WO2014208458A1 - 表示装置およびその駆動方法 - Google Patents
表示装置およびその駆動方法 Download PDFInfo
- Publication number
- WO2014208458A1 WO2014208458A1 PCT/JP2014/066402 JP2014066402W WO2014208458A1 WO 2014208458 A1 WO2014208458 A1 WO 2014208458A1 JP 2014066402 W JP2014066402 W JP 2014066402W WO 2014208458 A1 WO2014208458 A1 WO 2014208458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- period
- electro
- monitor
- optical element
- oled
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3225—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
- G09G3/3233—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/22—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
- G09G3/30—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
- G09G3/32—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
- G09G3/3208—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
- G09G3/3275—Details of drivers for data electrodes
- G09G3/3291—Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0421—Structural details of the set of electrodes
- G09G2300/043—Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/08—Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
- G09G2300/0809—Several active elements per pixel in active matrix panels
- G09G2300/0842—Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/02—Addressing, scanning or driving the display screen or processing steps related thereto
- G09G2310/0202—Addressing of scan or signal lines
- G09G2310/0218—Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2310/00—Command of the display device
- G09G2310/06—Details of flat display driving waveforms
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/029—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
- G09G2320/0295—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel by monitoring each display pixel
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/04—Maintaining the quality of display appearance
- G09G2320/043—Preventing or counteracting the effects of ageing
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0626—Adjustment of display parameters for control of overall brightness
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/06—Adjustment of display parameters
- G09G2320/0666—Adjustment of display parameters for control of colour parameters, e.g. colour temperature
Definitions
- the present invention relates to a display device and a driving method thereof, and more particularly to a display device including a pixel circuit including an electro-optical element such as an organic EL (Electro-Luminescence) element and a driving method thereof.
- a display device including a pixel circuit including an electro-optical element such as an organic EL (Electro-Luminescence) element and a driving method thereof.
- an electro-optical element such as an organic EL (Electro-Luminescence) element
- organic EL display devices that use organic EL elements, which are self-luminous electro-optic elements, can be easily reduced in thickness, power consumption, brightness, etc., compared to liquid crystal display devices that require backlights and color filters. Can be achieved. Accordingly, in recent years, organic EL display devices have been actively developed.
- an organic EL display device As a driving method of an organic EL display device, a passive matrix method (also called a simple matrix method) and an active matrix method are known.
- An organic EL display device adopting a passive matrix system has a simple structure but is difficult to increase in size and definition.
- an organic EL display device adopting an active matrix method hereinafter referred to as an “active matrix type organic EL display device” is larger and has higher definition than an organic EL display device employing a passive matrix method. Can be easily realized.
- a pixel circuit of an active matrix organic EL display device typically includes an input transistor that selects a pixel and a drive transistor that controls the supply of current to the organic EL element.
- the current flowing from the drive transistor to the organic EL element may be referred to as “drive current”.
- FIG. 38 is a circuit diagram showing a configuration of a conventional general pixel circuit 91.
- the pixel circuit 91 is provided corresponding to each intersection of the plurality of data lines S and the plurality of scanning lines G arranged in the display unit.
- the pixel circuit 91 includes two transistors T1 and T2, one capacitor Cst, and one organic EL element OLED.
- the transistor T1 is an input transistor
- the transistor T2 is a drive transistor.
- the transistor T1 is provided between the data line S and the gate terminal of the transistor T2.
- a gate terminal is connected to the scanning line G, and a source terminal is connected to the data line S.
- the transistor T2 is provided in series with the organic EL element OLED.
- a drain terminal is connected to a power supply line that supplies a high-level power supply voltage ELVDD, and a source terminal is connected to an anode terminal of the organic EL element OLED.
- a power supply line that supplies the high-level power supply voltage ELVDD is hereinafter referred to as a “high-level power supply line”, and the high-level power supply line is given the same sign ELVDD as the high-level power supply voltage.
- the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the source terminal of the transistor T2.
- the cathode terminal of the organic EL element OLED is connected to a power supply line that supplies a low level power supply voltage ELVSS.
- the power supply line that supplies the low-level power supply voltage ELVSS is hereinafter referred to as “low-level power supply line”, and the same sign ELVSS as the low-level power supply voltage is attached to the low-level power supply line.
- a connection point between the gate terminal of the transistor T2, one end of the capacitor Cst, and the drain terminal of the transistor T1 is referred to as a “gate node VG” for convenience.
- the higher of the drain and the source is called the drain, but in the description of this specification, one is defined as the drain and the other is defined as the source. Therefore, the source potential is higher than the drain potential. May be higher.
- FIG. 39 is a timing chart for explaining the operation of the pixel circuit 91 shown in FIG.
- the scanning line G Prior to time t1, the scanning line G is in a non-selected state. Therefore, before the time t1, the transistor T1 is in an off state, and the potential of the gate node VG maintains an initial level (for example, a level corresponding to writing in the previous frame).
- the scanning line G is selected and the transistor T1 is turned on.
- the data voltage Vdata corresponding to the luminance of the pixel (subpixel) formed by the pixel circuit 91 is supplied to the gate node VG via the data line S and the transistor T1.
- the potential of the gate node VG changes according to the data voltage Vdata.
- the capacitor Cst is charged to the gate-source voltage Vgs which is the difference between the potential of the gate node VG and the source potential of the transistor T2.
- the scanning line G is in a non-selected state.
- the transistor T1 is turned off, and the gate-source voltage Vgs held by the capacitor Cst is determined.
- the transistor T2 supplies a drive current to the organic EL element OLED according to the gate-source voltage Vgs held by the capacitor Cst. As a result, the organic EL element OLED emits light with a luminance corresponding to the drive current.
- a thin film transistor (TFT) is typically employed as a drive transistor.
- the threshold voltage tends to vary for the thin film transistor.
- a technique for suppressing deterioration in display quality in an organic EL display device has been conventionally proposed.
- Japanese Unexamined Patent Application Publication No. 2005-31630 discloses a technique for compensating for variations in threshold voltage of drive transistors.
- 2007-128103 disclose a technique for making the current flowing from the pixel circuit to the organic EL element OLED constant. Furthermore, Japanese Unexamined Patent Application Publication No. 2007-233326 discloses a technique for displaying an image with uniform brightness regardless of the threshold voltage and electron mobility of a driving transistor.
- Japanese Patent Publication No. 2008-523448 discloses a technique for correcting data based on the characteristics of the organic EL element OLED in addition to the technique for correcting data based on the characteristics of the driving transistor.
- Japanese Unexamined Patent Publication No. 2005-31630 Japanese Unexamined Patent Publication No. 2003-195810 Japanese Unexamined Patent Publication No. 2007-128103 Japanese Unexamined Patent Publication No. 2007-233326 Japanese Special Table 2008-523448
- an object of the present invention is to provide a driving method that makes it possible to sufficiently ensure the time for detecting characteristics of a circuit element in a display device and sufficiently compensate for deterioration of the circuit element. It is another object of the present invention to provide a driving method capable of simultaneously compensating for both deterioration of a driving transistor and light emitting element in a display device.
- n ⁇ m electro-optical elements whose luminance is controlled by current and driving transistors for controlling the current to be supplied to the electro-optical elements (n and m are 2).
- a video signal correcting step of correcting the video signal based on correction data stored in the correction data storage unit and generating a data signal to be supplied to the n ⁇ m pixel circuits,
- a monitor line that can be electrically connected to a source of the driving transistor and an anode of the electro-optic element is provided for each column of the pixel matrix, The process of the driving transistor characteristic detection step is performed
- An electro-optical element characteristic detecting step for detecting a characteristic of the electro-optical element is performed during the emission period.
- the characteristic data obtained based on the detection result in the electro-optical element characteristic detection step is further stored as the correction data in the correction data storage unit.
- the characteristic of the electro-optical element is detected by measuring a current flowing through the electro-optical element in a state where a constant voltage is applied to the electro-optical element. To do.
- the length of time for which the constant voltage is applied to the electro-optical element is adjusted according to a target luminance.
- the constant voltage of a plurality of levels is applied to the electro-optical element within a range in which the integrated value of the light emission current in one frame period becomes a value corresponding to the target gradation.
- a plurality of characteristics are detected as the characteristics of the electro-optical element.
- the display device has a current measurement unit for measuring the current of the monitor line, In the driving transistor characteristic detection step, the current measuring unit measures the current of the monitor line, thereby detecting the characteristics of the driving transistor. In the electro-optical element characteristic detecting step, the current measuring unit measures the current of the monitor line, whereby the characteristic of the electro-optical element is detected.
- the characteristic of the electro-optical element is detected by measuring a voltage of an anode of the electro-optical element in a state where a constant current is applied to the electro-optical element.
- the length of time for which the constant current is applied to the electro-optical element is adjusted according to a target luminance.
- a ninth aspect of the present invention is the eighth aspect of the present invention,
- a plurality of levels of the constant current are applied to the electro-optical element within a range in which the integrated value of the light emission current in one frame period is a value corresponding to the target gradation, A plurality of characteristics are detected as the characteristics of the electro-optical element.
- the display device A current measuring unit for measuring the current of the monitor line; A voltage measuring unit for measuring the voltage of the monitor line, In the driving transistor characteristic detection step, the current measuring unit measures the current of the monitor line, thereby detecting the characteristics of the driving transistor. In the electro-optical element characteristic detecting step, the voltage measuring unit measures the voltage of the monitor line, whereby the characteristic of the electro-optical element is detected.
- An eleventh aspect of the present invention is the second aspect of the present invention, In the pixel matrix of the n rows ⁇ m columns, the pixel in which black or almost black display is performed is not subjected to the process of the electro-optical element characteristic detection step.
- a twelfth aspect of the present invention is the second aspect of the present invention, A temperature detection step for detecting the temperature; A temperature change compensation step for correcting the characteristic data based on the temperature detected in the temperature detection step; In the correction data storage step, data obtained by the temperature change compensation step is stored in the correction data storage unit as the correction data.
- the current flowing between the drain and source of the driving transistor is measured in a state where the voltage between the gate and source of the driving transistor is set to a predetermined magnitude, whereby the characteristic of the driving transistor is determined. It is detected.
- a fourteenth aspect of the present invention is the thirteenth aspect of the present invention,
- a plurality of characteristics are detected as the characteristics of the driving transistor by applying a plurality of levels of potential to the gate of the driving transistor.
- the display device has a current measurement unit for measuring the current of the monitor line, In the drive transistor characteristic detection step, the current measurement unit measures the current of the monitor line, whereby the characteristic of the drive transistor is detected.
- a sixteenth aspect of the present invention is the fifteenth aspect of the present invention, Only one current measuring unit is provided for K monitor lines (K is an integer of 2 to m), In each frame period One of the K monitor lines is electrically connected to the current measuring unit; The monitor line that is not electrically connected to the current measuring unit is in a high impedance state.
- a selection period which is a period for giving to each gate, is provided in each frame period, In the monitor row, the potential applied to the gate of the drive transistor in the selection period is Vmg, the potential applied to the monitor line in the drive transistor characteristic detection period is Vm_TFT, and the potential applied to the monitor line in the light emission period is Vm_oled.
- the value of Vmg is determined so as to satisfy the following expression.
- Vth (T2) is a threshold voltage of the precursor driving transistor.
- a selection period which is a period for giving to each gate, is provided in each frame period, In the monitor row, when the potential applied to the gate of the drive transistor during the selection period is Vmg and the potential applied to the monitor line during the drive transistor characteristic detection period is Vm_TFT, the value of Vm_TFT satisfies the following equation: It is defined.
- Vth (T2) is a threshold voltage of the driving transistor
- Vth (oled) is a light emission threshold voltage of the electro-optical element
- ELVSS is a cathode potential of the electro-optical element.
- a selection period which is a period for giving to each gate, is provided in each frame period, In the monitor row, when the potential applied to the gate of the drive transistor in the selection period is Vmg and the potential applied to the monitor line in the light emission period is Vm_oled, the value of Vm_oled is determined to satisfy the following equation: It is characterized by being.
- Vth (T2) is a threshold voltage of the driving transistor
- Vth (oled) is a light emission threshold voltage of the electro-optical element
- ELVSS is a cathode potential of the electro-optical element.
- a selection period which is a period for giving to each gate, is provided in each frame period, In the monitor row, the potential applied to the gate of the drive transistor in the selection period is Vmg, the potential applied to the monitor line in the drive transistor characteristic detection period is Vm_TFT, and the potential applied to the monitor line in the light emission period is Vm_oled.
- Vm_TFT Vm_TFT ⁇ Vmg ⁇ Vth (T2)
- Vm_TFT ⁇ ELVSS + Vth (oled)
- Vm_oled > Vmg ⁇ Vth (T2)
- ELVSS ELVSS + Vth (oled)
- Vth (T2) is a threshold voltage of the driving transistor
- Vth (oled) is a light emission threshold voltage of the electro-optical element
- ELVSS is a cathode potential of the electro-optical element.
- the length of the drive transistor characteristic detection period and the length of the light emission period are adjusted according to target luminance.
- the drive transistor characteristic detection period precedes the light emission period.
- n ⁇ m electro-optical elements whose luminance is controlled by current and driving transistors for controlling the current to be supplied to the electro-optical elements (n and m are 2).
- a display device having a pixel matrix of n rows ⁇ m columns composed of pixel circuits of the above integer), A pixel circuit driving unit that drives the n ⁇ m pixel circuits while performing a driving transistor characteristic detection process for detecting characteristics of the driving transistor;
- a correction data storage unit that stores characteristic data obtained based on a detection result in the drive transistor characteristic detection process as correction data for correcting a video signal;
- a video signal correction unit that corrects the video signal based on correction data stored in the correction data storage unit and generates a data signal to be supplied to the n ⁇ m pixel circuits; It is configured to be electrically connectable to the source of the driving transistor and the anode of the electro-optic element, and includes a monitor line provided for each column of the pixel matrix,
- the pixel circuit driving unit includes: The drive transistor characteristic detection process is performed only for one row of the pixel matrix per frame period, For the monitor row, the monitor line is maintained electrically connected to the source of the drive transistor and the anode of the electro-optic element throughout the drive transistor characteristic detection period and the light emission period.
- the drive transistor characteristic detection period current flows only in the drive transistor of the drive transistor and the electro-optical element, and only in the electro-optical element of the drive transistor and the electro-optical element in the light emission period.
- a different potential is applied to the monitor line during the drive transistor characteristic detection period and the light emission period so that a current flows through the monitor transistor.
- a pixel circuit including an electro-optical element (for example, an organic EL element) whose luminance is controlled by a current and a driving transistor for controlling a current to be supplied to the electro-optical element.
- an electro-optical element for example, an organic EL element
- a driving transistor for controlling a current to be supplied to the electro-optical element.
- the characteristics of the electro-optic element are detected, and the video signal is corrected in consideration of the detection result. Therefore, a drive current having a magnitude that can compensate for the deterioration of the electro-optical element is supplied to the electro-optical element. As described above, it is possible to sufficiently compensate for both the deterioration of the driving transistor and the deterioration of the electro-optical element by sufficiently securing the characteristic detection time of the driving transistor and the electro-optical element.
- the measurement time for detecting the characteristics of the electro-optic element can be shortened.
- the electro-optical element it is possible to cause the electro-optical element to emit light with a desired luminance while detecting the characteristics of the electro-optical element.
- the fifth aspect of the present invention since a plurality of characteristics are detected as the characteristics of the electro-optical element, it is possible to more effectively compensate for the deterioration of the electro-optical element.
- the sixth aspect of the present invention it is possible to detect the characteristics of both the drive transistor and the electro-optic element included in each column with a single monitor line.
- a constant current is supplied to the electro-optical element that detects the characteristic. Therefore, by adjusting the time for supplying a constant current to the electro-optical element, it becomes possible to cause the electro-optical element to emit light with a desired luminance.
- the electro-optical element it is possible to cause the electro-optical element to emit light with a desired luminance while detecting the characteristics of the electro-optical element.
- the ninth aspect of the present invention since a plurality of characteristics are detected as the characteristics of the electro-optic element, it is possible to more effectively compensate for the degradation of the electro-optic element.
- the tenth aspect of the present invention it is possible to detect the characteristics of both the drive transistor and the electro-optic element included in each column by a single monitor line.
- the video signal is corrected using the correction data considering the temperature change. For this reason, it is possible to sufficiently compensate both the deterioration of the drive transistor and the deterioration of the electro-optic element regardless of the change in temperature.
- the characteristics of the drive transistor can be detected relatively easily.
- the fourteenth aspect of the present invention since a plurality of characteristics are detected as the characteristics of the drive transistor, it is possible to more effectively compensate for the deterioration of the drive transistor.
- the characteristics of the driving transistors included in each column can be detected by a single monitor line.
- one current measurement unit is shared by a plurality of monitor lines. For this reason, it is possible to compensate for the deterioration of the drive transistor while suppressing an increase in circuit area.
- the drive transistor is reliably turned on during the drive transistor characteristic detection period, and the electro-optic element is reliably turned on during the light emission period.
- the drive transistor is reliably turned on and the electro-optic element is reliably turned off.
- the drive transistor is reliably turned off and the electro-optic element is reliably turned on.
- the drive transistor is surely turned on and the electro-optic element is surely turned off during the drive transistor characteristic detection period. Further, during the light emission period, the driving transistor is surely turned off and the electro-optic element is reliably turned on.
- the drive transistor characteristic detection period can be lengthened according to the target luminance. For this reason, it is possible to measure the current more times in order to detect the characteristics of the driving transistor. As a result, the S / N ratio of the detection current is increased, and the accuracy of detecting the characteristics of the drive transistor is improved.
- the drive transistor is prevented from being turned off during the drive transistor characteristic detection period.
- the twenty-fourth aspect of the present invention for example, a difference in the number of detections of the drive transistor characteristics between the upper row and the lower row is prevented. For this reason, it is possible to uniformly compensate for the deterioration of the driving transistor over the entire screen, and the occurrence of variations in luminance is effectively prevented.
- the same effect as in the first aspect of the present invention can be achieved in the invention of the display device.
- FIG. 5 is a flowchart for explaining an outline of operations related to detection of TFT characteristics and OLED characteristics in the first embodiment of the present invention.
- it is a block diagram which shows the whole structure of an organic electroluminescent display apparatus.
- 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
- 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
- 5 is a timing chart for explaining an operation of a gate driver in the first embodiment.
- FIG. 3 is a circuit diagram illustrating a configuration of a pixel circuit and a current measurement unit in the first embodiment.
- the said 1st Embodiment it is a figure for demonstrating transition of operation
- 5 is a timing chart for explaining the operation of a pixel circuit (pixel circuit of i rows and j columns) included in a monitor row in the first embodiment.
- the said 1st Embodiment it is a figure for demonstrating the flow of the electric current in the light emission period. In the said 1st Embodiment, it is a figure for demonstrating the change of the ON / OFF state of the switch in an electric current measurement part. In the said 1st Embodiment, it is a figure for demonstrating adjustment of the light emission time of an organic EL element.
- 5 is a flowchart for explaining a procedure for updating correction data in a correction data storage unit in the first embodiment.
- FIG. 6 is a diagram for describing correction of a video signal in the first embodiment. It is a figure for demonstrating the effect in the said 1st Embodiment.
- FIG. 24 is a timing chart for explaining the operation of a pixel circuit (pixel circuit of i rows and j columns) included in a monitor row in the sixth modification example of the first embodiment. It is a flowchart for demonstrating the procedure of the update of the correction data in a correction data storage part in the 6th modification of the said 1st Embodiment. It is a block diagram which shows the whole structure of the organic electroluminescence display in the 7th modification of the said 1st Embodiment. It is a flowchart for demonstrating the procedure of the update of the correction data in a correction data storage part in the 7th modification of the said 1st Embodiment. It is a figure for demonstrating the structure for acquiring monitor data in the 2nd Embodiment of this invention.
- FIG. 12 is a timing chart for explaining the operation of a pixel circuit (pixel circuit of i rows and j columns) included in a monitor row in the second embodiment. It is a figure which shows the structure of the one end part vicinity of the monitor line in the modification of the said 2nd Embodiment. It is a figure which shows the structure of the one end part vicinity of the monitor line in the modification of the said 2nd Embodiment. It is a circuit diagram which shows the structure of the conventional general pixel circuit.
- FIG. 39 is a timing chart for explaining the operation of the pixel circuit shown in FIG. 38.
- FIG. 39 is a timing chart for explaining the operation of the pixel circuit shown in FIG. 38.
- TFT characteristic the characteristic of the driving transistor provided in the pixel circuit
- OLED characteristic the characteristic of the organic EL element provided in the pixel circuit
- FIG. 2 is a block diagram showing the overall configuration of the active matrix organic EL display device 1 according to the first embodiment of the present invention.
- the organic EL display device 1 includes a display unit 10, a control circuit 20, a source driver (data line driving circuit) 30, a gate driver (scanning line driving circuit) 40, and a correction data storage unit 50.
- a pixel circuit driving unit is realized by the source driver 30 and the gate driver 40. Note that one or both of the source driver 30 and the gate driver 40 may be formed integrally with the display unit 10.
- the display unit 10 is provided with m data lines S (1) to S (m) and n scanning lines G1 (1) to G1 (n) orthogonal thereto.
- the extending direction of the data lines is defined as the Y direction
- the extending direction of the scanning lines is defined as the X direction.
- Components along the Y direction may be referred to as “columns”
- components along the X direction may be referred to as “rows”.
- the display unit 10 is provided with m monitor lines M (1) to M (m) so as to correspond to the m data lines S (1) to S (m) on a one-to-one basis. ing.
- the data lines S (1) to S (m) and the monitor lines M (1) to M (m) are parallel to each other.
- the display unit 10 is provided with n monitor control lines G2 (1) to G2 (n) so as to correspond to the n scanning lines G1 (1) to G1 (n) on a one-to-one basis.
- the scanning lines G1 (1) to G1 (n) and the monitor control lines G2 (1) to G2 (n) are parallel to each other.
- the display unit 10 has n ⁇ m so as to correspond to the intersections of the n scanning lines G1 (1) to G1 (n) and the m data lines S (1) to S (m).
- Pixel circuits 11 are provided. By providing n ⁇ m pixel circuits 11 in this manner, a pixel matrix of n rows ⁇ m columns is formed in the display unit 10.
- the display unit 10 is provided with a high level power supply line for supplying a high level power supply voltage and a low level power supply line for supplying a low level power supply voltage.
- the data lines are simply represented by a symbol S.
- the monitor lines are simply represented by the symbol M, and the n scan lines G1 (1) to G1 (n) If it is not necessary to distinguish the monitor lines from each other, the scanning line is simply indicated by G1, and if it is not necessary to distinguish the n monitor control lines G2 (1) to G2 (n) from each other, the monitor control lines are simply denoted by reference numerals. Represented by G2.
- the control circuit 20 controls the operation of the source driver 30 by giving the data signal DA and the source control signal SCTL to the source driver 30, and controls the operation of the gate driver 40 by sending the gate control signal GCTL to the gate driver 40.
- the source control signal SCTL includes, for example, a source start pulse, a source clock, and a latch strobe signal.
- the gate control signal GCTL includes, for example, a gate start pulse and a gate clock.
- the control circuit 20 also receives the monitor data MO given from the source driver 30 and updates the correction data stored in the correction data storage unit 50. Note that the monitor data MO is data measured for obtaining TFT characteristics and OLED characteristics.
- the gate driver 40 is connected to n scanning lines G1 (1) to G1 (n) and n monitor control lines G2 (1) to G2 (n).
- the gate driver 40 includes a shift register and a logic circuit.
- Detection of TFT characteristics and OLED characteristics for the third row is performed.
- detection of TFT characteristics and OLED characteristics for n rows is performed over an n frame period.
- the frame in which the TFT characteristic and the OLED characteristic for the first row are detected is defined as the (k + 1) th frame
- n scanning lines G1 (1) to G1 (n) and n monitor control lines G2 (1) to G2 (n) are driven as shown in FIG. 3 at the (k + 1) th frame, driven at the (k + 2) th frame as shown in FIG. 4, and at the (k + n) th frame.
- the high level state is an active state.
- a period in which the scanning line G1 is in an active state is referred to as a “selection period”.
- This selection period is a period for preparing to emit light from the organic EL element provided in the pixel circuit 11.
- a row in which TFT characteristics and OLED characteristics are detected when an arbitrary frame is focused is referred to as a “monitor row”, and a row other than the monitor row is referred to as a “non-monitor row”.
- the length of the selection period is the same between the monitor row and the non-monitor row.
- the monitor control line G2 corresponding to the non-monitor row is maintained in an inactive state.
- the monitor control line G2 corresponding to the monitor row is activated at the start of the selection period, and is maintained in the active state until approximately one frame period after the selection period starts.
- the gate driver 40 is driven so that the n scanning lines G1 (1) to G1 (n) and the n monitor control lines G2 (1) to G2 (n) are driven as described above. It is configured.
- the source driver 30 is connected to m data lines S (1) to S (m) and m monitor lines M (1) to M (m).
- the source driver 30 includes a drive signal generation circuit 31, a signal conversion circuit 32, and an output unit 33 including m output circuits 330.
- the m output circuits 330 in the output unit 33 respectively correspond to the corresponding data line S and m monitor lines M (1) to M (m) among the m data lines S (1) to S (m). Are connected to the corresponding monitor line M. Since each output circuit 330 is connected to the data line S and the monitor line M as described above, the source driver 30 can be functionally divided into the data line drive unit 30a and the monitor line drive unit 30b. (See FIG. 17).
- the drive signal generation circuit 31 includes a shift register, a sampling circuit, and a latch circuit.
- the shift register sequentially transfers the source start pulse from the input end to the output end in synchronization with the source clock.
- a sampling pulse corresponding to each data line S is output from the shift register.
- the sampling circuit sequentially stores the data signals DA for one row according to the timing of the sampling pulse.
- the latch circuit fetches and holds the data signal DA for one row stored in the sampling circuit according to the latch strobe signal.
- the signal conversion circuit 32 includes a D / A converter and an A / D converter.
- the data signal DA for one row held in the latch circuit in the drive signal generation circuit 31 as described above is converted into an analog voltage by the D / A converter in the signal conversion circuit 32.
- the converted analog voltage is applied to the output circuit 330 in the output unit 33.
- the signal conversion circuit 32 is supplied with monitor data MO from the output circuit 330.
- the monitor data MO is converted from an analog voltage to a digital signal by an A / D converter in the signal conversion circuit 32.
- the monitor data MO converted into a digital signal is given to the control circuit 20 via the drive signal generation circuit 31.
- a signal for controlling the potential of the monitor line M which is one of the source control signals SCTL, is converted into an analog voltage, and the analog voltage is converted into the monitor line control voltage.
- Vm is given to the output circuit 330 in the output unit 33.
- FIG. 6 is a block diagram showing a schematic configuration of the output circuit 330 in the output unit 33.
- the output circuit 330 includes a video signal output unit 331 and a current measurement unit 332.
- the video signal output unit 331 includes a buffer such as a voltage follower, and the analog voltage Vs supplied from the signal conversion circuit 32 is applied to the data line S as a data voltage via the buffer.
- the current measurement unit 332 has a function of supplying the monitor line control voltage Vm supplied from the signal conversion circuit 32 to the monitor line M and a function of measuring a current flowing through the monitor line M. Data measured by the current measuring unit 332 is given to the signal conversion circuit 32 as monitor data MO. The detailed configuration of the current measuring unit 332 will be described later (see FIG. 7).
- the correction data storage unit 50 includes a TFT offset memory 51a, an OLED offset memory 51b, a TFT gain memory 52a, and an OLED gain memory 52b. These four memories may be physically one memory or physically different memories.
- the correction data storage unit 50 stores correction data used for correcting a video signal sent from the outside.
- the TFT offset memory 51a stores an offset value based on the detection result of the TFT characteristics as correction data.
- the OLED offset memory 51b stores an offset value based on the detection result of the OLED characteristic as correction data.
- the TFT gain memory 52a stores a gain value based on the detection result of the TFT characteristics as correction data.
- the OLED gain memory 52b stores a deterioration correction coefficient based on the detection result of the OLED characteristic as correction data.
- the number of offset values and gain values equal to the number of pixels in the display unit 10 are respectively stored in the TFT offset memory 51a and the TFT gain memory 52a as correction data based on the detection result of the TFT characteristics.
- offset values and deterioration correction coefficients equal to the number of pixels in the display unit 10 are used as correction data based on the detection results of the OLED characteristics, respectively, and an OLED offset memory 51b and an OLED gain memory 52b. Is remembered.
- one value may be stored in each memory for each of a plurality of pixels.
- the control circuit 20 Based on the monitor data MO given from the source driver 30, the control circuit 20 sets the offset value in the TFT offset memory 51a, the offset value in the OLED offset memory 51b, the gain value in the TFT gain memory 52a, and the OLED. The deterioration correction coefficient in the gain memory 52b is updated. Further, the control circuit 20 reads the offset value in the TFT offset memory 51a, the offset value in the OLED offset memory 51b, the gain value in the TFT gain memory 52a, and the deterioration correction coefficient in the OLED gain memory 52b. To correct the video signal. Data obtained by the correction is sent to the source driver 30 as a data signal DA.
- FIG. 7 is a circuit diagram showing the configuration of the pixel circuit 11 and the current measurement unit 332.
- the pixel circuit 11 illustrated in FIG. 7 is the pixel circuit 11 of i rows and j columns.
- the pixel circuit 11 includes one organic EL element OLED, three transistors T1 to T3, and one capacitor Cst.
- the transistor T1 functions as an input transistor for selecting a pixel
- the transistor T2 functions as a drive transistor for controlling supply of current to the organic EL element OLED
- the transistor T3 controls whether to detect TFT characteristics or OLED characteristics. Functions as a monitor control transistor.
- the transistor T1 is provided between the data line S (j) and the gate terminal of the transistor T2.
- a gate terminal is connected to the scanning line G1 (i), and a source terminal is connected to the data line S (j).
- the transistor T2 is provided in series with the organic EL element OLED.
- the gate terminal is connected to the drain terminal of the transistor T1
- the drain terminal is connected to the high-level power supply line ELVDD
- the source terminal is connected to the anode terminal of the organic EL element OLED.
- the gate terminal is connected to the monitor control line G2 (i)
- the drain terminal is connected to the anode terminal of the organic EL element OLED
- the source terminal is connected to the monitor line M (j).
- the capacitor Cst one end is connected to the gate terminal of the transistor T2, and the other end is connected to the drain terminal of the transistor T2.
- the cathode terminal of the organic EL element OLED is connected to the low level power line ELVSS.
- the capacitor Cst is provided between the gate and the source of the transistor T2.
- the capacitor Cst is provided between the gate and the drain of the transistor T2. The reason for this is as follows. In the present embodiment, control is performed to change the potential of the monitor line M (j) while the transistor T3 is kept on during one frame period. If the capacitor Cst is provided between the gate and the source of the transistor T2, the gate potential of the transistor T2 also varies according to the variation in the potential of the monitor line M (j). Then, the on / off state of the transistor T2 may not be a desired state. Therefore, in the present embodiment, as shown in FIG. 7, the capacitor Cst is connected between the gate and drain of the transistor T2 so that the gate potential of the transistor T2 does not change according to the change in the potential of the monitor line M (j). Is provided.
- the transistors T1 to T3 in the pixel circuit 11 are all n-channel type.
- oxide TFTs thin film transistors using an oxide semiconductor as a channel layer are employed for the transistors T1 to T3.
- the oxide semiconductor layer is, for example, an In—Ga—Zn—O-based semiconductor layer.
- the oxide semiconductor layer includes, for example, an In—Ga—Zn—O-based semiconductor.
- An In—Ga—Zn—O-based semiconductor is a ternary oxide of In (indium), Ga (gallium), and Zn (zinc).
- a TFT having an In—Ga—Zn—O-based semiconductor layer has high mobility (mobility more than 20 times that of an amorphous silicon TFT) and low leakage current (leakage less than 1/100 that of an amorphous silicon TFT). Therefore, it is suitably used as a driving TFT (the transistor T2) and a switching TFT (the transistor T1) in the pixel circuit.
- a driving TFT the transistor T2
- a switching TFT the transistor T1 in the pixel circuit.
- the In—Ga—Zn—O-based semiconductor may be amorphous, may include a crystalline portion, and may have crystallinity.
- a crystalline In—Ga—Zn—O-based semiconductor in which the c-axis is oriented substantially perpendicular to the layer surface is preferable.
- Such a crystal structure of an In—Ga—Zn—O-based semiconductor is disclosed, for example, in Japanese Unexamined Patent Publication No. 2012-134475.
- the oxide semiconductor layer may include another oxide semiconductor instead of the In—Ga—Zn—O-based semiconductor.
- Zn—O based semiconductor ZnO
- In—Zn—O based semiconductor IZO (registered trademark)
- Zn—Ti—O based semiconductor ZTO
- Cd—Ge—O based semiconductor Cd—Pb—O based
- CdO cadmium oxide
- Mg—Zn—O based semiconductors In—Sn—Zn—O based semiconductors (eg, In 2 O 3 —SnO 2 —ZnO), In—Ga—Sn—O based semiconductors, etc. You may go out.
- the current measurement unit 332 includes an operational amplifier 3321, a capacitor 3322, and a switch 3323.
- the operational amplifier 3321 the inverting input terminal is connected to the monitor line M (j), and the non-inverting input terminal is supplied with the monitor line control voltage Vm.
- the capacitor 3322 and the switch 3323 are provided between the output terminal of the operational amplifier 3321 and the monitor line M (j).
- the current measurement unit 332 is configured by an integration circuit. In such a configuration, first, the switch 3323 is turned on by the control clock signal Sclk.
- the output terminal and the inverting input terminal of the operational amplifier 3321 are short-circuited, and the potential of the output terminal of the operational amplifier 3321 and the monitor line M (j) becomes equal to the potential of the monitor line control voltage Vm.
- the switch 3323 is turned off by the control clock signal Sclk.
- the potential of the output terminal of the operational amplifier 3321 changes according to the magnitude of the current flowing through the monitor line M (j).
- the output from the operational amplifier 3321 is sent to the A / D converter in the signal conversion circuit 32 as monitor data MO.
- a driving method in the present embodiment will be described.
- detection of TFT characteristics and OLED characteristics in one row is performed for each frame.
- an operation for detecting the TFT characteristic and the OLED characteristic (hereinafter referred to as “characteristic detection operation”) is performed for the monitor row, and a normal operation is performed for the non-monitor row. That is, when the frame in which the TFT characteristic and the OLED characteristic are detected for the first row is defined as the (k + 1) th frame, the operation of each row changes as shown in FIG.
- the correction data in the correction data storage unit 50 is updated using the detection results. Then, the video signal is corrected using the correction data stored in the correction data storage unit 50.
- FIG. 10 is a timing chart for explaining the operation of the pixel circuit 11 (referred to as the pixel circuit 11 of i rows and j columns) included in the monitor row.
- “one frame period” is represented with reference to the selection period start point of the i-th row in a frame in which the i-th row is a monitor row.
- a period for detecting TFT characteristics hereinafter referred to as “TFT characteristics detection period”
- Ta and an organic EL element OLED are made to emit light.
- Period hereinafter referred to as “light emission period”.
- the first half of the TFT characteristic detection period Ta is the selection period Tb. Note that the length of the selection period Tb is the same in the non-monitor row and the monitor row.
- the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on.
- the potential Vmg is applied to the data line S (j)
- the potential Vm_TFT is applied to the monitor line M (j). Note that the potential Vm_oled is applied to the monitor line M (j) in a light emission period Tc described later.
- the threshold voltage of the transistor T2 obtained based on the offset value stored in the TFT offset memory 51a is Vth (T2)
- the potential Vmg is established so that the following expressions (1) and (2) are satisfied.
- the value of the potential Vm_TFT, and the value of the potential Vm_oled are set.
- the value of the potential Vm_TFT is set so that the following expression (3) is satisfied. Is set.
- Vm_TFT ⁇ ELVSS + Vth (oled) (3) Further, when the breakdown voltage of the organic EL element OLED is Vbr (oled), the value of the potential Vm_TFT is set so that the following expression (4) is satisfied.
- the potential Vmg satisfying the above expressions (1) and (2) is applied to the data line S (j), and the above expressions (1), A potential Vm_TFT that satisfies (3) and (4) is applied to the monitor line M (j). From the above equation (1), during this period, the transistor T2 is turned on. Further, from the above formulas (3) and (4), no current flows through the organic EL element OLED during this period.
- the scanning line G1 (i) is inactive. Thereby, the transistor T1 is turned off, but the transistor T2 is maintained in the on state because the capacitor Cst is charged during the selection period Tb. Since the monitor control line G2 (i) is maintained in an active state, the transistor T3 is also maintained in an on state.
- the monitor line M (j) is supplied with a potential Vm_TFT that satisfies the above equations (1), (3), and (4).
- the current flowing through the transistor T2 is output to the monitor line M (j) through the transistor T3 as indicated by the arrow 72 in FIG.
- the current (sink current) output to the monitor line M (j) is measured by the current measuring unit 332.
- the magnitude of the current flowing between the drain and the source of the transistor T2 is measured in a state where the voltage between the gate and the source of the transistor T2 is set to a predetermined magnitude (Vmg ⁇ Vm_TFT), and the TFT characteristic is Detected.
- first reference potential Vm_TFT_1 and second reference potential Vm_TFT_2 are applied to the monitor line M (j) in the TFT characteristic detection period Ta. .
- a TFT characteristic based on the first reference potential Vm_TFT_1 and a TFT characteristic based on the second reference potential Vm_TFT_2 are detected.
- the scanning line G1 (i) is maintained in an inactive state, and the monitor control line G2 (i) is maintained in an active state. Therefore, during this period, the transistor T1 is maintained in the off state, and the transistor T3 is maintained in the on state. Further, as described above, the potential Vm_oled is applied to the monitor line M (j) during this period.
- Vm_oled is set so that the above equation (2) and the following equation (5) are satisfied.
- the value of the potential Vm_oled is set so that the following expression (6) is established.
- the potential Vm_oled satisfying the above equations (2), (5), and (6) is given to the monitor line M (j). From the above equations (2) and (6), the transistor T2 is turned off during this period. From the above equation (5), a current flows through the organic EL element OLED during this period.
- the monitor line M (j) As described above, during the light emission period Tc, current flows from the monitor line M (j) to the organic EL element OLED as indicated by an arrow 73 in FIG. 13, and the organic EL element OLED emits light. In this state, the current flowing through the monitor line M (j) is measured by the current measuring unit 332. As described above, the magnitude of the current flowing through the organic EL element OLED is measured with the voltage between the anode (anode) and the cathode (cathode) of the organic EL element OLED set to a predetermined level (Vm_oled-ELVSS). And OLED characteristics are detected.
- Vm_oled-ELVSS a predetermined level
- the value of the potential Vmg, the value of the potential Vm_TFT, and the value of the potential Vm_oled are determined in consideration of the measurable range of the current measuring unit 332 employed in addition to the above formulas (1) to (6). Is done.
- the monitor row in the light emission period Tc, a current is supplied to the organic EL element OLED based on a constant voltage.
- the length of time during which the organic EL element OLED emits light is adjusted. Specifically, the light emission time is lengthened as the gradation is higher, and the light emission time is shortened as the gradation is lower. That is, as shown in FIG. 15, the higher the gradation, the longer the period Tc1 that is actually in the on state, and the lower the gradation, the longer the period Tc2 in the off state.
- the lengths of the periods Tc1 and Tc2 are adjusted based on the deterioration correction coefficient stored in the OLED gain memory 52b.
- the state (lighted state / lighted state) of the organic EL element OLED is switched by time control.
- the potential of the monitor line M (j) (monitor line control) is set so that the voltage applied to the organic EL element OLED becomes smaller than the light emission threshold voltage Vth (oled).
- the voltage Vm) may be set.
- the potential of the monitor line M (j) may be made equal to the potential of the low level power supply voltage ELVSS.
- the length of time that the organic EL element OLED emits light is adjusted so that the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation.
- the length of time for applying a constant voltage to the organic EL element OLED is adjusted according to the target luminance. Note that if the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation, the voltage value is changed during the light emission period Tc, and characteristics (current-voltage) at a plurality of operating points are changed. (Characteristic) may be measured.
- the OLED characteristic is not detected for pixels that display black or substantially black in a pixel matrix of n rows ⁇ m columns. Thereby, unnecessary light emission can be prevented. Since the organic EL element OLED does not deteriorate if it does not emit light, it is not necessary to detect the characteristics.
- the same line may be used as a monitor line over a plurality of frames. By repeating the characteristic detection process in one row in this way, the effect of improving the S / N ratio can be obtained.
- FIG. 16 is a flowchart for explaining a procedure for updating correction data in the correction data storage unit 50. Here, attention is focused on correction data corresponding to one pixel.
- the TFT characteristic detection period Ta the TFT characteristic is detected in a state where the first reference potential Vm_TFT_1 is applied to the monitor line M (step S110).
- step S110 an offset value for correcting the video signal is obtained.
- step S110 is stored in the TFT offset memory 51a as a new offset value (step S120).
- step S130 a gain value for correcting the video signal is obtained.
- step S140 the gain value obtained in step S130 is stored in the TFT gain memory 52a as a new gain value
- step S150 an offset value and a deterioration correction coefficient for correcting the video signal are obtained.
- the offset value obtained in step S150 is stored in the OLED offset memory 51b as a new offset value (step S160).
- the deterioration correction coefficient obtained in step S150 is stored in the OLED gain memory 52b as a new deterioration correction coefficient (step S170).
- the correction data corresponding to one pixel is updated.
- detection of TFT characteristics and OLED characteristics for one row in each frame is performed. Therefore, m offset values in the TFT offset memory 51a, and in the TFT gain memory 52a per frame period. M gain values, m offset values in the OLED offset memory 51b, and m deterioration correction coefficients in the OLED gain memory 52b are updated.
- the characteristic data is realized by data (offset value, gain value, deterioration correction coefficient) obtained based on the detection results in step S110, step S130, and step S150.
- the magnitude of the current flowing through the organic EL element OLED is measured based on a constant voltage.
- the control circuit 20 is provided with an LUT 211, a multiplier 212, a multiplier 213, an adder 214, an adder 215, and a multiplier 216 as components for correcting the video signal. Yes.
- the control circuit 20 is provided with a multiplier 221 and an adder 222 as components for correcting the potential Vm_oled applied to the monitor line M during the light emission period Tc.
- the CPU 230 in the control circuit 20 controls the operation of each of the above components, and each memory in the correction data storage unit 50 (TFT offset memory 51a, TFT gain memory 52a, OLED offset memory 51b, and OLED gain memory).
- a video signal correction unit is realized by the LUT 211, the multiplication unit 212, the multiplication unit 213, the addition unit 214, the addition unit 215, and the multiplication unit 216.
- the video signal sent from the outside is corrected as follows.
- gamma correction is performed on a video signal transmitted from the outside using the LUT 211. That is, the gradation P indicated by the video signal is converted to the control voltage Vc by gamma correction.
- the multiplier 212 receives the control voltage Vc and the gain value B1 read from the TFT gain memory 52a, and outputs a value “Vc ⁇ B1” obtained by multiplying them.
- the multiplier 213 receives the value “Vc ⁇ B1” output from the multiplier 212 and the deterioration correction coefficient B2 read from the OLED gain memory 52b and multiplies them to obtain the value “Vc ⁇ B1 ⁇ B2”. "Is output.
- the adder 214 receives the value “Vc ⁇ B1 ⁇ B2” output from the multiplier 213 and the offset value Vt1 read from the TFT offset memory 51a, and adds the values “Vc ⁇ B1 ⁇ B2”.
- B1 ⁇ B2 + Vt1 ′′ is output.
- the adder 215 receives the value “Vc ⁇ B1 ⁇ B2 + Vt1” output from the adder 214 and the offset value Vt2 read from the OLED offset memory 51b and adds the values “Vc ⁇ B1 ⁇ B2 + Vt1 + Vt2 ′′ is output.
- the multiplier 216 receives the value “Vc ⁇ B1 ⁇ B2 + Vt1 + Vt2” output from the adder 215 and the coefficient Z for compensating for the attenuation of the data voltage caused by the parasitic capacitance in the pixel circuit 11, and multiplies them.
- the obtained value “Z (Vc ⁇ B1 ⁇ B2 + Vt1 + Vt2)” is output.
- the value “Z (Vc ⁇ B1 ⁇ B2 + Vt1 + Vt2)” obtained as described above is sent from the control circuit 20 to the data line driver 30a in the source driver 30 as the data signal DA. Note that the multiplication unit 216 that multiplies the value output from the addition unit 215 by the coefficient Z for compensating for the attenuation of the data voltage is not necessarily provided.
- the potential Vm_oled given to the monitor line M during the light emission period Tc is corrected as follows.
- the multiplier 221 receives pre_Vm_oled (Vm_oled before correction) and the deterioration correction coefficient B2 read from the OLED gain memory 52b, and outputs a value “pre_Vm_oled ⁇ B2” obtained by multiplying them.
- the adder 222 receives the value “pre_Vm_oled ⁇ B2” output from the multiplier 221 and the offset value Vt2 read from the OLED offset memory 51b, and adds the values “pre_Vm_oled ⁇ B2 + Vt2”. Is output.
- pre_Vm_oled ⁇ B2 + Vt2 The value “pre_Vm_oled ⁇ B2 + Vt2” obtained as described above is sent from the control circuit 20 to the monitor line driver 30b in the source driver 30 as data indicating the potential Vm_oled of the monitor line M during the light emission period Tc.
- FIG. 1 is a flowchart for explaining an outline of operations related to detection of TFT characteristics and OLED characteristics.
- the TFT characteristic is detected during the TFT characteristic detection period Ta (step S10).
- the TFT offset memory 51a and the TFT gain memory 52a are updated using the detection result in step S10 (step S20).
- the OLED characteristic is detected during the light emission period Tc (step S30).
- the OLED offset memory 51b and the OLED gain memory 52b are updated (step S40).
- the video signal sent from the outside is corrected using the correction data stored in the TFT offset memory 51a, TFT gain memory 52a, OLED offset memory 51b, and OLED gain memory 52b (step).
- S50 the correction data stored in the TFT offset memory 51a, TFT gain memory 52a, OLED offset memory 51b, and OLED gain memory 52b (step).
- the drive transistor characteristic detection step is realized by step S10
- the electro-optical element characteristic detection step is realized by step S30
- the correction data storage step is realized by step S20 and step S40
- step S50 is executed.
- a video signal correction step is realized.
- the drive transistor characteristic detection process is realized by the process of step S10
- the electro-optical element characteristic detection process is realized by the process of step S30.
- the TFT characteristic detection period Ta including the selection period Tb Focusing on the monitor row, in one frame period, the TFT characteristic is detected in the TFT characteristic detection period Ta including the selection period Tb, and the OLED characteristic is detected in the light emission period Tc. Then, the video signal sent from the outside is corrected using the correction data obtained in consideration of both the detection result of the TFT characteristic and the detection result of the OLED characteristic. Since the data voltage based on the video signal (the data signal DA) corrected in this way is applied to the data line S, when the organic EL element OLED in each pixel circuit 11 is caused to emit light, the driving transistor (transistor T2).
- the deterioration of the organic EL element OLED are supplied to the organic EL element OLED (see FIG. 18). Also, as shown in FIG. 19, it is possible to compensate for burn-in by increasing the current in accordance with the deterioration level of the pixel with the least deterioration.
- the detection of the OLED characteristic is performed during the light emission period Tc as described above. Therefore, in order to detect TFT characteristics and OLED characteristics, the length of the light emission period does not become shorter than the conventional one.
- the transistor T2 is turned on / off by changing the potential of the monitor line M. Therefore, it is not necessary to provide a period for changing the gate potential of the transistor T2 between the TFT characteristic detection period Ta and the light emission period Tc in order to switch the on / off state of the transistor T2. Further, the length of the selection period Tb is the same between the monitor row and the non-monitor row. As described above, the length of the period for detecting the TFT characteristics and the OLED characteristics can be sufficiently secured without complicating the configuration of the gate driver 40. As a result, the accuracy of characteristic detection can be increased.
- both the deterioration of the driving transistor (transistor T2) and the deterioration of the organic EL element OLED are ensured by sufficiently securing the characteristic detection time of the driving transistor (transistor T2) and the organic EL element OLED. Can be sufficiently compensated simultaneously.
- oxide TFTs are employed for the transistors T1 to T3 in the pixel circuit 11, so that sufficient S The effect that the / N ratio can be secured is obtained.
- a TFT having an In—Ga—Zn—O-based semiconductor layer is referred to as an “In—Ga—Zn—O—TFT” here.
- In-Ga-Zn-O-TFT and LTPS (Low Temperature-Polysilicon) -TFT are compared, In-Ga-Zn-O-TFT has much smaller off-current than LTPS-TFT.
- the off-current is about 1 pA at maximum.
- the off-current is about 10 fA at maximum. Therefore, for example, the off-current for 1000 rows is about 1 nA at the maximum when LTPS-TFT is employed, and is about 10 pA at the maximum when In—Ga—Zn—O-TFT is employed.
- the detected current is about 10 to 100 nA in any case.
- the monitor line M is connected not only to the pixel circuit 11 in the monitor row but also to the pixel circuit 11 in the non-monitor row.
- the S / N ratio of the monitor line M depends on the total leakage current of the transistors T3 in the non-monitor row. Specifically, the S / N ratio of the monitor line M is represented by “detection current / (leakage current ⁇ number of non-monitor rows)”. From the above, for example, in the organic EL display device having the “Landscape FHD” display unit 10, the S / N ratio is about 10 when the LTPS-TFT is employed, whereas the In— When Ga—Zn—O—TFT is employed, the S / N ratio is about 1000. Thus, in the present embodiment, a sufficient S / N ratio can be ensured when performing current detection.
- the length of the original TFT characteristic detection period Ta is represented by reference symbol LT1
- the length of the period during which the organic EL element OLED is lit during the light emission period Tc is represented by reference symbol LT2
- the length of the period during which the organic EL element OLED is turned off is denoted by reference symbol LT3.
- FIG. 21 is a diagram for explaining one frame period in the present modification.
- the length of the light emission period is determined according to the gradation of the pixel, and the period excluding the light emission period in one frame period is the TFT characteristic detection period.
- the length of the TFT characteristic detection period in this modification is equal to the sum of the length LT1 of the TFT characteristic detection period in FIG. 20 and the length LT3 of the period in which the organic EL element OLED is turned off in FIG.
- the period during which the organic EL element OLED is turned off can be used as a period for detecting TFT characteristics. Therefore, the current can be measured more times during the TFT characteristic detection period. Thereby, the S / N ratio of the detection current is increased, and the accuracy of detecting the TFT characteristics is improved.
- the monitor line M is always electrically connected to the current measuring unit 332 as shown in FIG.
- the present invention is not limited to this, and a configuration (configuration of the present modification) that can put the monitor line M in a high impedance state can also be adopted.
- FIG. 22 is a diagram showing a configuration in the vicinity of one end of the monitor line M in the present modification.
- a switching unit 333 is provided for switching the monitor line M between a state connected to the current measurement unit 332 and a high impedance state.
- the monitor line M is set to either the state connected to the current measuring unit 332 or the high impedance state by the switching control signal SW given to the switching unit 333.
- the state (lighted state / lighted state) of the organic EL element OLED is switched by time control.
- a process of making the potential of the monitor line M equal to the potential of the low-level power supply voltage ELVSS, for example, has been performed.
- the monitor line M can be in a high impedance state, and the organic EL element OLED can be turned off.
- the first embodiment has been described on the assumption that one current measurement unit 332 is provided for one column.
- the present invention is not limited to this, and a configuration in which one current measurement unit 332 is shared by a plurality of columns (configuration of this modification) can also be adopted.
- the monitor line M is either connected to the current measurement unit 332 or in a high impedance state, as in the second modification (see FIG. 22).
- the vicinity of one end of the monitor line M has the configuration shown in FIG. That is, one current measurement unit 332 is provided for every K monitor lines M.
- the monitor lines M in each frame, only one of the K columns corresponding to the K monitor lines M is a column for detecting TFT characteristics and OLED characteristics (hereinafter referred to as “characteristic detection target”). Column)).
- the monitor lines M in columns other than the characteristic detection target column are maintained in a high impedance state.
- the normal data voltage (voltage corresponding to the target luminance) is applied to the data line D instead of the above-described potential Vmg in columns other than the characteristic detection target column.
- the transistor T3 is in the on state in the monitor row, but the monitor line M is in a high impedance state in columns other than the characteristic detection target column.
- one current measurement unit 332 is provided for every 100 monitor lines M. Just do it.
- the drive transistor transistor T2
- the characteristics of the organic EL element OLED are sufficiently secured and the drive transistor ( Both the deterioration of the transistor T2) and the deterioration of the organic EL element OLED can be sufficiently compensated simultaneously.
- a monitor row storage unit 201 for storing the monitor row is provided in the control circuit 20, as shown in FIG.
- the monitor row storage unit 201 when the power is turned off, information for specifying the row in which the TFT characteristic and the OLED characteristic are finally detected is stored in the monitor row storage unit 201.
- a monitor area storing step is realized by this processing. After the power is turned on, the TFT characteristic and the OLED characteristic are detected from the line next to the line specified based on the information stored in the monitor line storage unit 201.
- a monitor area storage unit is realized by the monitor row storage unit 201.
- the row where the TFT characteristic and the OLED characteristic are first detected after the power is turned on is not limited to the row next to the row specified based on the information stored in the monitor row storage unit 201.
- a row in the vicinity of a row specified based on information stored in the storage unit 201 may be used.
- information for specifying the column in which the TFT characteristic and the OLED characteristic are finally detected may be stored, and both the row and the column in which the TFT characteristic and the OLED characteristic are finally detected are specified.
- Information to be stored may be stored.
- FIG. 25 is a diagram for explaining the temperature dependence of the current-voltage characteristics of the organic EL element.
- FIG. 25 shows the current-voltage characteristics of the organic EL element at the temperature TE1, the current-voltage characteristics of the organic EL element at the temperature TE2, and the current-voltage characteristics of the organic EL element at the temperature TE3.
- TE1>TE2> TE3 Note that “TE1>TE2> TE3”.
- in order to supply a predetermined current to the organic EL element it is necessary to increase the voltage as the temperature decreases.
- the current-voltage characteristic of the organic EL element greatly depends on the temperature. Therefore, it is preferable to employ a configuration that can compensate for temperature changes (the configuration of this modification).
- FIG. 26 is a block diagram showing the overall configuration of the organic EL display device 3 in this modification.
- a temperature sensor 60 is provided in addition to the components in the first embodiment.
- the control circuit 20 is provided with a temperature change compensation unit 202.
- the temperature sensor 60 gives temperature information TE, which is a result of measuring the temperature, to the control circuit 20 as needed.
- the temperature change compensation unit 202 corrects the monitor data MO given from the source driver 30 based on the temperature information TE. Specifically, the temperature change compensator 202 converts the value of the monitor data MO corresponding to the temperature at the time of detection into a value corresponding to a certain standard temperature, and based on the value obtained by the conversion, the OLED offset memory 51b. And the deterioration correction coefficient in the OLED gain memory 52b are updated.
- the temperature detection step is realized by the process of the temperature sensor 60
- the temperature change compensation step is realized by the process of the temperature change compensation unit 202.
- FIG. 27 shows correction data (correction value stored in the TFT offset memory 51a, offset value stored in the OLED offset memory 51b, and TFT gain memory 52a in the correction data storage unit 50 in this modification. It is a flowchart for demonstrating the update procedure of the gain value memorize
- the video signal sent from the outside is corrected by the correction data considering the temperature change. Therefore, in the organic EL display device, it is possible to simultaneously compensate for both the deterioration of the drive transistor and the deterioration of the organic EL element OLED regardless of the temperature change.
- the OLED characteristics are detected after the TFT characteristics are detected in each frame.
- the present invention is not limited to this, and a configuration in which the TFT characteristics are detected after the detection of the OLED characteristics (the configuration of the present modification) can also be adopted.
- FIG. 28 is a diagram for explaining one frame period in the present modification. Focusing on the monitor row, one frame period includes a light emission period Tc and a TFT characteristic detection period Ta, and the light emission period Tc precedes the TFT characteristic detection period Ta. There is a selection period Tb at the beginning of the light emission period Tc. As can be seen from FIG. 28, the length of the selection period Tb is the same for the non-monitor row and the monitor row.
- the light emission period Tc includes a period Tc1 in which the organic EL element OLED is actually turned on and a period Tc2 in which the organic EL element OLED is turned off.
- the length of time during which the organic EL element OLED emits light is adjusted.
- FIG. 29 is a timing chart for explaining the operation of the pixel circuit 11 (referred to as the pixel circuit 11 of i rows and j columns) included in the monitor row in this modification.
- “one frame period” is represented on the basis of the selection period start point of the i-th row in a frame in which the i-th row is a monitor row.
- the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on.
- the potential Vmg is applied to the data line S (j) and the potential Vm_oled is applied to the monitor line M (j). Note that a potential Vm_TFT is applied to the monitor line M (j) during a TFT characteristic detection period Ta described later.
- the threshold voltage of the transistor T2 obtained based on the offset value stored in the TFT offset memory 51a is Vth (T2)
- the potential Vmg so that the above formulas (1) and (2) are satisfied.
- the value of the potential Vm_TFT, and the value of the potential Vm_oled are set.
- the value of the potential Vm_oled is set so that the above equation (5) is satisfied. Is set.
- the breakdown voltage of the transistor T2 is Vbr (T2)
- the value of the potential Vm_oled is set so that the above equation (6) is satisfied.
- the potential Vmg satisfying the above equations (1) and (2) is applied to the data line S (j), and the upper A potential Vm_oled satisfying the expressions (2), (5), and (6) is applied to the monitor line M (j). From the above equations (2) and (6), the transistor T2 is turned off during this period. From the above equation (5), a current flows through the organic EL element OLED during this period.
- the scanning line G1 (i) is in an inactive state. Thereby, the transistor T1 is turned off, but the transistor T2 is maintained in the on state because the capacitor Cst is charged during the selection period Tb. Since the monitor control line G2 (i) is maintained in an active state, the transistor T3 is also maintained in an on state.
- the monitor line M (j) is supplied with a potential Vm_oled that satisfies the above equations (2), (5), and (6).
- the monitor line M (j) As described above, during the light emission period Tc, current flows from the monitor line M (j) to the organic EL element OLED as indicated by an arrow 73 in FIG. 13, and the organic EL element OLED emits light. In this state, the current flowing through the monitor line M (j) is measured by the current measuring unit 332. As described above, the magnitude of the current flowing through the organic EL element OLED is measured with the voltage between the anode (anode) and the cathode (cathode) of the organic EL element OLED set to a predetermined level (Vm_oled-ELVSS). And OLED characteristics are detected.
- Vm_oled-ELVSS a predetermined level
- the scanning line G1 (i) is maintained in an inactive state, and the monitor control line G2 (i) is maintained in an active state. Therefore, during this period, the transistor T1 is maintained in the off state, and the transistor T3 is maintained in the on state. Further, as described above, the potential Vm_TFT is applied to the monitor line M (j) during this period.
- the value of the potential Vm_TFT is set so that the above equations (1) and (3) are established.
- the value of the potential Vm_TFT is set so that the above expression (4) is established.
- the potential Vm_TFT that satisfies the above equations (1), (3), and (4) is applied to the monitor line M (j). From the above equation (1), during this period, the transistor T2 is turned on. Further, from the above formulas (3) and (4), no current flows through the organic EL element OLED during this period.
- the current flowing through the transistor T2 is output to the monitor line M (j) through the transistor T3 as indicated by the arrow 72 in FIG.
- the current (sink current) output to the monitor line M (j) is measured by the current measuring unit 332.
- the TFT characteristics are detected.
- first reference potential Vm_TFT_1 and second reference potential Vm_TFT_2 are applied to the monitor line M (j) in the TFT characteristic detection period Ta. Is done. Thereby, a TFT characteristic based on the first reference potential Vm_TFT_1 and a TFT characteristic based on the second reference potential Vm_TFT_2 are detected.
- the potential of the monitor line M changes from Vm_oled to Vm_TFT when the light emission period Tc shifts to the TFT characteristic detection period Ta.
- the potential of the monitor line M changes from Vm_oled to Vm_TFT.
- the gate potential of the transistor T2 considering the existence of parasitic capacitance between the gate and source of the transistor T2, the gate potential of the transistor T2 also changes when the potential of the monitor line M changes.
- the influence of such a change in the gate potential of the transistor T2 is that the light emission period Tc precedes the case where the TFT characteristic detection period Ta precedes (the first embodiment) (this modification). Is bigger. The reason for this is as follows.
- the gate potential of the transistor T2 becomes the potential Vmg that satisfies the above equation (1).
- the gate potential of the transistor T2 decreases as the potential of the monitor line M decreases. For this reason, the transistor T2 is turned off during the TFT characteristic detection period Ta depending on the degree of decrease in the gate potential of the transistor T2. From the above, it is preferable that the TFT characteristic detection period Ta precedes the light emission period Tc as in the first modification as in the first embodiment.
- FIG. 30 shows correction data in the correction data storage unit 50 in this modification (the offset value stored in the TFT offset memory 51a, the offset value stored in the OLED offset memory 51b, and the TFT gain memory 52a. It is a flowchart for demonstrating the update procedure of the gain value memorize
- step S310 When the light emission period Tc is reached, the OLED characteristic is detected (step S310). By this step S310, an offset value and a deterioration correction coefficient for correcting the video signal are obtained. Then, the offset value obtained in step S310 is stored in the OLED offset memory 51b as a new offset value (step S320). Further, the deterioration correction coefficient obtained in step S310 is stored in the OLED gain memory 52b as a new deterioration correction coefficient (step S330). Thereafter, in the TFT characteristic detection period Ta, the TFT characteristic is detected in a state where the first reference potential Vm_TFT_1 is applied to the monitor line M (step S340). By this step S340, an offset value for correcting the video signal is obtained.
- step S340 the offset value obtained in step S340 is stored in the TFT offset memory 51a as a new offset value (step S350). Thereafter, the TFT characteristics are detected in a state where the second reference potential Vm_TFT_2 is applied to the monitor line M (step S360). In step S360, a gain value for correcting the video signal is obtained. Then, the gain value obtained in step S360 is stored in the TFT gain memory 52a as a new gain value (step S370). As described above, the correction data corresponding to one pixel is updated.
- the characteristic data is realized by data (offset value, gain value, deterioration correction coefficient) obtained based on the detection results in step S310, step S340, and step S360.
- FIG. 31 is a block diagram showing the overall configuration of the organic EL display device 4 in the present modification.
- the correction data storage unit 50 includes a TFT offset memory 51a and a TFT gain memory 52a. That is, the OLED offset memory 51 b and the OLED gain memory 52 b are not included in the correction data storage unit 50.
- the pixel circuit 11 is driven in the same manner as in the first embodiment. Therefore, regarding the monitor row, during the light emission period Tc, a current is supplied to the organic EL element OLED based on a constant voltage. Then, the state (lit state / unlit state) of the organic EL element OLED is switched by time control so that a desired gradation display is performed. However, in this modified example, the current flowing through the monitor line M (j) is not measured by the current measuring unit 332 during the light emission period Tc.
- FIG. 32 illustrates a procedure for updating correction data (the offset value stored in the TFT offset memory 51a and the gain value stored in the TFT gain memory 52a) in the correction data storage unit 50 according to this modification. It is a flowchart for doing.
- the processing from step S410 to step S440 in the present modification (FIG. 32) is the same as the processing from step S110 to step S140 in the first embodiment (FIG. 16).
- the process of updating the correction data ends when step S440 ends.
- the TFT characteristic and the OLED characteristic are detected by measuring the current flowing through the monitor line M in a state where a certain voltage is supplied to the monitor line M.
- the TFT characteristics are detected by measuring the current flowing through the monitor line M in a state where a certain voltage is supplied to the monitor line M. The detection is performed by measuring the voltage of the anode of the organic EL element OLED in a state where a certain constant current is supplied to the monitor line M.
- a voltage measuring unit 334 is provided in addition to the current measuring unit 332 as a component for obtaining the monitor data MO.
- the configuration of the current measurement unit 332 is the same as the configuration in the first embodiment (see FIG. 7).
- a switching unit for switching the monitor line M (j) between the state connected to the current measurement unit 332 and the state connected to the voltage measurement unit 334. 335 is provided.
- the monitor line M (j) is configured to be connected to either the current measuring unit 332 or the voltage measuring unit 334 based on the switching control signal SW given from the control circuit 20 to the switching unit 335.
- FIG. 34 is a diagram illustrating a configuration example of the voltage measurement unit 334.
- the voltage measurement unit 334 includes an amplifier 3341 and a constant current source 3342.
- the voltage between the node 3343 and the low-level power supply line ELVSS is amplified by the amplifier 3341 while a constant current is supplied to the monitor line M by the constant current source 3342.
- the amplified voltage is sent to the A / D converter in the signal conversion circuit 32 as monitor data MO.
- FIG. 35 is a timing chart for explaining the operation of the pixel circuit 11 (referred to as the pixel circuit 11 of i rows and j columns) included in the monitor row.
- “one frame period” is represented with reference to the selection period start point of the i-th row in a frame in which the i-th row is a monitor row.
- the monitor line M (j) is connected to the current measurement unit 332 during the TFT characteristic detection period Ta, and the monitor line M (j) is connected to the voltage measurement unit 334 during the light emission period TC.
- the scanning line G1 (i) and the monitor control line G2 (i) are activated. Accordingly, the transistor T1 and the transistor T3 are turned on. In this period, the potential Vmg is applied to the data line S (j), and the potential Vm_TFT is applied to the monitor line M (j). Note that a constant current Ioled is applied to the monitor line M (j) during a light emission period Tc described later.
- the threshold voltage of the transistor T2 obtained based on the offset value stored in the TFT offset memory 51a is Vth (T2), and the monitor line when the constant current Ioled is applied to the monitor line M (j).
- the potential of M (j) is Vm_oled (Ioled)
- the value of the potential Vmg, the value of the potential Vm_TFT, and the value of the current Ioled are set so that the above equation (1) and the following equation (7) are satisfied. Yes.
- Vth the value of the potential Vm_TFT is set so that the above equation (3) is satisfied. Is set.
- the value of the potential Vm_TFT is set so that the above equation (4) is satisfied.
- the potential Vmg satisfying the above expressions (1) and (7) is given to the data line S (j), and the above expressions (1), A potential Vm_TFT that satisfies (3) and (4) is applied to the monitor line M (j). From the above equation (1), during this period, the transistor T2 is turned on. Further, from the above formulas (3) and (4), no current flows through the organic EL element OLED during this period.
- the scanning line G1 (i) is inactive. Thereby, the transistor T1 is turned off, but the transistor T2 is maintained in the on state because the capacitor Cst is charged during the selection period Tb. Since the monitor control line G2 (i) is maintained in an active state, the transistor T3 is also maintained in an on state.
- the monitor line M (j) is supplied with a potential Vm_TFT that satisfies the above equations (1), (3), and (4).
- the current flowing through the transistor T2 is output to the monitor line M (j) via the transistor T3.
- the monitor line M (j) is connected to the current measuring unit 332.
- the current (sink current) output to the monitor line M (j) is measured by the current measuring unit 332.
- the TFT characteristics are detected.
- first reference potential Vm_TFT_1 and second reference potential Vm_TFT_2 are applied to the monitor line M (j) in the TFT characteristic detection period Ta. Is done. Thereby, a TFT characteristic based on the first reference potential Vm_TFT_1 and a TFT characteristic based on the second reference potential Vm_TFT_2 are detected.
- the scanning line G1 (i) is maintained in an inactive state, and the monitor control line G2 (i) is maintained in an active state. Therefore, during this period, the transistor T1 is maintained in the off state, and the transistor T3 is maintained in the on state. As described above, the constant current Ioled is applied to the monitor line M (j) during this period.
- the value of the constant current Ioled is set so that the above equation (7) and the following equation (8) are satisfied.
- the value of the constant current Ioled is set so that the following equation (9) is satisfied.
- the constant current Ioled that satisfies the above equations (7), (8), and (9) is applied to the monitor line M (j) during the light emission period Tc. From the above equations (7) and (9), the transistor T2 is turned off during this period. Further, from the above equation (8), a current flows through the organic EL element OLED during this period.
- the monitor line M (j) is connected to the voltage measurement unit 334 during the light emission period Tc.
- the voltage measurement unit 334 measures the voltage of the anode of the organic EL element OLED. As described above, the OLED characteristic is detected.
- the length of time during which the organic EL element OLED emits light is adjusted so that the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation.
- the length of time for which the constant current Ioled is applied to the organic EL element OLED is adjusted according to the target luminance. Note that if the integrated value of the light emission current in one frame period becomes a value corresponding to a desired gradation, the current value is changed during the light emission period Tc, and characteristics (current-voltage) at a plurality of operating points are changed. (Characteristic) may be measured.
- the drive transistor (transistor T2) of the drive transistor (transistor T2) is secured by sufficiently securing the characteristic detection time of the drive transistor (transistor T2) and the organic EL element OLED. Both the deterioration and the deterioration of the organic EL element OLED can be sufficiently compensated simultaneously.
- a configuration that can put the monitor line M in a high impedance state can be employed. That is, as shown in FIG. 36, a switching unit 336 is provided for switching the monitor line M between the state connected to the current measuring unit 332, the state connected to the voltage measuring unit 334, and the high impedance state. Other configurations may be adopted.
- the vicinity of one end portion of the monitor line M may be configured as shown in FIG. 37 so that one current measuring unit 332 and one voltage measuring unit 334 are shared by a plurality of columns (the above-mentioned first). (Refer to the third modification of the embodiment).
- the organic EL display device to which the present invention is applicable is not limited to the one provided with the pixel circuit 11 exemplified in each embodiment and each modification.
- the pixel circuit includes at least an electro-optical element (organic EL element OLED) controlled by current, transistors T1 to T3, and a capacitor Cst, the pixel circuit has a configuration other than the configuration exemplified in each embodiment and each modification. There may be.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Control Of El Displays (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
本発明は、表示装置において、回路素子の特性検出の時間を充分に確保して回路素子の劣化に対する充分な補償を可能にすることを目的とする。 駆動トランジスタのソースおよび電気光学素子の陽極に電気的に接続可能なモニタ線が設けられる。駆動トランジスタの特性を検出するステップ(S10)と、電気光学素子の特性を検出するステップ(S30)と、特性の検出結果に基づいて得られる特性データを映像信号を補正するための補正データとして記憶するステップ(S20,S40)と、補正データに基づいて映像信号を補正するステップ(S50)とが駆動方法に含められる。ここで、モニタ行と非モニタ行とで選択期間の長さが等しくされる。また、駆動トランジスタの特性を検出する時と電気光学素子の特性を検出する時とでモニタ線に異なる電位が与えられる。
Description
本発明は表示装置およびその駆動方法に関し、より詳しくは、有機EL(Electro Luminescence)素子などの電気光学素子を含む画素回路を備える表示装置およびその駆動方法に関する。
従来より、表示装置が備える表示素子としては、印加される電圧によって輝度が制御される電気光学素子と流れる電流によって輝度が制御される電気光学素子とがある。印加される電圧によって輝度が制御される電気光学素子の代表例としては液晶表示素子が挙げられる。一方、流れる電流によって輝度が制御される電気光学素子の代表例としては有機EL素子が挙げられる。有機EL素子は、OLED(Organic Light-Emitting Diode)とも呼ばれている。自発光型の電気光学素子である有機EL素子を使用した有機EL表示装置は、バックライトおよびカラーフィルタなどを要する液晶表示装置に比べて、容易に薄型化・低消費電力化・高輝度化などを図ることができる。従って、近年、積極的に有機EL表示装置の開発が進められている。
有機EL表示装置の駆動方式として、パッシブマトリクス方式(単純マトリクス方式とも呼ばれる。)とアクティブマトリクス方式とが知られている。パッシブマトリクス方式を採用した有機EL表示装置は、構造は単純であるものの、大型化および高精細化が困難である。これに対して、アクティブマトリクス方式を採用した有機EL表示装置(以下「アクティブマトリクス型の有機EL表示装置」という。)は、パッシブマトリクス方式を採用した有機EL表示装置に比べて大型化および高精細化を容易に実現できる。
アクティブマトリクス型の有機EL表示装置には、複数の画素回路がマトリクス状に形成されている。アクティブマトリクス型の有機EL表示装置の画素回路は、典型的には、画素を選択する入力トランジスタと、有機EL素子への電流の供給を制御する駆動トランジスタとを含んでいる。なお、以下においては、駆動トランジスタから有機EL素子に流れる電流のことを「駆動電流」という場合がある。
図38は、従来の一般的な画素回路91の構成を示す回路図である。この画素回路91は、表示部に配設されている複数のデータ線Sと複数の走査線Gとの各交差点に対応して設けられている。図38に示すように、この画素回路91は、2個のトランジスタT1,T2と、1個のコンデンサCstと、1個の有機EL素子OLEDとを備えている。トランジスタT1は入力トランジスタであり、トランジスタT2は駆動トランジスタである。
トランジスタT1は、データ線SとトランジスタT2のゲート端子との間に設けられている。そのトランジスタT1に関し、走査線Gにゲート端子が接続され、データ線Sにソース端子が接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。そのトランジスタT2に関し、ハイレベル電源電圧ELVDDを供給する電源線にドレイン端子が接続され、有機EL素子OLEDのアノード端子にソース端子が接続されている。なお、ハイレベル電源電圧ELVDDを供給する電源線のことを以下「ハイレベル電源線」といい、ハイレベル電源線にはハイレベル電源電圧と同じ符合ELVDDを付す。コンデンサCstについては、トランジスタT2のゲート端子に一端が接続され、トランジスタT2のソース端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源電圧ELVSSを供給する電源線に接続されている。なお、ローレベル電源電圧ELVSSを供給する電源線のことを以下「ローレベル電源線」といい、ローレベル電源線にはローレベル電源電圧と同じ符合ELVSSを付す。また、ここでは、トランジスタT2のゲート端子と、コンデンサCstの一端と、トランジスタT1のドレイン端子との接続点のことを便宜上「ゲートノードVG」という。なお、一般的には、ドレインとソースのうち電位の高い方がドレインと呼ばれているが、本明細書の説明では、一方をドレイン,他方をソースと定義するので、ドレイン電位よりもソース電位の方が高くなることもある。
図39は、図38に示す画素回路91の動作を説明するためのタイミングチャートである。時刻t1以前には、走査線Gは非選択状態となっている。従って、時刻t1以前には、トランジスタT1がオフ状態になっており、ゲートノードVGの電位は初期レベル(例えば、1つ前のフレームでの書き込みに応じたレベル)を維持している。時刻t1になると、走査線Gが選択状態となり、トランジスタT1がターンオンする。これにより、データ線SおよびトランジスタT1を介して、この画素回路91が形成する画素(サブ画素)の輝度に対応するデータ電圧VdataがゲートノードVGに供給される。その後、時刻t2までの期間に、ゲートノードVGの電位がデータ電圧Vdataに応じて変化する。このとき、コンデンサCstは、ゲートノードVGの電位とトランジスタT2のソース電位との差であるゲート-ソース間電圧Vgsに充電される。時刻t2になると、走査線Gが非選択状態となる。これにより、トランジスタT1がターンオフし、コンデンサCstが保持するゲート-ソース間電圧Vgsが確定する。トランジスタT2は、コンデンサCstが保持するゲート-ソース間電圧Vgsに応じて有機EL素子OLEDに駆動電流を供給する。その結果、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
ところで、有機EL表示装置においては、駆動トランジスタとして、典型的には薄膜トランジスタ(TFT)が採用される。しかしながら、薄膜トランジスタについては、閾値電圧にばらつきが生じやすい。表示部内に設けられている駆動トランジスタに閾値電圧のばらつきが生じると、輝度のばらつきが生じるので表示品位が低下する。そこで、有機EL表示装置における表示品位の低下を抑制する技術が従来より提案されている。例えば、日本の特開2005-31630号公報には、駆動トランジスタの閾値電圧のばらつきを補償する技術が開示されている。また、日本の特開2003-195810号公報および日本の特開2007-128103号公報には、画素回路から有機EL素子OLEDに流れる電流を一定にする技術が開示されている。さらに、日本の特開2007-233326号公報には、駆動トランジスタの閾値電圧や電子移動度に関わらず均一な輝度の画像を表示する技術が開示されている。
上述の先行技術によれば、表示部内に設けられている駆動トランジスタに閾値電圧のばらつきが生じても、所望の輝度(目標輝度)に応じて有機EL素子(発光素子)に一定電流を供給することが可能となる。しかしながら、有機EL素子に関しては、時間の経過とともに電流効率が低下する。すなわち、たとえ一定電流が有機EL素子に供給されたとしても、時間の経過とともに輝度が徐々に低下する。その結果、焼き付きが生じる。
以上より、駆動トランジスタの劣化および有機EL素子の劣化に対して何ら補償が行われなければ、図40に示すように、駆動トランジスタの劣化に起因する電流低下が生じるとともに有機EL素子の劣化に起因する輝度低下が生じる。また、駆動トランジスタの劣化に対して補償が行われても、図41に示すように、時間が経過するにつれて、有機EL素子の劣化に起因する輝度低下が生じる。そこで、日本の特表2008-523448号公報には、駆動トランジスタの特性に基づいてデータを補正する技術に加えて、有機EL素子OLEDの特性に基づいてデータを補正する技術が開示されている。
ところが、日本の特表2008-523448号公報に開示された技術によれば、選択期間中には駆動トランジスタまたは有機EL素子のいずれか一方の特性しか検出することができない。このため、駆動トランジスタの劣化および有機EL素子の劣化の双方を同時に補償することはできない。また、駆動トランジスタおよび有機EL素子の双方の特性を検出するためには選択期間を長くする必要がある。これに関し、日本の特表2008-523448号公報に開示された技術においては、特性の検出を行う行の選択期間を長くした場合、特性の検出を行う行とそれ以外の行とで発光時間の長さが異なってしまい、所望の輝度表示が行われない。換言すれば、所望の輝度表示が行われるよう選択期間を短くすると、特性を検出するための時間が充分に確保されない。その結果、特性検出の精度が低下し、駆動トランジスタの劣化および有機EL素子の劣化の補償が充分に行われない。
そこで、本発明は、表示装置において回路素子の特性検出の時間を充分に確保して回路素子の劣化を充分に補償することを可能にする駆動方法を提供することを目的とする。さらに、本発明は、表示装置において駆動トランジスタの劣化および発光素子の劣化の双方を同時に補償することを可能にする駆動方法を提供することを目的とする。
本発明の第1の局面は、電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置の駆動方法であって、
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出ステップと、
前記駆動トランジスタ特性検出ステップでの検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして、予め用意された補正データ記憶部に記憶させる補正データ記憶ステップと、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正ステップと
を含み、
前記表示装置には、前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能なモニタ線が、前記画素マトリクスの列毎に設けられ、
前記駆動トランジスタ特性検出ステップの処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
各フレーム期間において前記駆動トランジスタ特性検出ステップの処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出ステップの処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記モニタ行では、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続され、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位が与えられることを特徴とする。
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出ステップと、
前記駆動トランジスタ特性検出ステップでの検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして、予め用意された補正データ記憶部に記憶させる補正データ記憶ステップと、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正ステップと
を含み、
前記表示装置には、前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能なモニタ線が、前記画素マトリクスの列毎に設けられ、
前記駆動トランジスタ特性検出ステップの処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
各フレーム期間において前記駆動トランジスタ特性検出ステップの処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出ステップの処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記モニタ行では、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続され、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位が与えられることを特徴とする。
本発明の第2の局面は、本発明の第1の局面において、
前記電気光学素子の特性を検出する電気光学素子特性検出ステップを更に含み、
前記電気光学素子特性検出ステップの処理は、前記発光期間に行われ、
前記補正データ記憶ステップでは、更に、前記電気光学素子特性検出ステップでの検出結果に基づいて得られる特性データが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする。
前記電気光学素子の特性を検出する電気光学素子特性検出ステップを更に含み、
前記電気光学素子特性検出ステップの処理は、前記発光期間に行われ、
前記補正データ記憶ステップでは、更に、前記電気光学素子特性検出ステップでの検出結果に基づいて得られる特性データが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする。
本発明の第3の局面は、本発明の第2の局面において、
前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
本発明の第4の局面は、本発明の第3の局面において、
前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電圧を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電圧を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
本発明の第5の局面は、本発明の第4の局面において、
前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電圧が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電圧が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
本発明の第6の局面は、本発明の第3の局面において、
前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
本発明の第7の局面は、本発明の第2の局面において、
前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
本発明の第8の局面は、本発明の第7の局面において、
前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電流を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電流を前記電気光学素子に与える時間の長さが調整されることを特徴とする。
本発明の第9の局面は、本発明の第8の局面において、
前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電流が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電流が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする。
本発明の第10の局面は、本発明の第7の局面において、
前記表示装置は、
前記モニタ線の電流を測定するための電流測定部と、
前記モニタ線の電圧を測定するための電圧測定部と
を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電圧測定部が前記モニタ線の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
前記表示装置は、
前記モニタ線の電流を測定するための電流測定部と、
前記モニタ線の電圧を測定するための電圧測定部と
を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電圧測定部が前記モニタ線の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする。
本発明の第11の局面は、本発明の第2の局面において、
前記n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素については、前記電気光学素子特性検出ステップの処理が行われないことを特徴とする。
前記n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素については、前記電気光学素子特性検出ステップの処理が行われないことを特徴とする。
本発明の第12の局面は、本発明の第2の局面において、
温度を検出する温度検出ステップと、
前記特性データに対して前記温度検出ステップで検出された温度に基づく補正を施す温度変化補償ステップと
を更に含み、
前記補正データ記憶ステップでは、前記温度変化補償ステップの処理で得られたデータが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする。
温度を検出する温度検出ステップと、
前記特性データに対して前記温度検出ステップで検出された温度に基づく補正を施す温度変化補償ステップと
を更に含み、
前記補正データ記憶ステップでは、前記温度変化補償ステップの処理で得られたデータが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする。
本発明の第13の局面は、本発明の第1の局面において、
前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする。
前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする。
本発明の第14の局面は、本発明の第13の局面において、
前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲートに複数レベルの電位が与えられることによって、前記駆動トランジスタの特性として複数の特性が検出されることを特徴とする。
前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲートに複数レベルの電位が与えられることによって、前記駆動トランジスタの特性として複数の特性が検出されることを特徴とする。
本発明の第15の局面は、本発明の第13の局面において、
前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする。
前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする。
本発明の第16の局面は、本発明の第15の局面において、
前記電流測定部は、K本のモニタ線(Kは2以上m以下の整数)につき1つだけ設けられ、
各フレーム期間において、
前記K本のモニタ線のうちの1つが前記電流測定部と電気的に接続され、
前記電流測定部と電気的に接続されていないモニタ線は、ハイインピーダンスの状態にされていることを特徴とする。
前記電流測定部は、K本のモニタ線(Kは2以上m以下の整数)につき1つだけ設けられ、
各フレーム期間において、
前記K本のモニタ線のうちの1つが前記電流測定部と電気的に接続され、
前記電流測定部と電気的に接続されていないモニタ線は、ハイインピーダンスの状態にされていることを特徴とする。
本発明の第17の局面は、本発明の第1の局面において、
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vmgの値は以下の式を満たすように定められていることを特徴とする。
Vmg>Vm_TFT+Vth(T2)
Vmg<Vm_oled+Vth(T2)
ここで、Vth(T2)は前駆駆動トランジスタの閾値電圧である。
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vmgの値は以下の式を満たすように定められていることを特徴とする。
Vmg>Vm_TFT+Vth(T2)
Vmg<Vm_oled+Vth(T2)
ここで、Vth(T2)は前駆駆動トランジスタの閾値電圧である。
本発明の第18の局面は、本発明の第1の局面において、
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとしたとき、Vm_TFTの値は以下の式を満たすように定められていることを特徴とする。
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとしたとき、Vm_TFTの値は以下の式を満たすように定められていることを特徴とする。
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
本発明の第19の局面は、本発明の第1の局面において、
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vm_oledの値は以下の式を満たすように定められていることを特徴とする。
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vm_oledの値は以下の式を満たすように定められていることを特徴とする。
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
本発明の第20の局面は、本発明の第1の局面において、
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、以下の関係を満たすようにVmg,Vm_TFT,およびVm_oledの値が定められていることを特徴とする。
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、以下の関係を満たすようにVmg,Vm_TFT,およびVm_oledの値が定められていることを特徴とする。
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。
本発明の第21の局面は、本発明の第1の局面において、
目標輝度に応じて、前記駆動トランジスタ特性検出期間の長さと前記発光期間の長さとが調整されることを特徴とする。
目標輝度に応じて、前記駆動トランジスタ特性検出期間の長さと前記発光期間の長さとが調整されることを特徴とする。
本発明の第22の局面は、本発明の第1の局面において、
各フレーム期間において、前記発光期間よりも前記駆動トランジスタ特性検出期間の方が先行していることを特徴とする。
各フレーム期間において、前記発光期間よりも前記駆動トランジスタ特性検出期間の方が先行していることを特徴とする。
本発明の第23の局面は、本発明の第1の局面において、
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記選択期間の長さが前記モニタ行と前記非モニタ行とで等しいことを特徴とする。
前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記選択期間の長さが前記モニタ行と前記非モニタ行とで等しいことを特徴とする。
本発明の第24の局面は、本発明の第1の局面において、
前記表示装置の電源オフの際に、最後に前記駆動トランジスタ特性検出ステップの処理が行われた領域を特定する情報を予め用意されたモニタ領域記憶部に記憶するモニタ領域記憶ステップを更に含み、
前記表示装置の電源オン後には、前記モニタ領域記憶部に記憶されている情報に基づいて得られる領域近傍の領域から、前記駆動トランジスタ特性検出ステップの処理が行われることを特徴とする。
前記表示装置の電源オフの際に、最後に前記駆動トランジスタ特性検出ステップの処理が行われた領域を特定する情報を予め用意されたモニタ領域記憶部に記憶するモニタ領域記憶ステップを更に含み、
前記表示装置の電源オン後には、前記モニタ領域記憶部に記憶されている情報に基づいて得られる領域近傍の領域から、前記駆動トランジスタ特性検出ステップの処理が行われることを特徴とする。
本発明の第25の局面は、電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置であって、
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出処理を行いつつ前記n×m個の画素回路を駆動する画素回路駆動部と、
前記駆動トランジスタ特性検出処理での検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして記憶する補正データ記憶部と、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正部と、
前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能に構成され、前記画素マトリクスの列毎に設けられたモニタ線と
を備え、
各フレーム期間において前記駆動トランジスタ特性検出処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記画素回路駆動部は、
前記駆動トランジスタ特性検出処理を、1フレーム期間につき前記画素マトリクスの1つの行についてのみ行い、
前記モニタ行については、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続された状態を維持し、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位を与えることを特徴とする。
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出処理を行いつつ前記n×m個の画素回路を駆動する画素回路駆動部と、
前記駆動トランジスタ特性検出処理での検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして記憶する補正データ記憶部と、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正部と、
前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能に構成され、前記画素マトリクスの列毎に設けられたモニタ線と
を備え、
各フレーム期間において前記駆動トランジスタ特性検出処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記画素回路駆動部は、
前記駆動トランジスタ特性検出処理を、1フレーム期間につき前記画素マトリクスの1つの行についてのみ行い、
前記モニタ行については、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続された状態を維持し、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位を与えることを特徴とする。
本発明の第1の局面によれば、電流によって輝度が制御される電気光学素子(例えば有機EL素子)と当該電気光学素子に供給すべき電流を制御するための駆動トランジスタとを含む画素回路を有する表示装置において、1フレーム期間につき1つの行について、駆動トランジスタの特性の検出が行われる。そして、その検出結果を考慮して得られる補正データを用いて映像信号が補正される。このようにして補正された映像信号に基づくデータ信号が画素回路に供給されるので、駆動トランジスタの劣化が補償されるような大きさの駆動電流が電気光学素子に供給される。また、モニタ線の電位を変化させることによって、駆動トランジスタのオン/オフ状態の切り替えが行われる。このため、駆動トランジスタのオン/オフ状態を切り替えるために当該駆動トランジスタのゲート電位を変化させるための期間を、駆動トランジスタ特性検出期間と発光期間との間に設ける必要がない。従って、モニタ期間の長さを充分に確保することが可能となる。以上より、駆動トランジスタの特性検出の時間を充分に確保して駆動トランジスタの劣化を充分に補償することが可能となる。
本発明の第2の局面によれば、電気光学素子の特性の検出が行われ、その検出結果を考慮して映像信号が補正される。このため、電気光学素子の劣化が補償されるような大きさの駆動電流が電気光学素子に供給される。以上より、駆動トランジスタおよび電気光学素子の特性検出の時間を充分に確保して駆動トランジスタの劣化および電気光学素子の劣化の双方を充分に補償することが可能となる。
本発明の第3の局面によれば、電気光学素子の特性を検出するための測定時間の短縮が可能となる。
本発明の第4の局面によれば、電気光学素子の特性の検出を行いつつ当該電気光学素子を所望の輝度で発光させることが可能となる。
本発明の第5の局面によれば、電気光学素子の特性として複数の特性が検出されるので、より効果的に電気光学素子の劣化を補償することが可能となる。
本発明の第6の局面によれば、各列に含まれる駆動トランジスタおよび電気光学素子の双方の特性を1本のモニタ線によって検出することが可能となる。
本発明の第7の局面によれば、特性を検出する電気光学素子には一定電流が供給される。このため、一定電流を電気光学素子に供給する時間を調整することによって、当該電気光学素子を所望の輝度で発光させることが可能となる。
本発明の第8の局面によれば、電気光学素子の特性の検出を行いつつ当該電気光学素子を所望の輝度で発光させることが可能となる。
本発明の第9の局面によれば、電気光学素子の特性として複数の特性が検出されるので、より効果的に電気光学素子の劣化を補償することが可能となる。
本発明の第10の局面によれば、各列に含まれる駆動トランジスタおよび電気光学素子の双方の特性を1本のモニタ線によって検出することが可能となる。
本発明の第11の局面によれば、電気光学素子の不必要な発光が防止される。
本発明の第12の局面によれば、温度変化を考慮した補正データを用いて映像信号が補正される。このため、温度の変化に関わらず、駆動トランジスタの劣化および電気光学素子の劣化の双方を充分に補償することが可能となる。
本発明の第13の局面によれば、比較的容易に駆動トランジスタの特性を検出することが可能となる。
本発明の第14の局面によれば、駆動トランジスタの特性として複数の特性が検出されるので、より効果的に駆動トランジスタの劣化を補償することが可能となる。
本発明の第15の局面によれば、各列に含まれる駆動トランジスタの特性を1本のモニタ線によって検出することが可能となる。
本発明の第16の局面によれば、1つの電流測定部が複数のモニタ線で共有化される。このため、回路面積の増大を抑制しつつ駆動トランジスタの劣化を補償することが可能となる。
本発明の第17の局面によれば、駆動トランジスタ特性検出期間には駆動トランジスタが確実にオン状態になり、発光期間には電気光学素子が確実にオン状態となる。
本発明の第18の局面によれば、駆動トランジスタ特性検出期間には、駆動トランジスタが確実にオン状態になるとともに電気光学素子が確実にオフ状態となる。
本発明の第19の局面によれば、発光期間には、駆動トランジスタが確実にオフ状態になるとともに電気光学素子が確実にオン状態となる。
本発明の第20の局面によれば、駆動トランジスタ特性検出期間には、駆動トランジスタが確実にオン状態になるとともに電気光学素子が確実にオフ状態となる。また、発光期間には、駆動トランジスタが確実にオフ状態になるとともに電気光学素子が確実にオン状態となる。
本発明の第21の局面によれば、目標輝度に応じて、駆動トランジスタ特性検出期間を長くすることが可能となる。このため、駆動トランジスタの特性を検出するために、より多くの回数、電流を測定することが可能となる。これにより、検出電流のS/N比が高められ、駆動トランジスタの特性の検出の精度が向上する。
本発明の第22の局面によれば、駆動トランジスタ特性検出期間に駆動トランジスタがオフ状態となることが防止される。
本発明の第23の局面によれば、表示装置の駆動回路の構成を複雑化させることなく、モニタ期間の長さを充分に確保することが可能となる。
本発明の第24の局面によれば、例えば上方の行と下方の行との間で駆動トランジスタの特性の検出回数に差が生じることが防止される。このため、駆動トランジスタの劣化に対する補償を画面全体で一様に行うことが可能となり、輝度のばらつきの発生が効果的に防止される。
本発明の第25の局面によれば、本発明の第1の局面と同様の効果を表示装置の発明において奏することができる。
以下、添付図面を参照しながら、本発明の実施形態について説明する。なお、以下においては、mおよびnは2以上の整数、iは1以上n以下の整数、jは1以上m以下の整数であると仮定する。また、以下においては、画素回路内に設けられている駆動トランジスタの特性のことを「TFT特性」といい、画素回路内に設けられている有機EL素子の特性のことを「OLED特性」という。
<1.第1の実施形態>
<1.1 全体構成>
図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示部10,コントロール回路20,ソースドライバ(データ線駆動回路)30,ゲートドライバ(走査線駆動回路)40,および補正データ記憶部50を備えている。本実施形態においては、ソースドライバ30およびゲートドライバ40によって画素回路駆動部が実現されている。なお、ソースドライバ30およびゲートドライバ40の一方または双方が表示部10と一体的に形成された構成であっても良い。
<1.1 全体構成>
図2は、本発明の第1の実施形態に係るアクティブマトリクス型の有機EL表示装置1の全体構成を示すブロック図である。この有機EL表示装置1は、表示部10,コントロール回路20,ソースドライバ(データ線駆動回路)30,ゲートドライバ(走査線駆動回路)40,および補正データ記憶部50を備えている。本実施形態においては、ソースドライバ30およびゲートドライバ40によって画素回路駆動部が実現されている。なお、ソースドライバ30およびゲートドライバ40の一方または双方が表示部10と一体的に形成された構成であっても良い。
表示部10には、m本のデータ線S(1)~S(m)およびこれらに直交するn本の走査線G1(1)~G1(n)が配設されている。以下では、データ線の延伸方向をY方向とし、走査線の延伸方向をX方向とする。Y方向に沿った構成要素を「列」という場合があり、X方向に沿った構成要素を「行」という場合がある。また、表示部10には、m本のデータ線S(1)~S(m)と1対1で対応するように、m本のモニタ線M(1)~M(m)が配設されている。データ線S(1)~S(m)とモニタ線M(1)~M(m)とは互いに平行になっている。さらに、表示部10には、n本の走査線G1(1)~G1(n)と1対1で対応するように、n本のモニタ制御線G2(1)~G2(n)が配設されている。走査線G1(1)~G1(n)とモニタ制御線G2(1)~G2(n)とは互いに平行になっている。さらにまた、表示部10には、n本の走査線G1(1)~G1(n)とm本のデータ線S(1)~S(m)との交差点に対応するように、n×m個の画素回路11が設けられている。このようにn×m個の画素回路11が設けられることによって、n行×m列の画素マトリクスが表示部10に形成されている。また、表示部10には、ハイレベル電源電圧を供給するハイレベル電源線と、ローレベル電源電圧を供給するローレベル電源線とが配設されている。
なお、以下においては、m本のデータ線S(1)~S(m)を互いに区別する必要がない場合にはデータ線を単に符号Sで表す。同様に、m本のモニタ線M(1)~M(m)を互いに区別する必要がない場合にはモニタ線を単に符号Mで表し、n本の走査線G1(1)~G1(n)を互いに区別する必要がない場合には走査線を単に符号G1で表し、n本のモニタ制御線G2(1)~G2(n)を互いに区別する必要がない場合にはモニタ制御線を単に符号G2で表す。
コントロール回路20は、ソースドライバ30にデータ信号DAおよびソース制御信号SCTLを与えることによりソースドライバ30の動作を制御し、ゲートドライバ40にゲート制御信号GCTLを送信することによりゲートドライバ40の動作を制御する。ソース制御信号SCTLには、例えば、ソーススタートパルス,ソースクロック,ラッチストローブ信号が含まれている。ゲート制御信号GCTLには、例えば、ゲートスタートパルスおよびゲートクロックが含まれている。また、コントロール回路20は、ソースドライバ30から与えられるモニタデータMOを受け取り、補正データ記憶部50に格納されている補正データの更新を行う。なお、モニタデータMOとは、TFT特性やOLED特性を求めるために測定されたデータである。
ゲートドライバ40は、n本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)に接続されている。ゲートドライバ40は、シフトレジスタおよび論理回路などによって構成されている。ところで、本実施形態に係る有機EL表示装置1においては、TFT特性およびOLED特性に基づいて、外部から送られる映像信号(上記データ信号DAの元となるデータ)に補正が施される。これに関し、各フレームにおいて、1つの行についてのTFT特性およびOLED特性の検出が行われる。すなわち、或るフレームに1行目についてのTFT特性およびOLED特性の検出が行われると、次のフレームには2行目についてのTFT特性およびOLED特性の検出が行われ、さらに次のフレームには3行目についてのTFT特性およびOLED特性の検出が行われる。このようにして、nフレーム期間をかけて、n行分のTFT特性およびOLED特性の検出が行われる。ここで、1行目についてのTFT特性およびOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、n本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)は、(k+1)フレーム目には図3に示すように駆動され、(k+2)フレーム目には図4に示すように駆動され、(k+n)フレーム目には図5に示すように駆動される。なお、図3~図5に関し、ハイレベルの状態がアクティブな状態である。また、走査線G1がアクティブな状態になっている期間のことを「選択期間」という。この選択期間は、画素回路11内に設けられている有機EL素子を発光させる準備を行うための期間である。以下、任意のフレームに着目したときにTFT特性およびOLED特性の検出が行われている行のことを「モニタ行」といい、モニタ行以外の行のことを「非モニタ行」という。図3~図5より把握されるように、モニタ行と非モニタ行とで選択期間の長さは同じになっている。また、各フレームにおいて、非モニタ行に対応するモニタ制御線G2は非アクティブな状態で維持される。モニタ行に対応するモニタ制御線G2については、選択期間開始時点にアクティブな状態にされ、選択期間開始時点のほぼ1フレーム期間後までアクティブな状態で維持される。本実施形態においては、以上のようにn本の走査線G1(1)~G1(n)およびn本のモニタ制御線G2(1)~G2(n)が駆動されるよう、ゲートドライバ40が構成されている。
ソースドライバ30は、m本のデータ線S(1)~S(m)およびm本のモニタ線M(1)~M(m)に接続されている。ソースドライバ30は、駆動信号発生回路31と、信号変換回路32と、m個の出力回路330からなる出力部33とによって構成されている。出力部33内のm個の出力回路330はそれぞれm本のデータ線S(1)~S(m)のうちの対応するデータ線Sおよびm本のモニタ線M(1)~M(m)のうちの対応するモニタ線Mに接続されている。このように各出力回路330がデータ線Sとモニタ線Mとに接続されていることから、機能的にはこのソースドライバ30をデータ線駆動部30aとモニタ線駆動部30bとに分けることもできる(図17参照)。
駆動信号発生回路31には、シフトレジスタ,サンプリング回路,およびラッチ回路が含まれている。駆動信号発生回路31において、シフトレジスタは、ソースクロックに同期して、ソーススタートパルスを入力端から出力端へと順次に転送する。ソーススタートパルスのこの転送に応じて、シフトレジスタから各データ線Sに対応するサンプリングパルスが出力される。サンプリング回路は、サンプリングパルスのタイミングに従って1行分のデータ信号DAを順次に記憶する。ラッチ回路は、サンプリング回路に記憶された1行分のデータ信号DAをラッチストローブ信号に応じて取り込んで保持する。
信号変換回路32には、D/AコンバータおよびA/Dコンバータが含まれている。上述のようにして駆動信号発生回路31内のラッチ回路に保持された1行分のデータ信号DAは、信号変換回路32内のD/Aコンバータによってアナログ電圧に変換される。その変換されたアナログ電圧は、出力部33内の出力回路330に与えられる。また、信号変換回路32には、出力回路330からモニタデータMOが与えられる。そのモニタデータMOは、信号変換回路32内のA/Dコンバータで、アナログ電圧からデジタル信号に変換される。そして、デジタル信号に変換されたモニタデータMOは、駆動信号発生回路31を介してコントロール回路20に与えられる。さらに、信号変換回路32内のD/Aコンバータでは、ソース制御信号SCTLの1つであってモニタ線Mの電位を制御するための信号がアナログ電圧に変換され、当該アナログ電圧はモニタ線制御電圧Vmとして出力部33内の出力回路330に与えられる。
図6は、出力部33内の出力回路330の概略構成を示すブロック図である。図6に示すように、出力回路330には、映像信号出力部331と電流測定部332とが含まれている。映像信号出力部331にはボルテージフォロワ等のバッファが含まれており、信号変換回路32から与えられるアナログ電圧Vsはそのバッファを介してデータ電圧としてデータ線Sに印加される。電流測定部332は、信号変換回路32から与えられるモニタ線制御電圧Vmをモニタ線Mに供給する機能を有するとともに、モニタ線Mを流れる電流を測定する機能を有している。この電流測定部332で測定されたデータは、モニタデータMOとして信号変換回路32に与えられる。なお、電流測定部332の詳しい構成については後述する(図7参照)。
補正データ記憶部50には、TFT用オフセットメモリ51a,OLED用オフセットメモリ51b,TFT用ゲインメモリ52a,およびOLED用ゲインメモリ52bが含まれている。なお、これら4つのメモリは、物理的には1つのメモリであっても良いし、物理的に異なるメモリであっても良い。補正データ記憶部50は、外部から送られる映像信号の補正に使用される補正データを記憶している。詳しくは、TFT用オフセットメモリ51aは、TFT特性の検出結果に基づくオフセット値を補正データとして記憶する。OLED用オフセットメモリ51bは、OLED特性の検出結果に基づくオフセット値を補正データとして記憶する。TFT用ゲインメモリ52aは、TFT特性の検出結果に基づくゲイン値を補正データとして記憶する。OLED用ゲインメモリ52bは、OLED特性の検出結果に基づく劣化補正係数を補正データとして記憶する。なお、典型的には、表示部10内の画素の数に等しい数のオフセット値およびゲイン値が、TFT特性の検出結果に基づく補正データとして、それぞれTFT用オフセットメモリ51aおよびTFT用ゲインメモリ52aに記憶される。また、典型的には、表示部10内の画素の数に等しい数のオフセット値および劣化補正係数が、OLED特性の検出結果に基づく補正データとして、それぞれOLED用オフセットメモリ51bおよびOLED用ゲインメモリ52bに記憶される。但し、複数の画素毎に1つの値が各メモリに記憶されるようにしても良い。
コントロール回路20は、ソースドライバ30から与えられるモニタデータMOに基づいて、TFT用オフセットメモリ51a内のオフセット値,OLED用オフセットメモリ51b内のオフセット値,TFT用ゲインメモリ52a内のゲイン値,およびOLED用ゲインメモリ52b内の劣化補正係数を更新する。また、コントロール回路20は、TFT用オフセットメモリ51a内のオフセット値,OLED用オフセットメモリ51b内のオフセット値,TFT用ゲインメモリ52a内のゲイン値,およびOLED用ゲインメモリ52b内の劣化補正係数を読み出して、映像信号の補正を行う。その補正によって得られたデータが、データ信号DAとしてソースドライバ30に送られる。
<1.2 画素回路および電流測定部の構成>
<1.2.1 画素回路>
図7は、画素回路11および電流測定部332の構成を示す回路図である。なお、図7に示す画素回路11は、i行j列の画素回路11である。この画素回路11は、1個の有機EL素子OLED,3個のトランジスタT1~T3,および1個のコンデンサCstを備えている。トランジスタT1は画素を選択する入力トランジスタとして機能し、トランジスタT2は有機EL素子OLEDへの電流の供給を制御する駆動トランジスタとして機能し、トランジスタT3はTFT特性やOLED特性を検出するか否かを制御するモニタ制御トランジスタとして機能する。
<1.2.1 画素回路>
図7は、画素回路11および電流測定部332の構成を示す回路図である。なお、図7に示す画素回路11は、i行j列の画素回路11である。この画素回路11は、1個の有機EL素子OLED,3個のトランジスタT1~T3,および1個のコンデンサCstを備えている。トランジスタT1は画素を選択する入力トランジスタとして機能し、トランジスタT2は有機EL素子OLEDへの電流の供給を制御する駆動トランジスタとして機能し、トランジスタT3はTFT特性やOLED特性を検出するか否かを制御するモニタ制御トランジスタとして機能する。
トランジスタT1は、データ線S(j)とトランジスタT2のゲート端子との間に設けられている。そのトランジスタT1に関し、走査線G1(i)にゲート端子が接続され、データ線S(j)にソース端子が接続されている。トランジスタT2は、有機EL素子OLEDと直列に設けられている。そのトランジスタT2に関し、トランジスタT1のドレイン端子にゲート端子が接続され、ハイレベル電源線ELVDDにドレイン端子が接続され、有機EL素子OLEDのアノード端子にソース端子が接続されている。トランジスタT3については、モニタ制御線G2(i)にゲート端子が接続され、有機EL素子OLEDのアノード端子にドレイン端子が接続され、モニタ線M(j)にソース端子が接続されている。コンデンサCstについては、トランジスタT2のゲート端子に一端が接続され、トランジスタT2のドレイン端子に他端が接続されている。有機EL素子OLEDのカソード端子は、ローレベル電源線ELVSSに接続されている。
ところで、図38に示した構成においては、コンデンサCstは、トランジスタT2のゲート-ソース間に設けられていた。これに対して、本実施形態においては、コンデンサCstは、トランジスタT2のゲート-ドレイン間に設けられている。この理由は次のとおりである。本実施形態においては、1フレーム期間中に、トランジスタT3をオン状態にしたままモニタ線M(j)の電位を変動させる制御が行われる。仮にトランジスタT2のゲート-ソース間にコンデンサCstが設けられていると、モニタ線M(j)の電位の変動に応じてトランジスタT2のゲート電位も変動する。そうすると、トランジスタT2のオン/オフ状態が所望の状態とはならないことが生じ得る。そこで、本実施形態においては、モニタ線M(j)の電位の変動に応じてトランジスタT2のゲート電位が変動することのないよう、図7に示すようにトランジスタT2のゲート-ドレイン間にコンデンサCstが設けられている。
<1.2.2 画素回路内のトランジスタについて>
本実施形態においては、画素回路11内のトランジスタT1~T3はすべてnチャネル型である。また、本実施形態においては、トランジスタT1~T3には、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)が採用されている。
本実施形態においては、画素回路11内のトランジスタT1~T3はすべてnチャネル型である。また、本実施形態においては、トランジスタT1~T3には、酸化物TFT(酸化物半導体をチャネル層に用いた薄膜トランジスタ)が採用されている。
以下、酸化物TFTに含まれる酸化物半導体層について説明する。酸化物半導体層は、例えば、In-Ga-Zn-O系の半導体層である。酸化物半導体層は、例えばIn-Ga-Zn-O系の半導体を含む。In-Ga-Zn-O系半導体は、In(インジウム)、Ga(ガリウム)、Zn(亜鉛)の三元系酸化物である。In、GaおよびZnの割合(組成比)は、特に限定されない。例えばIn:Ga:Zn=2:2:1、In:Ga:Zn=1:1:1、In:Ga:Zn=1:1:2などでもよい。
In-Ga-Zn-O系半導体層を有するTFTは、高い移動度(アモルファスシリコンTFTに比べて20倍を超える移動度)と低いリーク電流(アモルファスシリコンTFTに比べて100分の1未満のリーク電流)を有するので、画素回路内の駆動TFT(上記トランジスタT2)およびスイッチングTFT(上記トランジスタT1)として好適に用いられる。In-Ga-Zn-O系半導体層を有するTFTを用いれば、表示装置の消費電力を大幅に削減することができる。
In-Ga-Zn-O系半導体は、アモルファスでもよく、結晶質部分を含み、結晶性を有していてもよい。結晶質In-Ga-Zn-O系半導体としては、c軸が層面に概ね垂直に配向した結晶質In-Ga-Zn-O系半導体が好ましい。このようなIn-Ga-Zn-O系半導体の結晶構造は、例えば日本の特開2012-134475号公報に開示されている。
酸化物半導体層は、In-Ga-Zn-O系半導体に代えて、他の酸化物半導体を含んでいてもよい。例えばZn-O系半導体(ZnO)、In-Zn-O系半導体(IZO(登録商標))、Zn-Ti-O系半導体(ZTO)、Cd-Ge-O系半導体、Cd-Pb-O系半導体、CdO(酸化カドニウム)、Mg-Zn-O系半導体、In―Sn―Zn―O系半導体(例えばIn2O3-SnO2-ZnO)、In-Ga-Sn-O系半導体などを含んでいてもよい。
<1.2.3 電流測定部>
図7を参照しつつ、電流測定部332の詳細な構成について説明する。この電流測定部332には、オペアンプ3321とコンデンサ3322とスイッチ3323とが含まれている。オペアンプ3321については、反転入力端子はモニタ線M(j)に接続され、非反転入力端子にはモニタ線制御電圧Vmが与えられる。コンデンサ3322およびスイッチ3323は、オペアンプ3321の出力端子とモニタ線M(j)との間に設けられている。以上のように、この電流測定部332は積分回路で構成されている。このような構成において、まず、制御クロック信号Sclkによってスイッチ3323がオン状態にされる。これにより、オペアンプ3321の出力端子-反転入力端子間が短絡状態となり、オペアンプ3321の出力端子およびモニタ線M(j)の電位がモニタ線制御電圧Vmの電位と等しくなる。電流の検出が行われる際には、制御クロック信号Sclkによってスイッチ3323がオフ状態にされる。これにより、コンデンサ3322の存在に起因して、モニタ線M(j)に流れる電流の大きさに応じてオペアンプ3321の出力端子の電位が変化する。そのオペアンプ3321からの出力はモニタデータMOとして信号変換回路32内のA/Dコンバータに送られる。
図7を参照しつつ、電流測定部332の詳細な構成について説明する。この電流測定部332には、オペアンプ3321とコンデンサ3322とスイッチ3323とが含まれている。オペアンプ3321については、反転入力端子はモニタ線M(j)に接続され、非反転入力端子にはモニタ線制御電圧Vmが与えられる。コンデンサ3322およびスイッチ3323は、オペアンプ3321の出力端子とモニタ線M(j)との間に設けられている。以上のように、この電流測定部332は積分回路で構成されている。このような構成において、まず、制御クロック信号Sclkによってスイッチ3323がオン状態にされる。これにより、オペアンプ3321の出力端子-反転入力端子間が短絡状態となり、オペアンプ3321の出力端子およびモニタ線M(j)の電位がモニタ線制御電圧Vmの電位と等しくなる。電流の検出が行われる際には、制御クロック信号Sclkによってスイッチ3323がオフ状態にされる。これにより、コンデンサ3322の存在に起因して、モニタ線M(j)に流れる電流の大きさに応じてオペアンプ3321の出力端子の電位が変化する。そのオペアンプ3321からの出力はモニタデータMOとして信号変換回路32内のA/Dコンバータに送られる。
<1.3 駆動方法>
次に、本実施形態における駆動方法について説明する。上述したように、本実施形態においては、各フレームに1つの行のTFT特性およびOLED特性の検出が行われる。各フレームにおいて、モニタ行についてはTFT特性およびOLED特性の検出を行うための動作(以下、「特性検出動作」という。)が行われ、非モニタ行については通常動作が行われる。すなわち、1行目についてのTFT特性およびOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、図8に示すように、各行の動作は推移する。また、TFT特性およびOLED特性の検出が行われると、その検出結果を用いて、補正データ記憶部50内の補正データの更新が行われる。そして、補正データ記憶部50に記憶されている補正データを用いて映像信号の補正が行われる。
次に、本実施形態における駆動方法について説明する。上述したように、本実施形態においては、各フレームに1つの行のTFT特性およびOLED特性の検出が行われる。各フレームにおいて、モニタ行についてはTFT特性およびOLED特性の検出を行うための動作(以下、「特性検出動作」という。)が行われ、非モニタ行については通常動作が行われる。すなわち、1行目についてのTFT特性およびOLED特性の検出が行われるフレームを(k+1)フレーム目と定義すると、図8に示すように、各行の動作は推移する。また、TFT特性およびOLED特性の検出が行われると、その検出結果を用いて、補正データ記憶部50内の補正データの更新が行われる。そして、補正データ記憶部50に記憶されている補正データを用いて映像信号の補正が行われる。
<1.3.1 画素回路の動作>
<1.3.1.1 通常動作>
各フレームにおいて、非モニタ行では、通常動作が行われる。非モニタ行に含まれる画素回路11では、目標輝度に対応するデータ電圧に基づく書き込みが選択期間に行われた後、トランジスタT1はオフ状態で維持される。データ電圧に基づく書き込みによってトランジスタT2はオン状態となる。トランジスタT3についてはオフ状態で維持される。以上より、図9で符号71で示す矢印のように、トランジスタT2を介して有機EL素子OLEDに駆動電流が供給される。これにより、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
<1.3.1.1 通常動作>
各フレームにおいて、非モニタ行では、通常動作が行われる。非モニタ行に含まれる画素回路11では、目標輝度に対応するデータ電圧に基づく書き込みが選択期間に行われた後、トランジスタT1はオフ状態で維持される。データ電圧に基づく書き込みによってトランジスタT2はオン状態となる。トランジスタT3についてはオフ状態で維持される。以上より、図9で符号71で示す矢印のように、トランジスタT2を介して有機EL素子OLEDに駆動電流が供給される。これにより、駆動電流に応じた輝度で有機EL素子OLEDが発光する。
<1.3.1.2 特性検出動作>
各フレームにおいて、モニタ行では、特性検出動作が行われる。図10は、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図10では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。モニタ行については、図10に示すように、1フレーム期間には、TFT特性の検出を行うための期間(以下、「TFT特性検出期間」という。)Taと、有機EL素子OLEDを発光させるための期間(以下、「発光期間」という。)Tcとが含まれている。TFT特性検出期間Taのうちの前半は選択期間Tbとなっている。なお、選択期間Tbの長さは、非モニタ行とモニタ行とで等しくなっている。
各フレームにおいて、モニタ行では、特性検出動作が行われる。図10は、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図10では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。モニタ行については、図10に示すように、1フレーム期間には、TFT特性の検出を行うための期間(以下、「TFT特性検出期間」という。)Taと、有機EL素子OLEDを発光させるための期間(以下、「発光期間」という。)Tcとが含まれている。TFT特性検出期間Taのうちの前半は選択期間Tbとなっている。なお、選択期間Tbの長さは、非モニタ行とモニタ行とで等しくなっている。
TFT特性検出期間Taの前半(選択期間Tb)には、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、この期間には、データ線S(j)には電位Vmgが与えられ、モニタ線M(j)には電位Vm_TFTが与えられる。なお、後述する発光期間Tcには、モニタ線M(j)には電位Vm_oledが与えられる。
ここで、TFT用オフセットメモリ51aに格納されているオフセット値に基づいて求められるトランジスタT2の閾値電圧をVth(T2)とすると、次式(1),(2)が成立するように、電位Vmgの値,電位Vm_TFTの値,および電位Vm_oledの値が設定されている。
Vm_TFT+Vth(T2)<Vmg ・・・(1)
Vmg<Vm_oled+Vth(T2) ・・・(2)
また、OLED用オフセットメモリ51bに格納されているオフセット値に基づいて求められる有機EL素子OLEDの発光閾値電圧をVth(oled)とすると、次式(3)が成立するように電位Vm_TFTの値が設定されている。
Vm_TFT<ELVSS+Vth(oled) ・・・(3)
さらに、有機EL素子OLEDの降伏電圧をVbr(oled)とすると、次式(4)が成立するように電位Vm_TFTの値が設定されている。
Vm_TFT>ELVSS-Vbr(oled) ・・・(4)
Vm_TFT+Vth(T2)<Vmg ・・・(1)
Vmg<Vm_oled+Vth(T2) ・・・(2)
また、OLED用オフセットメモリ51bに格納されているオフセット値に基づいて求められる有機EL素子OLEDの発光閾値電圧をVth(oled)とすると、次式(3)が成立するように電位Vm_TFTの値が設定されている。
Vm_TFT<ELVSS+Vth(oled) ・・・(3)
さらに、有機EL素子OLEDの降伏電圧をVbr(oled)とすると、次式(4)が成立するように電位Vm_TFTの値が設定されている。
Vm_TFT>ELVSS-Vbr(oled) ・・・(4)
以上のように、TFT特性検出期間Taの前半(選択期間Tb)には、上式(1),(2)を満たす電位Vmgがデータ線S(j)に与えられ、上式(1),(3),および(4)を満たす電位Vm_TFTがモニタ線M(j)に与えられる。上式(1)より、この期間には、トランジスタT2はオン状態となる。また、上式(3),(4)より、この期間には、有機EL素子OLEDに電流は流れない。
TFT特性検出期間Taの後半には、走査線G1(i)が非アクティブな状態とされる。これにより、トランジスタT1はオフ状態となるが、選択期間Tb中にコンデンサCstが充電されていることからトランジスタT2はオン状態で維持される。また、モニタ制御線G2(i)はアクティブな状態で維持されるので、トランジスタT3もオン状態で維持される。モニタ線M(j)には、上式(1),(3),および(4)を満たす電位Vm_TFTが与えられる。
以上より、TFT特性検出期間Taには、図11で符号72で示す矢印のように、トランジスタT2を流れる電流が、トランジスタT3を介してモニタ線M(j)に出力される。これにより、モニタ線M(j)に出力された電流(シンク電流)が、電流測定部332によって測定される。以上のようにして、トランジスタT2のゲート-ソース間の電圧を所定の大きさ(Vmg-Vm_TFT)にした状態で当該トランジスタT2のドレイン-ソース間を流れる電流の大きさが測定され、TFT特性が検出される。
ところで、本実施形態においては、図12に示すように、TFT特性検出期間Taには2種類の電位(第1参照電位Vm_TFT_1および第2参照電位Vm_TFT_2)がモニタ線M(j)に印加される。これにより、第1参照電位Vm_TFT_1に基づくTFT特性と第2参照電位Vm_TFT_2に基づくTFT特性とが検出される。
発光期間Tcには、走査線G1(i)は非アクティブな状態で維持され、モニタ制御線G2(i)はアクティブな状態で維持される。このため、この期間には、トランジスタT1はオフ状態で維持され、トランジスタT3はオン状態で維持される。また、上述したように、この期間には、モニタ線M(j)には電位Vm_oledが与えられる。
ここで、上式(2)および次式(5)が成立するように電位Vm_oledの値が設定されている。
ELVSS+Vth(oled)<Vm_oled ・・・(5)
また、トランジスタT2の降伏電圧をVbr(T2)とすると、次式(6)が成立するように電位Vm_oledの値が設定されている。
Vm_oled<Vmg+Vbr(T2) ・・・(6)
ELVSS+Vth(oled)<Vm_oled ・・・(5)
また、トランジスタT2の降伏電圧をVbr(T2)とすると、次式(6)が成立するように電位Vm_oledの値が設定されている。
Vm_oled<Vmg+Vbr(T2) ・・・(6)
以上のように、発光期間Tcには、上式(2),(5),および(6)を満たす電位Vm_oledがモニタ線M(j)に与えられる。上式(2),(6)より、この期間には、トランジスタT2はオフ状態となる。また、上式(5)より、この期間には、有機EL素子OLEDに電流が流れる。
以上より、発光期間Tcには、図13で符号73で示す矢印のように、モニタ線M(j)から有機EL素子OLEDに電流が流れ、有機EL素子OLEDが発光する。この状態において、モニタ線M(j)を流れる電流が電流測定部332によって測定される。以上のようにして、有機EL素子OLEDのアノード(陽極)-カソード(陰極)間の電圧を所定の大きさ(Vm_oled-ELVSS)にした状態で当該有機EL素子OLEDを流れる電流の大きさが測定され、OLED特性が検出される。
なお、電位Vmgの値,電位Vm_TFTの値,および電位Vm_oledの値については、上式(1)~(6)の他、採用されている電流測定部332の測定可能範囲なども考慮して決定される。
ここで、図14を参照しつつ、電流測定部332内のスイッチ3323のオン/オフ状態の変化について説明する。スイッチ3323がオフ状態からオン状態に切り替えられると、コンデンサ3322に蓄積された電荷が放電される。すなわち、図14で符号Td1で示す期間にコンデンサ3322の電荷がゼロになる。スイッチ3323がオン状態からオフ状態に切り替えられると、コンデンサ3322への充電が開始される。そして、電流測定部332内の回路が積分回路として動作する。スイッチ3323は、モニタ線Mに流れる電流を測定しようとする期間、オン状態で維持される。図14に示す例では、符号Td2で示す期間における電流の積算値を求めることができる。
ところで、モニタ行に関し、発光期間Tcには、一定電圧に基づいて有機EL素子OLEDに電流が供給される。このため、本実施形態においては、所望の階調表示を行うために、有機EL素子OLEDが発光する時間の長さが調整される。具体的には、階調が高いほど発光時間を長くし、階調が低いほど発光時間を短くする。すなわち、図15に示すように、階調が高いほど実際に点灯状態となっている期間Tc1を長くし、階調が低いほど消灯状態となっている期間Tc2を長くする。その際、OLED用ゲインメモリ52bに格納されている劣化補正係数に基づいて、上記期間Tc1,Tc2の長さが調整される。以上のように、モニタ行でOLED特性の検出が行われる際には、時間制御によって有機EL素子OLEDの状態(点灯状態/消灯状態)の切り替えが行われる。なお、有機EL素子OLEDを消灯状態にするためには、有機EL素子OLEDに印加される電圧が発光閾値電圧Vth(oled)よりも小さくなるよう、モニタ線M(j)の電位(モニタ線制御電圧Vm)を設定すれば良い。例えば、モニタ線M(j)の電位をローレベル電源電圧ELVSSの電位と等しくすれば良い。以上のように、1フレーム期間での発光電流の積分値が所望の階調に相当する値となるよう、有機EL素子OLEDが発光する時間の長さが調整される。換言すれば、目標輝度に応じて、一定電圧を有機EL素子OLEDに与える時間の長さが調整される。なお、1フレーム期間での発光電流の積分値が所望の階調に相当する値になるのであれば、発光期間Tc中に電圧値を変化させて、複数の動作点での特性(電流-電圧特性)を測定するようにしても良い。
なお、目標とする階調が黒色表示に相当する階調あるいはそれに近い階調のときにはOLED特性の検出を行わないようにすることが好ましい。すなわち、n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素についてはOLED特性の検出が行われないようにすることが好ましい。これにより、不必要な発光を防止することができる。有機EL素子OLEDは非発光であれば劣化しないので、特性を検出する必要がない。
また、複数フレームにわたって同じ行をモニタ行としても良い。このようにして1つの行で繰り返して特性検出の処理を行うことによって、S/N比が向上するという効果が得られる。
<1.3.2 補正データ記憶部内の補正データの更新>
次に、補正データ記憶部50に記憶されている補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値,OLED用オフセットメモリ51bに記憶されているオフセット値,TFT用ゲインメモリ52aに記憶されているゲイン値,およびOLED用ゲインメモリ52bに記憶されている劣化補正係数)がどのように更新されるかについて説明する。図16は、補正データ記憶部50内の補正データの更新の手順を説明するためのフローチャートである。なお、ここでは1つの画素に対応する補正データに着目する。
次に、補正データ記憶部50に記憶されている補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値,OLED用オフセットメモリ51bに記憶されているオフセット値,TFT用ゲインメモリ52aに記憶されているゲイン値,およびOLED用ゲインメモリ52bに記憶されている劣化補正係数)がどのように更新されるかについて説明する。図16は、補正データ記憶部50内の補正データの更新の手順を説明するためのフローチャートである。なお、ここでは1つの画素に対応する補正データに着目する。
TFT特性検出期間Taになると、モニタ線Mに第1参照電位Vm_TFT_1が与えられた状態で、TFT特性の検出が行われる(ステップS110)。このステップS110によって、映像信号を補正するためのオフセット値が求められる。そして、ステップS110で求められたオフセット値が、新たなオフセット値としてTFT用オフセットメモリ51aに格納される(ステップS120)。その後、モニタ線Mに第2参照電位Vm_TFT_2が与えられた状態で、TFT特性の検出が行われる(ステップS130)。このステップS130によって、映像信号を補正するためのゲイン値が求められる。そして、ステップS130で求められたゲイン値が、新たなゲイン値としてTFT用ゲインメモリ52aに格納される(ステップS140)。その後、発光期間Tcに、OLED特性の検出が行われる(ステップS150)。このステップS150によって、映像信号を補正するためのオフセット値および劣化補正係数が求められる。そして、ステップS150で求められたオフセット値が、新たなオフセット値としてOLED用オフセットメモリ51bに格納される(ステップS160)。また、ステップS150で求められた劣化補正係数が、新たな劣化補正係数としてOLED用ゲインメモリ52bに格納される(ステップS170)。以上のようにして、1つの画素に対応する補正データの更新が行われる。本実施形態においては、各フレームに1つの行についてのTFT特性およびOLED特性の検出が行われるので、1フレーム期間につき、TFT用オフセットメモリ51a内のm個のオフセット値,TFT用ゲインメモリ52a内のm個のゲイン値,OLED用オフセットメモリ51b内のm個のオフセット値,およびOLED用ゲインメモリ52b内のm個の劣化補正係数の更新が行われる。
なお、本実施形態においては、ステップS110,ステップS130,およびステップS150での検出結果に基づいて得られるデータ(オフセット値,ゲイン値,劣化補正係数)によって特性データが実現されている。
ところで、上述したように、発光期間Tcには、一定電圧に基づいて有機EL素子OLEDを流れる電流の大きさの測定が行われる。その測定結果としての検出電流が小さいほど、有機EL素子OLEDの劣化の程度は大きい。従って、検出電流が小さいほど、オフセット値が大きくかつ劣化補正係数が大きくなるようにOLED用オフセットメモリ51bおよびOLED用ゲインメモリ52b内のデータの更新が行われる。
<1.3.3 映像信号の補正>
本実施形態においては、駆動トランジスタの劣化および有機EL素子OLEDの劣化を補償するために、補正データ記憶部50に格納されている補正データを用いて、外部から送られる映像信号の補正が行われる。以下、映像信号のこの補正について図17を参照しつつ説明する。
本実施形態においては、駆動トランジスタの劣化および有機EL素子OLEDの劣化を補償するために、補正データ記憶部50に格納されている補正データを用いて、外部から送られる映像信号の補正が行われる。以下、映像信号のこの補正について図17を参照しつつ説明する。
図17に示すように、コントロール回路20には、映像信号を補正するための構成要素として、LUT211,乗算部212,乗算部213,加算部214,加算部215,および乗算部216が設けられている。また、コントロール回路20には、発光期間Tcにモニタ線Mに与える電位Vm_oledを補正するための構成要素として、乗算部221および加算部222が設けられている。コントロール回路20内のCPU230は、上記各構成要素の動作の制御,補正データ記憶部50内の各メモリ(TFT用オフセットメモリ51a,TFT用ゲインメモリ52a,OLED用オフセットメモリ51b,およびOLED用ゲインメモリ52b)に対するデータの更新/読み出し,不揮発性メモリ70に対するデータの更新/読み出し,データ線駆動回路30aやモニタ線駆動回路30bとの間のデータ授受などを行う。なお、本実施形態においては、LUT211,乗算部212,乗算部213,加算部214,加算部215,および乗算部216によって映像信号補正部が実現されている。
以上のような構成において、外部から送られる映像信号は、以下のように補正される。まず、LUT211を用いて、外部から送られる映像信号にガンマ補正が施される。すなわち、映像信号が示す階調Pがガンマ補正によって制御電圧Vcに変換される。乗算部212は、制御電圧VcとTFT用ゲインメモリ52aから読み出されたゲイン値B1とを受け取り、それらを乗じて得られる値“Vc・B1”を出力する。乗算部213は、乗算部212から出力された値“Vc・B1”とOLED用ゲインメモリ52bから読み出された劣化補正係数B2とを受け取り、それらを乗じて得られる値“Vc・B1・B2”を出力する。加算部214は、乗算部213から出力された値“Vc・B1・B2”とTFT用オフセットメモリ51aから読み出されたオフセット値Vt1とを受け取り、それらを加算することによって得られる値“Vc・B1・B2+Vt1”を出力する。加算部215は、加算部214から出力された値“Vc・B1・B2+Vt1”とOLED用オフセットメモリ51bから読み出されたオフセット値Vt2とを受け取り、それらを加算することによって得られる値“Vc・B1・B2+Vt1+Vt2”を出力する。乗算部216は、加算部215から出力された値“Vc・B1・B2+Vt1+Vt2”と画素回路11内の寄生容量に起因するデータ電圧の減衰を補償するための係数Zとを受け取り、それらを乗じて得られる値“Z(Vc・B1・B2+Vt1+Vt2)”を出力する。以上のようにして得られた値“Z(Vc・B1・B2+Vt1+Vt2)”がデータ信号DAとしてコントロール回路20からソースドライバ30内のデータ線駆動部30aに送られる。なお、加算部215から出力された値にデータ電圧の減衰を補償するための係数Zを乗ずる処理を行う乗算部216については、必ずしも設けられる必要はない。
また、発光期間Tcにモニタ線Mに与える電位Vm_oledが以下のように補正される。乗算部221は、pre_Vm_oled(補正前のVm_oled)とOLED用ゲインメモリ52bから読み出された劣化補正係数B2とを受け取り、それらを乗じて得られる値“pre_Vm_oled・B2”を出力する。加算部222は、乗算部221から出力された値“pre_Vm_oled・B2”とOLED用オフセットメモリ51bから読み出されたオフセット値Vt2とを受け取り、それらを加算することによって得られる値“pre_Vm_oled・B2+Vt2”を出力する。以上のようにして得られた値“pre_Vm_oled・B2+Vt2”が、発光期間Tc中のモニタ線Mの電位Vm_oledを指示するデータとしてコントロール回路20からソースドライバ30内のモニタ線駆動部30bに送られる。
<1.3.4 駆動方法のまとめ>
図1は、TFT特性およびOLED特性の検出に関連する動作の概略を説明するためのフローチャートである。まず、モニタ行において、TFT特性検出期間TaにTFT特性の検出が行われる(ステップS10)。そして、ステップS10での検出結果を用いて、TFT用オフセットメモリ51aおよびTFT用ゲインメモリ52aの更新が行われる(ステップS20)。次に、モニタ行において、発光期間TcにOLED特性の検出が行われる(ステップS30)。そして、ステップS30での検出結果を用いて、OLED用オフセットメモリ51bおよびOLED用ゲインメモリ52bの更新が行われる(ステップS40)。その後、TFT用オフセットメモリ51a,TFT用ゲインメモリ52a,OLED用オフセットメモリ51b,およびOLED用ゲインメモリ52bに格納されている補正データを用いて、外部から送られる映像信号の補正が行われる(ステップS50)。
図1は、TFT特性およびOLED特性の検出に関連する動作の概略を説明するためのフローチャートである。まず、モニタ行において、TFT特性検出期間TaにTFT特性の検出が行われる(ステップS10)。そして、ステップS10での検出結果を用いて、TFT用オフセットメモリ51aおよびTFT用ゲインメモリ52aの更新が行われる(ステップS20)。次に、モニタ行において、発光期間TcにOLED特性の検出が行われる(ステップS30)。そして、ステップS30での検出結果を用いて、OLED用オフセットメモリ51bおよびOLED用ゲインメモリ52bの更新が行われる(ステップS40)。その後、TFT用オフセットメモリ51a,TFT用ゲインメモリ52a,OLED用オフセットメモリ51b,およびOLED用ゲインメモリ52bに格納されている補正データを用いて、外部から送られる映像信号の補正が行われる(ステップS50)。
なお、本実施形態においては、ステップS10によって駆動トランジスタ特性検出ステップが実現され、ステップS30によって電気光学素子特性検出ステップが実現され、ステップS20およびステップS40によって補正データ記憶ステップが実現され、ステップS50によって映像信号補正ステップが実現されている。また、ステップS10の処理によって駆動トランジスタ特性検出処理が実現され、ステップS30の処理によって電気光学素子特性検出処理が実現されている。
<1.4 効果>
本実施形態によれば、各フレームにおいて1つの行についてのTFT特性およびOLED特性の検出が行われる。モニタ行に着目すると、1フレーム期間において、選択期間Tbを含むTFT特性検出期間TaにTFT特性の検出が行われ、発光期間Tc中にOLED特性の検出が行われる。そして、TFT特性の検出結果およびOLED特性の検出結果の双方を考慮して求められた補正データを用いて、外部から送られる映像信号が補正される。このようにして補正された映像信号(上記データ信号DA)に基づくデータ電圧がデータ線Sに印加されるので、各画素回路11内の有機EL素子OLEDを発光させる際に、駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化が補償されるような大きさの駆動電流が有機EL素子OLEDに供給される(図18参照)。また、図19に示すように劣化の最も少ない画素の劣化レベルに合わせて電流を増加させることによって、焼き付きに対する補償を行うことが可能となる。ここで、OLED特性の検出については、上述のように発光期間Tc中に行われる。従って、TFT特性やOLED特性を検出するために発光期間の長さが従来よりも短くなることはない。
本実施形態によれば、各フレームにおいて1つの行についてのTFT特性およびOLED特性の検出が行われる。モニタ行に着目すると、1フレーム期間において、選択期間Tbを含むTFT特性検出期間TaにTFT特性の検出が行われ、発光期間Tc中にOLED特性の検出が行われる。そして、TFT特性の検出結果およびOLED特性の検出結果の双方を考慮して求められた補正データを用いて、外部から送られる映像信号が補正される。このようにして補正された映像信号(上記データ信号DA)に基づくデータ電圧がデータ線Sに印加されるので、各画素回路11内の有機EL素子OLEDを発光させる際に、駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化が補償されるような大きさの駆動電流が有機EL素子OLEDに供給される(図18参照)。また、図19に示すように劣化の最も少ない画素の劣化レベルに合わせて電流を増加させることによって、焼き付きに対する補償を行うことが可能となる。ここで、OLED特性の検出については、上述のように発光期間Tc中に行われる。従って、TFT特性やOLED特性を検出するために発光期間の長さが従来よりも短くなることはない。
また、本実施形態によれば、モニタ線Mの電位を変化させることによってトランジスタT2のオン/オフ状態の切り替えが行われている。このため、トランジスタT2のオン/オフ状態を切り替えるために当該トランジスタT2のゲート電位を変化させるための期間を、TFT特性検出期間Taと発光期間Tcとの間に設ける必要がない。また、選択期間Tbの長さが、モニタ行と非モニタ行とで等しくなっている。以上より、ゲートドライバ40の構成が複雑化することなく、TFT特性およびOLED特性の検出を行うための期間の長さを充分に確保することが可能となる。これにより、特性検出の精度を高めることが可能となる。以上のように、有機EL表示装置において、駆動トランジスタ(トランジスタT2)および有機EL素子OLEDの特性検出の時間を充分に確保して駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化の双方を同時に充分に補償することが可能となる。
さらに、本実施形態においては、画素回路11内のトランジスタT1~T3に酸化物TFT(具体的にはIn-Ga-Zn-O系半導体層を有するTFT)が採用されているので、充分なS/N比を確保できるという効果が得られる。これについて以下に説明する。なお、In-Ga-Zn-O系半導体層を有するTFTのことをここでは「In-Ga-Zn-O-TFT」という。In-Ga-Zn-O-TFTとLTPS(Low Temperature Poly silicon)-TFTとを比較すると、LTPS-TFTよりもIn-Ga-Zn-O-TFTの方がオフ電流が極めて小さい。例えば、画素回路11内のトランジスタT3にLTPS-TFTが採用されている場合には、オフ電流は最大1pA程度となる。これに対して、画素回路11内のトランジスタT3にIn-Ga-Zn-O-TFTが採用されている場合には、オフ電流は最大10fA程度となる。従って、例えば1000行分のオフ電流は、LTPS-TFTが採用されている場合には最大1nA程度となり、In-Ga-Zn-O-TFTが採用されている場合には最大10pA程度となる。検出電流については、いずれが採用されている場合にも10~100nA程度となる。ところで、モニタ線Mは、モニタ行の画素回路11だけでなく非モニタ行の画素回路11とも接続されている。従って、モニタ線MのS/N比は、非モニタ行のトランジスタT3の漏れ電流の合計に依存する。具体的には、モニタ線MのS/N比は「検出電流/(漏れ電流×非モニタ行の行数)」で表される。以上のことから、例えば、“Landscape FHD”の表示部10を有する有機EL表示装置においては、LTPS-TFTが採用されている場合にはS/N比は10程度となるのに対し、In-Ga-Zn-O-TFTが採用されている場合にはS/N比は1000程度となる。このように、本実施形態においては、電流の検出を行う際に充分なS/N比を確保することができる。
<1.5 変形例>
以下、上記第1の実施形態の変形例について説明する。なお、以下においては、第1の実施形態と異なる点についてのみ詳しく説明し、第1の実施形態と同様の点については説明を省略する。
以下、上記第1の実施形態の変形例について説明する。なお、以下においては、第1の実施形態と異なる点についてのみ詳しく説明し、第1の実施形態と同様の点については説明を省略する。
<1.5.1 第1の変形例>
上記第1の実施形態においては、モニタ行でOLED特性の検出が行われる際、時間制御によって有機EL素子OLEDの状態(点灯状態/消灯状態)の切り替えが行われる。このため、中間調表示が行われるべき画素では、例えば図20で符号81で示す期間のように、有機EL素子OLEDが消灯状態となる期間が生じる。そのように有機EL素子OLEDが消灯状態となる期間と同じ長さの期間だけTFT特性を検出する期間を長くしたのが本変形例である。なお、図20では、本来のTFT特性検出期間Taの長さを符号LT1で表し、発光期間Tc中に有機EL素子OLEDが点灯状態となる期間の長さを符号LT2で表し、発光期間Tc中に有機EL素子OLEDが消灯状態となる期間の長さを符号LT3で表している。
上記第1の実施形態においては、モニタ行でOLED特性の検出が行われる際、時間制御によって有機EL素子OLEDの状態(点灯状態/消灯状態)の切り替えが行われる。このため、中間調表示が行われるべき画素では、例えば図20で符号81で示す期間のように、有機EL素子OLEDが消灯状態となる期間が生じる。そのように有機EL素子OLEDが消灯状態となる期間と同じ長さの期間だけTFT特性を検出する期間を長くしたのが本変形例である。なお、図20では、本来のTFT特性検出期間Taの長さを符号LT1で表し、発光期間Tc中に有機EL素子OLEDが点灯状態となる期間の長さを符号LT2で表し、発光期間Tc中に有機EL素子OLEDが消灯状態となる期間の長さを符号LT3で表している。
図21は、本変形例における1フレーム期間について説明するための図である。本変形例においては、モニタ行については、画素の階調に応じて発光期間の長さが決定され、1フレーム期間のうちの発光期間を除く期間がTFT特性検出期間とされる。本変形例におけるTFT特性検出期間の長さは、図20におけるTFT特性検出期間の長さLT1と図20において有機EL素子OLEDが消灯状態となっている期間の長さLT3との和に等しい。
以上のように、本変形例によれば、有機EL素子OLEDが消灯状態となる期間をTFT特性を検出するための期間として用いることが可能となる。このため、TFT特性検出期間に、より多くの回数、電流を測定することが可能となる。これにより、検出電流のS/N比が高められ、TFT特性の検出の精度が向上する。
<1.5.2 第2の変形例>
上記第1の実施形態においては、図7に示すように、モニタ線Mは常に電流測定部332に電気的に接続されていた。しかしながら、本発明はこれに限定されず、モニタ線Mをハイインピーダンスの状態にすることが可能な構成(本変形例の構成)を採用することもできる。
上記第1の実施形態においては、図7に示すように、モニタ線Mは常に電流測定部332に電気的に接続されていた。しかしながら、本発明はこれに限定されず、モニタ線Mをハイインピーダンスの状態にすることが可能な構成(本変形例の構成)を採用することもできる。
図22は、本変形例におけるモニタ線Mの一端部近傍の構成を示す図である。本変形例においては、図22に示すように、モニタ線Mを電流測定部332に接続された状態とハイインピーダンスの状態との間で切り替えるための切り替え部333が設けられている。モニタ線Mは、切り替え部333に与えられる切替制御信号SWによって、電流測定部332に接続された状態またはハイインピーダンスの状態のいずれかとされる。
ところで、上記第1の実施形態においては、図15に示したように、時間制御によって有機EL素子OLEDの状態(点灯状態/消灯状態)の切り替えが行われていた。その際、有機EL素子OLEDを消灯状態にするためには、モニタ線Mの電位を例えばローレベル電源電圧ELVSSの電位と等しくする処理が行われていた。これに対して、本変形例によれば、モニタ線Mをハイインピーダンスの状態にして有機EL素子OLEDを消灯状態にすることが可能となる。
<1.5.3 第3の変形例>
上記第1の実施形態においては、1つの列につき1つの電流測定部332が設けられていることを前提に説明していた。しかしながら、本発明はこれに限定されず、1つの電流測定部332を複数の列で共有化する構成(本変形例の構成)を採用することもできる。
上記第1の実施形態においては、1つの列につき1つの電流測定部332が設けられていることを前提に説明していた。しかしながら、本発明はこれに限定されず、1つの電流測定部332を複数の列で共有化する構成(本変形例の構成)を採用することもできる。
本変形例においては、上記第2の変形例(図22参照)と同様、モニタ線Mは、電流測定部332に接続された状態またはハイインピーダンスの状態のいずれかとされる。また、本変形例においては、モニタ線Mの一端部近傍は図23に示す構成となっている。すなわち、K本のモニタ線M毎に1つの電流測定部332が設けられている。
以上のような構成において、各フレームにおいて、上記K本のモニタ線Mに対応するK個の列のうちの1つの列のみがTFT特性およびOLED特性の検出を行う列(以下、「特性検出対象列」という。)とされる。モニタ行での特性検出動作の際、特性検出対象列以外の列のモニタ線Mは、ハイインピーダンスの状態で維持される。また、モニタ行での特性検出動作の際、特性検出対象列以外の列では、データ線Dには上述した電位Vmgではなく通常のデータ電圧(目標輝度に対応する電圧)が印加される。発光期間Tc中、モニタ行ではトランジスタT3はオン状態になっているが、特性検出対象列以外の列では、モニタ線Mはハイインピーダンスの状態となっている。このため、特性検出対象列以外の列では、モニタ線Mには電流が流れず、有機EL素子OLEDに電流が流れ、通常動作と同様に有機EL素子OLEDが発光する。モニタ行のうちの特性検出対象列では、上述した特性検出動作が行われる。
例えば、“Landscape FHD”の表示部10を有し駆動周波数が60Hzである有機EL表示装置では、1列分のモニタ(TFT特性およびOLED特性の検出)に要する時間は18秒(=1080/60)となる。ここで、各画素に対応するオフセット値およびゲイン値が仮に30分(1800秒)毎に更新されるようにするには、100本のモニタ線M毎に1つの電流測定部332を設ける構成にすれば良い。
以上より、本変形例によれば、有機EL表示装置において、回路面積の増大を抑制しつつ、駆動トランジスタ(トランジスタT2)および有機EL素子OLEDの特性検出の時間を充分に確保して駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化の双方を同時に充分に補償することが可能となる。
<1.5.4 第4の変形例>
上記第1の実施形態によれば、有機EL表示装置1の短時間運転が繰り返されると、表示部10の上方の行と表示部10の下方の行との間で、TFT特性およびOLED特性の検出の回数に大きな差が生じる。そこで、本変形例に係る有機EL表示装置2においては、図24に示すように、コントロール回路20内にモニタ行を記憶するためのモニタ行記憶部201が設けられている。このような構成において、電源オフの際に、最後にTFT特性およびOLED特性の検出が行われた行を特定する情報がモニタ行記憶部201に格納される。この処理によってモニタ領域記憶ステップが実現されている。電源オン後には、モニタ行記憶部201に格納されている情報に基づいて特定される行の次の行から、TFT特性およびOLED特性の検出が行われる。なお、本実施形態においては、モニタ行記憶部201によってモニタ領域記憶部が実現されている。
上記第1の実施形態によれば、有機EL表示装置1の短時間運転が繰り返されると、表示部10の上方の行と表示部10の下方の行との間で、TFT特性およびOLED特性の検出の回数に大きな差が生じる。そこで、本変形例に係る有機EL表示装置2においては、図24に示すように、コントロール回路20内にモニタ行を記憶するためのモニタ行記憶部201が設けられている。このような構成において、電源オフの際に、最後にTFT特性およびOLED特性の検出が行われた行を特定する情報がモニタ行記憶部201に格納される。この処理によってモニタ領域記憶ステップが実現されている。電源オン後には、モニタ行記憶部201に格納されている情報に基づいて特定される行の次の行から、TFT特性およびOLED特性の検出が行われる。なお、本実施形態においては、モニタ行記憶部201によってモニタ領域記憶部が実現されている。
以上より、本変形例によれば、表示部10の上方の行と表示部10の下方の行との間でTFT特性およびOLED特性の検出の回数に差が生じることが防止される。このため、駆動トランジスタの劣化および有機EL素子OLEDの劣化に対する補償を画面全体で一様に行うことが可能となり、輝度のばらつきの発生が効果的に防止される。
なお、電源オン後に最初にTFT特性およびOLED特性の検出が行われる行は、モニタ行記憶部201に格納されている情報に基づいて特定される行の次の行には限定されず、モニタ行記憶部201に格納されている情報に基づいて特定される行の近傍の行であっても良い。例えば、電源オフ直前と電源オン直後とで特性検出動作が重複して行われる行が存在しても良い。
また、最後にTFT特性およびOLED特性の検出が行われた列を特定する情報を記憶するようにしても良いし、最後にTFT特性およびOLED特性の検出が行われた行および列の双方を特定する情報を記憶するようにしても良い。
<1.5.5 第5の変形例>
図25は、有機EL素子の電流-電圧特性の温度依存性について説明するための図である。図25には、温度TE1における有機EL素子の電流-電圧特性,温度TE2における有機EL素子の電流-電圧特性,および温度TE3における有機EL素子の電流-電圧特性を示している。なお、“TE1>TE2>TE3”である。図25から把握されるように、有機EL素子に所定の電流を供給するためには、温度が低くなるほど電圧を高くする必要がある。このように、有機EL素子の電流-電圧特性は、温度に大きく依存している。そこで、温度変化を補償することのできる構成(本変形例の構成)を採用することが好ましい。
図25は、有機EL素子の電流-電圧特性の温度依存性について説明するための図である。図25には、温度TE1における有機EL素子の電流-電圧特性,温度TE2における有機EL素子の電流-電圧特性,および温度TE3における有機EL素子の電流-電圧特性を示している。なお、“TE1>TE2>TE3”である。図25から把握されるように、有機EL素子に所定の電流を供給するためには、温度が低くなるほど電圧を高くする必要がある。このように、有機EL素子の電流-電圧特性は、温度に大きく依存している。そこで、温度変化を補償することのできる構成(本変形例の構成)を採用することが好ましい。
図26は、本変形例における有機EL表示装置3の全体構成を示すブロック図である。本変形例においては、上記第1の実施形態における構成要素に加えて、温度センサ60が設けられている。また、コントロール回路20には、温度変化補償部202が設けられている。温度センサ60は、随時、温度を測定した結果である温度情報TEをコントロール回路20に与える。温度変化補償部202は、ソースドライバ30から与えられるモニタデータMOに対して、温度情報TEに基づく補正を施す。詳しくは、温度変化補償部202は、検出時の温度に対応するモニタデータMOの値を或る標準温度に対応する値に変換し、その変換で得られた値に基づいてOLED用オフセットメモリ51b内のオフセット値およびOLED用ゲインメモリ52b内の劣化補正係数を更新する。
なお、温度センサ60の処理によって温度検出ステップが実現され、温度変化補償部202の処理によって温度変化補償ステップが実現されている。
図27は、本変形例における補正データ記憶部50内の補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値,OLED用オフセットメモリ51bに記憶されているオフセット値,TFT用ゲインメモリ52aに記憶されているゲイン値,およびOLED用ゲインメモリ52bに記憶されている劣化補正係数)の更新の手順を説明するためのフローチャートである。なお、本変形例(図27)におけるステップS210~ステップS250の処理は上記第1の実施形態(図16)におけるステップS110~ステップS150の処理と同じであり、本変形例(図27)におけるステップS260~ステップS270の処理は上記第1の実施形態(図16)におけるステップS160~ステップS170の処理と同じである。本変形例においては、OLED特性の検出が行われた後、オフセット値および劣化補正係数の更新が行われる前に、温度センサ60によって与えられた温度情報TEに基づいて、オフセット値および劣化補正係数に補正が施される(ステップS255)。
以上より、本変形例によれば、外部から送られる映像信号は、温度変化を考慮した補正データによって補正される。このため、有機EL表示装置において、温度の変化に関わらず駆動トランジスタの劣化および有機EL素子OLEDの劣化の双方を同時に補償することが可能となる。
<1.5.6 第6の変形例>
<1.5.6.1 概要>
上記第1の実施形態においては、各フレームにおいて、TFT特性の検出が行われた後にOLED特性の検出が行われていた。しかしながら、本発明はこれに限定されず、OLED特性の検出が行われた後にTFT特性の検出が行われる構成(本変形例の構成)を採用することもできる。
<1.5.6.1 概要>
上記第1の実施形態においては、各フレームにおいて、TFT特性の検出が行われた後にOLED特性の検出が行われていた。しかしながら、本発明はこれに限定されず、OLED特性の検出が行われた後にTFT特性の検出が行われる構成(本変形例の構成)を採用することもできる。
図28は、本変形例における1フレーム期間について説明するための図である。モニタ行に着目すると、1フレーム期間は発光期間TcとTFT特性検出期間Taとからなり、TFT特性検出期間Taよりも発光期間Tcの方が先行している。発光期間Tcの最初に選択期間Tbがある。図28から把握されるように、選択期間Tbの長さは、非モニタ行とモニタ行とで等しくなっている。発光期間Tcは、実際に有機EL素子OLEDが点灯状態となる期間Tc1と有機EL素子OLEDが消灯状態となる期間Tc2とからなる。このように、本変形例においても、所望の階調表示を行うために、有機EL素子OLEDが発光する時間の長さが調整される。
<1.5.6.2 モニタ行における特性検出動作>
次に、図29を参照しつつ、本変形例における特性検出動作について説明する。図29は、本変形例において、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図29では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。
次に、図29を参照しつつ、本変形例における特性検出動作について説明する。図29は、本変形例において、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図29では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。
発光期間Tcのうちの最初の1水平走査期間(選択期間Tb)には、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、この期間には、データ線S(j)には電位Vmgが与えられ、モニタ線M(j)には電位Vm_oledが与えられる。なお、後述するTFT特性検出期間Taには、モニタ線M(j)には電位Vm_TFTが与えられる。
ここで、TFT用オフセットメモリ51aに格納されているオフセット値に基づいて求められるトランジスタT2の閾値電圧をVth(T2)とすると、上式(1),(2)が成立するように、電位Vmgの値,電位Vm_TFTの値,および電位Vm_oledの値が設定されている。また、OLED用オフセットメモリ51bに格納されているオフセット値に基づいて求められる有機EL素子OLEDの発光閾値電圧をVth(oled)とすると、上式(5)が成立するように電位Vm_oledの値が設定されている。さらに、トランジスタT2の降伏電圧をVbr(T2)とすると、上式(6)が成立するように電位Vm_oledの値が設定されている。
以上のように、発光期間Tcのうちの最初の1水平走査期間(選択期間Tb)には、上式(1),(2)を満たす電位Vmgがデータ線S(j)に与えられ、上式(2),(5),および(6)を満たす電位Vm_oledがモニタ線M(j)に与えられる。上式(2),(6)より、この期間には、トランジスタT2はオフ状態となる。また、上式(5)より、この期間には、有機EL素子OLEDに電流が流れる。
発光期間Tcのうちの選択期間Tb以外の期間には、走査線G1(i)が非アクティブな状態とされる。これにより、トランジスタT1はオフ状態となるが、選択期間Tb中にコンデンサCstが充電されていることからトランジスタT2はオン状態で維持される。また、モニタ制御線G2(i)はアクティブな状態で維持されるので、トランジスタT3もオン状態で維持される。モニタ線M(j)には、上式(2),(5),および(6)を満たす電位Vm_oledが与えられる。
以上より、発光期間Tcには、図13で符号73で示す矢印のように、モニタ線M(j)から有機EL素子OLEDに電流が流れ、有機EL素子OLEDが発光する。この状態において、モニタ線M(j)を流れる電流が電流測定部332によって測定される。以上のようにして、有機EL素子OLEDのアノード(陽極)-カソード(陰極)間の電圧を所定の大きさ(Vm_oled-ELVSS)にした状態で当該有機EL素子OLEDを流れる電流の大きさが測定され、OLED特性が検出される。
TFT特性検出期間Taには、走査線G1(i)は非アクティブな状態で維持され、モニタ制御線G2(i)はアクティブな状態で維持される。このため、この期間には、トランジスタT1はオフ状態で維持され、トランジスタT3はオン状態で維持される。また、上述したように、この期間には、モニタ線M(j)には電位Vm_TFTが与えられる。
ここで、上式(1),(3)が成立するように電位Vm_TFTの値が設定されている。また、有機EL素子OLEDの降伏電圧をVbr(oled)とすると、上式(4)が成立するように電位Vm_TFTの値が設定されている。
以上のように、TFT特性検出期間Taには、上式(1),(3),および(4)を満たす電位Vm_TFTがモニタ線M(j)に与えられる。上式(1)より、この期間には、トランジスタT2はオン状態となる。また、上式(3),(4)より、この期間には、有機EL素子OLEDに電流は流れない。
以上より、TFT特性検出期間Taには、図11で符号72で示す矢印のように、トランジスタT2を流れる電流が、トランジスタT3を介してモニタ線M(j)に出力される。これにより、モニタ線M(j)に出力された電流(シンク電流)が、電流測定部332によって測定される。以上のようにして、TFT特性が検出される。
なお、上記第1の実施形態と同様、本変形例においても、TFT特性検出期間Taには2種類の電位(第1参照電位Vm_TFT_1および第2参照電位Vm_TFT_2)がモニタ線M(j)に印加される。これにより、第1参照電位Vm_TFT_1に基づくTFT特性と第2参照電位Vm_TFT_2に基づくTFT特性とが検出される。
ところで、本変形例においては、発光期間TcからTFT特性検出期間Taに移る時に、モニタ線Mの電位がVm_oledからVm_TFTに変化する。また、上記第1の実施形態においては、TFT特性検出期間Taから発光期間Tcに移るときに、モニタ線Mの電位がVm_oledからVm_TFTに変化する。この点に関し、トランジスタT2のゲート-ソース間の寄生容量の存在等を考慮すると、モニタ線Mの電位が変化した時にはトランジスタT2のゲート電位も変化する。トランジスタT2のゲート電位のこのような変化による影響は、TFT特性検出期間Taが先行している場合(上記第1の実施形態)よりも発光期間Tcが先行している場合(本変形例)の方が大きい。この理由は次のとおりである。選択期間Tb中には、トランジスタT2のゲート電位は上式(1)を満たす電位Vmgとなる。しかしながら、発光期間Tcが先行している場合には、発光期間TcからTFT特性検出期間Taに移る時、モニタ線Mの電位低下に伴ってトランジスタT2のゲート電位が低下する。このため、トランジスタT2のゲート電位の低下の程度によっては、TFT特性検出期間TaにトランジスタT2がオフ状態となってしまう。以上より、本変形例のように発光期間Tcが先行しているよりも上記第1の実施形態のようにTFT特性検出期間Taが先行している方が好ましい。
<1.5.6.3 補正データ記憶部内の補正データの更新>
次に、本変形例における補正データの更新について説明する。図30は、本変形例における補正データ記憶部50内の補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値,OLED用オフセットメモリ51bに記憶されているオフセット値,TFT用ゲインメモリ52aに記憶されているゲイン値,およびOLED用ゲインメモリ52bに記憶されている劣化補正係数)の更新の手順を説明するためのフローチャートである。
次に、本変形例における補正データの更新について説明する。図30は、本変形例における補正データ記憶部50内の補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値,OLED用オフセットメモリ51bに記憶されているオフセット値,TFT用ゲインメモリ52aに記憶されているゲイン値,およびOLED用ゲインメモリ52bに記憶されている劣化補正係数)の更新の手順を説明するためのフローチャートである。
発光期間Tcになると、OLED特性の検出が行われる(ステップS310)。このステップS310によって、映像信号を補正するためのオフセット値および劣化補正係数が求められる。そして、ステップS310で求められたオフセット値が、新たなオフセット値としてOLED用オフセットメモリ51bに格納される(ステップS320)。また、ステップS310で求められた劣化補正係数が、新たな劣化補正係数としてOLED用ゲインメモリ52bに格納される(ステップS330)。その後、TFT特性検出期間Taになると、モニタ線Mに第1参照電位Vm_TFT_1が与えられた状態で、TFT特性の検出が行われる(ステップS340)。このステップS340によって、映像信号を補正するためのオフセット値が求められる。そして、ステップS340で求められたオフセット値が、新たなオフセット値としてTFT用オフセットメモリ51aに格納される(ステップS350)。その後、モニタ線Mに第2参照電位Vm_TFT_2が与えられた状態で、TFT特性の検出が行われる(ステップS360)。このステップS360によって、映像信号を補正するためのゲイン値が求められる。そして、ステップS360で求められたゲイン値が、新たなゲイン値としてTFT用ゲインメモリ52aに格納される(ステップS370)。以上のようにして、1つの画素に対応する補正データの更新が行われる。
なお、本変形例においては、ステップS310,ステップS340,およびステップS360での検出結果に基づいて得られるデータ(オフセット値,ゲイン値,劣化補正係数)によって特性データが実現されている。
<1.5.7 第7の変形例>
上記第1の実施形態においては、各フレームにTFT特性の検出とOLED特性の検出とが行われているが、本発明はこれに限定されない。各フレームにTFT特性の検出のみが行われる構成(本変形例の構成)を採用することもできる。
上記第1の実施形態においては、各フレームにTFT特性の検出とOLED特性の検出とが行われているが、本発明はこれに限定されない。各フレームにTFT特性の検出のみが行われる構成(本変形例の構成)を採用することもできる。
図31は、本変形例における有機EL表示装置4の全体構成を示すブロック図である。本変形例においては、補正データ記憶部50には、TFT用オフセットメモリ51aとTFT用ゲインメモリ52aとが含まれている。すなわち、OLED用オフセットメモリ51bおよびOLED用ゲインメモリ52bは補正データ記憶部50には含まれていない。
本変形例においては、画素回路11は上記第1の実施形態と同様に駆動される。従って、モニタ行に関し、発光期間Tcには、一定電圧に基づいて有機EL素子OLEDに電流が供給される。そして、所望の階調表示が行われるよう、時間制御によって有機EL素子OLEDの状態(点灯状態/消灯状態)の切り替えが行われる。但し、本変形例においては、発光期間Tc中に電流測定部332によってモニタ線M(j)を流れる電流の測定が行われることはない。
次に、本変形例における補正データの更新について説明する。図32は、本変形例における補正データ記憶部50内の補正データ(TFT用オフセットメモリ51aに記憶されているオフセット値およびTFT用ゲインメモリ52aに記憶されているゲイン値)の更新の手順を説明するためのフローチャートである。本変形例(図32)におけるステップS410~ステップS440の処理は上記第1の実施形態(図16)におけるステップS110~ステップS140の処理と同じである。図32から把握されるように、本変形例においては、OLED特性の検出は行われないので、ステップS440が終了することによって、補正データを更新する処理は終了する。
本変形例によれば、有機EL表示装置4において、駆動トランジスタ(トランジスタT2)の特性検出の時間を充分に確保して駆動トランジスタ(トランジスタT2)の劣化を充分に補償することが可能となる。
<2.第2の実施形態>
<2.1 構成など>
本発明の第2の実施形態について説明する。上記第1の実施形態においては、モニタ線Mに或る一定電圧を供給した状態で当該モニタ線Mに流れる電流を測定することによって、TFT特性およびOLED特性が検出されていた。これに対して、本実施形態においては、TFT特性の検出については、モニタ線Mに或る一定電圧を供給した状態で当該モニタ線Mに流れる電流を測定することによって行われるが、OLED特性の検出については、モニタ線Mに或る一定電流を供給した状態で有機EL素子OLEDの陽極の電圧を測定することによって行われる。
<2.1 構成など>
本発明の第2の実施形態について説明する。上記第1の実施形態においては、モニタ線Mに或る一定電圧を供給した状態で当該モニタ線Mに流れる電流を測定することによって、TFT特性およびOLED特性が検出されていた。これに対して、本実施形態においては、TFT特性の検出については、モニタ線Mに或る一定電圧を供給した状態で当該モニタ線Mに流れる電流を測定することによって行われるが、OLED特性の検出については、モニタ線Mに或る一定電流を供給した状態で有機EL素子OLEDの陽極の電圧を測定することによって行われる。
全体構成については上記第1の実施形態と同様であるので、説明を省略する(図2を参照)。本実施形態においては、モニタデータMOを取得するための構成要素として、電流測定部332に加えて、電圧測定部334が設けられている。なお、電流測定部332の構成については、上記第1の実施形態における構成(図7を参照)と同様である。また、本実施形態においては、図33に示すように、モニタ線M(j)を電流測定部332に接続された状態と電圧測定部334に接続された状態との間で切り替えるための切り替え部335が設けられている。そして、コントロール回路20から切り替え部335に与えられる切替制御信号SWに基づいて電流測定部332または電圧測定部334のいずれかにモニタ線M(j)が接続されるように構成されている。
図34は、電圧測定部334の一構成例を示す図である。図34に示すように、この電圧測定部334には、増幅器3341と定電流源3342とが含まれている。このような構成において、定電流源3342によって一定電流がモニタ線Mに供給されている状態で、節点3343とローレベル電源線ELVSSとの間の電圧が増幅器3341によって増幅される。そして、増幅後の電圧がモニタデータMOとして信号変換回路32内のA/Dコンバータに送られる。
<2.2 モニタ行における特性検出動作>
次に、図35を参照しつつ、本実施形態における特性検出動作について説明する。図35は、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図35では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。各フレーム期間において、TFT特性検出期間Taにはモニタ線M(j)は電流測定部332に接続され、発光期間TCにはモニタ線M(j)は電圧測定部334に接続される。
次に、図35を参照しつつ、本実施形態における特性検出動作について説明する。図35は、モニタ行に含まれる画素回路11(i行j列の画素回路11とする)の動作を説明するためのタイミングチャートである。なお、図35では、i行目がモニタ行とされるフレームにおけるi行目の選択期間開始時点を基準にして「1フレーム期間」を表している。各フレーム期間において、TFT特性検出期間Taにはモニタ線M(j)は電流測定部332に接続され、発光期間TCにはモニタ線M(j)は電圧測定部334に接続される。
TFT特性検出期間Taの前半(選択期間Tb)には、走査線G1(i)およびモニタ制御線G2(i)がアクティブな状態とされる。これにより、トランジスタT1およびトランジスタT3がオン状態となる。また、この期間には、データ線S(j)には電位Vmgが与えられ、モニタ線M(j)には電位Vm_TFTが与えられる。なお、後述する発光期間Tcには、モニタ線M(j)には一定電流Ioledが与えられる。
ここで、TFT用オフセットメモリ51aに格納されているオフセット値に基づいて求められるトランジスタT2の閾値電圧をVth(T2)とし、モニタ線M(j)に一定電流Ioledが与えられたときのモニタ線M(j)の電位をVm_oled(Ioled)とすると、上式(1)および次式(7)が成立するように、電位Vmgの値,電位Vm_TFTの値,および電流Ioledの値が設定されている。
Vmg<Vm_oled(Ioled)+Vth(T2) ・・・(7)
また、OLED用オフセットメモリ51bに格納されているオフセット値に基づいて求められる有機EL素子OLEDの発光閾値電圧をVth(oled)とすると、上式(3)が成立するように電位Vm_TFTの値が設定されている。さらに、有機EL素子OLEDの降伏電圧をVbr(oled)とすると、上式(4)が成立するように電位Vm_TFTの値が設定されている。
Vmg<Vm_oled(Ioled)+Vth(T2) ・・・(7)
また、OLED用オフセットメモリ51bに格納されているオフセット値に基づいて求められる有機EL素子OLEDの発光閾値電圧をVth(oled)とすると、上式(3)が成立するように電位Vm_TFTの値が設定されている。さらに、有機EL素子OLEDの降伏電圧をVbr(oled)とすると、上式(4)が成立するように電位Vm_TFTの値が設定されている。
以上のように、TFT特性検出期間Taの前半(選択期間Tb)には、上式(1),(7)を満たす電位Vmgがデータ線S(j)に与えられ、上式(1),(3),および(4)を満たす電位Vm_TFTがモニタ線M(j)に与えられる。上式(1)より、この期間には、トランジスタT2はオン状態となる。また、上式(3),(4)より、この期間には、有機EL素子OLEDに電流は流れない。
TFT特性検出期間Taの後半には、走査線G1(i)が非アクティブな状態とされる。これにより、トランジスタT1はオフ状態となるが、選択期間Tb中にコンデンサCstが充電されていることからトランジスタT2はオン状態で維持される。また、モニタ制御線G2(i)はアクティブな状態で維持されるので、トランジスタT3もオン状態で維持される。モニタ線M(j)には、上式(1),(3),および(4)を満たす電位Vm_TFTが与えられる。
以上より、TFT特性検出期間Taには、トランジスタT2を流れる電流が、トランジスタT3を介してモニタ線M(j)に出力される。ここで、TFT特性検出期間Taには、モニタ線M(j)は電流測定部332に接続されている。これにより、モニタ線M(j)に出力された電流(シンク電流)が、電流測定部332によって測定される。以上のようにして、TFT特性が検出される。
なお、上記第1の実施形態と同様、本実施形態においても、TFT特性検出期間Taには2種類の電位(第1参照電位Vm_TFT_1および第2参照電位Vm_TFT_2)がモニタ線M(j)に印加される。これにより、第1参照電位Vm_TFT_1に基づくTFT特性と第2参照電位Vm_TFT_2に基づくTFT特性とが検出される。
発光期間Tcには、走査線G1(i)は非アクティブな状態で維持され、モニタ制御線G2(i)はアクティブな状態で維持される。このため、この期間には、トランジスタT1はオフ状態で維持され、トランジスタT3はオン状態で維持される。また、上述したように、この期間には、モニタ線M(j)には一定電流Ioledが与えられる。
ここで、上式(7)および次式(8)が成立するように一定電流Ioledの値が設定されている。
ELVSS+Vth(oled)<Vm_oled(Ioled) ・・・(8)
また、トランジスタT2の降伏電圧をVbr(T2)とすると、次式(9)が成立するように一定電流Ioledの値が設定されている。
Vm_oled(Ioled)<Vmg+Vbr(T2) ・・・(9)
ELVSS+Vth(oled)<Vm_oled(Ioled) ・・・(8)
また、トランジスタT2の降伏電圧をVbr(T2)とすると、次式(9)が成立するように一定電流Ioledの値が設定されている。
Vm_oled(Ioled)<Vmg+Vbr(T2) ・・・(9)
以上のように、発光期間Tcには、上式(7),(8),および(9)を満たすような一定電流Ioledがモニタ線M(j)に与えられる。上式(7),(9)より、この期間には、トランジスタT2はオフ状態となる。また、上式(8)より、この期間には、有機EL素子OLEDに電流が流れる。
以上より、発光期間Tcには、モニタ線M(j)から有機EL素子OLEDに一定電流が流れ、有機EL素子OLEDが発光する。ここで、発光期間Tcには、モニタ線M(j)は電圧測定部334に接続されている。この状態において、電圧測定部334によって、有機EL素子OLEDの陽極の電圧が測定される。以上のようにして、OLED特性が検出される。
ところで、本実施形態においても、1フレーム期間での発光電流の積分値が所望の階調に相当する値となるよう、有機EL素子OLEDが発光する時間の長さが調整される。換言すれば、目標輝度に応じて、一定電流Ioledを有機EL素子OLEDに与える時間の長さが調整される。なお、1フレーム期間での発光電流の積分値が所望の階調に相当する値になるのであれば、発光期間Tc中に電流値を変化させて、複数の動作点での特性(電流-電圧特性)を測定するようにしても良い。
なお、補正データ記憶部50内の補正データの更新および映像信号の補正については、上記第1の実施形態と同様であるので、説明を省略する。
<2.3 効果>
上記第1の実施形態と同様、本実施形態においても、有機EL表示装置において、駆動トランジスタ(トランジスタT2)および有機EL素子OLEDの特性検出の時間を充分に確保して駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化の双方を同時に充分に補償することが可能となる。
上記第1の実施形態と同様、本実施形態においても、有機EL表示装置において、駆動トランジスタ(トランジスタT2)および有機EL素子OLEDの特性検出の時間を充分に確保して駆動トランジスタ(トランジスタT2)の劣化および有機EL素子OLEDの劣化の双方を同時に充分に補償することが可能となる。
<2.4 変形例>
上記第1の実施形態の第2の変形例と同様、モニタ線Mをハイインピーダンスの状態にすることが可能な構成を採用することもできる。すなわち、図36に示すように、モニタ線Mを電流測定部332に接続された状態と電圧測定部334に接続された状態とハイインピーダンスの状態との間で切り替えるための切り替え部336が設けられた構成を採用しても良い。
上記第1の実施形態の第2の変形例と同様、モニタ線Mをハイインピーダンスの状態にすることが可能な構成を採用することもできる。すなわち、図36に示すように、モニタ線Mを電流測定部332に接続された状態と電圧測定部334に接続された状態とハイインピーダンスの状態との間で切り替えるための切り替え部336が設けられた構成を採用しても良い。
また、モニタ線Mの一端部近傍を図37に示すような構成にして、1つの電流測定部332および1つの電圧測定部334を複数の列で共有化するようにしても良い(上記第1の実施形態の第3の変形例を参照)。
<3.その他>
本発明を適用可能な有機EL表示装置は、各実施形態および各変形例で例示した画素回路11を備えるものに限定されるものではない。画素回路は、少なくとも、電流によって制御される電気光学素子(有機EL素子OLED),トランジスタT1~T3,およびコンデンサCstを備えていれば、各実施形態および各変形例で例示した構成以外の構成であっても良い。
本発明を適用可能な有機EL表示装置は、各実施形態および各変形例で例示した画素回路11を備えるものに限定されるものではない。画素回路は、少なくとも、電流によって制御される電気光学素子(有機EL素子OLED),トランジスタT1~T3,およびコンデンサCstを備えていれば、各実施形態および各変形例で例示した構成以外の構成であっても良い。
1~4…有機EL表示装置
10…表示部
11…画素回路
20…コントロール回路
30…ソースドライバ
31…駆動信号発生回路
32…信号変換回路
33…出力部
40…ゲートドライバ
50…補正データ記憶部
51a…TFT用オフセットメモリ
51b…OLED用オフセットメモリ
52a…TFT用ゲインメモリ
52b…OLED用ゲインメモリ
60…温度センサ
201…モニタ行記憶部
202…温度変化補償部
330…出力回路
331…映像信号出力部
332…電流測定部
334…電圧測定部
T1~T3…トランジスタ
Cst…コンデンサ
G1(1)~G1(n)…走査線
G2(1)~G2(n)…モニタ制御線
S(1)~S(m)…データ線
M(1)~M(m)…モニタ線
ELVDD…ハイレベル電源電圧,ハイレベル電源線
ELVSS…ローレベル電源電圧,ローレベル電源線
Ta…TFT特性検出期間
Tb…選択期間
Tc…発光期間
10…表示部
11…画素回路
20…コントロール回路
30…ソースドライバ
31…駆動信号発生回路
32…信号変換回路
33…出力部
40…ゲートドライバ
50…補正データ記憶部
51a…TFT用オフセットメモリ
51b…OLED用オフセットメモリ
52a…TFT用ゲインメモリ
52b…OLED用ゲインメモリ
60…温度センサ
201…モニタ行記憶部
202…温度変化補償部
330…出力回路
331…映像信号出力部
332…電流測定部
334…電圧測定部
T1~T3…トランジスタ
Cst…コンデンサ
G1(1)~G1(n)…走査線
G2(1)~G2(n)…モニタ制御線
S(1)~S(m)…データ線
M(1)~M(m)…モニタ線
ELVDD…ハイレベル電源電圧,ハイレベル電源線
ELVSS…ローレベル電源電圧,ローレベル電源線
Ta…TFT特性検出期間
Tb…選択期間
Tc…発光期間
Claims (25)
- 電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置の駆動方法であって、
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出ステップと、
前記駆動トランジスタ特性検出ステップでの検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして、予め用意された補正データ記憶部に記憶させる補正データ記憶ステップと、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正ステップと
を含み、
前記表示装置には、前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能なモニタ線が、前記画素マトリクスの列毎に設けられ、
前記駆動トランジスタ特性検出ステップの処理が、1フレーム期間につき前記画素マトリクスの1つの行のみで行われ、
各フレーム期間において前記駆動トランジスタ特性検出ステップの処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出ステップの処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記モニタ行では、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続され、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位が与えられることを特徴とする、駆動方法。 - 前記電気光学素子の特性を検出する電気光学素子特性検出ステップを更に含み、
前記電気光学素子特性検出ステップの処理は、前記発光期間に行われ、
前記補正データ記憶ステップでは、更に、前記電気光学素子特性検出ステップでの検出結果に基づいて得られる特性データが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする、請求項1に記載の駆動方法。 - 前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電圧が与えられた状態で前記電気光学素子に流れる電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項2に記載の駆動方法。
- 前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電圧を前記電気光学素子に与える時間の長さが調整されることを特徴とする、請求項3に記載の駆動方法。
- 前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電圧が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする、請求項4に記載の駆動方法。
- 前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項3に記載の駆動方法。 - 前記電気光学素子特性検出ステップでは、前記電気光学素子に一定の電流が与えられた状態で前記電気光学素子の陽極の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項2に記載の駆動方法。
- 前記電気光学素子特性検出ステップでは、目標輝度に応じて、前記一定の電流を前記電気光学素子に与える時間の長さが調整されることを特徴とする、請求項7に記載の駆動方法。
- 前記電気光学素子特性検出ステップでは、1フレーム期間での発光電流の積分値が目標階調に相当する値となる範囲内で複数レベルの前記一定の電流が前記電気光学素子に与えられることによって、前記電気光学素子の特性として複数の特性が検出されることを特徴とする、請求項8に記載の駆動方法。
- 前記表示装置は、
前記モニタ線の電流を測定するための電流測定部と、
前記モニタ線の電圧を測定するための電圧測定部と
を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出され、
前記電気光学素子特性検出ステップでは、前記電圧測定部が前記モニタ線の電圧を測定することによって、前記電気光学素子の特性が検出されることを特徴とする、請求項7に記載の駆動方法。 - 前記n行×m列の画素マトリクスのうち黒色またはほぼ黒色の表示が行われる画素については、前記電気光学素子特性検出ステップの処理が行われないことを特徴とする、請求項2に記載の駆動方法。
- 温度を検出する温度検出ステップと、
前記特性データに対して前記温度検出ステップで検出された温度に基づく補正を施す温度変化補償ステップと
を更に含み、
前記補正データ記憶ステップでは、前記温度変化補償ステップの処理で得られたデータが前記補正データとして前記補正データ記憶部に記憶されることを特徴とする、請求項2に記載の駆動方法。 - 前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲート-ソース間の電圧を所定の大きさにした状態で前記駆動トランジスタのドレイン-ソース間を流れる電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする、請求項1に記載の駆動方法。
- 前記駆動トランジスタ特性検出ステップでは、前記駆動トランジスタのゲートに複数レベルの電位が与えられることによって、前記駆動トランジスタの特性として複数の特性が検出されることを特徴とする、請求項13に記載の駆動方法。
- 前記表示装置は、前記モニタ線の電流を測定するための電流測定部を有し、
前記駆動トランジスタ特性検出ステップでは、前記電流測定部が前記モニタ線の電流を測定することによって、前記駆動トランジスタの特性が検出されることを特徴とする、請求項13に記載の駆動方法。 - 前記電流測定部は、K本のモニタ線(Kは2以上m以下の整数)につき1つだけ設けられ、
各フレーム期間において、
前記K本のモニタ線のうちの1つが前記電流測定部と電気的に接続され、
前記電流測定部と電気的に接続されていないモニタ線は、ハイインピーダンスの状態にされていることを特徴とする、請求項15に記載の駆動方法。 - 前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vmgの値は以下の式を満たすように定められていることを特徴とする、請求項1に記載の駆動方法:
Vmg>Vm_TFT+Vth(T2)
Vmg<Vm_oled+Vth(T2)
ここで、Vth(T2)は前駆駆動トランジスタの閾値電圧である。 - 前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとしたとき、Vm_TFTの値は以下の式を満たすように定められていることを特徴とする、請求項1に記載の駆動方法:
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。 - 前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、Vm_oledの値は以下の式を満たすように定められていることを特徴とする、請求項1に記載の駆動方法:
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。 - 前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記モニタ行において前記選択期間に前記駆動トランジスタのゲートに与える電位をVmgとし、前記駆動トランジスタ特性検出期間に前記モニタ線に与える電位をVm_TFTとし、前記発光期間に前記モニタ線に与える電位をVm_oledとしたとき、以下の関係を満たすようにVmg,Vm_TFT,およびVm_oledの値が定められていることを特徴とする、請求項1に記載の駆動方法:
Vm_TFT<Vmg-Vth(T2)
Vm_TFT<ELVSS+Vth(oled)
Vm_oled>Vmg-Vth(T2)
Vm_oled>ELVSS+Vth(oled)
ここで、Vth(T2)は前記駆動トランジスタの閾値電圧であって、Vth(oled)は前記電気光学素子の発光閾値電圧であって、ELVSSは前記電気光学素子の陰極の電位である。 - 目標輝度に応じて、前記駆動トランジスタ特性検出期間の長さと前記発光期間の長さとが調整されることを特徴とする、請求項1に記載の駆動方法。
- 各フレーム期間において、前記発光期間よりも前記駆動トランジスタ特性検出期間の方が先行していることを特徴とする、請求項1に記載の駆動方法。
- 前記モニタ行において1フレーム期間の最初に所定電位を前記駆動トランジスタのゲートに与えるための期間であって、かつ、前記非モニタ行において1フレーム期間の最初に目標輝度に応じた電位を前記駆動トランジスタのゲートに与えるための期間である選択期間が、各フレーム期間に設けられ、
前記選択期間の長さが前記モニタ行と前記非モニタ行とで等しいことを特徴とする、請求項1に記載の駆動方法。 - 前記表示装置の電源オフの際に、最後に前記駆動トランジスタ特性検出ステップの処理が行われた領域を特定する情報を予め用意されたモニタ領域記憶部に記憶するモニタ領域記憶ステップを更に含み、
前記表示装置の電源オン後には、前記モニタ領域記憶部に記憶されている情報に基づいて得られる領域近傍の領域から、前記駆動トランジスタ特性検出ステップの処理が行われることを特徴とする、請求項1に記載の駆動方法。 - 電流によって輝度が制御される電気光学素子および前記電気光学素子に供給すべき電流を制御するための駆動トランジスタをそれぞれが含むn×m個(nおよびmは2以上の整数)の画素回路からなるn行×m列の画素マトリクスを有する表示装置であって、
前記駆動トランジスタの特性を検出する駆動トランジスタ特性検出処理を行いつつ前記n×m個の画素回路を駆動する画素回路駆動部と、
前記駆動トランジスタ特性検出処理での検出結果に基づいて得られる特性データを、映像信号を補正するための補正データとして記憶する補正データ記憶部と、
前記補正データ記憶部に記憶されている補正データに基づいて前記映像信号を補正して、前記n×m個の画素回路に供給すべきデータ信号を生成する映像信号補正部と、
前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続可能に構成され、前記画素マトリクスの列毎に設けられたモニタ線と
を備え、
各フレーム期間において前記駆動トランジスタ特性検出処理が行われる行をモニタ行と定義し、前記モニタ行以外の行を非モニタ行と定義したとき、前記モニタ行についての1フレーム期間は、前記駆動トランジスタ特性検出処理が行われる駆動トランジスタ特性検出期間と、前記電気光学素子を発光させることが可能な発光期間とを含み、
前記画素回路駆動部は、
前記駆動トランジスタ特性検出処理を、1フレーム期間につき前記画素マトリクスの1つの行についてのみ行い、
前記モニタ行については、前記駆動トランジスタ特性検出期間および前記発光期間を通じて、前記モニタ線が前記駆動トランジスタのソースと前記電気光学素子の陽極とに電気的に接続された状態を維持し、
前記駆動トランジスタ特性検出期間には前記駆動トランジスタおよび前記電気光学素子のうち前記駆動トランジスタのみに電流が流れるよう、かつ、前記発光期間には前記駆動トランジスタおよび前記電気光学素子のうち前記電気光学素子のみに電流が流れるよう、前記駆動トランジスタ特性検出期間と前記発光期間とで前記モニタ線に異なる電位を与えることを特徴とする、表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/900,224 US9837016B2 (en) | 2013-06-27 | 2014-06-20 | Display device and drive method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013134637 | 2013-06-27 | ||
JP2013-134637 | 2013-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208458A1 true WO2014208458A1 (ja) | 2014-12-31 |
Family
ID=52141798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066402 WO2014208458A1 (ja) | 2013-06-27 | 2014-06-20 | 表示装置およびその駆動方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US9837016B2 (ja) |
WO (1) | WO2014208458A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109215580A (zh) * | 2018-09-18 | 2019-01-15 | 昆山国显光电有限公司 | 像素电路结构及其驱动方法 |
JP2019028426A (ja) * | 2017-07-27 | 2019-02-21 | エルジー ディスプレイ カンパニー リミテッド | 電界発光表示装置及びその駆動方法 |
JP2019526835A (ja) * | 2016-09-14 | 2019-09-19 | アップル インコーポレイテッドApple Inc. | インフレーム感知及び適応感知制御のためのシステム及び方法 |
WO2019186895A1 (ja) * | 2018-03-29 | 2019-10-03 | シャープ株式会社 | 駆動方法、及び、表示装置 |
US10621913B2 (en) | 2015-12-14 | 2020-04-14 | Sharp Kabushiki Kaisha | Display device and driving method therefor |
CN111063295A (zh) * | 2019-12-31 | 2020-04-24 | 深圳市华星光电半导体显示技术有限公司 | 一种发光二极管阵列面板的驱动装置及其驱动方法 |
WO2022190347A1 (ja) * | 2021-03-12 | 2022-09-15 | シャープ株式会社 | タッチパネルを備えた表示装置およびその制御方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6239243B1 (en) | 1999-06-10 | 2001-05-29 | Dow Corning Corporation | Method for preparing hydrophilic silica gels with high pore volume |
US10657895B2 (en) * | 2015-07-24 | 2020-05-19 | Ignis Innovation Inc. | Pixels and reference circuits and timing techniques |
US10360826B2 (en) * | 2015-10-09 | 2019-07-23 | Apple Inc. | Systems and methods for indirect light-emitting-diode voltage sensing in an electronic display |
US10573234B2 (en) | 2016-09-14 | 2020-02-25 | Apple Inc. | Systems and methods for in-frame sensing and adaptive sensing control |
US10453432B2 (en) | 2016-09-24 | 2019-10-22 | Apple Inc. | Display adjustment |
CN106782333B (zh) * | 2017-02-23 | 2018-12-11 | 京东方科技集团股份有限公司 | Oled像素的补偿方法和补偿装置、显示装置 |
KR102286762B1 (ko) * | 2017-03-14 | 2021-08-05 | 주식회사 실리콘웍스 | 유기 발광 다이오드의 측정 장치 및 방법 |
CN106997747B (zh) * | 2017-05-27 | 2019-01-01 | 京东方科技集团股份有限公司 | 一种有机发光显示面板及显示装置 |
CN107093402B (zh) * | 2017-06-02 | 2019-01-22 | 深圳市华星光电半导体显示技术有限公司 | Oled显示面板驱动方法 |
US10997914B1 (en) * | 2018-09-07 | 2021-05-04 | Apple Inc. | Systems and methods for compensating pixel voltages |
CN109584788A (zh) * | 2019-01-22 | 2019-04-05 | 京东方科技集团股份有限公司 | 像素驱动电路、像素单元及驱动方法、阵列基板、显示装置 |
WO2021047562A1 (zh) * | 2019-09-12 | 2021-03-18 | 京东方科技集团股份有限公司 | 像素驱动电路、像素单元及驱动方法、阵列基板、显示装置 |
KR20220016346A (ko) * | 2020-07-30 | 2022-02-09 | 삼성디스플레이 주식회사 | 표시 장치 |
WO2022113265A1 (ja) * | 2020-11-27 | 2022-06-02 | シャープ株式会社 | タッチパネルを備えた表示装置およびその制御方法 |
CN114299861B (zh) * | 2021-12-30 | 2023-06-16 | 上海中航光电子有限公司 | 一种线路面板及其相关方法和装置 |
CN114755858A (zh) * | 2022-03-29 | 2022-07-15 | 咸阳博凯樾电子科技有限公司 | 一种led背光面板及led面板 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009265459A (ja) * | 2008-04-28 | 2009-11-12 | Fujifilm Corp | 画素回路および表示装置 |
JP2010243645A (ja) * | 2009-04-02 | 2010-10-28 | Sony Corp | 表示装置、及び、表示装置の駆動方法 |
JP2010281874A (ja) * | 2009-06-02 | 2010-12-16 | Casio Computer Co Ltd | 発光装置及びその駆動制御方法、並びに電子機器 |
JP2012190023A (ja) * | 2008-07-04 | 2012-10-04 | Panasonic Corp | 表示装置及びその制御方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003195810A (ja) | 2001-12-28 | 2003-07-09 | Casio Comput Co Ltd | 駆動回路、駆動装置及び光学要素の駆動方法 |
KR100560780B1 (ko) | 2003-07-07 | 2006-03-13 | 삼성에스디아이 주식회사 | 유기전계 발광표시장치의 화소회로 및 그의 구동방법 |
US9280933B2 (en) * | 2004-12-15 | 2016-03-08 | Ignis Innovation Inc. | System and methods for extraction of threshold and mobility parameters in AMOLED displays |
EP2688058A3 (en) | 2004-12-15 | 2014-12-10 | Ignis Innovation Inc. | Method and system for programming, calibrating and driving a light emitting device display |
KR100671669B1 (ko) | 2006-02-28 | 2007-01-19 | 삼성에스디아이 주식회사 | 데이터 구동부 및 이를 이용한 유기 발광 표시장치와 그의구동방법 |
JP4424346B2 (ja) | 2006-12-11 | 2010-03-03 | カシオ計算機株式会社 | 駆動回路及び駆動装置 |
KR101457833B1 (ko) | 2010-12-03 | 2014-11-05 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
US9530349B2 (en) * | 2011-05-20 | 2016-12-27 | Ignis Innovations Inc. | Charged-based compensation and parameter extraction in AMOLED displays |
KR101970564B1 (ko) * | 2012-11-30 | 2019-08-13 | 엘지디스플레이 주식회사 | 유기 발광 다이오드 표시 장치의 전류 제어 방법 및 장치 |
-
2014
- 2014-06-20 US US14/900,224 patent/US9837016B2/en active Active
- 2014-06-20 WO PCT/JP2014/066402 patent/WO2014208458A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009265459A (ja) * | 2008-04-28 | 2009-11-12 | Fujifilm Corp | 画素回路および表示装置 |
JP2012190023A (ja) * | 2008-07-04 | 2012-10-04 | Panasonic Corp | 表示装置及びその制御方法 |
JP2010243645A (ja) * | 2009-04-02 | 2010-10-28 | Sony Corp | 表示装置、及び、表示装置の駆動方法 |
JP2010281874A (ja) * | 2009-06-02 | 2010-12-16 | Casio Computer Co Ltd | 発光装置及びその駆動制御方法、並びに電子機器 |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10621913B2 (en) | 2015-12-14 | 2020-04-14 | Sharp Kabushiki Kaisha | Display device and driving method therefor |
JP2019526835A (ja) * | 2016-09-14 | 2019-09-19 | アップル インコーポレイテッドApple Inc. | インフレーム感知及び適応感知制御のためのシステム及び方法 |
US10992911B2 (en) | 2016-09-14 | 2021-04-27 | Apple Inc. | Systems and methods for in-frame sensing and adaptive sensing control |
JP2019028426A (ja) * | 2017-07-27 | 2019-02-21 | エルジー ディスプレイ カンパニー リミテッド | 電界発光表示装置及びその駆動方法 |
US10467960B2 (en) | 2017-07-27 | 2019-11-05 | Lg Display Co., Ltd. | Electroluminescent display device and driving method of the same |
WO2019186895A1 (ja) * | 2018-03-29 | 2019-10-03 | シャープ株式会社 | 駆動方法、及び、表示装置 |
CN111919247A (zh) * | 2018-03-29 | 2020-11-10 | 夏普株式会社 | 驱动方法以及显示装置 |
US11257430B2 (en) | 2018-03-29 | 2022-02-22 | Sharp Kabushiki Kaisha | Drive method and display device |
CN111919247B (zh) * | 2018-03-29 | 2022-05-17 | 夏普株式会社 | 驱动方法以及显示装置 |
CN109215580B (zh) * | 2018-09-18 | 2020-05-05 | 昆山国显光电有限公司 | 像素电路结构及其驱动方法 |
CN109215580A (zh) * | 2018-09-18 | 2019-01-15 | 昆山国显光电有限公司 | 像素电路结构及其驱动方法 |
CN111063295A (zh) * | 2019-12-31 | 2020-04-24 | 深圳市华星光电半导体显示技术有限公司 | 一种发光二极管阵列面板的驱动装置及其驱动方法 |
WO2022190347A1 (ja) * | 2021-03-12 | 2022-09-15 | シャープ株式会社 | タッチパネルを備えた表示装置およびその制御方法 |
Also Published As
Publication number | Publication date |
---|---|
US20160155377A1 (en) | 2016-06-02 |
US9837016B2 (en) | 2017-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014208458A1 (ja) | 表示装置およびその駆動方法 | |
JP6138254B2 (ja) | 表示装置およびその駆動方法 | |
JP6138236B2 (ja) | 表示装置およびその駆動方法 | |
US10304385B2 (en) | Display device | |
JP6169191B2 (ja) | 表示装置およびその駆動方法 | |
JP6129318B2 (ja) | 表示装置およびその駆動方法 | |
CN108369792B (zh) | 显示装置及其驱动方法 | |
US8599186B2 (en) | Pixel driving device, light emitting device, driving/controlling method thereof, and electronic device | |
US8502811B2 (en) | Pixel driving device, light emitting device, driving/controlling method thereof, and electronic device | |
WO2014203810A1 (ja) | 表示装置およびその駆動方法 | |
WO2014069324A1 (ja) | 表示装置用のデータ処理装置、それを備える表示装置、および表示装置用のデータ処理方法 | |
US11257430B2 (en) | Drive method and display device | |
US20170140703A1 (en) | Display device and method for driving same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818387 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14900224 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818387 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |