WO2014141958A1 - 表示装置およびその駆動方法 - Google Patents

表示装置およびその駆動方法 Download PDF

Info

Publication number
WO2014141958A1
WO2014141958A1 PCT/JP2014/055550 JP2014055550W WO2014141958A1 WO 2014141958 A1 WO2014141958 A1 WO 2014141958A1 JP 2014055550 W JP2014055550 W JP 2014055550W WO 2014141958 A1 WO2014141958 A1 WO 2014141958A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
characteristic
characteristic detection
detection step
optical element
Prior art date
Application number
PCT/JP2014/055550
Other languages
English (en)
French (fr)
Inventor
宣孝 岸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480013557.7A priority Critical patent/CN105190739B/zh
Priority to JP2015505416A priority patent/JP6138236B2/ja
Priority to US14/764,206 priority patent/US9711092B2/en
Publication of WO2014141958A1 publication Critical patent/WO2014141958A1/ja
Priority to US15/426,329 priority patent/US9881552B2/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3283Details of drivers for data electrodes in which the data driver supplies a variable data current for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0233Improving the luminance or brightness uniformity across the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • G09G2320/0295Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to a display device and a driving method thereof, and more particularly to a display device including a pixel circuit including an electro-optical element such as an organic EL (Electro-Luminescence) element and a driving method thereof.
  • a display device including a pixel circuit including an electro-optical element such as an organic EL (Electro-Luminescence) element and a driving method thereof.
  • an electro-optical element such as an organic EL (Electro-Luminescence) element
  • organic EL display devices that use organic EL elements, which are self-luminous electro-optic elements, can be easily reduced in thickness, power consumption, brightness, etc., compared to liquid crystal display devices that require backlights and color filters. Can be achieved. Accordingly, in recent years, organic EL display devices have been actively developed.
  • an organic EL display device As a driving method of an organic EL display device, a passive matrix method (also called a simple matrix method) and an active matrix method are known.
  • An organic EL display device adopting a passive matrix system has a simple structure but is difficult to increase in size and definition.
  • an organic EL display device adopting an active matrix method hereinafter referred to as an “active matrix type organic EL display device” is larger and has higher definition than an organic EL display device employing a passive matrix method. Can be easily realized.
  • a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls the supply of current to the organic EL element.
  • the current flowing from the drive transistor to the organic EL element may be referred to as “drive current”.
  • FIG. 44 is a circuit diagram showing a configuration of a conventional general pixel circuit 91.
  • the pixel circuit 91 is provided corresponding to each intersection of the plurality of data lines S and the plurality of scanning lines G arranged in the display unit.
  • the pixel circuit 91 includes two transistors T1 and T2, one capacitor Cst, and one organic EL element OLED.
  • the transistor T1 is an input transistor
  • the transistor T2 is a drive transistor.
  • the transistor T1 is provided between the data line S and the gate terminal of the transistor T2.
  • a gate terminal is connected to the scanning line G, and a source terminal is connected to the data line S.
  • the transistor T2 is provided in series with the organic EL element OLED.
  • a drain terminal is connected to a power supply line that supplies a high-level power supply voltage ELVDD, and a source terminal is connected to an anode terminal of the organic EL element OLED.
  • a power supply line that supplies the high-level power supply voltage ELVDD is hereinafter referred to as a “high-level power supply line”, and the high-level power supply line is given the same sign ELVDD as the high-level power supply voltage.
  • the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the source terminal of the transistor T2.
  • the cathode terminal of the organic EL element OLED is connected to a power supply line that supplies a low level power supply voltage ELVSS.
  • the power supply line that supplies the low-level power supply voltage ELVSS is hereinafter referred to as “low-level power supply line”, and the same sign ELVSS as the low-level power supply voltage is attached to the low-level power supply line.
  • a connection point between the gate terminal of the transistor T2, one end of the capacitor Cst, and the drain terminal of the transistor T1 is referred to as a “gate node VG” for convenience.
  • the higher of the drain and the source is called the drain, but in the description of this specification, one is defined as the drain and the other is defined as the source. Therefore, the source potential is higher than the drain potential. May be higher.
  • FIG. 45 is a timing chart for explaining the operation of the pixel circuit 91 shown in FIG.
  • the scanning line G Prior to time t1, the scanning line G is in a non-selected state. Therefore, before the time t1, the transistor T1 is in an off state, and the potential of the gate node VG maintains an initial level (for example, a level corresponding to writing in the previous frame).
  • the scanning line G is selected and the transistor T1 is turned on.
  • the data voltage Vdata corresponding to the luminance of the pixel (subpixel) formed by the pixel circuit 91 is supplied to the gate node VG via the data line S and the transistor T1.
  • the potential of the gate node VG changes according to the data voltage Vdata.
  • the capacitor Cst is charged to the gate-source voltage Vgs which is the difference between the potential of the gate node VG and the source potential of the transistor T2.
  • the scanning line G is in a non-selected state.
  • the transistor T1 is turned off, and the gate-source voltage Vgs held by the capacitor Cst is determined.
  • the transistor T2 supplies a drive current to the organic EL element OLED according to the gate-source voltage Vgs held by the capacitor Cst. As a result, the organic EL element OLED emits light with a luminance corresponding to the drive current.
  • a thin film transistor (TFT) is typically employed as a drive transistor.
  • the threshold voltage tends to vary for the thin film transistor.
  • a technique for suppressing deterioration in display quality in an organic EL display device has been conventionally proposed.
  • Japanese Unexamined Patent Application Publication No. 2005-31630 discloses a technique for compensating for variations in threshold voltage of drive transistors.
  • 2007-128103 disclose a technique for making the current flowing from the pixel circuit to the organic EL element OLED constant. Furthermore, Japanese Unexamined Patent Application Publication No. 2007-233326 discloses a technique for displaying an image with uniform brightness regardless of the threshold voltage and electron mobility of a driving transistor.
  • Japanese Patent Publication No. 2008-523448 discloses a technique for correcting data based on the characteristics of the organic EL element OLED in addition to the technique for correcting data based on the characteristics of the driving transistor.
  • Japanese Unexamined Patent Publication No. 2005-31630 Japanese Unexamined Patent Publication No. 2003-195810 Japanese Unexamined Patent Publication No. 2007-128103 Japanese Unexamined Patent Publication No. 2007-233326 Japanese Special Table 2008-523448
  • An object of the present invention is to provide a driving method capable of simultaneously compensating for both deterioration of a driving transistor and deterioration of a light emitting element in a display device without causing special light emission when detecting characteristics. To do.
  • n ⁇ m electro-optical elements whose luminance is controlled by current and driving transistors for controlling the current to be supplied to the electro-optical elements (n and m are 2).
  • One frame period includes a selection period in which preparation for causing the electro-optical element to emit light and a light-emitting
  • the processing of both the first characteristic detection step and the second characteristic detection step is performed in only one row of the pixel matrix per frame period,
  • a line in which both the first characteristic detection step and the second characteristic detection step are performed in each frame is defined as a monitor line, and a line other than the monitor line is defined as a non-monitor line, the monitor
  • the length of the selection period for a row is longer than the length of the selection period for the non-monitoring row
  • the processing of the first characteristic detection step is performed during the selection period.
  • One process of the first characteristic detection step and the second characteristic detection step is performed in only one row of the pixel matrix per frame period, When attention is paid to one row of the pixel matrix, the process of the first characteristic detection step and the process of the second characteristic detection step are alternately performed, The processing of the first characteristic detection step is performed during the light emission period.
  • the characteristic of the electro-optical element is detected by measuring the voltage of the anode of the electro-optical element in a state where a constant current is applied to the electro-optical element.
  • the length of time during which the constant current is applied to the electro-optical element is adjusted according to target luminance.
  • a sixth aspect of the present invention is the fourth aspect of the present invention,
  • a plurality of levels of the constant current are applied to the electro-optical element within a range in which the integrated value of the light emission current in one frame period becomes a value corresponding to the target gradation.
  • a plurality of characteristics are detected as the characteristics of the electro-optical element.
  • the characteristic of the electro-optical element is detected by measuring a current flowing through the electro-optical element in a state where a constant voltage is applied to the electro-optical element. To do.
  • the length of time during which the constant voltage is applied to the electro-optical element is adjusted according to target luminance.
  • a plurality of levels of the constant voltage are applied to the electro-optic element within a range in which the integrated value of the light emission current in one frame period becomes a value corresponding to the target gradation.
  • a plurality of characteristics are detected as the characteristics of the electro-optical element.
  • the current flowing between the drain and the source of the driving transistor is measured in a state in which the voltage between the gate and the source of the driving transistor is set to a predetermined magnitude, so that the characteristic of the driving transistor is measured. Is detected.
  • the correction data storage unit includes an offset value storage unit that stores an offset value as the correction data and a gain value storage unit that stores a gain value as the correction data.
  • the correction data storing step The sum of the offset value obtained based on the detection result in the first characteristic detection step and the offset value obtained based on the detection result in the second characteristic detection step is used as the new offset value.
  • the product of the gain value obtained based on the detection result in the first characteristic detection step and the correction coefficient obtained based on the detection result in the second characteristic detection step is the gain value as a new gain value. It is stored in the storage unit.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the display device A characteristic detector for detecting characteristics of the driving transistor and characteristics of the electro-optic element; M monitor lines provided so as to correspond to the respective columns of the pixel matrix and configured to be electrically connected to the characteristic detection units and the pixel circuits of the corresponding columns;
  • the selection period includes a first period in which processing of the first characteristic detection step is performed and a second period following the first period,
  • the gain value storage unit defines a difference value between the offset value stored in the offset value storage unit and the offset value obtained based on the detection result in the first characteristic detection step as a first value.
  • a voltage corresponding to the sum of the first value and the second value is applied to each monitor line.
  • the correction data storage unit stores an offset value corresponding to the drive transistor as the correction data, and stores an offset value corresponding to the electro-optical element as the correction data.
  • An offset value storage unit, a drive transistor gain value storage unit that stores a gain value corresponding to the drive transistor as the correction data, and an electro-optical element gain that stores a gain value corresponding to the electro-optical element as the correction data It consists of a value storage unit,
  • An offset value obtained based on the detection result in the first characteristic detection step is stored in the drive transistor offset value storage unit as a new offset value
  • a gain value obtained based on the detection result in the first characteristic detection step is stored in the drive transistor gain value storage unit as a new gain value.
  • the offset value obtained based on the detection result in the second characteristic detection step is stored in the electro-optic element offset value storage unit as a new offset value
  • the correction coefficient obtained based on the detection result in the second characteristic detection step is stored in the electro-optic element gain value storage unit as a new gain value.
  • a fourteenth aspect of the present invention is the thirteenth aspect of the present invention.
  • the characteristic of the electro-optical element is detected by measuring the voltage of the anode of the electro-optical element in a state where a constant current is applied to the electro-optical element.
  • the magnitude of the constant current is adjusted according to a gain value stored in the electro-optic element gain value storage unit.
  • the characteristic of the electro-optical element is detected by measuring a current flowing through the electro-optical element in a state where a constant voltage is applied to the electro-optical element.
  • the constant voltage is adjusted in accordance with a gain value stored in the electro-optic element gain value storage unit.
  • the display device A characteristic detector for detecting characteristics of the driving transistor and characteristics of the electro-optic element; M monitor lines provided so as to correspond to the respective columns of the pixel matrix and configured to be electrically connected to the characteristic detection units and the pixel circuits of the corresponding columns;
  • the selection period includes a first period in which processing of the first characteristic detection step is performed and a second period following the first period, In the second period, each monitor line is obtained based on the offset value stored in the electro-optical element offset value storage unit and the gain value stored in the electro-optical element gain value storage unit. A voltage corresponding to the sum of the values is applied.
  • the display device A current detection unit for measuring current, and a characteristic detection unit for detecting the characteristics of the drive transistor and the electro-optical element; M monitor lines provided so as to correspond to the respective columns of the pixel matrix and configured to be electrically connected to the characteristic detection units and the pixel circuits of the corresponding columns;
  • the voltage between the gate and the source of the driving transistor is set to a predetermined level in a state where the m monitor lines are electrically connected to the corresponding pixel circuit and the current measuring unit. In this state, the current flowing between the drain and source of the driving transistor is measured by the current measuring unit.
  • the characteristic detection unit further includes a voltage measurement unit for measuring a voltage
  • a voltage of the anode of the electro-optical element is measured by the voltage measuring unit in a state where a constant current is applied to the electro-optical element.
  • a current flowing through the electro-optical element in a state where a constant voltage is applied to the electro-optical element is measured by the current measuring unit.
  • K is an integer of 2 to m
  • One of the K monitor lines is electrically connected to the characteristic detector, The monitor line that is not electrically connected to the characteristic detection unit is in a high impedance state.
  • the second characteristic detection step is not performed on pixels that are displayed in black or almost black.
  • a monitor area storage prepared in advance with information specifying the area where one or both of the first characteristic detection step and the second characteristic detection step has been performed last.
  • a monitor area storing step of storing in the unit After the display device is turned on, one or both of the first characteristic detection step and the second characteristic detection step are performed from an area near the area obtained based on information stored in the monitor area storage unit. The following process is performed.
  • the driving transistor is a thin film transistor in which a channel layer is formed of an oxide semiconductor.
  • the oxide semiconductor is indium gallium zinc oxide containing indium (In), gallium (Ga), zinc (Zn), and oxygen (O) as main components.
  • n ⁇ m electro-optical elements whose luminance is controlled by a current and driving transistors for controlling a current to be supplied to the electro-optical elements (n and m are 2).
  • a display device having a pixel matrix of n rows ⁇ m columns composed of pixel circuits of the above integer), A pixel circuit driving unit that drives the n ⁇ m pixel circuits while performing a first characteristic detection process for detecting the characteristic of the driving transistor and a second characteristic detection process for detecting the characteristic of the electro-optic element; A correction data storage unit for storing characteristic data obtained based on the detection result in the first characteristic detection process and the detection result in the second characteristic detection process as correction data for correcting the video signal; A video signal correction unit that corrects the video signal based on correction data stored in the correction data storage unit and generates a data signal to be supplied to the n ⁇ m pixel circuits; One frame period includes a selection period in which preparation for causing the electro-optical element to emit light and a light-emitting period in which light emission of the electro-optical element is performed, The pixel circuit driving unit includes: Performing one or both of the first characteristic detection process and the second characteristic detection process for only one row of the pixel matrix
  • a pixel circuit including an electro-optical element (for example, an organic EL element) whose luminance is controlled by a current and a driving transistor for controlling a current to be supplied to the electro-optical element.
  • an electro-optical element for example, an organic EL element
  • a driving transistor for controlling a current to be supplied to the electro-optical element.
  • the characteristics of the driving transistor and the characteristics of the electro-optical element are detected.
  • the video signal is corrected using correction data obtained in consideration of both detection results. Since the data signal based on the video signal corrected in this way is supplied to the pixel circuit, a driving current having such a magnitude as to compensate for the deterioration of the driving transistor and the deterioration of the electro-optical element is supplied to the electro-optical element.
  • the characteristics of the electro-optical element are detected during the light emission period of the electro-optical element. Therefore, the length of the light emission period is not shorter than that in the past in order to detect the characteristics of the drive transistor and the electro-optical element. As described above, in the display device, both the deterioration of the driving transistor and the deterioration of the electro-optic element can be compensated at the same time without causing special light emission when detecting characteristics.
  • the length of the selection period for the monitor row (the row where the characteristic is detected in each frame) is longer than the length of the selection period for the non-monitor row. Yes. Then, the characteristics of the driving transistor are detected during the selection period. Therefore, a sufficient period for detecting the characteristics of the drive transistor is ensured.
  • both the detection of the characteristics of the drive transistor and the detection of the characteristics of the electro-optical element are performed during the light emission period of the electro-optical element. For this reason, unlike the configuration in which the characteristics are detected even during the selection period, it is not necessary to lengthen the selection period of the monitor row. Therefore, a sufficiently long light emission period is ensured. Further, variation in the length of the selection period depending on the row is prevented. As described above, the display device emits special light when detecting characteristics of both the deterioration of the drive transistor and the deterioration of the electro-optic element while ensuring a sufficient light emission period without causing variations in the length of the selection period. It is possible to compensate at the same time.
  • a constant current is supplied to the electro-optical element that detects the characteristic. Therefore, by adjusting the time for supplying a constant current to the electro-optical element, it becomes possible to cause the electro-optical element to emit light with a desired luminance.
  • the electro-optical element it is possible to cause the electro-optical element to emit light with a desired luminance while detecting the characteristics of the electro-optical element.
  • the sixth aspect of the present invention since a plurality of characteristics are detected as the characteristics of the electro-optic element, it is possible to more effectively compensate for the deterioration of the drive transistor.
  • the measurement time for detecting the characteristics of the electro-optic element can be shortened.
  • the electro-optical element it is possible to cause the electro-optical element to emit light with a desired luminance while detecting the characteristics of the electro-optical element.
  • the ninth aspect of the present invention since a plurality of characteristics are detected as the characteristics of the electro-optic element, it is possible to more effectively compensate for the deterioration of the drive transistor.
  • the display device includes a component for measuring current
  • the same effect as that of the first aspect of the present invention can be achieved.
  • the offset value storage unit stores correction data considering both the characteristics of the drive transistor and the electro-optical element
  • the gain value storage unit also stores the characteristics and electrical characteristics of the drive transistor. Correction data considering both characteristics of the optical element is stored. Therefore, it is possible to easily correct the video signal in consideration of both the characteristics of the driving transistor and the characteristics of the electro-optical element.
  • a voltage corresponding to the degree of deterioration of the electro-optic element is applied to the monitor line before the light emission period, and the length of the charging time in the light emission period is shortened.
  • the storage unit that stores the offset value and the storage unit that stores the gain value each cause deterioration of the storage unit and the electro-optic element used to compensate for the deterioration of the drive transistor. It is divided into a storage unit used for compensation. For this reason, it is possible to adjust the current supplied to the electro-optical element in consideration of only the deterioration of the electro-optical element. At this time, it is possible to compensate for burn-in by increasing the current in accordance with the deterioration level of the pixel with the least deterioration.
  • the magnitude of the current supplied to the electro-optical element during the light emission period is the gain stored in the gain value storage unit for the electro-optical element. It is adjusted according to the value (correction coefficient). That is, the current magnitude is adjusted according to the degree of deterioration of the electro-optic element. This compensates for a decrease in current efficiency.
  • the magnitude of the voltage applied to the electro-optic element during the light emission period is the gain value stored in the gain value storage unit for the electro-optic element. It is adjusted according to (correction coefficient). As a result, a voltage having a magnitude corresponding to the degree of deterioration of the electro-optical element is applied to the electro-optical element during the light emission period.
  • a voltage corresponding to the degree of deterioration of the electro-optic element is applied to the monitor line before the light emission period, and the length of the charging time in the light emission period is shortened.
  • the seventeenth aspect of the present invention it is possible to detect the characteristics of both the drive transistor and the electro-optic element included in each column with a single monitor line.
  • the electro-optic element emits light so that display closer to the desired gradation is performed.
  • the measurement time for detecting the characteristics of the electro-optic element can be shortened.
  • one characteristic detection unit is shared by a plurality of monitor lines. For this reason, it is possible to simultaneously compensate for both the deterioration of the drive transistor and the deterioration of the electro-optical element without causing special light emission during characteristic detection while suppressing an increase in circuit area.
  • the twenty-second aspect of the present invention for example, a difference in the number of detections of the characteristics of the driving transistor and the characteristics of the electro-optic element between the upper row and the lower row is prevented. For this reason, it is possible to uniformly compensate for the deterioration of the driving transistor and the deterioration of the electro-optic element over the entire screen, and the occurrence of variations in luminance is effectively prevented.
  • the video signal is corrected using the correction data considering the temperature change. Therefore, in the display device, it is possible to simultaneously compensate for both the deterioration of the driving transistor and the deterioration of the electro-optical element regardless of the temperature without causing special light emission when detecting the characteristics.
  • a thin film transistor in which a channel layer is formed of an oxide semiconductor is used as a drive transistor provided in a pixel circuit. For this reason, the effect of high definition and low power consumption can be obtained. Further, since the off-state current is extremely small, an effect that a sufficient S / N ratio can be ensured when the current is detected can be obtained.
  • the same effect as in the twenty-fourth aspect of the present invention can be reliably achieved.
  • the same effect as in the first aspect of the present invention can be achieved in the invention of the display device.
  • FIG. 5 is a flowchart for explaining an outline of operations related to detection of TFT characteristics and OLED characteristics in the first embodiment of the present invention.
  • the said 1st Embodiment it is a block diagram which shows the whole structure of an organic electroluminescent display apparatus.
  • 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
  • 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
  • 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
  • FIG. 3 is a block diagram illustrating a schematic configuration of a signal conversion circuit in the first embodiment. It is a figure which shows the structure of the pixel circuit and monitor circuit in the said 1st Embodiment.
  • the said 1st Embodiment it is a figure for demonstrating the application to the data line of the reference voltage in a TFT characteristic detection period. In the said 1st Embodiment, it is a figure for demonstrating the flow of the electric current in the light emission period. In the said 1st Embodiment, it is a figure for demonstrating adjustment of the light emission time of an organic EL element. In the said 1st Embodiment, it is a figure for demonstrating the difference in the length of the light emission period in a monitoring line and a non-monitoring line. 6 is a flowchart for explaining a procedure for updating an offset memory and a gain memory in the first embodiment.
  • FIG 4 is a diagram illustrating a configuration of a video signal correction unit in the first embodiment. It is a figure for demonstrating the effect in the said 1st Embodiment. It is a block diagram which shows the whole structure of the organic electroluminescence display in the 1st modification of the said 1st Embodiment. 12 is a flowchart for explaining a procedure for updating a TFT offset memory, an OLED offset memory, a TFT gain memory, and an OLED gain memory in the first modification of the first embodiment. It is a figure for demonstrating the effect in the 1st modification of the said 1st Embodiment. It is a figure which shows the structure of the one end part vicinity of the monitor line in the 2nd modification of the said 1st Embodiment.
  • FIG. 10 is a timing chart for explaining an OLED characteristic detection operation in a pixel circuit (a pixel circuit of i rows and j columns) included in a monitor row in the second embodiment.
  • FIG. 10 is a timing chart for explaining a TFT characteristic detection operation in a pixel circuit (pixel circuit of i rows and j columns) included in a monitor row in the second embodiment.
  • TFT characteristic the characteristic of the driving transistor provided in the pixel circuit
  • OLED characteristic the characteristic of the organic EL element provided in the pixel circuit
  • FIG. 2 is a block diagram showing the overall configuration of the active matrix organic EL display device 1 according to the first embodiment of the present invention.
  • the organic EL display device 1 includes a display unit 10, a control circuit 20, a source driver (data line driving circuit) 30, a gate driver (scanning line driving circuit) 40, an offset memory 51, and a gain memory 52.
  • the source driver 30 and the gate driver 40 may be formed integrally with the display unit 10.
  • the offset memory 51 and the gain memory 52 may be physically constituted by one memory.
  • a pixel circuit driving unit is realized by the source driver 30 and the gate driver 40, and a correction data storage unit is realized by the offset memory 51 and the gain memory 52.
  • the display unit 10 is provided with m data lines S (1) to S (m) and n scanning lines G1 (1) to G1 (n) orthogonal thereto.
  • the extending direction of the data lines is defined as the Y direction
  • the extending direction of the scanning lines is defined as the X direction.
  • Components along the Y direction may be referred to as “columns”
  • components along the X direction may be referred to as “rows”.
  • the display unit 10 is provided with m monitor lines M (1) to M (m) so as to correspond to the m data lines S (1) to S (m) on a one-to-one basis. ing.
  • the data lines S (1) to S (m) and the monitor lines M (1) to M (m) are parallel to each other.
  • the display unit 10 is provided with n monitor control lines G2 (1) to G2 (n) so as to correspond to the n scanning lines G1 (1) to G1 (n) on a one-to-one basis.
  • the scanning lines G1 (1) to G1 (n) and the monitor control lines G2 (1) to G2 (n) are parallel to each other.
  • the display unit 10 has n ⁇ m so as to correspond to the intersections of the n scanning lines G1 (1) to G1 (n) and the m data lines S (1) to S (m).
  • Pixel circuits 11 are provided. By providing n ⁇ m pixel circuits 11 in this manner, a pixel matrix of n rows ⁇ m columns is formed in the display unit 10.
  • the display unit 10 is provided with a high level power supply line for supplying a high level power supply voltage and a low level power supply line for supplying a low level power supply voltage.
  • the data lines are simply represented by a symbol S.
  • the monitor lines are simply represented by the symbol M, and the n scan lines G1 (1) to G1 (n) If it is not necessary to distinguish the monitor lines from each other, the scanning line is simply indicated by G1, and if it is not necessary to distinguish the n monitor control lines G2 (1) to G2 (n) from each other, the monitor control lines are simply denoted by reference numerals. Represented by G2.
  • the control circuit 20 controls the operation of the source driver 30 by supplying the data signal DA, the source control signal SCTL, and the switching control signal SW to the source driver 30, and transmits the gate control signal GCTL to the gate driver 40.
  • the operation of the driver 40 is controlled.
  • the source control signal SCTL includes, for example, a source start pulse, a source clock, and a latch strobe signal.
  • the gate control signal GCTL includes, for example, a gate start pulse and a gate clock.
  • the control circuit 20 receives the monitor data MO given from the source driver 30 and updates the offset memory 51 and the gain memory 52. Note that the monitor data MO is data measured for obtaining TFT characteristics and OLED characteristics.
  • the gate driver 40 is connected to n scanning lines G1 (1) to G1 (n) and n monitor control lines G2 (1) to G2 (n).
  • the gate driver 40 includes a shift register and a logic circuit.
  • Detection of TFT characteristics and OLED characteristics for the third row is performed.
  • detection of TFT characteristics and OLED characteristics for n rows is performed over an n frame period.
  • the frame in which the TFT characteristic and the OLED characteristic for the first row are detected is defined as the (k + 1) th frame
  • n scanning lines G1 (1) to G1 (n) and n monitor control lines G2 (1) to G2 (n) are driven as shown in FIG. 3 at the (k + 1) th frame, driven at the (k + 2) th frame as shown in FIG. 4, and at the (k + n) th frame.
  • the high level state is an active state.
  • a period in which the scanning line G1 is in an active state is referred to as a “selection period”.
  • This selection period is a period for preparing to emit light from the organic EL element provided in the pixel circuit 11.
  • a selection period is a period for preparing to emit light from the organic EL element provided in the pixel circuit 11.
  • the monitor control line G2 corresponding to the non-monitor row is maintained in an inactive state.
  • the monitor control line G2 corresponding to the monitor row is activated from the beginning of the selection period for a predetermined period and inactive for the remaining period of the selection period. In the period up to about one frame period, it becomes active again.
  • the gate driver 40 is driven so that the n scanning lines G1 (1) to G1 (n) and the n monitor control lines G2 (1) to G2 (n) are driven as described above. It is configured.
  • the source driver 30 is connected to m data lines S (1) to S (m) and m monitor lines M (1) to M (m).
  • the source driver 30 includes a drive signal generation circuit 31, a signal conversion circuit 32, and an output unit 33 including m output circuits 330.
  • the m output circuits 330 in the output unit 33 respectively correspond to the corresponding data line S and m monitor lines M (1) to M (m) among the m data lines S (1) to S (m). Are connected to the corresponding monitor line M.
  • the drive signal generation circuit 31 includes a shift register, a sampling circuit, and a latch circuit.
  • the shift register sequentially transfers the source start pulse from the input end to the output end in synchronization with the source clock.
  • a sampling pulse corresponding to each data line S is output from the shift register.
  • the sampling circuit sequentially stores the data signals DA for one row according to the timing of the sampling pulse.
  • the latch circuit fetches and holds the data signal DA for one row stored in the sampling circuit according to the latch strobe signal.
  • FIG. 6 is a block diagram showing a schematic configuration of the signal conversion circuit 32.
  • the signal conversion circuit 32 includes a gradation signal generation circuit 321 and a monitor circuit 322.
  • the gradation signal generation circuit 321 includes a D / A converter.
  • the data signal DA for one row held in the latch circuit in the drive signal generation circuit 31 as described above is converted into an analog voltage by the D / A converter in the gradation signal generation circuit 321.
  • the converted analog voltage is applied to the output circuit 330 in the output unit 33.
  • the monitor circuit 322 includes an A / D converter. In the A / D converter in the monitor circuit 322, an analog voltage that appears on the monitor line M and represents the TFT characteristics and the OLED characteristics is converted into monitor data MO that is a digital signal.
  • the monitor data MO is given to the control circuit 20 via the drive signal generation circuit 31. A detailed description of the monitor circuit 322 will be given later.
  • the output circuit 330 in the output unit 33 applies the analog voltage supplied from the gradation signal generation circuit 321 in the signal conversion circuit 32 to the data line S as a data voltage through the buffer.
  • the output circuit 330 in the output unit 33 switches the connection destination of the monitor line M based on the switching control signal SW. A detailed description thereof will be described later.
  • the offset memory 51 and the gain memory 52 store correction data used for correcting a video signal sent from the outside.
  • the offset memory 51 stores an offset value as correction data
  • the gain memory 52 stores a gain value as correction data.
  • the number of offset values and gain values equal to the number of pixels in the display unit 10 are stored in the offset memory 51 and the gain memory 52, respectively.
  • a buffer memory for temporarily holding an offset value hereinafter referred to as “offset value buffer”
  • gain value buffer a buffer memory for temporarily holding a gain value
  • the control circuit 20 updates the offset value in the offset memory 51 and the gain value in the gain memory 52 based on the monitor data MO given from the source driver 30.
  • the control circuit 20 reads the offset value stored in the offset memory 51 and the gain value stored in the gain memory 52 and corrects the video signal. Data obtained by the correction is sent to the source driver 30 as a data signal DA.
  • FIG. 7 is a diagram illustrating the configuration of the pixel circuit 11 and the monitor circuit 322.
  • the pixel circuit 11 illustrated in FIG. 7 is the pixel circuit 11 of i rows and j columns.
  • the pixel circuit 11 includes one organic EL element OLED, three transistors T1 to T3, and one capacitor Cst.
  • the transistor T1 functions as an input transistor for selecting a pixel
  • the transistor T2 functions as a drive transistor for controlling supply of current to the organic EL element OLED
  • the transistor T3 controls whether to detect TFT characteristics or OLED characteristics. Functions as a monitor control transistor.
  • the transistor T1 is provided between the data line S (j) and the gate terminal of the transistor T2.
  • a gate terminal is connected to the scanning line G1 (i), and a source terminal is connected to the data line S (j).
  • the transistor T2 is provided in series with the organic EL element OLED.
  • the gate terminal is connected to the drain terminal of the transistor T1, the drain terminal is connected to the high-level power supply line ELVDD, and the source terminal is connected to the anode terminal of the organic EL element OLED.
  • the gate terminal is connected to the monitor control line G2 (i)
  • the drain terminal is connected to the anode terminal of the organic EL element OLED
  • the source terminal is connected to the monitor line M (j).
  • the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the source terminal of the transistor T2.
  • the cathode terminal of the organic EL element OLED is connected to the low level power line ELVSS.
  • the transistors T1 to T3 in the pixel circuit 11 are all n-channel type.
  • oxide TFTs thin film transistors using an oxide semiconductor as a channel layer
  • oxide TFTs are employed for the transistors T1 to T3.
  • InGaZnOx indium gallium zinc oxide
  • IGZO indium gallium zinc oxide
  • an oxide TFT such as an IGZO-TFT is particularly effective when employed as an n-channel transistor included in the pixel circuit 11.
  • the present invention does not exclude the use of a p-channel oxide TFT.
  • a transistor using an oxide semiconductor other than IGZO for the channel layer can also be employed.
  • at least one of indium, gallium, zinc, copper (Cu), silicon (Si), tin (Sn), aluminum (Al), calcium (Ca), germanium (Ge), and lead (Pb) is included.
  • the same effect can be obtained when a transistor using an oxide semiconductor for a channel layer is employed.
  • the present invention does not exclude the use of a transistor other than a transistor using an oxide semiconductor for a channel layer.
  • the monitor circuit 322 includes a current measurement unit 38 and a voltage measurement unit 39.
  • the monitor circuit 322 implements a characteristic detection unit.
  • either the current measuring unit 38 or the voltage measuring unit 39 is selected based on the switching control signal SW given from the control circuit 20 to the output circuit 330. Is connected to the monitor line M (j). In FIG. 7, only a part of the configuration of the output circuit 330 is shown.
  • FIG. 8 is a diagram illustrating a configuration example of the current measuring unit 38.
  • the current measuring unit 38 includes an operational amplifier 381, a capacitor 382, a switch 383, and an A / D converter 384.
  • the operational amplifier 381 the non-inverting input terminal is connected to the low-level power supply line ELVSS, and the inverting input terminal is connected to the monitor line M.
  • the capacitor 382 and the switch 383 are provided between the output terminal of the operational amplifier 381 and the monitor line M.
  • the current measuring unit 38 is configured by an integrating circuit. In such a configuration, first, the switch 383 is turned on by the control clock signal Sclk.
  • the output terminal and the inverting input terminal of the operational amplifier 381 are short-circuited, and the potential of the output terminal of the operational amplifier 381 and the monitor line M becomes equal to the potential of the low-level power supply line ELVSS.
  • the switch 383 is turned off by the control clock signal Sclk.
  • the potential of the output terminal of the operational amplifier 381 changes according to the magnitude of the current flowing through the monitor line M.
  • the change in potential is reflected in the digital signal output from the A / D converter 384.
  • the digital signal is output from the current measuring unit 38 as monitor data MO.
  • FIG. 9 is a diagram illustrating a configuration example of the voltage measurement unit 39.
  • the voltage measuring unit 39 includes an amplifier 391 and an A / D converter 392.
  • the voltage between the node 393 and the low-level power supply line ELVSS is amplified by the amplifier 391 in a state where a constant current is passed through the monitor line M by the constant current source 37.
  • the amplified voltage is converted into a digital signal by the A / D converter 392.
  • the digital signal is output from the voltage measurement unit 39 as monitor data MO.
  • a driving method in the present embodiment will be described.
  • detection of TFT characteristics and OLED characteristics in one row is performed for each frame.
  • an operation for detecting the TFT characteristic and the OLED characteristic (hereinafter referred to as “characteristic detection operation”) is performed for the monitor row, and a normal operation is performed for the non-monitor row. That is, if the frame in which the TFT characteristic and the OLED characteristic for the first row are detected is defined as the (k + 1) th frame, the operation of each row changes as shown in FIG.
  • the offset memory 51 and the gain memory 52 are updated using the detection result. Then, the video signal is corrected using the correction data stored in the offset memory 51 and the gain memory 52.
  • FIG. 12 is a timing chart for explaining the operation of the pixel circuit 11 (referred to as the pixel circuit 11 of i rows and j columns) included in the monitor row.
  • “one frame period” is represented on the basis of the selection period start point of the i-th row in a frame in which the i-th row is a monitor row.
  • TFT characteristics detection period a period for detecting TFT characteristics (hereinafter referred to as “TFT characteristics detection period”) Ta and data corresponding to black display are written in one frame period.
  • a period (hereinafter referred to as “black writing period”) Tb for a period of time and a period (hereinafter referred to as “light emission period”) Tc for causing the organic EL element OLED to emit light are included.
  • the first predetermined period in the selection period is the TFT characteristic detection period Ta
  • the period other than the TFT characteristic detection period Ta in the selection period is the black writing period Tb.
  • the first period is realized by the TFT characteristic detection period Ta
  • the second period is realized by the black writing period Tb.
  • the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on.
  • a reference voltage Vref for detecting the TFT characteristics is applied to the data line S (j). As a result, the reference voltage Vref is written, and the transistor T2 is also turned on.
  • the current flowing through the transistor T2 is output to the monitor line M (j) via the transistor T3. Further, the monitor line M (j) is connected to the current measuring unit 38 by the switching control signal SW during the TFT characteristic detection period Ta.
  • the current (sink current) output to the monitor line M (j) is measured by the current measuring unit 38.
  • the magnitude of the current flowing between the drain and source of the transistor T2 is measured in a state where the voltage between the gate and source of the transistor T2 is set to a predetermined level (the magnitude of the reference voltage Vref). TFT characteristics are detected.
  • first reference voltage Vref1 and second reference voltage Vref2 are used as the reference voltage Vref on the data line S (j ).
  • the scanning line G1 (i) is maintained in an active state, and the monitor control line G2 (i) is in an inactive state. Accordingly, the transistor T1 is maintained in the on state, and the transistor T3 is in the off state.
  • the voltage Vblack corresponding to black display is applied to the data line S (j), so that the transistor T2 is turned off. Thus, no current flows through the transistor T2.
  • Applied to the monitor line M (j) is a sum of the light emission voltage equivalent voltage (second value) calculated from the gain value obtained and the gain value obtained in the TFT characteristic detection period Ta. Is done. Thereby, a voltage corresponding to the degree of deterioration of the organic EL element OLED is applied to the monitor line M (j) before the light emission period Tc, and the length of the charging time in the light emission period Tc is shortened.
  • the scanning line G1 (i) is in an inactive state
  • the monitor control line G2 (i) is in an active state.
  • the transistor T2 since writing based on the voltage Vblack corresponding to black display is performed in the black writing period Tb before the light emission period Tc, the transistor T2 is in an off state.
  • the monitor line M (j) is connected to the voltage measuring unit 39, and a constant current is supplied to the monitor line M (j).
  • a data current that is a constant current is supplied from the monitor line M (j) to the organic EL element OLED as indicated by an arrow 73 in FIG.
  • the voltage measuring unit 39 measures the light emission voltage of the organic EL element OLED.
  • the OLED characteristic is detected by measuring the voltage of the anode of the organic EL element OLED in a state where a constant current is applied to the organic EL element OLED.
  • the data current supplied to the organic EL element OLED in the light emission period Tc is a constant current.
  • the length of time during which the organic EL element OLED emits light is adjusted.
  • the constant current is set to a current corresponding to white display, the light emission time is lengthened as the gradation is higher, and the light emission time is shortened as the gradation is lower.
  • the period Tc1 in which the monitor line M is connected to the voltage measuring unit 39 is lengthened as the gray level is higher, and the monitor line M is more current as the gray level is lower.
  • the period Tc2 connected to the measurement unit 38 is lengthened.
  • the lengths of the periods Tc1 and Tc2 are adjusted based on the deterioration correction coefficient obtained from the difference between the gain value stored in the gain memory 52 and the gain value obtained in the TFT characteristic detection period Ta. .
  • the length of time that the organic EL element OLED emits light is adjusted so that the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation. In other words, the length of time for applying a constant current to the organic EL element OLED is adjusted according to the target luminance.
  • the current value is changed during the light emission period Tc, and characteristics (current-voltage) at a plurality of operating points are changed. (Characteristic) may be measured.
  • the current value may be changed according to the gradation while the length of time during which the organic EL element OLED emits light is constant.
  • the magnitude of the current supplied to the monitor line M is obtained based on the deterioration correction coefficient obtained from the difference between the gain value stored in the gain memory 52 and the gain value obtained in the TFT characteristic detection period Ta. And good. Since the gain memory 52 stores gain values considering both TFT characteristics and OLED characteristics, the gain value stored in the gain memory 52 and the gain value obtained in the TFT characteristic detection period Ta are The difference is a value representing the OLED characteristic.
  • the length of the selection period is longer in the monitor row than in the non-monitor row. Therefore, the length of the light emission period is different between the monitor row and the non-monitor row. Therefore, the data current is adjusted so that the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation.
  • the OLED characteristic is not detected for pixels that display black or substantially black in a pixel matrix of n rows ⁇ m columns. Thereby, unnecessary light emission can be prevented. Since the organic EL element OLED does not deteriorate if it does not emit light, it is not necessary to detect the characteristics.
  • FIG. 18 is a flowchart for explaining a procedure for updating the offset memory 51 and the gain memory 52. Here, attention is paid to an offset value and a gain value corresponding to one pixel.
  • step S110 detection of TFT characteristics based on the first reference voltage Vref1 is performed (step S110).
  • step S110 an offset value for correcting the video signal is obtained.
  • the offset value obtained in step S110 is stored in the offset value buffer (step S120).
  • step S130 the TFT characteristic is detected based on the second reference voltage Vref2 (step S130).
  • step S130 a gain value for correcting the video signal is obtained.
  • the gain value obtained in step S130 is stored in the gain value buffer (step S140).
  • step S150 OLED characteristics are detected during the light emission period Tc (step S150).
  • step S150 an offset value and a deterioration correction coefficient for correcting the video signal are obtained.
  • step S160 the sum of the offset value stored in the offset value buffer and the offset value obtained in step S150 is stored in the offset memory 51 as a new offset value (step S160).
  • step S170 the product of the gain value stored in the gain value buffer and the deterioration correction coefficient obtained in step S150 is stored in the gain memory 52 as a new gain value (step S170).
  • the offset value and gain value corresponding to one pixel are updated.
  • m offset values in the offset memory 51 and m gain values in the gain memory 52 per frame Is updated.
  • the characteristic data is realized by data (offset value, gain value, deterioration correction coefficient) obtained based on the detection results in step S110, step S130, and step S150.
  • the light emission voltage of the organic EL element OLED is measured during the light emission period Tc.
  • the greater the detected voltage as the measurement result the greater the degree of deterioration of the organic EL element OLED. Therefore, the offset memory 51 and the gain memory 52 are updated so that the offset value increases and the gain value increases as the detection voltage increases.
  • FIG. 19 is a diagram illustrating a configuration of the video signal correction unit.
  • the video signal correction unit includes an LUT 211, a multiplication unit 212, and an addition unit 213. In such a configuration, the value of the video signal corresponding to each pixel is corrected as follows.
  • gamma correction is performed on the video signal sent from the outside using the LUT 211. That is, the gradation P indicated by the video signal is converted to the control voltage Vc by gamma correction.
  • the multiplier 212 receives the control voltage Vc and the gain value B read from the gain memory 52, and outputs a value “Vc ⁇ B” obtained by multiplying them.
  • the adder 213 receives the value “Vc ⁇ B” output from the multiplier 212 and the offset value Vt read from the offset memory 51, and outputs the value “Vc ⁇ B + Vt” obtained by adding them. To do.
  • the value “Vc ⁇ B + Vt” obtained as described above is sent from the control circuit 20 to the source driver 30 as the data signal DA.
  • FIG. 1 is a flowchart for explaining an outline of operations related to detection of TFT characteristics and OLED characteristics.
  • the TFT characteristic is detected during the TFT characteristic detection period Ta (step S10).
  • the OLED characteristic is detected during the light emission period Tc (step S20).
  • the offset memory 51 and the gain memory 52 are updated using the detection results in step S10 and step S20.
  • the correction of the video signal sent from the outside is performed using the correction data stored in the offset memory 51 and the gain memory 52 (step S40).
  • the first characteristic detection step is realized by step S10
  • the second characteristic detection step is realized by step S20
  • the correction data storage step is realized by step S30
  • the video signal is obtained by step S40.
  • a correction step is realized.
  • the first characteristic detection process is realized by the process of step S10
  • the second characteristic detection process is realized by the process of step S20.
  • TFT characteristic detection period Ta the TFT characteristic detection period
  • OLED characteristic detection period the OLED characteristic is detected during the light emission period.
  • the video signal sent from the outside is corrected using correction data (offset value and gain value) obtained in consideration of both the detection result of the TFT characteristic and the detection result of the OLED characteristic.
  • the organic EL element OLED in each pixel circuit 11 Since the data voltage based on the video signal (the data signal DA) corrected in this manner is applied to the data line S, when the organic EL element OLED in each pixel circuit 11 is caused to emit light, A drive current having such a magnitude as to compensate for the deterioration of the organic EL element OLED is supplied to the organic EL element OLED (see FIG. 20).
  • the detection of the OLED characteristic is performed during the light emission period as described above. Therefore, in order to detect TFT characteristics and OLED characteristics, the length of the light emission period does not become shorter than the conventional one.
  • the organic EL display device it is possible to simultaneously compensate for both the deterioration of the driving transistor and the deterioration of the organic EL element OLED without causing special light emission when detecting characteristics. Become.
  • an oxide TFT (specifically, IGZO-TFT) is employed for the transistors T1 to T3 in the pixel circuit 11, an effect of ensuring a sufficient S / N ratio is obtained. It is done. This will be described below.
  • IGZO-TFT and LTPS (Low Temperature Polysilicon) -TFT are compared, IGZO-TFT has much smaller off current than LTPS-TFT.
  • LTPS-TFT is adopted for the transistor T3 in the pixel circuit 11
  • the off-current is about 1 pA at maximum.
  • an IGZO-TFT is employed for the transistor T3 in the pixel circuit 11, the off-current is about 10 fA at maximum.
  • the off current for 1000 rows is about 1 nA at the maximum when LTPS-TFT is adopted, and is about 10 pA at the maximum when IGZO-TFT is adopted.
  • the detected current is about 10 to 100 nA in any case.
  • the monitor line M is connected not only to the pixel circuit 11 in the monitor row but also to the pixel circuit 11 in the non-monitor row. Therefore, the S / N ratio of the monitor line M depends on the total leakage current of the transistors T3 in the non-monitor row. Specifically, the S / N ratio of the monitor line M is represented by “detection current / (leakage current ⁇ number of non-monitor rows)”.
  • the S / N ratio is about 10 when the LTPS-TFT is employed, whereas the IGZO- When TFT is employed, the S / N ratio is about 1000.
  • a sufficient S / N ratio can be ensured when performing current detection.
  • FIG. 21 is a block diagram showing an overall configuration of an active matrix organic EL display device 2 according to a first modification of the first embodiment.
  • a TFT offset memory 51a instead of the offset memory 51 and the gain memory 52 in the first embodiment, a TFT offset memory 51a, an OLED offset memory 51b, a TFT gain memory 52a, and an OLED gain memory 52b are provided. ing. That is, in this modification, each of the offset memory and the gain memory is divided into a memory used for compensating for the deterioration of the driving transistor and a memory used for compensating for the deterioration of the organic EL element OLED. .
  • the TFT offset memory 51a stores an offset value based on the detection result of the TFT characteristics.
  • the OLED offset memory 51b stores an offset value based on the detection result of the OLED characteristic.
  • the TFT gain memory 52a stores a gain value based on the detection result of the TFT characteristics.
  • the OLED gain memory 52b stores a deterioration correction coefficient based on the detection result of the OLED characteristic.
  • FIG. 22 is a flowchart for explaining a procedure for updating the TFT offset memory 51a, the OLED offset memory 51b, the TFT gain memory 52a, and the OLED gain memory 52b.
  • attention is paid to an offset value and a gain value corresponding to one pixel.
  • step S210 detection of TFT characteristics based on the first reference voltage Vref1 is performed (step S210).
  • step S210 an offset value for correcting the video signal is obtained.
  • step S220 the offset value obtained in step S210 is stored in the TFT offset memory 51a as a new offset value (step S220).
  • step S230 the TFT characteristic is detected based on the second reference voltage Vref2 (step S230).
  • step S230 a gain value for correcting the video signal is obtained.
  • the gain value obtained in step S230 is stored in the TFT gain memory 52a as a new gain value (step S240).
  • step S250 an offset value and a deterioration correction coefficient for correcting the video signal are obtained.
  • the offset value obtained in step S250 is stored in the OLED offset memory 51b as a new offset value (step S260).
  • the deterioration correction coefficient obtained in step S250 is stored in the OLED gain memory 52b as a new deterioration correction coefficient (step S270).
  • the offset memory and the gain memory are updated as described above.
  • t_charge Cmp ⁇ Vd / i_L (1)
  • Vd 3 V
  • i_L 10 nA
  • Cmp 30 pF
  • the time t_charge required for charging is 9 milliseconds.
  • the driving frequency is 60 Hz
  • the “offset value stored in the OLED offset memory 51b” and the “deterioration correction coefficient stored in the OLED gain memory 52b” are calculated during the black writing period Tb. A sum of the voltage corresponding to the light emission voltage is applied to the monitor line M.
  • the monitor line M is charged in advance so that the potential of the monitor line M becomes a potential close to the light emission threshold value of the organic EL element OLED.
  • Vd of the above formula (1) becomes small and the time required for charging is shortened.
  • the current supplied from the monitor line M to the organic EL element OLED in the light emission period Tc is stored in the OLED gain memory 52b. It is adjusted based on the coefficient. That is, since the current is adjusted according to the degree of deterioration of the organic EL element OLED, a decrease in current efficiency is compensated. In the normal operation in the non-monitoring row, compensation is performed in consideration of both the deterioration of the driving transistor and the deterioration of the organic EL element OLED.
  • each of the offset memory and the gain memory is divided into a memory used for compensating for the deterioration of the driving transistor and a memory used for compensating for the deterioration of the organic EL element OLED. .
  • the monitor line M is connected to either the current measuring unit 38 or the voltage measuring unit 39 as shown in FIG.
  • the present invention is not limited to this, and a configuration (configuration of the present modification) that can put the monitor line M in a high impedance state can also be adopted.
  • FIG. 24 is a diagram showing a configuration in the vicinity of one end of the monitor line M in the present modification.
  • the monitor line M is connected to the current measuring unit 38, connected to the voltage measuring unit 39, or is in a high impedance state by the switching control signal SW.
  • the switching control signal SW is one of them.
  • the monitor line M can be brought into a high impedance state.
  • the first embodiment has been described on the assumption that one monitor circuit 322 including the current measurement unit 38 and the voltage measurement unit 39 is provided for each column.
  • the present invention is not limited to this, and a configuration in which one monitor circuit 322 is shared by a plurality of columns (configuration of this modification) can also be adopted.
  • the monitor line M is connected to the current measurement unit 38, connected to the voltage measurement unit 39, or in a high impedance state. It will be either.
  • the vicinity of one end of the monitor line M has the configuration shown in FIG. That is, one monitor circuit 322 is provided for every K monitor lines M.
  • the monitor lines M in the columns other than the characteristic detection target column are maintained in a high impedance state.
  • the reference voltage Vref not the reference voltage
  • a normal data voltage voltage corresponding to the target luminance
  • the monitor line M is in a high impedance state, so that in the columns other than the characteristic detection target column, current flows through the monitor line M. No current flows to the organic EL element OLED, in normal operation as well as the organic EL element OLED emits light. Monitored characteristic detection target string of the rows, the above-described characteristic detection operation is performed.
  • one monitor circuit 322 is provided for every 100 monitor lines M. It ’s fine.
  • both the deterioration of the drive transistor and the deterioration of the organic EL element OLED are not caused to emit special light during characteristic detection. It is possible to compensate at the same time.
  • a monitor row storage unit 201 for storing a monitor row is provided in the control circuit 20, as shown in FIG.
  • the monitor row storage unit 201 when the power is turned off, information for specifying the row in which the TFT characteristic and the OLED characteristic are finally detected is stored in the monitor row storage unit 201.
  • a monitor area storing step is realized by this processing. After the power is turned on, the TFT characteristic and the OLED characteristic are detected from the line next to the line specified based on the information stored in the monitor line storage unit 201.
  • a monitor area storage unit is realized by the monitor row storage unit 201.
  • the row where the TFT characteristic and the OLED characteristic are first detected after the power is turned on is not limited to the row next to the row specified based on the information stored in the monitor row storage unit 201.
  • a row in the vicinity of a row specified based on information stored in the storage unit 201 may be used.
  • information for specifying the column in which the TFT characteristic and the OLED characteristic are finally detected may be stored, and both the row and the column in which the TFT characteristic and the OLED characteristic are finally detected are specified.
  • Information to be stored may be stored.
  • FIG. 27 is a diagram for explaining the temperature dependence of the current-voltage characteristics of the organic EL element.
  • FIG. 27 shows the current-voltage characteristics of the organic EL element at the temperature TE1, the current-voltage characteristics of the organic EL element at the temperature TE2, and the current-voltage characteristics of the organic EL element at the temperature TE3.
  • TE1>TE2> TE3 As can be understood from FIG. 27, in order to supply a predetermined current to the organic EL element, it is necessary to increase the voltage as the temperature decreases. As described above, the current-voltage characteristic of the organic EL element greatly depends on the temperature. Therefore, it is preferable to employ a configuration that can compensate for temperature changes (the configuration of this modification).
  • FIG. 28 is a block diagram showing the overall configuration of the organic EL display device 4 in the present modification.
  • a temperature sensor 60 is provided in addition to the components in the first embodiment.
  • the control circuit 20 is provided with a temperature change compensation unit 202.
  • the temperature sensor 60 gives temperature information TE, which is a result of measuring the temperature, to the control circuit 20 as needed.
  • the temperature change compensation unit 202 corrects the monitor data MO given from the source driver 30 based on the temperature information TE.
  • the temperature change compensator 202 converts the value of the monitor data MO corresponding to the temperature at the time of detection into a value corresponding to a certain standard temperature, and stores the value in the offset memory 51 based on the value obtained by the conversion.
  • the offset value and the gain value in the gain memory 52 are updated.
  • the temperature detection step is realized by the process of the temperature sensor 60
  • the temperature change compensation step is realized by the process of the temperature change compensation unit 202.
  • FIG. 29 is a flowchart for explaining a procedure for updating the offset memory 51 and the gain memory 52 in the present modification.
  • the processing in steps S310 to S350 in the present modification (FIG. 29) is the same as the processing in steps S110 to S150 in the first embodiment (FIG. 18), and the steps in this modification (FIG. 29).
  • the processing from S360 to S370 is the same as the processing from S160 to S170 in the first embodiment (FIG. 18).
  • the offset value and the gain value are corrected based on the temperature information TE given by the temperature sensor 60. Is applied (step S355).
  • the video signal sent from the outside is corrected by the correction data (offset value and gain value) considering the temperature change. Therefore, in the organic EL display device, it is possible to simultaneously compensate for both the deterioration of the drive transistor and the deterioration of the organic EL element OLED regardless of the temperature change.
  • the OLED characteristic is detected by measuring the voltage of the anode of the organic EL element OLED in a state where a constant current is applied to the organic EL element OLED.
  • the present invention is not limited to this, and the configuration in which the OLED characteristic is detected by measuring the current flowing through the organic EL element OLED in a state where a constant voltage is applied to the organic EL element OLED (in this modification example). Configuration).
  • FIG. 30 is a diagram showing a detailed configuration of the monitor circuit 323 in the present modification.
  • the monitor circuit 323 includes an operational amplifier 3231, a capacitor 3232, a first switch 3233, a second switch 3234, an offset / amplification rate adjustment unit 3235, and an A / D converter 3236.
  • the operational amplifier 3231 the non-inverting input terminal is connected to the second switch 3234 and the inverting input terminal is connected to the monitor line M.
  • the capacitor 3232 and the first switch 3233 are provided between the output terminal of the operational amplifier 3231 and the monitor line M.
  • the offset / amplification factor adjustment unit 3235 is provided between the output terminal of the operational amplifier 3231 and the A / D converter 3236.
  • the second switch 3234 functions as a switch for switching the potential of the non-inverting input terminal of the operational amplifier 3231 between the potential of the low-level power supply line ELVSS and the potential Vel for detecting OLED characteristics.
  • the monitor circuit 323 is composed of an integration circuit.
  • the potential Vel for detecting the OLED characteristics is “the difference between the offset value stored in the offset memory 51 and the offset value obtained in the TFT characteristic detection period Ta” (first value) and “in the gain memory 52. This is a potential corresponding to the sum of the voltage corresponding to the light emission voltage (second value) calculated from the stored gain value and the gain value obtained in the TFT characteristic detection period Ta.
  • the potential of the non-inverting input terminal of the operational amplifier 3231 is set to the potential of the low-level power supply line ELVSS by the second control clock signal Sclk2. In this state, the same operation as in the first embodiment is performed.
  • the potential of the non-inverting input terminal of the operational amplifier 3231 is set to the potential Vel for detecting the OLED characteristic by the second control clock signal Sclk2.
  • the first switch 3233 is turned on by the control clock signal Sclk1.
  • the output terminal and the inverting input terminal of the operational amplifier 3231 are short-circuited, and the potential of the monitor line M becomes equal to the potential Vel for detecting OLED characteristics.
  • the first switch 3233 is turned off by the first control clock signal Sclk1.
  • the potential of the output terminal of the operational amplifier 3231 changes according to the magnitude of the current flowing through the monitor line M (source current supplied to the organic EL element OLED).
  • the change in potential is reflected in the digital signal output from the A / D converter 3236.
  • the digital signal is output from the monitor circuit 323 as monitor data MO.
  • the offset / amplification factor adjustment unit 3235 has a function of making the input level to the A / D converter 3236 the same when detecting TFT characteristics and when detecting OLED characteristics.
  • the OLED characteristic is detected by measuring the current flowing through the organic EL element OLED in a state where a constant voltage is applied to the organic EL element OLED as described above. Thereby, the measurement time can be shortened.
  • the magnitude of the constant voltage applied to the organic EL element OLED is based on a deterioration correction coefficient obtained from the difference between the gain value stored in the gain memory 52 and the gain value obtained in the TFT characteristic detection period Ta. It is good to ask.
  • a TFT offset memory 51a, an OLED offset memory 51b, a TFT gain memory 52a, and an OLED gain memory 52b are provided (first modified example)
  • the OLED characteristics when detecting the OLED characteristics, it is preferable to adjust the length of time for which a constant voltage is applied to the organic EL element OLED according to the target luminance. Further, if the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation, the voltage value is changed during the light emission period Tc, and the characteristics (current-voltage) at a plurality of operating points are changed. (Characteristic) may be measured.
  • FIG. 31 is a block diagram showing the overall configuration of an active matrix organic EL display device 5 according to the second embodiment of the present invention.
  • the display unit 10a includes m data lines S (1) to S (m) and m monitor lines M (1) to M (m), n.
  • n scanning lines G1 (1) to G1 (n) and n monitor control lines G2 (1) to G2 (n) n high level power supply control lines G3 (1) to G3 (n) Is provided.
  • the scanning lines G1 (1) to G1 (n), the monitor control lines G2 (1) to G2 (n), and the high level power supply control lines G3 (1) to G3 (n) are parallel to each other.
  • the high-level power supply control line is simply denoted by reference numeral G3. Since the control circuit 20 and the source driver 30 are the same as those in the first embodiment, description thereof will be omitted.
  • the gate driver 40a includes n scanning lines G1 (1) to G1 (n), n monitor control lines G2 (1) to G2 (n), and n high-level power supply control lines G3. (1) to G3 (n) are connected.
  • the gate driver 40a is configured by a shift register, a logic circuit, and the like.
  • a row in which TFT characteristic detection or OLED characteristic detection is performed is referred to as a “monitor row”.
  • a frame in which the TFT characteristic is detected is referred to as a “TFT characteristic detection frame”
  • a frame in which the OLED characteristic is detected is referred to as an “OLED characteristic detection frame”.
  • the OLED characteristic when the OLED characteristic is detected for the first line in a certain frame, the OLED characteristic is detected for the second line in the next frame, and further, three lines are detected in the next frame. Detection of OLED characteristics for the eyes is performed. Thereafter, detection of OLED characteristics for the fourth to nth rows is sequentially performed. After the OLED characteristic is detected for the nth row, the TFT characteristic is detected for the first row. Then, detection of TFT characteristics for the second to nth rows is sequentially performed. As described above, the detection of TFT characteristics and the detection of OLED characteristics are performed in different frames. However, the gate driver 40a similarly drives the scanning line G1, the monitor control line G2, and the high level power supply control line G3 in the TFT characteristic detection frame and the OLED characteristic detection frame.
  • n scanning lines G1 (1) to G1 (n), n monitoring control lines G2 (1 ) To G2 (n) and n high-level power supply control lines G3 (1) to G3 (n) are driven as shown in FIG. 32 in the (k + 1) th frame, and in the (k + 2) th frame. It is driven as shown in FIG. 33, and it is driven as shown in FIG. 34 at the (k + n) th frame.
  • the length of the selection period (period in which the scanning line G1 is in an active state) is the same in all the rows. That is, in the present embodiment, the length of the selection period is constant regardless of whether or not it is a monitor row.
  • the monitor control line G2 corresponding to the non-monitor row is maintained in an inactive state.
  • the monitor control line G2 corresponding to the monitor row is in an active state from the start of the selection period until the lapse of one frame period.
  • the high-level power supply control line G3 corresponding to the non-monitor row is maintained in an active state.
  • the high-level power supply control line G3 corresponding to the monitor row is in an inactive state from the start of the selection period until the lapse of one frame period.
  • n scanning lines G1 (1) to G1 (n) n monitor control lines G2 (1) to G2 (n), and n high level power supply control lines.
  • the gate driver 40a is configured so that G3 (1) to G3 (n) are driven.
  • each of the offset memory and the gain memory includes a memory used for compensating for the deterioration of the drive transistor and the organic EL element OLED. It is divided into memory used to compensate for deterioration. That is, the organic EL display device 5 includes TFT offset memory 51a, OLED offset memory 51b, and TFT gain memory as components for storing correction data used for correcting an externally transmitted video signal. 52a and an OLED gain memory 52b are provided.
  • FIG. 35 is a diagram showing the configuration of the pixel circuit 11a and the monitor circuit 322 in the present embodiment. Note that the pixel circuit 11a illustrated in FIG. 35 is the pixel circuit 11 of i rows and j columns. Since the configuration of the monitor circuit 322 is the same as that of the first embodiment, description thereof is omitted. However, in the present embodiment, when the monitor line M is connected to the current measuring unit 38, the high-level power supply voltage ELVDD is supplied to the monitor line M.
  • the pixel circuit 11a includes one organic EL element OLED, four transistors T1 to T4, and one capacitor Cst.
  • the transistor T1 functions as an input transistor for selecting a pixel
  • the transistor T2 functions as a drive transistor for controlling supply of current to the organic EL element OLED
  • the transistor T3 controls whether to detect TFT characteristics or OLED characteristics.
  • the transistor T4 functions as a high-level power supply control transistor that controls the supply of drive current from the high-level power supply line ELVDD.
  • the transistor T1 is provided between the data line S (j) and the gate terminal of the transistor T2.
  • a gate terminal is connected to the scanning line G1 (i), and a source terminal is connected to the data line S (j).
  • the transistor T2 is provided in series with the organic EL element OLED.
  • the gate terminal is connected to the drain terminal of the transistor T1
  • the drain terminal is connected to the source terminal of the transistor T4, and the source terminal is connected to the anode terminal of the organic EL element OLED.
  • the gate terminal is connected to the monitor control line G2 (i)
  • the drain terminal is connected to the drain terminal of the transistor T2
  • the source terminal is connected to the monitor line M (j).
  • the transistor T4 is provided in series with the organic EL element OLED.
  • the gate terminal is connected to the high-level power supply control line G3 (i)
  • the drain terminal is connected to the high-level power supply line ELVDD
  • the source terminal is connected to the drain terminal of the transistor T2.
  • the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the source terminal of the transistor T2.
  • the cathode terminal of the organic EL element OLED is connected to the low level power line ELVSS.
  • oxide TFTs thin film transistors using an oxide semiconductor as a channel layer
  • the present invention does not exclude the use of transistors other than oxide TFTs.
  • TFT characteristic detection operation an operation for detecting TFT characteristics
  • OLED characteristic detection operation an operation for detecting OLED characteristics
  • the TFT characteristic detection operation is not performed in any row from the (k + 1) th frame to the (k + n) th frame. Also, the OLED characteristic detection operation is not performed in any row from the (k + n + 1) th frame to the (k + 2n) th frame.
  • FIG. 38 is a timing chart for explaining an OLED characteristic detection operation in a pixel circuit 11a (referred to as a pixel circuit 11a of i rows and j columns) included in a monitor row.
  • “one frame period” is expressed with reference to the selection period start point of the i-th row in a frame in which the i-th row is a monitor row.
  • one frame period includes a selection period Tp and a light emission period Tq.
  • the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on.
  • the high-level power supply control line G3 (i) is inactive. As a result, the transistor T4 is turned off.
  • the high voltage Vlen for causing the transistor T2 to operate linearly is applied to the data line S (j) in the selection period Tp. Thereby, writing based on the high voltage Vlen is performed, and the transistor T2 is turned on.
  • the scanning line G1 (i) is inactive. As a result, the transistor T1 is turned off.
  • the monitor control line G2 (i) is maintained in an active state, and the high level power supply control line G3 (i) is maintained in an inactive state. Thereby, the transistor T3 is maintained in the on state, and the transistor T4 is maintained in the off state.
  • the transistor T2 since writing based on the high voltage Vlen is performed in the selection period Tp before the light emission period Tq, the transistor T2 is in an on state.
  • the monitor line M (j) is connected to the voltage measuring unit 39, and a constant current is supplied to the monitor line M (j).
  • a data current which is a constant current, is supplied from the monitor line M (j) to the organic EL element OLED as indicated by an arrow indicated by reference numeral 75 in FIG.
  • the voltage measuring unit 39 measures the light emission voltage of the organic EL element OLED.
  • the process of adjusting the length of the light emission time of the organic EL element OLED and the process of changing the current value according to the gradation are performed in the same manner as in the first embodiment so that a desired gradation display is performed. Done.
  • FIG. 40 is a timing chart for explaining a TFT characteristic detection operation in a pixel circuit 11a (referred to as a pixel circuit 11a of i rows and j columns) included in a monitor row.
  • the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on.
  • the high-level power supply control line G3 (i) is inactive. As a result, the transistor T4 is turned off.
  • the same data voltage as that in the normal operation is applied to the data line S (j).
  • the transistor T2 is turned on by writing based on the data voltage.
  • the scanning line G1 (i) is inactive. As a result, the transistor T1 is turned off.
  • the monitor control line G2 (i) is maintained in an active state, and the high level power supply control line G3 (i) is maintained in an inactive state. Thereby, the transistor T3 is maintained in the on state, and the transistor T4 is maintained in the off state.
  • the transistor T2 since writing based on the data voltage is performed in the selection period Tp before the light emission period Tq, the transistor T2 is in the on state.
  • the monitor line M (j) is connected to the current measuring unit 38 by the switching control signal SW.
  • the potential of the monitor line M (j) is the potential of the high-level power supply line ELVDD
  • a drive current corresponding to the data voltage is applied to the monitor line M (j) as indicated by an arrow 76 in FIG.
  • the current measuring unit 38 measures the current supplied from the monitor line M (j) to the organic EL element OLED. As described above, the TFT characteristics are detected.
  • FIG. 42 is a flowchart for explaining a procedure for updating the TFT offset memory 51a, the OLED offset memory 51b, the TFT gain memory 52a, and the OLED gain memory 52b.
  • attention is paid to an offset value and a gain value corresponding to one pixel.
  • the detection of the TFT characteristics is performed after n frames of the frame in which the detection of the OLED characteristics is performed. Therefore, here, it is assumed that the OLED characteristic is detected in the K frame and the TFT characteristic is detected in the (K + n) frame.
  • step S410 the OLED characteristic is detected during the light emission period Tq (step S410).
  • step S410 an offset value and a deterioration correction coefficient for correcting the video signal are obtained.
  • step S420 the offset value obtained in step S410 is stored in the OLED offset memory 51b as a new offset value (step S420).
  • step S420 the deterioration correction coefficient obtained in step S410 is stored in the OLED gain memory 52b as a new deterioration correction coefficient (step S430).
  • step S440 the TFT characteristic is detected during the light emission period Tq (step S440).
  • step S440 an offset value and a gain value for correcting the video signal are obtained.
  • step S440 is stored as a new offset value in the TFT offset memory 51a (step S450).
  • step S460 the gain value obtained in step S440 is stored in the TFT gain memory 52a as a new gain value (step S460).
  • the offset value and gain value corresponding to one pixel are updated.
  • each frame is subjected to either OLED characteristic detection for one row or TFT characteristic detection for one row. Therefore, in the frame where the OLED characteristic is detected, m offset values in the OLED offset memory 51b and m deterioration correction coefficients in the OLED gain memory 52b are updated per frame, and the TFT characteristics are updated. In a frame in which detection is performed, m offset values in the TFT offset memory 51a and m gain values in the TFT gain memory 52a are updated per frame.
  • the gain value B given to the multiplier 212 shown in FIG. 19 and the offset value Vt given to the adder 213 shown in FIG. 19 are different from those of the first embodiment.
  • the product of the value read from the TFT gain memory 52a and the value read from the OLED gain memory 52b is given to the multiplier 212 as a gain value B, and the value read from the TFT offset memory 51a The sum with the value read from the OLED offset memory 51b is given to the adder 213 as the offset value Vt.
  • the gradation P indicated by the video signal is corrected to “Vc ⁇ B + Vt”.
  • Vc is the value of the control voltage after the gamma correction of the gradation P.
  • both the detection of the OLED characteristic and the detection of the TFT characteristic are performed during the light emission period. For this reason, unlike the configuration in which the detection of these characteristics is performed during the selection period, it is not necessary to lengthen the monitoring row selection period. Therefore, a sufficiently long light emission period is ensured. Further, variation in the length of the selection period depending on the row is prevented.
  • both the deterioration of the drive transistor and the deterioration of the organic EL element OLED are ensured while sufficiently securing the light emission period without causing variations in the length of the selection period. Can be compensated at the same time without causing special light emission during characteristic detection.
  • the buffer (offset value buffer and gain value) is used as in the first embodiment.
  • the offset memory and the gain memory are updated using the buffer. That is, in the second embodiment, the TFT offset memory 51a, the OLED offset memory 51b, the TFT gain memory 52a, and the OLED gain memory 52b are used to store correction data used for correcting the video signal.
  • the organic EL display device to which the present invention is applicable is not limited to the one provided with the pixel circuits 11 and 11a exemplified in each embodiment and each modification.
  • the pixel circuit includes at least an electro-optical element (organic EL element OLED) controlled by current, transistors T1 to T3, and a capacitor Cst, the pixel circuit has a configuration other than the configuration exemplified in each embodiment and each modification. There may be.

Abstract

 表示装置において駆動トランジスタの劣化および発光素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することを可能にする駆動方法を提供する。 電流によって輝度が制御される電気光学素子と当該電気光学素子に供給すべき電流を制御するための駆動トランジスタとを含む画素回路を有する表示装置において、駆動トランジスタの特性を検出する第1の特性検出ステップ(S10)と、電気光学素子の特性を検出する第2の特性検出ステップ(S20)と、第1および第2の特性検出ステップ(S10,S20)での検出結果に基づいて得られる特性データを映像信号を補正するための補正データとして記憶する補正データ記憶ステップ(S30)と、補正データに基づいて映像信号を補正する映像信号補正ステップ(S40)とが駆動方法に含められる。ここで、第2の特性検出ステップ(S20)の処理は、発光期間に行われる。

Description

表示装置およびその駆動方法
 本発明は表示装置およびその駆動方法に関し、より詳しくは、有機EL(Electro Luminescence)素子などの電気光学素子を含む画素回路を備える表示装置およびその駆動方法に関する。
 従来より、表示装置が備える表示素子としては、印加される電圧によって輝度が制御される電気光学素子と流れる電流によって輝度が制御される電気光学素子とがある。印加される電圧によって輝度が制御される電気光学素子の代表例としては液晶表示素子が挙げられる。一方、流れる電流によって輝度が制御される電気光学素子の代表例としては有機EL素子が挙げられる。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれている。自発光型の電気光学素子である有機EL素子を使用した有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。従って、近年、積極的に有機EL表示装置の開発が進められている。
 有機EL表示装置の駆動方式として、パッシブマトリクス方式(単純マトリクス方式とも呼ばれる。)とアクティブマトリクス方式とが知られている。パッシブマトリクス方式を採用した有機EL表示装置は、構造は単純であるものの、大型化および高精細化が困難である。これに対して、アクティブマトリクス方式を採用した有機EL表示装置(以下「アクティブマトリクス型の有機EL表示装置」という。)は、パッシブマトリクス方式を採用した有機EL表示装置に比べて大型化および高精細化を容易に実現できる。
 アクティブマトリクス型の有機EL表示装置には、複数の画素回路がマトリクス状に形成されている。アクティブマトリクス型の有機EL表示装置の画素回路は、典型的には、画素を選択する入力トランジスタと、有機EL素子への電流の供給を制御する駆動トランジスタとを含んでいる。なお、以下においては、駆動トランジスタから有機EL素子に流れる電流のことを「駆動電流」という場合がある。
 図44は、従来の一般的な画素回路91の構成を示す回路図である。この画素回路91は、表示部に配設されている複数のデータ線Sと複数の走査線Gとの各交差点に対応して設けられている。図44に示すように、この画素回路91は、2個のトランジスタT1,T2と、1個のコンデンサCstと、1個の有機EL素子OLEDとを備えている。トランジスタT1は入力トランジスタであり、トランジスタT2は駆動トランジスタである。
 トランジスタT1は、データ線SとトランジスタT2のゲート端子との間に設けられている。そのトランジスタT1に関し、走査線Gにゲート端子が接続され、データ線Sにソース端子が接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。そのトランジスタT2に関し、ハイレベル電源電圧ELVDDを供給する電源線にドレイン端子が接続され、有機EL素子OLEDのアノード端子にソース端子が接続されている。なお、ハイレベル電源電圧ELVDDを供給する電源線のことを以下「ハイレベル電源線」といい、ハイレベル電源線にはハイレベル電源電圧と同じ符合ELVDDを付す。コンデンサCstについては、トランジスタT2のゲート端子に一端が接続され、トランジスタT2のソース端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源電圧ELVSSを供給する電源線に接続されている。なお、ローレベル電源電圧ELVSSを供給する電源線のことを以下「ローレベル電源線」といい、ローレベル電源線にはローレベル電源電圧と同じ符合ELVSSを付す。また、ここでは、トランジスタT2のゲート端子と、コンデンサCstの一端と、トランジスタT1のドレイン端子との接続点のことを便宜上「ゲートノードVG」という。なお、一般的には、ドレインとソースのうち電位の高い方がドレインと呼ばれているが、本明細書の説明では、一方をドレイン,他方をソースと定義するので、ドレイン電位よりもソース電位の方が高くなることもある。
 図45は、図44に示す画素回路91の動作を説明するためのタイミングチャートである。時刻t1以前には、走査線Gは非選択状態となっている。従って、時刻t1以前には、トランジスタT1がオフ状態になっており、ゲートノードVGの電位は初期レベル(例えば、1つ前のフレームでの書き込みに応じたレベル)を維持している。時刻t1になると、走査線Gが選択状態となり、トランジスタT1がターンオンする。これにより、データ線SおよびトランジスタT1を介して、この画素回路91が形成する画素(サブ画素)の輝度に対応するデータ電圧VdataがゲートノードVGに供給される。その後、時刻t2までの期間に、ゲートノードVGの電位がデータ電圧Vdataに応じて変化する。このとき、コンデンサCstは、ゲートノードVGの電位とトランジスタT2のソース電位との差であるゲート-ソース間電圧Vgsに充電される。時刻t2になると、走査線Gが非選択状態となる。これにより、トランジスタT1がターンオフし、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。トランジスタT2は、コンデンサCstが保持するゲート-ソース間電圧Vgsに応じて有機EL素子OLEDに駆動電流を供給する。その結果、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
 ところで、有機EL表示装置においては、駆動トランジスタとして、典型的には薄膜トランジスタ(TFT)が採用される。しかしながら、薄膜トランジスタについては、閾値電圧にばらつきが生じやすい。表示部内に設けられている駆動トランジスタに閾値電圧のばらつきが生じると、輝度のばらつきが生じるので表示品位が低下する。そこで、有機EL表示装置における表示品位の低下を抑制する技術が従来より提案されている。例えば、日本の特開2005-31630号公報には、駆動トランジスタの閾値電圧のばらつきを補償する技術が開示されている。また、日本の特開2003-195810号公報および日本の特開2007-128103号公報には、画素回路から有機EL素子OLEDに流れる電流を一定にする技術が開示されている。さらに、日本の特開2007-233326号公報には、駆動トランジスタの閾値電圧や電子移動度に関わらず均一な輝度の画像を表示する技術が開示されている。
 上述の先行技術によれば、表示部内に設けられている駆動トランジスタに閾値電圧のばらつきが生じても、所望の輝度(目標輝度)に応じて有機EL素子(発光素子)に一定電流を供給することが可能となる。しかしながら、有機EL素子に関しては、時間の経過とともに電流効率が低下する。すなわち、たとえ一定電流が有機EL素子に供給されたとしても、時間の経過とともに輝度が徐々に低下する。その結果、焼き付きが生じる。
 以上より、駆動トランジスタの劣化および有機EL素子の劣化に対して何ら補償が行われなければ、図46に示すように、駆動トランジスタの劣化に起因する電流低下が生じるとともに有機EL素子の劣化に起因する輝度低下が生じる。また、駆動トランジスタの劣化に対して補償が行われても、図47に示すように、時間が経過するにつれて、有機EL素子の劣化に起因する輝度低下が生じる。そこで、日本の特表2008-523448号公報には、駆動トランジスタの特性に基づいてデータを補正する技術に加えて、有機EL素子OLEDの特性に基づいてデータを補正する技術が開示されている。
日本の特開2005-31630号公報 日本の特開2003-195810号公報 日本の特開2007-128103号公報 日本の特開2007-233326号公報 日本の特表2008-523448号公報
 ところが、日本の特表2008-523448号公報に開示された技術によれば、選択期間中には駆動トランジスタまたは有機EL素子のいずれか一方の特性しか検出することができない。このため、駆動トランジスタの劣化および有機EL素子の劣化の双方を同時に補償することはできない。また、駆動トランジスタおよび有機EL素子の双方の特性を検出するためには選択期間を長くする必要がある。これに関し、日本の特表2008-523448号公報に開示された技術においては、特性の検出を行う行の選択期間を長くした場合、特性の検出を行う行とそれ以外の行とで発光時間の長さが異なってしまい、所望の輝度表示が行われない。
 そこで、本発明は、表示装置において駆動トランジスタの劣化および発光素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することを可能にする駆動方法を提供することを目的とする。
 本発明の第1の局面は、電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置の駆動方法であって、
 前記駆動トランジスタの特性を検出する第1の特性検出ステップと、
 前記電気光学素子の特性を検出する第2の特性検出ステップと、
 前記第1の特性検出ステップでの検出結果および前記第2の特性検出ステップでの検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして、予め用意された補正データ記憶部に記憶させる補正データ記憶ステップと、
 前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正ステップと
を含み、
 1フレーム期間は、前記電気光学素子を発光させる準備が行われる選択期間と前記電気光学素子の発光が行われる発光期間とからなり、
 前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
 前記第2の特性検出ステップの処理は、前記発光期間に行われることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記第1の特性検出ステップおよび前記第2の特性検出ステップの双方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
 各フレームにおいて前記第1の特性検出ステップおよび前記第2の特性検出ステップの双方の処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての前記選択期間の長さは、前記非モニタ行についての前記選択期間の長さよりも長くなっていて、
 前記第1の特性検出ステップの処理は、前記選択期間に行われることを特徴とする。
 本発明の第3の局面は、本発明の第1の局面において、
 前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
 前記画素マトリクスの1つの行に着目したとき、前記第1の特性検出ステップの処理と前記第2の特性検出ステップの処理とは交互に行われ、
 前記第1の特性検出ステップの処理は、前記発光期間に行われることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記第2の特性検出ステップでは、目標輝度に応じて、前記一定の電流を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
 本発明の第6の局面は、本発明の第4の局面において、
 前記第2の特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電流が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
 本発明の第8の局面は、本発明の第7の局面において、
 前記第2の特性検出ステップでは、目標輝度に応じて、前記一定の電圧を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
 本発明の第9の局面は、本発明の第7の局面において、
 前記第2の特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電圧が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記第1の特性検出ステップでは、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記補正データ記憶部は、前記補正データとしてオフセット値を記憶するオフセット値記憶部と前記補正データとしてゲイン値を記憶するゲイン値記憶部とからなり、
 前記補正データ記憶ステップでは、
  前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値と前記第2の特性検出ステップでの検出結果に基づいて得られるオフセット値との和が、新たなオフセット値として前記オフセット値記憶部に記憶され、
  前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値と前記第2の特性検出ステップでの検出結果に基づいて得られる補正係数との積が、新たなゲイン値として前記ゲイン値記憶部に記憶されることを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記表示装置は、
  前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
  前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
を更に有し、
 前記選択期間は、前記第1の特性検出ステップの処理が行われる第1期間と前記第1期間に続く第2期間とからなり、
 前記オフセット値記憶部に記憶されているオフセット値と前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値との差分の値を第1の値と定義し、前記ゲイン値記憶部に記憶されているゲイン値と前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値とに基づいて得られる値を第2の値と定義したとき、前記第2期間には、各モニタ線に、前記第1の値と前記第2の値との和に相当する電圧が印加されることを特徴とする。
 本発明の第13の局面は、本発明の第1の局面において、
 前記補正データ記憶部は、前記補正データとして前記駆動トランジスタに対応するオフセット値を記憶する駆動トランジスタ用オフセット値記憶部,前記補正データとして前記電気光学素子に対応するオフセット値を記憶する電気光学素子用オフセット値記憶部,前記補正データとして前記駆動トランジスタに対応するゲイン値を記憶する駆動トランジスタ用ゲイン値記憶部,および前記補正データとして前記電気光学素子に対応するゲイン値を記憶する電気光学素子用ゲイン値記憶部からなり、
 前記補正データ記憶ステップでは、
  前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値が、新たなオフセット値として前記駆動トランジスタ用オフセット値記憶部に記憶され、
  前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値が、新たなゲイン値として前記駆動トランジスタ用ゲイン値記憶部に記憶され、
  前記第2の特性検出ステップでの検出結果に基づいて得られるオフセット値が、新たなオフセット値として前記電気光学素子用オフセット値記憶部に記憶され、
  前記第2の特性検出ステップでの検出結果に基づいて得られる補正係数が、新たなゲイン値として前記電気光学素子用ゲイン値記憶部に記憶されることを特徴とする。
 本発明の第14の局面は、本発明の第13の局面において、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出され、
 前記一定の電流の大きさは、前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に応じて調整されることを特徴とする。
 本発明の第15の局面は、本発明の第13の局面において、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出され、
 前記一定の電圧の大きさは、前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に応じて調整されることを特徴とする。
 本発明の第16の局面は、本発明の第13の局面において、
 前記表示装置は、
  前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
  前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
を更に有し、
 前記選択期間は、前記第1の特性検出ステップの処理が行われる第1期間と前記第1期間に続く第2期間とからなり、
 前記第2期間には、各モニタ線に、前記電気光学素子用オフセット値記憶部に記憶されているオフセット値と前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に基づいて得られる値との和に相当する電圧が印加されることを特徴とする。
 本発明の第17の局面は、本発明の第1の局面において、
 前記表示装置は、
  電流を測定する電流測定部を少なくとも含み、前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
  前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
を更に有し、
 前記第1の特性検出ステップでは、前記m本のモニタ線が対応する画素回路および前記電流測定部と電気的に接続された状態で、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流が前記電流測定部によって測定されることを特徴とする。
 本発明の第18の局面は、本発明の第17の局面において、
 前記特性検出部は、電圧を測定する電圧測定部を更に含み、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧が前記電圧測定部によって測定されることを特徴とする。
 本発明の第19の局面は、本発明の第17の局面において、
 前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流が前記電流測定部によって測定されることを特徴とする。
 本発明の第20の局面は、本発明の第17の局面において、
 前記特性検出部は、K本のモニタ線(Kは2以上m以下の整数)につき1つだけ設けられ、
 各フレームにおいて、
  前記K本のモニタ線のうちの1つが前記特性検出部と電気的に接続され、
  前記特性検出部と電気的に接続されていないモニタ線は、ハイインピーダンスの状態にされていることを特徴とする。
 本発明の第21の局面は、本発明の第1の局面において、
 前記n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素については、前記第2の特性検出ステップの処理が行われないことを特徴とする。
 本発明の第22の局面は、本発明の第1の局面において、
 前記表示装置の電源オフの際に、最後に前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が行われた領域を特定する情報を予め用意されたモニタ領域記憶部に記憶するモニタ領域記憶ステップを更に含み、
 前記表示装置の電源オン後には、前記モニタ領域記憶部に記憶されている情報に基づいて得られる領域近傍の領域から、前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が行われることを特徴とする。
 本発明の第23の局面は、本発明の第1の局面において、
 温度を検出する温度検出ステップと、
 前記特性データに対して前記温度検出ステップで検出された温度に基づく補正を施す温度変化補償ステップと
を更に含み、
 前記補正データ記憶ステップでは、前記温度変化補償ステップの処理で得られたデータが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする。
 本発明の第24の局面は、本発明の第1の局面において、
 前記駆動トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする。
 本発明の第25の局面は、本発明の第24の局面において、
 前記酸化物半導体は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)を主成分とする酸化インジウムガリウム亜鉛であることを特徴とする。
 本発明の第26の局面は、電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置であって、
 前記駆動トランジスタの特性を検出する第1の特性検出処理および前記電気光学素子の特性を検出する第2の特性検出処理を行いつつ前記n×m個の画素回路を駆動する画素回路駆動部と、
 前記第1の特性検出処理での検出結果および前記第2の特性検出処理での検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして記憶する補正データ記憶部と、
 前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正部と
を備え、
 1フレーム期間は、前記電気光学素子を発光させる準備が行われる選択期間と前記電気光学素子の発光が行われる発光期間とからなり、
 前記画素回路駆動部は、
  前記第1の特性検出処理および前記第2の特性検出処理の一方または双方の処理を、1フレーム期間につき前記画素マトリクスの1つの行についてのみ行い、
  前記第2の特性検出処理を前記発光期間に行うことを特徴とする。
 本発明の第1の局面によれば、電流によって輝度が制御される電気光学素子(例えば有機EL素子)と当該電気光学素子に供給すべき電流を制御するための駆動トランジスタとを含む画素回路を有する表示装置において、駆動トランジスタの特性の検出と電気光学素子の特性の検出とが行われる。そして、双方の検出結果を考慮して得られて補正データを用いて映像信号が補正される。このようにして補正された映像信号に基づくデータ信号が画素回路に供給されるので、駆動トランジスタの劣化および電気光学素子の劣化が補償されるような大きさの駆動電流が電気光学素子に供給される。ここで、電気光学素子の特性の検出は、電気光学素子の発光期間中に行われる。従って、駆動トランジスタや電気光学素子の特性の検出するために発光期間の長さが従来よりも短くなることはない。以上より、表示装置において駆動トランジスタの劣化および電気光学素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 本発明の第2の局面によれば、モニタ行(各フレームにおいて特性の検出が行われている行)についての選択期間の長さは、非モニタ行についての選択期間の長さよりも長くなっている。そして、その選択期間に駆動トランジスタの特性の検出が行われる。このため、駆動トランジスタの特性を検出するための期間が充分に確保される。
 本発明の第3の局面によれば、駆動トランジスタの特性の検出および電気光学素子の特性の検出の双方が電気光学素子の発光期間中に行われる。このため、選択期間中にも特性の検出が行われる構成とは異なり、モニタ行の選択期間を長くする必要がない。従って、充分な長さの発光期間が確保される。また、行によって選択期間の長さにばらつきが生じることが防止される。以上のように、表示装置において、選択期間の長さのばらつきを生ずることなく発光期間を充分に確保しつつ駆動トランジスタの劣化および電気光学素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 本発明の第4の局面によれば、特性を検出する電気光学素子には一定電流が供給される。このため、一定電流を電気光学素子に供給する時間を調整することによって、当該電気光学素子を所望の輝度で発光させることが可能となる。
 本発明の第5の局面によれば、電気光学素子の特性の検出を行いつつ当該電気光学素子を所望の輝度で発光させることが可能となる。
 本発明の第6の局面によれば、電気光学素子の特性として複数の特性が検出されるので、より効果的に駆動トランジスタの劣化を補償することが可能となる。
 本発明の第7の局面によれば、電気光学素子の特性を検出するための測定時間の短縮が可能となる。
 本発明の第8の局面によれば、電気光学素子の特性の検出を行いつつ当該電気光学素子を所望の輝度で発光させることが可能となる。
 本発明の第9の局面によれば、電気光学素子の特性として複数の特性が検出されるので、より効果的に駆動トランジスタの劣化を補償することが可能となる。
 本発明の第10の局面によれば、電流を測定するための構成要素を表示装置が備えた態様において、本発明の第1の局面と同様の効果を奏することができる。
 本発明の第11の局面によれば、オフセット値記憶部には駆動トランジスタの特性および電気光学素子の特性の双方を考慮した補正データが記憶され、ゲイン値記憶部にも駆動トランジスタの特性および電気光学素子の特性の双方を考慮した補正データが記憶される。このため、駆動トランジスタの特性および電気光学素子の特性の双方を考慮して容易に映像信号を補正することが可能となる。
 本発明の第12の局面によれば、電気光学素子の劣化の程度に応じた電圧が発光期間の前にモニタ線に印加され、発光期間における充電時間の長さが短縮される。
 本発明の第13の局面によれば、オフセット値を記憶する記憶部およびゲイン値を記憶する記憶部のそれぞれが、駆動トランジスタの劣化を補償するために用いられる記憶部と電気光学素子の劣化を補償するために用いられる記憶部とに分けられている。このため、電気光学素子の劣化のみを考慮して当該電気光学素子に供給する電流を調整することが可能となる。その際、劣化の最も少ない画素の劣化レベルに合わせて電流を増加させることによって、焼き付きに対する補償を行うことが可能となる。
 本発明の第14の局面によれば、電気光学素子の特性の検出に関し、発光期間に電気光学素子に供給される電流の大きさは、電気光学素子用ゲイン値記憶部に記憶されているゲイン値(補正係数)に応じて調整される。すなわち、電気光学素子の劣化の程度に応じて電流の大きさの調整が行われる。これにより、電流効率の低下が補償される。
 本発明の第15の局面によれば、電気光学素子の特性の検出に関し、発光期間に電気光学素子に与えられる電圧の大きさは、電気光学素子用ゲイン値記憶部に記憶されているゲイン値(補正係数)に応じて調整される。これにより、電気光学素子の劣化の程度に応じた大きさの電圧が発光期間に電気光学素子に与えられる。
 本発明の第16の局面によれば、電気光学素子の劣化の程度に応じた電圧が発光期間の前にモニタ線に印加され、発光期間における充電時間の長さが短縮される。
 本発明の第17の局面によれば、各列に含まれる駆動トランジスタおよび電気光学素子の双方の特性を1本のモニタ線によって検出することが可能となる。
 本発明の第18の局面によれば、より所望の階調に近い表示が行われるよう、電気光学素子が発光する。
 本発明の第19の局面によれば、電気光学素子の特性を検出するための測定時間の短縮が可能となる。
 本発明の第20の局面によれば、1つの特性検出部が複数のモニタ線で共有化される。このため、回路面積の増大を抑制しつつ駆動トランジスタの劣化および電気光学素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 本発明の第21の局面によれば、電気光学素子の不必要な発光が防止される。
 本発明の第22の局面によれば、例えば上方の行と下方の行との間で駆動トランジスタの特性および電気光学素子の特性の検出回数に差が生じることが防止される。このため、駆動トランジスタの劣化および電気光学素子の劣化に対する補償を画面全体で一様に行うことが可能となり、輝度のばらつきの発生が効果的に防止される。
 本発明の第23の局面によれば、温度変化を考慮した補正データを用いて映像信号が補正される。このため、表示装置において、温度の変化に関わらず駆動トランジスタの劣化および電気光学素子の劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 本発明の第24の局面によれば、画素回路内に設けられる駆動トランジスタとして、チャネル層が酸化物半導体により形成された薄膜トランジスタが用いられる。このため、高精細化や低消費電力化の効果が得られる。また、オフ電流が極めて小さくなるので、電流の検出を行う際に充分なS/N比を確保できるという効果が得られる。
 本発明の第25の局面によれば、チャネル層を形成する酸化物半導体として酸化インジウムガリウム亜鉛を用いることにより、本発明の第24の局面と同様の効果を確実に達成することができる。
 本発明の第26の局面によれば、本発明の第1の局面と同様の効果を表示装置の発明において奏することができる。
本発明の第1の実施形態において、TFT特性およびOLED特性の検出に関連する動作の概略を説明するためのフローチャートである。 上記第1の実施形態において、有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第1の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第1の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第1の実施形態において、信号変換回路の概略構成を示すブロック図である。 上記第1の実施形態における画素回路およびモニタ回路の構成を示す図である。 上記第1の実施形態における電流測定部の一構成例を示す図である。 上記第1の実施形態における電圧測定部の一構成例を示す図である。 上記第1の実施形態において、各行の動作の推移について説明するための図である。 上記第1の実施形態において、通常動作が行われる際の電流の流れについて説明するための図である。 上記第1の実施形態において、モニタ行に含まれる画素回路(i行j列の画素回路)の動作を説明するためのタイミングチャートである。 上記第1の実施形態において、TFT特性検出期間の電流の流れについて説明するための図である。 上記第1の実施形態において、TFT特性検出期間における参照電圧のデータ線への印加について説明するための図である。 上記第1の実施形態において、発光期間の電流の流れについて説明するための図である。 上記第1の実施形態において、有機EL素子の発光時間の調整について説明するための図である。 上記第1の実施形態において、モニタ行と非モニタ行とでの発光期間の長さの違いについて説明するための図である。 上記第1の実施形態において、オフセットメモリおよびゲインメモリの更新の手順を説明するためのフローチャートである。 上記第1の実施形態において、映像信号補正部の構成を示す図である。 上記第1の実施形態における効果について説明するための図である。 上記第1の実施形態の第1の変形例における有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態の第1の変形例において、TFT用オフセットメモリ,OLED用オフセットメモリ,TFT用ゲインメモリ,およびOLED用ゲインメモリの更新の手順を説明するためのフローチャートである。 上記第1の実施形態の第1の変形例における効果について説明するための図である。 上記第1の実施形態の第2の変形例におけるモニタ線の一端部近傍の構成を示す図である。 上記第1の実施形態の第3の変形例におけるモニタ線の一端部近傍の構成を示す図である。 上記第1の実施形態の第4の変形例における有機EL表示装置の全体構成を示すブロック図である。 有機EL素子の電流-電圧特性の温度依存性について説明するための図である。 上記第1の実施形態の第5の変形例における有機EL表示装置の全体構成を示すブロック図である。 上記第1の実施形態の第5の変形例において、オフセットメモリおよびゲインメモリの更新の手順を説明するためのフローチャートである。 上記第1の実施形態の第6の変形例におけるモニタ回路の詳細な構成を示す図である。 本発明の第2の実施形態に係るアクティブマトリクス型の有機EL表示装置の全体構成を示すブロック図である。 上記第2の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第2の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第2の実施形態において、ゲートドライバの動作について説明するためのタイミングチャートである。 上記第2の実施形態における画素回路およびモニタ回路の構成を示す図である。 上記第2の実施形態において、各行の動作の推移について説明するための図である。 上記第2の実施形態において、通常動作が行われる際の電流の流れについて説明するための図である。 上記第2の実施形態において、モニタ行に含まれる画素回路(i行j列の画素回路)におけるOLED特性検出動作について説明するためのタイミングチャートである。 上記第2の実施形態において、OLED特性検出動作が行われる際の電流の流れについて説明するための図である。 上記第2の実施形態において、モニタ行に含まれる画素回路(i行j列の画素回路)におけるTFT特性検出動作について説明するためのタイミングチャートである。 上記第2の実施形態において、TFT特性検出動作が行われる際の電流の流れについて説明するための図である。 上記第2の実施形態において、オフセットメモリおよびゲインメモリの更新の手順を説明するためのフローチャートである。 上記第2の実施形態の変形例において、各行の動作の推移について説明するための図である。 従来の一般的な画素回路の構成を示す回路図である。 図44に示す画素回路の動作を説明するためのタイミングチャートである。 駆動トランジスタの劣化および有機EL素子の劣化に対して何ら補償が行われない場合について説明するための図である。 駆動トランジスタの劣化に対してのみ補償が行われた場合について説明するための図である。
 以下、添付図面を参照しながら、本発明の実施形態について説明する。なお、以下においては、mおよびnは2以上の整数、iは1以上n以下の整数、jは1以上m以下の整数であると仮定する。また、以下においては、画素回路内に設けられている駆動トランジスタの特性のことを「TFT特性」といい、画素回路内に設けられている有機EL素子の特性のことを「OLED特性」という。
 <1.第1の実施形態>
 <1.1 全体構成>
 図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示部10,コントロール回路20,ソースドライバ(データ線駆動回路)30,ゲートドライバ(走査線駆動回路)40,オフセットメモリ51,およびゲインメモリ52を備えている。なお、ソースドライバ30およびゲートドライバ40の一方または双方が表示部10と一体的に形成された構成であっても良い。また、オフセットメモリ51とゲインメモリ52とは物理的には1つのメモリで構成されていても良い。
 なお、本実施形態においては、ソースドライバ30およびゲートドライバ40によって画素回路駆動部が実現され、オフセットメモリ51およびゲインメモリ52によって補正データ記憶部が実現されている。
 表示部10には、m本のデータ線S(1)~S(m)およびこれらに直交するn本の走査線G1(1)~G1(n)が配設されている。以下では、データ線の延伸方向をY方向とし、走査線の延伸方向をX方向とする。Y方向に沿った構成要素を「列」という場合があり、X方向に沿った構成要素を「行」という場合がある。また、表示部10には、m本のデータ線S(1)~S(m)と1対1で対応するように、m本のモニタ線M(1)~M(m)が配設されている。データ線S(1)~S(m)とモニタ線M(1)~M(m)とは互いに平行になっている。さらに、表示部10には、n本の走査線G1(1)~G1(n)と1対1で対応するように、n本のモニタ制御線G2(1)~G2(n)が配設されている。走査線G1(1)~G1(n)とモニタ制御線G2(1)~G2(n)とは互いに平行になっている。さらにまた、表示部10には、n本の走査線G1(1)~G1(n)とm本のデータ線S(1)~S(m)との交差点に対応するように、n×m個の画素回路11が設けられている。このようにn×m個の画素回路11が設けられることによって、n行×m列の画素マトリクスが表示部10に形成されている。また、表示部10には、ハイレベル電源電圧を供給するハイレベル電源線と、ローレベル電源電圧を供給するローレベル電源線とが配設されている。
 なお、以下においては、m本のデータ線S(1)~S(m)を互いに区別する必要がない場合にはデータ線を単に符号Sで表す。同様に、m本のモニタ線M(1)~M(m)を互いに区別する必要がない場合にはモニタ線を単に符号Mで表し、n本の走査線G1(1)~G1(n)を互いに区別する必要がない場合には走査線を単に符号G1で表し、n本のモニタ制御線G2(1)~G2(n)を互いに区別する必要がない場合にはモニタ制御線を単に符号G2で表す。
 コントロール回路20は、ソースドライバ30にデータ信号DA,ソース制御信号SCTL,および切替制御信号SWを与えることによりソースドライバ30の動作を制御し、ゲートドライバ40にゲート制御信号GCTLを送信することによりゲートドライバ40の動作を制御する。ソース制御信号SCTLには、例えば、ソーススタートパルス,ソースクロック,ラッチストローブ信号が含まれている。ゲート制御信号GCTLには、例えば、ゲートスタートパルスおよびゲートクロックが含まれている。また、コントロール回路20は、ソースドライバ30から与えられるモニタデータMOを受け取り、オフセットメモリ51およびゲインメモリ52の更新を行う。なお、モニタデータMOとは、TFT特性やOLED特性を求めるために測定されたデータである。
 ゲートドライバ40は、n本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)に接続されている。ゲートドライバ40は、シフトレジスタおよび論理回路などによって構成されている。ところで、本実施形態に係る有機EL表示装置1においては、TFT特性およびOLED特性に基づいて、外部から送られる映像信号(上記データ信号DAの元となるデータ)に補正が施される。これに関し、各フレームにおいて、1つの行についてのTFT特性およびOLED特性の検出が行われる。すなわち、或るフレームに1行目についてのTFT特性およびOLED特性の検出が行われると、次のフレームには2行目についてのTFT特性およびOLED特性の検出が行われ、さらに次のフレームには3行目についてのTFT特性およびOLED特性の検出が行われる。このようにして、nフレーム期間をかけて、n行分のTFT特性およびOLED特性の検出が行われる。ここで、1行目についてのTFT特性およびOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、n本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)は、(k+1)フレーム目には図3に示すように駆動され、(k+2)フレーム目には図4に示すように駆動され、(k+n)フレーム目には図5に示すように駆動される。なお、図3~図5に関し、ハイレベルの状態がアクティブな状態である。また、走査線G1がアクティブな状態になっている期間のことを「選択期間」という。この選択期間は、画素回路11内に設けられている有機EL素子を発光させる準備を行うための期間である。図3~図5より把握されるように、各フレームにおいて、TFT特性およびOLED特性の検出が行われる行に対応する走査線のみが、他の走査線よりも長い期間アクティブな状態とされる。以下、任意のフレームに着目したときにTFT特性およびOLED特性の検出が行われている行のことを「モニタ行」といい、モニタ行以外の行のことを「非モニタ行」という。各フレームにおいて、非モニタ行に対応するモニタ制御線G2は非アクティブな状態で維持される。モニタ行に対応するモニタ制御線G2については、選択期間のうち最初から所定期間にはアクティブな状態にされ、選択期間の残りの期間には非アクティブな状態とされ、その後、選択期間開始時点のほぼ1フレーム期間後までの期間には再びアクティブな状態とされる。本実施形態においては、以上のようにn本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)が駆動されるよう、ゲートドライバ40が構成されている。
 ソースドライバ30は、m本のデータ線S(1)~S(m)およびm本のモニタ線M(1)~M(m)に接続されている。ソースドライバ30は、駆動信号発生回路31と、信号変換回路32と、m個の出力回路330からなる出力部33とによって構成されている。出力部33内のm個の出力回路330はそれぞれm本のデータ線S(1)~S(m)のうちの対応するデータ線Sおよびm本のモニタ線M(1)~M(m)のうちの対応するモニタ線Mに接続されている。
 駆動信号発生回路31には、シフトレジスタ,サンプリング回路,およびラッチ回路が含まれている。駆動信号発生回路31において、シフトレジスタは、ソースクロックに同期して、ソーススタートパルスを入力端から出力端へと順次に転送する。ソーススタートパルスのこの転送に応じて、シフトレジスタから各データ線Sに対応するサンプリングパルスが出力される。サンプリング回路は、サンプリングパルスのタイミングに従って1行分のデータ信号DAを順次に記憶する。ラッチ回路は、サンプリング回路に記憶された1行分のデータ信号DAをラッチストローブ信号に応じて取り込んで保持する。
 図6は、信号変換回路32の概略構成を示すブロック図である。図6に示すように、信号変換回路32は、階調信号発生回路321およびモニタ回路322によって構成されている。階調信号発生回路321には、D/Aコンバータが含まれている。上述のようにして駆動信号発生回路31内のラッチ回路に保持された1行分のデータ信号DAは、階調信号発生回路321内のD/Aコンバータによってアナログ電圧に変換される。その変換されたアナログ電圧は、出力部33内の出力回路330に与えられる。モニタ回路322には、A/Dコンバータが含まれている。モニタ回路322内のA/Dコンバータでは、モニタ線Mに現れTFT特性およびOLED特性を表すアナログ電圧が、デジタル信号であるモニタデータMOに変換される。そのモニタデータMOは、駆動信号発生回路31を介してコントロール回路20に与えられる。なお、モニタ回路322についての詳しい説明は後述する。
 出力部33内の出力回路330は、信号変換回路32内の階調信号発生回路321から与えられるアナログ電圧をバッファを介してデータ電圧としてデータ線Sに印加する。また、出力部33内の出力回路330は、切替制御信号SWに基づいて、モニタ線Mの接続先の切り替えを行う。なお、これについての詳しい説明は後述する。
 オフセットメモリ51およびゲインメモリ52は、外部から送られる映像信号の補正に使用される補正データを記憶している。詳しくは、オフセットメモリ51は補正データとしてオフセット値を記憶し、ゲインメモリ52は補正データとしてゲイン値を記憶している。なお、典型的には、表示部10内の画素の数に等しい数のオフセット値およびゲイン値がそれぞれオフセットメモリ51およびゲインメモリ52に記憶される。また、オフセット値を一時的に保持するためのバッファメモリ(以下、「オフセット値用バッファ」という。)とゲイン値を一時的に保持するためのバッファメモリ(以下、「ゲイン値用バッファ」という。)とが例えばコントロール回路20内に設けられている。コントロール回路20は、ソースドライバ30から与えられるモニタデータMOに基づいて、オフセットメモリ51内のオフセット値およびゲインメモリ52内のゲイン値を更新する。また、コントロール回路20は、オフセットメモリ51に記憶されたオフセット値およびゲインメモリ52に記憶されたゲイン値を読み出して映像信号の補正を行う。その補正によって得られたデータが、データ信号DAとしてソースドライバ30に送られる。
 <1.2 画素回路およびモニタ回路の構成>
 図7は、画素回路11およびモニタ回路322の構成を示す図である。なお、図7に示す画素回路11は、i行j列の画素回路11である。この画素回路11は、1個の有機EL素子OLED,3個のトランジスタT1~T3,および1個のコンデンサCstを備えている。トランジスタT1は画素を選択する入力トランジスタとして機能し、トランジスタT2は有機EL素子OLEDへの電流の供給を制御する駆動トランジスタとして機能し、トランジスタT3はTFT特性やOLED特性を検出するか否かを制御するモニタ制御トランジスタとして機能する。
 トランジスタT1は、データ線S(j)とトランジスタT2のゲート端子との間に設けられている。そのトランジスタT1に関し、走査線G1(i)にゲート端子が接続され、データ線S(j)にソース端子が接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。そのトランジスタT2に関し、トランジスタT1のドレイン端子にゲート端子が接続され、ハイレベル電源線ELVDDにドレイン端子が接続され、有機EL素子OLEDのアノード端子にソース端子が接続されている。トランジスタT3については、モニタ制御線G2(i)にゲート端子が接続され、有機EL素子OLEDのアノード端子にドレイン端子が接続され、モニタ線M(j)にソース端子が接続されている。コンデンサCstについては、トランジスタT2のゲート端子に一端が接続され、トランジスタT2のソース端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源線ELVSSに接続されている。
 本実施形態においては、画素回路11内のトランジスタT1~T3はすべてnチャネル型である。また、本実施形態においては、トランジスタT1~T3には、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)が採用されている。具体的には、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(O)を主成分とする酸化物半導体であるInGaZnOx(酸化インジウムガリウム亜鉛)(以下「IGZO」という。ただし、「IGZO」は登録商標である。)によりチャネル層が形成されたIGZO-TFTが採用されている。なお、IGZO-TFTなどの酸化物TFTは、特に、画素回路11に含まれるnチャネル型のトランジスタとして採用する場合に有効である。ただし、本発明は、pチャネル型の酸化物TFTの使用を排除するものではない。また、IGZO以外の酸化物半導体をチャネル層に用いたトランジスタを採用することもできる。例えば、インジウム,ガリウム,亜鉛,銅(Cu),シリコン(Si),錫(Sn),アルミニウム(Al),カルシウム(Ca),ゲルマニウム(Ge),および鉛(Pb)のうち少なくとも1つを含む酸化物半導体をチャネル層に用いたトランジスタを採用した場合にも同様の効果が得られる。さらにまた、本発明は、酸化物半導体をチャネル層に用いたトランジスタ以外のトランジスタの使用を排除するものでもない。
 図7に示すように、モニタ回路322には、電流測定部38と電圧測定部39とが含まれている。本実施形態においては、このモニタ回路322によって特性検出部が実現されている。電流測定部38および電圧測定部39とモニタ線M(j)との関係に関し、コントロール回路20から出力回路330に与えられる切替制御信号SWに基づいて電流測定部38または電圧測定部39のいずれかにモニタ線M(j)が接続されるように構成されている。なお、図7では、出力回路330については一部の構成のみを示している。
 図8は、電流測定部38の一構成例を示す図である。この電流測定部38には、オペアンプ381とコンデンサ382とスイッチ383とA/Dコンバータ384とが含まれている。オペアンプ381については、非反転入力端子はローレベル電源線ELVSSに接続され、反転入力端子はモニタ線Mに接続されている。コンデンサ382およびスイッチ383は、オペアンプ381の出力端子とモニタ線Mとの間に設けられている。以上のように、この電流測定部38は積分回路で構成されている。このような構成において、まず、制御クロック信号Sclkによってスイッチ383がオン状態にされる。これにより、オペアンプ381の出力端子-反転入力端子間が短絡状態となり、オペアンプ381の出力端子およびモニタ線Mの電位がローレベル電源線ELVSSの電位と等しくなる。電流の検出が行われる際には、制御クロック信号Sclkによってスイッチ383がオフ状態にされる。これにより、コンデンサ382の存在に起因して、モニタ線Mに流れる電流の大きさに応じてオペアンプ381の出力端子の電位が変化する。その電位の変化が、A/Dコンバータ384から出力されるデジタル信号に反映される。そして、そのデジタル信号がモニタデータMOとして電流測定部38から出力される。
 図9は、電圧測定部39の一構成例を示す図である。この電圧測定部39には、増幅器391とA/Dコンバータ392とが含まれている。このような構成において、定電流源37によって一定電流がモニタ線Mに流されている状態で、節点393とローレベル電源線ELVSSとの間の電圧が増幅器391によって増幅される。そして、増幅後の電圧がA/Dコンバータ392によってデジタル信号に変換される。そのデジタル信号がモニタデータMOとして電圧測定部39から出力される。
 <1.3 駆動方法>
 次に、本実施形態における駆動方法について説明する。上述したように、本実施形態においては、各フレームに1つの行のTFT特性およびOLED特性の検出が行われる。各フレームにおいて、モニタ行についてはTFT特性およびOLED特性の検出を行うための動作(以下、「特性検出動作」という。)が行われ、非モニタ行については通常動作が行われる。すなわち、1行目についてのTFT特性およびOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、図10に示すように、各行の動作は推移する。また、TFT特性およびOLED特性の検出が行われると、その検出結果を用いて、オフセットメモリ51およびゲインメモリ52の更新が行われる。そして、オフセットメモリ51およびゲインメモリ52に記憶されている補正データを用いて映像信号の補正が行われる。
 <1.3.1 画素回路の動作>
 <1.3.1.1 通常動作>
 各フレームにおいて、非モニタ行では、通常動作が行われる。非モニタ行に含まれる画素回路11では、目標輝度に対応するデータ電圧に基づく書き込みが選択期間に行われた後、トランジスタT1はオフ状態で維持される。データ電圧に基づく書き込みによってトランジスタT2はオン状態となる。トランジスタT3についてはオフ状態で維持される。以上より、図11で符号71で示す矢印のように、トランジスタT2を介して有機EL素子OLEDに駆動電流が供給される。これにより、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
 <1.3.1.2 特性検出動作>
 各フレームにおいて、モニタ行では、特性検出動作が行われる。図12は、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図12では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。モニタ行については、図12に示すように、1フレーム期間には、TFT特性の検出を行うための期間(以下、「TFT特性検出期間」という。)Taと、黒色表示に相当するデータを書き込むための期間(以下、「黒書込期間」という。)Tbと、有機EL素子OLEDを発光させるための期間(以下、「発光期間」という。)Tcとが含まれている。選択期間のうちの最初の所定期間がTFT特性検出期間Taとなっていて、選択期間のうちのTFT特性検出期間Ta以外の期間が黒書込期間Tbとなっている。なお、本実施形態においては、TFT特性検出期間Taによって第1期間が実現され、黒書込期間Tbによって第2期間が実現されている。
 TFT特性検出期間Taには、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、TFT特性検出期間T1には、TFT特性を検出するための参照電圧Vrefがデータ線S(j)に印加される。これにより、参照電圧Vrefの書き込みが行われ、トランジスタT2もオン状態となる。その結果、図13で符号72で示す矢印のように、トランジスタT2を流れる電流は、トランジスタT3を介してモニタ線M(j)に出力される。さらに、TFT特性検出期間Taには、切替制御信号SWによってモニタ線M(j)は電流測定部38に接続される。これにより、モニタ線M(j)に出力された電流(シンク電流)が、電流測定部38によって測定される。以上のようにして、トランジスタT2のゲート-ソース間の電圧を所定の大きさ(参照電圧Vrefの大きさ)にした状態で当該トランジスタT2のドレイン-ソース間を流れる電流の大きさが測定され、TFT特性が検出される。
 ところで、本実施形態においては、図14に示すように、TFT特性検出期間Taには参照電圧Vrefとして2種類の参照電圧(第1参照電圧Vref1および第2参照電圧Vref2)がデータ線S(j)に印加される。これにより、第1参照電圧Vref1に基づくTFT特性と第2参照電圧Vref2に基づくTFT特性とが検出される。
 黒書込期間Tbには、走査線G1(i)はアクティブな状態で維持され、モニタ制御線G2(i)は非アクティブな状態とされる。これにより、トランジスタT1はオン状態で維持され、トランジスタT3はオフ状態となる。また、黒書込期間Tbには、黒色表示に相当する電圧Vblackがデータ線S(j)に印加されるので、トランジスタT2はオフ状態となる。以上より、トランジスタT2には電流は流れない。なお、黒書込期間Tbには、“オフセットメモリ51に格納されているオフセット値とTFT特性検出期間Taに求められたオフセット値との差分”(第1の値)と“ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値とから計算される、発光電圧相当分の電圧”(第2の値)との和の電圧がモニタ線M(j)に印加される。これにより、有機EL素子OLEDの劣化の程度に応じた電圧が発光期間Tcの前にモニタ線M(j)に印加され、発光期間Tcにおける充電時間の長さが短縮される。
 発光期間Tcには、走査線G1(i)は非アクティブな状態とされ、モニタ制御線G2(i)はアクティブな状態とされる。ここで、発光期間Tcの前の黒書込期間Tbに黒色表示に相当する電圧Vblackに基づく書き込みが行われているので、トランジスタT2はオフ状態になっている。また、発光期間TcのうちのOLED特性を検出するための期間には、モニタ線M(j)は電圧測定部39に接続され、一定電流がモニタ線M(j)に供給される。これにより、図15で符号73で示す矢印のように、モニタ線M(j)から有機EL素子OLEDに一定電流であるデータ電流が供給される。この状態において、電圧測定部39によって、有機EL素子OLEDの発光電圧が測定される。以上のように、有機EL素子OLEDに一定の電流が与えられた状態で有機EL素子OLEDの陽極の電圧を測定することによって、OLED特性が検出される。
 ところで、発光期間Tcに有機EL素子OLEDに供給されるデータ電流は一定電流である。このため、本実施形態においては、所望の階調表示を行うために、有機EL素子OLEDが発光する時間の長さが調整される。例えば、上記一定電流を白色表示に相当する電流とし、階調が高いほど発光時間を長くし、階調が低いほど発光時間を短くする。これを実現するために、例えば、図16に示すように、階調が高いほどモニタ線Mが電圧測定部39に接続されている期間Tc1を長くし、階調が低いほどモニタ線Mが電流測定部38に接続されている期間Tc2を長くする。その際、ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値との差分から求められる劣化補正係数に基づいて、上記期間Tc1,Tc2の長さが調整される。以上のように、1フレーム期間での発光電流の積分値が所望の階調に相当する値となるよう、有機EL素子OLEDが発光する時間の長さが調整される。換言すれば、目標輝度に応じて、一定電流を有機EL素子OLEDに与える時間の長さが調整される。なお、1フレーム期間での発光電流の積分値が所望の階調に相当する値になるのであれば、発光期間Tc中に電流値を変化させて、複数の動作点での特性(電流-電圧特性)を測定するようにしても良い。また、有機EL素子OLEDが発光する時間の長さを一定にして、階調に応じて電流値を変化させるようにしても良い。この場合、ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値との差分から求められる劣化補正係数に基づいて、モニタ線Mに供給する電流の大きさを求めると良い。なお、ゲインメモリ52にはTFT特性およびOLED特性の双方を考慮したゲイン値が格納されているので、ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値との差分はOLED特性を表す値となる。
 また、本実施形態においては、図17に示すように、非モニタ行よりもモニタ行の方が選択期間の長さが長い。従って、モニタ行と非モニタ行とで発光期間の長さが異なっている。そこで、1フレーム期間での発光電流の積分値が所望の階調に相当する値となるよう、データ電流の調整が行われる。
 なお、目標とする階調が黒色表示に相当する階調あるいはそれに近い階調のときにはOLED特性の検出を行わないようにすることが好ましい。すなわち、n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素についてはOLED特性の検出が行われないようにすることが好ましい。これにより、不必要な発光を防止することができる。有機EL素子OLEDは非発光であれば劣化しないので、特性を検出する必要がない。
 <1.3.2 オフセットメモリおよびゲインメモリの更新>
 次に、オフセットメモリ51に格納されているオフセット値およびゲインメモリ52に格納されているゲイン値がどのように更新されるかについて説明する。図18は、オフセットメモリ51およびゲインメモリ52の更新の手順を説明するためのフローチャートである。なお、ここでは1つの画素に対応するオフセット値およびゲイン値に着目する。
 まず、TFT特性検出期間Taの前半に、第1参照電圧Vref1に基づくTFT特性の検出が行われる(ステップS110)。このステップS110によって、映像信号を補正するためのオフセット値が求められる。ステップS110で求められたオフセット値は、オフセット値用バッファに格納される(ステップS120)。TFT特性検出期間Taの後半には、第2参照電圧Vref2に基づくTFT特性の検出が行われる(ステップS130)。このステップS130によって、映像信号を補正するためのゲイン値が求められる。ステップS130で求められたゲイン値は、ゲイン値用バッファに格納される(ステップS140)。
 その後、発光期間Tcに、OLED特性の検出が行われる(ステップS150)。このステップS150によって、映像信号を補正するためのオフセット値および劣化補正係数が求められる。そして、オフセット値用バッファに格納されているオフセット値とステップS150で求められたオフセット値との和が、新たなオフセット値としてオフセットメモリ51に格納される(ステップS160)。また、ゲイン値用バッファに格納されているゲイン値とステップS150で求められた劣化補正係数との積が、新たなゲイン値としてゲインメモリ52に格納される(ステップS170)。
 以上のようにして、1つの画素に対応するオフセット値およびゲイン値の更新が行われる。本実施形態においては、各フレームに1つの行についてのTFT特性およびOLED特性の検出が行われるので、1フレームにつきオフセットメモリ51内のm個のオフセット値およびゲインメモリ52内のm個のゲイン値の更新が行われる。
 なお、本実施形態においては、ステップS110,ステップS130,およびステップS150での検出結果に基づいて得られるデータ(オフセット値,ゲイン値,劣化補正係数)によって特性データが実現されている。
 ところで、上述したように、発光期間Tcには有機EL素子OLEDの発光電圧の測定が行われる。その測定結果としての検出電圧が大きいほど、有機EL素子OLEDの劣化の程度は大きい。従って、検出電圧が大きいほど、オフセット値が大きくかつゲイン値が大きくなるようにオフセットメモリ51およびゲインメモリ52の更新が行われる。
 <1.3.3 映像信号の補正>
 本実施形態においては、駆動トランジスタの劣化および有機EL素子OLEDの劣化を補償するために、オフセットメモリ51およびゲインメモリ52に格納されている補正データを用いて、外部から送られる映像信号の補正が行われる。以下、映像信号のこの補正について説明する。
 外部から送られる映像信号の補正は、コントロール回路20内の映像信号補正部(不図示)で行われる。図19は、映像信号補正部の構成を示す図である。映像信号補正部は、LUT211,乗算部212,および加算部213を備えている。このような構成において、各画素に対応する映像信号の値は次のように補正される。
 まず、LUT211を用いて、外部から送られる映像信号にガンマ補正が施される。すなわち、映像信号が示す階調Pがガンマ補正によって制御電圧Vcに変換される。乗算部212は、制御電圧Vcとゲインメモリ52から読み出されたゲイン値Bとを受け取り、それらを乗じて得られる値“Vc・B”を出力する。加算部213は、乗算部212から出力された値“Vc・B”とオフセットメモリ51から読み出されたオフセット値Vtとを受け取り、それらを加算することによって得られる値“Vc・B+Vt”を出力する。以上のようにして得られた値“Vc・B+Vt”がデータ信号DAとしてコントロール回路20からソースドライバ30に送られる。
 <1.3.4 駆動方法のまとめ>
 図1は、TFT特性およびOLED特性の検出に関連する動作の概略を説明するためのフローチャートである。まず、モニタ行において、TFT特性検出期間TaにTFT特性の検出が行われる(ステップS10)。次に、モニタ行において、発光期間TcにOLED特性の検出が行われる(ステップS20)。その後、ステップS10およびステップS20での検出結果を用いて、オフセットメモリ51およびゲインメモリ52の更新が行われる。そして、オフセットメモリ51およびゲインメモリ52に格納されている補正データを用いて、外部から送られる映像信号の補正が行われる(ステップS40)。
 なお、本実施形態においては、ステップS10によって第1の特性検出ステップが実現され、ステップS20によって第2の特性検出ステップが実現され、ステップS30によって補正データ記憶ステップが実現され、ステップS40によって映像信号補正ステップが実現されている。また、ステップS10の処理によって第1の特性検出処理が実現され、ステップS20の処理によって第2の特性検出処理が実現されている。
 <1.4 効果>
 本実施形態によれば、各フレームにおいて1つの行についてのTFT特性およびOLED特性の検出が行われる。モニタ行に着目すると、1フレーム期間において、選択期間中の一部の期間(TFT特性検出期間Ta)にTFT特性の検出が行われ、発光期間中にOLED特性の検出が行われる。そして、TFT特性の検出結果およびOLED特性の検出結果の双方を考慮して求められた補正データ(オフセット値およびゲイン値)を用いて、外部から送られる映像信号が補正される。このようにして補正された映像信号(上記データ信号DA)に基づくデータ電圧がデータ線Sに印加されるので、各画素回路11内の有機EL素子OLEDを発光させる際に、駆動トランジスタの劣化および有機EL素子OLEDの劣化が補償されるような大きさの駆動電流が有機EL素子OLEDに供給される(図20参照)。ここで、OLED特性の検出については、上述のように発光期間中に行われる。従って、TFT特性やOLED特性を検出するために発光期間の長さが従来よりも短くなることはない。以上のように、本実施形態によれば、有機EL表示装置において駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 また、本実施形態においては、画素回路11内のトランジスタT1~T3に酸化物TFT(具体的にはIGZO-TFT)が採用されているので、充分なS/N比を確保できるという効果が得られる。これについて以下に説明する。IGZO-TFTとLTPS(Low Temperature Poly silicon)-TFTとを比較すると、LTPS-TFTよりもIGZO-TFTの方がオフ電流が極めて小さい。例えば、画素回路11内のトランジスタT3にLTPS-TFTが採用されている場合には、オフ電流は最大1pA程度となる。これに対して、画素回路11内のトランジスタT3にIGZO-TFTが採用されている場合には、オフ電流は最大10fA程度となる。従って、例えば1000行分のオフ電流は、LTPS-TFTが採用されている場合には最大1nA程度となり、IGZO-TFTが採用されている場合には最大10pA程度となる。検出電流については、いずれが採用されている場合にも10~100nA程度となる。ところで、モニタ線Mは、モニタ行の画素回路11だけでなく非モニタ行の画素回路11とも接続されている。従って、モニタ線MのS/N比は、非モニタ行のトランジスタT3の漏れ電流の合計に依存する。具体的には、モニタ線MのS/N比は「検出電流/(漏れ電流×非モニタ行の行数)」で表される。以上のことから、例えば、“Landscape FHD”の表示部10を有する有機EL表示装置においては、LTPS-TFTが採用されている場合にはS/N比は10程度となるのに対し、IGZO-TFTが採用されている場合にはS/N比は1000程度となる。このように、本実施形態においては、電流の検出を行う際に充分なS/N比を確保することができる。
 <1.5 変形例>
 以下、上記第1の実施形態の変形例について説明する。なお、以下においては、第1の実施形態と異なる点についてのみ詳しく説明し、第1の実施形態と同様の点については説明を省略する。
 <1.5.1 第1の変形例>
 図21は、第1の実施形態の第1の変形例に係るアクティブマトリクス型の有機EL表示装置2の全体構成を示すブロック図である。本変形例においては、第1の実施形態におけるオフセットメモリ51およびゲインメモリ52に代えて、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bが設けられている。すなわち、本変形例においては、オフセットメモリおよびゲインメモリのそれぞれが、駆動トランジスタの劣化を補償するために用いられるメモリと有機EL素子OLEDの劣化を補償するために用いられるメモリとに分けられている。
 TFT用オフセットメモリ51aは、TFT特性の検出結果に基づくオフセット値を記憶する。OLED用オフセットメモリ51bは、OLED特性の検出結果に基づくオフセット値を記憶する。TFT用ゲインメモリ52aは、TFT特性の検出結果に基づくゲイン値を記憶する。OLED用ゲインメモリ52bは、OLED特性の検出結果に基づく劣化補正係数を記憶する。
 特性検出動作(図12)に関し、本変形例においては、黒書込期間Tbには、“OLED用オフセットメモリ51bに格納されているオフセット値”と“OLED用ゲインメモリ52bに格納されている劣化補正係数から計算される、発光電圧相当分の電圧”との和の電圧がモニタ線Mに印加される。また、有機EL素子OLEDの発光時間の長さは、OLED用ゲインメモリ52bに格納されている劣化補正係数に基づいて調整される。有機EL素子OLEDの発光時間の長さを一定にして階調に応じて電流値を変化させる構成を採用する場合には、OLED用ゲインメモリ52bに格納されている劣化補正係数に基づいて、モニタ線Mに供給する電流の大きさを求めると良い。
 次に、本変形例におけるオフセットメモリおよびゲインメモリの更新について説明する。図22は、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bの更新の手順を説明するためのフローチャートである。なお、ここでは1つの画素に対応するオフセット値およびゲイン値に着目する。
 まず、TFT特性検出期間Taの前半に、第1参照電圧Vref1に基づくTFT特性の検出が行われる(ステップS210)。このステップS210によって、映像信号を補正するためのオフセット値が求められる。そして、ステップS210で求められたオフセット値が、新たなオフセット値としてTFT用オフセットメモリ51aに格納される(ステップS220)。TFT特性検出期間Taの後半には、第2参照電圧Vref2に基づくTFT特性の検出が行われる(ステップS230)。このステップS230によって、映像信号を補正するためのゲイン値が求められる。そして、ステップS230で求められたゲイン値が、新たなゲイン値としてTFT用ゲインメモリ52aに格納される(ステップS240)。その後、発光期間Tcに、OLED特性の検出が行われる(ステップS250)。このステップS250によって、映像信号を補正するためのオフセット値および劣化補正係数が求められる。そして、ステップS250で求められたオフセット値が、新たなオフセット値としてOLED用オフセットメモリ51bに格納される(ステップS260)。また、ステップS250で求められた劣化補正係数が、新たな劣化補正係数としてOLED用ゲインメモリ52bに格納される(ステップS270)。本変形例においては、以上のようにして、オフセットメモリおよびゲインメモリの更新が行われる。
 次に、本変形例における効果について説明する。特性検出動作(図12)に関し、仮に、黒書込期間Tbにモニタ線Mの電位がローレベル電源線ELVSSの電位と等しくされた場合、発光期間Tcにおける書き込みの際にモニタ線Mの容量によっては遅延が生じうる。有機EL素子の発光電圧と書き込み直前におけるモニタ線Mの電位との差をVdとし、モニタ線Mに書き込む電流の大きさをi_Lとし、モニタ線Mの負荷をCmpとすると、充電に要する時間t_chargeは、次式(1)で表される。
 t_charge=Cmp・Vd/i_L       ・・・(1)
ここで、Vdが3Vであって、i_Lが10nAであって、Cmpが30pFであれば、充電に要する時間t_chargeは9ミリ秒となる。駆動周波数が60Hzのとき、1フレーム期間の長さは約16ミリ秒であるので、充電のために1フレーム期間の半分以上の期間が費やされる。この点、本変形例においては、黒書込期間Tbに、“OLED用オフセットメモリ51bに格納されているオフセット値”と“OLED用ゲインメモリ52bに格納されている劣化補正係数から計算される、発光電圧相当分の電圧”との和の電圧がモニタ線Mに印加される。すなわち、発光期間Tcの前に、モニタ線Mの電位が有機EL素子OLEDの発光閾値に近い電位になるよう予めモニタ線Mが充電される。これにより、上式(1)のVdが小さくなり、充電に要する時間が短縮される。
 また、本変形例によれば、モニタ行での特性検出動作の際に、発光期間Tcにモニタ線Mから有機EL素子OLEDに供給される電流がOLED用ゲインメモリ52bに格納されている劣化補正係数に基づいて調整される。すなわち、有機EL素子OLEDの劣化の程度に応じて電流の調整が行われるので、電流効率の低下が補償される。なお、非モニタ行での通常動作の際には、駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を考慮した補償が行われる。
 さらに、本変形例においては、オフセットメモリおよびゲインメモリのそれぞれが、駆動トランジスタの劣化を補償するために用いられるメモリと有機EL素子OLEDの劣化を補償するために用いられるメモリとに分けられている。このため、有機EL素子OLEDの劣化のみを考慮して有機EL素子に供給する電流を調整することが可能となる。その際、図23に示すように劣化の最も少ない画素の劣化レベルに合わせて電流を増加させることによって、焼き付きに対する補償を行うことが可能となる。
 <1.5.2 第2の変形例>
 上記第1の実施形態においては、図7に示すように、モニタ線Mは電流測定部38または電圧測定部39のいずれかに接続される構成となっていた。しかしながら、本発明はこれに限定されず、モニタ線Mをハイインピーダンスの状態にすることが可能な構成(本変形例の構成)を採用することもできる。
 図24は、本変形例におけるモニタ線Mの一端部近傍の構成を示す図である。図24から把握されるように、本変形例においては、切替制御信号SWによって、モニタ線Mは、電流測定部38に接続された状態または電圧測定部39に接続された状態またはハイインピーダンスの状態のいずれかとされる。
 ところで、第1の実施形態においては、発光期間Tc(図12参照)における有機EL素子OLEDの発光時間の長さの調整に関し、図16に示すように、階調が高いほどモニタ線Mが電圧測定部39に接続されている期間Tc1を長くし、階調が低いほどモニタ線Mが電流測定部38に接続されている期間Tc2を長くしていた。これに対して、本変形例によれば、モニタ線Mを電流測定部38に接続する代わりに、モニタ線Mをハイインピーダンスの状態にすることができる。
 <1.5.3 第3の変形例>
 上記第1の実施形態においては、1つの列につき電流測定部38と電圧測定部39とからなる1つのモニタ回路322が設けられていることを前提に説明していた。しかしながら、本発明はこれに限定されず、1つのモニタ回路322を複数の列で共有化する構成(本変形例の構成)を採用することもできる。
 本変形例においては、上記第2の変形例(図24参照)と同様、モニタ線Mは、電流測定部38に接続された状態または電圧測定部39に接続された状態またはハイインピーダンスの状態のいずれかとされる。また、本変形例においては、モニタ線Mの一端部近傍は図25に示す構成となっている。すなわち、K本のモニタ線M毎に1つのモニタ回路322が設けられている。
 以上のような構成において、各フレームにおいて、上記K本のモニタ線Mに対応するK個の列のうちの1つの列のみがTFT特性およびOLED特性の検出を行う列(以下、「特性検出対象列という。)とされる。モニタ行での特性検出動作の際、特性検出対象列以外の列のモニタ線Mは、ハイインピーダンスの状態で維持される。また、モニタ行での特性検出動作の際、特性検出対象列以外の列では、データ線Dには参照電圧Vrefではなく通常のデータ電圧(目標輝度に対応する電圧)が印加される。発光期間Tc中、モニタ行ではトランジスタT3はオン状態になっているが、特性検出対象列以外の列では、モニタ線Mはハイインピーダンスの状態となっている。このため、特性検出対象列以外の列では、モニタ線Mには電流が流れず、有機EL素子OLEDに電流が流れ、通常動作と同様に有機EL素子OLEDが発光する。モニタ行のうちの特性検出対象列では、上述した特性検出動作が行われる。
 例えば、“Landscape FHD”の表示部10を有し駆動周波数が60Hzである有機EL表示装置では、1列分のモニタ(TFT特性およびOLED特性の検出)に要する時間は18秒(=1080/60)となる。ここで、各画素に対応するオフセット値およびゲイン値が仮に30分(1800秒)毎に更新されるようにするには、100本のモニタ線M毎に1つのモニタ回路322を設ける構成にすれば良い。
 以上より、本変形例によれば、有機EL表示装置において、回路面積の増大を抑制しつつ駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 <1.5.4 第4の変形例>
 上記第1の実施形態によれば、有機EL表示装置1の短時間運転が繰り返されると、表示部10の上方の行と表示部10の下方の行との間で、TFT特性およびOLED特性の検出の回数に大きな差が生じる。そこで、本変形例に係る有機EL表示装置3においては、図26に示すように、コントロール回路20内にモニタ行を記憶するためのモニタ行記憶部201が設けられている。このような構成において、電源オフの際に、最後にTFT特性およびOLED特性の検出が行われた行を特定する情報がモニタ行記憶部201に格納される。この処理によってモニタ領域記憶ステップが実現されている。電源オン後には、モニタ行記憶部201に格納されている情報に基づいて特定される行の次の行から、TFT特性およびOLED特性の検出が行われる。なお、本実施形態においては、モニタ行記憶部201によってモニタ領域記憶部が実現されている。
 以上より、本変形例によれば、表示部10の上方の行と表示部10の下方の行との間でTFT特性およびOLED特性の検出の回数に差が生じることが防止される。このため、駆動トランジスタの劣化および有機EL素子OLEDの劣化に対する補償を画面全体で一様に行うことが可能となり、輝度のばらつきの発生が効果的に防止される。
 なお、電源オン後に最初にTFT特性およびOLED特性の検出が行われる行は、モニタ行記憶部201に格納されている情報に基づいて特定される行の次の行には限定されず、モニタ行記憶部201に格納されている情報に基づいて特定される行の近傍の行であっても良い。例えば、電源オフ直前と電源オン直後とで特性検出動作が重複して行われる行が存在しても良い。
 また、最後にTFT特性およびOLED特性の検出が行われた列を特定する情報を記憶するようにしても良いし、最後にTFT特性およびOLED特性の検出が行われた行および列の双方を特定する情報を記憶するようにしても良い。
 <1.5.5 第5の変形例>
 図27は、有機EL素子の電流-電圧特性の温度依存性について説明するための図である。図27には、温度TE1における有機EL素子の電流-電圧特性,温度TE2における有機EL素子の電流-電圧特性,および温度TE3における有機EL素子の電流-電圧特性を示している。なお、“TE1>TE2>TE3”である。図27から把握されるように、有機EL素子に所定の電流を供給するためには、温度が低くなるほど電圧を高くする必要がある。このように、有機EL素子の電流-電圧特性は、温度に大きく依存している。そこで、温度変化を補償することのできる構成(本変形例の構成)を採用することが好ましい。
 図28は、本変形例における有機EL表示装置4の全体構成を示すブロック図である。本変形例においては、上記第1の実施形態における構成要素に加えて、温度センサ60が設けられている。また、コントロール回路20には、温度変化補償部202が設けられている。温度センサ60は、随時、温度を測定した結果である温度情報TEをコントロール回路20に与える。温度変化補償部202は、ソースドライバ30から与えられるモニタデータMOに対して、温度情報TEに基づく補正を施す。詳しくは、温度変化補償部202は、検出時の温度に対応するモニタデータMOの値を或る標準温度に対応する値に変換し、その変換で得られた値に基づいてオフセットメモリ51内のオフセット値およびゲインメモリ52内のゲイン値を更新する。
 なお、温度センサ60の処理によって温度検出ステップが実現され、温度変化補償部202の処理によって温度変化補償ステップが実現されている。
 図29は、本変形例におけるオフセットメモリ51およびゲインメモリ52の更新の手順を説明するためのフローチャートである。なお、本変形例(図29)におけるステップS310~ステップS350の処理は上記第1の実施形態(図18)におけるステップS110~ステップS150の処理と同じであり、本変形例(図29)におけるステップS360~ステップS370の処理は上記第1の実施形態(図18)におけるステップS160~ステップS170の処理と同じである。本変形例においては、OLED特性の検出が行われた後、オフセット値およびゲイン値の更新が行われる前に、温度センサ60によって与えられた温度情報TEに基づいて、オフセット値およびゲイン値に補正が施される(ステップS355)。
 以上より、本変形例によれば、外部から送られる映像信号は、温度変化を考慮した補正データ(オフセット値およびゲイン値)によって補正される。このため、有機EL表示装置において、温度の変化に関わらず駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を同時に補償することが可能となる。
 <1.5.6 第6の変形例>
 上記第1の実施形態においては、有機EL素子OLEDに一定の電流が与えられた状態で有機EL素子OLEDの陽極の電圧を測定することによってOLED特性の検出が行われていた。しかしながら、本発明はこれに限定されず、有機EL素子OLEDに一定の電圧が与えられた状態で有機EL素子OLEDに流れる電流を測定することによってOLED特性の検出が行われる構成(本変形例の構成)であっても良い。
 本変形例においては、TFT特性の検出もOLED特性の検出も電流を測定することによって行われる。このため、電圧を測定するための構成要素についてはモニタ回路内に設ける必要がない。従って、本変形例においては、モニタ回路の構成が上記第1の実施形態とは異なっている。図30は、本変形例におけるモニタ回路323の詳細な構成を示す図である。このモニタ回路323には、オペアンプ3231とコンデンサ3232と第1のスイッチ3233と第2のスイッチ3234とオフセット・増幅率調整部3235とA/Dコンバータ3236とが含まれている。オペアンプ3231については、非反転入力端子は第2のスイッチ3234に接続され、反転入力端子はモニタ線Mに接続されている。コンデンサ3232および第1のスイッチ3233は、オペアンプ3231の出力端子とモニタ線Mとの間に設けられている。オフセット・増幅率調整部3235は、オペアンプ3231の出力端子とA/Dコンバータ3236との間に設けられている。第2のスイッチ3234は、オペアンプ3231の非反転入力端子の電位をローレベル電源線ELVSSの電位とOLED特性検出用の電位Velとの間で切り替えるためのスイッチとして機能する。以上のように、このモニタ回路323は積分回路で構成されている。なお、OLED特性検出用の電位Velは、“オフセットメモリ51に格納されているオフセット値とTFT特性検出期間Taに求められたオフセット値との差分”(第1の値)と“ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値とから計算される、発光電圧相当分の電圧”(第2の値)との和に相当する電位である。
 以上のような構成において、TFT特性を検出するために電流の測定が行われる際には、第2制御クロック信号Sclk2によってオペアンプ3231の非反転入力端子の電位がローレベル電源線ELVSSの電位にされた状態で、上記第1の実施形態と同様の動作が行われる。OLED特性を検出するために電流の測定が行われる際には、まず、第2制御クロック信号Sclk2によってオペアンプ3231の非反転入力端子の電位がOLED特性検出用の電位Velにされるとともに、第1制御クロック信号Sclk1によって第1のスイッチ3233がオン状態にされる。これにより、オペアンプ3231の出力端子-反転入力端子間が短絡状態となり、モニタ線Mの電位がOLED特性検出用の電位Velと等しくなる。そして、第1制御クロック信号Sclk1によって第1のスイッチ3233がオフ状態にされる。これにより、コンデンサ3232の存在に起因して、モニタ線Mに流れる電流(有機EL素子OLEDに供給されるソース電流)の大きさに応じてオペアンプ3231の出力端子の電位が変化する。その電位の変化が、A/Dコンバータ3236から出力されるデジタル信号に反映される。そして、そのデジタル信号がモニタデータMOとしてモニタ回路323から出力される。なお、オフセット・増幅率調整部3235は、TFT特性検出の際とOLED特性検出の際とでA/Dコンバータ3236への入力レベルを同じにする機能を有している。
 本変形例においては、以上のようにして、有機EL素子OLEDに一定の電圧が与えられた状態で有機EL素子OLEDに流れる電流を測定することによってOLED特性の検出が行われる。これにより、測定時間の短縮が可能となる。
 なお、有機EL素子OLEDに与える一定の電圧の大きさについては、ゲインメモリ52に格納されているゲイン値とTFT特性検出期間Taに求められたゲイン値との差分から求められる劣化補正係数に基づいて求めると良い。また、オフセットメモリ51およびゲインメモリ52に代えて、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bが設けられている場合(第1の変形例を参照)には、OLED用ゲインメモリ52bに格納されている劣化補正係数に基づいて、有機EL素子OLEDに与える一定の電圧の大きさを求めると良い。
 また、OLED特性の検出の際には、目標輝度に応じて、一定電圧を有機EL素子OLEDに与える時間の長さが調整されることが好ましい。また、1フレーム期間での発光電流の積分値が所望の階調に相当する値になるのであれば、発光期間Tc中に電圧値を変化させて、複数の動作点での特性(電流-電圧特性)を測定するようにしても良い。
 <2.1 第2の実施形態>
 <2.1 全体構成>
 図31は、本発明の第2の実施形態に係るアクティブマトリクス型の有機EL表示装置5の全体構成を示すブロック図である。図31に示すように、本実施形態においては、表示部10aには、m本のデータ線S(1)~S(m),m本のモニタ線M(1)~M(m),n本の走査線G1(1)~G1(n),n本のモニタ制御線G2(1)~G2(n)に加えて、n本のハイレベル電源制御線G3(1)~G3(n)が設けられている。走査線G1(1)~G1(n)とモニタ制御線G2(1)~G2(n)とハイレベル電源制御線G3(1)~G3(n)とは互いに平行になっている。なお、以下においては、n本のハイレベル電源制御線G3(1)~G3(n)を互いに区別する必要がない場合にはハイレベル電源制御線を単に符号G3で表す。コントロール回路20およびソースドライバ30については、上記第1の実施形態と同様であるので説明を省略する。
 本実施形態におけるゲートドライバ40aは、n本の走査線G1(1)~G1(n),n本のモニタ制御線G2(1)~G2(n),およびn本のハイレベル電源制御線G3(1)~G3(n)に接続されている。ゲートドライバ40aは、シフトレジスタおよび論理回路などによって構成されている。ところで、本実施形態においては、上記第1の実施形態とは異なり、各フレームにおいて、1つの行についてのTFT特性の検出または1つの行についてのOLED特性の検出のいずれかが行われる。なお、本実施形態に関しては、TFT特性の検出またはOLED特性の検出が行われている行のことを「モニタ行」という。また、以下においては、TFT特性の検出が行われるフレームを「TFT特性検出フレーム」といい、OLED特性の検出が行われるフレームを「OLED特性検出フレーム」という。
 本実施形態においては、或るフレームに1行目についてのOLED特性の検出が行われると、次のフレームには2行目についてのOLED特性の検出が行われ、さらに次のフレームには3行目についてのOLED特性の検出が行われる。その後、4~n行目についてのOLED特性の検出が順次に行われる。n行目についてのOLED特性の検出が行われた後、1行目についてのTFT特性の検出が行われる。そして、2~n行目についてのTFT特性の検出が順次に行われる。このようにTFT特性の検出とOLED特性の検出とは異なるフレームで行われる。但し、TFT特性検出フレームとOLED特性検出フレームとでゲートドライバ40aは同じように走査線G1,モニタ制御線G2,およびハイレベル電源制御線G3を駆動する。
 ここで、1行目についてのOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、n本の走査線G1(1)~G1(n),n本のモニタ制御線G2(1)~G2(n),およびn本のハイレベル電源制御線G3(1)~G3(n)は、(k+1)フレーム目には図32に示すように駆動され、(k+2)フレーム目には図33に示すように駆動され、(k+n)フレーム目には図34に示すように駆動される。TFT特性の検出が行われるフレームについても同様である。図32~図34より把握されるように、各フレームにおいて、選択期間(走査線G1がアクティブな状態になっている期間)の長さは全ての行で同じにされる。すなわち、本実施形態においては、モニタ行であるか否かに関わらず、選択期間の長さは一定である。また、各フレームにおいて、非モニタ行に対応するモニタ制御線G2は非アクティブな状態で維持される。モニタ行に対応するモニタ制御線G2については、選択期間開始時点からその1フレーム期間経過後までアクティブな状態とされる。さらに、各フレームにおいて、非モニタ行に対応するハイレベル電源制御線G3はアクティブな状態で維持される。モニタ行に対応するハイレベル電源制御線G3については、選択期間開始時点からその1フレーム期間経過後まで非アクティブな状態とされる。本実施形態においては、以上のようにn本の走査線G1(1)~G1(n),n本のモニタ制御線G2(1)~G2(n),およびn本のハイレベル電源制御線G3(1)~G3(n)が駆動されるよう、ゲートドライバ40aが構成されている。
 また、本実施形態においては、上記第1の実施形態の第1の変形例と同様、オフセットメモリおよびゲインメモリのそれぞれが、駆動トランジスタの劣化を補償するために用いられるメモリと有機EL素子OLEDの劣化を補償するために用いられるメモリとに分けられている。すなわち、この有機EL表示装置5には、外部から送られる映像信号の補正に使用される補正データを記憶するための構成要素として、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bが設けられている。
 <2.2 画素回路およびモニタ回路の構成>
 図35は、本実施形態における画素回路11aおよびモニタ回路322の構成を示す図である。なお、図35に示す画素回路11aは、i行j列の画素回路11である。モニタ回路322の構成については、上記第1の実施形態と同様であるので説明を省略する。但し、本実施形態においては、モニタ線Mが電流測定部38に接続されているときにはモニタ線Mにハイレベル電源電圧ELVDDが供給される構成となっている。
 画素回路11aは、1個の有機EL素子OLED,4個のトランジスタT1~T4,および1個のコンデンサCstを備えている。トランジスタT1は画素を選択する入力トランジスタとして機能し、トランジスタT2は有機EL素子OLEDへの電流の供給を制御する駆動トランジスタとして機能し、トランジスタT3はTFT特性やOLED特性を検出するか否かを制御するモニタ制御トランジスタとして機能し、トランジスタT4はハイレベル電源線ELVDDからの駆動電流の供給を制御するハイレベル電源制御トランジスタとして機能する。
 トランジスタT1は、データ線S(j)とトランジスタT2のゲート端子との間に設けられている。そのトランジスタT1に関し、走査線G1(i)にゲート端子が接続され、データ線S(j)にソース端子が接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。そのトランジスタT2に関し、トランジスタT1のドレイン端子にゲート端子が接続され、トランジスタT4のソース端子にドレイン端子が接続され、有機EL素子OLEDのアノード端子にソース端子が接続されている。トランジスタT3については、モニタ制御線G2(i)にゲート端子が接続され、トランジスタT2のドレイン端子にドレイン端子が接続され、モニタ線M(j)にソース端子が接続されている。トランジスタT4は、有機EL素子OLEDと直列に設けられている。そのトランジスタT4に関し、ハイレベル電源制御線G3(i)にゲート端子が接続され、ハイレベル電源線ELVDDにドレイン端子が接続され、トランジスタT2のドレイン端子にソース端子が接続されている。コンデンサCstについては、トランジスタT2のゲート端子に一端が接続され、トランジスタT2のソース端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源線ELVSSに接続されている。トランジスタT1~T4には、例えば、IGZO-TFTなどの酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)が採用される。但し、本発明は、酸化物TFT以外のトランジスタの使用を排除するものでもない。
 <2.3 駆動方法>
 次に、本実施形態における駆動方法について説明する。上述したように、本実施形態においては、各フレームに、1つの行についてのTFT特性の検出または1つの行についてのOLED特性の検出のいずれかが行われる。各フレームにおいて、モニタ行についてはTFT特性の検出を行うための動作(以下、「TFT特性検出動作」という。)またはOLED特性の検出を行うための動作(以下、「OLED特性検出動作」という。)のいずれかが行われ、非モニタ行については通常動作が行われる。すなわち、1行目についてのOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、図36に示すように、各行の動作は推移する。なお、(k+1)フレーム目から(k+n)フレーム目までは、いずれの行においてもTFT特性検出動作は行われない。また、(k+n+1)フレーム目から(k+2n)フレーム目までは、いずれの行においてもOLED特性検出動作は行われない。
 <2.3.1 画素回路の動作>
 <2.3.1.1 通常動作>
 各フレームにおいて、非モニタ行では、通常動作が行われる。非モニタ行に含まれる画素回路11aでは、目標輝度に対応するデータ電圧に基づく書き込みが選択期間に行われた後、トランジスタT1はオフ状態で維持される。データ電圧に基づく書き込みによってトランジスタT2はオン状態となる。トランジスタT3についてはオフ状態で維持され、トランジスタT4についてはオン状態で維持される。以上より、図37で符号74で示す矢印のように、トランジスタT4およびトランジスタT2を介して有機EL素子OLEDに駆動電流が供給される。これにより、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
 <2.3.1.2 OLED特性検出動作>
 次に、OLED特性検出動作について説明する。図38は、モニタ行に含まれる画素回路11a(i行j列の画素回路11aとする)におけるOLED特性検出動作について説明するためのタイミングチャートである。なお、図38では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。図38に示すように、1フレーム期間には、選択期間Tpと発光期間Tqとが含まれている。
 選択期間Tpには、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、選択期間Tpには、ハイレベル電源制御線G3(i)が非アクティブな状態とされる。これにより、トランジスタT4がオフ状態となる。さらに、トランジスタT2を線形動作させるための高電圧Vlenが選択期間Tpにデータ線S(j)に印加される。これにより、当該高電圧Vlenに基づく書き込みが行われ、トランジスタT2はオン状態となる。
 発光期間Tqになると、走査線G1(i)が非アクティブな状態とされる。これにより、トランジスタT1はオフ状態となる。また、発光期間Tqには、モニタ制御線G2(i)はアクティブな状態で維持され、ハイレベル電源制御線G3(i)は非アクティブな状態で維持される。これにより、トランジスタT3はオン状態で維持され、トランジスタT4はオフ状態で維持される。また、発光期間Tqの前の選択期間Tpに高電圧Vlenに基づく書き込みが行われているので、トランジスタT2はオン状態になっている。さらに、発光期間TqのうちのOLED特性を検出するための期間には、モニタ線M(j)は電圧測定部39に接続され、一定電流がモニタ線M(j)に供給される。これにより、図39で符号75で示す矢印のように、モニタ線M(j)から有機EL素子OLEDに一定電流であるデータ電流が供給される。この状態において、電圧測定部39によって、有機EL素子OLEDの発光電圧が測定される。以上のようにして、OLED特性の検出が行われる。なお、所望の階調表示が行われるよう、上記第1の実施形態と同様にして、有機EL素子OLEDの発光時間の長さを調整する処理や階調に応じて電流値を変化させる処理が行われる。
 <2.3.1.3 TFT特性検出動作>
 次に、TFT特性検出動作について説明する。図40は、モニタ行に含まれる画素回路11a(i行j列の画素回路11aとする)におけるTFT特性検出動作について説明するためのタイミングチャートである。
 選択期間Tpには、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、選択期間Tpには、ハイレベル電源制御線G3(i)が非アクティブな状態とされる。これにより、トランジスタT4がオフ状態となる。さらに、選択期間Tpには、通常動作の際と同様のデータ電圧がデータ線S(j)に印加される。データ電圧に基づく書き込みによってトランジスタT2はオン状態となる。
 発光期間Tqになると、走査線G1(i)が非アクティブな状態とされる。これにより、トランジスタT1はオフ状態となる。また、発光期間Tqには、モニタ制御線G2(i)はアクティブな状態で維持され、ハイレベル電源制御線G3(i)は非アクティブな状態で維持される。これにより、トランジスタT3はオン状態で維持され、トランジスタT4はオフ状態で維持される。また、発光期間Tqの前の選択期間Tpにデータ電圧に基づく書き込みが行われているので、トランジスタT2はオン状態になっている。さらに、発光期間Tqには、切替制御信号SWによってモニタ線M(j)は電流測定部38に接続される。このときモニタ線M(j)の電位はハイレベル電源線ELVDDの電位となっているので、図41で符号76で示す矢印のように、データ電圧に応じた駆動電流がモニタ線M(j)から有機EL素子OLEDに供給される。その際、電流測定部38によって、モニタ線M(j)から有機EL素子OLEDに供給される電流が測定される。以上のようにして、TFT特性の検出が行われる。
 <2.3.2 オフセットメモリおよびゲインメモリの更新>
 次に、本実施形態におけるオフセットメモリおよびゲインメモリの更新について説明する。図42は、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bの更新の手順を説明するためのフローチャートである。なお、ここでは1つの画素に対応するオフセット値およびゲイン値に着目する。ところで、図36から把握されるように、本実施形態においては、任意の1つの画素に着目したとき、TFT特性の検出はOLED特性の検出が行われたフレームのnフレーム後に行われる。そこで、ここでは、Kフレーム目にOLED特性の検出が行われ、(K+n)フレーム目にTFT特性の検出が行われるものとする。
 まず、Kフレーム目において、発光期間Tqに、OLED特性の検出が行われる(ステップS410)。このステップS410によって、映像信号を補正するためのオフセット値および劣化補正係数が求められる。そして、ステップS410で求められたオフセット値が、新たなオフセット値としてOLED用オフセットメモリ51bに格納される(ステップS420)。また、ステップS410で求められた劣化補正係数が、新たな劣化補正係数としてOLED用ゲインメモリ52bに格納される(ステップS430)。その後、(K+n)フレーム目において、発光期間Tqに、TFT特性の検出が行われる(ステップS440)。このステップS440によって、映像信号を補正するためのオフセット値およびゲイン値が求められる。そして、ステップS440で求められたオフセット値が、新たなオフセット値としてTFT用オフセットメモリ51aに格納される(ステップS450)。また、ステップS440で求められたゲイン値が、新たなゲイン値としてTFT用ゲインメモリ52aに格納される(ステップS460)。
 以上のようにして、1つの画素に対応するオフセット値およびゲイン値の更新が行われる。本実施形態においては、各フレームに、1つの行についてのOLED特性の検出または1つの行についてのTFT特性の検出のいずれかが行われる。従って、OLED特性の検出が行われるフレームにおいては1フレームにつきOLED用オフセットメモリ51b内のm個のオフセット値およびOLED用ゲインメモリ52b内のm個の劣化補正係数の更新が行われ、TFT特性の検出が行われるフレームにおいては1フレームにつきTFT用オフセットメモリ51a内のm個のオフセット値およびTFT用ゲインメモリ52a内のm個のゲイン値の更新が行われる。
 <2.3.3 映像信号の補正>
 外部から送られる映像信号の補正については、図19に示す乗算部212に与えられるゲイン値Bおよび図19に示す加算部213に与えられるオフセット値Vtが上記第1の実施形態とは異なる。本実施形態においては、TFT用ゲインメモリ52aから読み出される値とOLED用ゲインメモリ52bから読み出される値との積がゲイン値Bとして乗算部212に与えられ、TFT用オフセットメモリ51aから読み出される値とOLED用オフセットメモリ51bから読み出される値との和がオフセット値Vtとして加算部213に与えられる。このような前提の下、映像信号が示す階調Pが“Vc・B+Vt”に補正される。なお、Vcは階調Pのガンマ補正後の制御電圧の値である。
 <2.4 効果>
 本実施形態によれば、各画素について、nフレーム毎(nは画素マトリクスを構成する行の数)にOLED特性の検出とTFT特性の検出とが交互に行われる。そして、上記第1の実施形態と同様に、OLED特性の検出結果およびTFT特性の検出結果の双方を考慮して求められた補正データ(オフセット値およびゲイン値)を用いて、外部から送られる映像信号が補正される。このため、各画素回路11a内の有機EL素子OLEDを発光させる際に、駆動トランジスタの劣化および有機EL素子OLEDの劣化が補償されるような大きさの駆動電流が有機EL素子OLEDに供給される。ここで、本実施形態においては、OLED特性の検出についてもTFT特性の検出についても発光期間中に行われる。このため、それら特性の検出が選択期間中に行われる構成とは異なり、モニタ行の選択期間を長くする必要がない。従って、充分な長さの発光期間が確保される。また、行によって選択期間の長さにばらつきが生じることが防止される。以上のように、本実施形態によれば、有機EL表示装置において、選択期間の長さのばらつきを生ずることなく発光期間を充分に確保しつつ駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を特性検出の際に特別な発光をさせることなく同時に補償することが可能となる。
 <2.5 変形例>
 上記第2の実施形態においては、図36に示したように、まず1~n行目についてのOLED特性の検出が1フレームずつ順次に行われ、その後、1~n行目についてのTFT特性の検出が1フレームずつ順次に行われていた。しかしながら、本発明はこれに限定されない。図43に示すように、連続する2フレームにおいて1行目についてのOLED特性の検出と1行目についてのTFT特性の検出とを1フレームずつ行い、2~n行目について同様の動作を繰り返すようにしても良い。
 本変形例によれば、各画素について連続する2フレームの期間にOLED特性の検出とTFT特性の検出とが行われるので、上記第1の実施形態のようにバッファ(オフセット値用バッファおよびゲイン値用バッファ)を用いてオフセットメモリおよびゲインメモリの更新を行う構成を採用することができる。すなわち、上記第2の実施形態においては、映像信号の補正に使用される補正データを記憶するためにTFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bが設けられていたが、本変形例においては、それらに代えて1つのオフセットメモリおよび1つのゲインメモリを備えれば良い。
 <3.その他>
 本発明を適用可能な有機EL表示装置は、各実施形態および各変形例で例示した画素回路11,11aを備えるものに限定されるものではない。画素回路は、少なくとも、電流によって制御される電気光学素子(有機EL素子OLED),トランジスタT1~T3,およびコンデンサCstを備えていれば、各実施形態および各変形例で例示した構成以外の構成であっても良い。
1~5…有機EL表示装置
10,10a…表示部
11,11a…画素回路
20…コントロール回路
30…ソースドライバ
31…駆動信号発生回路
32…信号変換回路
33…出力部
38…電流測定部
39…電圧測定部
40,40a…ゲートドライバ
51…オフセットメモリ
51a…TFT用オフセットメモリ
51b…OLED用オフセットメモリ
52…ゲインメモリ
52a…TFT用ゲインメモリ
52b…OLED用ゲインメモリ
60…温度センサ
201…モニタ行記憶部
202…温度変化補償部
321…階調信号発生回路
322,323…モニタ回路
330…出力回路
T1~T4…トランジスタ
Cst…コンデンサ
G1(1)~G1(n)…走査線
G2(1)~G2(n)…モニタ制御線
G3(1)~G3(n)…ハイレベル電源制御線
S(1)~S(m)…データ線
M(1)~M(m)…モニタ線

Claims (26)

  1.  電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置の駆動方法であって、
     前記駆動トランジスタの特性を検出する第1の特性検出ステップと、
     前記電気光学素子の特性を検出する第2の特性検出ステップと、
     前記第1の特性検出ステップでの検出結果および前記第2の特性検出ステップでの検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして、予め用意された補正データ記憶部に記憶させる補正データ記憶ステップと、
     前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正ステップと
    を含み、
     1フレーム期間は、前記電気光学素子を発光させる準備が行われる選択期間と前記電気光学素子の発光が行われる発光期間とからなり、
     前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
     前記第2の特性検出ステップの処理は、前記発光期間に行われることを特徴とする、駆動方法。
  2.  前記第1の特性検出ステップおよび前記第2の特性検出ステップの双方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
     各フレームにおいて前記第1の特性検出ステップおよび前記第2の特性検出ステップの双方の処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての前記選択期間の長さは、前記非モニタ行についての前記選択期間の長さよりも長くなっていて、
     前記第1の特性検出ステップの処理は、前記選択期間に行われることを特徴とする、請求項1に記載の駆動方法。
  3.  前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方の処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
     前記画素マトリクスの1つの行に着目したとき、前記第1の特性検出ステップの処理と前記第2の特性検出ステップの処理とは交互に行われ、
     前記第1の特性検出ステップの処理は、前記発光期間に行われることを特徴とする、請求項1に記載の駆動方法。
  4.  前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項1に記載の駆動方法。
  5.  前記第2の特性検出ステップでは、目標輝度に応じて、前記一定の電流を前記電気光学素子に与える時間の長さが調整されることを特徴とする、請求項4に記載の駆動方法。
  6.  前記第2の特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電流が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする、請求項4に記載の駆動方法。
  7.  前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項1に記載の駆動方法。
  8.  前記第2の特性検出ステップでは、目標輝度に応じて、前記一定の電圧を前記電気光学素子に与える時間の長さが調整されることを特徴とする、請求項7に記載の駆動方法。
  9.  前記第2の特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電圧が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする、請求項7に記載の駆動方法。
  10.  前記第1の特性検出ステップでは、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする、請求項1に記載の駆動方法。
  11.  前記補正データ記憶部は、前記補正データとしてオフセット値を記憶するオフセット値記憶部と前記補正データとしてゲイン値を記憶するゲイン値記憶部とからなり、
     前記補正データ記憶ステップでは、
      前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値と前記第2の特性検出ステップでの検出結果に基づいて得られるオフセット値との和が、新たなオフセット値として前記オフセット値記憶部に記憶され、
      前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値と前記第2の特性検出ステップでの検出結果に基づいて得られる補正係数との積が、新たなゲイン値として前記ゲイン値記憶部に記憶されることを特徴とする、請求項1に記載の駆動方法。
  12.  前記表示装置は、
      前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
      前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
    を更に有し、
     前記選択期間は、前記第1の特性検出ステップの処理が行われる第1期間と前記第1期間に続く第2期間とからなり、
     前記オフセット値記憶部に記憶されているオフセット値と前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値との差分の値を第1の値と定義し、前記ゲイン値記憶部に記憶されているゲイン値と前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値とに基づいて得られる値を第2の値と定義したとき、前記第2期間には、各モニタ線に、前記第1の値と前記第2の値との和に相当する電圧が印加されることを特徴とする、請求項11に記載の駆動方法。
  13.  前記補正データ記憶部は、前記補正データとして前記駆動トランジスタに対応するオフセット値を記憶する駆動トランジスタ用オフセット値記憶部,前記補正データとして前記電気光学素子に対応するオフセット値を記憶する電気光学素子用オフセット値記憶部,前記補正データとして前記駆動トランジスタに対応するゲイン値を記憶する駆動トランジスタ用ゲイン値記憶部,および前記補正データとして前記電気光学素子に対応するゲイン値を記憶する電気光学素子用ゲイン値記憶部からなり、
     前記補正データ記憶ステップでは、
      前記第1の特性検出ステップでの検出結果に基づいて得られるオフセット値が、新たなオフセット値として前記駆動トランジスタ用オフセット値記憶部に記憶され、
      前記第1の特性検出ステップでの検出結果に基づいて得られるゲイン値が、新たなゲイン値として前記駆動トランジスタ用ゲイン値記憶部に記憶され、
      前記第2の特性検出ステップでの検出結果に基づいて得られるオフセット値が、新たなオフセット値として前記電気光学素子用オフセット値記憶部に記憶され、
      前記第2の特性検出ステップでの検出結果に基づいて得られる補正係数が、新たなゲイン値として前記電気光学素子用ゲイン値記憶部に記憶されることを特徴とする、請求項1に記載の駆動方法。
  14.  前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出され、
     前記一定の電流の大きさは、前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に応じて調整されることを特徴とする、請求項13に記載の駆動方法。
  15.  前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出され、
     前記一定の電圧の大きさは、前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に応じて調整されることを特徴とする、請求項13に記載の駆動方法。
  16.  前記表示装置は、
      前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
      前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
    を更に有し、
     前記選択期間は、前記第1の特性検出ステップの処理が行われる第1期間と前記第1期間に続く第2期間とからなり、
     前記第2期間には、各モニタ線に、前記電気光学素子用オフセット値記憶部に記憶されているオフセット値と前記電気光学素子用ゲイン値記憶部に記憶されているゲイン値に基づいて得られる値との和に相当する電圧が印加されることを特徴とする、請求項13に記載の駆動方法。
  17.  前記表示装置は、
      電流を測定する電流測定部を少なくとも含み、前記駆動トランジスタの特性および前記電気光学素子の特性を検出するための特性検出部と、
      前記画素マトリクスの各列に対応するように設けられ、前記特性検出部および対応する列の画素回路と電気的に接続され得るように構成されたm本のモニタ線と
    を更に有し、
     前記第1の特性検出ステップでは、前記m本のモニタ線が対応する画素回路および前記電流測定部と電気的に接続された状態で、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流が前記電流測定部によって測定されることを特徴とする、請求項1に記載の駆動方法。
  18.  前記特性検出部は、電圧を測定する電圧測定部を更に含み、
     前記第2の特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧が前記電圧測定部によって測定されることを特徴とする、請求項17に記載の駆動方法。
  19.  前記第2の特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流が前記電流測定部によって測定されることを特徴とする、請求項17に記載の駆動方法。
  20.  前記特性検出部は、K本のモニタ線(Kは2以上m以下の整数)につき1つだけ設けられ、
     各フレームにおいて、
      前記K本のモニタ線のうちの1つが前記特性検出部と電気的に接続され、
      前記特性検出部と電気的に接続されていないモニタ線は、ハイインピーダンスの状態にされていることを特徴とする、請求項17に記載の駆動方法。
  21.  前記n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素については、前記第2の特性検出ステップの処理が行われないことを特徴とする、請求項1に記載の駆動方法。
  22.  前記表示装置の電源オフの際に、最後に前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が行われた領域を特定する情報を予め用意されたモニタ領域記憶部に記憶するモニタ領域記憶ステップを更に含み、
     前記表示装置の電源オン後には、前記モニタ領域記憶部に記憶されている情報に基づいて得られる領域近傍の領域から、前記第1の特性検出ステップおよび前記第2の特性検出ステップの一方または双方の処理が行われることを特徴とする、請求項1に記載の駆動方法。
  23.  温度を検出する温度検出ステップと、
     前記特性データに対して前記温度検出ステップで検出された温度に基づく補正を施す温度変化補償ステップと
    を更に含み、
     前記補正データ記憶ステップでは、前記温度変化補償ステップの処理で得られたデータが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする、請求項1に記載の駆動方法。
  24.  前記駆動トランジスタは、酸化物半導体によりチャネル層が形成された薄膜トランジスタであることを特徴とする、請求項1に記載の駆動方法。
  25.  前記酸化物半導体は、インジウム(In),ガリウム(Ga),亜鉛(Zn),および酸素(О)を主成分とする酸化インジウムガリウム亜鉛であることを特徴とする、請求項24に記載の駆動方法。
  26.  電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置であって、
     前記駆動トランジスタの特性を検出する第1の特性検出処理および前記電気光学素子の特性を検出する第2の特性検出処理を行いつつ前記n×m個の画素回路を駆動する画素回路駆動部と、
     前記第1の特性検出処理での検出結果および前記第2の特性検出処理での検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして記憶する補正データ記憶部と、
     前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正部と
    を備え、
     1フレーム期間は、前記電気光学素子を発光させる準備が行われる選択期間と前記電気光学素子の発光が行われる発光期間とからなり、
     前記画素回路駆動部は、
      前記第1の特性検出処理および前記第2の特性検出処理の一方または双方の処理を、1フレーム期間につき前記画素マトリクスの1つの行についてのみ行い、
      前記第2の特性検出処理を前記発光期間に行うことを特徴とする、表示装置。
PCT/JP2014/055550 2013-03-14 2014-03-05 表示装置およびその駆動方法 WO2014141958A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480013557.7A CN105190739B (zh) 2013-03-14 2014-03-05 显示装置及其驱动方法
JP2015505416A JP6138236B2 (ja) 2013-03-14 2014-03-05 表示装置およびその駆動方法
US14/764,206 US9711092B2 (en) 2013-03-14 2014-03-05 Display device and method for driving same
US15/426,329 US9881552B2 (en) 2013-03-14 2017-02-07 Display device and method for driving same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013051293 2013-03-14
JP2013-051293 2013-03-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/764,206 A-371-Of-International US9711092B2 (en) 2013-03-14 2014-03-05 Display device and method for driving same
US15/426,329 Continuation US9881552B2 (en) 2013-03-14 2017-02-07 Display device and method for driving same

Publications (1)

Publication Number Publication Date
WO2014141958A1 true WO2014141958A1 (ja) 2014-09-18

Family

ID=51536624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055550 WO2014141958A1 (ja) 2013-03-14 2014-03-05 表示装置およびその駆動方法

Country Status (4)

Country Link
US (2) US9711092B2 (ja)
JP (1) JP6138236B2 (ja)
CN (1) CN105190739B (ja)
WO (1) WO2014141958A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551427A (zh) * 2014-10-30 2016-05-04 业鑫科技顾问股份有限公司 有机发光二极管显示器及其驱动方法
KR20160056058A (ko) * 2014-11-11 2016-05-19 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 그 구동 방법
KR20160059075A (ko) * 2014-11-17 2016-05-26 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
CN107924660A (zh) * 2015-08-07 2018-04-17 伊格尼斯创新公司 基于经改进参考值进行像素校准的系统和方法
JP2018528476A (ja) * 2015-09-09 2018-09-27 深▲セン▼市華星光電技術有限公司 Amoledリアルタイム補償システム
JP2019514030A (ja) * 2016-04-15 2019-05-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. シャットダウン時の表示パネルにおける残像を防止する駆動方法及び表示装置
WO2019186895A1 (ja) * 2018-03-29 2019-10-03 シャープ株式会社 駆動方法、及び、表示装置
JP2019533185A (ja) * 2016-09-14 2019-11-14 アップル インコーポレイテッドApple Inc. モバイル機器上のディスプレイのための外部補償
KR20200011236A (ko) * 2018-07-24 2020-02-03 엘지디스플레이 주식회사 유기발광 표시장치
JP2020046672A (ja) * 2014-11-28 2020-03-26 株式会社半導体エネルギー研究所 表示装置
JP2020073956A (ja) * 2014-09-26 2020-05-14 株式会社半導体エネルギー研究所 表示装置
JP2020515894A (ja) * 2017-03-31 2020-05-28 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 無効画素検出回路、方法および表示装置
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
JP2020519911A (ja) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. データ電圧補償方法、表示駆動方法及び表示装置
JP2022105277A (ja) * 2020-12-31 2022-07-13 エルジー ディスプレイ カンパニー リミテッド 表示装置及び補償方法
US11430387B2 (en) 2019-03-29 2022-08-30 Sharp Kabushiki Kaisha Display device and driving method therefor
US11910671B2 (en) 2019-03-28 2024-02-20 Sharp Kabushiki Kaisha Display device and method for driving same

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137072B (zh) * 2013-03-14 2015-05-20 京东方科技集团股份有限公司 外部补偿感应电路及其感应方法、显示装置
WO2014174905A1 (ja) * 2013-04-23 2014-10-30 シャープ株式会社 表示装置およびその駆動電流検出方法
CN103247261B (zh) 2013-04-25 2015-08-12 京东方科技集团股份有限公司 外部补偿感应电路及其感应方法、显示装置
JP6379340B2 (ja) * 2014-09-01 2018-08-29 株式会社Joled 表示装置の補正方法および表示装置の補正装置
KR102342086B1 (ko) * 2014-11-26 2021-12-23 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 열화 보상 방법
KR102262858B1 (ko) * 2015-05-29 2021-06-09 엘지디스플레이 주식회사 데이터 드라이버, 유기발광표시패널, 유기발광표시장치 및 그 구동방법
KR102485574B1 (ko) * 2015-07-29 2023-01-09 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
JP6791661B2 (ja) * 2015-08-07 2020-11-25 株式会社半導体エネルギー研究所 表示パネル
US10360827B2 (en) * 2015-10-09 2019-07-23 Apple Inc. Systems and methods for indirect threshold voltage sensing in an electronic display
KR102595263B1 (ko) * 2015-12-04 2023-10-30 삼성디스플레이 주식회사 게이트 구동 회로 및 이를 포함하는 유기 발광 표시 장치
WO2017115713A1 (ja) * 2015-12-29 2017-07-06 シャープ株式会社 画素回路ならびに表示装置およびその駆動方法
KR102460302B1 (ko) 2015-12-31 2022-10-27 엘지디스플레이 주식회사 유기발광소자 표시장치 및 이의 구동방법
KR102472783B1 (ko) * 2016-02-29 2022-12-02 삼성디스플레이 주식회사 표시 장치 및 열화 보상 방법
CN105609029B (zh) * 2016-03-24 2019-10-01 深圳市华星光电技术有限公司 感测amoled像素驱动特性的系统及amoled显示装置
US10115332B2 (en) 2016-05-25 2018-10-30 Chihao Xu Active matrix organic light-emitting diode display device and method for driving the same
US10209551B2 (en) 2016-09-19 2019-02-19 Apple Inc. Dual-loop display sensing for compensation
KR102597608B1 (ko) 2016-09-30 2023-11-01 엘지디스플레이 주식회사 유기발광표시장치와 그의 구동방법
KR102609509B1 (ko) * 2016-11-17 2023-12-04 엘지디스플레이 주식회사 외부 보상용 표시장치와 그 구동방법
CN106409225B (zh) * 2016-12-09 2019-03-01 上海天马有机发光显示技术有限公司 有机发光像素补偿电路、有机发光显示面板及驱动方法
KR102642577B1 (ko) * 2016-12-12 2024-02-29 엘지디스플레이 주식회사 외부 보상용 드라이버 집적회로와 그를 포함한 표시장치, 및 표시장치의 데이터 보정방법
JP6846945B2 (ja) * 2017-02-22 2021-03-24 株式会社小糸製作所 光源駆動装置、車両用灯具
CN106782333B (zh) * 2017-02-23 2018-12-11 京东方科技集团股份有限公司 Oled像素的补偿方法和补偿装置、显示装置
WO2018187092A1 (en) * 2017-04-07 2018-10-11 Apple Inc. Device and method for panel conditioning
CN106935193A (zh) * 2017-05-12 2017-07-07 京东方科技集团股份有限公司 Oled驱动补偿电路、oled显示面板及其驱动方法
US10535305B2 (en) 2017-08-02 2020-01-14 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. AMOLED display panel with function of temperature compensation and display device thereof
CN107274836B (zh) * 2017-08-02 2020-03-17 深圳市华星光电半导体显示技术有限公司 具有温度补偿功能的amoled显示面板及显示装置
CN107610643B (zh) * 2017-09-29 2020-11-10 京东方科技集团股份有限公司 补偿电路及其控制方法、显示面板和显示装置
KR102416705B1 (ko) * 2017-10-24 2022-07-05 엘지디스플레이 주식회사 유기발광표시장치 및 그 구동 방법
CN110709993A (zh) * 2017-11-17 2020-01-17 深圳市柔宇科技有限公司 有机发光二极管显示模组及其制作方法及电子装置
DE102018219989A1 (de) * 2017-11-22 2019-05-23 Ignis Innovation Inc. Pixelschaltung, Anzeige und Verfahren
TWI728406B (zh) * 2018-07-16 2021-05-21 聯詠科技股份有限公司 源極驅動器
DE102019210555A1 (de) * 2018-07-19 2020-01-23 Ignis Innovation Inc. Systeme und Verfahren zum Kompensieren einer Degradation eines OLED-Displays
US10818208B2 (en) * 2018-09-14 2020-10-27 Novatek Microelectronics Corp. Source driver
CN109166530B (zh) * 2018-10-31 2020-04-14 合肥鑫晟光电科技有限公司 一种像素驱动电路的驱动方法及显示驱动电路、显示装置
US10984712B2 (en) * 2018-12-10 2021-04-20 Sharp Kabushiki Kaisha TFT pixel circuit for OLED external compensation using an adjusted data voltage for component compensation
TWI684973B (zh) * 2019-03-04 2020-02-11 友達光電股份有限公司 顯示裝置
JP2020144343A (ja) * 2019-03-08 2020-09-10 シャープ株式会社 表示装置、制御装置、および表示装置の制御方法
KR102623839B1 (ko) * 2019-05-31 2024-01-10 엘지디스플레이 주식회사 표시장치, 컨트롤러, 구동회로 및 구동방법
CN112053651A (zh) * 2019-06-06 2020-12-08 京东方科技集团股份有限公司 显示面板的时序控制方法及电路、驱动装置和显示设备
JP2021021854A (ja) * 2019-07-29 2021-02-18 キヤノン株式会社 表示装置及びその制御方法
CN110429120B (zh) * 2019-08-05 2022-08-09 京东方科技集团股份有限公司 一种阵列基板、其驱动方法、显示面板及显示装置
KR102610829B1 (ko) * 2019-09-30 2023-12-07 주식회사 엘엑스세미콘 화소센싱회로
KR20210059105A (ko) * 2019-11-14 2021-05-25 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
KR102652820B1 (ko) * 2019-12-27 2024-04-01 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 표시 장치의 보상 방법
KR20210116834A (ko) * 2020-03-17 2021-09-28 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
US20210304673A1 (en) * 2020-03-31 2021-09-30 Apple Inc. Configurable pixel uniformity compensation for oled display non-uniformity compensation based on scaling factors
CN111445852A (zh) * 2020-05-06 2020-07-24 Oppo广东移动通信有限公司 像素补偿电路、显示装置及补偿方法
KR20220051087A (ko) * 2020-10-16 2022-04-26 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
US11164494B1 (en) * 2020-10-30 2021-11-02 Innolux Corporation Pixel circuit, display device and detecting method
US11874997B2 (en) * 2020-11-27 2024-01-16 Sharp Kabushiki Kaisha Display device equipped with touch panel and control method therefor
KR20220152434A (ko) * 2021-05-06 2022-11-16 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법
KR20230045711A (ko) * 2021-09-28 2023-04-05 삼성디스플레이 주식회사 표시 장치
KR20230102109A (ko) * 2021-12-30 2023-07-07 엘지디스플레이 주식회사 게이트 구동부 및 이를 이용한 표시 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042486A (ja) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
WO2009087746A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 表示装置、電子装置及び駆動方法
JP2010134169A (ja) * 2008-12-04 2010-06-17 Panasonic Corp アクティブマトリクス型表示装置及びそのような表示装置の検査方法並びに製造方法
JP2010160386A (ja) * 2009-01-09 2010-07-22 Seiko Epson Corp 発光装置、電子機器および発光装置の制御方法
JP2011095720A (ja) * 2009-09-30 2011-05-12 Casio Computer Co Ltd 発光装置及びその駆動制御方法、並びに電子機器
WO2014021201A1 (ja) * 2012-08-02 2014-02-06 シャープ株式会社 表示装置およびその駆動方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229508B1 (en) * 1997-09-29 2001-05-08 Sarnoff Corporation Active matrix light emitting diode pixel structure and concomitant method
JP2003195810A (ja) 2001-12-28 2003-07-09 Casio Comput Co Ltd 駆動回路、駆動装置及び光学要素の駆動方法
KR100560780B1 (ko) 2003-07-07 2006-03-13 삼성에스디아이 주식회사 유기전계 발광표시장치의 화소회로 및 그의 구동방법
JP5128287B2 (ja) 2004-12-15 2013-01-23 イグニス・イノベイション・インコーポレーテッド 表示アレイのためのリアルタイム校正を行う方法及びシステム
JP2006259573A (ja) * 2005-03-18 2006-09-28 Seiko Epson Corp 有機el装置及びその駆動方法並びに電子機器
KR100671669B1 (ko) 2006-02-28 2007-01-19 삼성에스디아이 주식회사 데이터 구동부 및 이를 이용한 유기 발광 표시장치와 그의구동방법
US20070290958A1 (en) * 2006-06-16 2007-12-20 Eastman Kodak Company Method and apparatus for averaged luminance and uniformity correction in an amoled display
US20080062070A1 (en) * 2006-09-13 2008-03-13 Honeywell International Inc. Led brightness compensation system and method
JP4424346B2 (ja) 2006-12-11 2010-03-03 カシオ計算機株式会社 駆動回路及び駆動装置
KR100858615B1 (ko) * 2007-03-22 2008-09-17 삼성에스디아이 주식회사 유기전계발광 표시장치 및 그의 구동방법
JP2009104104A (ja) * 2007-05-30 2009-05-14 Canon Inc アクティブマトリックスディスプレイおよびその駆動方法
JP5012774B2 (ja) * 2008-11-28 2012-08-29 カシオ計算機株式会社 画素駆動装置、発光装置及び画素駆動装置におけるパラメータ取得方法
US8339068B2 (en) * 2008-12-12 2012-12-25 Microchip Technology Incorporated LED brightness control by variable frequency modulation
US9088003B2 (en) * 2013-03-06 2015-07-21 Apple Inc. Reducing sheet resistance for common electrode in top emission organic light emitting diode display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042486A (ja) * 2007-08-08 2009-02-26 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
WO2009087746A1 (ja) * 2008-01-07 2009-07-16 Panasonic Corporation 表示装置、電子装置及び駆動方法
JP2010134169A (ja) * 2008-12-04 2010-06-17 Panasonic Corp アクティブマトリクス型表示装置及びそのような表示装置の検査方法並びに製造方法
JP2010160386A (ja) * 2009-01-09 2010-07-22 Seiko Epson Corp 発光装置、電子機器および発光装置の制御方法
JP2011095720A (ja) * 2009-09-30 2011-05-12 Casio Computer Co Ltd 発光装置及びその駆動制御方法、並びに電子機器
WO2014021201A1 (ja) * 2012-08-02 2014-02-06 シャープ株式会社 表示装置およびその駆動方法

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699624B2 (en) 2004-12-15 2020-06-30 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
JP2020073956A (ja) * 2014-09-26 2020-05-14 株式会社半導体エネルギー研究所 表示装置
CN105551427A (zh) * 2014-10-30 2016-05-04 业鑫科技顾问股份有限公司 有机发光二极管显示器及其驱动方法
KR20160056058A (ko) * 2014-11-11 2016-05-19 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 그 구동 방법
KR102281009B1 (ko) 2014-11-11 2021-07-23 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치 및 그 구동 방법
KR20160059075A (ko) * 2014-11-17 2016-05-26 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
KR102264271B1 (ko) 2014-11-17 2021-06-15 엘지디스플레이 주식회사 유기발광 표시장치와 그 구동방법
JP2020046672A (ja) * 2014-11-28 2020-03-26 株式会社半導体エネルギー研究所 表示装置
CN111091782B (zh) * 2014-11-28 2022-12-02 株式会社半导体能源研究所 半导体装置、显示装置及电子设备
JP7083798B2 (ja) 2014-11-28 2022-06-13 株式会社半導体エネルギー研究所 表示装置
CN111091782A (zh) * 2014-11-28 2020-05-01 株式会社半导体能源研究所 半导体装置、显示装置及电子设备
US10339860B2 (en) 2015-08-07 2019-07-02 Ignis Innovation, Inc. Systems and methods of pixel calibration based on improved reference values
CN107924660B (zh) * 2015-08-07 2019-11-15 伊格尼斯创新公司 基于经改进参考值进行像素校准的系统和方法
CN107924660A (zh) * 2015-08-07 2018-04-17 伊格尼斯创新公司 基于经改进参考值进行像素校准的系统和方法
JP2018528476A (ja) * 2015-09-09 2018-09-27 深▲セン▼市華星光電技術有限公司 Amoledリアルタイム補償システム
JP2019514030A (ja) * 2016-04-15 2019-05-30 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. シャットダウン時の表示パネルにおける残像を防止する駆動方法及び表示装置
JP6993229B2 (ja) 2016-04-15 2022-01-13 京東方科技集團股▲ふん▼有限公司 シャットダウン時の表示パネルにおける残像を防止する駆動方法及び表示装置
JP2019533185A (ja) * 2016-09-14 2019-11-14 アップル インコーポレイテッドApple Inc. モバイル機器上のディスプレイのための外部補償
JP2020515894A (ja) * 2017-03-31 2020-05-28 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 無効画素検出回路、方法および表示装置
JP7272729B2 (ja) 2017-03-31 2023-05-12 京東方科技集團股▲ふん▼有限公司 無効画素検出回路、方法および表示装置
JP2020519911A (ja) * 2017-05-12 2020-07-02 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. データ電圧補償方法、表示駆動方法及び表示装置
US11705069B2 (en) 2017-05-12 2023-07-18 Boe Technology Group Co., Ltd. Data voltage compensation method, a display driving method, and a display apparatus
JP7103943B2 (ja) 2017-05-12 2022-07-20 京東方科技集團股▲ふん▼有限公司 データ電圧補償方法、表示駆動方法及び表示装置
WO2019186895A1 (ja) * 2018-03-29 2019-10-03 シャープ株式会社 駆動方法、及び、表示装置
KR102526291B1 (ko) 2018-07-24 2023-04-27 엘지디스플레이 주식회사 유기발광 표시장치
KR20200011236A (ko) * 2018-07-24 2020-02-03 엘지디스플레이 주식회사 유기발광 표시장치
US11910671B2 (en) 2019-03-28 2024-02-20 Sharp Kabushiki Kaisha Display device and method for driving same
US11430387B2 (en) 2019-03-29 2022-08-30 Sharp Kabushiki Kaisha Display device and driving method therefor
JP7262562B2 (ja) 2020-12-31 2023-04-21 エルジー ディスプレイ カンパニー リミテッド 表示装置及び補償方法
JP2022105277A (ja) * 2020-12-31 2022-07-13 エルジー ディスプレイ カンパニー リミテッド 表示装置及び補償方法
US11651740B2 (en) 2020-12-31 2023-05-16 Lg Display Co., Ltd. Display device and compensation method thereof

Also Published As

Publication number Publication date
US20150379940A1 (en) 2015-12-31
CN105190739B (zh) 2017-08-08
US9881552B2 (en) 2018-01-30
CN105190739A (zh) 2015-12-23
JP6138236B2 (ja) 2017-05-31
JPWO2014141958A1 (ja) 2017-02-16
US20170148385A1 (en) 2017-05-25
US9711092B2 (en) 2017-07-18

Similar Documents

Publication Publication Date Title
JP6138236B2 (ja) 表示装置およびその駆動方法
JP6138254B2 (ja) 表示装置およびその駆動方法
JP6129318B2 (ja) 表示装置およびその駆動方法
JP6169191B2 (ja) 表示装置およびその駆動方法
JP6656265B2 (ja) 表示装置およびその駆動方法
WO2014208458A1 (ja) 表示装置およびその駆動方法
US8502811B2 (en) Pixel driving device, light emitting device, driving/controlling method thereof, and electronic device
EP2093749B1 (en) Organic light emitting diode display and method of driving the same
US7907105B2 (en) Display apparatus and method for driving the same, and display driver and method for driving the same
WO2015151927A1 (ja) 表示装置およびその駆動方法
US8599186B2 (en) Pixel driving device, light emitting device, driving/controlling method thereof, and electronic device
WO2014069324A1 (ja) 表示装置用のデータ処理装置、それを備える表示装置、および表示装置用のデータ処理方法
KR101748111B1 (ko) 표시 장치 및 그 구동 방법
WO2019186895A1 (ja) 駆動方法、及び、表示装置
JP4284704B2 (ja) 表示駆動装置及びその駆動制御方法、並びに、表示装置及びその駆動制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480013557.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14762614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505416

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14764206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14762614

Country of ref document: EP

Kind code of ref document: A1