒸着法が好適に利用できる。真空蒸着法は、抵抗加熱法、電子ビーム加熱法、高周波誘導加熱法、反応性蒸着、分子線エピタキシー法、ホットウォール蒸着法、イオンプレーティング法、クラスターイオンビーム法等に細分することができるが、いずれの方法も適用できる。化合物(1)の分解を抑制する点、および装置の簡便さの点から、抵抗加熱法が好適に利用できる。真空蒸着装置は特に制限なく、公知の装置が利用できる。
 真空蒸着法を用いる場合の成膜条件は、適用する真空蒸着法の種類によって異なるが、抵抗加熱法の場合、蒸着前真空度は1×10-2Pa以下が好ましく、1×10-3Pa以下が特に好ましい。蒸着源の加熱温度は、化合物(1)等の蒸着源が充分な蒸気圧を有する温度であれば特に制限はない。具体的には30~400℃が好ましく、50~300℃が特に好ましい。加熱温度が前記範囲の下限値以上であれば、成膜速度が良好になる。前記範囲の上限値以下であれば、化合物(1)の分解が生じることなく、基材の表面に初期の撥水撥油性、耐摩擦性、指紋汚れ除去性を付与できる。真空蒸着時、基材温度は室温(20~25℃)から200℃までの範囲であることが好ましい。基材温度が200℃以下であれば、成膜速度が良好になる。基材温度の上限値は150℃以下がより好ましく、100℃以下が特に好ましい。
 化合物(1)等を用い、ドライコーティング法によって基材の表面を処理する場合、該処理によって基材の表面に形成される表面層は、膜厚として、1~100nmが好ましく、1~50nmが特に好ましい。該表面層の膜厚が前記範囲の下限値以上であれば、表面処理による効果が充分に得られやすい。前記範囲の上限値以下であれば、利用効率が高い。なお、膜厚は、たとえば薄膜解析用X線回折計ATX-G(RIGAKU社製)を用いて、X線反射率法によって反射X線の干渉パターンを得て、該干渉パターンの振動周期から算出できる。
 特に、真空蒸着法においては、本組成物中の化合物(1)の含有量が多く、不純物の含有量が少ないため、初期の撥水撥油性、耐摩擦性、指紋汚れ除去性の向上効果が大きい。これは、不純物である分子量が小さい副生成物が、化合物(1)よりも先に基材の表面に蒸着し、その結果、性能の発現を担う化合物(1)と基材の表面との化学結合が妨げられるのが、抑えられるためと考えられる。
 (ウェットコーティング法)
 本コーティング液を基材の表面に塗布し、乾燥させることによって、表面層を有する基材を製造することができる。
 コーティング液の塗布方法としては、公知の手法を適宜用いることができる。
 塗布方法としては、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ディップコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法またはグラビアコート法が好ましい。
 乾燥させる方法は、媒体を乾燥除去できる方法であればよく、公知の手法を適宜用いることができる。乾燥温度は10~300℃が好ましく、20~200℃が特に好ましい。
 媒体を乾燥除去した後に、基材の表面に形成される表面層は、膜厚として、1~100nmが好ましく、1~50nmが特に好ましい。該表面層の膜厚が前記範囲の下限値以上であれば、表面処理による効果が充分に得られやすい。前記範囲の上限値以下であれば、利用効率が高い。なお、膜厚の測定は、ドライコーティング法で形成される表面層の膜厚の測定方法と同様に行うことができる。
 (後処理)
 前記ドライコーティング法やウェットコーティング法により基材表面に表面層を形成した後に、該表面層の摩擦に対する耐久性を向上させるために、必要に応じて、化合物(1)と基材との反応を促進するための操作を行ってもよい。該操作としては、加熱、加湿、光照射等が挙げられる。たとえば、水分を有する大気中で表面層が形成された基材を加熱して、加水分解性シリル基のシラノール基への加水分解反応、基材表面の水酸基等とシラノール基との反応、シラノール基の縮合反応によるシロキサン結合の生成、等の反応を促進することができる。
 表面処理後、表面層中の化合物であって他の化合物や基材と化学結合していない化合物は、必要に応じて除去してもよい。具体的な方法としては、たとえば、表面層に溶媒をかけ流す方法や、溶媒をしみ込ませた布でふき取る方法が挙げられる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
 以下、「%」は特に断りのない限り「質量%」である。また、2種以上の化合物(1)からなる混合物を「化合物」、化合物(1)と他の含フッ素エーテル化合物とからなるものを「組成物」と記す。
 例1~2、5~6、11~12、15~16、21~24は実施例、例3~4、7、13~14、17は比較例である。
[例1:化合物(A)の製造]
 (例1-1)
 300mLの3つ口フラスコに、20%KOH水溶液の2.9g、tert-ブチルアルコールの33g、1,3-ビス(トリフルオロメチル)ベンゼンの110g、化合物(10)(FLUOROLINK D4000:製品名、ソルベイソレクシス社製)の220gを入れ、CFCFCF-O-CF=CFの14.6gを加えた。窒素雰囲気下、40℃で20時間撹拌した。希塩酸水溶液で1回洗浄し、有機相を回収し、エバポレータで濃縮することによって、粗生成物(a)の233gを得た。粗生成物(a)をC13H(AC-2000:製品名、旭硝子社製)の115gで希釈し、シリカゲルカラムクロマトグラフィに展開して分取した。展開溶媒としては、AC-2000、AC-2000/CFCHOCFCFH(AE-3000:製品名、旭硝子社製)(質量比1/2)、AE-3000/アセトン(質量比2/1)を順に用いた。各フラクションについて、末端基の構造および構成単位の単位数(n1-1、n2)の平均値をH-NMRおよび19F-NMRの積分値から求めた。これにより、粗生成物(a)中には化合物(11-1)、化合物(21-1)および化合物(10)がそれぞれ、50モル%、25モル%および25モル%含まれていたことがわかった。また、化合物(11-1)の105.1g(収率44.8%)および化合物(21-1)の55.4g(収率23.6%)が得られた。
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(11-1)
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-O-CFCF-CF ・・・(21-1)
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH・・・(10)
 化合物(11-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.8(1F)、-80.8(1F)、-81.4(1F)、-82.2(3F)、-83.5(1F)、-85.3~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
 化合物(21-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.2(4H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.8(2F)、-80.7(2F)、-82.2(6F)、-85.3~-88.2(4F)、-89.4~-91.1(84F)、-130.5(4F)、-145.1(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,400。
 (例1-2)
 100mLの2つ口ナスフラスコ内に、例1-1で得た化合物(11-1)の52.0g、硫酸水素テトラブチルアンモニウムの0.52g、臭化アリルの4.4g、および30%水酸化ナトリウム水溶液の6.5gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の50gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(12-1)の52.4g(収率99.9%)を得た。
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CH-CH=CH ・・・(12-1)
 化合物(12-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.7(2H)、4.1(2H)、4.2(2H)、5.2~5.3(2H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(1F)、-78.7(1F)、-80.2(1F)、-80.7(1F)、-82.2(3F)、-85.4~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
 (例1-3)
 50mLのポリテトラフルオロエチレン製密閉式耐圧容器に、例1-2で得た化合物(12-1)の5.0g、ジ-tert-ブチルペルオキシドの0.034g、トリクロロシランの1.26gおよびAC-2000の2.5gを入れ、120℃で8時間撹拌した。減圧濃縮して未反応物や溶媒等を留去した後、滴下ロートを備えたフラスコに入れ、オルト蟻酸トリメチルとメタノールの混合溶液1.0g(オルト蟻酸トリメチル/メタノール=25/1モル比)を滴下し、60℃にて3時間反応させた。反応終了後、溶媒等を減圧留去し、残渣に0.05gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(111a-1)と化合物(111b-1)との混合物である化合物(A)の5.0g(収率97.2%)を得た。化合物(111a-1)と化合物(111b-1)とのモル比は、NMRより92:8であった。
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH ・・・(111a-1)
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCH(CH)-Si(OCH ・・・(111b-1)
 化合物(111a-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.2(1F)、-78.7(1F)、-80.3(1F)、-80.7(1F)、-82.2(3F)、-85.4~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,300。
 化合物(111b-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.1(3H)、1.8(1H)、3.6(11H)、3.8(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(1F)、-78.7(1F)、-80.2(1F)、-80.7(1F)、-82.2(3F)、-85.4~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,300。
[例2:組成物(B)の製造]
 (例2-1)
 100mLのテトラフルオロエチレン-ペルフルオロ(アルコキシビニルエーテル)共重合体(PFA)製ナスフラスコに、例1-2で得た化合物(12-1)の25.0g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.16g、トリメトキシシランの2.84gおよびAC-2000の12.5gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.2gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(111a-1)と化合物(30)との組成物(B)の24.5g(収率95.3%)を得た。化合物(111a-1)と化合物(30)とのモル比は、NMRより83:17であった。
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH ・・・(111a-1)
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CH=CHCH ・・・(30)
 化合物(111a-1)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.2(1F)、-78.7(1F)、-80.3(1F)、-80.7(1F)、-82.2(3F)、-85.4~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,300。
 化合物(30)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.6(3H)、4.0(2H)、4.2(2H)、4.5~5.0(1H)、5.8~6.2(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(1F)、-78.7(1F)、-80.2(1F)、-80.7(1F)、-82.2(3F)、-85.4~-88.2(2F)、-89.4~-91.1(82F)、-130.5(2F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
[例3:組成物(C)の製造]
 (例3-1)
 100mLの2つ口ナスフラスコ内に、化合物(10)の30.0g、硫酸水素テトラブチルアンモニウムの0.64g、臭化アリルの4.5g、および30%水酸化ナトリウム水溶液の6.0gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の30gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(31)の29.7g(収率97.1%)を得た。
 CH=CHCH-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCH=CH ・・・(31)
 化合物(31)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.7(4H)、4.1(4H)、5.2~5.3(4H)、5.9(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(2F)、-80.2(2F)、-89.4~-91.1(80F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,000。
 (例3-2)
 100mLのPFA製ナスフラスコに、例3-1で得た化合物(31)の29.6g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.42g、トリメトキシシランの5.34gおよびAC-2000の15gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.1gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、組成物(C)の29.1g(収率92.1%)を得た。組成物(C)の末端基構造はH-NMRおよび19F-NMRの積分値から求めると、-OCHCHCHSi(OCHおよび-OCH=CHCHがそれぞれ84モル%および16モル%含まれていた。すなわち、組成物(C)中には、化合物(32)が71モル%、化合物(33)が26モル%および化合物(34)が3モル%含まれていると考えられる。
 (CHO)Si-CHCHCH-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH ・・・(32)
 CHCH=CH-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH ・・・(33)
 CHCH=CH-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CH=CHCH ・・・(34)
 組成物(C)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(3.36H)、1.6(0.96H)、1.7(3.36H)、3.6(18.5H)、3.8(3.36H)、4.0(0.64H)、4.5~5.0(0.32H)、5.8~6.2(0.32H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.2(2F)、-80.3(2F)、-89.1~-91.0(80F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
[例4:組成物(D)の製造]
 (例4-1)
 100mLのナスフラスコに、例1-1で得た化合物(11-1)の30.0g、フッ化ナトリウム粉末の0.9g、ジクロロペンタフルオロプロパン(AK-225:製品名、旭硝子社製)の30gを取り入れ、CFCFCFOCF(CF)COFの3.5gを加えた。窒素雰囲気下、50℃で24時間撹拌した。加圧ろ過器でフッ化ナトリウム粉末を除去した後、過剰のCFCFCFOCF(CF)COFとAK-225を減圧留去した。得られた粗生成物をAC-2000で希釈し、シリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(35)の31.8g(収率98.8%)を得た。
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OC(=O)CF(CF)OCFCFCF ・・・(35)
 化合物(35)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.2(2H)、4.7(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.8~-88.2(17F)、-89.4~-91.1(82F)、-130.3(2F)、-130.5(2F)、-132.5(1F)、-145.1(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,500。
 (例4-2)
 オートクレーブ(ニッケル製、内容積1L)を用意し、オートクレーブのガス出口に、20℃に保持した冷却器、NaFペレット充填層、および0℃に保持した冷却器を直列に設置した。また0℃に保持した冷却器から凝集した液をオートクレーブに戻す液体返送ラインを設置した。
 オートクレーブにClCFCFClCFOCFCFCl(以下、CFE-419と記す。)の750gを投入し、25℃に保持しながら撹拌した。オートクレーブに窒素ガスを25℃で1時間吹き込んだ後、20%フッ素ガスを、25℃、流速2.0L/時間で1時間吹き込んだ。次いで、20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブに、例4-1で得た化合物(35)の31.0gをCFE-419の124gに溶解した溶液を、4.3時間かけて注入した。
 次いで、20%フッ素ガスを同じ流速で吹き込みながら、オートクレーブの内圧を0.15MPa(ゲージ圧)まで加圧した。オートクレーブ内に、CFE-419中に0.05g/mLのベンゼンを含むベンゼン溶液の4mLを、25℃から40℃にまで加熱しながら注入し、オートクレーブのベンゼン溶液注入口を閉めた。15分撹拌した後、再びベンゼン溶液の4mLを、40℃を保持しながら注入し、注入口を閉めた。同様の操作をさらに3回繰り返した。ベンゼンの注入総量は0.17gであった。
 さらに、20%フッ素ガスを同じ流速で吹き込みながら、1時間撹拌を続けた。次いで、オートクレーブ内の圧力を大気圧にして、窒素ガスを1時間吹き込んだ。オートクレーブの内容物をエバポレータで濃縮し、化合物(36)の31.1g(収率98.5%)を得た。
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}CFCFO-C(=O)CF(CF)OCFCFCF ・・・(36)
 化合物(36)のNMRスペクトル;
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.7(42F)、-78.8~-88.1(11F)、-89.4~-91.1(92F)、-91.5(2F)、-130.3(2F)、-130.5(2F)、-132.5(1F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,600。
 (例4-3)
 PFA製丸底フラスコに、例4-2で得た化合物(36)の30.0gおよびAK-225の60gを入れた。氷浴で冷却しながら撹拌し、窒素雰囲気下、メタノールの2.0gを滴下漏斗からゆっくり滴下した。窒素でバブリングしながら12時間撹拌した。反応混合物をエバポレータで濃縮し、化合物(37)の27.6g(収率98.8%)を得た。
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}-CFC(=O)OCH ・・・(37)。
 化合物(37)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(3H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-82.2(3F)、-89.4~-91.1(92F)、-130.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
 (例4-4)
 100mLの3つ口ナスフラスコ中にて、塩化リチウムの0.18gをエタノールの18.3gに溶解させた。これに、例4-3で得た化合物(37)の25.0gを加えて氷浴で冷却しながら、水素化ホウ素ナトリウムの0.75gをエタノールの22.5gに溶解した溶液をゆっくり滴下した。その後、氷浴を取り外し、室温までゆっくり昇温しながら撹拌を続けた。室温で12時間撹拌後、液性が酸性になるまで塩酸水溶液を滴下した。AC-2000の20mLを添加し、水で1回、飽和食塩水で1回洗浄し、有機相を回収した。回収した有機相をエバポレータで濃縮し、化合物(38)の24.6g(収率99.0%)を得た。
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}-CFCHOH ・・・(38)。
 化合物(38)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.7(42F)、-81.4(1F)、-82.2(3F)、-83.4(1F)、-89.4~-91.1(90F)、-130.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,200。
 (例4-5)
 100mLの2つ口ナスフラスコ内に、例4-4で得た化合物(38)の20.0g、硫酸水素テトラブチルアンモニウムの0.21g、臭化アリルの1.76g、および30%水酸化ナトリウム水溶液の2.6gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の20gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(39)の19.8g(収率98.2%)を得た。
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}-CFCH-O-CHCH=CH ・・・(39)。
 化合物(39)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.7(2H)、4.1(2H)、5.2~5.3(2H)、5.9(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(1F)、-80.1(1F)、-82.1(3F)、-89.4~-91.1(90F)、-130.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,300。
 (例4-6)
 100mLのPFA製ナスフラスコに、例4-5で得た化合物(39)の10.0g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.09g、トリメトキシシランの1.48gおよびAC-2000の5.0gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.1gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(40)と化合物(41)との組成物(D)の9.9g(収率96.4%)を得た。化合物(40)と化合物(41)とのモル比は、NMRより82:18であった。
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH
 ・・・(40)
 CF-CFCF-O-CFCFOCFCFO{(CFO)n1(CFCFO)n2}-CFCH-O-CH=CHCH ・・・(41)
 化合物(40)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.2(1F)、-80.2(1F)、-82.2(3F)、-89.4~-91.1(90F)、-130.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,400。
 化合物(41)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.6(3H)、4.0(2H)、4.5~5.0(1H)、5.9~6.2(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.2(1F)、-80.2(1F)、-82.2(3F)、-89.4~-91.1(90F)、-130.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:20。
 数平均分子量:4,300。
[例5:組成物(E)の製造]
 (例5-1)
 200mLの3つ口フラスコに、20%KOH水溶液の1.5g、tert-ブチルアルコールの15g、1,3-ビス(トリフルオロメチル)ベンゼンの50g、化合物(10)の100gを入れ、CFCFCF-O-CF(CF)CF-O-CF=CFの11.6gを加えた。窒素雰囲気下、40℃で20時間撹拌した。希塩酸水溶液で1回洗浄し、有機相を回収し、エバポレータで濃縮することによって、粗生成物(b)の109gを得た。粗生成物(b)をAC-2000の55gで希釈し、シリカゲルカラムクロマトグラフィに展開して分取した。展開溶媒としては、AC-2000、AC-2000/AE-3000(質量比1/2)、AE-3000/アセトン(質量比2/1)を順に用いた。各フラクションについて、末端基の構造および構成単位の単位数(n1-1、n2)の平均値をH-NMRおよび19F-NMRの積分値から求めた。これにより、粗生成物(b)中には化合物(11-2)、化合物(21-2)および化合物(10)がそれぞれ、50モル%、25モル%および25モル%含まれていたことがわかった。また、化合物(11-2)の43.6g(収率39.1%)および化合物(21-2)の27.0g(収率24.2%)が得られた。
 CF-CFCF-O-CF(CF)CF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH ・・・(11-2)
 CF-CFCF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CFCHF-O-CFCF(CF)-O-CFCF-CF ・・・(21-2)
 HO-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-OH・・・(10)
 化合物(11-2)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.9(1F)、-80.9(4F)、-81.4(1F)、-82.2(5F)、-83.5(1F)、-84.4~-87.2(2F)、-89.1~-90.7(86F)、-130.2(2F)、-145.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:21。
 数平均分子量:4,400。
 化合物(21-2)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.2(4H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.4~-55.8(42F)、-78.9(2F)、-80.9(8F)、-82.2(10F)、-84.3~-87.2(4F)、-89.1~-90.8(88F)、-130.2(4F)、-145.5(4F)。
 単位数n1の平均値:21。
 単位数n2の平均値:21。
 数平均分子量:4,600。
 (例5-2)
 100mLの3つ口ナスフラスコ内に、例5-1で得た化合物(11-2)の30.0g、硫酸水素テトラブチルアンモニウムの0.30g、臭化アリルの4.1g、および30%水酸化ナトリウム水溶液の3.6gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の50gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(12-2)の28.6g(収率94.5%)を得た。
 CF-CFCF-O-CF(CF)CF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CH-CH=CH ・・・(12-2)
 化合物(12-2)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.7(2H)、4.1(2H)、4.2(2H)、5.2~5.3(2H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.3~-55.7(42F)、-78.1(1F)、-78.7(1F)、-80.2(1F)、-80.7(4F)、-82.2(5F)、-84.4~-87.2(2F)、-89.1~-91.0(86F)、-130.2(2F)、-145.51(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:21。
 数平均分子量:4,500。
 (例5-3)
  例5-2で得た化合物(12-2)の10.0g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.19g、トリメトキシシランの1.37gおよびAC-2000の5.0gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.2gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(111a-2)と化合物(30-2)との組成物(E)の10.1g(収率98.3%)を得た。化合物(111a-2)と化合物(30-2)とのモル比は、NMRより81:19であった。
 CF-CFCF-O-CF(CF)CF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CHCHCH-Si(OCH ・・・(111a-2)
 CF-CFCF-O-CF(CF)CF-O-CHFCF-O-CHCF-O{(CFO)n1(CFCFO)n2}-CFCH-O-CH=CHCH ・・・(30-2)
 化合物(111a-2)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.0~-55.8(42F)、-78.2(1F)、-78.8(1F)、-80.4(1F)、-80.9(4F)、-82.2(5F)、-84.4~-87.1(2F)、-89.1~-91.7(86F)、-130.2(2F)、-145.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:21。
 数平均分子量:4,600。
 化合物(30-2)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.6(3H)、4.0(2H)、4.2(2H)、4.5~5.0(1H)、5.8~6.2(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-52.0~-55.8(42F)、-78.2(1F)、-78.8(1F)、-80.4(1F)、-80.9(4F)、-82.2(5F)、-84.4~-87.1(2F)、-89.1~-91.7(86F)、-130.2(2F)、-145.5(2F)。
 単位数n1の平均値:21。
 単位数n2の平均値:21。
 数平均分子量:4,500。
[例6:組成物(F)の製造]
 (例6-1)
 国際公開第2004/035656号の例1~4に記載の方法で下記化合物(10-3)を得た。
 HO-CHCF-O(CFCFO)-CFCH-OH・・・(10-3)
 化合物(10-3)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(4H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-81.4(4F)、-89.5(80F)。
 単位数nの平均値:20。
 数平均分子量:2,500。
 (例6-2)
 100mLの3つ口フラスコに、20%KOH水溶液の0.72g、tert-ブチルアルコールの7.5g、1,3-ビス(トリフルオロメチル)ベンゼンの25g、例6-1で得た化合物(10-3)の50.0gを入れ、CFCFCF-O-CF=CFの5.40gを加えた。窒素雰囲気下、40℃で20時間撹拌した。希塩酸水溶液で1回洗浄し、有機相を回収し、エバポレータで濃縮することによって、粗生成物(c)の53.8gを得た。粗生成物(c)をAC-2000の115gで希釈し、シリカゲルカラムクロマトグラフィに展開して分取した。展開溶媒としては、AC-2000、AC-2000/AE-3000:(質量比1/4)、AE-3000/アセトン(質量比2/1)を順に用いた。各フラクションについて、末端基の構造および構成単位の単位数(n2)の平均値をH-NMRおよび19F-NMRの積分値から求めた。これにより、粗生成物(c)中には化合物(11-3)、化合物(21-3)および化合物(10-3)がそれぞれ、52モル%、24モル%および24モル%含まれていたことがわかった。また、化合物(11-3)の24.0g(収率44.0%)および化合物(21-3)の13.1g(収率24.0%)が得られた。
 CF-CFCF-O-CHFCF-O-CHCF-O(CFCFO)-CFCH-OH ・・・(11-3)
 CF-CFCF-O-CHFCF-O-CHCF-O(CFCFO)-CFCH-O-CFCHF-O-CFCF-CF ・・・(21-3)
 HO-CHCF-O(CFCFO)-CFCH-OH・・・(10-3)
 化合物(11-3)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-78.8(2F)、-81.4(2F)、-82.2(3F)、-85.3~-88.2(2F)、-89.5(80F)、-90.0~-91.5(2F)、-130.5(2F)、-145.1(1F)。
 単位数nの平均値:20。
 数平均分子量:2,800。
 化合物(21-3)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):4.2(4H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-78.8(4F)、-82.2(6F)、-85.3~-88.2(4F)、-89.5(80F)、-90.0~-91.5(4F)、-130.5(4F)、-145.1(2F)。
 単位数nの平均値:20。
 数平均分子量:3,000。
 (例6-3)
 100mLの2つ口ナスフラスコ内に、例6-2で得た化合物(11-3)の20.0g、硫酸水素テトラブチルアンモニウムの0.31g、臭化アリルの4.4g、および30%水酸化ナトリウム水溶液の3.2gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の20gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(12-3)の20.0g(収率98.6%)を得た。
 CF-CFCF-O-CHFCF-O-CHCF-O(CFCFO)-CFCH-O-CH-CH=CH ・・・(12-3)
 化合物(12-3)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.7(2H)、4.1(2H)、4.2(2H)、5.2~5.3(2H)、5.8~6.0(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-78.1(2F)、-78.7(2F)、-82.2(3F)、-85.4~-88.2(2F)、-89.5(80F)、-90.0~-91.5(2F)、-130.5(2F)、-145.1(1F)。
 単位数nの平均値:20。
 数平均分子量:2,800。
 (例6-4)
 100mLのPFA製ナスフラスコに、例6-3で得た化合物(12-3)の18.0g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.13g、トリメトキシシランの2.27gおよびAC-2000の10.0gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.1gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(111a-3)と化合物(30-3)との組成物(F)の18.2g(収率96.9%)を得た。化合物(111a-3)と化合物(30-3)とのモル比は、NMRより80:20であった。
 CF-CFCF-O-CHFCF-O-CHCF-O(CFCFO)-CFCH-O-CHCHCH-Si(OCH ・・・(111a-3)
 CF-CFCF-O-CHFCF-O-CHCF-O(CFCFO)-CFCH-O-CH=CHCH ・・・(30-3)
 化合物(111a-3)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)、4.2(2H)、5.8~6.0(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-78.1(2F)、-78.7(2F)、-82.2(3F)、-85.4~-88.2(2F)、-89.5(80F)、-90.0~-91.5(2F)、-130.5(2F)、-145.1(1F)。
 単位数nの平均値:20。
 数平均分子量:2,900。
 化合物(30)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.6(3H)、4.0(2H)、4.2(2H)、4.5~5.0(1H)、5.8~6.2(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-78.1(2F)、-78.7(2F)、-82.2(3F)、-85.4~-88.2(2F)、-89.5(80F)、-90.0~-91.5(2F)、-130.5(2F)、-145.1(1F)。
 単位数nの平均値:20。
 数平均分子量:2,800。
[例7:組成物(G)の製造]
 (例7-1)
 下記化合物(42)(ユニオックスM-1000:製品名、日油社製。n2の平均値:21)を用い、国際公開第2004/008380号の例1に記載の方法と同様にして下記化合物(43)を得た。
 CHO(CHCHO)-CHCH-OH・・・(42)
 CFO(CFCFO)-CFCH-OH・・・(43)
 化合物(43)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.9(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-56.2(3F)、-81.4(2F)、-89.5(82F)、-91.4(2F)。
 単位数nの平均値:21。
 数平均分子量:2,600。
 (例7-2)
 100mLの2つ口ナスフラスコ内に、例7-1で得た化合物(43)の25.0g、硫酸水素テトラブチルアンモニウムの0.40g、臭化アリルの5.8g、および30%水酸化ナトリウム水溶液の4.0gを加え、60℃で8時間撹拌した。反応終了後、AC-2000の20gを加え、希塩酸水溶液で1回洗浄し、有機相を回収した。回収した有機相をシリカゲルカラムに通し、回収した溶液をエバポレータで濃縮し、化合物(44)の24.5g(収率96.4%)を得た。
 CFO(CFCFO)-CFCH-O-CH-CH=CH ・・・(44)
 化合物(44)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):3.8(2H)、4.1(2H)、5.2~5.3(2H)、5.9(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-56.3(3F)、-78.3(2F)、-89.5(82F)、-91.5(2F)。
 単位数nの平均値:21。
 数平均分子量:2,600。
 (例7-3)
 100mLのPFA製ナスフラスコに、例7-3で得た化合物(44)の20.0g、白金/1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン錯体のキシレン溶液(白金含有量:2%)の0.14g、トリメトキシシランの2.50gおよびAC-2000の10.0gを入れ、70℃で10時間撹拌した。反応終了後、溶媒等を減圧留去し、残渣に0.1gの活性炭を加えて1時間撹拌した後、0.5μm孔径のメンブランフィルタでろ過し、化合物(45)と化合物(46)との組成物(G)の20.0g(収率95.6%)を得た。化合物(45)と化合物(46)とのモル比は、NMRより83:17であった。
 CFO(CFCFO)-CFCH-O-CHCHCH-Si(OCH ・・・(45)
 CFO(CFCFO)-CFCH-O-CH=CHCH ・・・(46)
 化合物(45)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):0.7(2H)、1.7(2H)、3.6(11H)、3.8(2H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-56.3(3F)、-78.3(2F)、-89.5(82F)、-91.5(2F)。
 単位数nの平均値:21。
 数平均分子量:2,800。
 化合物(45)のNMRスペクトル;
 H-NMR(300.4MHz、溶媒:CDCl、基準:TMS) δ(ppm):1.6(3H)、4.0(2H)、4.5~5.0(1H)、5.8~6.2(1H)。
 19F-NMR(282.7MHz、溶媒:CDCl、基準:CFCl) δ(ppm):-56.3(3F)、-78.3(2F)、-89.5(82F)、-91.5(2F)。
 単位数nの平均値:21。
 数平均分子量:2,600。
[例11~17:表面層を有する基材の製造および評価]
 例1~7で得られた各化合物、組成物を用いて基材の表面処理を行い、例11~17とした。各例について下記のドライコーティング法、ウェットコーティング法、スピンコーティング法およびスプレーコーティング法をそれぞれ用いて表面層を有する基材を製造した。基材としては化学強化ガラスを用いた。得られた表面層を有する基材について、下記の方法で評価した。結果を表1に示す。
 (ドライコーティング法)
 ドライコーティングは、真空蒸着装置(ULVAC社製、VTR-350M)を用いて行った(真空蒸着法)。例1~7で得られた化合物または組成物の0.5gを真空蒸着装置内のモリブデン製ボートに充填し、真空蒸着装置内を1×10-3Pa以下に排気した。化合物または組成物を配置したボートを昇温速度10℃/分以下の速度で加熱し、水晶発振式膜厚計による蒸着速度が1nm/秒を超えた時点でシャッターを開けて基材の表面への成膜を開始させた。膜厚が約50nmとなった時点でシャッターを閉じて基材の表面への成膜を終了させた。化合物または組成物が堆積された基材を、200℃で30分間加熱処理し、その後、AK-225にて洗浄することにより、表面層を有する基材を得た。
 (ウェットコーティング法)
 例1~7で得られた化合物または組成物と、媒体としてのCOC(ノベック-7200:製品名、3M社製)とを混合して、固形分濃度0.05%のコーティング液を調製した。基材を該コーティング液にディッピングし(ディップコート法)、30分間放置後、基材を引き上げた。基材を200℃で30分間乾燥させ、AK-225にて洗浄することにより、表面層を有する基材を得た。
 (ドライコーティング法およびウェットコーティング法における評価方法)
 <水接触角およびn-ヘキサデカン接触角の測定方法>
 表面層の表面に置いた、約2μLの蒸留水あるいはn-ヘキサデカンの接触角を、接触角測定装置DM-500(協和界面科学社製)を用いて測定した。基材の表面層の表面における異なる5箇所で測定を行い、その平均値を算出した。接触角の算出には2θ法を用いた。
 <初期の水およびn-ヘキサデカン接触角>
 表面層を有する基材について、初期の水接触角およびn-ヘキサデカン接触角を前記測定方法で測定した。
 <耐摩擦性>
 表面層を有する基材について、JIS L 0849に準拠して往復式トラバース試験機(ケイエヌテー社製)を用い、セルロース製不織布(ベンコットM-3、旭化成社製)を荷重1kgで10万回往復させた後、水接触角およびn-ヘキサデカン接触角を測定した。
 摩擦回数を増大させたときの撥水性(水接触角)および撥油性(n-ヘキサデカン接触角)の低下が小さいほど摩擦による性能の低下が小さく、耐摩擦性に優れる。
 <指紋汚れ除去性>
 人工指紋液(オレイン酸とスクアレンとからなる液)を、シリコンゴム栓の平坦面に付着させた後、余分な油分を不織布(ベンコットM-3、旭化成社製)にて拭き取ることによって、指紋のスタンプを準備した。該指紋スタンプを表面層を有する基材上に乗せ、1kgの荷重にて10秒間押しつけた。この時に、指紋が付着した箇所のヘーズをヘーズメータ(東洋精機社製)にて測定した。この時の値を初期値とした。次に、指紋が付着した箇所について、ティッシュペーパを取り付けた、往復式トラバース試験機(ケイエヌテー社製)を用い、荷重500gにて拭き取りを行った。拭き取り一往復毎にヘーズの値を測定し、10往復拭き取るまでの間に、ヘーズが目視で確認できない数値に達したら合格とした。
 <動摩擦係数>
 表面層を有する基材の人工皮膚(PBZ13001、出光テクノファイン社製)に対する動摩擦係数を、荷重変動型摩擦摩耗試験システムHHS2000(新東科学社製)を用い、接触面積3cm×3cm、荷重100gの条件で測定した。
 動摩擦係数が小さいほど潤滑性に優れる。
 (スピンコーティング法)
 例1~7で得た化合物または組成物と、媒体としてのCOC(ノベック-7200:製品名、3M社製)とを混合して、固形分濃度0.05%のコーティング液を調製した。基材に該コーティング液をスピンコート法にて、毎分1,500回転の条件で30秒間塗布した。基材を120℃で30分間乾燥させ、AK-225にて洗浄することにより、表面層を有する基材を得た。
 (スプレーコーティング法)
 例1~7で得た化合物または組成物と、媒体としてのノベック-7200とを混合して、固形分濃度0.1%のコーティング液を調製した。基材に該コーティング液をスプレー塗布システム(ノードソン社製)を用いてスプレーコートした。基材を120℃で30分間乾燥させ、AK-225にて洗浄することにより、表面層を有する基材を得た。
 (スピンコーティング法およびスプレーコーティング法における評価方法)
 <ヘーズの測定方法>
 表面層を有する基材のヘーズをヘーズメータ(東洋精機社製)を用いて測定した。ヘーズが小さいほど、表面層の均一性に優れる。
 <表面粗さの測定方法>
 表面層を有する基材の表面粗さ(Ra)を、走査型プローブ顕微鏡SPM400(SIIナノテクノロジー社製)を用いて測定した。
 表面粗さ(Ra)が小さいほど、表面層の均一性に優れる。
 <水接触角の測定方法>
 表面層の表面に置いた、約2μLの蒸留水の接触角を、接触角測定装置DM-500(協和界面科学社製)を用いて測定した。基材の表面層の表面における異なる10箇所で測定を行い、その平均値と標準偏差を算出した。
 標準偏差が小さいほど各測定点における接触角の差が小さく、表面層の均一性に優れる。
Figure JPOXMLDOC01-appb-T000001
 化合物(1)である化合物(A)を用いた例11、本組成物である組成物(B)、(E)および(F)を用いた例12、15~16は、表面層の初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性に優れ、さらに、均一性に優れる。
 一方、両末端に加水分解性シリル基を有する含フッ素エーテル化合物を含む組成物(C)(例3)を用いた例13は、表面層の耐摩擦性、潤滑性に劣る。
 式(1)におけるRf1が水素原子を有しない含フッ素エーテル化合物を含む組成物(D)および(G)を用いた例14および17は、表面層の表面粗さ(Ra)が大きく、また、水接触角の標準偏差が大きく、均一性に劣る。ヘーズも高い。
[例21~24:表面層を有する基材の製造および評価]
 例2で得た組成物(B)と、加水分解性シリル基を有しない例1で得た化合物(21-1)または化合物(6-1)(FOMBLIN M03:製品名、ソルベイソレクシス社製)とを表2の混合比で混合して得た組成物を用いて基材の表面処理を行い、例21~24とした。各例について例11~14と同様に、ドライコーティング法とウェットコーティング法とをそれぞれ用いて表面層を有する基材を製造し、同様の方法で評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 本組成物である組成物(B)(例2)に化合物(2)または化合物(6-1)を加えた組成物を用いた例21~24は、本組成物である組成物(B)(例2)を用いた例12と同様に、表面層の初期の撥水撥油性が高く、耐摩擦性、指紋汚れ除去性、潤滑性に優れる。
 本発明の含フッ素エーテル化合物は、タッチパネルの、指で触れる面を構成する部材等の基材の表面に撥水撥油性を付与する表面処理に好適に用いることができる。
 なお、2013年4月4日に出願された日本特許出願2013-078662号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下式(1)で表される、含フッ素エーテル化合物。
     D-Rf1-O-CH-(C2mO)-A ・・・(1)
     ただし、
     DはCF-またはCF-O-であり、
     Rf1は、水素原子を1個以上含む炭素数1~20のフルオロアルキレン基、水素原子を1個以上含み、炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基、炭素数1~20のアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のアルキレン基であり、
     Aは下式(4)で表される基であり、
     mは1~6の整数であり、
     nは1~200の整数であり、nが2以上のとき、(C2mO)は、mの異なる2種以上のC2mOからなるものであってもよい。
     -C2a-B-C2b-SiL3-c ・・・(4)
     Bは単結合または-C2gO-、-C2hO-C(=O)NH-、-C(=O)-NH-であり、
     Lは加水分解性基であり、
     Rは水素原子または1価の炭化水素基であり、
     aは1~5の整数であり、
     bは1~10の整数であり、
     cは1~3の整数であり、
     gは1~5の整数であり、
     hは1~5の整数である。
  2.  前記-CH-(C2mO)が、-CHCF-O{(CFO)n1(CFCFO)n2}である(ただし、n1は1以上の整数であり、n2は1以上の整数であり、n1+n2は2~200の整数であり、n1個のCFOおよびn2個のCFCFOの結合順序は限定されない。)、請求項1に記載の含フッ素エーテル化合物。
  3.  前記Rf1が、下式(3-1)で表される基、下式(3-2)で表される基または下式(3-3)で表される基である、請求項1または2に記載の含フッ素エーテル化合物。
     -R-O-CHFCF- ・・・(3-1)
     -R-CHFCF- ・・・(3-2)
     -R-C2z- ・・・(3-3)
     ただし、
     Rは、単結合、炭素数1~15のペルフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~15のペルフルオロアルキレン基であり、
     zは1~4の整数である。
  4.  数平均分子量が2,000~10,000である、請求項1~3のいずれか一項に記載の含フッ素エーテル化合物。
  5.  請求項1~4のいずれか一項に記載の含フッ素エーテル化合物と前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物とを含むことを特徴とする含フッ素エーテル組成物。
  6.  前記式(1)で表される含フッ素エーテル化合物の含有量が、含フッ素エーテル組成物(100質量%)中、70質量%以上である、請求項5に記載の含フッ素エーテル組成物。
  7.  前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物が、下式(2)で表される含フッ素エーテル化合物である、請求項5または6に記載の含フッ素エーテル組成物。
     D-Rf2-O-CH-(C2pO)-C2d-CH-O-Rf3-D ・・・(2)
     ただし、
     DおよびDは、それぞれ独立に、CF-またはCF-O-であり、
     Rf2およびRf3は、それぞれ独立に、炭素数1~20のフルオロアルキレン基、または炭素-炭素原子間にエーテル性酸素原子を有する炭素数2~20のフルオロアルキレン基であり、
     dは1~5の整数であり、
     pは1~6の整数であり、
     qは1~200の整数であり、qが2以上のとき、(C2pO)は、pの異なる2種以上のC2pOからなるものであってもよい。
  8.  前記式(1)で表される含フッ素エーテル化合物以外の含フッ素エーテル化合物が、下式(6)で表される含フッ素エーテル化合物である、請求項5~7のいずれか一項に記載の含フッ素エーテル組成物。
     RF1-O-(C2sO)-RF2 ・・・(6)
     ただし、
     RF1およびRF2は、それぞれ独立に、炭素数1~6のペルフルオロアルキル基であり、
     sは1~6の整数であり、
     tは1~200の整数であり、tが2以上のとき、(C2sO)は、sの異なる2種以上のC2sOからなるものであってもよい。
  9.  前記式(1)で表される含フッ素エーテル化合物と前記式(2)で表される含フッ素エーテル化合物との合計の含有量(前記式(6)で表される含フッ素エーテル化合物を含む場合は、式(1)で表される含フッ素エーテル化合物と式(2)で表される含フッ素エーテル化合物と式(6)で表される含フッ素エーテル化合物との合計の含有量)が、含フッ素エーテル組成物(100質量%)中、80質量%以上である、請求項7または8に記載の含フッ素エーテル組成物。
  10.  請求項1~4のいずれか一項に記載の含フッ素エーテル化合物または請求項5~9のいずれか一項に記載の含フッ素エーテル組成物と、媒体とを含むことを特徴とするコーティング液。
  11.  前記媒体が、フッ素化アルカン、フッ素化芳香族化合物およびフルオロアルキルエーテルからなる群から選択される少なくとも1種の有機溶媒である、請求項10に記載のコーティング液。
  12.  請求項1~4のいずれか一項に記載の含フッ素エーテル化合物または請求項5~9のいずれか一項に記載の含フッ素エーテル組成物を基材の表面に真空蒸着することを特徴とする、表面層を有する基材の製造方法。
  13.  請求項10または11に記載のコーティング液を基材の表面に塗布し、乾燥させることを特徴とする、表面層を有する基材の製造方法。
  14.  請求項1~4のいずれか一項に記載の含フッ素エーテル化合物または請求項5~9のいずれか一項に記載の含フッ素エーテル組成物から形成されてなることを特徴とする、表面層を有する基材。
  15.  請求項1~4のいずれか一項に記載の含フッ素エーテル化合物または請求項5~9のいずれか一項に記載の含フッ素エーテル組成物から形成されてなる表面層を有する基材を入力面に有することを特徴とする、タッチパネル。
PCT/JP2014/059140 2013-04-04 2014-03-28 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法 WO2014163004A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480019563.3A CN105102505B (zh) 2013-04-04 2014-03-28 含氟醚化合物、含氟醚组合物及涂布液,以及具有表面层的基材及其制造方法
KR1020157023778A KR20150138179A (ko) 2013-04-04 2014-03-28 함불소 에테르 화합물, 함불소 에테르 조성물 및 코팅액, 그리고 표면층을 갖는 기재 및 그 제조 방법
EP14778826.9A EP2982702B1 (en) 2013-04-04 2014-03-28 Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same
JP2015510056A JP6264371B2 (ja) 2013-04-04 2014-03-28 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法
US14/862,613 US9587119B2 (en) 2013-04-04 2015-09-23 Fluorinated ether compound, fluorinated ether composition, and coating liquid, as well as substrate having surface layer, and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013078662 2013-04-04
JP2013-078662 2013-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/862,613 Continuation US9587119B2 (en) 2013-04-04 2015-09-23 Fluorinated ether compound, fluorinated ether composition, and coating liquid, as well as substrate having surface layer, and method for its production

Publications (1)

Publication Number Publication Date
WO2014163004A1 true WO2014163004A1 (ja) 2014-10-09

Family

ID=51658301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059140 WO2014163004A1 (ja) 2013-04-04 2014-03-28 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法

Country Status (7)

Country Link
US (1) US9587119B2 (ja)
EP (1) EP2982702B1 (ja)
JP (1) JP6264371B2 (ja)
KR (1) KR20150138179A (ja)
CN (1) CN105102505B (ja)
TW (1) TW201443100A (ja)
WO (1) WO2014163004A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130973A1 (ja) * 2016-01-26 2017-08-03 ダイキン工業株式会社 表面処理剤
WO2018235778A1 (ja) 2017-06-21 2018-12-27 Agc株式会社 撥水撥油層付き物品およびその製造方法
WO2019035288A1 (ja) * 2017-08-18 2019-02-21 Agc株式会社 含フッ素エーテル化合物の製造方法、および物品の製造方法
WO2019087831A1 (ja) * 2017-10-31 2019-05-09 Agc株式会社 含フッ素エーテル化合物の製造方法、物品の製造方法
WO2020100759A1 (ja) 2018-11-13 2020-05-22 Agc株式会社 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
WO2020137998A1 (ja) 2018-12-26 2020-07-02 Agc株式会社 撥水撥油層付き基材、およびその製造方法
WO2020162371A1 (ja) 2019-02-08 2020-08-13 Agc株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品、物品の製造方法、及び含フッ素化合物の製造方法
WO2020241751A1 (ja) 2019-05-31 2020-12-03 Agc株式会社 防汚層付き透明基板
EP3778700A1 (en) 2015-09-01 2021-02-17 Agc Inc. Fluorinated ether compound, fluorinated ether composition, coating liquid and article
WO2021054413A1 (ja) 2019-09-20 2021-03-25 Agc株式会社 含フッ素エーテル化合物、表面処理剤、含フッ素エーテル組成物、コーティング液、物品、及び化合物
WO2023074874A1 (ja) 2021-10-29 2023-05-04 Agc株式会社 化合物、組成物、表面処理剤、コーティング液、物品及び物品の製造方法
WO2024111491A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素化合物の製造方法及び含フッ素化合物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278645B2 (ja) * 2012-09-24 2018-02-14 キヤノン株式会社 光硬化性組成物及びこれを用いた膜の製造方法
EP2966110A4 (en) * 2013-03-05 2016-09-14 Asahi Glass Co Ltd FLUOROUS ETHER COMPOUND, COMPOSITION FOR FORMING A HARD COATING LAYER AND ARTICLES WITH A HARD COATING LAYER
JP6547629B2 (ja) 2013-12-13 2019-07-24 Agc株式会社 ケイ素化合物の製造方法
US10072160B1 (en) * 2014-08-19 2018-09-11 Hrl Laboratories, Llc High-durability anti-fouling and anti-icing coatings
US10822568B2 (en) * 2016-01-27 2020-11-03 Nippeco Ltd. Foreign substance removing lubricant composition, foreign substance removing lubricant composition applied member, and method for using foreign substance removing lubricant composition
US11292979B2 (en) * 2016-02-22 2022-04-05 Showa Denko K.K. Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording medium
CN114561004A (zh) * 2016-08-30 2022-05-31 Agc株式会社 含氟醚化合物的制造方法
WO2019049754A1 (ja) * 2017-09-05 2019-03-14 Agc株式会社 含フッ素化合物、組成物および物品
CN113260463B (zh) * 2018-12-26 2023-09-22 Agc株式会社 带拒水拒油层的基材、蒸镀材料和带拒水拒油层的基材的制造方法
JP7392667B2 (ja) * 2019-02-13 2023-12-06 Agc株式会社 含フッ素エーテル組成物、コーティング液、物品およびその製造方法
KR20200109550A (ko) 2019-03-13 2020-09-23 삼성전자주식회사 표면 코팅재, 필름, 적층체, 표시 장치, 물품 및 코팅 공정
CN114605628B (zh) * 2022-01-25 2023-11-03 浙江巨化技术中心有限公司 一种高疏水耐磨型涂层防污剂

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07793A (ja) * 1993-06-16 1995-01-06 Shin Etsu Chem Co Ltd 含フッ素界面活性剤の製造方法
JP2874715B2 (ja) 1995-08-11 1999-03-24 ダイキン工業株式会社 ケイ素含有有機含フッ素ポリマー及びその製造方法
JP2000143991A (ja) 1998-11-06 2000-05-26 Shin Etsu Chem Co Ltd コーティング剤組成物及びそのコーティング被膜を有する物品
JP2000169481A (ja) * 1998-12-10 2000-06-20 Toray Ind Inc 含フッ素化合物及び防汚性物品
JP2003238577A (ja) 2001-10-05 2003-08-27 Shin Etsu Chem Co Ltd パーフルオロポリエーテル変性シラン及び表面処理剤、並びに反射防止フィルター
WO2004008380A1 (en) 2002-07-10 2004-01-22 Digital Verification Ltd. Recognition of banknote denominations in automatic money processing
WO2004035656A1 (ja) 2002-10-18 2004-04-29 Asahi Glass Company, Limited ペルフルオロポリエーテル誘導体
JP2006254400A (ja) * 2005-02-10 2006-09-21 Ricoh Co Ltd 画像読み取り装置および画像読み取り装置付き記録装置
JP2008534696A (ja) * 2005-04-01 2008-08-28 ダイキン工業株式会社 表面改質剤
JP2011116947A (ja) 2009-10-27 2011-06-16 Shin-Etsu Chemical Co Ltd フルオロオキシアルキレン基含有ポリマー組成物および該組成物を含む表面処理剤並びに該表面処理剤で表面処理された物品
WO2014069592A1 (ja) * 2012-11-05 2014-05-08 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有シラン化合物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847978A (en) * 1968-07-01 1974-11-12 Montedison Spa Perfluorinated linear polyethers having reactive terminal groups at both ends of the chain and process for the preparation thereof
US5041588A (en) * 1989-07-03 1991-08-20 Dow Corning Corporation Chemically reactive fluorinated organosilicon compounds and their polymers
JP2668472B2 (ja) * 1991-10-17 1997-10-27 信越化学工業株式会社 含フッ素有機ケイ素化合物
US7196212B2 (en) * 2001-10-05 2007-03-27 Shin-Etsu Chemical Co., Ltd. Perfluoropolyether-modified silane, surface treating agent, and antireflection filter
US20050113609A1 (en) * 2002-07-03 2005-05-26 Asahi Glass Company Limited Fluorine-containing unsaturated compound and method for its production
US7691282B2 (en) * 2005-09-08 2010-04-06 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US7553514B2 (en) * 2006-08-28 2009-06-30 3M Innovative Properties Company Antireflective article
US7825272B2 (en) * 2006-12-20 2010-11-02 3M Innovative Properties Company Fluorochemical urethane compounds having pendent silyl groups
US8058463B2 (en) * 2007-12-04 2011-11-15 E. I. Du Pont De Nemours And Compnay Fluorosilanes
WO2011059430A1 (en) * 2009-11-11 2011-05-19 Essilor International Surface treatment composition, process for producing the same, and surface-treated article
WO2013042733A1 (ja) 2011-09-21 2013-03-28 旭硝子株式会社 含フッ素エーテル組成物、その製造方法、コーティング液、および表面処理層を有する基材の製造方法
JP6127985B2 (ja) 2012-02-17 2017-05-17 旭硝子株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面処理層を有する基材およびその製造方法
CN104114566B (zh) 2012-02-17 2017-05-31 旭硝子株式会社 含氟醚化合物、含氟醚组合物及涂覆液以及具有表面处理层的基材及其制造方法
EP2816046B1 (en) 2012-02-17 2019-01-23 AGC Inc. Fluorinated ether compound, fluorinated ether composition and coating fluid, and substrate having surface-treated layer and method for its production
US20140363682A1 (en) * 2013-06-06 2014-12-11 Shin-Etsu Chemical Co., Ltd. Surface modifier and article
EP3052509A1 (en) * 2013-10-04 2016-08-10 3M Innovative Properties Company Fluoroalkylsilanes and coatings therefrom
JP6547629B2 (ja) * 2013-12-13 2019-07-24 Agc株式会社 ケイ素化合物の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07793A (ja) * 1993-06-16 1995-01-06 Shin Etsu Chem Co Ltd 含フッ素界面活性剤の製造方法
JP2874715B2 (ja) 1995-08-11 1999-03-24 ダイキン工業株式会社 ケイ素含有有機含フッ素ポリマー及びその製造方法
JP2000143991A (ja) 1998-11-06 2000-05-26 Shin Etsu Chem Co Ltd コーティング剤組成物及びそのコーティング被膜を有する物品
JP2000169481A (ja) * 1998-12-10 2000-06-20 Toray Ind Inc 含フッ素化合物及び防汚性物品
JP2003238577A (ja) 2001-10-05 2003-08-27 Shin Etsu Chem Co Ltd パーフルオロポリエーテル変性シラン及び表面処理剤、並びに反射防止フィルター
WO2004008380A1 (en) 2002-07-10 2004-01-22 Digital Verification Ltd. Recognition of banknote denominations in automatic money processing
WO2004035656A1 (ja) 2002-10-18 2004-04-29 Asahi Glass Company, Limited ペルフルオロポリエーテル誘導体
JP2006254400A (ja) * 2005-02-10 2006-09-21 Ricoh Co Ltd 画像読み取り装置および画像読み取り装置付き記録装置
JP2008534696A (ja) * 2005-04-01 2008-08-28 ダイキン工業株式会社 表面改質剤
JP2011116947A (ja) 2009-10-27 2011-06-16 Shin-Etsu Chemical Co Ltd フルオロオキシアルキレン基含有ポリマー組成物および該組成物を含む表面処理剤並びに該表面処理剤で表面処理された物品
WO2014069592A1 (ja) * 2012-11-05 2014-05-08 ダイキン工業株式会社 パーフルオロ(ポリ)エーテル基含有シラン化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2982702A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778700A1 (en) 2015-09-01 2021-02-17 Agc Inc. Fluorinated ether compound, fluorinated ether composition, coating liquid and article
EP4008740A1 (en) 2015-09-01 2022-06-08 Agc Inc. Fluorinated ether compound, fluorinated ether composition, coating liquid and article
JP2017133003A (ja) * 2016-01-26 2017-08-03 ダイキン工業株式会社 表面処理剤
WO2017130973A1 (ja) * 2016-01-26 2017-08-03 ダイキン工業株式会社 表面処理剤
WO2018235778A1 (ja) 2017-06-21 2018-12-27 Agc株式会社 撥水撥油層付き物品およびその製造方法
WO2019035288A1 (ja) * 2017-08-18 2019-02-21 Agc株式会社 含フッ素エーテル化合物の製造方法、および物品の製造方法
JPWO2019035288A1 (ja) * 2017-08-18 2019-12-12 Agc株式会社 含フッ素エーテル化合物の製造方法、および物品の製造方法
WO2019087831A1 (ja) * 2017-10-31 2019-05-09 Agc株式会社 含フッ素エーテル化合物の製造方法、物品の製造方法
JPWO2019087831A1 (ja) * 2017-10-31 2020-04-02 Agc株式会社 含フッ素エーテル化合物の製造方法、物品の製造方法
WO2020100759A1 (ja) 2018-11-13 2020-05-22 Agc株式会社 撥水撥油層付き基材、蒸着材料および撥水撥油層付き基材の製造方法
WO2020137998A1 (ja) 2018-12-26 2020-07-02 Agc株式会社 撥水撥油層付き基材、およびその製造方法
WO2020162371A1 (ja) 2019-02-08 2020-08-13 Agc株式会社 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品、物品の製造方法、及び含フッ素化合物の製造方法
WO2020241751A1 (ja) 2019-05-31 2020-12-03 Agc株式会社 防汚層付き透明基板
WO2021054413A1 (ja) 2019-09-20 2021-03-25 Agc株式会社 含フッ素エーテル化合物、表面処理剤、含フッ素エーテル組成物、コーティング液、物品、及び化合物
WO2023074874A1 (ja) 2021-10-29 2023-05-04 Agc株式会社 化合物、組成物、表面処理剤、コーティング液、物品及び物品の製造方法
WO2024111491A1 (ja) * 2022-11-21 2024-05-30 Agc株式会社 含フッ素化合物の製造方法及び含フッ素化合物

Also Published As

Publication number Publication date
US9587119B2 (en) 2017-03-07
CN105102505B (zh) 2017-04-05
CN105102505A (zh) 2015-11-25
TW201443100A (zh) 2014-11-16
KR20150138179A (ko) 2015-12-09
US20160009929A1 (en) 2016-01-14
EP2982702B1 (en) 2017-08-09
JPWO2014163004A1 (ja) 2017-02-16
EP2982702A1 (en) 2016-02-10
EP2982702A4 (en) 2016-12-14
JP6264371B2 (ja) 2018-01-24

Similar Documents

Publication Publication Date Title
JP6264371B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面層を有する基材およびその製造方法
JP6597849B2 (ja) 含フッ素エーテル組成物の製造方法、コーティング液の製造方法および表面処理層を有する基材の製造方法
JP6791147B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液および物品
JP7063335B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
JP7136109B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
JP6127986B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面処理層を有する基材およびその製造方法
JP6127985B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面処理層を有する基材およびその製造方法
JP6711398B2 (ja) 含フッ素エーテル化合物、コーティング液、物品および新規化合物
JP7151847B2 (ja) 含フッ素エーテル化合物の製造方法
JP7156276B2 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品およびその製造方法
WO2013121986A1 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物およびコーティング液、ならびに表面処理層を有する基材およびその製造方法
WO2018168497A1 (ja) 含フッ素エーテル組成物、コーティング液および物品
JPWO2020162371A1 (ja) 含フッ素エーテル化合物、含フッ素エーテル組成物、コーティング液、物品、物品の製造方法、及び含フッ素化合物の製造方法
WO2018078906A1 (ja) 含フッ素エーテル組成物、コーティング液および物品
WO2018221520A1 (ja) 蒸着用含フッ素エーテル組成物、ならびに蒸着膜付き物品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480019563.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14778826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015510056

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157023778

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014778826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014778826

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE