WO2014134967A1 - Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci - Google Patents

Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci Download PDF

Info

Publication number
WO2014134967A1
WO2014134967A1 PCT/CN2013/091128 CN2013091128W WO2014134967A1 WO 2014134967 A1 WO2014134967 A1 WO 2014134967A1 CN 2013091128 W CN2013091128 W CN 2013091128W WO 2014134967 A1 WO2014134967 A1 WO 2014134967A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
battery
lithium ion
electrode film
Prior art date
Application number
PCT/CN2013/091128
Other languages
English (en)
Chinese (zh)
Inventor
王辰云
刘现军
刘杨
方燕群
王德宇
Original Assignee
中国科学院宁波材料技术与工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院宁波材料技术与工程研究所 filed Critical 中国科学院宁波材料技术与工程研究所
Publication of WO2014134967A1 publication Critical patent/WO2014134967A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries.
  • the present invention relates to a positive electrode film for a lithium ion battery and its preparation and use. Background technique
  • lithium-ion batteries Since its commercialization in the early 1980s, lithium-ion batteries have been widely used in portable electronic devices such as mobile phones, notebook computers, and compact cameras because of their high voltage, high specific energy, long cycle life, and no environmental pollution. Lithium-ion batteries can also replace traditional non-renewable resources such as oil and natural gas, and are more widely used in power tools, electric bicycles, electric vehicles, solar cells and wind energy storage, satellite and aerospace, etc. It plays an important role in saving non-renewable energy.
  • lithium ion cathode materials mainly include lithium cobaltate, lithium nickelate, lithium nickel cobaltate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium manganate, lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate. Compounds and their modified complexes.
  • the commercial anode materials mainly include surface-modified natural graphite, mesocarbon microspheres, lithium titanate, a small amount of amorphous carbon, hard carbon, artificial graphite, and carbon silicon materials, silicon materials, and nitrogen-based materials under study. , bismuth based materials, metal alloys, etc.
  • the electrolyte is mainly a mixture of one or more of an organic solvent such as a carbonate, an ether or a nitrile and a solute such as lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium dioxalate borate or lithium difluorooxalate borate. Solution.
  • an organic solvent such as a carbonate, an ether or a nitrile
  • a solute such as lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium dioxalate borate or lithium difluorooxalate borate.
  • lithium ion batteries can provide energy transfer medium and an electrolyte solute material in only the positive electrode is a lithium ion Li + in the battery charging and discharging process. It has been proved that in the first charge-discharge cycle of a lithium ion battery, a solid electrolyte film (SEI) is formed on the surface of the negative electrode material of the lithium battery, and lithium ions in the lithium ion and the electrolyte are accompanied by the cycle of the lithium battery. It cannot be completely removed after being embedded in the negative electrode material. These two conditions lead to a decrease in the capacity of the lithium battery and a decrease in the cycle efficiency, especially in the first cycle.
  • SEI solid electrolyte film
  • the commonly used battery additives include three aspects of negative electrode additive, electrolyte additive and conductive agent additive, which are applied to negative electrode film formation, flame retardant and anti-overcharge functions.
  • a negative electrode additive is disclosed, wherein the negative electrode additive has the general formula F (CF2CF2) m* (CH2CH20) n-R.
  • the addition of the fluorine-containing ether compound can make the anode slurry mix more uniformly, increase the electrolyte retention, and improve the capacity and cycle performance of the battery to some extent, but the preparation method is complicated, and more toxic substances are produced. Therefore, there is an urgent need in the art to develop a method and product for solving the lithium ion battery field in the charge and discharge cycle of a lithium battery, reducing its capacity attenuation and improving its cycle efficiency. Summary of the invention
  • a positive electrode film for a lithium battery comprises:
  • the lithium intercalation transition metal oxide cathode material is selected from the group consisting of lithium cobaltate, lithium nickelate, lithium nickel cobaltate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, and manganic acid. Lithium, lithium iron phosphate, lithium manganese phosphate, lithium vanadium phosphate, or a combination thereof.
  • the conductive agent includes carbon black, graphite, carbon nanotubes, graphene, and the like.
  • the binder comprises polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), carboxymethyl cellulose (CMC), a copolymer of styrene and butadiene (SBR). ).
  • the positive electrode film further contains a current collector aluminum foil.
  • the lithium ion extender comprises: a lithium oxygen compound, a lithium salt, a ruthenium lithium compound, or a combination thereof.
  • the lithium oxygen compound comprises: lithium oxide, lithium peroxide, lithium superoxide, or a combination thereof;
  • the mercaptolithium compound comprises: lithium methoxide, lithium ethoxide, lithium isopropoxide, ethyl lithium, isopropyl lithium, butyl lithium or a combination thereof;
  • the lithium salt includes: lithium carbonate, lithium borohydride, lithium fluoride, lithium nitride, lithium sulfide, lithium persulfide, or a combination thereof.
  • the lithium ion extender is in a solid or liquid state.
  • the lithium ion-replenishing agent has a mass percentage of the lithium intercalated metal oxide positive electrode material of 0.5 to 10%, more preferably 1 to 3%.
  • a lithium battery positive electrode film according to the first aspect of the present invention is provided The method includes: (al) providing a positive electrode material slurry, the slurry comprising a lithium intercalation transition metal oxide positive electrode material, a lithium ion supplement, and a conductive agent and a binder; and the slurry a positive electrode film is formed by vacuum drying after coating the tablet; or
  • the method comprises: (a2) mixing a lithium ion supplement with a conductive agent, adding a lithium intercalation transition metal oxide positive electrode material and a binder, and forming a positive electrode film by vacuum drying after coating the tablet; or
  • the method comprises: (a3) applying a lithium ion extender to the surface of the positive electrode of the dried lithium ion battery, thereby forming a positive electrode film of the lithium battery containing the lithium ion extender.
  • a lithium ion battery comprising the battery positive electrode film of the first aspect of the invention.
  • the lithium ion battery further includes a negative electrode film, a separator, an electrolyte, a casing, and a battery assisting system.
  • the electrolyte is a liquid electrolyte (electrolyte) or a polymer electrolyte.
  • a method for preparing a positive electrode of a lithium ion battery comprising the steps of: bonding or coating a positive electrode film according to the first aspect of the present invention to a current collector, thereby preparing a positive electrode of a lithium ion battery .
  • the positive electrode film for a lithium battery according to the first aspect of the invention which is used for preparing a positive electrode of a lithium battery or for preparing a lithium battery.
  • a method for compensating for irreversible capacity loss of a negative electrode of a lithium ion battery or reducing lithium ion loss of a lithium ion battery comprising the steps of: adding a lithium ion supplement to a positive electrode of the lithium ion battery.
  • the lithium ion extender comprises: a lithium oxygen compound, a lithium salt, a mercaptolithium compound, or a combination thereof;
  • the adding comprises: preliminarily mixing the lithium ion supplement in the lithium intercalation transition metal oxide positive electrode material or the conductive agent, or coating the surface of the positive electrode of the lithium ion battery.
  • the method further includes compensating for the loss of lithium ions on the surface of the negative electrode of the lithium battery to form a loss of the SEI film, thereby compensating for the irreversible capacity loss of the negative electrode of the lithium ion battery or reducing the lithium ion loss of the lithium ion battery.
  • Figure 1 is the cyclic voltammogram of lithium battery 2 (half-cell), as shown in the figure, in the cycle of lithium battery 2
  • an oxidation peak appeared at about 4. 4V, indicating that lithium peroxide decomposes at 4. 4V, which decomposes to produce lithium ions, which can compensate for lithium ion loss in the cathode material and electrolyte.
  • Figure 2 shows the cyclic volt-ampere curve of a comparative lithium battery C2 (half-cell). As can be seen, at about 4. 4V, no oxidation peak appears.
  • Figure 3 is the first charge and discharge curve of the lithium battery 2, as shown in the figure, the lithium peroxide decomposition platform appears around 4. 4V, indicating that the lithium peroxide is decomposed at 4. 4V, and the lithium ion generated by the decomposition can make up the cathode material. And lithium ion loss in the electrolyte.
  • Figure 4 shows the first charge-discharge curve of the lithium battery C2. As can be seen, there is no lithium peroxide decomposition platform at around 4. 4V.
  • Fig. 5 shows the charge and discharge curves of the lithium battery 3 and the comparative lithium battery C3 (full battery). As can be seen, the discharge capacity of the lithium battery 3 is increased by about 10% compared to the lithium battery C3.
  • lithium ion battery means a secondary battery composed of two compounds capable of reversibly intercalating and deintercalating lithium ions as a positive and negative electrode, respectively.
  • lithium ions are deintercalated from the positive electrode and embedded in the negative electrode, and vice versa when discharging.
  • the positive electrode of the lithium ion battery is in a lithium intercalated state prior to assembly.
  • a lithium-intercalation transition metal oxide having good stability is selected as a positive electrode material.
  • the material of the negative electrode is not particularly limited, and may be various materials having a potential close to the lithium potential and intercalable with a lithium compound, and representative examples include, but are not limited to: natural graphite, synthetic graphite, carbon fiber, intermediate The phase ball carbon and the like and the metal oxide include Sn0, Sn0 2 , tin composite oxide and the like.
  • the electrolyte is not particularly limited and may be a liquid electrolyte (electrolyte) or a polymer electrolyte.
  • Representative examples include, but are not limited to, a mixed solvent system of sulfhydryl carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and low viscosity diethyl carbonate (DEC) using LiPF 6 .
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC low viscosity diethyl carbonate
  • lithium ion extender and “lithium ion additive” may be used interchangeably, and refer to a lithium battery additive for supplementing lithium ions applied to a positive electrode of a lithium battery.
  • the lithium ion replenishing agent which can be used in the present invention is not particularly limited, and may be any lithium ion replenishing agent having a decomposition potential lower than the oxidative decomposition potential of the electrolytic solution and higher than the discharge cutoff potential of the positive electrode of the battery.
  • the lithium ion content is the highest in lithium. While the stability of lithium is higher than that of the simple substance, the preferred lithium ion supplement is an oxidized lithium ion compound.
  • the decomposition potential of the lithium ion replenishing agent usable in the present invention should be lower than the oxidative decomposition potential of the electrolyte and higher than the discharge cutoff potential of the positive electrode of the battery.
  • lithium ion supplements are selected from:
  • Lithium-containing inorganics lithium oxide, lithium peroxide, lithium superoxide, lithium hydride, lithium fluoride, lithium nitride, lithium sulfide, aluminum lithium alloy;
  • Lithium-containing organics lithium methoxide, lithium ethoxide, lithium isopropoxide, ethyl lithium, isopropyl lithium, butyl lithium, lithium benzene hexaoxide.
  • the lithium ion extender which can be used in the present invention is preferably: lithium peroxide, lithium superoxide, lithium nitride, lithium sulfide, aluminum lithium alloy, lithium methoxide, lithium ethoxide, lithium isopropoxide, ethyl lithium, isopropyl Lithium, butyl lithium; more preferably, lithium peroxide, lithium superoxide, lithium nitride.
  • the lithium ion supplement is added to the positive electrode of the lithium ion battery by mixing the lithium ion supplement in advance in the positive electrode material or the conductive agent, or coating the surface of the dried positive electrode.
  • the lithium ion supplement will decompose and release lithium ions, which can compensate for the lithium ion loss of the SEI film formed on the surface of the negative electrode, compensate the lithium ion loss in the positive electrode material and the electrolyte, and the other decomposition products are basically not Affecting the performance of lithium ion batteries, thereby significantly improving the reversible charge and discharge capacity of lithium ion batteries, and improving the electrochemical performance of lithium ion batteries.
  • the lithium ion supplement used in the invention is chemically stable, is not easily decomposed in air, has low requirements on the process flow and environment, and has low production cost. Lithium battery positive film and preparation thereof
  • the invention provides a lithium battery positive film, comprising:
  • the lithium intercalation transition metal oxide cathode material is selected from the group consisting of lithium cobaltate, lithium nickelate, lithium nickel cobaltate, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminate, lithium manganate, lithium iron phosphate, Lithium manganese phosphate, lithium vanadium phosphate, or a combination thereof.
  • the lithium ion supplement includes: a lithium oxygen compound, a lithium salt, a mercapto lithium compound, or a combination thereof; wherein the lithium oxygen compound comprises: lithium oxide, lithium peroxide, lithium superoxide, or a combination thereof;
  • the mercaptolithium compound comprises: lithium methoxide, lithium ethoxide, lithium isopropoxide, ethyl lithium, isopropyl lithium, butyl lithium or a combination thereof;
  • the lithium salt includes: lithium carbonate, lithium borohydride, lithium fluoride, lithium nitride, lithium sulfide, lithium persulfide, or a combination thereof.
  • the lithium ion extender is in a solid state.
  • the conductive agent includes carbon black, graphite, carbon nanotubes, graphene, and the like.
  • the binder comprises PVDF, PTFE, CMC, SBR, etc., wherein PVDF is polyvinylidene fluoride, PTFE is polytetrafluoroethylene, CMC is carboxymethyl cellulose, and SBR is a copolymer of styrene and butadiene. (styrene-butadiene rubber).
  • the positive electrode film further contains a current collector aluminum foil.
  • the mass percentage of the lithium ion-containing transition metal oxide cathode material is 0.5 to 10%, more preferably 1 to 3%.
  • the lithium ion supplement provided by the present invention may be used in advance in a positive electrode material or a conductive agent, or may be applied to a surface of a dried lithium ion battery positive electrode.
  • the method of preparing the positive electrode film for a lithium battery of the present invention may be carried out by mixing a lithium ion extender into a positive electrode material or slurry of a lithium battery and/or applying it to the positive electrode of the battery after preparation of the positive electrode of the conventional lithium battery.
  • the preparation methods generally used include the following three types:
  • the positive electrode of the battery of the present invention contains the lithium ion supplement of the present invention
  • the battery positive electrode of the present invention further contains a conductive agent and a binder, wherein the conductive agent is carbon black, graphite, carbon nanotubes, graphene, etc.; the binder is PVDF, PTFE, CMC, SBR, etc.; The current collector is aluminum foil.
  • a preferred method of preparation comprises the steps of:
  • the cathode material is uniformly mixed with a lithium ion supplement, a conductive agent, and a binder in a solution (such as nitrogen methylpyrrolidone ( ⁇ P)) to adjust a mass ratio of a suitable lithium ion supplement and a cathode material, and a mass ratio of the positive electrode material, the acetylene black, and the binder, and then coating the tablet on the aluminum foil to prepare a positive electrode; or
  • a solution such as nitrogen methylpyrrolidone ( ⁇ P)
  • the positive electrode film of the present invention is bonded to a current collector to prepare a positive electrode of a lithium ion battery.
  • the lithium ion positive electrode of the lithium battery of the present invention is added with a lithium ion supplement, which can decompose and release lithium ions during the first charging of the lithium battery, and can compensate for the lithium ion forming the SEI film on the surface of the negative electrode. Loss, compensation for lithium ion loss in the positive electrode material and electrolyte, while other decomposition products do not substantially affect the performance of the lithium ion battery, thereby significantly improving the reversible charge and discharge capacity of the lithium ion battery, and improving the electrochemical performance of the lithium ion battery.
  • the lithium ion supplement is chemically stable, and the preparation cost of the positive electrode film is low: the lithium ion supplement used in the invention is a lithium-containing inorganic or organic compound in an oxidized state, which is more stable than the reduced state additive in the conventional technology, and the battery preparation process and The process environment requirements are low, thereby reducing the cost of preparation.
  • the invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention. The experimental methods in the following examples which do not specify the specific conditions are usually carried out according to conventional conditions or according to the conditions recommended by the manufacturer.
  • Example 1 Preparation of Battery Positive Electrode 1
  • lithium ion battery cathode material lithium iron phosphate and lithium ion supplement lithium peroxide, conductive agent acetylene black, and binder polyvinylidene fluoride (PVDF) in nitrogen methylpyrrolidone ( ⁇ P) solution Evenly mixed
  • the mass of the added lithium peroxide is 1% of the mass of the lithium iron phosphate of the positive electrode material, and the mass ratio of the positive electrode material, the acetylene black and the binder is 85:10:5, respectively, and then the tablet is coated on the aluminum foil to prepare the positive electrode of the battery. 1.
  • Example 2 Preparation of Lithium Battery 2 (Half Battery)
  • the positive electrode of the battery 1 was made of a lithium metal plate as a positive electrode, a solution of 1 mol/L of lithium hexafluorophosphate of ethylene carbonate and dimethyl carbonate was used as an electrolyte, and 20 ⁇ m of polyethylene was used as a separator to assemble a CR2032 type lithium coin battery.
  • Example 3 Preparation of Lithium Battery 3 (Full Battery)
  • the battery positive electrode 1 graphite as the negative electrode, lmol/L lithium hexafluorophosphate carbonate solution and dimethyl carbonate solution as the electrolyte, 20 micron thick polyethylene as the separator, assembled into a 18650 cylindrical lithium battery 3 o 1 Comparison of battery positive C1 preparation
  • the commercial lithium ion battery cathode material lithium iron phosphate is uniformly mixed with the conductive agent acetylene black and the binder polyvinylidene fluoride (PVDF) in the solution of nitrogen methylpyrrolidone ( ⁇ P), the positive electrode material, acetylene black and The mass ratio of the binder was 85:10:5, respectively, and then the tablet was coated on an aluminum foil to prepare a positive electrode Cl of the comparative battery.
  • Comparative Example 2 Preparation of comparative lithium battery C2 (half battery)
  • the preparation method was the same as in Example 2 except that the positive electrode C1 of the battery was replaced with the positive electrode C1 of the battery.
  • the preparation method was the same as in Example 3 except that the positive electrode C1 of the battery was replaced with the positive electrode C1 of the battery.
  • Example 4 Electrochemical performance of lithium battery 2 (half-cell) and comparative lithium battery C2 (half-cell) In this example, electrochemical performance tests were carried out by a conventional method using commercially available equipment, and the test methods were as follows:
  • a lithium battery 2 and a comparative lithium battery C2 are respectively on the electrochemical workstation, in the range of 2. 0-4. 75V, scanning from the positive electrode of the battery to the negative electrode of the battery at a speed of 0.01 mV / s; B.
  • the lithium battery 2 and the comparative lithium battery C2 were respectively subjected to a charge and discharge test on the charge and discharge test system, and the battery was charged and discharged with a constant current of 5 mA/g in a voltage range of 2. 0-4. 4V.
  • Example 5 Electrochemical performance of lithium battery 3 (full battery) and comparative lithium battery C3 (full battery)
  • the 18650 type lithium battery 3 and the comparative lithium battery C3 were subjected to charge and discharge tests on a charge and discharge test system.
  • the battery was subjected to a charge and discharge test with a constant current of 5 mA/g in a voltage range of 2.4-4. 4V.

Abstract

L'invention concerne un film d'électrode positive d'une batterie au lithium, comprenant : (i) un matériau d'électrode positive d'un oxyde métallique de transition à lithium intercalé; (ii) un régénérateur d'ions de lithium; et (iii) un agent conducteur et un adhésif. Le régénérateur d'ions de lithium dans le film d'électrode positive se décompose durant une charge initiale puis libère des ions de lithium, de façon à compenser une perte d'ions de lithium en formant un film SEI sur une surface d'électrode négative, ce qui améliore la capacité de charge et de décharge réversibles de la batterie au lithium-ion. Dans le film d'électrode positive préparé, le régénérateur d'ions de lithium peut être mélangé dans le matériau d'électrode positive ou dans l'agent conducteur en avance, et peut être également revêtu sur la surface de l'électrode positive de la batterie au lithium-ion.
PCT/CN2013/091128 2013-03-05 2013-12-31 Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci WO2014134967A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310070202.9 2013-03-05
CN201310070202.9A CN104037418A (zh) 2013-03-05 2013-03-05 一种锂离子电池正极膜及其制备和应用

Publications (1)

Publication Number Publication Date
WO2014134967A1 true WO2014134967A1 (fr) 2014-09-12

Family

ID=51468106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091128 WO2014134967A1 (fr) 2013-03-05 2013-12-31 Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci

Country Status (2)

Country Link
CN (2) CN104037418A (fr)
WO (1) WO2014134967A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
CN114552125A (zh) * 2022-04-26 2022-05-27 华中科技大学 一种无损补锂复合隔膜及其制备方法和应用

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441236B (zh) * 2013-09-11 2017-10-13 东莞新能源科技有限公司 锂离子电池阴极片、锂离子电池及其制备方法
CN105702913A (zh) * 2014-11-27 2016-06-22 比亚迪股份有限公司 一种正极及其制备方法和一种锂二次电池
FR3042915B1 (fr) * 2015-10-21 2017-12-15 Commissariat Energie Atomique Procede de fabrication d'un accumulateur du type sodium-ion
FR3042914B1 (fr) * 2015-10-21 2017-11-17 Renault Procede de fabrication d'un accumulateur du type lithium-ion
CN106711433A (zh) * 2015-11-18 2017-05-24 宁德新能源科技有限公司 锂离子电池及其阳极片
CN105514424A (zh) * 2015-12-04 2016-04-20 深圳市沃特玛电池有限公司 一种锂离子电池及其制备方法
KR102333849B1 (ko) 2016-01-22 2021-12-01 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자
KR102333852B1 (ko) * 2016-01-22 2021-12-01 아사히 가세이 가부시키가이샤 비수계 리튬 축전 소자
CN106058168A (zh) * 2016-02-03 2016-10-26 万向A二三系统有限公司 一种预锂化锂离子二次电池正极材料
US20170309914A1 (en) * 2016-04-20 2017-10-26 Ford Global Technologies, Llc Pre-lithiated lithium ion battery cell
FR3052597B1 (fr) * 2016-06-08 2018-06-15 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de fabrication d'une electrode pour accumulateur fonctionnant sur le principe d'insertion et desinsertion ionique ou de formation d'alliage
CN107808978B (zh) * 2016-09-08 2020-07-28 中国科学院物理研究所 一种液态活性锂补充剂、其制备方法及其用途
KR20190095928A (ko) * 2016-12-21 2019-08-16 로베르트 보쉬 게엠베하 리튬 이온 배터리 및 그 제조 방법
CN109428138B (zh) * 2017-08-24 2020-12-01 上海交通大学 锂空气电池的制备方法及锂空气电池
CN107863567A (zh) * 2017-09-22 2018-03-30 深圳市比克动力电池有限公司 一种用于锂离子电池正极的补锂添加剂及其应用
CN109859959A (zh) * 2017-11-30 2019-06-07 中国科学院大连化学物理研究所 一种锂离子超级电容器负极预嵌锂方法
CN110350194A (zh) * 2018-04-02 2019-10-18 中国科学院物理研究所 一种补锂浆料及其制备方法和应用
CN111971769A (zh) * 2018-04-20 2020-11-20 通用汽车环球科技运作有限责任公司 锂离子源材料到用于电容器辅助电池的活性炭电极中的结合
CN109346679A (zh) * 2018-09-21 2019-02-15 合肥国轩高科动力能源有限公司 一种利用氮化锂提升锂离子电池循环寿命的方法
CN109616629B (zh) * 2018-11-26 2020-05-22 中南大学 一种补锂正极活性材料、正极材料、锂离子电池及其制备和应用
CN109585844B (zh) * 2018-11-26 2020-09-29 中南大学 一种补钠正极活性材料、正极材料、钠离子电池及其制备和应用
CN109659533A (zh) * 2018-12-17 2019-04-19 苏州宇量电池有限公司 一种添加过氧化锂的锂离子电池正极片及其制备方法
CN109742324A (zh) * 2018-12-27 2019-05-10 江西星盈科技有限公司 锂离子电池及其正极片及其制备方法
CN110061202B (zh) * 2019-03-18 2021-07-06 合肥国轩高科动力能源有限公司 一种三元电池正极极片的制备方法及三元电池
WO2020203421A1 (fr) * 2019-03-29 2020-10-08 旭化成株式会社 Procédé de production d'un élément de stockage d'électricité en métal alcalin non aqueux
CN109994732A (zh) * 2019-04-15 2019-07-09 上海电气国轩新能源科技有限公司 酚类锂盐化合物的应用、锂离子二次电池及其制备方法
CN110504436B (zh) * 2019-08-30 2020-10-16 石家庄尚太科技有限公司 一种快充石墨复合材料的制备方法
CN113381009B (zh) * 2020-03-10 2023-06-02 中国科学院物理研究所 补锂材料及其制备方法和应用
CN111725500B (zh) * 2020-06-22 2022-06-14 惠州亿纬锂能股份有限公司 一种正极片及其制备方法和用途
CN113937255A (zh) * 2020-06-29 2022-01-14 北京卫蓝新能源科技有限公司 一种锂离子电池复合正极材料及其制备方法和应用
CN111987288A (zh) * 2020-08-26 2020-11-24 复阳固态储能科技(溧阳)有限公司 一种锂离子储能器件电极原位补锂的方法和应用
CN112151889A (zh) * 2020-10-10 2020-12-29 惠州亿纬锂能股份有限公司 一种锂离子电池的正极极片及其制备方法和用途
CN112151765A (zh) * 2020-10-10 2020-12-29 惠州亿纬锂能股份有限公司 一种锂离子电池的正极补锂方法、其产品及产品用途
CN114613948A (zh) * 2020-12-04 2022-06-10 中国科学院大连化学物理研究所 一种锂离子电池正极电极片的制备方法
CN112885985B (zh) * 2021-02-01 2022-08-30 中南大学 一种正极极片及其制备方法、电化学储能装置及电化学储能装置的预金属化方法
CN114665063B (zh) * 2022-03-28 2023-08-15 中国矿业大学(北京) 补锂复合膜、锂离子电池正极、锂离子电池及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102054986A (zh) * 2010-11-16 2011-05-11 中国科学院宁波材料技术与工程研究所 微波法制备的超高容量锂离子电池正极材料及其方法
CN102201597A (zh) * 2010-03-26 2011-09-28 中大工业集团公司 高性能长寿命聚合物锂离子电池生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100416893C (zh) * 2004-11-17 2008-09-03 比亚迪股份有限公司 一种锂离子电池正极及其锂离子电池
JP2010541166A (ja) * 2007-09-28 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー カソード組成物の製造方法
JP4715830B2 (ja) * 2007-10-19 2011-07-06 ソニー株式会社 正極活物質、正極および非水電解質二次電池
JP4636341B2 (ja) * 2008-04-17 2011-02-23 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
WO2011054441A1 (fr) * 2009-11-05 2011-05-12 Umicore Oxydes de métal de transition de lithium à coeur-coque
DE102010024479A1 (de) * 2010-06-21 2011-12-22 Li-Tec Battery Gmbh Lithium-Ionen-Batterie mit amorphen Elektrodenmaterialien
CN102386374A (zh) * 2011-10-21 2012-03-21 超威电源有限公司 锂离子动力电池水性浆料及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201597A (zh) * 2010-03-26 2011-09-28 中大工业集团公司 高性能长寿命聚合物锂离子电池生产方法
CN102054986A (zh) * 2010-11-16 2011-05-11 中国科学院宁波材料技术与工程研究所 微波法制备的超高容量锂离子电池正极材料及其方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107639B2 (en) 2016-01-22 2021-08-31 Asahi Kasei Kabushiki Kaisha Positive electrode precursor
CN114552125A (zh) * 2022-04-26 2022-05-27 华中科技大学 一种无损补锂复合隔膜及其制备方法和应用

Also Published As

Publication number Publication date
CN109659496A (zh) 2019-04-19
CN104037418A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
WO2014134967A1 (fr) Film d'électrode positive de batterie au lithium-ion et préparation et application de celui-ci
He et al. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery
WO2018103129A1 (fr) Batterie sodium-ion à base de graphène
WO2012146046A1 (fr) Batterie de capacité au polyimide et son procédé de fabrication
CN109841425B (zh) 一种电容电池及其制备方法
WO2021008429A1 (fr) Batterie secondaire et module de batterie, bloc-batterie et dispositif associé
CN104934579A (zh) 一种多孔石墨掺杂与碳包覆石墨负极材料的制备方法
WO2018059180A1 (fr) Alimentation électrique chimique haute puissance et à haute énergie, et son procédé de préparation
CN111883839A (zh) 高压电解液及基于其的锂离子电池
WO2023040687A1 (fr) Électrolyte, dispositif électrochimique le comprenant et dispositif électronique
CN108695487B (zh) 正极片及储能装置
Wang et al. Additives to propylene carbonate-based electrolytes for lithium-ion capacitors
WO2023098268A1 (fr) Électrolyte, dispositif électrochimique le comprenant et dispositif électronique
WO2023070992A1 (fr) Dispositif électrochimique et dispositif électronique comprenant celui-ci
CN104600267A (zh) 石墨烯/钛氧化物复合材料制作方法及其应用方法
WO2020124328A1 (fr) Procédé de fabrication d'électrode négative pré-lithiée, électrode négative pré-lithiée fabriquée, dispositif de stockage d'énergie, système de stockage d'énergie et dispositif électrique
JP2020187825A (ja) デュアルイオン蓄電デバイス
CN101656332B (zh) 一种锂离子电池电解液及含有该电解液的锂离子电池
WO2021127996A1 (fr) Batterie secondaire et dispositif comprenant la batterie secondaire
WO2021128002A1 (fr) Batterie secondaire et dispositif comprenant ladite batterie secondaire
CN103367728A (zh) 一种活化天然石墨改性硅酸铁锂正极材料及其制备方法
CN103198935A (zh) 一种石墨烯片改性尖晶石型锰酸锂或α型二氧化锰电极的制备方法
WO2023164794A1 (fr) Dispositif électrochimique et dispositif électronique le comprenant
WO2024066087A1 (fr) Batterie secondaire et appareil électrique
CN114743803A (zh) 一种高电压混合型锂离子超级电容器及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877237

Country of ref document: EP

Kind code of ref document: A1