WO2014103558A1 - 非水電解質二次電池電極及びその製造方法 - Google Patents

非水電解質二次電池電極及びその製造方法 Download PDF

Info

Publication number
WO2014103558A1
WO2014103558A1 PCT/JP2013/081026 JP2013081026W WO2014103558A1 WO 2014103558 A1 WO2014103558 A1 WO 2014103558A1 JP 2013081026 W JP2013081026 W JP 2013081026W WO 2014103558 A1 WO2014103558 A1 WO 2014103558A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
active material
particle size
secondary battery
peak
Prior art date
Application number
PCT/JP2013/081026
Other languages
English (en)
French (fr)
Inventor
俊平 西中
西村 直人
貴洋 松山
久幸 内海
西島 主明
智史 有馬
功 浅子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014103558A1 publication Critical patent/WO2014103558A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery electrode, an active material used for the electrode, a secondary battery using the electrode, and a method for producing them.
  • a nonaqueous electrolyte secondary battery for example, a lithium ion secondary battery has a positive electrode and a negative electrode as is well known.
  • the electrode has a structure in which an electrode material including at least active material particles and conductive agent particles is deposited on a current collector.
  • the conductive material particles are used for improving the conductivity of the active material particles.
  • the positive electrode by making the particle size equal to or smaller than the particle size of the active material, an effect of improving conductivity is obtained. That is, when the diameter of the conductive material particles is large, the improvement in conductivity is insufficient. For this reason, the particle
  • a typical example is one using lithium cobalt oxide as a positive electrode active material.
  • the conductive material in this case, acetylene black is mainly used, and the average particle diameter of each is about 20 ⁇ m and 0.1 ⁇ m.
  • lithium iron phosphate having a small particle size of about 15 to 0.05 ⁇ m has been widely used from the viewpoint of safety and cost. Also in this case, a conductive material having a smaller particle diameter is used.
  • natural graphite is often used as the negative electrode active material, and graphite as a conductive material is added to these.
  • These typical particle sizes are generally 20 to 30 ⁇ m and 4 to 20 ⁇ m in combination.
  • the lithium ion secondary battery as described above has a large energy density and is excellent in cycle characteristics. For this reason, it is used as a power source for various devices, and its use is further expanded, and it is also expected as a power source for household power.
  • Patent Document 1 Japanese Patent Document 1
  • Patent Document 2 a positive electrode active material powder containing granulated particles or aggregated particles of 5 ⁇ m or more is kneaded with water or an aqueous binder solution to prepare an aqueous paste, which is then contained in the aqueous paste. While the agglomerated particles are disintegrated under pressure, a back treatment is performed through a filter having an opening of 20 to 120 ⁇ m. The resulting back paste is applied to the current collecting substrate to a desired thickness and dried, thereby causing the surface of the coating layer to be streaked, or when the drying layer is cracked or removed from the current collecting substrate. Thus, a positive electrode for a lithium secondary battery with improved wall thickness efficiency can be obtained without causing peeling.
  • the present invention has never been actively attempted without using special carbon fibers as described above and without treating the paste with a specific filter. Accordingly, the object is to increase the capacity of the secondary battery by increasing the coating amount per unit area of the electrode, that is, by increasing the thickness of the electrode material.
  • the thickness of the electrode material of the conventional nonaqueous electrolyte secondary battery is up to 50 ⁇ m even at the thickest, and there is no thickness more than that.
  • the electrode material of the positive electrode is 50 ⁇ m or more
  • the capacity per electrode unit area can be increased in proportion to this thickness.
  • the capacity is doubled to 100 ⁇ m or more, the capacity of the electrode is also increased. Proportionally more than doubled.
  • the present invention even if the electrode material is made thicker than 50 ⁇ m without using the special carbon fiber, and without using a special filter to back the paste, undesired cracks are generated in the electrode material. It aims at providing the nonaqueous electrolyte secondary battery electrode which is not, the active material used for the electrode, the secondary battery using the electrode, and those manufacturing methods.
  • the present inventor has intensively studied, and as a result, the particle size distribution of the active material has at least two peak values, and the maximum of the peak value is 1.5 times or more of the average particle size. Then, it discovered that the said subject could be solved.
  • a technique for preventing the cracking of the electrode material deposited on the electrode by the particle size distribution of the active material itself without using a special crack prevention material other than the active material and without using a special manufacturing method. I found.
  • this invention is used for the said electrode material in the nonaqueous electrolyte secondary battery electrode which apply
  • the active material particles have at least two peak values in the particle size distribution, and the maximum of the peak values is 1.5 times or more the average particle size of the active material particles.
  • the present invention is characterized in that, in the nonaqueous electrolyte secondary battery electrode according to (1), the thickness of the electrode material is 50 ⁇ m or more.
  • the non-aqueous electrolyte secondary battery electrode according to the first aspect is used to obtain a large-capacity non-aqueous electrolyte secondary battery because the electrode material does not crack even when the electrode material is thicker than 50 ⁇ m. It is suitable as. In addition, since the electrode is merely thickened, the structure of the electrode can be prevented from being complicated even when used for the large-capacity nonaqueous electrolyte secondary battery.
  • the present invention provides the nonaqueous electrolyte secondary battery electrode according to (1) or (2), wherein the active material particles have a minimum peak value that is an average particle size of the active material particles. It is characterized by being 0.2 times or less.
  • the active material particles have an average particle size of 3.5 to 14.8 ⁇ m.
  • the active material is a mixture of at least two active materials having different peak values.
  • the active material particles are lithium iron phosphate for a positive electrode.
  • the active material is LixMyP 1 -zSizO 4 (M is one or both of Fe and Mn, Co, Ni, Zr, A combination of at least one element selected from the group consisting of Sn, Al and Y, or a combination of Fe and Mn, 0 ⁇ x ⁇ 2, 0.8 ⁇ y ⁇ 1.2, 0 ⁇ z ⁇ 1) It is a material for the positive electrode satisfying the above.
  • the active material is an active material for a negative electrode.
  • an electrode material including an active material having at least two peak values in the particle size distribution and having a maximum of 1.5 times or more of the average particle diameter is obtained using a solvent.
  • a method for producing a non-aqueous electrolyte secondary battery electrode characterized in that the slurry is applied to a current collector and dried.
  • the present invention provides a nonaqueous electrolyte secondary battery wherein the active material according to the invention (9) is the active material particles according to any of the inventions (2) to (8) It is a manufacturing method of an electrode.
  • the slurry-like electrode material can be simply applied by coating, for example, and then dried in the same manner as in the prior art. Even in the above case, the manufacturing is simple.
  • the present invention provides a non-aqueous electrolyte secondary battery having a positive electrode and a negative electrode, wherein the electrode is coated with an electrode material including at least active material particles and conductive agent particles on a current collector.
  • the non-aqueous electrolyte secondary battery according to the third aspect even if the thickness of the electrode material is 50 ⁇ m or more, no cracking occurs, so a large-capacity non-aqueous electrolyte secondary battery can be obtained. .
  • the present invention provides a nonaqueous electrolyte secondary battery having a positive electrode and a negative electrode, wherein the electrode is formed by depositing an electrode material including at least active material particles and conductive agent particles on a current collector.
  • the electrode has at least two peak values in the particle size distribution, and an electrode material containing an active material whose maximum peak value is 1.5 times or more of the average particle diameter is made into a slurry using a solvent and collected.
  • the method for manufacturing a non-aqueous electrolyte secondary battery according to the fourth aspect, it is only necessary to apply a slurry-like electrode material to the current collector by, for example, coating and drying, as in the prior art. Even when the thickness is 50 ⁇ m or more, the production is simple.
  • the present invention is an active material used for a non-aqueous electrolyte secondary battery electrode, and has at least two peak values in the particle size distribution, and the maximum of the peak values is 1 of the average particle size of the active material particles. .5 times or more.
  • the active material used for the electrode of the nonaqueous electrolyte secondary battery according to the fifth aspect is used as an electrode material, even if the slurry-like electrode material is applied by, for example, coating and dried to a thickness of 50 ⁇ m or more No cracking occurs.
  • the particle size distribution has at least two peak values, and the maximum of the peak values is the average particle size of the active material particles. It is a manufacturing method of the active material for positive electrodes characterized by being 1.5 times or more. According to the method for producing an active material according to the sixth aspect, it is possible to easily obtain active material particles having an appropriate particle size distribution that does not cause cracks when applied to the positive electrode.
  • the thickness of the electrode material is 50 ⁇ m or more, it is possible to obtain an electrode that does not crack, so that it is possible to obtain a large-capacity nonaqueous electrolyte secondary battery using this. It becomes.
  • FIG. 6 is an explanatory diagram showing the relationship between the particle size distribution of active materials and cracks used in Examples 1-6 and (Comparative Example) 1-5 of the present invention.
  • FIG. 4 is a particle size-frequency characteristic diagram of lithium iron phosphate (a) having a peak value of 17.0, which is used for preparing active material AK used in the present invention.
  • 3 is a particle size-frequency characteristic diagram of lithium iron phosphate (B) having a peak value of 0.6, 3.6 used for the production of active material AK used in the present invention.
  • FIG. 5 is a particle size-frequency characteristic diagram of an electrode active material A used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 5 is a characteristic diagram of particle diameter-frequency of electrode active material B used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material C used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material D used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material E used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 5 is a particle size-frequency characteristic diagram of an electrode active material A used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 5 is a characteristic diagram of particle diameter-frequency of electrode active material B used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material F used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material G used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material H used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of electrode active material I used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of an electrode active material J used in Example 1-6 and Comparative Example 1-5 of the present invention.
  • FIG. 6 is a characteristic diagram of particle diameter-frequency of electrode active material K used in Example 1-6 and Comparative Example 1-5 of the present invention. It is explanatory drawing of the crack level produced when an electrode material is dried.
  • FIG. 6 is an explanatory diagram showing the relationship between the particle size distribution of active materials and load characteristics used in Examples 1-6 and (Comparative Example) 1-5 of the present invention. It is a particle size-frequency characteristic diagram of the electrode active material L used in Example 7 and Comparative Example 6 of the present invention. It is a particle size-frequency characteristic diagram of the electrode active material M used in Example 7 and Comparative Example 6 of the present invention. It is explanatory drawing showing the relationship between the particle size distribution of the active material used for Example 7 and Comparative Example 6 of this invention, and a crack. It is explanatory drawing showing the relationship between the particle size distribution of the active material used for Example 7 and Comparative Example 6 of this invention, and a load characteristic.
  • a lithium ion secondary battery 1 embodying the present invention has a configuration in which a positive electrode 4 and a negative electrode 3 are stacked so as to face each other with a separator 2 therebetween.
  • a positive electrode material 9 (electrode material) having a thickness of 50 ⁇ m or more is deposited on a positive electrode current collector 5 made of an aluminum foil or the like having leads 8.
  • a negative electrode material 10 (electrode material) having a thickness of 20 ⁇ m or more is formed on a negative electrode current collector 6 made of a metal foil or the like having a negative electrode lead 7.
  • an exterior film 11 such as an aluminum laminate exterior body.
  • the electrolytic solution is actually filled in the exterior body 11, it is not illustrated.
  • the composition of the positive electrode material 9 of the positive electrode 4 that is the nonaqueous electrolyte secondary battery electrode of the present invention is as shown in the electrode composition diagram of FIG.
  • Acetylene black having a diameter of 0.1 ⁇ m is contained in a ratio of 9% by weight, styrene butadiene rubber as a binder in a 6.2 weight ratio, and carboxymethyl cellulose as a thickener in a ratio of 3.5% by weight.
  • the lithium iron phosphate used as the positive electrode active material has a particle size distribution having at least two peak values.
  • the maximum of the peak value is 1.5 times or more of the average particle diameter, and the crack of the positive electrode material 9 is prevented by this particle size distribution as will be described later.
  • the negative electrode active material particles used for the negative electrode material 10 are mainly carbon particles having a particle size of about 20 ⁇ m, the problem of cracking hardly occurs in a normal specification electrode.
  • the preferred particle diameter of the positive electrode active material is usually a small average particle diameter of 0.05 to 15 ⁇ m, cracking occurs when the electrode thickness is increased.
  • the positive electrode 4 has a thickness of 100 to 2000 ⁇ m for increasing the capacity, so that cracking is likely to occur.
  • the current collectors 5 and 6 for the positive and negative electrodes shown in FIG. 1 a known material of a lithium ion secondary battery is used.
  • the positive electrode current collector 5 include foils and thin plates of conductive metal such as SUS and aluminum.
  • An example of the negative electrode current collector 6 is a metal foil such as copper. It becomes an electrode by coating the active material layer.
  • the current collector is not limited to a flat surface, and may have a surface with irregularities.
  • Electrode material As the electrode material, a known material of a lithium ion secondary battery is used. In the case of a lithium ion secondary battery, an oxide containing lithium can be used as the positive electrode active material. For example, titanium, molybdenum, copper, niobium, vanadium, manganese, chromium, nickel, iron, cobalt, phosphorus, etc. and lithium complex oxides, sulfides or selenides are preferable.
  • LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiCoO 2 , LiCrO 2 , LiFeO 2 , LiVO 2 and LiMPO 4 (M is at least one element selected from Co, Ni, Mn, and Fe)
  • M is at least one element selected from Co, Ni, Mn, and Fe
  • lithium iron phosphate is mainly used as an active material.
  • the negative electrode active material at least one of graphite-based materials such as natural graphite, artificial graphite, and high-crystal graphite, amorphous carbon-based materials, and metal oxides such as Si, Sn, Nb 2 O 5, and LiTiO 4 is used. Two or more can be used alone or in combination. Since Si and Sn have high lithium storage capacity, they may be used as negative electrode active materials in the future. Note that if the particle size of the negative electrode active material is reduced, cracking may become a problem as in the case of the positive electrode active material.
  • the conductive material, binder, filler, dispersant, ionic conductive agent, pressure enhancer, and other various additives described later can be used for the positive and negative active material layers.
  • the outermost active material layers of the electrodes located at both ends in the stacking direction may be omitted.
  • the thickness of the electrode material formed on the positive and negative current collectors is suitably about 20 to 500 ⁇ m, preferably about 100 to 400 ⁇ m.
  • the conductive agent is not particularly limited as long as it is an electron conductive material that is generally used as a battery material and does not cause a chemical change in the battery.
  • natural graphite scale-like graphite, scale-like graphite, earth-like graphite, etc.
  • graphite such as artificial graphite
  • carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black
  • gas phase Conductive fibers such as growth graphite fiber (VGCF), carbon fiber, metal fiber, metal powders such as copper, nickel, aluminum and silver, conductive whiskers such as zinc oxide and potassium titanate, and conductive materials such as titanium oxide
  • An organic conductive material such as a conductive metal oxide or a polyphenylene derivative can be used alone or as a mixture thereof.
  • acetylene black, VGCF, graphite and acetylene black are particularly preferred.
  • the binder is generally used as a battery material, and can be used as a kind of a polysaccharide, a thermoplastic resin, or a polymer having rubber elasticity, or a mixture thereof.
  • Preferred examples include starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride, polyvinyl pyrrolidone, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene-diene terpolymer ( EPDM), sulfonated EPDM, styrene butadiene rubber, polybutadiene, fluororubber and polyethylene oxide.
  • EPDM ethylene-propylene-diene terpolymer
  • thickening material examples include starch, polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, regenerated cellulose, diacetyl cellulose, polyvinyl chloride and the like.
  • the filler is not particularly limited as long as it is a fibrous material that is generally used as a battery material and does not cause a chemical change in the constructed lithium secondary battery.
  • olefin polymers such as polypropylene and polyethylene, fibers such as glass and carbon can be used.
  • the ion conductive agent is generally known as an inorganic or organic solid electrolyte.
  • a polyethylene oxide derivative or a polymer containing the derivative, a polypropylene oxide derivative, a polymer containing the derivative, a phosphate ester polymer, or the like can be used.
  • the pressure enhancer is a compound that increases the internal pressure of the battery, and carbonate can be given as a representative example.
  • the separator 2 shown in FIG. 1 has a high ion permeability, a predetermined mechanical strength, and an insulating thin film can be used.
  • the material constituting the separator is not particularly limited as long as it is not affected by the nonaqueous electrolyte.
  • polyolefin resins such as polyethylene, polypropylene, poly-4-methylpentene-1
  • polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, 6 nylon, 66 nylon, wholly aromatic
  • polyamide resins such as polyamide, fluorine resins, polyimide resins, cellulose resins, aramid resins, and glass fibers. Two or more kinds of these resins may be mixed.
  • the separator include non-woven fabrics, woven fabrics, and microporous films.
  • a nonwoven fabric made of polyethylene, polypropylene, polyester or the like, or a microporous membrane is preferable from the viewpoint of quality stability.
  • the separator when the secondary battery abnormally generates heat, the separator is dissolved by heat, and a function of shutting off the positive and negative electrodes (shutdown) is added to the secondary battery.
  • polyimide, polyamide, and aramid resin have the advantage of excellent shape stability and stable shape even at high temperatures.
  • Nonaqueous electrolyte Although it does not specifically limit as a non-aqueous electrolyte, The solution formed by melt
  • an electrolyte salt when used in a lithium ion secondary battery, for example, lithium is used as a cation component, and an organic acid such as lithium borofluoride, lithium hexafluorophosphate, lithium perchlorate, or fluorine-substituted organic sulfonic acid is used as an anion. Examples include lithium salts as components.
  • Any organic solvent can be used as long as it dissolves the electrolyte salt.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, cyclic esters such as ⁇ -butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate And the like.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, cyclic esters such as ⁇ -butyrolactone, ethers such as tetrahydrofuran and dimethoxyethane, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate And the like.
  • ethers such as tetrahydrofuran and dimethoxyethane
  • chain carbonates such as dimethyl carbonate, diethyl carbonate, and e
  • Method for manufacturing electrode It does not specifically limit as a manufacturing method of the electrodes 3 and 4, The method selected suitably according to material can be used. However, the most common production method is to mix each material with a solvent such as water or NMP and further stir to form a uniform slurry dispersion, which is applied to the electrode current collectors 5 and 6. And a method of obtaining an electrode by heating or volatilizing a solvent at room temperature.
  • a solvent such as water or NMP
  • FIG. 3 is a table listing the relationship between the particle size distribution of the positive electrode active material and the degree of cracking of the positive electrode material for six Examples 1-6 and five Comparative Examples 1-5.
  • the peak particle size in the figure is a characteristic diagram of the particle size distribution of lithium iron phosphate (I) with the particle size (logarithmic scale) on the horizontal axis and the appearance frequency (%) on the vertical axis. It is the particle size (17.0 ⁇ m) showing a peak.
  • the minimum particle size (0.6 ⁇ m) is the peak 1 and the maximum particle size (3.6 ⁇ m). Peak 2 is assumed.
  • the average particle diameter (d50) is a value in which particles having a particle diameter equal to or smaller than 50% occupy 50% of the entire volume.
  • Electrodes AK are obtained by using positive electrode active materials (lithium iron phosphate) having different maximum peak particle size (peak 2) and average particle size (d50) as positive electrode materials.
  • the weight composition ratio of the positive electrode material is as shown in FIG. 2, and the film thickness is 400 ⁇ m.
  • the coating film is prepared by using a positive electrode material containing the positive electrode active material to produce a water-based positive electrode slurry, which is applied onto the aluminum foil as the positive electrode current collector 5 and dried with hot air at 100 ° C. 5 is attached.
  • the definition of the particle size in the present embodiment indicates an average particle size measured using a nano particle size distribution measuring device SALD-1100 (manufactured by Shimadzu Corporation).
  • SALD-1100 manufactured by Shimadzu Corporation.
  • the particle size obtained at this time is the equivalent sphere diameter and is generally the same as the longest side of the particle.
  • lithium iron phosphate (I) having an average particle size of 13.1 (not shown), a peak value of 17.0, and a frequency of 6.5%.
  • lithium iron phosphate having an average particle size of 2.8 (not shown), peak values of 0.6 and 3.6, frequencies of 2.5% and 3.5% (B) Are mixed at a volume mixing ratio shown in the mixing ratio column of FIG. 3 (11 steps from 0 to 100%) to obtain electrode active material particles A to K.
  • the electrode active material A is lithium iron phosphate (I) alone, the electrode active material K is only lithium iron phosphate (B), and the other electrode active materials BJ are both lithium (I), ( B) is mixed at a ratio of 10%, 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%, 90%.
  • the said ratio figure has shown the ratio of lithium iron phosphate (I).
  • the particle size distributions of these electrode active materials AK are as shown in the respective characteristic charts shown in FIGS. 6 to 16, and in each case, the horizontal axis is a logarithmic scale ( ⁇ m) and the vertical axis is an appearance frequency (%).
  • the electrode active material AK has at least one peak value in the particle size distribution, and CK has at least two or more peak values. ing.
  • the specific numerical value of each peak value and the numerical value of the average particle diameter are as described in the column of the peak particle diameter and the average particle diameter in FIG.
  • the peak 1 shows the minimum value of a peak value as above-mentioned, the peak 1 was not recognized about the active materials A and B for electrodes.
  • the degree of cracking after the electrode material containing the electrode active material AK applied to the electrode AK is dried is determined in five levels 0 to 4 defined in FIG. FIG. 17 is defined by classifying the surface state into five levels from level 0 to level 4 according to the visual level.
  • the crack is up to level 2, it can be used as an electrode. This is because when the crack level is up to 2, it does not peel off and can be repaired by making up for cracks in the compression process after coating and drying, so that it works sufficiently as an electrode. If the level is 3 or more, a large number of cracks are formed, making it difficult to use as an electrode.
  • the electrode CH in Example 1-6 is level 1 or level 2, which is practically inconvenient. There are no cracks.
  • the electrodes A, B, I, J, and K of Comparative Example 1-5 are all at level 3, and all of them have cracks that are practically inconvenient.
  • the difference between the electrodes A, B, I, J, and K and the electrode CH is that the peak 2 / average particle size value (referred to as the maximum particle size balance value) is 1.5 or more.
  • the values of (peak 2 / average particle diameter) of the electrodes A, B, I, J, and K used in Comparative Example 1-5 are 1.19 to 1.41, whereas Example 1
  • the value of (peak 2 / average particle size) of the electrode CH used in Example 6 is 1.51 to 4.00, and there is a large difference in the degree of cracking from 1.5 to the boundary. Using this as an index, an electrode that does not cause practically inconvenient cracks can be produced.
  • the positive electrode active material having a particle size distribution exhibits the effect of preventing cracking.
  • the electrode material for example, the positive electrode material 9 is applied to the surface of the positive electrode current collector 5 in a slurry state with a solvent, for example, water, it is considered that cracks are generated by drying.
  • the slurry-like electrode material 9 applied to the positive electrode current collector 5 undergoes volume shrinkage due to the absence of liquid components (binder and thickener aqueous solution) during drying.
  • the active material particle size is small, the particles become dense, so the volume shrinkage rate is large, and cracks occur at a plurality of locations.
  • the active material particles having the maximum peak value are considerably larger in volume (size) than the active material particles smaller than the active material particles, and are larger in quantity.
  • contraction which a crack produces does not occur, and a crack does not arise as a result.
  • the reason why the electrodes A and B are cracked is that the active material particles are too shifted to the large particle size side.
  • the reason why the electrodes I, J, and K are cracked is considered to be because the active material particles are too shifted to the small particle size side.
  • the electrode active materials A and B used for the electrodes A and B have a single peak value, so it is clear that the active material particles are too far to the large particle size side.
  • the balance of the particle size distribution is also important, and it can be said that the balance is within the range of the peak 2 / average particle size value (maximum particle size balance value).
  • the appearance frequency of peak 2 of electrode CH is at least 2.5% or more.
  • the particle size distribution has at least two peaks and the peak 2 / average particle size is 1.5 or more, it is practically inconvenient even if the electrode material has a film thickness of 50 ⁇ m or more as described above. No cracking occurs. That is, even if the film thickness is increased, deterioration of electrode performance due to cracks can be prevented.
  • the value of (Peak 2)-(Peak 1) described above can be used as an index instead of the peak 2 / average particle diameter index.
  • Example 7 using LiFeZrPSiO 4 (hereinafter referred to as active material C) which is a substitution system instead of the lithium iron phosphate (LiFePO 4 ) as the positive electrode active material will be described.
  • the active material C (LiFeZrPSiO 4 ) has the following general formula LixMyP 1 -zSizO 4 (Formula 1) It is a material that satisfies.
  • M is a combination of one or both of Fe and Mn and at least one element selected from the group consisting of Co, Ni, Zr, Sn, Al and Y, or Fe and Mn.
  • the active material satisfying the general formula (Formula 1) is a substitution system of LiFePO 4 or LiMnPO 4 , and the volume change rate of the active material during charging / discharging is small as compared with the conventional unsubstituted system.
  • the Li source, the Zr source, and the Si source are dissolved in ethanol, and the Fe source and the P source are moles of 4 times the total moles of the metal alkoxide (Fe source, Si source, and Li source).
  • the metal alkoxide Fe source, Si source, and Li source.
  • Dissolved in water Ethanol in which the metal alkoxide is dissolved, Fe source, and water in which the P source is dissolved are mixed, stirred for 1 hour, and dried in a dryer at 60 ° C. as a precursor.
  • the obtained amorphous precursor was baked at 600 ° C. for 12 hours in a nitrogen atmosphere to obtain an olivine-type positive electrode active material C.
  • the composition of the obtained positive electrode active material was LiFe 0.95 Zr 0.05 P 0.9 Si 0.1 O 4 , and the volume change rate during charge and discharge of LiFePO 4 was 6.9%, whereas the volume change rate was 6.0%. .
  • the definition and measurement method of the volume change rate are as follows.
  • the synthesized positive electrode active material LiFe 0.95 Zr 0.05 P 0.9 Si 0.1 O 4 (hereinafter abbreviated as LiFeZrPSiO 4 ) is pulverized with a mortar, and X-ray measurement is performed from 10 ° to 90 ° using a Cu tube at room temperature. To obtain the lattice constant.
  • a positive electrode active material having the same composition as the Li desorption state whose charge capacity was confirmed was used as the positive electrode active material after Li desorption at room temperature.
  • X-ray measurement was performed. Specifically, a battery is manufactured by a battery manufacturing method described later, the positive electrode is taken out in a fully charged state, the electrode is washed with an organic solvent, and then XRD measurement of the positive electrode active material after the Li desorption is performed. Carried out.
  • the volume change rate (%) due to charging / discharging is obtained from the lattice constant of the structure at the time of charging and the structural lattice constant at the time of discharging.
  • Volume / volume of structure during discharge) ⁇ 100 Determined by
  • the structure at the time of charging was the structure at the time of Li desorption
  • the structure at the time of discharging was the initial structure at the time of synthesis.
  • Substituted active materials C were synthesized by the above method, and classification and remixing with a sieve were performed to obtain two types of active materials for electrodes (L, M) having different particle size distributions.
  • the particle size distribution is shown in FIGS.
  • the electrode active materials L and M were applied to the electrodes in the same manner as the electrode active materials AK to obtain electrodes L and M.
  • the electrode active material L has at least three peak values, but the electrode active material M has only one peak value.
  • Example 7 (Cracked state) Next, the state of cracking is examined in Example 7 using the electrode active material L and Comparative Example 6 using the electrode active material M.
  • FIG. 21 lists the relationship between the particle size distribution of the positive electrode active material and the degree of cracking of the positive electrode material in Example 7 and Comparative Example 6.
  • the peak value 1 is 0.8 ⁇ m
  • the peak value 2 is 45.7 ⁇ m
  • the average particle size is 14.8 ⁇ m.
  • Comparative Example 6 does not have the peak value 1
  • the peak value 2 is 11.5, and the average particle size is 9.9 ⁇ m.
  • Example 7 As shown in FIG. 21, the cracking degree of Example 7 is level 1, and no practically inconvenient cracking has occurred. However, the cracks in Comparative Example 6 are level 3, and cracks that are practically inconvenient are generated. That is, the value of peak 2 / average particle diameter in Example 7 satisfies 1.5 or more, and the comparative example is 1.16 which is 1.5 or less. Examples 1-6 and Comparative Examples 1-5 It satisfies the maximum particle size balance value found in.
  • Example 7 provides a good electrode with a low cracking level. It can also be seen that even if the active material component is a substitution system, it has the same cracking characteristics as the non-substitution type active material.
  • the active material for the negative electrode is mainly made of a material having a particle size larger than 20 ⁇ m. However, when a material having a particle size close to that of the nanoparticle is used, cracking is caused by making the particle size distribution similar to that of the positive electrode. Can be prevented.
  • the density was 1.5 g / cm 3 by press working, and the load characteristics were measured with a three-electrode bin cell. However, since only a small area electrode is used in this measurement, an electrode portion without a large crack was cut out and used for the crack level 3.
  • the charge / discharge conditions are CC / CV charge (cut voltage 3.8V vs. Li cut current 0.01C), CC discharge, and the load characteristic is good when the ratio of 1.0C discharge capacity / 0.1C discharge capacity is 90% or more, 90 % Was regarded as defective (similar to the load characteristics of ordinary lithium ion secondary batteries).
  • FIGS. 18 The load characteristics of these electrodes AM are shown in FIGS. 18, the column from the electrode column to the average particle size column is the same as that in FIG. The different columns are the peak 1 / average particle size column and the load characteristic column. In FIG. 22, the column of peak 2 / average particle size in FIG. 21 is the column of peak 1 / average particle size. As apparent from FIGS. 18 and 22, the electrodes C to J and L showed good load characteristics, and the electrodes A, B, K and M were defective.
  • the present inventor has found that this value is good in the range of 0.05 to 0.19. .21, it was recognized as defective, and when peak 1 did not exist below the average particle diameter, it was recognized as defective.
  • the reason why the load characteristics were good is presumed that the conductivity of the electrodes was improved by the small particles entering the gaps between the large particles, but the electrodes C to J, L are particularly suitable. It is thought that they had particles of different particle sizes.
  • the electrodes C to J, L are characterized by having a peak smaller than the average particle diameter (peak 1), and the ratio of peak 1 to the average particle diameter is 0.2 or less. The frequency of appearance corresponding to peak 1 was 2% or less.
  • the peak 2 / average particle diameter is practically Even in the range of 1.5 or more that does not cause inconvenient cracking, there may be a case where the peak 1 / average particle size is larger than 0.2.
  • an electrode satisfying the peak 2 / average particle size of 1.5 or more and the peak 1 / average particle size of 0.2 or less does not cause cracking, and has good load characteristics. It can be said that there is.
  • Examples 1-6 and 7 are examples in which the peak 2 / average particle size is 1.5 or more and the peak 1 / average particle size is 0.15 or less.
  • the electrode material is thinner than 50 ⁇ m and hardly cracks, even if the electrode active material used for electrodes I and J is used, the load characteristics are about the same as before. Therefore, it can be used practically.
  • the electrode material using the electrode active materials I and J has a good load characteristic when the thickness is 50 ⁇ m or more, even if there is a possibility of a slight crack, the electrode CH is used.
  • the battery capacity cannot be increased as in the case, but the battery capacity can be increased as compared with a battery using a thin electrode material having a thickness of 50 ⁇ m or less.
  • the active material (lithium iron phosphate) having the particle size distribution can be obtained by mixing at least two types of lithium iron phosphate powders having at least different peak values in an appropriate ratio as described above.
  • the peak value can be arbitrarily adjusted, and an active material having an optimum peak value can be obtained from the various active material materials shown in the paragraphs 0032 and 0033.
  • the average particle size is generally about 10 ⁇ m, but by preparing two types of particles with such a particle size distribution and adjusting the peaks (for example, peaks are formed around 1 ⁇ m and around 20 ⁇ m). Therefore, the same effect as in the case of the lithium iron phosphate can be expected. The same applies to the case where different active material materials are mixed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、電極材料の厚みを50μmより厚くしても電極材料に不都合なひび割れが生じない大容量の非水電解質二次電池、その電極および製造方法を提供するため、電極材料の活物質として、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が活物質粒子の平均粒径の1.5倍以上である活物質粒子を用いる。

Description

非水電解質二次電池電極及びその製造方法
 本発明は、非水電解質二次電池電極、その電極に用いる活物質、その電極を用いた二次電池、及びそれらの製造方法に関する。
 一般に、非水電解質二次電池、例えばリチウムイオン二次電池は、よく知られているように正極と負極とを有する。当該電極は、少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した構造となっている。
 この導電材粒子は、活物質粒子の導電性を向上させるために用いる。特に正極においては、当該活物質の粒径と同等以下の粒径にすることで、導電性の向上効果を得ている。即ち、導電材粒子の径が大きいと、導電性の向上が不十分である。このため、通常、正極活物質より大きい粒径を有する粒子は導電材として用いられていない。
 例えば代表的なものとして、正極活物質としてコバルト酸リチウムを用いたものがある。この場合の導電材としては主にアセチレンブラックが用いられており、各々の平均粒径は約20μm及び0.1μmとなっている。また、最近では、安全性、コスト性の観点から15~0.05μm程度の小粒径のリン酸鉄リチウムが多く使われるようになってきた。この場合も導電材としては、それよりも小粒径のものが用いられている。
 また、負極活物質としては天然黒鉛を用いる場合が多く、これらに導電材としての黒鉛を加える。これらの代表的な粒径としては20~30μmおよび4~20μmを組み合わせることが一般的である。
 ところで、前記のようなリチウムイオン二次電池は、大きなエネルギー密度を有し、またサイクル特性に優れている。このため、各種機器の電源に用いられ、更に用途が広がり、家庭用電力の電源としても期待されている。
 しかしながら、現状では大きな出力を得ることが難しくその大容量化が強く望まれている。例えば、電極活物質として高分子ラジカル材料を用いて大容量化を図ることなどが提案されている。(特許文献1)
 特許文献1のものは大容量化が図れる反面、高分子ラジカル材料という特定の材料を用いなければならない。しかも電極作製時においてヒビ割れ、そりが生じないように、電極内に平均繊維径0.01~0.5μm、繊維長15~100μmの実質的に分岐構造を持たない特殊な炭素繊維を含ませることが必要であるという問題点がある。
 これに対して、特許文献2では5μm以上の造粒粒子又は凝集粒子を含む正極活物質粉体を水又はバインダー水溶液と混練して水性ペーストを調製した後、これを該水性ペーストに含まれる大きな凝集粒子を加圧崩壊しながら20~120μmの目開きを持つフィルターを通す裏ごし処理を行う。得られた裏ごしペーストを集電用基板に所望の厚さに塗工し乾燥することで、塗工層の表面に筋引きを生じたり、乾燥時に該塗工層に亀裂や集電用基板からの剥離を生ずることなく肉厚の体積効率の向上したリチウム二次電池用正極を得ることができる。
 特許文献2のものは、特殊な炭素繊維使用する必要がない反面、特定のフィルターでペーストを裏ごし処理しなければならない不都合がある。
特開2010-114042号公報 特開2010-113874号公報
 従って、本発明は前記のような特殊な炭素繊維を用いることなく、また、ペーストを特定のフィルターで裏ごし処理することなく、これまで積極的に試みられることが無かった。そこで、電極の単位面積あたりの塗布量を増加すること、即ち電極材料の厚みを厚くすることにより二次電池の大容量化を図ることを目的とするものである。
 即ち、従来の非水電解質二次電池の電極材料の厚みは最も厚いものでも50μmまでであり、それ以上の厚さのものはない。しかし、例えば、正極の電極材料を50μm以上にすると、電極単位面積当たりの容量はこの厚さに比例して大きくすることが可能となり、例えば2倍の100μm以上にすると、電極の容量もこれに比例して2倍以上となる。
 しかし、電極材料を厚くすると、電極作製時の塗装工程、乾燥工程において、或いは乾燥後において、例えば、正極集電体に被着した電極材料表面に従来では生じないヒビが生じ、電極として十分な作用をしないという問題がある。特に活物質がナノ粒子のように小径である場合、この現象は顕著に現れ、厚膜塗工を用いることが困難になる。
 それ故、この発明は、前記特殊な炭素繊維を用いることなく、また、ペーストを特定のフィルターで裏ごし処理することなく、電極材料の厚みを50μmより厚くしても電極材料に不都合なひび割れが生じない非水電解質二次電池電極、その電極に用いられる活物質、その電極を用いた二次電池およびそれらの製造方法を提供することを目的としている。
 前記目的を達成するために、本発明者は鋭意研究を進めた結果、前記活物質の粒度分布が少なくとも2つのピーク値を有し、当該ピーク値の最大が平均粒径の1.5倍以上であれば、前記課題を解決できることを発見した。換言すれば、活物質以外に特別なヒビ割れ防止材を用いることなく、また特殊な製造方法を用いることなく、活物質自体の粒度分布により電極に被着した電極材料のヒビ割れを防止する技術を見出した。
 (1)すなわち、前記発見に基づき、本発明は、少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した非水電解質二次電池電極において、前記電極材料に用いる前記活物質粒子は、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が前記活物質粒子の平均粒径の1.5倍以上とすることを特徴とする。
 (2)本発明は、前記(1)に記載の非水電解質二次電池電極において、前記電極材料の厚みは50μm以上とすることを特徴とする。
 第1の局面による非水電解質二次電池電極は、電極材料を50μmよりも厚くしても、電極材料にヒビ割れが生じないので、大容量の非水電解質二次電池を得るために用いる電極として好適である。また、この電極は、単に電極材料が厚くなるだけであるから、前記大容量の非水電解質二次電池に用いても、その構造の複雑化を防止することが出来る。
 (3)また、本発明は、前記(1)又は(2)に記載の非水電解質二次電池電極において、更に前記活物質粒子が前記ピーク値の最小が前記活物質粒子の平均粒径の0.2倍以下であることを特徴とする。
 この非水電解質二次電池電極では、電極材料を厚くしても、更には50μmよりも厚くしても、良好な電気的特性(負荷特性)を維持するので、この電極を用いることにより大容量で電気的特性が良好な非水電解質二次電池を得ることが出来る。
 (4)更に、前記(1)~(3)の何れかに記載の発明において、前記活物質粒子の平均粒径が3.5~14.8μmであることを特徴とする。
  (5)前記(1)~(4)の何れかに記載の発明において、前記活物質は、ピーク値が異なる少なくとも2以上の活物質を混合したものであることを特徴とする。
 (6)前記(1)~(5)の何れかに記載の発明において、前記活物質粒子が正極用のリン酸鉄リチウムであることを特徴とする。
 (7)前記(1)~(5)の何れかに記載の発明において、前記活物質がLixMyP-zSizO (Mは、Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせ又はFeとMnとの組み合わせ、0≦x≦2、0.8≦y≦1.2、0<z≦1)
を満たす正極用の材料であることを特徴とする。
 (8)前記(1)~(5)の何れかに記載の発明において、前記活物質は負極用の活物質であることを特徴とする。
 (9)また、本発明は、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が平均粒径の1.5倍以上である活物質を含む電極材料を、溶剤を用いてスラリー状とし、集電体上に塗布し、乾燥させることを特徴とする非水電解質二次電池電極の製造方法である。
 (10)更に、本発明は前記発明(9)に記載の活物質が前記発明(2)~(8)の何れかに記載の活物質粒子であることを特徴とする非水電解質二次電池電極の製造方法である。
 第2の局面による非水電解質二次電池電極の製造方法によれば、スラリー状の電極材料を例えば塗布により被着するだけで、後は従来と同様に乾燥させるだけで良いので、厚みを50μm以上にする場合でも製造が簡単である。
 (11)また、本発明は、正極と負極とを有し、当該電極は、少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した非水電解質二次電池において、前記(1)~(8)の何れかに記載の非水電解質二次電池電極を正極若しくは負極の少なくとも一方に用いた非水電解質二次電池である。
 この第3の局面による非水電解質二次電池によれば、電極材料の厚さを50μm以上としても、ヒビ割れが生じることがないので、大容量の非水電解質二次電池を得ることが出来る。
 (12)また、本発明は、正極と負極とを有し、当該電極は、少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した非水電解質二次電池において、当該電極は粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が平均粒径の1.5倍以上である活物質を含む電極材料を、溶剤を用いてスラリー状とし、集電体上に塗布し、乾燥させることにより形成することを特徴とする非水電解質二次電池の製造方法である。
 第4の局面による非水電解質二次電池の製造方法によれば、従来と同様に集電体にスラリー状の電極材料を例えば塗布により被着し、乾燥させるだけで良いので、電極材料の厚みを50μm以上にする場合でも製造が簡単である。
 (13)また、本発明は非水電解質二次電池電極に用いる活物質であって、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が活物質粒子の平均粒径の1.5倍以上とすることを特徴とする。
この第5の局面による非水電解質二次電池の電極に用いる活物質を電極材料として用いると、スラリー状の電極材料を例えば塗布により被着し、乾燥させて厚みを50μm以上にする場合でもヒビ割れが生じることがない。
 (14)更に、本発明は、ピーク値が異なる少なくとも2以上の活物質を混合して、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が前記活物質粒子の平均粒径の1.5倍以上とすることを特徴とする正極用活物質の製造方法である。この第6の局面による活物質の製造方法によれば、正極に塗布した際に、ヒビ割れを生じない適切な粒度分布の活物質粒子を容易に得ることが出来る。
 本発明によれば、電極材料の厚さを50μm以上としても、ヒビ割れが生じることのない電極を得ることができるので、これを用いて大容量の非水電解質二次電池を得ることが可能となる。
 また、本発明によれば、電極の厚みを厚くしてもヒビ割れが生じない歩留まりの良い非水電解質二次電池電極の製造方法を得ることができる。
本発明の実施形態である非水電解質二次電池の構造を示す説明図である。 本発明の実施形態の電極材料の組成を示す組成説明図である。 本発明の実施例1-6、および(比較例)1-5に用いられる活物質の粒度分布とヒビ割れとの関係を表わす説明図である。 本発明に用いる活物質A-Kの作成に使用する、ピーク値が17.0のリン酸鉄リチウム(イ)の粒径―頻度の特性図である。 本発明に用いる活物質A-Kの作成に使用する、ピーク値が0.6、3.6のリン酸鉄リチウム(ロ)の粒径―頻度の特性図を示すものである。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Aの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Bの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Cの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Dの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Eの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Fの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Gの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Hの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Iの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Jの粒径―頻度の特性図である。 本発明の実施例1-6及び比較例1-5に用いる電極用活物質Kの粒径―頻度の特性図である。 電極材料を乾燥させた時に生じるヒビ割れレベルの説明図である。 本発明の実施例1-6、および(比較例)1-5に用いられる活物質の粒度分布と負荷特性との関係を表わす説明図である。 本発明の実施例7及び比較例6に用いる電極用活物質Lの粒径―頻度の特性図である。 本発明の実施例7及び比較例6に用いる電極用活物質Mの粒径―頻度の特性図である。 本発明の実施例7および比較例6に用いられる活物質の粒度分布とヒビ割れとの関係を表わす説明図である。 本発明の実施例7、および比較例6に用いられる活物質の粒度分布と負荷特性との関係を表わす説明図である。
 (実施形態1)
 以下、図面を参照して本発明の実施形態1を説明する。図1において、本発明を実施したリチウムイオン二次電池1は、正極4と負極3とをセパレータ2を介して対向するように重ね合わせた構成を有している。この正極4はリード8を有するアルミ箔等からなる正極集電体5上に、厚さ50μm以上の厚さの正極材料9(電極材料)が被着されている。また、負極3は、負極リード7を有する金属箔等からなる負極集電体6上、20μm以上の厚さの負極材料10(電極材料)が形成されている。これらは外装用フィルム11(アルミラミネート外装体等)で封止される。ただし、実際には電解液が外装体11内部に充填されるが、図示はしていない。
 本発明の非水電解質二次電池電極である前記正極4の正極材料9の組成は、図2の電極組成図に示すように、活物質としてリン酸鉄リチウムが110重量比、導電材として粒子径が0.1umのアセチレンブラックが9重量比、結着材としてスチレンブタジエンゴムが6.2重量比、増粘材としてカルボキシメチルセルロースが3.5重量比の割合で含まれている。
 前記正極用活物質として用いるリン酸鉄リチウムは、粒度分布が少なくとも2つのピーク値を有する。当該ピーク値の最大が平均粒径の1.5倍以上のものであり、この粒度分布のものにより後述するように正極材料9のヒビ割れを防止する。
 一方、前記負極材料10に用いる負極活物質粒子は主に20μm程度の粒径の炭素粒子を用いているため通常仕様の電極においてヒビ割れの問題は生じ難い。これに対して、正極活物質の好適な粒子径は、通常平均粒径で0.05μm~15μmという小径であるため、電極の厚みを厚くすると、ヒビ割れが生じる。特に、正極4は大容量化のために厚みが100~2000μmと厚くなるので、ヒビ割れが生じやすい。
 以下、前記リチウムイオン二次電池の各構成要素について更に詳しく説明する。
 (集電体)
 図1に示す正負各極の集電体5,6は、リチウムイオン二次電池の公知の材料が用いられる。正極集電体5としては、例えば、SUS、アルミニウム等の導電性金属の箔や薄板が挙げられる。負極集電体6としては、例えば、銅のような金属の箔が挙げられる。活物質層を塗装することで電極となる。集電体は平面とは限らず、表面に凹凸が加工されたものであってもよい。
 (電極材料)
 電極材料は、リチウムイオン二次電池の公知の材料が用いられる。リチウムイオン二次電池の場合、前記正極活物質としては、リチウムを含有した酸化物を用いることができる。例えばチタン、モリブデン、銅、ニオブ、バナジウム、マンガン、クロム、ニッケル、鉄、コバルトもしくはリン等とリチウムの複合酸化物、硫化物またはセレン化物などが好ましい。具体的には、LiMnO2、LiMn2O4、LiNiO2、LiCoO2、LiCrO2、LiFeO2、LiVO2およびLiMPO4(MはCo、Ni、Mn、Feから選ばれる少なくとも1種以上の元素)のうちの1つ以上を単独または複数種組み合わせて用いることができる。前記図1の実施形態においては、主にリン酸鉄リチウムを活物質として用いている。
 また、負極活物質としては、天然黒鉛、人造黒鉛、高結晶黒鉛等の黒鉛系物質、非晶質炭素系物質、Si、Sn、Nb2O5およびLiTiO4等の金属酸化物うちの少なくとも1つ以上を単独または複数種組み合わせて用いることができる。Si、Snはリチウム吸蔵能力が高いので今後負極活物質として良く使われる可能性がある。なお、負極活物質の粒子径を小さくすると、正極活物質と同様に、ヒビ割れが問題となる可能性がある。
 さらに、正負各極の活物質層には、後述の導電剤、結着剤、フィラー、分散剤、イオン導電剤、圧力増強剤およびその他の各種添加剤を用いることができる。なお、電池組立時において、積層方向両端に位置する電極の最外層の活物質層は省略してもよい。正負各極の集電体上に形成された電極材料の厚みとしては20~500μm程度が適当であり、100~400μm程度が好ましい。
 導電剤としては、一般的に電池材料として用いられるものであり、かつ構成された電池において、化学変化を起こさない電子伝導性材料であれば特に限定されない。例えば天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、気相成長黒鉛繊維(VGCF)、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル、アルミニウム、銀などの金属粉類、酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー類、酸化チタンなどの導電性金属酸化物あるいはポリフェニレン誘導体等の有機導電性材料などを単独またはこれらの混合物として用いることができる。これらの導電剤のなかで、アセチレンブラック、VGCF、グラファイトとアセチレンブラックの併用が特に好ましい。
 結着剤としては、一般的に電池材料として用いられるものであり、かつ多糖類、熱可塑性樹脂およびゴム弾性を有するポリマーのうちの一種またはこれらの混合物として用いることができる。好ましい例としてはでんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド、ポリビニルピロリドン、ポリテトラフルオロエチレン、ポリ弗化ビニリデン、ポリエチレン、ポリプロピレン、エチレン-プロピレン-ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム、ポリブタジエン、フッ素ゴムおよびポリエチレンオキシドを挙げることができる。
 増粘材としては、例えば、でんぷん、ポリビニルアルコール、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、再生セルロース、ジアセチルセルロース、ポリビニルクロリド等が挙げられる。
 フィラーは、一般的に電池材料として用いられるものであり、かつ構成されたリチウム二次電池において、化学変化を起こさない繊維状材料であれば特に限定されない。例えばポリプロピレン、ポリエチレンなどのオレフィン系ポリマー、ガラス、炭素などの繊維を用いることができる。
 イオン導電剤は、無機および有機の固体電解質として一般的に知られている。例えばポリエチレンオキサイド誘導体あるいは該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体、該誘導体を含むポリマー、リン酸エステルポリマー等を用いることができる。
 圧力増強剤は、電池の内圧を上げる化合物であり、炭酸塩を代表例に挙げることができる。
 (セパレータ)
 図1に示すセパレータ2は、イオン透過度が大きく、所定の機械的強度を持ち、絶縁性の薄膜を使用できる。セパレータを構成する材質としては、非水電解質によって侵されないものであればよく、特に限定するものではない。
 例えば、ポリエチレン、ポリプロピレン、ポリ-4-メチルペンテン-1等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート等のポリエステル系樹脂、6ナイロン、66ナイロン、全芳香族ポリアミド等のポリアミド系樹脂、フッ素系樹脂、ポリイミド系樹脂、セルロース系樹脂、アラミド系樹脂、ガラス繊維等が挙げられる。これら樹脂は、2種類以上混合してもよい。セパレータの形態としては、不織布、織布、微多孔性フィルム等が挙げられる。
 特に、ポリエチレン、ポリプロピレン、ポリエステル等からなる不織布、微多孔質膜が品質の安定性等の点から好ましい。これら合成樹脂の不織布、微多孔質膜では二次電池が異常発熱した場合に、セパレータが熱により溶解し、正負極間を遮断する機能(シャットダウン)が二次電池に付加される。
 またポリイミド、ポリアミド、アラミド系樹脂においては、形状安定性に優れており、温度が高くなっても形状が安定しているという長所を有する。
 (非水電解質)
 非水電解質としては、特に限定されないが、電解質塩を有機溶媒に溶解してなる溶液が挙げられる。電解質塩としては、リチウムイオン二次電池に使用する場合、例えば、リチウムをカチオン成分とし、ホウフッ化リチウム、六フッ化リン酸リチウム、過塩素酸リチウム、フッ素置換有機スルホン酸等の有機酸をアニオン成分とするリチウム塩が挙げられる。
 有機溶媒は、前記電解質塩を溶解するものであれば、どのようなものでも使用できる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状炭酸エステル類、γ―ブチロラクトン等の環状エステル類、テトラヒドロフラン、ジメトキシエタン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状炭酸エステル類等が挙げられる。これらの有機溶媒は、単独で、又は2種類以上の混合物として用いられる。
 (電極の製造方法)
 電極3,4の製造方法としては特に限定されず、材料に応じて適宜選択した方法を用いることができる。しかし、最も一般的な製造方法としては、各材料に水あるいはNMPなどの溶剤を混合し、さらに攪拌することによりスラリー状の均一な分散液とし、これを電極集電体5,6に塗布し、加熱もしくは常温で溶剤を揮発させることにより電極を得る方法が挙げられる。
 以下、実施形態1に用いられる正極4用の電極材料の詳細、特に正極活物質の粒度分布と、ヒビ割れの程度との関係について実施例1-6を用いてより具体的に説明する。
 (実施例1-6)
 図3は6個の実施例1-6と5個の比較例1-5について、正極活物質の粒度分布と正極材料のヒビ割れの程度との関係について一覧表にしたものである。同図におけるピーク粒径とは、図4に示すように横軸に粒径(対数目盛)、縦軸に出現頻度(%)をとったリン酸鉄リチウム(イ)の粒度分布の特性図においてピークを示す粒径(17.0μm)のことである。また、図5のリン酸鉄リチウム(ロ)の特性図のようにピークが2つ以上ある場合、その最小の粒径(0.6μm)をピーク1、最大の粒径(3.6μm)をピーク2としている。また、平均粒径(d50)とは、この粒径以下の粒子が全体の体積の50%を占める値のことである。
 電極A-Kはピーク粒径の最大値(ピーク2)及び平均粒径(d50)がそれぞれ異なる正極活物質(リン酸鉄リチウム)を正極材料に用いたものである。なお、その正極材料の重量組成比については図2の通りであり、膜厚については400μmで共通している。塗膜は、前記正極活物質を含む正極材料を用いて水系の正極スラリーを作製し、正極集電体5であるアルミ箔上に塗布し、100℃の熱風乾燥を行い、当該正極集電体5に被着する。
 なお、ここで本実施形態中の粒径の定義は、ナノ粒子径分布測定装置SALD-1100(株式会社島津製作所社製)を用いて測定した平均粒径を示す。その際得られる粒径とは球相当径であり、粒子の最長辺と同程度となる場合が一般的である。
 (電極A-Kに塗工する電極材料に用いられるリン酸鉄リチウムの組成)
 まず、粒度分布特性が図4に示すように、平均粒径が13.1(図示せず)でピーク値が17.0、頻度が6.5%のリン酸鉄リチウム(イ)と、図5に示すように、平均粒径が2.8(図示せず)でピーク値が0.6及び3.6、頻度が2.5%、3.5%を有するリン酸鉄リチウム(ロ)とを、図3の混合比率の欄に示す体積混合比率(0-100%まで11段階)で混合して、電極用活物質粒子A乃至Kを得る。
 電極用活物質Aはリン酸鉄リチウム(イ)単独、電極用活物質Kはリン酸鉄リチウム(ロ)のみであり、他の電極用活物質B-Jは当該両リチウム(イ)、(ロ)を10%、12.5%、25%、37.5%、50%、62.5%、75%、87.5%、90%の比率で混合したものである。なお、前記比率数字はリン酸鉄リチウム(イ)の比率を示している。
 これら電極用活物質A-Kの粒度分布は図6~図16に示すそれぞれの特性図の通りであり、何れも横軸を対数目盛(μm)、縦軸を出現頻度(%)としている。図6~図16から明らかなように電極用活物質A-Kは、粒度分布において、少なくとも1個のピーク値を有しており、そのうちC-Kは少なくとも2個以上のピーク値を有している。夫々のピーク値の具体的な数値、平均粒径の数値については、図3のピーク粒径、及び平均粒径の欄に記載した通りである。なお、ピーク1は前記の通りピーク値の最小の値を示すものであるが、電極用活物質A,Bについては、ピーク1は認められなかった。
 前記電極A-Kに塗布された電極用活物質A-Kを含む電極材料が乾燥した後のヒビ割れの程度は、図17で定義したレベル0-4の5段階で判定している。図17は表面状態をレベル0からレベル4までの5段階に目視レベルで区分けし定義したものである。また、ヒビ割れがレベル2までであれば電極として用いることのできる条件としている。それは、ヒビ割れレベルが2までは、剥がれが見られないことと、塗工乾燥後の圧縮工程においてヒビを埋め合わせることで補修が可能であることより、電極として十分に作用するためである。レベル3以上になると、ヒビが多数出来るため、電極として使用できにくくなる。
 これを踏まえて、図3に示す電極A-Kのヒビ割れレベルの欄の数値を見ると、実施例1-6の電極C-Hはレベル1もしくはレベル2であって、実用上で不都合なヒビ割れは生じていない。これに対して、比較例1-5の電極A,B,I,J,Kは何れもレベル3であって、何れも実用上不都合なヒビ割れを生じている。電極A,B,I,J,Kと、電極C-Hとの相違は、ピーク2/平均粒径の値(最高粒度バランス値と言う)が1.5以上か否かの点にある。
 即ち、本発明者は粒度分布に少なくとも2つのピーク値を有する活物質について、新しい指標つまりピーク2/平均粒径の値(ピーク2の値を平均粒径で割った値であって、例えば、電極Aの場合、17.0÷13.1=1.30となる。)に着目し、その値(最高粒度バランス値)が1.5以上であれば、厚みが400μmであっても実用上で不都合なヒビ割れが生じないと言う技術的事実を確認した。
 換言すれば、比較例1-5に用いられた電極A,B,I,J,Kの(ピーク2/平均粒径)の値は1.19-1.41であるのに対して、実施例1-実施例6に用いられた電極C-Hの(ピーク2/平均粒径)の値は1.51-4.00であり、1.5を境として、ヒビ割れの程度に大きな相違が存在し、これを指標として、実用上不都合なヒビ割れを生じない電極を作成することが可能となる。
 なお、粒度分布を有する正極活物質がヒビ割れ防止効果を発揮する理由を推測ではあるが説明する。まず、電極材料例えば前記正極材料9は、溶剤例えば水によりスラリー状になった状態で正極集電体5の表面に塗布されるので、乾燥によってヒビが入ると考えられる。正極集電体5に塗布されたスラリー状の電極材料9は乾燥時に液体成分(結着材・増粘材水溶液)がなくなることで体積収縮が起こる。特に活物質粒子径が小さい場合、それら粒子が密になるため、体積収縮率が大きく、複数個所にヒビ割れが生じる。
 これに対し、最大側のピーク値を有する活物質粒子は、それ以下の活物質粒子に比べ体積(大きさ)が相当に大きく、量的にも多めであるので、粒子径が小さい活物質との間に、液体成分がなくなっても前記体積が相当大きい活物質により大きい隙間が維持される。このため、ヒビ割れが生じるほどの収縮が起こらず、結果的にヒビ割れが生じないと考えられる。
 換言すれば、電極A,Bがヒビ割れを生じる理由は、活物質粒子が大粒径側に片寄り過ぎているためである。また、電極I,J,Kがヒビ割れを生じる理由は、活物質粒子が小粒径側に片寄り過ぎているためであると考えられる。例えば、電極A,Bに用いられる電極用活物質A,Bは、ピーク値が1個であるため、活物質粒子が大粒径側に片寄り過ぎていることは明らかである。
 従って、ヒビ割れが生じないようにするためには、粒度分布のバランスも重要であって、そのバランスがピーク2/平均粒径の値(最高粒度バランス値)の範囲内と言える。なお、電極C-Hのピーク2の出現頻度は少なくとも2.5%以上の量である。
 また、粒度分布のバランスと言う観点から見ると、単一のピークであれば、粒度バランスが悪くてヒビ割れを生じるので少なくとも2つ以上のピークを有することが必要である。ただ、少なくともピーク1、ピーク2を有するサンプルであっても、(ピーク2)-(ピーク1)の値が小さい場合は粒度分布が一点集中に類似するのでバランスが悪い。また、その値が大きい場合は粒度分布が適度に分散してバランスが良いと言える。例えば、図3の場合であれば、(ピーク2)-(ピーク1)の値が3以下ではヒビ割れレベル3以上となり、15以上であればヒビ割れレベル2以下となる。
 このように、粒度分布に少なくとも2以上のピークを有し、ピーク2/平均粒径が1.5以上であれば、前記の通り、電極材料を50μm以上の膜厚にしても実用上不都合なヒビ割れが生じない。つまり、膜厚を厚くしてもヒビ割れによる電極性能の劣化を防止することが出来る。なお、ピーク2/平均粒径の指標に代えて、上述した(ピーク2)-(ピーク1)の値を指標とすることも出来る。
(実施例7,比較例6)
 次に、正極活物質として前記リン酸鉄リチウム(LiFePO4)に代えて、その置換系であるLiFeZrPSiO4(以下活物質ハと言う)を用いた実施例7について説明する。
前記活物質ハ(LiFeZrPSiO4)は、下記一般式
LixMyP-zSizO …(式1)
を満たす材料である。
(ここで、Mは、Fe及びMnのいずれか一方又は両方と、Co、Ni、Zr、Sn、Al及びYからなる群から選択される少なくとも1種の元素との組み合わせ又はFeとMnとの組み合わせ、0≦x≦2、0.8≦y≦1.2、0<z≦1)
前記一般式(式1)を満たす活物質はLiFePO4 またはLiMnPO4の置換系であり、従来の無置換系と比較し充放電時の活物質体積変化率が小さい。
<前記活物質ハ(LiFeZrPSiO4)の合成>
出発原料にリチウム源としてLi(OC)、鉄源としてFe(CHCOO)、ジルコニウム源としてZr(OC、リン源として(NHHPO、シリコン源としてSi(OCを所定のモル比となるように、それぞれ量りとる。
 次に、Li源、Zr源、Si源をエタノールに溶解し、また、Fe源、P源を、金属アルコキシド(Fe源、Si源及びLi源)の合計モル数に対して4倍のモル数の水に溶解した。金属アルコキシドを溶解したエタノールとFe源とP源を溶解した水とを混合し、1時間攪拌後、60℃の乾燥機にて乾燥させた粉末を前駆体とする。
 得られたアモルファスの前駆体を窒素雰囲気中で600℃、12時間焼成を行い、オリビン型の正極活物質ハを得た。得られた正極活物質の組成はLiFe0.95Zr0.050.9Si0.1であり、LiFePOの充放電時体積変化率が6.9%であったのに対し、体積変化率は6.0%であった。体積変化率の定義および測定方法は以下の通りである。
<体積変化率の測定>
 合成した前記正極活物質LiFe0.95Zr0.050.9Si0.1(以下LiFeZrPSiO4と略す)を乳鉢ですり潰して微粉化し、室温にて、Cu管球を用いて10°~90°までX線測定を行い、格子定数を求めた。
 また、Liの脱離後の活物質における格子定数を求めるため、Li脱離後の正極活物質として、充電容量を確認したLiの脱離状態と同じ組成の正極活物質を用い、室温にてX線測定を行った。具体的には、後述の電池の作製法で電池を作製し、完全に充電を行った状態で正極を取り出し、有機溶媒で電極を洗浄後、前記Li脱離後の正極活物質のXRD測定を実施した。
 充放電による体積変化率(%)は、充電時の構造の格子定数と放電時の構造格子定数とより、各体積を求め、下記式
  体積変化率(%)=(1-充電時の構造の体積/放電時の構造の体積)×100
により求めた。
 尚、ここで充電時の構造はLi脱離時の構造とし、放電時の構造は合成時の初期の構造とした。
(電極用活物質の作成、及び電極の製造)
前記方法にて置換系活物質ハの合成を行い、篩による分級、再混合を行うことで、粒度分布の異なる二種の電極用活物質(L、M)を得た。その粒度分布を図19、図20に示す。この電極活物質L,Mを前記電極用活物質A-Kと同様に電極に塗布して電極L,Mを得た。図19、図20に示す通り、電極活物質Lは少なくとも3個のピーク値を有しているが、電極活物質Mは1個のピーク値しか存在しない。
(ヒビ割れの状態)
 次に、前記電極活物質Lを用いた実施例7及び電極活物質Mを用いた比較例6についてヒビ割れの状態を検討する。図21は前記実施例7及び比較例6について正極活物質の粒度分布と正極材料のヒビ割れの程度との関係について一覧表にしたものである。実施例7のピーク値1は0.8μmであり、ピーク値2は45.7μm、平均粒径は14.8μmである。一方、比較例6はピーク値1がなく、ピーク値2は11.5、平均粒径は9.9μmである。
 図21に示す通り、実施例7のヒビ割れ程度はレベル1であって、実用上で不都合なヒビ割れは生じていない。しかし、比較例6のヒビ割れはレベル3であり、実用上不都合なヒビ割れを生じている。即ち、実施例7のピーク2/平均粒径の値は1.5以上を満たしており、比較例は1.5以下の1.16であり、前記実施例1-6、比較例1-5で見出した最高粒度バランス値を満たしている。
 従って、実施例7はヒビ割れレベルの小さい良好な電極が得られることが判る。また、活物質の成分が置換系であっても、非置換系の活物質と同様のヒビ割れ特性を有することが解る。負極用活物質は既に述べたように、粒径が20μmより大きい材料が主流であるが、粒径がナノ粒子に近いものを使う場合には、正極と同様の粒度分布にすることによりヒビ割れを防止することが出来る。
(実施形態2)
 前記の通り、電極材料の厚さを50μm以上としても実用上不都合なヒビ割れを生じない電極を得ることが出来るので、ヒビ割れによる電極性能の低下は防止することは出来るが、当該電極材料を構成する電極用活物質の粒度分布に基づく電気的特性自体の低下がないかについて検討した。即ち、前記実施例1-6、7、比較例1-5、6について、粒度分布と電気的特性、特に負荷特性との関係を確認した。
 まず、前記各電極A~Mについて、プレス加工により密度を1.5g/cm3とし、三電極式ビンセルにより、負荷特性を測定した。ただし、この測定では小面積の電極しか使用しないため、ひび割れレベル3のものに関しては大きなヒビ割れのない電極部分を切り取り、使用した。充放電条件はCC/CV充電(cut電圧3.8V vs.Li cut電流0.01C)、CC放電とし、負荷特性は1.0C放電容量/0.1C放電容量の比率が90%以上を良好、90%未満を不良とした(通常のリチウムイオン2次電池の負荷特性と同様である)。
 これら電極A-Mの負荷特性を図18、図22に示す。図18において、電極の欄から平均粒径の欄までは図3と同様である。異なる欄は、ピーク1/平均粒径の欄と、負荷特性の欄である。図22は、図21のピーク2/平均粒径の欄がピーク1/平均粒径の欄となっている。図18、図22から明らかなように、電極C~J、Lが良好な負荷特性を示し、電極A,B,K、Mが不良であった。
 本発明者は、この現象の解明に当たり、ピーク1/平均粒径の値(最小粒度バランス値と言う)に着目した結果、この値が0.05-0.19の範囲では良好であり、0.21では不良になること、平均粒径以下にピーク1が存在しない場合には、不良であることを認識した。
 負荷特性が良好であった理由は、小粒径の粒子が大粒径の粒子同士の隙間に入ることで電極の導電性が向上したためと推測されるが、電極C~J、Lが特に適した粒径の粒子を有していたと考えられる。電極C~J、Lの特徴として、平均粒径よりも小粒径側のピーク(ピーク1)を有し、かつピーク1の平均粒径に対する比率が0.2以下であった。また、ピーク1に対応する出現頻度はいずれも2%以下の量であった。
 従って、電極I,Jのように、ヒビ割れレベルが3であっても、ピーク1/平均粒径が0.2以下であれば、電極材料自体の負荷特性は良好の範囲内にあることが解る。それ故、実施形態1において実用上不都合なヒビ割れが生じない前記実施例1-6、7は、負荷特性も良好であることが解る。
 しかしながら、実施形態1に用いたリン酸鉄リチウム(イ)、(ロ)とは異なる粒度分布のリン酸鉄リチウムを用いて電極用活物質を作成した場合、ピーク2/平均粒径が実用上不都合なヒビ割れを生じない1.5以上の範囲であっても、ピーク1/平均粒径が0.2よりも大きくなるケースがあり得る。
 このような場合、電極にヒビ割れが生じないにも関わらず、負荷特性が良好とは言えない電極となる。従って、実施形態2においては、ピーク2/平均粒径が1.5以上で且つピーク1/平均粒径が0.2以下を満たす電極がヒビ割れを生じなくて、負荷特性も良好な電極であると言える。なお、実施例1-6、7は、ピーク2/平均粒径が1.5以上で且つピーク1/平均粒径が0.15以下の例である。
 ただ、電極材料の厚さが50μmよりも薄くて、ヒビ割れが殆ど生じない電極であれば、電極I,Jに用いた電極用活物質を用いても、その負荷特性は従来と同程度であるので、実用上、使用することが可能である。また、電極用活物質I,Jを用いた電極材料は、厚さが50μm以上になると、少しヒビ割れが出来る可能性があっても負荷特性は良好であるから、電極C-Hを用いた場合のように電池容量を多くすることは出来ないが、厚さが50μm以下の薄い電極材料を用いる電池に比して電池容量を多くすることが可能である。
(実施形態3)
少なくともピーク値の異なる少なくとも2種類のリン酸鉄リチウム粉末を前記のように適宜比率で混合することにより、前記粒度分布の活物質(リン酸鉄リチウム)を得ることが出来る。
 このようにすれば、ピーク値を任意に調整することが可能となり、前記0032、0033段落に示す各種活物質の材料により最適のピーク値を有する活物質を得ることができる。例えばコバルト酸リチウムの場合、平均粒径は10μm程度が一般的であるが、このような粒度分布のものを2種類用意してピークを調整することで(例えば1μm付近と20μm付近にピークを作ることで)、前記リン酸鉄リチウムの場合と同様の効果を期待できる。特に、異なる活物質材料を混合する場合も同様である。
 1 リチウムイオン二次電池
 2 セパレータ
 3 負極
 4 正極
 5 正極集電体
 6 負極集電体
 7 負極リード
 8 正極リード
 9 正極材料(電極材料)
10 負極材料(電極材料)
11 外装体

Claims (5)

  1.  少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した非水電解質二次電池電極において、
    前記電極材料に用いる前記活物質粒子は、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が前記活物質粒子の平均粒径の1.5倍以上とすることを特徴とする非水電解質二次電池電極。
  2.  前記活物質粒子は前記ピーク値の最小が前記活物質粒子の平均粒径の0.2倍以下であることを特徴とする請求項1に記載の非水電解質二次電池電極。
  3.  請求項1に記載の電極材料を溶剤を用いてスラリー状とし、集電体上に塗布した後に乾燥して電極を製造する非水電解質二次電池電極の製造方法。
  4.  正極と負極とを有し、当該電極は、少なくとも活物質粒子と導電剤粒子とを含む電極材料を集電体上に被着した非水電解質二次電池において、
    当該電極材料に用いる前記活物質粒子は、粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が前記活物質粒子の平均粒径の1.5倍以上とすることを特徴とする非水電解質二次電池。
  5.  粒度分布に少なくとも2つのピーク値を有し、当該ピーク値の最大が平均粒径の1.5倍以上とすることを特徴とする非水電解質二次電池電極用活物質。
PCT/JP2013/081026 2012-12-26 2013-11-18 非水電解質二次電池電極及びその製造方法 WO2014103558A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-283256 2012-12-26
JP2012283256 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103558A1 true WO2014103558A1 (ja) 2014-07-03

Family

ID=51020653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081026 WO2014103558A1 (ja) 2012-12-26 2013-11-18 非水電解質二次電池電極及びその製造方法

Country Status (1)

Country Link
WO (1) WO2014103558A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175697A1 (ja) * 2016-04-04 2017-10-12 株式会社Gsユアサ 蓄電素子
WO2018155314A1 (ja) * 2017-02-24 2018-08-30 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
CN114864924A (zh) * 2022-05-26 2022-08-05 上海瑞浦青创新能源有限公司 一种三元正极材料和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
JP2005135723A (ja) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology 電極用複合粉末及びその製造方法
JP2008532910A (ja) * 2005-03-18 2008-08-21 ジュート−ヒェミー アクチェンゲゼルシャフト リチウム金属リン酸塩をウェットケミカル方式にて製造する循環方法
JP2009238587A (ja) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd 正極活物質粉末
WO2011108720A1 (ja) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
JP2012146590A (ja) * 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2012216322A (ja) * 2011-03-31 2012-11-08 Sharp Corp 非水電解質二次電池及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082466A (ja) * 1998-07-02 2000-03-21 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
JP2005135723A (ja) * 2003-10-30 2005-05-26 National Institute Of Advanced Industrial & Technology 電極用複合粉末及びその製造方法
JP2008532910A (ja) * 2005-03-18 2008-08-21 ジュート−ヒェミー アクチェンゲゼルシャフト リチウム金属リン酸塩をウェットケミカル方式にて製造する循環方法
JP2009238587A (ja) * 2008-03-27 2009-10-15 Sumitomo Chemical Co Ltd 正極活物質粉末
WO2011108720A1 (ja) * 2010-03-05 2011-09-09 Jx日鉱日石金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及びリチウムイオン電池
JP2012146590A (ja) * 2011-01-14 2012-08-02 Panasonic Corp 非水電解質二次電池用正極、その正極の製造方法、及び非水電解質二次電池
JP2012216322A (ja) * 2011-03-31 2012-11-08 Sharp Corp 非水電解質二次電池及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017175697A1 (ja) * 2016-04-04 2017-10-12 株式会社Gsユアサ 蓄電素子
CN109075310A (zh) * 2016-04-04 2018-12-21 株式会社杰士汤浅国际 蓄电元件
JPWO2017175697A1 (ja) * 2016-04-04 2019-02-14 株式会社Gsユアサ 蓄電素子
US11217782B2 (en) 2016-04-04 2022-01-04 Gs Yuasa International Ltd. Energy storage device
JP7054479B2 (ja) 2016-04-04 2022-04-14 株式会社Gsユアサ 蓄電素子
WO2018155314A1 (ja) * 2017-02-24 2018-08-30 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JPWO2018155314A1 (ja) * 2017-02-24 2019-12-12 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
US11387483B2 (en) 2017-02-24 2022-07-12 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing same
JP7230798B2 (ja) 2017-02-24 2023-03-01 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
CN114864924A (zh) * 2022-05-26 2022-08-05 上海瑞浦青创新能源有限公司 一种三元正极材料和应用
CN114864924B (zh) * 2022-05-26 2023-04-28 上海瑞浦青创新能源有限公司 一种三元正极材料和应用

Similar Documents

Publication Publication Date Title
JP5255143B2 (ja) 正極材料、これを用いたリチウムイオン二次電池、及び正極材料の製造方法
JP4317571B2 (ja) 活物質、電極、電池、及び活物質の製造方法
JP5984026B2 (ja) バイモダルタイプの負極活物質組成物、並びに、負極活物質、負極活物質組成物、負極、リチウム二次電池、電池モジュール及び電池パックの製造方法
KR101539843B1 (ko) 고밀도 음극 활물질 및 이의 제조방법
WO2016098708A1 (ja) リチウムイオン二次電池
JP6020584B2 (ja) 非水電解質二次電池用正極活物質の製造方法
KR102100879B1 (ko) 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
WO2013132663A1 (ja) 非水電解液二次電池
US9105904B2 (en) Composite anode active material, anode and lithium battery including the same, and method of preparing composite anode active material
JP3532016B2 (ja) 有機電解液二次電池
JP2023118940A (ja) 正極活物質およびこれを含むリチウム二次電池
US11031600B2 (en) Lithium ion secondary battery including aluminum silicate
JP5910730B2 (ja) 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池
JP2023027385A (ja) 正極活物質およびこれを含むリチウム二次電池
CN114747041A (zh) 为改善高温寿命特性而优化的正极和包含其的二次电池
JP5564872B2 (ja) 非水電解質二次電池
JP5791935B2 (ja) 非水電解質二次電池及びその製造方法
JP6394193B2 (ja) 正極活物質、正極及びリチウムイオン二次電池
WO2014103558A1 (ja) 非水電解質二次電池電極及びその製造方法
JP7143006B2 (ja) 二次電池用負極活物質の製造方法、二次電池用負極及びこれを含むリチウム二次電池
TWI600195B (zh) 非水電解質二次電池及使用其之組電池
JP7244626B2 (ja) リチウム二次電池用正極活物質、その製造方法及びこれを含むリチウム二次電池
WO2023032482A1 (ja) 非水電解質二次電池
WO2022196040A1 (ja) 非水電解質二次電池
CN116062797A (zh) 一种正极材料及包含该正极材料的电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP