WO2014136357A1 - ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池 - Google Patents

ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池 Download PDF

Info

Publication number
WO2014136357A1
WO2014136357A1 PCT/JP2013/084043 JP2013084043W WO2014136357A1 WO 2014136357 A1 WO2014136357 A1 WO 2014136357A1 JP 2013084043 W JP2013084043 W JP 2013084043W WO 2014136357 A1 WO2014136357 A1 WO 2014136357A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
sodium
molten salt
active material
electrode active
Prior art date
Application number
PCT/JP2013/084043
Other languages
English (en)
French (fr)
Inventor
篤史 福永
稲澤 信二
新田 耕司
将一郎 酒井
瑛子 井谷
昂真 沼田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020157023898A priority Critical patent/KR20150128683A/ko
Priority to US14/773,665 priority patent/US20160049694A1/en
Priority to CN201380074341.7A priority patent/CN105027348B/zh
Publication of WO2014136357A1 publication Critical patent/WO2014136357A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sodium molten salt battery including a molten salt having sodium ion conductivity as an electrolyte, and more particularly to improvement of a positive electrode active material of a sodium molten salt battery.
  • lithium ion secondary batteries are promising in that they are lightweight and have a high electromotive force.
  • the lithium ion secondary battery uses an organic solvent as an electrolyte component, it has a drawback of low heat resistance.
  • the price of lithium resources is also increasing.
  • molten salt battery using a flame retardant molten salt as an electrolyte is underway.
  • Molten salt is excellent in thermal stability, is relatively easy to ensure safety, and is suitable for continuous use in a high temperature range.
  • the molten salt battery can use the molten salt which uses cheap alkali metals (especially sodium) other than lithium as a cation as an electrolyte, manufacturing cost is also cheap.
  • molten salt battery is a general term for a battery containing a molten salt (molten salt) as an electrolyte.
  • the molten salt is a liquid having ionic conductivity (ionic liquid).
  • a sodium-containing metal oxide such as sodium chromite is used as a positive electrode active material.
  • Sodium chromite is obtained, for example, by mixing chromium oxide and sodium carbonate and heating them at a predetermined temperature and time.
  • the positive electrode can be formed using, for example, a mixture containing a positive electrode active material, a conductive carbon material, and a binder.
  • a side reaction that does not contribute to the electrode reaction may occur.
  • the side reaction include a hydrolysis reaction of a molten salt.
  • gas may be generated, or the reaction product may become a resistance component and inhibit a smooth electrode reaction. Therefore, various studies for reducing the amount of water in the battery have been made from the viewpoint of suppressing the side reaction of the molten salt (see, for example, Patent Document 1).
  • One aspect of the present invention relates to a positive electrode active material for a sodium molten salt battery, including a sodium-containing metal oxide that can electrochemically occlude and release sodium ions, and a mass ratio of sodium carbonate of 500 ppm or less.
  • the residual amount of sodium carbonate contained in the positive electrode active material is reduced, side reactions that do not contribute to the charge / discharge reaction derived from sodium carbonate can be suppressed. Accordingly, a sodium molten salt battery having excellent battery characteristics and reliability can be provided.
  • FIG. 2 is a sectional view taken along line II-II in FIG. It is a front view of the negative electrode which concerns on one Embodiment of this invention.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is the perspective view which notched a part of battery case of the molten salt battery which concerns on one Embodiment of this invention.
  • FIG. 6 is a longitudinal sectional view schematically showing a section taken along line VI-VI in FIG. 5.
  • One aspect of the present invention relates to a positive electrode active material for a sodium molten salt battery, including a sodium-containing metal oxide capable of electrochemically storing and releasing sodium ions, wherein the mass ratio of sodium carbonate is 500 ppm or less. According to such a positive electrode active material for a sodium molten salt battery, side reactions are suppressed even in an environment unique to the molten salt battery, and the battery characteristics and reliability of the sodium molten salt battery are improved.
  • the sodium-containing metal oxide has the general formula: Na 1-x M 1 x Cr 1-y M 2 y O 2 (0 ⁇ x ⁇ 2/3, 0 ⁇ y ⁇ 0.7, M 1 and M 2 Are each independently a metal element other than Cr and Na. Since the positive electrode active material containing such a sodium-containing metal oxide is low in cost and excellent in reversibility of structural change accompanying charge and discharge, it is possible to obtain a sodium molten salt battery particularly excellent in cycle characteristics. it can.
  • Another aspect of the present invention includes a positive electrode current collector and a positive electrode active material layer attached to the positive electrode current collector, and the positive electrode active material layer includes the positive electrode active material and a conductive carbon material.
  • the present invention relates to a positive electrode for a sodium molten salt battery. According to such a positive electrode, a side reaction between sodium carbonate and the conductive carbon material is sufficiently suppressed, so that a sodium molten salt battery excellent in cycle characteristics and reliability can be obtained.
  • the mass ratio of sodium carbonate contained in the positive electrode for a sodium molten salt battery is preferably 500 ppm or less. By limiting the mass ratio of sodium carbonate contained in the positive electrode to 500 ppm or less, it becomes easy to obtain the effect of suppressing side reactions.
  • the mass ratio of water contained in the positive electrode is preferably 200 ppm or less.
  • Still another aspect of the present invention includes a positive electrode, a negative electrode, a separator and an electrolyte interposed between the positive electrode and the negative electrode, wherein the electrolyte is a molten salt containing at least sodium ions, and the positive electrode is the sodium molten salt battery described above.
  • the present invention relates to a sodium molten salt battery, which is a positive electrode for use.
  • the design capacity of the sodium molten salt battery is 10 Ah or more. Since the remaining amount of sodium carbonate is sufficiently reduced, the positive electrode active material according to the present invention has excellent cycle characteristics and reliability even in a relatively large sodium molten salt battery that is susceptible to gas generation. It is done.
  • One aspect of the present invention includes a positive electrode active material used in a sodium molten salt battery using sodium as an ion-conducting carrier.
  • the positive electrode active material includes a sodium-containing metal oxide that can occlude and release sodium ions electrochemically.
  • the sodium-containing metal oxide can be obtained, for example, by mixing sodium carbonate and a metal oxide and heating them under predetermined conditions. At this time, the sodium-containing metal oxide as a product usually contains a considerable amount of raw material sodium carbonate. However, when the positive electrode potential reaches about 3 V by charging, carbon dioxide gas is generated due to a side reaction between sodium carbonate remaining in the positive electrode active material and a conductive carbon material contained in the positive electrode as a conductive material. In addition, side reactions tend to be manifested in an environment around 90 ° C., which is a typical use temperature of a sodium molten salt battery. As the residual amount of sodium carbonate contained in the positive electrode active material is excessive, the influence of side reaction increases, leading to deterioration of battery characteristics and reliability.
  • the residual amount of sodium carbonate in the positive electrode active material for a sodium molten salt battery is reduced to 500 ppm or less.
  • a molten salt battery using such a positive electrode active material exhibits excellent battery characteristics and reliability even in a use environment unique to a sodium molten salt battery in which side reactions tend to manifest.
  • the mass ratio of sodium carbonate in the positive electrode active material is more preferably reduced to 100 ppm or less from the viewpoint of further improving battery characteristics and reliability.
  • the mass ratio of sodium carbonate remaining in the positive electrode active material can be determined, for example, by ion chromatography. Specifically, ion exchange water and a positive electrode active material are mixed, and sodium carbonate contained in the positive electrode active material is dissolved in the ion exchange water to obtain a measurement sample. Thereafter, the mass ratio of sodium carbonate remaining in the positive electrode active material can be determined by measuring the carbonate ion (CO 3 2 ⁇ ) concentration in the measurement sample by ion chromatography.
  • the sodium-containing metal oxide preferably has a layered structure having a layer interval in which sodium ions can be inserted and removed.
  • a sodium-containing metal oxide for example, sodium chromite (NaCrO 2 ) can be used.
  • sodium chromite a part of Cr or Na may be substituted with other elements.
  • x preferably satisfies 0 ⁇ x ⁇ 0.5
  • M 1 and M 2 are, for example, at least one selected from the group consisting of Ni, Co, Mn, Fe and Al It is preferable that M 1 is an element occupying Na site and M 2 is an element occupying Cr site.
  • sodium manganate Na 2/3 Fe 1/3 Mn 2/3 O 2 or the like
  • Fe, Mn or Na of sodium iron manganate may be substituted with other elements.
  • the general formula: Na 2 / 3-x M 3 x Fe 1 / 3-y Mn 2 / 3-z M 4 y + z O 2 ( ⁇ 1 / 3 ⁇ x ⁇ 2/3, 0 ⁇ y ⁇ 1 / 3, 0 ⁇ z ⁇ 1/3, M 3 and M 4 are each independently a compound represented by a metal element other than Fe, Mn and Na.
  • x preferably satisfies 0 ⁇ x ⁇ 1/3.
  • M 3 is preferably at least one selected from the group consisting of Ni, Co, Mn, Fe and Al, for example, and M 4 is at least one selected from the group consisting of Ni, Co and Al. Preferably there is. M 3 is an Na site, and M 4 is an element occupying an Fe or Mn site.
  • Na 2 FePO 4 F, NaVPO 4 F, NaCoPO 4, NaNiPO 4, also NaMnPO 4, NaMn 1.5 Ni 0.5 O 4, NaMn 0.5 Ni 0.5 O 2 are used.
  • a sodium containing metal oxide may be used individually by 1 type, and may be used in combination of multiple types.
  • the average particle size of the positive electrode active material particles is preferably 2 ⁇ m or more and 20 ⁇ m or less. Such a positive electrode active material has high reactivity of the raw material, and it is easier to reduce the amount of remaining sodium carbonate.
  • the average particle diameter D50 is, for example, a value measured by a laser diffraction scattering method using a laser diffraction particle size distribution measuring apparatus, and the same applies to the following.
  • the manufacturing method of the positive electrode active material for sodium molten salt batteries is demonstrated.
  • Sodium carbonate and a metal compound (oxide, hydroxide, etc.) containing a required metal are mixed.
  • the amount of the metal compound in the raw material mixture of sodium carbonate and the metal compound may be 0 to 3 mol% larger than the stoichiometric amount.
  • a positive electrode active material containing a sodium-containing metal oxide can be obtained by heating the raw material mixture under a predetermined condition in an inert atmosphere such as nitrogen or argon.
  • the pressure of the inert atmosphere is preferably 8.1 ⁇ 10 4 Pa to 1.2 ⁇ 10 5 Pa (0.8 atm to 1.2 atm), 9.1 ⁇ 10 4 Pa to 1.1 ⁇ 10 5 Pa ( 0.9 atm to 1.1 atm) is more preferable.
  • the heating temperature is preferably 850 ° C. to 950 ° C., more preferably 850 ° C. to 900 ° C.
  • the heating time is preferably 3 hours to 20 hours, and more preferably 5 hours to 10 hours.
  • the average particle diameter D50 of the metal compound is preferably 0.05 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • Such a metal compound has high reactivity, and more sodium carbonate is easily consumed in the formation reaction of the positive electrode active material. Therefore, it is easier to reduce the amount of sodium carbonate remaining in the positive electrode active material.
  • the average particle diameter D50 of sodium carbonate is preferably 0.05 ⁇ m or more and 5 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 3 ⁇ m or less.
  • Such sodium carbonate has high reactivity, and many of them are easily consumed in the production reaction of the positive electrode active material. Therefore, it is easier to reduce the amount of sodium carbonate remaining in the positive electrode active material.
  • the positive electrode active material containing sodium chromite which is a kind of sodium-containing metal oxide.
  • the positive electrode active material containing sodium chromite contains 0 to 3 mol%, more preferably 0.5 mol% to 1 mol% excess of chromium oxide based on the stoichiometric amount, based on the amount of sodium carbonate. It can be obtained by heating the raw material mixture under predetermined conditions. The excess chromium oxide is present in the positive electrode active material in an unreacted state, but hardly affects the battery characteristics.
  • the raw material mixture preferably contains 1 mol to 1.03 mol, more preferably 1.005 mol to 1.01 mol of chromium with respect to 1 mol of sodium.
  • the positive electrode active material having a mass ratio of sodium carbonate of 500 ppm or less can be obtained by controlling the conditions such as temperature and time and heating the raw material mixture.
  • FIG. 1 is a front view of a positive electrode according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the positive electrode 2 for a sodium molten salt battery includes a positive electrode current collector 2a and a positive electrode active material layer 2b attached to the positive electrode current collector 2a.
  • the positive electrode active material layer 2b includes a positive electrode active material as an essential component, and may include a conductive carbon material, a binder, and the like as optional components.
  • the mass ratio of water contained in the positive electrode is desirably 200 ppm or less.
  • the moisture content of the positive electrode can be reduced to 200 ppm or less by drying the positive electrode under reduced pressure at a temperature of 90 to 200 ° C. for 2 to 24 hours.
  • the pressure of the dry atmosphere is, for example, 10 Pa or less, and is preferably controlled to 1 Pa or less.
  • Such a method is advantageous in that it is simple and does not increase the manufacturing cost.
  • the air in the processing atmosphere is replaced with an inert gas (for example, nitrogen, helium, argon) or dry air with a dew point temperature of -50 ° C or less in advance, so that the positive electrode is more effective Moisture can be removed from.
  • an inert gas for example, nitrogen, helium, argon
  • dry air with a dew point temperature of -50 ° C or less in advance, so that the positive electrode is more effective Moisture can be removed from.
  • the mass ratio of water contained in the positive electrode is the amount of water measured by the Karl Fischer method.
  • the moisture content of the positive electrode is the total moisture content of the positive electrode current collector and the positive electrode active material layer.
  • the positive electrode which is a sample, is put together with the catholyte into a cell of a moisture content measuring apparatus, and moisture is measured.
  • the catholyte contains alcohol, base, sulfur dioxide, iodide ion and the like.
  • the Karl Fischer method is classified into a volumetric titration method and a coulometric titration method.
  • a coulometric titration method with high analysis accuracy is adopted.
  • a commercially available Karl Fischer moisture meter for example, MKC-610 manufactured by Kyoto Electronics Industry Co., Ltd.
  • MKC-610 manufactured by Kyoto Electronics Industry Co., Ltd.
  • the mass ratio of moisture contained in the positive electrode is measured by putting a sample into a cell of a moisture measuring device filled with fresh catholyte in a nitrogen atmosphere.
  • the weight of the sample may be in the range of 0.05 g to 5 g, for example.
  • Examples of the conductive carbon material included in the positive electrode include graphite, carbon black, and carbon fiber.
  • the conductive carbon material easily secures a good conductive path, but causes a side reaction with sodium carbonate remaining in the positive electrode active material. However, since the residual amount of sodium carbonate is greatly reduced in the present invention, good conductivity can be secured while sufficiently suppressing side reactions.
  • carbon black is particularly preferable because it can easily form a sufficient conductive path when used in a small amount. Examples of carbon black include acetylene black, ketjen black, and thermal black.
  • the amount of the conductive carbon material is preferably 2 to 15 parts by mass, more preferably 3 to 8 parts by mass, per 100 parts by mass of the positive electrode active material.
  • the binder serves to bond the positive electrode active materials to each other and fix the positive electrode active material to the positive electrode current collector.
  • fluororesin polyamide, polyimide, polyamideimide and the like can be used.
  • fluororesin polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene fluoride-hexafluoropropylene copolymer, and the like can be used.
  • the amount of the binder is preferably 1 to 10 parts by mass and more preferably 3 to 5 parts by mass per 100 parts by mass of the positive electrode active material.
  • the mass ratio of sodium carbonate contained in the positive electrode active material is also limited to 500 ppm.
  • the mass ratio of sodium carbonate contained in the entire positive electrode is also limited to 500 ppm.
  • the conductive carbon material or the binder contains a small amount of sodium carbonate, the amount of sodium carbonate contained in the whole positive electrode is increased accordingly. Even in such a case, it is desirable to limit the mass ratio of sodium carbonate contained in the positive electrode to 500 ppm from the viewpoint of effectively suppressing side reactions.
  • the positive electrode current collector 2a a metal foil, a non-woven fabric made of metal fibers, a porous metal sheet, or the like is used.
  • the metal constituting the positive electrode current collector is preferably aluminum or an aluminum alloy because it is stable at the positive electrode potential, but is not particularly limited. When using an aluminum alloy, it is preferable that metal components (for example, Fe, Si, Ni, Mn, etc.) other than aluminum are 0.5 mass% or less.
  • the thickness of the metal foil serving as the positive electrode current collector is, for example, 10 ⁇ m to 50 ⁇ m, and the thickness of the metal fiber nonwoven fabric or the metal porous sheet is, for example, 100 ⁇ m to 600 ⁇ m.
  • a current collecting lead piece 2c may be formed on the positive electrode current collector 2a. As shown in FIG. 1, the lead piece 2 c may be formed integrally with the positive electrode current collector, or a separately formed lead piece may be connected to the positive electrode current collector by welding or the like.
  • FIG. 3 is a front view of a negative electrode according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the negative electrode 3 includes a negative electrode current collector 3a and a negative electrode active material layer 3b attached to the negative electrode current collector 3a.
  • the negative electrode active material layer 3b for example, sodium, a sodium alloy, or a metal that can be alloyed with sodium can be used.
  • Such a negative electrode includes, for example, a negative electrode current collector formed of a first metal and a second metal that covers at least a part of the surface of the negative electrode current collector.
  • the first metal is a metal that is not alloyed with sodium
  • the second metal is a metal that is alloyed with sodium.
  • the mass ratio of the moisture contained in the negative electrode is desirably 300 ppm or less.
  • the pressure of the dry atmosphere is, for example, 10 Pa or less, and is preferably controlled to 1 Pa or less.
  • moisture can be removed more effectively by replacing the air in the processing atmosphere with an inert gas or dry air with a dew point temperature of ⁇ 50 ° C. or lower in advance. What is necessary is just to measure the mass ratio of the water
  • the negative electrode current collector formed of the first metal a metal foil, a non-woven fabric made of metal fibers, a metal porous sheet, or the like is used.
  • the first metal aluminum, aluminum alloy, copper, copper alloy, nickel, nickel alloy and the like are preferable because they are not alloyed with sodium and stable at the negative electrode potential. Of these, aluminum and aluminum alloys are preferable in terms of excellent lightness.
  • the aluminum alloy for example, an aluminum alloy similar to that exemplified as the positive electrode current collector may be used.
  • the thickness of the metal foil serving as the negative electrode current collector is, for example, 10 ⁇ m to 50 ⁇ m, and the thickness of the metal fiber non-woven fabric or metal porous sheet is, for example, 100 ⁇ m to 600 ⁇ m.
  • a current collecting lead piece 3c may be formed on the negative electrode current collector 3a. As shown in FIG. 3, the lead piece 3c may be formed integrally with the negative electrode current collector, or a separately formed lead piece may be connected to the negative electrode current collector by welding or the like.
  • the second metal examples include zinc, zinc alloy, tin, tin alloy, silicon, and silicon alloy. Of these, zinc and zinc alloys are preferred in terms of good wettability with respect to the molten salt.
  • the thickness of the negative electrode active material layer formed of the second metal is preferably 0.05 ⁇ m to 1 ⁇ m, for example.
  • metal components for example, Fe, Ni, Si, Mn, etc.
  • other than zinc or tin in a zinc alloy or a tin alloy shall be 0.5 mass% or less.
  • a negative electrode current collector formed of aluminum or an aluminum alloy (first metal), and zinc, zinc alloy, tin or tin alloy (at least part of the surface of the negative electrode current collector) are coated.
  • first metal aluminum or an aluminum alloy
  • second metal zinc, zinc alloy, tin or tin alloy
  • the negative electrode active material layer made of the second metal can be obtained, for example, by attaching a second metal sheet to the negative electrode current collector or pressure bonding. Further, the second metal may be gasified and attached to the negative electrode current collector by a vapor phase method such as a vacuum deposition method or a sputtering method, or the second metal may be deposited by an electrochemical method such as a plating method. Fine particles may be attached to the negative electrode current collector. According to the vapor phase method or the plating method, a thin and uniform negative electrode active material layer can be formed.
  • the negative electrode active material layer 3b may be a mixture layer that includes the negative electrode active material as an essential component and includes a binder, a conductive material, and the like as optional components.
  • the binder and the conductive material used for the negative electrode the materials exemplified as the constituent elements of the positive electrode can be used.
  • the amount of the binder is preferably 1 to 10 parts by mass and more preferably 3 to 5 parts by mass per 100 parts by mass of the negative electrode active material.
  • the amount of the conductive material is preferably 5 to 15 parts by mass and more preferably 5 to 10 parts by mass per 100 parts by mass of the negative electrode active material.
  • sodium-containing titanium compounds As the negative electrode active material constituting the negative electrode mixture layer, sodium-containing titanium compounds, non-graphitizable carbon (hard carbon) and the like are preferably used from the viewpoints of thermal stability and electrochemical stability.
  • sodium-containing titanium compound sodium titanate is preferable, and more specifically, it is preferable to use at least one selected from the group consisting of Na 2 Ti 3 O 7 and Na 4 Ti 5 O 12 . Moreover, you may substitute a part of Ti or Na of sodium titanate with another element.
  • Na 2 -x M 5 x Ti 3 -y M 6 y O 7 (0 ⁇ x ⁇ 3/2, 0 ⁇ y ⁇ 8/3, M 5 and M 6 are independently other than Ti and Na
  • a metal element for example, at least one selected from the group consisting of Ni, Co, Mn, Fe, Al, and Cr
  • Na 4-x M 7 x Ti 5-y M 8 y O 12 ( 0 ⁇ x ⁇ 11/3, 0 ⁇ y ⁇ 14/3, M 7 and M 8 are each independently a metal element other than Ti and Na, for example, from Ni, Co, Mn, Fe, Al and Cr
  • a sodium containing titanium compound may be used individually by 1 type, and may be used in combination of multiple types.
  • Sodium-containing titanium compounds may be used in combination with non-graphitizable carbon.
  • M 5 and M 7 are Na sites
  • M 6 and M 8 are elements occupying Ti sites.
  • Non-graphitizable carbon is a carbon material that does not develop a graphite structure even when heated in an inert atmosphere. Fine graphite crystals are arranged in random directions, and nanostructured between crystal layers. A material having a void in the order. Since the diameter of a typical alkali metal sodium ion is 0.95 angstrom, the size of the void is preferably sufficiently larger than this.
  • the average particle size of the non-graphitizable carbon (particle size D50 at 50% cumulative volume of the volume particle size distribution) may be, for example, 3 ⁇ m to 20 ⁇ m, and 5 ⁇ m to 15 ⁇ m. It is desirable from the viewpoint of enhancing the pH and suppressing side reactions with the electrolyte (molten salt).
  • the specific surface area of the non-graphitizable carbon may together to ensure the acceptance of the sodium ions, from the viewpoint of suppressing side reactions with the electrolyte, if for example 1m 2 / g ⁇ 10m 2 / g, 3m 2 / G to 8 m 2 / g is preferable.
  • Non-graphitizable carbon may be used alone or in combination of two or more.
  • Electrode (molten salt) As the electrolyte (molten salt), a salt that becomes an ionic liquid in the operating temperature range of the battery (preferably 90 ° C. or lower, more preferably 70 ° C. or lower) is used.
  • the molten salt contains at least sodium ions serving as charge carriers in the molten salt battery as cations.
  • the sodium ion concentration contained in the electrolyte occupies 2 mol% or more, more preferably 5 mol% or more of the cation contained in the electrolyte.
  • Such an electrolyte has excellent sodium ion conductivity, and it is easy to achieve a high capacity even when charging and discharging with a high current.
  • Examples of the molten salt include N (SO 2 X 1 ) (SO 2 X 2 ) ⁇ M (where X 1 and X 2 are each independently a fluorine atom or a fluoroalkyl group having 1 to 8 carbon atoms).
  • M is an alkali metal or an organic cation having a nitrogen-containing heterocycle).
  • N (SO 2 X 1 ) (SO 2 X 2 ) ⁇ M includes at least N (SO 2 X 1 ) (SO 2 X 2 ) ⁇ Na.
  • a separator is interposed between a positive electrode and a negative electrode, and a molten salt is impregnated in the gap of the separator.
  • the amount of water contained in the molten salt before battery production is, for example, 100 ppm or less, more preferably 50 ppm or less, and particularly preferably 10 ppm or less in terms of mass ratio.
  • X 1 and X 2 some hydrogen atoms of the alkyl group may be replaced with fluorine atoms, and all hydrogen atoms are perfluoroalkyl groups replaced with fluorine atoms. Also good. From the viewpoint of reducing the viscosity of the ionic liquid, at least one of X 1 and X 2 is preferably a perfluoroalkyl group, both X 1 and X 2, the perfluoroalkyl group are more preferable. By setting the number of carbon atoms to 1 to 8, an increase in the melting point of the electrolyte can be suppressed, which is advantageous for obtaining a low-viscosity ionic liquid.
  • the perfluoroalkyl group preferably has 1 to 3 carbon atoms, and more preferably 1 or 2.
  • X 1 and X 2 may be each independently a trifluoromethyl group, a pentafluoroethyl group, a heptafluoropropyl group, or the like.
  • bissulfonylamide anion represented by N (SO 2 X 1 ) (SO 2 X 2 ) include bis (fluorosulfonyl) amide anion (FSA ⁇ ); bis (trifluoromethylsulfonyl) amide anion. (TFSA ⁇ ), bis (pentafluoroethylsulfonyl) amide anion, fluorosulfonyltrifluoromethylsulfonylamide anion (N (FSO 2 ) (CF 3 SO 2 )) and the like.
  • alkali metals other than sodium indicated by M examples include potassium, lithium, rubidium and cesium. Of these, potassium is preferred.
  • a cation having a pyrrolidinium skeleton, an imidazolium skeleton, a pyridinium skeleton, a piperidinium skeleton, or the like can be used.
  • a cation having a pyrrolidinium skeleton is preferable in that it can form a molten salt having a low melting point and is stable at a high temperature.
  • the organic cation having a pyrrolidinium skeleton is, for example, the general formula (1):
  • R 1 and R 2 are each independently an alkyl group having 1 to 8 carbon atoms.
  • the alkyl group preferably has 1 to 3 carbon atoms, and more preferably 1 or 2.
  • R 1 and R 2 may be each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, or the like.
  • organic cation having a pyrrolidinium skeleton examples include a methylpropylpyrrolidinium cation, an ethylpropylpyrrolidinium cation, a methylethylpyrrolidinium cation, a dimethylpyrrolidinium cation, and a diethylpyrrolidinium cation. These may be used alone or in combination of two or more. Of these, methylpropylpyrrolidinium cation (Py13 + ) is preferable because of particularly high thermal stability and electrochemical stability.
  • molten salt examples include a salt of sodium ion and FSA ⁇ (NaFSA), a salt of sodium ion and TFSA ⁇ (NaTFSA), a salt of Py13 + and FSA ⁇ (Py13FSA), Py13 + and TFSA ⁇ and Salt (Py13TFSA) and the like.
  • the melting point of the molten salt is preferably lower. From the viewpoint of reducing the melting point of the molten salt, it is preferable to use a mixture of two or more salts. For example, when a first salt of sodium and a bissulfonylamide anion is used, it is preferably used in combination with a second salt of a cation other than sodium and a bissulfonylamide anion.
  • the bissulfonylamide anions forming the first salt and the second salt may be the same or different.
  • the second salt is preferably a salt of potassium ion and FSA ⁇ (KFSA), a salt of potassium and TFSA ⁇ (KTFSA), or the like. More specifically, it is preferable to use a mixture of NaFSA and KFSA or a mixture of NaTFSA and KTFSA.
  • the molar ratio of the first salt to the second salt is, for example, 40/60 to 70/30 in view of the balance of the melting point, viscosity, and ionic conductivity of the electrolyte. It is preferably 45/55 to 65/35, more preferably 50/50 to 60/40.
  • a salt of Py13 When a salt of Py13 is used as the first salt, such a salt has a low melting point and a low viscosity even at room temperature. However, the melting point is further lowered by using sodium salt, potassium salt or the like as the second salt.
  • Py13FSA, Py13TFSA, or the like When Py13FSA, Py13TFSA, or the like is used as the first salt, NaFSA, NaTFSA, or the like is preferable as the second salt. More specifically, it is preferable to use a mixture of Py13FSA and NaFSA or a mixture of Py13TFSA and NaTFSA.
  • the molar ratio of the first salt to the second salt may be, for example, 98/2 to 80/20. 95/5 to 85/15 is preferable.
  • the electrolyte can contain various additives in addition to the molten salt. However, from the viewpoint of ensuring ion conductivity and thermal stability, 90% by mass to 100% by mass, and further 95% by mass to 100% by mass of the electrolyte filled in the battery may be occupied by the molten salt. preferable.
  • the material of the separator may be selected considering the operating temperature of the battery. From the viewpoint of suppressing side reactions with the electrolyte, glass fiber, silica-containing polyolefin, fluororesin, alumina, polyphenylene sulfite (PPS), etc. Is preferably used. Among these, a glass fiber nonwoven fabric is preferable because it is inexpensive and has high heat resistance. Silica-containing polyolefin and alumina are preferable in terms of excellent heat resistance. Moreover, a fluororesin and PPS are preferable in terms of heat resistance and corrosion resistance. In particular, PPS has excellent resistance to fluorine contained in the molten salt.
  • the water content of the separator is preferably, for example, 10 ppm to 200 ppm by mass ratio.
  • the separator having such a water content is, for example, in a reduced pressure environment of 10 Pa or less, preferably 1 Pa or less, more preferably 0.4 Pa or less at a drying temperature of 90 ° C. or more (more preferably 90 ° C. to 300 ° C.). It is obtained by drying.
  • the moisture can be removed more effectively by replacing the air in the treatment atmosphere with an inert gas or dry air having a dew point temperature of ⁇ 50 ° C. or lower in advance. What is necessary is just to measure the mass ratio of the water
  • the thickness of the separator is preferably 10 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 50 ⁇ m. If the thickness is within this range, an internal short circuit can be effectively prevented, and the volume occupancy of the separator in the electrode group can be kept low, so that a high capacity density can be obtained.
  • the molten salt battery is used in a state where the electrode group including the positive electrode and the negative electrode and the electrolyte are accommodated in a battery case.
  • the electrode group is formed by laminating or winding a positive electrode and a negative electrode with a separator interposed therebetween.
  • a metal battery case by making one of the positive electrode and the negative electrode conductive with the battery case, a part of the battery case can be used as the first external terminal.
  • the other of the positive electrode and the negative electrode is connected to a second external terminal led out of the battery case in a state insulated from the battery case, using a lead piece or the like.
  • the sodium molten salt battery includes a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • the electrolyte is made of a molten salt containing at least sodium ions.
  • a relatively large sodium molten salt battery having a design capacity of 10 Ah or more is easily affected by gas generation, and therefore, it is very difficult to suppress side reactions by using the positive electrode active material according to the present invention. It is effective for.
  • the positive electrode active material according to the present invention is particularly effective for use in a relatively large-capacity sodium molten salt battery having a designed capacity of, for example, 33 Ah or less, particularly 15 Ah to 30 Ah.
  • FIG. 5 is a perspective view of a molten salt battery in which a part of the battery case is cut out
  • FIG. 6 is a longitudinal sectional view schematically showing a cross section taken along line VI-VI in FIG.
  • the molten salt battery 100 includes a laminated electrode group 11, an electrolyte (not shown), and a rectangular aluminum battery case 10 that houses them.
  • the battery case 10 includes a bottomed container body 12 having an upper opening and a lid 13 that closes the upper opening.
  • the electrode group 11 is configured and inserted into the container body 12 of the battery case 10.
  • a step of injecting a molten electrolyte into the container body 12 and impregnating the electrolyte in the gaps of the separator 1, the positive electrode 2, and the negative electrode 3 constituting the electrode group 11 is performed.
  • the electrode group may be impregnated with a heated molten electrolyte (molten salt), and then the electrode group including the electrolyte may be accommodated in the container body 12.
  • An external positive terminal 14 is provided near one side of the lid portion 13 so as to penetrate the lid portion 13 while being electrically connected to the battery case 10, and is insulated from the battery case 10 at a location near the other side of the lid portion 13. In this state, an external negative electrode terminal 15 that penetrates the lid portion 13 is provided. In the center of the lid portion 13, a safety valve 16 is provided for releasing gas generated inside when the internal pressure of the electronic case 10 rises.
  • the stacked electrode group 11 is composed of a plurality of positive electrodes 2, a plurality of negative electrodes 3, and a plurality of separators 1 interposed between them, each having a rectangular sheet shape.
  • the separator 1 is formed in a bag shape so as to surround the positive electrode 2, but the form of the separator is not particularly limited.
  • the plurality of positive electrodes 2 and the plurality of negative electrodes 3 are alternately arranged in the stacking direction in the electrode group 11.
  • a positive electrode lead piece 2 c may be formed at one end of each positive electrode 2.
  • the plurality of positive electrodes 2 are connected in parallel by bundling the positive electrode lead pieces 2 c of the plurality of positive electrodes 2 and connecting them to the external positive terminal 14 provided on the lid portion 13 of the battery case 10.
  • a negative electrode lead piece 3 c may be formed at one end of each negative electrode 3.
  • the plurality of negative electrodes 3 are connected in parallel by bundling the negative electrode lead pieces 3 c of the plurality of negative electrodes 3 and connecting them to the external negative terminal 15 provided on the lid portion 13 of the battery case 10.
  • the bundle of the positive electrode lead pieces 2c and the bundle of the negative electrode lead pieces 3c are desirably arranged on the left and right sides of one end face of the electrode group 11 so as to avoid mutual contact.
  • the external positive terminal 14 and the external negative terminal 15 are both columnar, and at least a portion exposed to the outside has a screw groove.
  • a nut 7 is fitted in the screw groove of each terminal, and the nut 7 is fixed to the lid portion 13 by rotating the nut 7.
  • a flange portion 8 is provided in a portion of each terminal accommodated in the battery case, and the flange portion 8 is fixed to the inner surface of the lid portion 13 via a washer 9 by the rotation of the nut 7.
  • Example 1 (Preparation of positive electrode active material) Sodium carbonate (Na 2 CO 3 ) having an average particle diameter D50 of 2.0 ⁇ m, chromium oxide (Cr 2 O 3 ) having an average particle diameter D50 of 1.5 ⁇ m, and a molar ratio of sodium to chromium of 1: 1. Mix in an amount of 01. The obtained mixture was heated at 900 ° C. for 8 hours in a nitrogen atmosphere to obtain a positive electrode active material containing sodium chromite (NaCrO 2 ).
  • the mass ratio of sodium carbonate contained in the positive electrode active material was determined by the following method. A predetermined amount of ion-exchanged water and the obtained positive electrode active material were mixed to obtain a measurement sample. When the carbonate ion (CO 3 2 ⁇ ) concentration in the measurement sample was determined by an ion chromatograph (Ion Chromatograph Analyzer: ICS-3000, manufactured by Nippon Dionex Co., Ltd.), it could not be measured. Therefore, it turned out that the mass ratio of the sodium carbonate contained in a positive electrode active material is less than 1 ppm which is a measurement limit.
  • the obtained positive electrode active material was pulverized and classified to have an average particle size of 10 ⁇ m. 85 parts by mass of a positive electrode active material having an average particle size of 10 ⁇ m, 10 parts by mass of acetylene black (conductive carbon material) and 5 parts by mass of polyvinylidene fluoride (binder) are mixed with N-methyl-2-pyrrolidone (NMP) as a dispersion medium. ) To prepare a positive electrode paste. The obtained positive electrode paste was applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m, dried, rolled, and cut into a predetermined size to produce a positive electrode having a positive electrode active material layer having a thickness of 80 ⁇ m on both surfaces. The positive electrode had a width of 46 mm, a length of 46 mm, and a total thickness of 180 ⁇ m.
  • Separator A polyolefin separator having a thickness of 50 ⁇ m and a porosity of 90% was prepared. The separator was cut into a size of 50 ⁇ 50 mm.
  • Electrodes An electrolyte comprising a mixture of sodium bis (fluorosulfonyl) amide (NaFSA) and potassium bis (fluorosulfonyl) amide (KFSA) in a molar ratio of 56:44 was prepared.
  • the melting point of this electrolyte (molten salt) is 61 ° C.
  • the positive electrode, the negative electrode, and the separator were dried by heating at 90 ° C. or higher under a reduced pressure of 0.3 Pa. Drying was performed until the moisture content of the positive electrode and the negative electrode was 50 ppm and 30 ppm, respectively, and the moisture content of the separator was 100 ppm.
  • the water content of each of the positive electrode, the negative electrode, and the separator was measured by a Karl Fischer method (coulometric titration method) using a water content measuring device (MKC-610, manufactured by Kyoto Electronics Industry Co., Ltd.) using 5 g as a measurement sample.
  • a positive electrode and a negative electrode were laminated with a separator interposed therebetween to produce an electrode group.
  • the obtained electrode group was housed in an aluminum case, and an electrolyte was injected into the case to produce a sodium molten salt battery having a design capacity of 500 mAh.
  • Example 2 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 1 except that sodium carbonate and chromium oxide were mixed in an amount such that the molar ratio of sodium and chromium was 1: 1. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 100 ppm.
  • Example 3 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 2 except that the heating time was 5 hours. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 400 ppm.
  • Example 4 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 1 except that the heating time was 5 hours. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 200 ppm.
  • Example 5 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 1 except that the heating temperature was 850 ° C. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 500 ppm.
  • Comparative Example 1 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 2 except that the heating temperature was 850 ° C. and the heating time was 5 hours. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 0.1% (1000 ppm).
  • a positive electrode active material was prepared in the same manner as in Example 1 except that sodium carbonate and chromium oxide were mixed in an amount such that the molar ratio of sodium and chromium was 1: 0.99. .
  • the mass ratio of sodium carbonate contained in the obtained positive electrode active material was 900 ppm.
  • Comparative Example 3 In the preparation of the positive electrode active material, a positive electrode active material was prepared in the same manner as in Example 2 except that the heating temperature was 850 ° C. The mass ratio of sodium carbonate contained in the obtained positive electrode active material was 600 ppm.
  • Each sodium molten salt battery was produced in the same manner as in Example 1 except that the above positive electrode active material was used, and the same evaluation was performed. The results are shown in Table 1.
  • the positive electrode active material for a sodium molten salt battery according to the present invention the generation of carbon dioxide derived from a side reaction between sodium carbonate and a conductive carbon material is suppressed, so that sodium fusion having excellent cycle characteristics and reliability is achieved.
  • a salt battery can be provided.
  • the sodium molten salt battery according to the present invention is useful as a power source for, for example, a household or industrial large power storage device, an electric vehicle, a hybrid vehicle, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電気化学的にナトリウムイオンを吸蔵および放出可能であるナトリウム含有金属酸化物を含み、炭酸ナトリウムの質量割合が500ppm以下である、ナトリウム溶融塩電池用正極活物質。

Description

ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池
 本発明は、ナトリウムイオン伝導性を有する溶融塩を電解質として含むナトリウム溶融塩電池に関し、特にナトリウム溶融塩電池の正極活物質の改良に関する。
 近年、太陽光、風力などの自然エネルギーを電気エネルギーに変換する技術が注目を集めている。また、多くの電気エネルギーを蓄えることができる高エネルギー密度の電池として、非水電解質二次電池の需要が拡大している。非水電解質二次電池の中では、リチウムイオン二次電池が、軽量かつ高い起電力を有する点で有望である。しかし、リチウムイオン二次電池は、有機溶媒を電解質成分として用いるため、耐熱性が低いという欠点がある。また、リチウムイオン二次電池の市場の拡大に伴い、リチウム資源の価格も上昇しつつある。
 そこで、難燃性の溶融塩を電解質として用いる溶融塩電池の開発が進められている。溶融塩は、熱安定性に優れており、安全性の確保が比較的容易であり、かつ、高温域での継続的使用にも適している。また、溶融塩電池は、リチウム以外の安価なアルカリ金属(特にナトリウム)をカチオンとする溶融塩を電解質として使用することができるため、製造コストも安価である。
 なお、溶融塩電池とは、溶融状態の塩(溶融塩)を電解質として含む電池の総称である。溶融塩は、イオン伝導性を有する液体(イオン性液体)である。
 ナトリウムをイオン伝導のキャリアとして利用する溶融塩電池(以下、ナトリウム溶融塩電池と称する)の正極には、正極活物質として、例えば、亜クロム酸ナトリウムのようなナトリウム含有金属酸化物が使用されている。亜クロム酸ナトリウムは、例えば、酸化クロムと炭酸ナトリウムとを混合し、所定の温度、時間で加熱することで得られる。正極は、例えば、正極活物質と、導電性炭素材料と、バインダとを含む合剤を用いて形成できる。
 ナトリウム溶融塩電池においては、電池内に過剰な水分が存在すると、電極反応に寄与しない副反応が起こることがある。副反応としては、例えば、溶融塩の加水分解反応が挙げられる。溶融塩の加水分解反応が起こると、ガスが発生したり、反応生成物が抵抗成分となって円滑な電極反応を阻害したりすることがある。そこで、溶融塩の副反応を抑制する観点から、電池内の水分量を低減するための種々の検討が行われている(例えば、特許文献1参照)。
特開2012-162416号公報
 しかし、電池内の水分量を低減するだけでは、副反応を十分に抑制することは困難である。最近の検討により、電池内の水分量が低減されることで、正極活物質に残存する炭酸ナトリウムに由来する副反応が顕在化することが判明してきている。例えば、充電により正極電位が3V程度にまで達すると、正極において、導電性炭素材料と炭酸ナトリウムとが反応して、炭酸ガスが発生する。この反応は、以下の反応式で示される。
 2Na2CO3+C→4Na++3CO2
 炭酸ガスが過剰に発生すると、電池内圧が上昇し、電池の信頼性の低下に繋がる。また、炭酸ナトリウムとの副反応によって導電性炭素材料が消費されると、電池特性の低下を招く。従って、電池特性および信頼性の向上の観点から、正極活物質に含まれる炭酸ナトリウムの残存量を低減することが非常に重要である。
 本発明の一局面は、電気化学的にナトリウムイオンを吸蔵および放出可能であるナトリウム含有金属酸化物を含み、炭酸ナトリウムの質量割合が500ppm以下である、ナトリウム溶融塩電池用正極活物質に関する。
 本発明によれば、正極活物質に含まれる炭酸ナトリウムの残存量が低減されていることから、炭酸ナトリウムに由来する充放電反応に寄与しない副反応を抑制することができる。よって、優れた電池特性および信頼性を有するナトリウム溶融塩電池を提供することができる。
本発明の一実施形態に係る正極の正面図である。 図1のII-II線断面図である。 本発明の一実施形態に係る負極の正面図である。 図3のIV-IV線断面図である。 本発明の一実施形態に係る溶融塩電池の電池ケースの一部を切り欠いた斜視図である。 図5のVI-VI線断面を概略的に示す縦断面図である。
[発明の実施形態の説明]
 最初に本発明の実施形態の内容を列記して説明する。
 本発明の一局面は、電気化学的にナトリウムイオンを吸蔵および放出可能であるナトリウム含有金属酸化物を含み、炭酸ナトリウムの質量割合が500ppm以下である、ナトリウム溶融塩電池用正極活物質に関する。このようなナトリウム溶融塩電池用正極活物質によれば、溶融塩電池に特有の環境下においても、副反応が抑制され、ナトリウム溶融塩電池の電池特性および信頼性が向上する。
 ナトリウム含有金属酸化物は、一般式:Na1-x1 xCr1-y2 y2(0≦x≦2/3、0≦y≦0.7であり、M1およびM2は、それぞれ独立にCrおよびNa以外の金属元素である)で表される化合物であることが好ましい。このようなナトリウム含有金属酸化物を含む正極活物質は、低コストであるとともに、充放電に伴う構造変化の可逆性に優れているため、サイクル特性に特に優れたナトリウム溶融塩電池を得ることができる。
 また、本発明の他の局面は、正極集電体および正極集電体に付着した正極活物質層を含み、正極活物質層が、上記の正極活物質と、導電性炭素材料とを含む、ナトリウム溶融塩電池用正極に関する。このような正極によれば、炭酸ナトリウムと導電性炭素材料との副反応が十分に抑制されるため、サイクル特性および信頼性に優れたナトリウム溶融塩電池を得ることができる。
 上記のナトリウム溶融塩電池用正極に含まれる炭酸ナトリウムの質量割合についても、500ppm以下であることが好ましい。正極に含まれる炭酸ナトリウムの質量割合を500ppm以下に制限することで、副反応を抑制する効果を得やすくなる。
 また、正極に含まれる水分の質量割合は200ppm以下であることが好ましい。これにより、電池内の水分量が低減され、ナトリウム溶融塩電池のイオン伝導を担うキャリアであるナトリウムイオンと水分との反応が抑制される。したがって、炭酸ナトリウムを低減することによるガス発生を抑制する効果が顕著となる。
 本発明の更に他の局面は、正極、負極、正極と負極との間に介在するセパレータおよび電解質を含み、電解質が、少なくともナトリウムイオンを含む溶融塩であり、正極が、上記のナトリウム溶融塩電池用正極である、ナトリウム溶融塩電池に関する。
 電解質に含まれるナトリウムイオン濃度が、電解質に含まれるカチオンの2モル%以上、更には5モル%以上を占めている場合、炭酸ガスが発生しやすくなる傾向がある。この原因は、必ずしも明確ではないが、電解質として溶融塩を用いる電池の作動温度が比較的高くなることが関連しているものと推測される。
 具体的には、ナトリウムイオン濃度が高くなると、微小なナトリウムデンドライト(金属ナトリウム)が生成しやすくなり、ナトリウムと導電性炭素材料との副反応が促進されるものと推測される。また、電池の作動温度が比較的高くなると、副反応が更に促進されるものと考えられる。従って、電解質に含まれるカチオンの2モル%以上、更には5モル%以上がナトリウムイオンで占めている場合には、正極活物質に含まれる炭酸ナトリウムの質量割合を500ppm以下とすることが特に重要となる。
 本発明の一実施の形態において、ナトリウム溶融塩電池の設計容量は、10Ah以上である。本発明に係る正極活物質は、炭酸ナトリウムの残存量が十分に低減されているため、ガス発生の影響を受けやすい比較的大型のナトリウム溶融塩電池においても、優れたサイクル特性および信頼性が得られる。
[発明の実施形態の詳細]
 本発明の一局面は、ナトリウムをイオン伝導のキャリアとして利用するナトリウム溶融塩電池に用いられる正極活物質を包含する。ただし、正極活物質は、電気化学的にナトリウムイオンを吸蔵および放出可能であるナトリウム含有金属酸化物を含む。
 ナトリウム含有金属酸化物は、例えば、炭酸ナトリウムと金属酸化物とを混合し、所定の条件で加熱することで得られる。このとき、生成物であるナトリウム含有金属酸化物には、通常、原料の炭酸ナトリウムが相当量残存する。しかし、充電によって正極電位が3V程度に達すると、正極活物質に残存する炭酸ナトリウムと、正極に導電材として含まれる導電性炭素材料との副反応により、炭酸ガスが発生する。また、ナトリウム溶融塩電池の一般的な使用温度である90℃前後の環境下においては、副反応が顕在化しやすい。正極活物質に含まれる炭酸ナトリウムの残存量が過剰であるほど、副反応の影響が大きくなり、電池特性や信頼性の低下に繋がる。
 そこで、本発明では、ナトリウム溶融塩電池用正極活物質における炭酸ナトリウムの残存量を500ppm以下にまで低減している。このような正極活物質を用いた溶融塩電池は、副反応が顕在化しやすいナトリウム溶融塩電池に特有の使用環境下においても、優れた電池特性および信頼性を示す。正極活物質における炭酸ナトリウムの質量割合は、電池特性および信頼性の更なる向上の観点から、100ppm以下まで低減されることがより好ましい。
 正極活物質に残存する炭酸ナトリウムの質量割合は、例えばイオンクロマトグラフ法により求めることができる。
 具体的には、イオン交換水と正極活物質とを混合し、正極活物質に含まれる炭酸ナトリウムをイオン交換水に溶解させて測定用試料を得る。その後、測定用試料における炭酸イオン(CO3 2-)濃度をイオンクロマトグラフィにより測定することで、正極活物質に残存する炭酸ナトリウムの質量割合を求めることができる。
 ナトリウム含有金属酸化物は、ナトリウムイオンが挿入、脱離可能な層間隔を有する層状構造を有することが好ましい。このようなナトリウム含有金属酸化物としては、例えば、亜クロム酸ナトリウム(NaCrO2)を用いることができる。亜クロム酸ナトリウムは、CrまたはNaの一部が他元素で置換されていてもよく、例えば、一般式:Na1-x1 xCr1-y2 y2(0≦x≦2/3、0≦y≦0.7、M1およびM2は、それぞれ独立にCrおよびNa以外の金属元素である)で表される化合物であることが好ましい。上記の一般式において、xは、0≦x≦0.5を満たすことがより好ましく、M1およびM2は、例えばNi、Co、Mn、FeおよびAlよりなる群から選択される少なくとも1種であることが好ましい。なお、M1はNaサイト、M2はCrサイトを占める元素である。
 また、ナトリウム含有金属酸化物として、鉄マンガン酸ナトリウム(Na2/3Fe1/3Mn2/32など)を用いることもできる。鉄マンガン酸ナトリウムのFe、MnまたはNaの一部は、他元素で置換されていてもよい。例えば、一般式:Na2/3-x3 xFe1/3-yMn2/3-z4 y+z2(-1/3≦x≦2/3、0≦y≦1/3、0≦z≦1/3、M3およびM4は、それぞれ独立にFe、MnおよびNa以外の金属元素である)で表される化合物であることが好ましい。上記の一般式において、xは、0≦x≦1/3を満たすことがより好ましい。M3は、例えばNi、Co、Mn、FeおよびAlよりなる群から選択される少なくとも1種であることが好ましく、M4は、Ni、CoおよびAlよりなる群から選択される少なくとも1種であることが好ましい。なお、M3はNaサイト、M4はFeまたはMnサイトを占める元素である。
 また、ナトリウム含有金属酸化物として、Na2FePO4F、NaVPO4F、NaCoPO4、NaNiPO4、NaMnPO4、NaMn1.5Ni0.54、NaMn0.5Ni0.52などを用いることもできる。
 ナトリウム含有金属酸化物は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
 正極活物質の粒子の平均粒径(体積粒度分布の累積体積50%における粒径D50)は、2μm以上、20μm以下であることが好ましい。このような正極活物質は、原料の反応性が高く、残存する炭酸ナトリウムの量をより低減しやすい。平均粒径D50は、例えば、レーザ回折式の粒度分布測定装置を用いて、レーザ回折散乱法によって測定される値であり、以下も同様である。
 以下、ナトリウム溶融塩電池用正極活物質の製造法の一例について説明する。
 炭酸ナトリウムと、所要の金属を含む金属化合物(酸化物、水酸化物等)とを混合する。得られる正極活物質における炭酸ナトリウムの残存量を十分に低減する観点から、炭酸ナトリウムと金属化合物との原料混合物において、金属化合物の量を、化学量論量より0~3モル%大きくすることが望ましい。原料混合物を、窒素、アルゴン等の不活性雰囲気中で、所定の条件で加熱することで、ナトリウム含有金属酸化物を含む正極活物質が得られる。不活性雰囲気の圧力は、8.1×104Pa~1.2×105Pa(0.8atm~1.2atm)が好ましく、9.1×104Pa~1.1×105Pa(0.9atm~1.1atm)がより好ましい。例えば、加熱温度は850℃~950℃であることが好ましく、850℃~900℃がより好ましい。加熱時間は3時間~20時間が好ましく、5時間~10時間がより好ましい。
 金属化合物の平均粒径D50は、0.05μm以上、5μm以下であることが好ましく、0.1μm以上、3μm以下であることがより好ましい。このような金属化合物は反応性が高く、正極活物質の生成反応において、より多くの炭酸ナトリウムが消費されやすい。
したがって、正極活物質に残存する炭酸ナトリウムの量をより低減しやすい。
 炭酸ナトリウムの平均粒径D50は、0.05μm以上、5μm以下であることが好ましく、0.1μm以上、3μm以下であることがより好ましい。このような炭酸ナトリウムは反応性が高く、正極活物質の生成反応において、その多くが消費されやすい。したがって、正極活物質に残存する炭酸ナトリウムの量をより低減しやすい。
 次に、ナトリウム含有金属酸化物の一種である亜クロム酸ナトリウムを含む正極活物質を例に、その製造法をより詳細に説明する。
 亜クロム酸ナトリウム(NaCrO2)を含む正極活物質は、化学量論量基準で、炭酸ナトリウム量より酸化クロムを0~3モル%、更に好ましくは0.5モル%~1モル%過剰に含む原料混合物を、所定の条件で加熱することで得られる。なお、過剰分の酸化クロムは、未反応のまま正極活物質中に存在することとなるが、電池特性にはほとんど影響しない。
 すなわち、原料混合物は、ナトリウム1モルに対してクロムを1モル~1.03モル、更に好ましくは1.005モル~1.01モル含むことが好ましい。原料混合物におけるクロムの量に応じて、温度や時間などの条件を制御して原料混合物を加熱することで、炭酸ナトリウムの質量割合が500ppm以下である正極活物質を得ることができる。
 次に、ナトリウム溶融塩電池およびナトリウム溶融塩電池用正極の各構成要素について具体的に説明する。
[正極]
 図1は、本発明の一実施形態に係る正極の正面図であり、図2は図1のII-II線断面図である。
 ナトリウム溶融塩電池用正極2は、正極集電体2aおよび正極集電体2aに付着した正極活物質層2bを含む。正極活物質層2bは、正極活物質を必須成分として含み、任意成分として導電性炭素材料、結着剤等を含んでもよい。
 正極に含まれる水分の質量割合は200ppm以下であることが望ましい。例えば、正極を90℃~200℃の温度で、2時間~24時間減圧乾燥させることで、正極の水分の質量割合を200ppm以下にまで低減することができる。乾燥雰囲気の圧力は、例えば10Pa以下であり、好ましくは1Pa以下に制御される。
 このような方法は、簡易であり、製造コストを増大させない点で有利である。処理雰囲気を減圧環境とする前に、処理雰囲気の空気を予め不活性ガス(例えば窒素、ヘリウム、アルゴン)や露点温度-50℃以下のドライエアーに置換しておくことで、より効果的に正極から水分を除去することができる。
 正極に含まれる水分の質量割合は、カールフィッシャー法により測定される水分量である。また、正極の水分量は、正極集電体と正極活物質層との合計における水分量である。
具体的には、試料である正極を、陰極液とともに、水分量測定装置のセルに投入し、水分を測定する。陰極液には、アルコール、塩基、二酸化硫黄、ヨウ化物イオンなどが含まれている。カールフィッシャー法は、容量滴定法と電量滴定法とに分類されるが、ここでは、分析精度の高い電量滴定法を採用する。また、水分量測定機器には、市販のカールフィッシャー水分計(例えば京都電子工業(株)製のMKC-610)を用いることができる。
 正極に含まれる水分の質量割合は、窒素雰囲気中で、新鮮な陰極液で満たされた水分量測定装置のセルに試料を投入して測定する。試料の重量は、例えば0.05g~5gの範囲内とすればよい。
 正極に含ませる導電性炭素材料としては、黒鉛、カーボンブラック、炭素繊維などが挙げられる。導電性炭素材料は、良好な導電経路を確保しやすいものの、正極活物質に残存する炭酸ナトリウムとの間での副反応の原因となる。しかし、本発明においては、炭酸ナトリウムの残存量を大きく低減しているため、副反応を十分に抑制しつつ、良好な導電性を確保することができる。導電性炭素材料のうちでは、少量使用で十分な導電経路を形成しやすいことから、カーボンブラックが特に好ましい。カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック、サーマルブラック等を挙げることができる。
導電性炭素材料の量は、正極活物質100質量部あたり、2質量部~15質量部が好ましく、3質量部~8質量部がより好ましい。
 結着剤は、正極活物質同士を結合させるとともに、正極活物質を正極集電体に固定する役割を果たす。結着剤としては、フッ素樹脂、ポリアミド、ポリイミド、ポリアミドイミド等を用いることができる。フッ素樹脂としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等を用いることができる。結着剤の量は、正極活物質100質量部あたり、1質量部~10質量部が好ましく、3質量部~5質量部がより好ましい。
 通常、正極活物質に含まれる炭酸ナトリウムの質量割合を500ppm以下に制限することで、正極全体に含まれる炭酸ナトリウムの質量割合も500ppmに制限される。ただし、導電性炭素材料または結着剤が微量の炭酸ナトリウムを含有している場合、正極全体に含まれる炭酸ナトリウム量はその分多くなる。このような場合でも、正極に含まれる炭酸ナトリウムの質量割合を500ppmに制限することが、副反応を効果的に抑制する観点から望ましい。
 正極集電体2aとしては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。正極集電体を構成する金属としては、正極電位で安定であることから、アルミニウムやアルミニウム合金が好ましいが、特に限定されない。アルミニウム合金を用いる場合、アルミニウム以外の金属成分(例えばFe、Si、Ni、Mnなど)は0.5質量%以下であることが好ましい。正極集電体となる金属箔の厚さは、例えば10μm~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100μm~600μmである。正極集電体2aには、集電用のリード片2cを形成してもよい。リード片2cは、図1に示すように、正極集電体と一体に形成してもよく、別途形成したリード片を溶接などで正極集電体に接続してもよい。
[負極]
 図3は、本発明の一実施形態に係る負極の正面図であり、図4は図3のIV-IV線断面図である。
 負極3は、負極集電体3aおよび負極集電体3aに付着した負極活物質層3bを含む。
負極活物質層3bには、例えば、ナトリウム、ナトリウム合金またはナトリウムと合金化可能な金属を用いることができる。このような負極は、例えば、第1金属により形成された負極集電体と、負極集電体の表面の少なくとも一部を被覆する第2金属とを含む。ここで、第1金属は、ナトリウムと合金化しない金属であり、第2金属は、ナトリウムと合金化する金属である。
 負極に含まれる水分の質量割合は300ppm以下であることが望ましい。例えば、負極を90℃~200℃の温度で、2時間~24時間減圧乾燥させることで、負極の水分の質量割合を300ppm以下にまで低減することができる。乾燥雰囲気の圧力は、例えば10Pa以下であり、好ましくは1Pa以下に制御される。正極と同様に、処理雰囲気の空気を予め不活性ガスや露点温度-50℃以下のドライエアーに置換しておくことで、より効果的に水分を除去できる。
 負極に含まれる水分の質量割合は、試料として負極を用いること以外、正極と同様にしてカールフィッシャー法により測定すればよい。
 第1金属により形成された負極集電体としては、金属箔、金属繊維製の不織布、金属多孔体シートなどが用いられる。第1金属としては、ナトリウムと合金化せず、負極電位で安定であることから、アルミニウム、アルミニウム合金、銅、銅合金、ニッケル、ニッケル合金などが好ましい。これらのうち、軽量性に優れる点では、アルミニウムやアルミニウム合金が好ましい。アルミニウム合金は、例えば、正極集電体として例示したものと同様のアルミニウム合金を用いてもよい。負極集電体となる金属箔の厚さは、例えば10μm~50μmであり、金属繊維の不織布や金属多孔体シートの厚さは、例えば100μm~600μmである。負極集電体3aには、集電用のリード片3cを形成してもよい。リード片3cは、図3に示すように、負極集電体と一体に形成してもよく、別途形成したリード片を溶接などで負極集電体に接続してもよい。
 第2金属としては、亜鉛、亜鉛合金、錫、錫合金、ケイ素、ケイ素合金などを挙げることができる。これらのうち、溶融塩に対する濡れ性が良好である点において、亜鉛や亜鉛合金が好ましい。第2金属により形成された負極活物質層の厚さは、例えば0.05μm~1μmが好適である。なお、亜鉛合金または錫合金における亜鉛または錫以外の金属成分(例えばFe、Ni、Si、Mnなど)は0.5質量%以下とすることが好ましい。
 好ましい負極の一形態としては、アルミニウムまたはアルミニウム合金(第1金属)により形成された負極集電体と、負極集電体の表面の少なくとも一部を被覆する亜鉛、亜鉛合金、錫または錫合金(第2金属)とを具備する負極を例示することができる。このような負極は、高容量であり、長期間に亘って劣化しにくい。
 第2金属による負極活物質層は、例えば、第2金属のシートを負極集電体に貼り付けたり、圧着したりすることにより得ることができる。また、真空蒸着法、スパッタリング法などの気相法により、第2金属をガス化させて負極集電体に付着させてもよく、あるいは、めっき法などの電気化学的方法により、第2金属の微粒子を負極集電体に付着させてもよい。気相法やめっき法によれば、薄く均一な負極活物質層を形成することができる。
 また、負極活物質層3bは、負極活物質を必須成分として含み、任意成分として結着剤、導電材等を含む合剤層であってもよい。負極に用いる結着剤および導電材としても、正極の構成要素として例示した材料を用いることができる。結着剤の量は、負極活物質100質量部あたり、1質量部~10質量部が好ましく、3質量部~5質量部がより好ましい。導電材の量は、負極活物質100質量部あたり、5質量部~15質量部が好ましく、5質量部~10質量部がより好ましい。
 負極合剤層を構成する負極活物質としては、熱的安定性や電気化学的安定性の観点から、ナトリウム含有チタン化合物、難黒鉛化性炭素(ハードカーボン)等が好ましく用いられる。ナトリウム含有チタン化合物としては、チタン酸ナトリウムが好ましく、より具体的には、Na2Ti37およびNa4Ti512よりなる群から選択される少なくとも1種を用いることが好ましい。また、チタン酸ナトリウムのTiまたはNaの一部を他元素で置換してもよい。例えば、Na2-x5 xTi3-y6 y7(0≦x≦3/2、0≦y≦8/3、M5およびM6は、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)や、Na4-x7 xTi5-y8 y12(0≦x≦11/3、0≦y≦14/3、M7およびM8は、それぞれ独立にTiおよびNa以外の金属元素であって、例えばNi、Co、Mn、Fe、AlおよびCrよりなる群から選択される少なくとも1種である)などを用いることもできる。ナトリウム含有チタン化合物は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。ナトリウム含有チタン化合物は、難黒鉛化性炭素と組み合わせて用いてもよい。なお、M5およびM7はNaサイト、M6およびM8はTiサイトを占める元素である。
 難黒鉛化性炭素とは、不活性雰囲気中で加熱しても黒鉛構造が発達しない炭素材料であり、微小な黒鉛の結晶がランダムな方向に配置され、結晶層と結晶層との間にナノオーダーの空隙を有する材料をいう。代表的なアルカリ金属であるナトリウムイオンの直径は、0.95オングストロームであることから、空隙の大きさは、これより十分に大きいことが好ましい。難黒鉛化性炭素の平均粒径(体積粒度分布の累積体積50%における粒径D50)は、例えば3μm~20μmであればよく、5μm~15μmであることが、負極における負極活物質の充填性を高め、かつ電解質(溶融塩)との副反応を抑制する観点から望ましい。また、難黒鉛化性炭素の比表面積は、ナトリウムイオンの受け入れ性を確保するとともに、電解質との副反応を抑制する観点から、例えば1m2/g~10m2/gであればよく、3m2/g~8m2/gであることが好ましい。難黒鉛化性炭素は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
[電解質(溶融塩)]
 電解質(溶融塩)としては、電池の作動温度域(好ましくは90℃以下、更に好ましくは70℃以下)でイオン性液体となる塩が使用される。溶融塩は、カチオンとして、溶融塩電池内において電荷のキャリアとなるナトリウムイオンを少なくとも含む。
 電解質に含まれるナトリウムイオン濃度は、電解質に含まれるカチオンの2モル%以上、更には5モル%以上を占めていることが好ましい。このような電解質は、優れたナトリウムイオン伝導性を有し、高電流による充放電を行う場合でも、高容量を達成することが容易となる。
 溶融塩としては、例えば、N(SO21)(SO22)・M(ただし、X1およびX2は、それぞれ独立に、フッ素原子または炭素数1~8のフルオロアルキル基であり、Mはアルカリ金属または窒素含有へテロ環を有する有機カチオンである)で表される化合物を用いることができる。この場合、N(SO21)(SO22)・Mは、少なくともN(SO21)(SO22)・Naを含む。
 ナトリウム溶融塩電池において、正極と負極との間にはセパレータが介在しており、セパレータの空隙内には溶融塩が含浸されている。電池作製前の溶融塩に含まれる水分量は、例えば質量比で100ppm以下、更には50ppm以下、特に10ppm以下とすることが好ましい。このような溶融塩と、それぞれが十分に水分量を低減した正極、負極およびセパレータとを用いることで、ナトリウム溶融塩電池内に含まれる水分量(正極、負極およびセパレータに由来する水分を含む)を、十分に小さく低減することができる。
 X1およびX2で表されるフルオロアルキル基においては、アルキル基の一部の水素原子がフッ素原子で置き換わっていてもよく、全ての水素原子がフッ素原子で置き換わったパーフルオロアルキル基であってもよい。イオン性液体の粘度を低減する観点から、X1およびX2のうち少なくとも一方は、パーフルオロアルキル基であるのが好ましく、X1およびX2の双方が、パーフルオロアルキル基であるのがさらに好ましい。炭素数を1~8とすることで、電解質の融点の上昇を抑制することができ、低粘度のイオン性液体を得るのに有利となる。特に低粘度のイオン性液体を得る観点からは、パーフルオロアルキル基の炭素数は、1~3が好ましく、1または2であるのが更に好ましい。具体的には、X1およびX2は、それぞれ独立に、トリフルオロメチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基などであればよい。
 また、N(SO21)(SO22)で表されるビススルフォニルアミドアニオンの具体例としては、ビス(フルオロスルフォニル)アミドアニオン(FSA-);ビス(トリフルオロメチルスルフォニル)アミドアニオン(TFSA-)、ビス(ペンタフルオロエチルスルフォニル)アミドアニオン、フルオロスルフォニルトリフルオロメチルスルフォニルアミドアニオン(N(FSO2)(CF3SO2))などが挙げられる。
 Mで示されるナトリウム以外のアルカリ金属としては、カリウム、リチウム、ルビジウムおよびセシウムが挙げられる。これらのうちでは、カリウムが好ましい。
 Mで示される窒素含有へテロ環を有する有機カチオンとしては、ピロリジニウム骨格、イミダゾリウム骨格、ピリジニウム骨格、ピペリジニウム骨格等を有するカチオンを用いることができる。これらの中でも、ピロリジニウム骨格を有するカチオンは、融点の低い溶融塩を形成することができ、かつ高温でも安定である点で好ましい。
 ピロリジニウム骨格を有する有機カチオンは、例えば、一般式(1):
Figure JPOXMLDOC01-appb-C000001
で表される。ただし、R1およびR2は、それぞれ独立に、炭素数1~8のアルキル基である。炭素数を1~8とすることで、電解質の融点の上昇を抑制することができ、低粘度のイオン性液体を得るのに有利となる。特に低粘度のイオン性液体を得る観点からは、アルキル基の炭素数は、1~3が好ましく、1または2であるのが更に好ましい。具体的には、R1およびR2は、それぞれ独立に、メチル基、エチル基、プロピル基、イソプロピル基などであればよい。
 ピロリジニウム骨格を有する有機カチオンの具体例としては、メチルプロピルピロリジニウムカチオン、エチルプロピルピロリジニウムカチオン、メチルエチルピロリジニウムカチオン、ジメチルピロリジニウムカチオン、ジエチルピロリジニウムカチオンなどが挙げられる。これらは単独で用いてもよく、複数種を組み合わせて用いてもよい。これらのうちでは、特に熱的安定性および電気化学的安定性が高いことから、メチルプロピルピロリジニウムカチオン(Py13+)が好ましい。
 溶融塩の具体例としては、ナトリウムイオンとFSA-との塩(NaFSA)、ナトリウムイオンとTFSA-との塩(NaTFSA)、Py13+とFSA-との塩(Py13FSA)、Py13+とTFSA-との塩(Py13TFSA)などが挙げられる。
 溶融塩の融点は、低い方が好ましい。溶融塩の融点を低下させる観点からは、2種以上の塩の混合物を用いるのが好ましい。例えば、ナトリウムと、ビススルフォニルアミドアニオンとの第1塩を用いる場合、ナトリウム以外のカチオンと、ビススルフォニルアミドアニオンとの第2塩と併用することが好ましい。第1塩および第2塩を形成するビススルフォニルアミドアニオンは、同じであっても異なってもよい。
 第1塩として、NaFSA、NaTFSAなどを用いる場合、第2塩としては、カリウムイオンとFSA-との塩(KFSA)、カリウムとTFSA-との塩(KTFSA)などが好ましい。より具体的には、NaFSAとKFSAとの混合物や、NaTFSAとKTFSAとの混合物を用いることが好ましい。この場合、第1塩と第2塩とのモル比(第1塩/第2塩)は、電解質の融点、粘度およびイオン伝導性のバランスを考慮すると、例えば、40/60~70/30であり、45/55~65/35であることが好ましく、50/50~60/40であることが更に好ましい。
 第1塩としてPy13の塩を用いる場合、そのような塩は融点が低く、常温でも低粘度である。ただし、ナトリウム塩、カリウム塩などを第2塩として併用することにより、更に低融点となる。第1塩として、Py13FSA、Py13TFSAなどを用いる場合、第2塩としては、NaFSA、NaTFSAなどが好ましい。より具体的には、Py13FSAとNaFSAとの混合物や、Py13TFSAとNaTFSAとの混合物を用いることが好ましい。この場合、電解質の融点、粘度およびイオン伝導性のバランスを考慮すると、第1塩と第2塩とのモル比(第1塩/第2塩)は、例えば98/2~80/20であればよく、95/5~85/15であることが好ましい。
 電解質には、溶融塩以外に、様々な添加剤を含ませることができる。ただし、イオン伝導性や熱安定性を確保する観点から、電池内に充填される電解質の90質量%~100質量%、更には95質量%~100質量%が溶融塩により占められていることが好ましい。
[セパレータ]
 セパレータの材質は、電池の使用温度を考慮して選択すればよいが、電解質との副反応を抑制する観点からは、ガラス繊維、シリカ含有ポリオレフィン、フッ素樹脂、アルミナ、ポリフェニレンサルファイト(PPS)などを用いることが好ましい。なかでもガラス繊維の不織布は、安価であり、耐熱性も高い点で好ましい。また、シリカ含有ポリオレフィンやアルミナは、耐熱性に優れる点で好ましい。また、フッ素樹脂やPPSは、耐熱性と耐腐食性の点で好ましい。特にPPSは、溶融塩に含まれるフッ素に対する耐性に優れている。
 セパレータの水分量は、例えば質量比で10ppm~200ppmであることが好ましい。このような水分量を有するセパレータは、例えば、90℃以上(より好ましくは90℃~300℃)の乾燥温度で、10Pa以下、好ましくは1Pa以下、より好ましくは0.4Pa以下の減圧環境中で、乾燥することで得られる。正極や負極と同様に、処理雰囲気の空気を予め不活性ガスや露点温度-50℃以下のドライエアーに置換しておくことで、より効果的に水分を除去できる。セパレータに含まれる水分の質量割合は、試料としてセパレータを用いること以外、正極および負極と同様にしてカールフィッシャー法により測定すればよい。
 セパレータの厚さは、10μm~500μm、更には20μm~50μmであることが好ましい。この範囲の厚さであれば、内部短絡を有効に防止でき、かつ電極群に占めるセパレータの容積占有率を低く抑えることができるため、高い容量密度を得ることができるからである。
[電極群]
 溶融塩電池は、上記の正極と負極を含む電極群および電解質を、電池ケースに収容した状態で用いられる。電極群は、正極と負極とを、これらの間にセパレータを介在させて積層または捲回することにより形成される。このとき、金属製の電池ケースを用いるとともに、正極および負極の一方を電池ケースと導通させることにより、電池ケースの一部を第1外部端子として利用することができる。一方、正極および負極の他方は、電池ケースと絶縁された状態で電池ケース外に導出された第2外部端子と、リード片などを用いて接続される。
 次に、本発明の一実施形態に係るナトリウム溶融塩電池の構造について説明する。ナトリウム溶融塩電池は、正極、負極、正極と負極との間に介在するセパレータおよび電解質を含む。電解質は、少なくともナトリウムイオンを含む溶融塩からなる。なかでも、設計容量が10Ah以上である比較的大型のナトリウム溶融塩電池は、ガス発生の影響を受けやすいことから、本発明に係る正極活物質を用いることにより、副反応を抑制することが非常に有効である。また、本発明に係る正極活物質は、例えば33Ah以下、特に15Ah~30Ahの設計容量を有する比較的大容量のナトリウム溶融塩電池に用いるのに特に有効である。
 ナトリウム溶融塩電池の一実施形態について、図面を参照しながら説明する。ただし、本発明に係るナトリウム溶融塩電池の構造は、以下の構造に限定されるものではない。
 図5は、電池ケースの一部を切り欠いた溶融塩電池の斜視図であり、図6は、図5におけるVI-VI線断面を概略的に示す縦断面図である。
 溶融塩電池100は、積層型の電極群11、電解質(図示せず)およびこれらを収容する角型のアルミニウム製の電池ケース10を具備する。電池ケース10は、上部が開口した有底の容器本体12と、上部開口を塞ぐ蓋部13とで構成されている。溶融塩電池100を組み立てる際には、まず、電極群11が構成され、電池ケース10の容器本体12に挿入される。その後、容器本体12に溶融状態の電解質を注液し、電極群11を構成するセパレータ1、正極2および負極3の空隙に電解質を含浸させる工程が行われる。あるいは、加熱された溶融状態の電解質(溶融塩)に電極群を含浸し、その後、電解質を含んだ状態の電極群を容器本体12に収容してもよい。
 蓋部13の一方側寄りには、電池ケース10と導通した状態で蓋部13を貫通する外部正極端子14が設けられ、蓋部13の他方側寄りの位置には、電池ケース10と絶縁された状態で蓋部13を貫通する外部負極端子15が設けられている。蓋部13の中央には、電子ケース10の内圧が上昇したときに内部で発生したガスを放出するための安全弁16が設けられている。
 積層型の電極群11は、いずれも矩形のシート状である、複数の正極2と複数の負極3およびこれらの間に介在する複数のセパレータ1により構成されている。図6では、セパレータ1は、正極2を包囲するように袋状に形成されているが、セパレータの形態は特に限定されない。複数の正極2と複数の負極3は、電極群11内で積層方向に交互に配置される。
 各正極2の一端部には、正極リード片2cを形成してもよい。複数の正極2の正極リード片2cを束ねるとともに、電池ケース10の蓋部13に設けられた外部正極端子14に接続することにより、複数の正極2が並列に接続される。同様に、各負極3の一端部には、負極リード片3cを形成してもよい。複数の負極3の負極リード片3cを束ねるとともに、電池ケース10の蓋部13に設けられた外部負極端子15に接続することにより、複数の負極3が並列に接続される。正極リード片2cの束と負極リード片3cの束は、互いの接触を避けるように、電極群11の一端面の左右に、間隔を空けて配置することが望ましい。
 外部正極端子14および外部負極端子15は、いずれも柱状であり、少なくとも外部に露出する部分が螺子溝を有する。各端子の螺子溝にはナット7が嵌められ、ナット7を回転することにより蓋部13に対してナット7が固定される。各端子の電池ケース内部に収容される部分には、鍔部8が設けられており、ナット7の回転により、鍔部8が、蓋部13の内面に、ワッシャ9を介して固定される。
 次に、実施例に基づいて、本発明をより具体的に説明する。ただし、以下の実施例は、本発明を限定するものではない。
《実施例1》
(正極活物質の調製)
 平均粒径D50が2.0μmの炭酸ナトリウム(Na2CO3)と、平均粒径D50が1.5μmの酸化クロム(Cr23)とを、ナトリウムとクロムのモル比が1:1.01となる量で混合した。得られた混合物を、窒素雰囲気中、900℃で8時間加熱して、亜クロム酸ナトリウム(NaCrO2)を含む正極活物質を得た。
(炭酸ナトリウム量の測定)
 次に、以下の方法で正極活物質に含まれる炭酸ナトリウムの質量割合を求めた。
 所定量のイオン交換水と、得られた正極活物質とを混合して、測定用試料を得た。測定用試料における炭酸イオン(CO3 2-)濃度を、イオンクロマトグラフ(日本ダイオネクス株式会社製のイオンクロマトグラフ分析装置:ICS-3000)により求めたところ、測定できなかった。したがって、正極活物質に含まれる炭酸ナトリウムの質量割合は、測定限界である1ppm未満であることがわかった。
(正極の作製)
 得られた正極活物質に対して粉砕、分級を行い、平均粒径を10μmとした。平均粒径10μmの正極活物質85質量部、アセチレンブラック(導電性炭素材料)10質量部およびポリフッ化ビニリデン(結着剤)5質量部を、分散媒であるN-メチル-2-ピロリドン(NMP)に分散させ、正極ペーストを調製した。得られた正極ペーストを、厚さ20μmのアルミニウム箔の両面に塗布し、乾燥させ、圧延し、所定の寸法に裁断して、両面に厚さ80μmの正極活物質層を有する正極を作製した。正極の寸法は、幅46mm、長さ46mm、総厚180μmとした。
(負極の作製)
 厚さ20μmのアルミニウム箔の両面に、厚さ100μmのナトリウム金属を貼り付けた。アルミニウム箔には、アルミニウム製の負極リードを溶接した。
(セパレータ)
 厚さ50μm、空隙率90%のポリオレフィン製のセパレータを準備した。セパレータは、50×50mmの寸法に裁断した。
(電解質)
 ナトリウムビス(フルオロスルフォニル)アミド(NaFSA)とカリウムビス(フルオロスルフォニル)アミド(KFSA)とのモル比56:44の混合物からなる電解質を調製した。この電解質(溶融塩)の融点は61℃である。
(ナトリウム溶融塩電池の作製)
 正極、負極およびセパレータを、0.3Paの減圧下で、90℃以上で加熱して乾燥させた。乾燥は、正極および負極の水分量が、それぞれ50ppmおよび30ppmになり、セパレータの水分量が100ppmになるまで行った。
 正極、負極およびセパレータの水分量は、それぞれ5gを測定試料として、水分量測定装置(京都電子工業株式会社製のMKC-610)を用いてカールフィッシャー法(電量滴定法)により測定した。
 一方、溶融塩に、露点温度-50℃以下の雰囲気中で、固体状のナトリウムを、溶融塩100質量部あたり10質量部浸漬し、90℃で攪拌した。その結果、溶融塩の水分量は1ppm未満に低減した。
 正極と負極とを、これらの間にセパレータを介在させて積層し、電極群を作製した。得られた電極群をアルミニウム製のケースに収容し、ケース内に電解質を注液して、設計容量500mAhのナトリウム溶融塩電池を作製した。
[評価]
(i)サイクル特性
 得られたナトリウム溶融塩電池を恒温室内で90℃になるまで加熱し、温度が安定した状態で、以下の(1)~(3)の条件を1サイクルとして、1000サイクル充放電を行い、1サイクル目の放電容量に対する1000サイクル目の放電容量(容量維持率)を求めた。結果を表1に示す。
 (1)充電電流0.2Cで、充電終止電圧3.5Vまで充電
 (2)3.5Vの定電圧で終止電流0.01Cまで充電
 (3)放電電流0.2Cで、放電終止電圧2.5Vまで放電
(ii)ガス発生の有無の評価
 (i)のサイクル特性評価後の電池の厚さを、ダイヤルゲージを用いて測定した。この厚さを、サイクル特性評価前の電池の厚さと比較することにより、ガスによる電池膨れの有無を確認した。なお、電池膨れが初期厚さの3%未満であるとき、電池膨れ「なし」と判断し、電池膨れが初期厚さの3%以上であるとき、電池膨れ「あり」と判断した。
《実施例2》
 正極活物質の調製において、炭酸ナトリウムと酸化クロムとを、ナトリウムとクロムのモル比が1:1となる量で混合したこと以外、実施例1と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、100ppmであった。
《実施例3》
 正極活物質の調製において、加熱時間を5時間としたこと以外、実施例2と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、400ppmであった。
《実施例4》
 正極活物質の調製において、加熱時間を5時間としたこと以外、実施例1と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、200ppmであった。
《実施例5》
 正極活物質の調製において、加熱温度を850℃としたこと以外、実施例1と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、500ppmであった。
《比較例1》
 正極活物質の調製において、加熱温度を850℃とし、加熱時間を5時間としたこと以外、実施例2と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、0.1%(1000ppm)であった。
《比較例2》
 正極活物質の調製において、炭酸ナトリウムと酸化クロムとを、ナトリウムとクロムのモル比が1:0.99となる量で混合したこと以外、実施例1と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、900ppmであった。
《比較例3》
 正極活物質の調製において、加熱温度を850℃としたこと以外、実施例2と同様にして、正極活物質を調製した。得られた正極活物質に含まれる炭酸ナトリウムの質量割合は、600ppmであった。
 上記の正極活物質を用いたこと以外、実施例1と同様にして各ナトリウム溶融塩電池を作製し、同様の評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 表1より、正極活物質に含まれる炭酸ナトリウムの質量割合が500ppm以下である実施例1~5のナトリウム溶融塩電池は、いずれも電池膨れがみられなかった。また、実施例1~5の電池は、いずれも優れたサイクル特性を示した。これは、炭酸ナトリウムの質量割合を低減したことで、炭酸ナトリウムに由来する副反応が十分に抑制されたためであると考えられる。
 一方、正極活物質に含まれる炭酸ナトリウムの質量割合が500ppmを超える比較例1~3のナトリウム溶融塩電池は、いずれも多量の炭酸ガスが発生したことによると思われる、電池の膨れが確認された。また、比較例1~3の電池は、いずれも、実施例1~5の電池に比べて容量維持率が大きく低下していた。これは、正極に含まれる導電性炭素材料が、正極活物質に残存する炭酸ナトリウムと反応して失われ、十分な導電経路を確保できなくなったためと考えられる。
 本発明に係るナトリウム溶融塩電池用正極活物質によれば、炭酸ナトリウムと導電性炭素材料の副反応に由来する炭酸ガスの発生が抑制されるため、優れたサイクル特性および信頼性を有するナトリウム溶融塩電池を提供することができる。本発明に係るナトリウム溶融塩電池は、例えば、家庭用または工業用の大型電力貯蔵装置、電気自動車、ハイブリッド自動車などの電源として有用である。
1:セパレータ
2:正極
2a:正極集電体
2b:正極活物質層
2c:正極リード片
3:負極
3a:負極集電体
3b:負極活物質層
3c:負極リード片
7:ナット
8:鍔部
9:ワッシャ
10:電池ケース
11:電極群
12:容器本体
13:蓋部
14:外部正極端子
15:外部負極端子
16:安全弁
100:溶融塩電池

Claims (8)

  1.  電気化学的にナトリウムイオンを吸蔵および放出可能であるナトリウム含有金属酸化物を含み、炭酸ナトリウムの質量割合が500ppm以下である、ナトリウム溶融塩電池用正極活物質。
  2.  前記ナトリウム含有金属酸化物が、一般式:Na1-x1 xCr1-y2 y2(0≦x≦2/3、0≦y≦0.7であり、M1およびM2は、それぞれ独立にCrおよびNa以外の金属元素である)で表される化合物である、請求項1に記載のナトリウム溶融塩電池用正極活物質。
  3.  正極集電体および前記正極集電体に付着した正極活物質層を含み、
     前記正極活物質層が、請求項1または請求項2に記載の正極活物質と、導電性炭素材料とを含む、ナトリウム溶融塩電池用正極。
  4.  前記正極に含まれる炭酸ナトリウムの質量割合が500ppm以下である、請求項3に記載のナトリウム溶融塩電池用正極。
  5.  前記正極に含まれる水分の質量割合が200ppm以下である、請求項3または請求項4に記載のナトリウム溶融塩電池用正極。
  6.  正極、負極、前記正極と前記負極との間に介在するセパレータおよび電解質を含み、
     前記電解質が、少なくともナトリウムイオンを含む溶融塩であり、
     前記正極が、請求項3~請求項5のいずれか1項に記載のナトリウム溶融塩電池用正極である、ナトリウム溶融塩電池。
  7.  前記電解質に含まれる前記ナトリウムイオンの濃度が、前記電解質に含まれるカチオンの2モル%以上を占めている、請求項6に記載のナトリウム溶融塩電池。
  8.  設計容量が、10Ah以上である、請求項6または請求項7に記載のナトリウム溶融塩電池。
PCT/JP2013/084043 2013-03-08 2013-12-19 ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池 WO2014136357A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157023898A KR20150128683A (ko) 2013-03-08 2013-12-19 나트륨 용융염 전지용 정극 활물질, 나트륨 용융염 전지용 정극 및 나트륨 용융염 전지
US14/773,665 US20160049694A1 (en) 2013-03-08 2013-12-19 Positive electrode active material for sodium molten salt batteries, positive electrode for sodium molten salt batteries, and sodium molten salt battery
CN201380074341.7A CN105027348B (zh) 2013-03-08 2013-12-19 钠熔融盐电池用正极活性材料、钠熔融盐电池用正极和钠熔融盐电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047169 2013-03-08
JP2013047169A JP2014175179A (ja) 2013-03-08 2013-03-08 ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池

Publications (1)

Publication Number Publication Date
WO2014136357A1 true WO2014136357A1 (ja) 2014-09-12

Family

ID=51490897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084043 WO2014136357A1 (ja) 2013-03-08 2013-12-19 ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池

Country Status (5)

Country Link
US (1) US20160049694A1 (ja)
JP (1) JP2014175179A (ja)
KR (1) KR20150128683A (ja)
CN (1) CN105027348B (ja)
WO (1) WO2014136357A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114141A1 (ja) * 2015-01-14 2017-12-07 国立大学法人 東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106219574B (zh) * 2016-05-19 2018-01-12 苏志国 熔融盐的制备方法
KR20190140415A (ko) * 2018-06-11 2019-12-19 주식회사 아모그린텍 플렉서블 배터리, 이의 제조방법 및 이를 포함하는 보조배터리
CN111995248B (zh) * 2020-07-09 2022-10-04 中国人民解放军63653部队 一种用于污染土壤原位玻璃固化的启动剂材料配方
CN114583138A (zh) * 2022-03-18 2022-06-03 杭州怡莱珂科技有限公司 一种钠离子载体-碳复合粉体与自隔式电极及制备方法
CN116995222B (zh) * 2023-09-26 2023-12-05 深圳华钠新材有限责任公司 一种低残碱含量的钠离子正极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108716A1 (ja) * 2010-03-05 2011-09-09 住友電気工業株式会社 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池
WO2011111566A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 電池用負極材料、電池用負極前駆体材料、及び電池
JP2012041237A (ja) * 2010-08-20 2012-03-01 Sumitomo Electric Ind Ltd NaCrO2材、溶融塩電池及びNaCrO2材の製造方法
WO2012073653A1 (ja) * 2010-11-30 2012-06-07 住友電気工業株式会社 溶融塩電池
JP2012248320A (ja) * 2011-05-25 2012-12-13 Sumitomo Electric Ind Ltd 電極製造方法、電池製造方法、電極及び電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296264A (ja) * 2003-03-27 2004-10-21 Sanyo Electric Co Ltd アルカリ二次電池の製造方法
JP5636994B2 (ja) * 2011-02-04 2014-12-10 住友電気工業株式会社 亜クロム酸ナトリウムの製造方法
JP5644567B2 (ja) * 2011-02-14 2014-12-24 住友電気工業株式会社 2次電池の正極活物質、2次電池の正極、および2次電池、ならびに正極活物質の製造方法
JP2012186142A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 電気化学デバイス用電極およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108716A1 (ja) * 2010-03-05 2011-09-09 住友電気工業株式会社 電池用負極前駆体材料の製造方法、電池用負極前駆体材料、及び電池
WO2011111566A1 (ja) * 2010-03-12 2011-09-15 住友電気工業株式会社 電池用負極材料、電池用負極前駆体材料、及び電池
JP2012041237A (ja) * 2010-08-20 2012-03-01 Sumitomo Electric Ind Ltd NaCrO2材、溶融塩電池及びNaCrO2材の製造方法
WO2012073653A1 (ja) * 2010-11-30 2012-06-07 住友電気工業株式会社 溶融塩電池
JP2012248320A (ja) * 2011-05-25 2012-12-13 Sumitomo Electric Ind Ltd 電極製造方法、電池製造方法、電極及び電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016114141A1 (ja) * 2015-01-14 2017-12-07 国立大学法人 東京大学 蓄電装置用水系電解液、及び当該水系電解液を含む蓄電装置

Also Published As

Publication number Publication date
KR20150128683A (ko) 2015-11-18
CN105027348B (zh) 2017-08-08
CN105027348A (zh) 2015-11-04
JP2014175179A (ja) 2014-09-22
US20160049694A1 (en) 2016-02-18

Similar Documents

Publication Publication Date Title
CA3139800C (en) Rechargeable battery cell
JP6065443B2 (ja) 耐熱電池およびその充放電方法
WO2014136357A1 (ja) ナトリウム溶融塩電池用正極活物質、ナトリウム溶融塩電池用正極およびナトリウム溶融塩電池
WO2014083951A1 (ja) 溶融塩電池およびその製造方法
WO2015022792A1 (ja) リチウムイオン二次電池、充放電システムおよび充電方法
WO2014199664A1 (ja) 溶融塩電池
KR20180041113A (ko) 전해액 및 리튬 이온 이차 전지
JPWO2018101391A1 (ja) リチウムイオン二次電池
JP2017124951A (ja) 遮水性ナトリウムイオン伝導膜およびナトリウム電池
JP6252220B2 (ja) ナトリウムイオン二次電池、充放電方法および充放電システム
WO2014171196A1 (ja) 溶融塩電解質及びナトリウム溶融塩電池
JP6194633B2 (ja) ナトリウム溶融塩電池
JP4701923B2 (ja) イオン伝導材料およびその利用
WO2015194372A1 (ja) ナトリウムイオン二次電池
WO2014181571A1 (ja) ナトリウム溶融塩電池およびこれに用いる溶融塩電解質またはイオン性液体
JP2016038945A (ja) 溶融塩電解質および溶融塩電池
JP2016038946A (ja) 溶融塩電池およびその製造方法
JP2015022907A (ja) ナトリウム溶融塩電池
JP6375964B2 (ja) ナトリウムイオン二次電池用負極およびナトリウムイオン二次電池
JP2014238935A (ja) ナトリウム溶融塩電池に用いるイオン液体および溶融塩電解質、ナトリウム溶融塩電池、ならびにナトリウム溶融塩電池用溶融塩電解質の製造方法
JP2015041433A (ja) ナトリウム溶融塩電池
JP5748178B2 (ja) 溶融塩電池
JP6369251B2 (ja) ナトリウム溶融塩電池用正極、およびそれを用いたナトリウム溶融塩電池
JP2014235912A (ja) ナトリウム溶融塩電池およびその製造方法
CN115136343A (zh) 锂离子二次电池用电极及锂离子二次电池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380074341.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157023898

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14773665

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13876976

Country of ref document: EP

Kind code of ref document: A1