WO2014136524A1 - インバータ基板およびそれを用いたインバータ一体型電動圧縮機 - Google Patents

インバータ基板およびそれを用いたインバータ一体型電動圧縮機 Download PDF

Info

Publication number
WO2014136524A1
WO2014136524A1 PCT/JP2014/052857 JP2014052857W WO2014136524A1 WO 2014136524 A1 WO2014136524 A1 WO 2014136524A1 JP 2014052857 W JP2014052857 W JP 2014052857W WO 2014136524 A1 WO2014136524 A1 WO 2014136524A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
terminal
board
substrate
connector
Prior art date
Application number
PCT/JP2014/052857
Other languages
English (en)
French (fr)
Inventor
服部 誠
浅井 雅彦
Original Assignee
三菱重工オートモーティブサーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工オートモーティブサーマルシステムズ株式会社 filed Critical 三菱重工オートモーティブサーマルシステムズ株式会社
Priority to DE112014001150.9T priority Critical patent/DE112014001150B4/de
Priority to CN201480006804.0A priority patent/CN105009438B/zh
Priority to US14/765,267 priority patent/US10122237B2/en
Publication of WO2014136524A1 publication Critical patent/WO2014136524A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • H02K11/026Suppressors associated with brushes, brush holders or their supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to an inverter board suitable for application to an inverter device for an electric compressor and an inverter-integrated electric compressor in which an inverter device using the same is integrated.
  • An inverter-integrated electric compressor in which an inverter device is integrated is used as a compressor of an air conditioner mounted on an electric vehicle, a hybrid vehicle, or the like.
  • This inverter-integrated electric compressor is driven by converting high-voltage DC power supplied from a power supply unit mounted on a vehicle into three-phase AC power of a required frequency by an inverter device and applying it to an electric motor. It is configured to be.
  • the inverter device includes a plurality of high-voltage electrical components such as coils and capacitors that constitute a filter circuit for noise removal, a plurality of semiconductor switching elements such as IGBTs that constitute a switching circuit that converts power, a filter circuit, and a switching circuit.
  • Inverter circuit including the inverter circuit and its control circuit (hereinafter simply referred to as an inverter circuit), etc., which converts DC power input via the PN terminal into three-phase AC power, and UWV terminal Is integrated into the inverter housing portion provided on the outer periphery of the housing of the electric compressor.
  • Patent Document 1 discloses that a power source is connected to a metal inverter cover that seals an inverter housing space in which an inverter board on which a coil and a capacitor for a filter circuit and a switching element for a switching circuit are mounted is installed.
  • An input port forming part is formed, a metal terminal is resin-insert molded into the port forming part, a resin power connector is integrally provided, a power cable is connected to the power connector, and the inverter cover is attached to the housing.
  • a metal terminal of a resin power connector is electrically connected to an inverter board side.
  • a coil, a capacitor, a switching element, and the like are mounted on an inverter board, and a resin power connector for connecting a power cable to the inverter cover is provided integrally.
  • the inverter cover When the inverter cover is attached, it is electrically connected to a connector or the like on the inverter board side, and the configuration of the DC power input system can be simplified.
  • electrically connecting and disconnecting the power cable and the inverter board it is necessary to connect or pull out the terminal and connector, and a large stress is applied to the terminal, the connector, or the board itself. There existed problems, such as a possibility that a connector might be peeled off or a board
  • the present invention has been made in view of such circumstances.
  • the PN terminal is firmly installed on the substrate and is installed so that the stress applied to the substrate can be dispersed.
  • Another object of the present invention is to provide an inverter board and an inverter-integrated electric compressor using the same, which can prevent damage to the circuit board or the mounted component.
  • the inverter board of the present invention and the inverter-integrated electric compressor using the same employ the following means. That is, in the inverter board according to the first aspect of the present invention, a PN terminal for inputting high-voltage DC power is installed on the board on which the inverter circuit is mounted, and a power source is directly connected to the PN terminal.
  • An inverter board configured to be detachably connected to a cable-side connector, wherein the PN terminal includes a pair of pins and a bus bar having a predetermined length joined to one end of each of the pins at right angles.
  • a resin mold member formed by integrally forming the pair of pins and bus bars, a through hole terminal provided on the pair of bus bars and soldered by being inserted into the through holes of the substrate, and soldered to the surface of the substrate. And the through-hole terminals and the surface-mounting terminals are soldered to the substrate side and are installed on the substrate.
  • the PN terminal installed on the substrate includes a pair of pins, a bus bar having a predetermined length joined to one end of each of the pins, and the pair of pins.
  • the PN terminal can be stably held on the board, the connector can be inserted smoothly, and maintenance can be performed.
  • pulling out the connector from the PN terminal and detaching the power supply side cable it is possible to secure a sufficient tensile strength against the pulling force and prevent the PN terminal from being detached. Also, by soldering the PN terminals at two locations, a sufficient current density can be secured for a high voltage input.
  • the inverter board according to the first aspect of the present invention is the above inverter board, wherein the through-hole terminal is provided at a position farthest from each pin, and the surface-mount terminal is provided by each pin. It is good also as being provided in the position near.
  • the through-hole terminal is provided at a position farthest from each pin, and the surface mounting terminal is provided at a position close to each pin. Since the soldering can be performed at two locations, the farthest position sufficiently away from the pair of pins and the position close to each pin, when connecting / disconnecting the power cable connector to the PN terminal, the inverter board The stress applied to the side can be dispersed in as wide a range as possible. Therefore, not only can the PN terminal be installed with sufficient strength to withstand the force applied when a connector is inserted or pulled out, but the stress applied to the board is reduced and the posture stability is maintained. Can be installed.
  • the pin and the bus bar are fitted in a hole on the bus bar side provided on one end surface of the pin. Resistance welding may be performed using a projection and a plurality of projections.
  • each pin and the bus bar are resistance welded using a projection and a plurality of projections that fit into the hole on the bus bar side provided on one end surface of the pin
  • the projection of each pin is The pins can be integrated by being resistance-welded to the respective bus bars using the projections and a plurality of projections in a state of being fitted and positioned in the holes on the bus bar side. Accordingly, each pin can be accurately welded at right angles to each bus bar, the PN terminal can be made highly accurate, and the connector can be easily attached and detached.
  • the inverter-integrated electric compressor according to the second aspect of the present invention is the inverter-integrated electric compressor in which the inverter device is incorporated and integrated in the inverter housing portion provided on the outer periphery of the housing.
  • the inverter device includes any one of the inverter boards described above, and is connected to one end of a power supply side cable that supplies DC power to the inverter device with respect to the PN terminal provided on the inverter board.
  • the power supply side cable can be connected by inserting the provided connector.
  • the inverter device in the inverter-integrated electric compressor in which the inverter device is incorporated and integrated in the inverter housing portion provided in the housing, is one of the inverters described above.
  • a power supply cable is provided by inserting a connector provided at one end of a power supply cable for supplying DC power to the inverter device into a PN terminal provided on the inverter board. Can be connected directly to the inverter board by inserting the connector of the power supply cable into the PN terminal fixedly installed on the inverter board. Even if the PN terminal is fixed, the PN terminal is firmly fixed and installed. Connecting cable, it is possible to perform pull easily. Therefore, it is possible to easily attach and detach the power supply side cable during maintenance, simplify the configuration of the input system of the inverter device, and reduce the cost and size and weight of the inverter device.
  • the inverter-integrated electric compressor according to the second aspect of the present invention is the above-described inverter-integrated electric compressor, wherein the inverter board is mounted with a coil and a capacitor constituting a noise removal filter circuit. Any one of the coil and the capacitor is installed on the back side corresponding to the installation position of the PN terminal provided on the inverter board, so that when the connector is inserted, It may be configured to receive such stress.
  • the coil and the capacitor constituting the noise removal filter circuit are mounted on the inverter board, one of which corresponds to the installation position of the PN terminal provided on the inverter board. Since it is configured to receive stress applied to the inverter board when the connector is inserted, it is provided at one end of the power supply side cable with respect to the PN terminal on the inverter board. Even when the connector is inserted and the power supply side cable is connected directly, the stress applied to the inverter board when the connector is inserted is arranged on the back side of the PN terminal across the inverter board. It can be reduced by receiving with a coil or a capacitor.
  • the configuration of the DC power input system can be simplified, and the cost and size and weight of the inverter device can be reduced.
  • the connector provided at one end of the power supply side cable corresponds to the PN terminal on the lid side that seals the inverter accommodating portion. It is good also as a structure which can be inserted in the said PN terminal at the time of attachment and the said cover body is attached.
  • the connector provided at one end of the power supply side cable is provided at a position corresponding to the PN terminal on the lid side that seals the inverter accommodating portion. Because it is configured to be plugged into the N terminal, when the inverter is housed and installed, when the lid is attached and the inverter housing is sealed, the connector installed on the inner surface of the lid is simultaneously connected to the PN terminal. Can be connected to the PN terminal of the inverter device. Accordingly, the connection structure of the power supply side cable can be simplified, the connection process can be simplified, and even if the cover is pushed in with a little excessive force and the connector is fitted, the inverter board is overstressed. The connector can be securely inserted into the PN terminal without being added.
  • the pair of bus bars of the PN terminal can be soldered to the board together with the resin mold member via the through-hole terminal and the surface mounting terminal, and can be firmly fixed and installed. Even when the power supply side cable is directly connected by inserting the connector into the PN terminal, the PN terminal can be stably held on the board, the connector can be inserted smoothly, and the P Even when the connector is pulled out from the -N terminal and the power supply side cable is detached, it is possible to secure a sufficient tensile strength against the pulling force and prevent the PN terminal from being detached. Also, by soldering the PN terminals at two locations, a sufficient current density can be secured for a high voltage input.
  • the power supply side cable is directly connected to the inverter board by inserting the connector of the power supply side cable into the PN terminal fixedly installed on the inverter board. Even in such a configuration, since the PN terminal is firmly fixed and installed, it is possible to easily connect and disconnect the power cable by connecting and disconnecting the connector. In this case, the power supply side cable can be easily attached and detached, the configuration of the input system of the inverter device can be simplified, and the cost and size and weight of the inverter device can be reduced.
  • FIG. 2 is a view corresponding to an aa longitudinal section in FIG. 1. It is a back surface side perspective view of the cover which seals the inverter accommodating part of the inverter integrated electric compressor shown in FIG. It is a perspective view of the power supply side cable simple substance connected to the cover body shown in FIG. It is a perspective view of the inverter board
  • FIG. 6 is a perspective view of a single PN terminal provided on the inverter board shown in FIG. 5.
  • FIG. 7 is a rear perspective view of the PN terminal shown in FIG. 6.
  • FIG. 7 is a plan view of the PN terminal shown in FIG. 6.
  • FIG. 9 is a right side view of the PN terminal shown in FIG. 6 in FIG.
  • FIG. 7 is a cross-sectional view of a joint portion between a pin of a PN terminal and a bus bar shown in FIG.
  • FIG. 1 is a perspective view of a main part of an inverter-integrated electric compressor provided with an inverter board according to an embodiment of the present invention
  • FIG. FIG. 4 is a perspective view of the back surface side of the lid that seals the inverter housing portion
  • FIG. 4 is a perspective view of the power cable alone
  • FIG. 5 is a perspective view of the inverter board.
  • the inverter-integrated electric compressor 1 includes a cylindrical housing 2 constituting an outer shell.
  • the housing 2 has a configuration in which an aluminum die-cast motor housing 3 containing an electric motor (not shown) and an aluminum die-cast compressor housing (not shown) containing a compression mechanism (not shown) are integrally coupled. Has been.
  • an electric motor built in the housing 2 and a compression mechanism are connected via a rotating shaft, and the electric motor is rotationally driven via an inverter device 7 described later.
  • the compression mechanism is driven, and the low-pressure refrigerant gas sucked into the interior through the suction port 4 provided on the rear end side surface of the motor housing 3 is sucked through the periphery of the electric motor, and is compressed by the compression mechanism. After being compressed and discharged into the compressor housing, it is sent out to the outside.
  • the motor housing 3 is formed with a plurality of refrigerant flow passages 5 for circulating the refrigerant along the axial direction on the inner peripheral surface side, and a plurality of installation leg portions 6 of the electric compressor 1 are formed on the outer peripheral portion thereof. It is provided in the place.
  • an inverter housing portion 8 for integrally incorporating the inverter device 7 is integrally formed on the outer peripheral portion of the housing 2 (motor housing 3 side).
  • the inverter accommodating portion 8 has a substantially square shape in plan view, and has a base surface 9 that is partially flat and formed by a wall surface of the cylindrical motor housing 3. The unit 10 is started up.
  • the inverter accommodating portion 8 is configured to be sealed by attaching the lid 11 shown in FIG. 3 to the flange portion 10 after the inverter device 7 is incorporated.
  • a high voltage cable (power supply side cable) 12 is provided on the inner surface side of the lid 11. As shown in FIG. 5, the high voltage cable 12 is provided with a connector 13 on one end side and a connector terminal 14 connected to a power supply side cable on the other end side.
  • the high voltage cable 12 forms part of the power supply side cable, and is connected to a power supply unit mounted on the vehicle via the power supply side cable, and a connector 13 provided at one end of the high voltage cable 12 is an inverter device. 7 is used to input high-voltage DC power supplied from the power supply unit to the inverter device 7 by being connected to a PN terminal 29 provided on the inverter board 23.
  • the inverter device 7 converts the high-voltage DC power fed from the power supply unit mounted on the vehicle into three-phase AC power having a required frequency based on a command from the host control device. And the electric motor is rotationally driven. As shown in FIG. 1 and FIG. 2, the inverter device 7 is integrally incorporated into an inverter accommodating portion 8 provided on the outer periphery of the housing 2.
  • the inverter device 7 converts a plurality of high-voltage electrical components (also simply referred to as electrical components) such as a coil 18 and a capacitor 19 constituting a known noise removal filter circuit 17 and DC power into three-phase AC power.
  • Control including a plurality of (six) semiconductor switching elements 21 composed of a heat-generating power transistor such as IGBT constituting the known switching circuit 20, an inverter circuit including the filter circuit 17 and the switching circuit 20, and a microcomputer for controlling the inverter circuit.
  • the circuit board (hereinafter simply referred to as an inverter circuit) 22 is configured by a rectangular inverter board 23 on which a circuit 22 is mounted, a sub board 26 provided with a communication circuit 25 connected to a communication line 24 from a host controller, and the like. ing.
  • the inverter device 7 may be a known one, but here, as the inverter board 23, electrical components such as a coil 18 and a capacitor 19 constituting the filter circuit 17 are mounted by soldering their lead terminals, A plurality of (six) semiconductor switching elements 21 (element bodies are not shown in the figure and only the lead terminals are shown) made of heat-generating power transistors such as IGBTs constituting the switching circuit 20 are connected to the lead terminals. (A total of 18 lead terminals are provided because there are 3 IGBTs per IGBT.) Soldered terminals are used.
  • the inverter board 23 penetrates the lead terminals of the coil 18 and the capacitor 19 constituting the filter circuit 17 and the lead terminals of the plurality of semiconductor switching elements 21 constituting the switching circuit 20 respectively through the through holes of the inverter board 23.
  • the filter circuit 17 and the switching circuit 20 are configured on the inverter substrate 23 by soldering and mounting it on a pattern on the substrate.
  • the inverter board 23 is fastened and fixed to the boss portions 27 provided at the four corners in the inverter accommodating portion 8 via screws 28.
  • the coil 18 and the capacitor 19, which are a plurality of high-voltage electrical components constituting the filter circuit 17, are configured to be accommodated in a case, and have a flat shape with a flat upper surface.
  • the coil 18 and the capacitor 19 having a flat top surface of the case are mounted so as to be juxtaposed along one side thereof so as to be in contact with the bottom surface of the inverter board 23 having a rectangular top surface.
  • the connector 13 of the high voltage cable 12 is connected to the upper surface side of the corresponding portion of the inverter board 23 supported by the upper surface of the capacitor 19, so that the DC power from the power source is input to the inverter device 7.
  • the ⁇ N terminal 29 is erected upward.
  • a plurality (six) of semiconductor switching elements 21 are mounted along the other side opposite to the side on which the coil 18 and the capacitor 19 constituting the filter circuit 17 are mounted.
  • the heat generated through the motor is dissipated to the wall surface of the motor housing 3 constituting the inverter accommodating portion 8 and cooled.
  • the sub board 26 and the inverter board 23 installed above the sub board 26 are electrically connected via inter-board connection terminals.
  • a UVW terminal 30 that outputs three-phase AC power of a required frequency returned from the DC power to the electric motor side.
  • the UVW terminal 30 is connected to a glass sealed terminal 31 installed through the motor housing 3 in the inverter accommodating portion 8, and is connected to an electric motor built in the motor housing 3 through the glass sealed terminal 31. Phase AC power is applied.
  • the power supply cable 12 is connected to the PN terminal 29 by inserting the connector 13 provided on the lid body 11 side. However, when the connector 13 is inserted, a certain pressing force is required. The stress is applied to the PN terminal 29 and the inverter board 23. Further, in order to remove the power supply side cable 12 by pulling out the connector 13 once inserted, a corresponding tensile force is required, and the stress is applied to the PN terminal 29 and the inverter board 23.
  • the stress applied to the inverter board 23 since the stress applied to the inverter board 23 is received, it is one of the high-voltage electric parts on the back side of the inverter board 23 corresponding to the position where the PN terminal 29 is installed.
  • the capacitor 19 By disposing the capacitor 19 (or the coil 18), the stress applied to the inverter board 23 is received on the upper surface which is the opposite surface. Since the capacitor 19 is electrically and mechanically connected to the inverter board 23 and is installed on the bottom surface of the inverter accommodating portion 8 in a state of being fixed via an adhesive, the capacitor 19 can sufficiently support the stress. Yes.
  • the PN terminal 29 is installed as follows, so that the pulling strength is secured and the stress applied to the inverter board 23 can be dispersed. .
  • the PN terminal 29 itself welds the lower ends of the pair of pins 32 and 33 so as to be orthogonal to one end side of the bus bars 34 and 35 having a predetermined length.
  • the other end sides of the two pins are placed parallel to each other in opposite directions, and the resin mold member 36 integrally molds the resin with a predetermined dimension between the pair of pins 32 and 33.
  • the pair of pins 32 and 33 includes a projection 37 and a plurality of projections 38 at the lower ends, and the projections 37 are fitted and positioned in holes 39 provided on the bus bars 34 and 35 side.
  • the projection bar 38 and the bus bars 34 and 35 are resistance welded (projection welding) to form an integrated structure. Further, the pair of bus bars 34 and 35 are extended downward from the other end position (the farthest position) farthest from the pins 32 and 33 on the lower surface thereof, inserted into the through holes 23A of the inverter board 23 and soldered.
  • Through-hole terminals 40 and surface-mount terminals 41 that are provided near the pins 32 and 33 and are soldered to the surface of the inverter board 23.
  • the PN terminal 29 is soldered by inserting a pair of through-hole terminals 40 provided on the bus bars 34 and 35 into the through-hole 23A of the inverter board 23 on the inverter board 23, and soldering.
  • the surface mounting terminals 41 are soldered to the surface of the inverter board 23 to be fixedly installed at the above positions.
  • the PN terminal 29 may be reinforced by bonding the lower surface of the resin mold member 36 to the substrate surface with an adhesive, as well as soldering with the through-hole terminal 40 and the surface mounting terminal 41.
  • the filter circuit 17 of the inverter device 7 is configured at a position opposite to the PN terminal 29 installed on the inverter board 23 on which the inverter circuit 22 is mounted with the inverter board 23 interposed therebetween. Even if stress due to excessive pressing force is applied to the inverter board 23 when the connector 13 is inserted into the PN terminal 29 by disposing the capacitor 19 which is one of the electrical components to be The configuration is such that stress can be received using existing electrical components. For this reason, it is possible to reliably eliminate the risk of damaging the inverter board 23 and its electrical components due to the stress caused by the pushing force when the connector 13 is inserted into the PN terminal 29.
  • the PN terminal 29 is provided on the inverter board 23 for the through-hole terminal 40 provided at a position farthest from the pins 32 and 33, and for surface mounting provided at a position close to the pins 32 and 33. Since the terminal 41 can be firmly fixed by soldering, even when the connector 13 is inserted into the PN terminal 29 and the power cable 12 is directly connected to the terminal 41, the power supply cable 12 is directly connected to the inverter board 23. Not only can the PN terminal 29 be held stably and the connector 13 can be smoothly inserted, but also when the power supply side cable 12 is removed by pulling out the connector 13 from the PN terminal 29 during maintenance. A sufficient tensile strength against the force can be secured, and the PN terminal 29 can be prevented from being detached.
  • the PN terminal 29 fixedly installed on the inverter board 23 is joined to the pair of pins 32 and 33 and one end of the pins 32 and 33 at right angles.
  • the bus bars 34 and 35 having a predetermined length, the resin mold member 36 formed by integrally forming the pair of pins 32 and 33 and the bus bars 34 and 35, and the pair of bus bars 34 and 35 are provided in the through hole 23A of the inverter board 23.
  • a through-hole terminal 40 to be inserted and soldered and a surface-mounting terminal 41 to be soldered to the substrate surface of the inverter board 23 are provided, and the through-hole terminal 40 and the surface-mounting terminal 41 are provided.
  • the pair of bus bars 34 and 35 of the PN terminal 29 are soldered to the inverter board 23 together with the resin mold member 36 via the through-hole terminal 40 and the surface-mounting terminal 41 to be firmly fixed and installed. Can do. Therefore, even when the connector 13 is inserted into the PN terminal 29 and the power supply side cable 12 is directly connected, the PN terminal 29 is stably held on the inverter board 23 and the connector 13 is The power supply side cable 12 can be connected by smoothly inserting.
  • the PN terminal 29 is provided. Can be soldered to the inverter board 23 at two locations, a farthest position sufficiently away from the pair of pins 32 and 33 and a position close to the pins 32 and 33.
  • the stress applied to the inverter board 23 side can be dispersed in as wide a range as possible. Therefore, not only can the PN terminal 29 be installed with a strength sufficient to resist the force applied when the connector 13 is inserted or pulled out, the stress applied to the inverter board 23 can be reduced, and the posture can be reduced. It can be installed with stability maintained.
  • the pins 32, 33 of the PN terminal 29 and the bus bars 34, 35 are fitted into the holes 39 on the bus bars 34, 35 side provided on one end face of the pins 32, 33, and a plurality of projections.
  • the projection 37 of each pin 32, 33 is fitted into the hole 37 on the bus bar 34, 35 side, and the projection 37 and a plurality of projections are positioned. 38 can be integrated by resistance welding each pin to each bus bar. Accordingly, the pins 32 and 33 can be accurately welded at right angles to the respective bus bars 34 and 35, and the PN terminal 29 can be made highly accurate, so that the connector 13 can be easily attached and detached.
  • the inverter device 7 replaces the inverter board 23 described above.
  • the connector 13 provided at one end of the power supply side cable 12 that supplies DC power to the inverter device 7 is inserted into the PN terminal 29 provided on the inverter board 23, so that the power supply side The cable 12 is connectable.
  • the power supply cable 12 can be directly connected to the inverter board 23 by inserting the connector 13 of the power supply cable 12 into the PN terminal 29 fixedly installed on the inverter board 23. Even in this case, since the PN terminal 29 is firmly fixed and installed, it is possible to easily connect and disconnect the power supply side cable 12 by connecting and disconnecting the connector 13. Accordingly, it is possible to easily attach and detach the power supply side cable 12 during maintenance, simplify the configuration of the input system of the inverter device 7, and reduce the cost and size and weight of the inverter device 7.
  • a coil 18 and a capacitor 19 constituting the filter circuit 17 for noise removal are mounted on the inverter board 23, one of which corresponds to the installation position of the PN terminal 29 provided on the inverter board 23.
  • the stress applied to the inverter board 23 is received when the connector 13 is inserted. Therefore, even when the connector 13 is inserted into the PN terminal 29 on the inverter board 23 and the power supply side cable 12 is directly connected, the stress applied to the inverter board 23 when the connector 13 is inserted is reduced. It can be reduced by receiving the substrate 23 with the coil 18 or the capacitor 19 disposed on the back side.
  • the connector 13 provided at one end of the power supply side cable 12 is provided at a position corresponding to the PN terminal 29 on the lid 11 side that seals the inverter accommodating portion 8, and when the lid 11 is attached, A connector that can be inserted into the PN terminal 29, and is installed on the inner surface of the lid 11 at the same time as the lid 11 is attached and the inverter accommodating portion 8 is sealed after the inverter 7 is accommodated and installed.
  • the power supply side cable 12 can be connected to the PN terminal 29 of the inverter device 7.
  • connection structure of the power supply side cable 12 can be simplified, the connection process can be simplified, and even if the cover 11 is pushed in with a little excessive force and the connector 13 is fitted, The connector 13 can be reliably inserted into the PN terminal without excessive stress.
  • this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably.
  • the PN terminal 29 installed on the upper surface of the inverter board 23 is installed at the upper position of the capacitor 19, but it may be installed at the upper position of the coil 18.
  • the bus bars 34 and 35 having the PN terminal 29 joined to the pair of pins 32 and 33 are formed in a crank shape by the resin mold member 36 has been described, but the shape is not necessarily limited to such a shape. It is good also as a structure by shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Compressor (AREA)

Abstract

 基板上にP-N端子を強固に設置するとともに、基板にかかる応力を分散できるように設置し、P-N端子の外れや基板あるいは実装部品の損傷を防止できようにしたインバータ基板およびインバータ一体型電動圧縮機を提供する。インバータ回路(22)が実装されている基板上に、直流電力を入力するP-N端子(29)が設置されているインバータ基板(23)であって、P-N端子(29)は、一対のピンと、該ピンの一端にそれぞれ直交して接合された所定長のバスバーと、該一対のピンおよびバスバーを一体に成形した樹脂モールド部材と、一対のバスバーに設けられ、基板のスルーホール(23A)に挿入して半田付けされるスルーホール用端子および基板表面に半田付けされる表面実装用端子と、を備え、スルーホール用端子および表面実装用端子が基板側に半田付けされることにより、該基板上に設置されている。

Description

インバータ基板およびそれを用いたインバータ一体型電動圧縮機
 本発明は、電動圧縮機用のインバータ装置に適用して好適なインバータ基板およびそれを用いたインバータ装置が一体に組み込まれているインバータ一体型電動圧縮機に関するものである。
 電気自動車やハイブリッド車等に搭載される空調装置の圧縮機には、インバータ装置が一体に組み込まれたインバータ一体型電動圧縮機が用いられている。このインバータ一体型電動圧縮機は、車両に搭載された電源ユニットから供給される高電圧の直流電力をインバータ装置で所要周波数の三相交流電力に変換し、それを電動モータに印加することにより駆動されるように構成されている。
 インバータ装置は、ノイズ除去用のフィルタ回路を構成するコイルやコンデンサ等の複数の高電圧系電装部品、電力を変換するスイッチング回路を構成するIGBT等の複数の半導体スイッチング素子、フィルタ回路およびスイッチング回路を含むインバータ回路やその制御回路(以下、単にインバータ回路という。)が実装されているインバータ基板等を備え、P-N端子を介して入力された直流電力を三相交流電力に変換し、UWV端子から出力する構成とされており、電動圧縮機のハウジング外周に設けられているインバータ収容部に組み込まれることにより一体化されている。
 このようなインバータ装置において、特許文献1には、フィルタ回路用のコイルおよびコンデンサやスイッチング回路用のスイッチング素子を実装したインバータ基板が設置されるインバータ収容空間を密閉する金属製のインバータカバーに、電源入力ポート形成部を形成し、該ポート形成部に金属端子を樹脂インサート成形して樹脂製電源コネクタを一体的に設け、この電源コネクタに電源ケーブルを接続するとともに、インバータカバーのハウジングへの取付けにより、樹脂製電源コネクタの金属端子とインバータ基板側とを電気的に接続したものが開示されている。
特開2012-193660号公報
 上記特許文献1に示されたものは、インバータ基板にコイルやコンデンサ、スイッチング素子等を実装するとともに、インバータカバーに電源ケーブルを接続する樹脂製電源コネクタを一体化して設け、そのコネクタの金属端子をインバータカバーの取付け時にインバータ基板側のコネクタ等に電気的に接続するようにしたものであり、直流電力の入力系統の構成を簡素化することができる。しかし、電源ケーブルとインバータ基板とを電気的に接離する場合、端子とコネクタを接続したり、引き抜いたりする必要があり、端子やコネクタ、あるいは基板自体に大きな応力がかかり、その応力で端子やコネクタが引き剥がされたり、基板あるいは実装部品が損傷する虞がある等の課題があった。
 本発明は、このような事情に鑑みてなされたものであって、基板上にP-N端子を強固に設置するとともに、基板にかかる応力を分散できるように設置し、P-N端子の外れや基板あるいは実装部品の損傷を防止できるようにしたインバータ基板およびそれを用いたインバータ一体型電動圧縮機を提供することを目的とする。
 上記した課題を解決するために、本発明のインバータ基板およびそれを用いたインバータ一体型電動圧縮機は、以下の手段を採用する。
 すなわち、本発明の第1の態様にかかるインバータ基板は、インバータ回路が実装されている基板上に、高電圧の直流電力を入力するP-N端子が設置され、該P-N端子に直接電源ケーブル側のコネクタが着脱自在に接続される構成とされているインバータ基板であって、前記P-N端子は、一対のピンと、該ピンの一端にそれぞれ直交して接合された所定長のバスバーと、該一対のピンおよびバスバーを一体に成形した樹脂モールド部材と、前記一対のバスバーに設けられ、前記基板のスルーホールに挿入して半田付けされるスルーホール用端子および前記基板表面に半田付けされる表面実装用端子と、を備え、前記スルーホール用端子および前記表面実装用端子が前記基板側に半田付けされることにより、該基板上に設置されている。
 上記本発明の上記第1の態様によれば、基板上に設置されるP-N端子が、一対のピンと、該ピンの一端にそれぞれ直交して接合された所定長のバスバーと、該一対のピンおよびバスバーを一体に成形した樹脂モールド部材と、一対のバスバーに設けられ、基板のスルーホールに挿入して半田付けされるスルーホール用端子および基板表面に半田付けされる表面実装用端子とを備え、そのスルーホール用端子および表面実装用端子が基板側に半田付けされることによって、該基板上に設置されているため、P-N端子の一対のバスバーを樹脂モールド部材と共に基板上にスルーホール用端子および表面実装用端子を介して半田付けし、強固に固定設置することができる。従って、P-N端子にコネクタを差し込んで電源ケーブル側を直接接続する構成とした場合でも、基板上にP-N端子を安定的に保持し、コネクタを円滑に差し込むことができるとともに、メンテナンス時、P-N端子からコネクタを引き抜いて電源側ケーブルを取り外す際にも、その引き抜き力に対して十分な引っ張り強度を確保し、P-N端子の離脱を防止することができる。また、P-N端子を各々2箇所で半田付けすることにより、高電圧の入力に対して十分な電流密度を確保することができる。
 さらに、上記本発明の第1の態様のインバータ基板は、上記のインバータ基板において、前記スルーホール用端子は、前記各ピンから最遠の位置に設けられ、前記表面実装用端子は、前記各ピンに近い位置に設けられていることとしてもよい。
 このようにすることで、スルーホール用端子が、各ピンから最遠の位置に設けられ、表面実装用端子が、各ピンに近い位置に設けられているため、P-N端子のインバータ基板に対する半田付けを、一対のピンから十分に離れた最遠の位置と各ピンに近い位置との2箇所で行えることから、P-N端子に対して電源側ケーブルのコネクタを着脱する際にインバータ基板側にかかる応力を、可及的に広い範囲に分散することができる。従って、P-N端子をコネクタの差し込み時や引き抜き時にかかる力に十分に対抗し得る強度を確保して設置することができるだけでなく、基板にかかる応力を低減し、かつ姿勢の安定性を維持した状態で設置することができる。
 さらに、上記本発明の第1の態様のインバータ基板は、上述のいずれかのインバータ基板において、前記ピンと前記バスバーとは、前記ピンの一端面に設けられている前記バスバー側の穴に嵌合する突起および複数のプロジェクションを用いて抵抗溶接されていることとしてもよい。
 このようにすることで、ピンとバスバーとが、ピンの一端面に設けられているバスバー側の穴に嵌合する突起および複数のプロジェクションを用いて抵抗溶接されているため、各ピンの突起を各バスバー側の穴に嵌合して位置決めした状態で、該突起および複数のプロジェクションを用いて各ピンを各々のバスバーに対して抵抗溶接することにより、一体化することができる。従って、各ピンを各バスバーに対して直角に精度よく溶着し、P-N端子を高精度化してコネクタの着脱を容易化することができる。
 さらに、本発明の第2の態様にかかるインバータ一体型電動圧縮機は、ハウジングの外周に設けられたインバータ収容部に、インバータ装置が組み込まれて一体化されているインバータ一体型電動圧縮機において、前記インバータ装置は、上述のいずれかのインバータ基板を備えており、該インバータ基板上に設けられている前記P-N端子に対して、前記インバータ装置に直流電力を供給する電源側ケーブルの一端に設けられているコネクタを差し込むことにより、電源側ケーブルが接続可能とされている。
 上記本発明の第2の態様によれば、ハウジングに設けられたインバータ収容部にインバータ装置が組み込まれて一体化されているインバータ一体型電動圧縮機において、インバータ装置が、上述のいずれかのインバータ基板を備えており、該インバータ基板上に設けられているP-N端子に対して、インバータ装置に直流電力を供給する電源側ケーブルの一端に設けられているコネクタを差し込むことにより、電源側ケーブルが接続可能とされているため、インバータ基板上に固定設置されているP-N端子に、電源側ケーブルのコネクタを差し込むことによって、電源側ケーブルをインバータ基板に直接接続することができ、かかる構成とした場合でも、P-N端子が強固に固定設置されていることから、コネクタの抜き差しによる電源側ケーブルの接続、引き抜きを簡易に行うことができる。従って、メンテナンスの際における電源側ケーブルの着脱を容易化することができるとともに、インバータ装置の入力系統の構成の簡素化し、インバータ装置の低コスト化、小型軽量化を図ることができる。
 さらに、上記本発明の第2の態様のインバータ一体型電動圧縮機は、上記のインバータ一体型電動圧縮機において、前記インバータ基板には、ノイズ除去用のフィルタ回路を構成するコイルおよびコンデンサが実装され、該コイルおよびコンデンサのいずれかが前記インバータ基板上に設けられている前記P-N端子の設置位置に対応してその裏面側に設置されることにより、前記コネクタの差し込み時、前記インバータ基板にかかる応力を受ける構成とされていることとしてもよい。
 このようにすることで、インバータ基板に、ノイズ除去用のフィルタ回路を構成するコイルおよびコンデンサが実装され、そのいずれかがインバータ基板に設けられているP-N端子の設置位置に対応してその裏面側に設置されることにより、コネクタの差し込み時、インバータ基板にかかる応力を受ける構成とされているため、インバータ基板上のP-N端子に対して、電源側ケーブルの一端に設けられているコネクタを差し込んで、直接電源側ケーブルを接続する構成とした場合であっても、コネクタの差し込み時にインバータ基板にかかる応力を、インバータ基板を挟んでP-N端子の裏面側に配設されているコイルまたはコンデンサで受けることにより軽減することができる。従って、インバータ基板やその実装部品が、コネクタの差し込み時の過大な押し込み力による応力で損傷する事態を確実に解消することができる。また、直流電力の入力系統の構成を簡素化し、インバータ装置のコスト低減および小型軽量化を図ることができる。
 さらに、本発明の第2の態様のインバータ一体型電動圧縮機は、前記電源側ケーブルの一端に設けられている前記コネクタは、前記インバータ収容部を密閉する蓋体側の前記P-N端子と対応する位置に設けられ、前記蓋体の取付け時、前記P-N端子に差し込み可能な構成とされていることとしてもよい。
 このようにすることで、電源側ケーブルの一端に設けられているコネクタが、インバータ収容部を密閉する蓋体側のP-N端子と対応する位置に設けられ、該蓋体の取付け時、P-N端子に差し込み可能な構成とされているため、インバータ装置を収容設置した後、蓋体を取付けてインバータ収容部を密閉する際、同時に蓋体の内面に設置されているコネクタをP-N端子に差し込むことにより、電源側ケーブルをインバータ装置のP-N端子に接続することができる。従って、電源側ケーブルの接続構造をシンプル化し、その接続工程を簡略化することができるとともに、蓋体を多少過大な力で押し込んでコネクタを嵌合させたとしても、インバータ基板に過大に応力が加わることがなく、コネクタを確実にP-N端子に差し込むことができる。
 本発明のインバータ基板によると、P-N端子の一対のバスバーを樹脂モールド部材と共に基板上にスルーホール用端子および表面実装用端子を介して半田付けし、強固に固定設置することができるため、P-N端子にコネクタを差し込んで電源側ケーブルを直接接続する構成とした場合でも、基板上にP-N端子を安定的に保持し、コネクタを円滑に差し込むことができるとともに、メンテナンス時、P-N端子からコネクタを引き抜いて電源側ケーブルを取り外す際にも、引き抜き力に対して十分な引っ張り強度を確保し、P-N端子の離脱を防止することができる。また、P-N端子を各々2箇所で半田付けすることにより、高電圧の入力に対して十分な電流密度を確保することができる。
 また、本発明のインバータ一体型電動圧縮機によると、インバータ基板上に固定設置されているP-N端子に、電源側ケーブルのコネクタを差し込むことにより、電源側ケーブルをインバータ基板に直接接続することができ、かかる構成とした場合であっても、P-N端子が強固に固定設置されていることから、コネクタの抜き差しによる電源側ケーブルの接続、引き抜きを簡易に行うことができ、従って、メンテナンスの際における電源側ケーブルの着脱を容易化することができるとともに、インバータ装置の入力系統の構成の簡素化し、インバータ装置の低コスト化、小型軽量化を図ることができる。
本発明の一実施形態に係るインバータ基板を備えたインバータ一体型電動圧縮機の主要部の構成を示す斜視図である。 図1中のa-a縦断面相当図である。 図1に示すインバータ一体型電動圧縮機のインバータ収容部を密閉する蓋体の裏面側斜視図である。 図3に示す蓋体に接続される電源側ケーブル単体の斜視図である。 図1に示すインバータ基板の斜視図である。 図5に示すインバータ基板上に設けられているP-N端子単体の斜視図である。 図6に示すP-N端子の裏面側斜視図である。 図6に示すP-N端子の平面視図である。 図6に示すP-N端子の図8における右側面図である。 図6に示すP-N端子のピンとバスバーとの接合部分の断面図である。
 以下に、本発明にかかる一実施形態について、図1ないし図10を参照して説明する。
 図1には、本発明の一実施形態の係るインバータ基板を備えたインバータ一体型電動圧縮機の主要部の斜視図が示され、図2には、そのa-a縦断面相当図、図3には、インバータ収容部を密閉する蓋体の裏面側斜視図、図4には、電源ケーブル単体の斜視図、図5には、インバータ基板の斜視図が示されている。
 インバータ一体型電動圧縮機1は、外殻を構成する円筒状とされたハウジング2を備えている。ハウジング2は、電動モータ(図示省略)を内蔵するアルミダイカスト製のモータハウジング3と、圧縮機構(図示省略)を内蔵するアルミダイカスト製の圧縮機ハウジング(図示省略)とを一体に結合した構成とされている。
 インバータ一体型電動圧縮機1は、ハウジング2内に内蔵されている電動モータと圧縮機構とが回転軸を介して連結されており、電動モータが後述するインバータ装置7を介して回転駆動されることにより圧縮機構が駆動され、モータハウジング3の後端側側面に設けられている吸入ポート4を介してその内部に吸込まれた低圧の冷媒ガスを、電動モータの周囲を経て吸込み、圧縮機構で高圧に圧縮して圧縮機ハウジング内に吐出した後、外部に送出する構成とされている。
 モータハウジング3には、内周面側に軸線方向に沿って冷媒を流通させるための複数の冷媒流通路5が形成され、その外周部には、電動圧縮機1の据え付け用脚部6が複数箇所に設けられている。また、ハウジング2(モータハウジング3側)の外周部には、インバータ装置7を一体的に組み込むためのインバータ収容部8が一体に成形されている。このインバータ収容部8は、平面視が略正方形状とされており、底面が円筒状のモータハウジング3の壁面により形成された部分的に略フラットな台座面9を有する構成とされ、周囲にフランジ部10が立ち上げられた構成とされている。
 インバータ収容部8は、インバータ装置7が組み込まれた後、図3に示す蓋体11がフランジ部10に取り付けられることにより密閉される構成とされている。この蓋体11の内面側には、高電圧ケーブル(電源側ケーブル)12が設けられている。高電圧ケーブル12は、図5に示す如く、一端側にコネクタ13が設けられ、他端側に電源側のケーブルと接続されるコネクタ端子14が設けられたものであり、一端のコネクタ13が、後述するインバータ基板23上に設けられるP-N端子29と対応する位置において、蓋体11の内面にネジ15で固定設置され、他端のコネクタ端子14が、端子部分を蓋体11の外表面側に突出させた状態で外面側から複数のネジ16で固定設置されている。
 この高電圧ケーブル12は、電源側ケーブルの一部をなすものであり、電源側ケーブルを介して車両に搭載されている電源ユニットに接続され、その一端に設けられているコネクタ13が、インバータ装置7のインバータ基板23上に設けられているP-N端子29に接続されることにより、電源ユニットから供給される高電圧の直流電力をインバータ装置7に入力するためのものである。
 インバータ装置7は、公知の如く、車両に搭載されている電源ユニットから給電される高電圧の直流電力を、上位制御装置からの指令に基づいて所要周波数の三相交流電力に変換して電動モータに印加し、電動モータを回転駆動するものである。このインバータ装置7は、図1および図2に示されるように、ハウジング2の外周に設けられているインバータ収容部8に対して一体に組み込まれるようになっている。
 インバータ装置7は、公知のノイズ除去用フィルタ回路17を構成するコイル18およびコンデンサ19等の複数の高電圧系電装部品(単に電装部品とも云う。)と、直流電力を三相交流電力に変換する公知のスイッチング回路20を構成するIGBT等の発熱性パワートランジスタからなる複数(6個)の半導体スイッチング素子21と、フィルタ回路17およびスイッチング回路20を含むインバータ回路およびそれを制御するマイコン等を含む制御回路(以下、単にインバータ回路という。)22が実装されている矩形状のインバータ基板23と、上位制御装置からの通信線24と接続される通信回路25を備えたサブ基板26等とから構成されている。
 インバータ装置7は、公知のものでよいが、ここでは、インバータ基板23として、フィルタ回路17を構成するコイル18、コンデンサ19等の電装部品を、そのリード端子を半田付けすることによって実装し、また、スイッチング回路20を構成するIGBT等の発熱性パワートランジスタからなる複数(6個)の半導体スイッチング素子21(素子本体は図示省略され、そのリード端子のみが図示されている。)を、そのリード端子(リード端子は、IGBTが1個当たり3本有することから、合計18本となる。)を半田付けすることによって実装したものが用いられている。
 つまり、インバータ基板23は、フィルタ回路17を構成するコイル18およびコンデンサ19のリード端子、並びにスイッチング回路20を構成する複数の半導体スイッチング素子21のリード端子を、それぞれインバータ基板23のスルーホールに貫通し、それを基板上のパターンに半田付けして実装することにより、インバータ基板23上にフィルタ回路17およびスイッチング回路20を構成したものとされている。このインバータ基板23は、インバータ収容部8内の四隅に設けられているボス部27にネジ28を介して締め付け固定されるようになっている。
 フィルタ回路17を構成する複数の高電圧系電装部品であるコイル18およびコンデンサ19は、図5に示されるように、ケースに収容された構成とされており、上面がフラットな平面形とされたものである。このケース上面がフラットな平面形とされたコイル18およびコンデンサ19は、ケース上面が矩形状とされたインバータ基板23の下面と接するように、その一辺に沿って並設されるように実装されている。そして、コンデンサ19の上面で支持されているインバータ基板23の対応する部位の上面側に、高電圧ケーブル12のコネクタ13が接続されることにより、電源からの直流電力をインバータ装置7に入力するP-N端子29が上方に向けて立設された構成とされている。
 また、複数(6個)の半導体スイッチング素子21は、フィルタ回路17を構成するコイル18およびコンデンサ19が実装されている一辺とは対向する他辺に沿うように実装されており、その設置部材を介して発熱した熱がインバータ収容部8を構成しているモータハウジング3の壁面に放熱され、冷却される構成とされている。この半導体スイッチング素子21と、コイル18およびコンデンサ19との設置部位間のスペースに、図2に示されるように、通信回路25を備えたサブ基板26が台座面9に設けられている複数のボス部上に固定設置されている。サブ基板26とその上方に設置されたインバータ基板23とは、基板間接続端子を介して電気的に接続されている。
 インバータ基板23上には、フィルタ回路17、スイッチング回路20、インバータ回路22以外に、電源側ケーブル12からの直流電力をノイズ除去用のフィルタ回路17に入力するP-N端子29と、インバータ装置7によって直流電力から返還された所要周波数の三相交流電力を電動モータ側に出力するUVW端子30とが設けられている。UVW端子30は、インバータ収容部8内にモータハウジング3を貫通して設置されているガラス密封端子31に接続され、ガラス密封端子31を介してモータハウジング3内に内蔵されている電動モータに三相交流電力を印加するものである。
 P-N端子29には、蓋体11側に設けられているコネクタ13が差し込まれることにより、電源側ケーブル12が接続されるが、コネクタ13を差し込む際には一定以上の押し込み力が必要であり、その応力がP-N端子29およびインバータ基板23にかかることになる。また、いったん差し込んだコネクタ13を引き抜いて電源側ケーブル12を取り外すには、相応の引っ張り力が必要であり、その応力がP-N端子29およびインバータ基板23にかかることになる。
 本実施形態においては、このインバータ基板23にかかる応力を受けるため、P-N端子29が設置されている位置に対応してインバータ基板23の裏面側に、高電圧系電装部品の1つであるコンデンサ19(またはコイル18)を配設することにより、その対向面である上面でインバータ基板23にかかる上記の応力を受ける構成としている。コンデンサ19は、インバータ基板23に電気的、機械的に接続され、接着剤を介して固定された状態でインバータ収容部8の底面に設置されているため、上記応力を十分支持できる構成とされている。
 一方、コネクタ13を引き抜く際の引っ張り力に対しては、P-N端子29を以下のように設置することにより、引っ張り強度を確保するとともに、インバータ基板23にかかる応力を分散できるようにしている。
 P-N端子29自体は、図6ないし図10に示されるように、一対のピン32,33の下端を所定長のバスバー34,35の一端側に直交した状態に溶着し、バスバー34,35の他端側を互いに反対方向に向けて平行に置き、一対のピン32,33間を規定寸法として樹脂モールド部材36により一体に樹脂モールド成形したものとされている。
 一対のピン32,33は、下端に突起37と複数のプロジェクション38を備え、その突起37をバスバー34,35側に設けられている穴39に嵌合して位置決めし、該突起37と複数のプロジェクション38を用いて各バスバー34,35に抵抗溶接(プロジェクション溶接)することにより、一体化された構成とされている。また、一対のバスバー34,35には、その下面のピン32,33から最も遠い他端位置(最遠位置)から下方に延出され、インバータ基板23のスルーホール23Aに挿入されて半田付けされるスルーホール用端子40と、各ピン32,33に近い位置に設けられ、インバータ基板23の表面に半田付けされる表面実装用端子41とが設けられている。
 上記P-N端子29は、インバータ基板23上において、各バスバー34,35に設けられている一対のスルーホール用端子40を、インバータ基板23のスルーホール23Aに挿入して半田付けするとともに、一対の表面実装用端子41を、インバータ基板23の表面に半田付けすることにより、上記位置に固定設置されるようになっている。なお、P-N端子29は、スルーホール用端子40および表面実装用端子41による半田付けだけでなく、樹脂モールド部材36の下面を接着剤で基板表面に接着し、補強してもよい。
 以上のように、インバータ回路22が実装されているインバータ基板23上に設置されたP-N端子29に対し、インバータ基板23を挟んでその反対側位置に、インバータ装置7のフィルタ回路17を構成する電装部品の1つであるコンデンサ19を配設することにより、P-N端子29に対してコネクタ13を差し込む際に、インバータ基板23に過大な押し付け力による応力が付加されたとしても、その応力を既存の電装部品を利用して受けることが可能な構成としている。このため、P-N端子29にコネクタ13を差し込む際の押し込み力による応力でインバータ基板23やその電装部品が損傷するリスクを確実に解消することができる。
 また、P-N端子29をインバータ基板23上に、各ピン32,33から最遠の位置に設けられたスルーホール用端子40と、各ピン32,33に近い位置に設けられた表面実装用端子41とを半田付けすることにより、強固に固定設置することができるため、P-N端子29にコネクタ13を差し込んで電源側ケーブル12を直接接続する構成とした場合でも、インバータ基板23上にP-N端子29を安定的に保持し、コネクタ13を円滑に差し込むことができるだけでなく、メンテナンス時に、P-N端子29からコネクタ13を引き抜いて電源側ケーブル12を取り外す際にも、その引き抜き力に対して十分な引っ張り強度を確保し、P-N端子29の離脱を防止することができる。
 斯くして、本実施形態によれば、インバータ基板23上に固定設置されるP-N端子29が、一対のピン32,33と、該ピン32,33の一端にそれぞれ直交して接合された所定長のバスバー34,35と、該一対のピン32,33およびバスバー34,35を一体に成形した樹脂モールド部材36と、一対のバスバー34,35に設けられ、インバータ基板23のスルーホール23Aに挿入して半田付けされるスルーホール用端子40およびインバータ基板23の基板表面に半田付けされる表面実装用端子41とを備えた構成とされ、そのスルーホール用端子40および表面実装用端子41がインバータ基板23側に半田付けされることによって、該基板23上に固定設置される構成とされている。
 このため、P-N端子29の一対のバスバー34,35を樹脂モールド部材36と共にインバータ基板23上にスルーホール用端子40および表面実装用端子41を介して半田付けし、強固に固定設置することができる。従って、P-N端子29にコネクタ13を差し込んで電源側ケーブル12を直接接続する構成とした場合であっても、インバータ基板23上にP-N端子29を安定的に保持し、コネクタ13を円滑に差し込んで電源側ケーブル12を接続することができる。
 また、メンテナンスのため、P-N端子29からコネクタ13を引き抜いて電源側ケーブル12を取り外す際にも、その引き抜き力に対する十分な引っ張り強度を確保し、インバータ基板23からのP-N端子29の離脱を防止することができる。また、P-N端子29を各々2箇所で半田付けすることにより、高電圧の入力に対して十分な電流密度を確保することができる。
 また、スルーホール用端子40が、各ピン32,33から最遠の位置に設けられ、表面実装用端子41が、各ピン32,33に近い位置に設けられているため、P-N端子29のインバータ基板23に対する半田付けを、一対のピン32,33から十分に離れた最遠の位置と、各ピン32,33に近い位置との2箇所で行えることから、P-N端子29に対して電源側ケーブル12のコネクタ13を着脱する際にインバータ基板23側にかかる応力を可及的に広い範囲に分散することができる。従って、P-N端子29をコネクタ13の差し込み時や引き抜き時にかかる力に十分に対抗し得る強度を確保して設置することができるだけでなく、インバータ基板23にかかる応力を低減し、かつ姿勢の安定性を維持した状態で設置することができる。
 また、P-N端子29のピン32,33とバスバー34,35とが、ピン32,33の一端面に設けられているバスバー34,35側の穴39に嵌合する突起37および複数のプロジェクション38を用いて抵抗溶接される構成とされているため、各ピン32,33の突起37を各バスバー34,35側の穴37に嵌合して位置決めした状態で、該突起37および複数のプロジェクション38を用いて各ピンを各々のバスバーに対して抵抗溶接することにより、一体化することができる。従って、各ピン32,33を各々のバスバー34,35に対して直角に精度よく溶着し、P-N端子29を高精度化してコネクタ13の着脱を容易化することができる。
 さらに、本実施形態では、ハウジング2に設けられたインバータ収容部8にインバータ装置7が組み込まれて一体化されているインバータ一体型電動圧縮機1において、インバータ装置7が、上述のインバータ基板23を備え、そのインバータ基板23上に設けられているP-N端子29に対して、インバータ装置7に直流電力を供給する電源側ケーブル12の一端に設けられているコネクタ13を差し込むことにより、電源側ケーブル12が接続可能な構成とされている。
 このため、インバータ基板23上に固定設置されているP-N端子29に、電源側ケーブル12のコネクタ13を差し込むことによって、電源側ケーブル12をインバータ基板23に直接接続することができ、かかる構成とした場合であっても、P-N端子29が強固に固定設置されていることから、コネクタ13の抜き差しによる電源側ケーブル12の接続、引き抜きを簡易に行うことができる。従って、メンテナンスの際における電源側ケーブル12の着脱を容易化することができるとともに、インバータ装置7の入力系統の構成の簡素化し、インバータ装置7の低コスト化、小型軽量化を図ることができる。
 また、上記インバータ基板23に、ノイズ除去用のフィルタ回路17を構成するコイル18およびコンデンサ19が実装され、そのいずれかがインバータ基板23に設けられているP-N端子29の設置位置に対応してその裏面側に設置されることにより、コネクタ13の差し込み時に、インバータ基板23にかかる応力を受ける構成とされている。このため、インバータ基板23上のP-N端子29に対して、コネクタ13を差し込んで直接電源側ケーブル12を接続する構成とした場合でも、コネクタ13の差し込み時にインバータ基板23にかかる応力を、インバータ基板23を裏面側に配設されているコイル18またはコンデンサ19で受けることにより軽減することができる。
 これによって、インバータ基板23やその実装部品が、コネクタ13の差し込み時の過大な押し込み力による応力で損傷する事態を確実に解消することができるとともに、直流電力の入力系統の構成を簡素化し、インバータ装置7のコスト低減および小型軽量化を図ることができる。
 さらに、電源側ケーブル12の一端に設けられているコネクタ13が、インバータ収容部8を密閉する蓋体11側のP-N端子29と対応する位置に設けられ、該蓋体11の取付け時、P-N端子29に差し込み可能な構成とされており、インバータ装置7を収容設置後、蓋体11を取付けてインバータ収容部8を密閉する際、同時に蓋体11の内面に設置されているコネクタ13をP-N端子29に差し込むことにより、電源側ケーブル12をインバータ装置7のP-N端子29に接続することができる。
 従って、電源側ケーブル12の接続構造をシンプル化し、その接続工程を簡略化することができるとともに、蓋体11を多少過大な力で押し込んでコネクタ13を嵌合させたとしても、インバータ基板23に過大に応力が加わることがなく、コネクタ13を確実にP-N端子に差し込むことができる。
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記実施形態においては、インバータ基板23の上面に設置されるP-N端子29をコンデンサ19の上部位置に設置した構成としているが、コイル18の上部位置に設置した構成としてもよい。また、P-N端子29を一対のピン32,33を接合したバスバー34,35を樹脂モールド部材36でクランク状に成形した例について説明したが、必ずしもかかる形状に限定されるものではなく、他の形状に一体成形して構成としてもよい。
1 インバータ一体型電動圧縮機
2 ハウジング
3 モータハウジング
7 インバータ装置
8 インバータ収容部
11 蓋体
12 高電圧ケーブル(電源側ケーブル)
13 コネクタ
17 フィルタ回路
18 コイル
19 コンデンサ
22 インバータ回路
23 インバータ基板
23A スルーホール
29 P-N端子
32,33 ピン
34,35 バスバー
36 樹脂モールド部材
37 突起
38 プロジェクション
39 穴
40 スルーホール用端子
41 表面実装用端子

Claims (6)

  1.  インバータ回路が実装されている基板上に、高電圧の直流電力を入力するP-N端子が設置され、該P-N端子に直接電源ケーブル側のコネクタが着脱自在に接続される構成とされているインバータ基板であって、
     前記P-N端子は、一対のピンと、該ピンの一端にそれぞれ直交して接合された所定長のバスバーと、該一対のピンおよびバスバーを一体に成形した樹脂モールド部材と、前記一対のバスバーに設けられ、前記基板のスルーホールに挿入して半田付けされるスルーホール用端子および前記基板表面に半田付けされる表面実装用端子と、を備え、
     前記スルーホール用端子および前記表面実装用端子が前記基板側に半田付けされることにより、該基板上に設置されているインバータ基板。
  2.  前記スルーホール用端子は、前記各ピンから最遠の位置に設けられ、前記表面実装用端子は、前記各ピンに近い位置に設けられている請求項1に記載のインバータ基板。
  3.  前記ピンと前記バスバーとは、前記ピンの一端面に設けられている前記バスバー側の穴に嵌合する突起および複数のプロジェクションを用いて抵抗溶接されている請求項1または2に記載のインバータ基板。
  4.  ハウジングの外周に設けられたインバータ収容部に、インバータ装置が組み込まれて一体化されているインバータ一体型電動圧縮機において、
     前記インバータ装置は、請求項1ないし3のいずれかに記載のインバータ基板を備えており、該インバータ基板上に設けられている前記P-N端子に対して、前記インバータ装置に直流電力を供給する電源側ケーブルの一端に設けられているコネクタを差し込むことにより、電源側ケーブルが接続可能とされているインバータ一体型電動圧縮機。
  5.  前記インバータ基板には、ノイズ除去用のフィルタ回路を構成するコイルおよびコンデンサが実装され、該コイルおよびコンデンサのいずれかが前記インバータ基板上に設けられている前記P-N端子の設置位置に対応してその裏面側に設置されることにより、前記コネクタの差し込み時、前記インバータ基板にかかる応力を受ける構成とされている請求項4に記載のインバータ一体型電動圧縮機。
  6.  前記電源側ケーブルの一端に設けられている前記コネクタは、前記インバータ収容部を密閉する蓋体側の前記P-N端子と対応する位置に設けられ、前記蓋体の取付け時、前記P-N端子に差し込み可能な構成とされている請求項4または5に記載のインバータ一体型電動圧縮機。
PCT/JP2014/052857 2013-03-07 2014-02-07 インバータ基板およびそれを用いたインバータ一体型電動圧縮機 WO2014136524A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112014001150.9T DE112014001150B4 (de) 2013-03-07 2014-02-07 Wechselrichtersubstrat und Wechselrichter enthaltender elektrischer Kompressor, der dieses verwendet
CN201480006804.0A CN105009438B (zh) 2013-03-07 2014-02-07 逆变器基板以及使用该逆变器基板的逆变器一体式电动压缩机
US14/765,267 US10122237B2 (en) 2013-03-07 2014-02-07 Inverter circuit board and inverter-containing electric compressor using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-045360 2013-03-07
JP2013045360A JP6153745B2 (ja) 2013-03-07 2013-03-07 インバータ基板およびそれを用いたインバータ一体型電動圧縮機

Publications (1)

Publication Number Publication Date
WO2014136524A1 true WO2014136524A1 (ja) 2014-09-12

Family

ID=51491049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052857 WO2014136524A1 (ja) 2013-03-07 2014-02-07 インバータ基板およびそれを用いたインバータ一体型電動圧縮機

Country Status (5)

Country Link
US (1) US10122237B2 (ja)
JP (1) JP6153745B2 (ja)
CN (1) CN105009438B (ja)
DE (1) DE112014001150B4 (ja)
WO (1) WO2014136524A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5951067B1 (ja) * 2015-04-10 2016-07-13 三菱電機株式会社 電動パワーステアリング装置
JP6767761B2 (ja) 2016-03-24 2020-10-14 サンデン・オートモーティブコンポーネント株式会社 インバータ一体型電動圧縮機
WO2018062006A1 (ja) * 2016-09-30 2018-04-05 日本電産株式会社 モータ、および電動パワーステアリング装置
FR3065838A1 (fr) * 2017-04-26 2018-11-02 Valeo Japan Co., Ltd. Module de commande pour compresseur electrique
JP7135967B2 (ja) * 2019-03-27 2022-09-13 株式会社豊田自動織機 電動圧縮機
US10780849B1 (en) * 2019-08-07 2020-09-22 GM Global Technology Operations LLC Electric drive units with integrated power electronics for vehicle powertrains
JP7395329B2 (ja) * 2019-11-19 2023-12-11 日立Astemo株式会社 電力変換装置
US11659696B2 (en) * 2019-11-21 2023-05-23 Zoox, Inc. Vehicle computer cooling architecture
US10888036B1 (en) * 2019-12-18 2021-01-05 Toyota Motor Engineering & Manufacturing North America, Inc. Thermal management assemblies for electronic assemblies circumferentially mounted on a motor
DE112021000816T5 (de) * 2020-01-31 2022-11-24 Hanon Systems Elektrischer kompressor, invertermontagevorrichtung und inverterherstellungsverfahren
JP7342766B2 (ja) * 2020-03-31 2023-09-12 株式会社豊田自動織機 電動圧縮機
RU2743827C1 (ru) * 2020-07-20 2021-02-26 Общество с ограниченной ответственностью "Горизонт" Силовой преобразовательный модуль
US11230288B1 (en) 2020-09-28 2022-01-25 GM Global Technology Operations LLC Optimized regenerative braking for hybrid electric vehicle (HEV) powertrain configurations
JP7488988B2 (ja) 2021-07-27 2024-05-23 株式会社豊田自動織機 電動圧縮機

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613539A (ja) * 1992-06-26 1994-01-21 Fuji Electric Co Ltd 半導体装置
JPH11135965A (ja) * 1997-10-30 1999-05-21 Nippon Seiki Co Ltd コネクタ付プリント基板の保持構造
JP2000261160A (ja) * 1999-03-12 2000-09-22 Harness Syst Tech Res Ltd 分岐接続箱
JP2012209414A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd 電子基板およびこれを搭載したインバータ一体型電動圧縮機

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927563A (ja) * 1982-08-07 1984-02-14 Mitsubishi Electric Corp 半導体装置
US6954368B1 (en) * 1996-07-22 2005-10-11 HYDRO-QUéBEC Low stray interconnection inductance power converting molecule for converting a DC voltage into an AC voltage, and a method therefor
DE10057140A1 (de) 2000-11-17 2002-06-06 Siemens Ag Hochstromverbindung
JP4162523B2 (ja) * 2002-06-03 2008-10-08 シャープ株式会社 インバータ
JP2004228126A (ja) * 2003-01-20 2004-08-12 Denso Corp 電子回路用ハウジング
JP3852698B2 (ja) 2003-04-10 2006-12-06 富士電機デバイステクノロジー株式会社 半導体装置の製造方法
JP4718936B2 (ja) * 2005-04-18 2011-07-06 三菱重工業株式会社 インバータ内蔵圧縮機
EP1909377B1 (en) 2006-01-16 2017-12-06 Mitsubishi Electric Corporation Drive circuit of motor and outdoor unit of air conditioner
US8007255B2 (en) * 2006-11-22 2011-08-30 Mitsubishi Heavy Industries, Ltd. Inverter-integrated electric compressor with inverter storage box arrangement
JP4719134B2 (ja) * 2006-11-22 2011-07-06 三菱重工業株式会社 インバータ一体型電動圧縮機
JP5144945B2 (ja) * 2007-03-06 2013-02-13 三菱重工業株式会社 一体型電動圧縮機
JP4986657B2 (ja) * 2007-03-09 2012-07-25 パナソニック株式会社 ブラシレスモータ
JP5108421B2 (ja) 2007-09-05 2012-12-26 株式会社ケーヒン 分割モジュール端子を有するインバータ装置
US20090096301A1 (en) * 2007-10-16 2009-04-16 Denso Corporation Motor drive circuit mounting structure and electric compressor
JP5107114B2 (ja) * 2008-03-28 2012-12-26 三菱重工業株式会社 インバータ一体型電動圧縮機
JP5107133B2 (ja) * 2008-05-14 2012-12-26 三菱重工業株式会社 インバータ一体型電動圧縮機
JP5427429B2 (ja) * 2009-02-10 2014-02-26 三菱重工業株式会社 インバータ装置およびインバータ一体型電動圧縮機
JP5839769B2 (ja) * 2009-03-06 2016-01-06 三菱重工業株式会社 インバータモジュールおよびインバータ一体型電動圧縮機
CN101705847A (zh) * 2009-11-03 2010-05-12 顾绍军 自循环温度势能发电装置
JP5450042B2 (ja) * 2009-12-25 2014-03-26 日立オートモティブシステムズ株式会社 アクチュエータの制御装置
JP4832581B2 (ja) * 2010-01-29 2011-12-07 トヨタ自動車株式会社 回転電機用端子台
JP4898931B2 (ja) * 2010-02-10 2012-03-21 三菱重工業株式会社 インバータ一体型電動圧縮機
JP5178756B2 (ja) 2010-03-09 2013-04-10 三菱電機株式会社 ピン端子の接合方法及び装置、並びにピン端子付きパワー基板
JP5567381B2 (ja) * 2010-04-27 2014-08-06 日立オートモティブシステムズ株式会社 電力変換装置
JP5067679B2 (ja) * 2010-05-21 2012-11-07 株式会社デンソー 半導体モジュール、および、それを用いた駆動装置
JP5671692B2 (ja) * 2010-09-24 2015-02-18 パナソニックIpマネジメント株式会社 インバータ装置一体型電動圧縮機
JP5594836B2 (ja) * 2010-11-24 2014-09-24 株式会社ヴァレオジャパン 電動型圧縮機
JP5338804B2 (ja) * 2010-12-28 2013-11-13 株式会社デンソー 駆動装置、および、これを用いた電動パワーステアリング装置
JP5382036B2 (ja) 2011-03-16 2014-01-08 株式会社豊田自動織機 電動圧縮機
JP2012202218A (ja) 2011-03-23 2012-10-22 Mitsubishi Heavy Ind Ltd 電動圧縮機
CN202713185U (zh) * 2012-08-30 2013-01-30 重庆胤辰焊接设备有限责任公司 逆变电焊机用igbt全桥逆变模块
JP6021623B2 (ja) * 2012-12-11 2016-11-09 三菱重工業株式会社 インバータ一体型電動圧縮機
JP6096003B2 (ja) * 2013-02-21 2017-03-15 三菱重工オートモーティブサーマルシステムズ株式会社 インバータ一体型電動圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613539A (ja) * 1992-06-26 1994-01-21 Fuji Electric Co Ltd 半導体装置
JPH11135965A (ja) * 1997-10-30 1999-05-21 Nippon Seiki Co Ltd コネクタ付プリント基板の保持構造
JP2000261160A (ja) * 1999-03-12 2000-09-22 Harness Syst Tech Res Ltd 分岐接続箱
JP2012209414A (ja) * 2011-03-29 2012-10-25 Mitsubishi Heavy Ind Ltd 電子基板およびこれを搭載したインバータ一体型電動圧縮機

Also Published As

Publication number Publication date
US20150372559A1 (en) 2015-12-24
CN105009438B (zh) 2017-08-25
JP6153745B2 (ja) 2017-06-28
JP2014176160A (ja) 2014-09-22
DE112014001150T5 (de) 2015-11-19
DE112014001150B4 (de) 2024-02-01
US10122237B2 (en) 2018-11-06
CN105009438A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
JP6153745B2 (ja) インバータ基板およびそれを用いたインバータ一体型電動圧縮機
JP5107114B2 (ja) インバータ一体型電動圧縮機
JP6037809B2 (ja) インバータ一体型電動圧縮機
US10008895B2 (en) Inverter-integrated electric compressor
JP6195453B2 (ja) インバータ一体型電動圧縮機
JP6444605B2 (ja) インバータ一体型電動圧縮機
JP6096003B2 (ja) インバータ一体型電動圧縮機
JP6029484B2 (ja) インバータ一体型電動圧縮機
JP6021623B2 (ja) インバータ一体型電動圧縮機
WO2014136571A1 (ja) インバータ一体型電動圧縮機
JP6364704B2 (ja) 車載用電力変換装置
JP2012200070A (ja) 電動アクチュエータの駆動制御装置
JP5683290B2 (ja) 基板間接続端子およびそれを用いたインバータ、電動圧縮機
JP6544201B2 (ja) 車載用の空調装置
WO2017221854A1 (ja) 電装部品の設置構造及びそれを備えたインバータ一体型電動圧縮機
JP6591382B2 (ja) 電力変換装置
JP2004297919A (ja) 交流/直流変換装置及び回路基板の実装方法
JP2015107020A (ja) 電力変換装置、及びその固定構造
JPWO2016181516A1 (ja) 半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760573

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765267

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120140011509

Country of ref document: DE

Ref document number: 112014001150

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760573

Country of ref document: EP

Kind code of ref document: A1