WO2014097961A1 - Ag-In合金スパッタリングターゲット - Google Patents

Ag-In合金スパッタリングターゲット Download PDF

Info

Publication number
WO2014097961A1
WO2014097961A1 PCT/JP2013/083334 JP2013083334W WO2014097961A1 WO 2014097961 A1 WO2014097961 A1 WO 2014097961A1 JP 2013083334 W JP2013083334 W JP 2013083334W WO 2014097961 A1 WO2014097961 A1 WO 2014097961A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
film
sputtering target
ppm
alloy sputtering
Prior art date
Application number
PCT/JP2013/083334
Other languages
English (en)
French (fr)
Inventor
野中 荘平
小見山 昌三
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50978296&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014097961(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020197038997A priority Critical patent/KR20200003287A/ko
Priority to CN201380063841.0A priority patent/CN104838038A/zh
Priority to KR1020147031231A priority patent/KR20140134723A/ko
Priority to SG11201504729VA priority patent/SG11201504729VA/en
Priority to KR1020157021041A priority patent/KR20150094791A/ko
Priority to EP13865990.9A priority patent/EP2937444B1/en
Publication of WO2014097961A1 publication Critical patent/WO2014097961A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to an Ag alloy sputtering target for forming a reflective electrode film used for an organic electroluminescence (EL) element or a light emitting diode (LED).
  • EL organic electroluminescence
  • LED light emitting diode
  • a bottom emission method that extracts light from the transparent substrate side
  • a top emission method that extracts light on the opposite side of the substrate.
  • the emission method is advantageous for high brightness.
  • a reflective electrode film made of Al or an Al alloy or Ag or an Ag alloy is used as an anode metal film.
  • a transparent conductive film such as indium tin oxide (ITO) or aluminum-added zinc oxide (AZO) is provided (see, for example, Patent Document 1). This transparent conductive film is provided for injecting holes into the organic EL layer because of its high work function.
  • the reflective electrode film has a high reflectance in order to efficiently reflect the light emitted from the organic EL layer.
  • the electrode has a low resistance.
  • a material an Ag alloy and an Al alloy are known, but an Ag alloy is excellent because it has a high visible light reflectance as a material for obtaining a higher-luminance organic EL element.
  • a sputtering method is employed to form the reflective electrode film on the organic EL element, and a silver alloy sputtering target is used (see, for example, Patent Document 2).
  • Ag alloy films have been studied for conductive films such as lead wires for touch panels.
  • a wiring film for example, when pure Ag is used, migration occurs and a short circuit failure is likely to occur. Therefore, adoption of an Ag alloy film has been studied.
  • an Ag alloy in which In is added to Ag having high reflectivity and low resistance as a reflective electrode film material. Since the hardness of the target material is improved by adding In, warpage during machining can be suppressed. In particular, in the case of a large sputtering target, it is important to suppress warpage during machining. In addition, In has an effect of improving the corrosion resistance and heat resistance of the reflective electrode film formed by sputtering. This is because In refines the crystal grains in the reflective electrode film, reduces the surface roughness of the film, and also dissolves in Ag to increase the strength of the crystal grains and suppress recrystallization of the crystal grains. Therefore, it is possible to suppress a decrease in the reflectance of the reflective electrode film formed by sputtering. Improvement of the corrosion resistance and heat resistance of the reflective electrode film contributes to higher brightness and longer life of the organic EL element.
  • the Ag alloy film serving as the anode in the organic EL element is required to have low resistance and high reflectance characteristics as a reflective electrode, and the surface roughness is sufficient to ensure the soundness of the transparent conductive film formed in the upper layer. Small is required. That is, when the surface roughness of the Ag alloy film is large, defects are generated in the upper transparent conductive film and further in the electroluminescent layer including the organic EL layer formed in a later step due to the unevenness of the Ag alloy film. As a result, the production yield of the organic EL panel is lowered. Further, the sulfur content contained in the process atmosphere sulfidizes the Ag alloy film, and the sulfidized region becomes a defect, which also causes a decrease in yield.
  • an Ag alloy film having a sufficiently low resistance and a high reflectivity, and having a small surface roughness and high sulfidation resistance could not be obtained.
  • a conductive film is used for a reflective film or a reflective electrode film of an LED, heat resistance capable of maintaining a good reflectance with respect to the heat generated by the LED is also required.
  • the alloy film has a problem that sufficient heat resistance cannot be obtained.
  • an Ag alloy sputtering target that can form a conductive film having low resistance and high reflectivity as well as low surface roughness and high sulfidation resistance and heat resistance. It was.
  • Sb is added, and a thin Sb oxide is formed on the surface of the formed Ag alloy film, so that it has low resistance and high reflectivity.
  • small surface roughness and high sulfidation resistance and heat resistance are achieved.
  • the present invention solves this problem, can meet the demand for further refinement of the organic EL panel and the improvement of the yield, and can further reduce abnormal discharge and splash.
  • An object is to provide a sputtering target. It is another object of the present invention to provide an Ag—In alloy sputtering target that can suppress a decrease in reflectivity even after heat treatment of the Ag—In alloy thin film.
  • the present inventors include an element that is contained in a raw material powder for producing a sputtering target and can be oxidized by residual oxygen in a dissolved atmosphere to form an oxide, that is, Si, Cr, Focusing on Fe and Ni, by reducing the content of these Si, Cr, Fe and Ni, the formation of oxides intervening in the Ag alloy structure is suppressed, and abnormal discharge and splash during sputtering are reduced. I tried to do it. Furthermore, when an appropriate amount of Sb is added to the Ag—In alloy, a decrease in reflectivity due to heat treatment can be suppressed.
  • An Ag—In alloy sputtering target according to the present invention contains In: 0.1 to 1.5 atomic%, the balance is composed of Ag and inevitable impurities, and the elements: Si, Cr, Fe And each content of Ni is 30 ppm or less, It is characterized by the above-mentioned.
  • the Ag—In alloy sputtering target of (1) is characterized in that the total content of each of the elements: Si, Cr, Fe and Ni is 90 ppm or less.
  • the Ag—In alloy sputtering target of (1) is characterized in that the total content of each of the elements: Si, Cr, Fe, and Ni is 60 ppm or less.
  • the Ag—In alloy sputtering target according to (1) or (2) is further characterized by containing Sb: 0.2 to 2.0 atomic%.
  • the Ag—In alloy sputtering target according to (1) or (2) is characterized by containing Sb: 0.4 to 1.0 atomic%.
  • the Ag—In alloy sputtering target according to any one of (1) to (3) may be manufactured by dissolving electrolytically purified Ag and adding In to the dissolved Ag. preferable.
  • the Ag—In alloy sputtering target of (1) or (2) is preferably produced by dissolving electrolytically purified Ag and adding In and Sb to the dissolved Ag.
  • the reason why the content ratio of the metal component element in the Ag—In alloy sputtering target of the present invention is limited as described above is as follows. (1) In: In is added because it has the effect of reducing the surface roughness of the alloy film and improving the sulfidation resistance and heat resistance, but if it is less than 0.1 atomic%, this effect is not sufficiently exhibited, while In If the content exceeds 1.5 atomic%, the specific resistance of the reflective electrode film increases and the reflectance decreases, which is not preferable. Therefore, the content ratio of In in the total metal component elements contained in the Ag—In alloy sputtering target of the present invention is set to In: 0.1 to 1.5 atomic%.
  • Si, Cr, Fe and Ni Elements: Si, Cr, Fe, and Ni have a low solid solubility in Ag and are easily segregated at grain boundaries. Therefore, it is easily oxidized into oxygen by residual oxygen in the melting atmosphere, and the oxide is generated so as to intervene in the Ag alloy structure. Since this oxide causes abnormal discharge and splash, the content of each element was reduced as much as possible.
  • a method for reducing the content of each element for example, a method was adopted in which an Ag raw material having a purity level of 3N was leached with nitric acid or sulfuric acid and then electrolytically purified using an electrolytic solution having a predetermined Ag concentration.
  • the concentration of impurities existing in the Ag raw material such as Pb, Na, Mg, Al, P, S, Cl, K, Ca, Co, Cu, Pd, Th, and U
  • ICP inductively coupled plasma
  • the reason why the contents of Si, Cr, Fe, and Ni are all 30 ppm or less is that when the content of each element exceeds 30 ppm, a large amount of oxide in the Ag alloy structure is interposed. This is because the occurrence of abnormal discharge and splash during sputtering cannot be suppressed. More preferably, it is 10 ppm or less. Furthermore, even if the content of each element is 30 ppm or less, if the total content of each element exceeds 90 ppm, the amount of oxide in the Ag alloy structure is not different from that intervening. Content is 90 ppm or less, More preferably, it is 60 ppm or less.
  • Sb An Ag—In alloy film formed by sputtering with an Ag—In alloy sputtering target tends to increase the roughness of the film surface when heat treatment is performed in the process of forming a laminated film.
  • the reflectance of the Ag—In alloy film is lower than that before the heat treatment.
  • the Ag—In alloy sputtering target further contains Sb: 0.2 to 2.0 atomic% to suppress a decrease in reflectance before and after the heat treatment.
  • the effect of suppressing the decrease in reflectivity after the heat treatment is that even if the amount of Sb added to the Ag—In alloy sputtering target is less than 0.2 atomic%, Sb is contained more than 2.0 atomic%.
  • the amount of Sb added to the Ag—In alloy sputtering target was set to 0.2 atomic% or more and 2.0 atomic% or less. Even more preferably, the range of Sb is 0.4 atomic% or more and 1.0 atomic% or less.
  • the Ag—In alloy sputtering target according to the present invention contains In: 0.1 to 1.5 atomic%, the balance is composed of Ag and inevitable impurities, and the elements: Si, Cr Since the respective contents of Fe and Ni are 30 ppm or less, when the reflective electrode film made of the Ag—In alloy is formed by sputtering, abnormal discharge and splash can be further reduced. Furthermore, since the total content of each of the elements: Si, Cr, Fe and Ni is 90 ppm or less, abnormal discharge and splash are further reduced when a reflective electrode film made of an Ag—In alloy is formed by sputtering. can do.
  • the first embodiment is an Ag alloy containing In, in which the content of each of Si, Cr, Fe and Ni is 30 ppm or less, and the total content is 90 ppm or less.
  • the second embodiment is an Ag alloy containing In and Sb, and each content of Si, Cr, Fe and Ni is 30 ppm or less, and the total content thereof This is the case of an Ag—In alloy sputtering target whose amount is 90 ppm or less.
  • the above Ag raw material is melted in a high vacuum or an inert gas atmosphere, and an In raw material having a predetermined content is added to the resulting molten metal. Then, it melt
  • the melting of Ag is performed in an atmosphere in which the atmosphere is once evacuated and then replaced with Ar. After melting, adding In to the molten Ag in the Ar atmosphere results in a composition ratio of Ag and In. Is preferable from the viewpoint of stably obtaining.
  • the Ag raw material that was not selected under the above-mentioned conditions was used, and the contents of Si, Cr, Fe, and Ni were determined according to the present invention. It is outside the range of the content, or the total content of each is outside the range of the total content of the present invention.
  • the content of each of Si, Cr, Fe and Ni is 30 ppm or less, and the total content thereof is 90 ppm or less. Therefore, it has been confirmed that the occurrence of abnormal discharge can be reduced, which can contribute to further refinement of the organic EL panel and improvement of yield.
  • an Ag—In alloy sputtering target according to the second embodiment of the present invention is manufactured.
  • Ag having a purity of 99.9% by mass (3N) or more is prepared as a raw material for target production, and the above-described purification method is performed on the Ag raw material to form the target material.
  • the content of Si, Cr, Fe and Ni in the Ag—In alloy sputtering target is 30 ppm or less, and Ag contains Si, Cr, Fe and Ni in such an amount that the total content is 90 ppm or less.
  • the raw materials were selected.
  • the selected Ag raw material, and an In raw material and a Sb raw material having a purity of 99.99% by mass or more were weighed so as to have a predetermined composition.
  • the above Ag raw material is melted in a high vacuum or an inert gas atmosphere, and an In raw material and an Sb raw material having a predetermined content are added to the obtained molten metal. Then, it melt
  • Example 16 -32 and Comparative Examples 13-16 Sb-containing Ag-In alloy sputtering targets were prepared. Then, the produced sputtering target was soldered to an oxygen-free copper backing plate. This sputtering target was mounted in a DC magnetron sputtering apparatus and used for forming an Ag—In—Sb alloy thin film. Tables 3 and 4 show the results of component composition analysis of the Sb-containing Ag—In alloy sputtering targets of Examples 16 to 32 and Comparative Examples 13 to 16.
  • the Ag raw material that was not selected under the above-described conditions was used, and the contents of Si, Cr, Fe, and Ni were as follows. It is outside the range of the content of the invention, or the total content of each is outside the range of the total content of the present invention.
  • the reflectances before and after the heat treatment of the Ag—In alloy sputtering targets of Examples 1 to 15 and Comparative Examples 1 to 12 and the Sb-containing Ag—In alloy sputtering targets of Examples 16 to 32 and Comparative Examples 13 to 16 were used. The change of was measured.
  • the Ag alloy sputtering targets of Examples 1 to 32 and Comparative Examples 1 to 16 and a commercially available ITO target having a diameter of 152.4 mm ⁇ diameter of 6 mm were mounted in a chamber of a DC magnetron sputtering apparatus.
  • a laminated structure of ITO film / Ag—In alloy film / ITO film and ITO film / Ag—In—Sb alloy film / ITO film was prepared by sputtering.
  • a 50 mm square cleaned glass substrate (Eagle XG manufactured by Corning) arranged in parallel with the sputtering target.
  • a film was formed under the following sputtering conditions. The film was formed in the order of an ITO film, an Ag—In alloy film or an Ag—In—Sb alloy film, and an ITO film, and was formed continuously without breaking the vacuum.
  • the conditions for forming the ITO film, the Ag—In alloy film, and the Ag—In—Sb alloy film were as follows.
  • a wavelength of 550 nm was selected as a representative wavelength of visible light (380 nm to 800 nm) for reflectance measurement.
  • the measured reflectivities are shown in the “film reflectivity before heat treatment test (%)” column and “film reflectivity after heat treatment test (%)” column of Table 1 for the Ag—In alloy laminated films of Examples 1 to 15.
  • the Ag—In alloy laminated films of Comparative Examples 1 to 12 are shown in the “film reflectance before heat treatment test (%)” column and the “film reflectance after heat treatment test (%)” column of Table 2, respectively. Yes.
  • each content of Si, Cr, Fe and Ni is 30 ppm or less. Furthermore, since the total content is 90 ppm or less, it has been confirmed that the occurrence of abnormal discharge can be reduced, which can contribute to further refinement of the organic EL panel and improvement of yield.
  • an Ag alloy film having a low resistance and a high reflectance, a small surface roughness, a high sulfidation resistance and a heat resistance can be formed as a reflective electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、Ag-In合金による反射電極膜を成膜するスパッタリング時に、異常放電やスプラッシュの発生を低減したAg-In合金スパッタリングターゲットを提供する。本発明のAg-In合金スパッタリングターゲットは、In:0.1~1.5原子%を含有し、残部がAg及び不可避不純物からなる成分組成を有し、元素:Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であり、さらには、その合計含有量が、90ppm以下である。

Description

Ag-In合金スパッタリングターゲット
 本発明は、有機エレクトロルミネッセンス(EL)素子や発光ダイオード(LED)に用いられる反射電極膜を成膜形成するためのAg合金スパッタリングターゲットに関する。
 本願は、2012年12月21日に日本に出願された特願2012-279065号、及び2013年10月25日に日本に出願された特願2013-221977号に基づき優先権を主張し、その内容をここに援用する。
 有機EL表示装置における有機EL素子の光の取り出し方式には、透明基板側から光を取り出すボトムエミッション方式と、基板とは反対側に光を取り出すトップエミッション方式とがあるが、開口率の高いトップエミッション方式が、高輝度化には有利である。従来、トップエミッション方式の有機EL素子では、アノードの金属膜として、Al又はAl合金や、Ag又はAg合金による反射電極膜が用いられており、この反射電極膜と電界発光層との間には、酸化インジウムスズ(ITO)、アルミニウム添加酸化亜鉛(AZO)等の透明導電膜が設けられている(例えば、特許文献1を参照)。この透明導電膜は、仕事関数が高いという特性から、正孔を有機EL層に注入するために設けられている。
 ここで、反射電極膜は、有機EL層で発光した光を効率よく反射するために、高反射率であることが望ましい。また、電極としても、低抵抗であることが望ましい。そのような材料として、Ag合金及びAl合金が知られているが、より高輝度の有機EL素子を得るものとして、可視光反射率が高いことから、Ag合金が優れている。有機EL素子への反射電極膜の形成には、スパッタリング法が採用されており、銀合金スパッタリングターゲットが用いられている(例えば、特許文献2を参照)。
 また、有機EL素子用反射電極膜の他に、タッチパネルの引き出し配線などの導電性膜にも、Ag合金膜が検討されている。このような配線膜として、例えば、純Agを用いるとマイグレーションが生じて短絡不良が発生しやすくなるため、Ag合金膜の採用が検討されている。
 例えば、反射電極膜材料として、高反射率と低抵抗を有するAgにInを添加したAg合金を用いることが提案されている。Inの添加により、ターゲット素材の硬さが向上するので、機械加工時の反りを抑制できる。特に、大型のスパッタリングターゲットの場合には、機械加工時の反りを抑制することが重要である。加えて、Inは、スパッタリングにより形成された反射電極膜の耐食性、及び、耐熱性を向上させる効果がある。これは、Inが、反射電極膜中の結晶粒を微細化し、膜の表面粗さを小さくし、また、Agに固溶して結晶粒の強度を高め、結晶粒の再結晶粒化を抑制するので、スパッタリングにより形成された反射電極膜の反射率の低下を抑制することができる。反射電極膜の耐食性、及び、耐熱性の向上は、有機EL素子の高輝度化、長寿命化に寄与する。
特開2006-236839号公報 国際公開第2002/077317号
 しかしながら、上記従来の技術においても、以下の課題が残されている。有機EL素子においてアノードとなるAg合金膜については、反射電極として低抵抗及び高反射率の特性が求められると共に、上層に形成される透明導電膜の健全性を確保するために、表面粗さが小さいことが求められる。即ち、Ag合金膜の表面粗さが大きいと、Ag合金膜の凹凸により、上層の透明導電膜、さらには、後の工程で形成される有機EL層を含む電界発光層に欠陥を生じる。これにより有機ELパネルの生産歩留まりが低下することとなる。また、工程雰囲気中に含まれる硫黄分がAg合金膜を硫化し、硫化された領域が欠陥となり、これも歩留まり低下を生じる原因となる。
 この様に、従来技術では、十分な低抵抗と高反射率とを備え、さらに小さい表面粗さ及び高い耐硫化性を有するAg合金膜を得ることができなかった。さらに、導電性膜をLEDの反射膜や反射電極膜等に用いる場合には、LEDの発熱に対して、反射率を良好に維持することができる耐熱性も要求されるが、従来技術によるAg合金膜では、十分な耐熱性が得られないという問題があった。
 そこで、この問題点を解消するため、低抵抗かつ高反射率の特性と共に表面粗さが小さく、高い耐硫化性及び耐熱性を兼ね備えた導電性膜を成膜形成できるAg合金スパッタリングターゲットが提案された。この提案されたAg合金スパッタリングターゲットには、Sbが添加されており、成膜されたAg合金膜の表面に、薄いSb酸化物が形成されることによって、低抵抗かつ高反射率の特性を有しながら、小さい表面粗さと高い耐硫化性及び耐熱性とを達成している。
 ところで、Ag合金スパッタリングターゲット中に、Agへの固溶度が大きい元素、例えば、Sb、Sn、Mg、Pd、Ga、Znなどが、固溶限以内の濃度で添加されている場合には、スパッタリング中に、異常放電が発生することも、スプラッシュが発生することも少ないので、スパッタリングする上では何ら支障がない。しかしながら、Agへの固溶度が小さい元素が存在していると、この元素が酸化され、スパッタリングターゲット中に、酸化物が形成されやすい。この元素を含有するAg-In合金で構成されたAg合金スパッタリングターゲットの場合には、この酸化物に起因して、大電力でのスパッタリング中に、異常放電が発生し易くなり、スプラッシュが発生し易くなるという問題があり、有機ELパネルの一層の精細化に対応できず、歩留まり向上を図れなかった。
 一方、有機ELディスプレイパネルの製造工程においては、ITO/Ag合金/ITOの積層膜を使用した反射電極の成膜後、有機物を主成分とする隔壁層を形成し、これを硬化させるためなどの目的で熱処理が行われる。この様に、積層膜が熱処理工程を経た場合には、Ag合金反射膜の反射率が熱処理前後において、低下してしまうという問題があった。
 そこで、本発明は、この問題を解決し、有機ELパネルの一層の精細化と、歩留まり向上という要求に応えることができ、より一層の異常放電及びスプラッシュの低減を図ることができるAg-In合金スパッタリングターゲットを提供することを目的とする。さらに、Ag-In合金薄膜を熱処理した後においても、反射率の低下を抑制することができるAg-In合金スパッタリングターゲットを提供することを目的とする。
 Agへの固溶度が大きい元素をAg合金に添加した場合には、異常放電や、スプラッシュが少ないことについては上述したが、本発明者らは、これとは逆に、Agへの固溶度が小さい元素をAg合金に添加した場合には、その元素が結晶粒界などに偏析しやすく、さらには、その元素が溶解雰囲気中の残留酸素などにより酸化されて酸化物となりやすく、これらの酸化物がAg合金組織中に介在することによって、異常放電やスプラッシュの原因になるという知見を得た。そして、Ag-In合金スパッタリングターゲットを用いて、Ag-In合金により構成された反射電極膜を成膜するとき、スパッタリング時における異常放電やスプラッシュの発生を低減するためには、上記酸化物になりやすい元素、或いは、不純物の含有量を低減することが重要であることが判明した。
 そこで、本発明者らは、スパッタリングターゲットを製造するための原料粉末に含まれており、溶解雰囲気中の残留酸素などにより酸化されて酸化物となる可能性のある元素、即ち、Si、Cr、Fe及びNiに着目し、これらのSi、Cr、Fe及びNiの含有量を低減することにより、Ag合金組織中に介在する酸化物の生成を抑制して、スパッタリング時の異常放電やスプラッシュを低減するようにした。さらに、Ag-In合金にSbを適量添加すると、熱処理による反射率の低下を抑制することができる。
 本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明によるAg-In合金スパッタリングターゲットは、In:0.1~1.5原子%を含有し、残部がAg及び不可避不純物からなる成分組成を有し、元素:Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であることを特徴とする。
(2)前記(1)のAg-In合金スパッタリングターゲットは、前記元素:Si、Cr、Fe及びNiの各々の合計含有量が、90ppm以下であることを特徴とする。
(3)前記(1)のAg-In合金スパッタリングターゲットは、前記元素:Si、Cr、Fe及びNiの各々の合計含有量が、60ppm以下であることを特徴とする。
(4)前記(1)又は(2)のAg-In合金スパッタリングターゲットは、さらに、Sb:0.2~2.0原子%を含有することを特徴とする。
(5)前記(1)又は(2)のAg-In合金スパッタリングターゲットは、Sb:0.4~1.0原子%を含有することを特徴とする。
(6)前記(1)乃至(3)のいずれかに記載のAg-In合金スパッタリングターゲットは、電解精製したAgを溶解し、溶解されたAg中にInを添加することにより製造されることが好ましい。
(7)前記(1)又は(2)のAg-In合金スパッタリングターゲットは、電解精製したAgを溶解し、溶解されたAg中にIn及びSbを添加することにより製造されることが好ましい。
 ここで、本発明のAg-In合金スパッタリングターゲットにおける金属成分元素の含有割合を上記のごとく限定した理由は、以下のとおりである。
(1)In:
 Inは、合金膜の表面粗さを低減すると共に耐硫化性及び耐熱性を高める効果を有するので添加するが、0.1原子%よりも少ないと、この効果が十分発揮されず、一方、Inを、1.5原子%を超えて含有させると、反射電極膜の比抵抗が増大し、反射率も低下してしまうので、好ましくない。したがって、この発明のAg-In合金スパッタリングターゲットに含まれる全金属成分元素に占めるInの含有割合をIn:0.1~1.5原子%に定めた。
(2)Si、Cr、Fe及びNi:
 元素:Si、Cr、Fe及びNiは、Agへの固溶度が小さく、結晶粒界などに偏析しやすい。そのため、溶解雰囲気中の残留酸素などにより酸化されて酸化物になりやすく、その酸化物が、Ag合金組織中に介在するように生成される。この酸化物は、異常放電発生、スプラッシュ発生の原因になるので、各元素の含有量をできる限り低減した。
 各元素の含有量を低減する方法として、例えば、純度3NレベルのAg原料を硝酸又は硫酸で浸出した後、所定のAg濃度の電解液を用いて電解精製する方法を採用した。この方法によって、Ag原料中に存在する不純物である、Pb,Na,Mg、Al、P、S、Cl、K、Ca、Co、Cu、Pd、Th、Uなどの濃度を低減できる。そこで、この精製方法でこれらの不純物が低減されたAg原料について、ICP(誘導結合プラズマ)法による不純物分析を実施し、Si、Cr、Fe及びNiの濃度(含有量)が、いずれも30ppm以下であるAg原料を、Ag-In合金スパッタリングターゲットの製造原料とした。
 ここで、本発明において、Si、Cr、Fe及びNiの含有量を、いずれも30ppm以下とした理由は、各元素の含有量が30ppmを超えると、Ag合金組織中における酸化物が多く介在し、スパッタリング時の異常放電発生、スプラッシュ発生を抑制できなくなるためである。一層好ましくは、10ppm以下である。さらに、各元素の含有量が30ppm以下であっても、各元素の合計含有量が、90ppmを超えると、Ag合金組織中における酸化物が多く介在するのと変わらないことになるため、その合計含有量を90ppm以下とし、より一層好ましくは、60ppm以下である。
(3)Sb:
 Ag-In合金スパッタリングターゲットによりスパッタリング成膜されたAg-In合金膜では、積層膜形成の過程で熱処理が施されると、その膜表面の粗さが増加する傾向があるので、熱処理後においては、Ag-In合金膜の反射率が、熱処理前に比して低下する。そのため、Ag-In合金スパッタリングターゲットに、さらに、Sb:0.2~2.0原子%を含有させることにより、熱処理前後における反射率の低下を抑制した。この熱処理後の反射率低下抑制の効果は、Ag-In合金スパッタリングターゲットへのSbの添加量として、0.2原子%未満であっても、また、Sbが2.0原子%を超えて含有させても得られ難いことから、Ag-In合金スパッタリングターゲットへのSbの添加量は、0.2原子%以上、2.0原子%以下とした。より一層好ましくは、Sbの範囲は、0.4原子%以上、1.0原子%以下である。
 以上の様に、本発明によるAg-In合金スパッタリングターゲットは、In:0.1~1.5原子%を含有し、残部がAg及び不可避不純物からなる成分組成を有し、元素:Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であるため、Ag-In合金で構成された反射電極膜をスパッタリング成膜するとき、より一層の異常放電及びスプラッシュの低減を図れる。さらには、元素:Si、Cr、Fe及びNiの各々の合計含有量が90ppm以下であるため、Ag-In合金で構成された反射電極膜をスパッタリング成膜するとき、異常放電及びスプラッシュをさらに低減することができる。また、前記Ag-In合金スパッタリングターゲットにSbを0.2~2.0原子%添加したので、そのスパッタリングターゲットによりスパッタリング成膜すると、熱処理による反射率の低下を抑制したAg-In合金膜が得られる。そのため、有機ELパネルの一層の精細化と、歩留まり向上という要求に応えることができ、表示装置や、タッチパネルなどの生産性向上に寄与する。
 次に、本発明によるAg-In合金スパッタリングターゲットについて、第1の実施形態と第2の実施形態とに分けて、具体的に、実施例及び比較例を参照しながら、以下に説明する。なお、第1の実施形態は、Inを含有したAg合金であって、Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であり、その合計含有量が、90ppm以下であるAg-In合金スパッタリングターゲットの場合であり、第2の実施形態は、In及びSbを含有したAg合金であって、Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であり、その合計含有量が、90ppm以下であるAg-In合金スパッタリングターゲットの場合である。
〔第1の実施形態〕
 先ず、本発明の第1の実施形態によるAg-In合金スパッタリングターゲットを製造するため、原料として、純度99.9質量%(3N)以上のAgを用意した。このAg原料について、上述した精製方法を実施して、形成されるAg-In合金スパッタリングターゲットに対しSi、Cr、Fe及びNiの含有量が、いずれも30ppm以下であり、且つ合計含有量が90ppm以下となる量だけSi、Cr、Fe及びNiを含むAg原料を選別した。この選別したAg原料と、純度99.99質量%以上のIn原料とを所定の組成となるように秤量した。
 次に、上記のAg原料を高真空又は不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のIn原料を添加する。その後、真空又は不活性ガス雰囲気中で溶解して、Inを所定の原子%含んだAg合金の溶解鋳造インゴットを作製した。
 ここで、Agの溶解は、雰囲気を一度真空にした後、Arで置換した雰囲気で行い、溶解後、Ar雰囲気の中でAgの溶湯にInを添加することが、AgとInとの組成比率を安定に得る観点から好ましい。
 得られたインゴットを冷間圧延した後、大気中で例えば600℃、2時間保持の熱処理を施し、次いで、機械加工することにより、所定寸法(直径152.6mm×厚さ6mm)の実施例1~15及び比較例1~12のAg-In合金スパッタリングターゲットを作製した。そして、この作製されたスパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けした。このスパッタリングターゲットが、直流マグネトロンスパッタ装置内に装着され、Ag-In合金薄膜の成膜に供された。なお、実施例1~15及び比較例1~12のAg-In合金スパッタリングターゲットについて、成分組成分析を行った結果が、表1及び表2に示されている。比較例1~12のAg-In合金スパッタリングターゲットの製造には、上述の条件で選別をしなかったAg原料を用いており、Si、Cr、Fe及びNiの各々の含有量が、本発明の含有量の範囲外であるか、或いは、各々の合計含有量が、本発明の合計含有量の範囲外である。
 次に、真空排気装置にて直流マグネトロンスパッタ装置内を5×10-5Pa以下まで排気した後、Arガスを導入して、スパッタガス圧を0.5Paに調整し、続いて、スパッタリングターゲットに、例えば、250Wの直流スパッタリング電力を印加し、以下の手順で連続放電とその間の異常放電回数の計測を実施した。
 上記の装着されたAg-In合金スパッタリングターゲットによるスパッタリング時の異常放電回数を測定するため、先ず、上述の条件で、1時間のプレスパッタリングを実施し、これによりターゲット表面の加工層を除去した。さらに、同条件にて、1時間のスパッタリングを行った。この1時間の間に発生した累積異常放電回数を、使用した直流電源に備えられたアーキングカウント機能を用いて計測した。その測定結果が、表1及び表2の「累積異常放電回数(/h)」欄に示されている。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 表1から分かるように、実施例1~15のAg-In合金スパッタリングターゲットを用いた直流(DC)スパッタリングでは、異常放電回数が低減されており、異常放電が測定された場合でも、実用上、支障がない頻度であることが確認された。これに対して、表2から分かるように、比較例1~12では、Si、Cr、Fe及びNiのいずれかの含有量が、30ppmを超えているため、異常放電が多発していることが確認された。また、Si、Cr、Fe及びNiの合計含有量について、合計含有量が90ppm以下であるが、90ppmに近い実施例1、6、11では、合計含有量が90ppmを大幅に下回る実施例2~5、7~10、12~15よりも異常放電回数が多かった。また、合計含有量が90ppmを超えている比較例1~12では、異常放電回数が実施例1、6、11よりも大幅に増加した。このように、90ppmを境に異常放電回数が大幅に増加していることから、Si、Cr、Fe及びNiの合計含有量が90ppm以下であると、異常放電回数を大幅に低減できると言える。さらに実施例1、6、11では合計含有量が60ppmを超えており、異常放電回数が他の実施例よりも多いことから、合計含有量は60ppm以下であることがより好ましいと言える。
 以上の様に、実施例1~15のAg-In合金スパッタリングターゲットによれば、Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であり、さらには、その合計含有量が90ppm以下であるので、異常放電の発生を低減できることが確認され、有機ELパネルの一層の精細化と、歩留まり向上に貢献できるものである。
〔第2の実施形態〕
 次に、本発明の第2の実施形態によるAg-In合金スパッタリングターゲットを製造する場合について、以下に説明する。
 第1の実施形態の場合と同様に、ターゲット製造のための原料として、純度99.9質量%(3N)以上のAgを用意し、このAg原料について、上述した精製方法を実施して、形成されるAg-In合金スパッタリングターゲットに対しSi、Cr、Fe及びNiの含有量が、いずれも30ppm以下であり、且つ合計含有量が90ppm以下となる量だけSi、Cr、Fe及びNiを含むAg原料を選別した。この選別したAg原料と、純度99.99質量%以上のIn原料及びSb原料とを所定の組成となるように秤量した。
 次に、上記のAg原料を高真空又は不活性ガス雰囲気中で溶解し、得られた溶湯に所定の含有量のIn原料及びSb原料を添加する。その後、真空又は不活性ガス雰囲気中で溶解して、In及びSbを所定の原子%含んだAg合金の溶解鋳造インゴットを作製した。
 得られたインゴットを冷間圧延した後、大気中で例えば600℃、2時間保持の熱処理を施し、次いで、機械加工することにより、所定寸法(直径152.6mm×厚さ6mm)の実施例16~32及び比較例13~16のSb含有Ag-In合金スパッタリングターゲットを作製した。そして、この作製されたスパッタリングターゲットを無酸素銅製のバッキングプレートに半田付けした。このスパッタリングターゲットが、直流マグネトロンスパッタ装置内に装着され、Ag-In-Sb合金薄膜の成膜に供された。なお、実施例16~32及び比較例13~16のSb含有Ag-In合金スパッタリングターゲットについて、成分組成分析を行った結果が、表3及び表4に示されている。比較例13~16のSb含有Ag-In合金スパッタリングターゲットの製造には、上述の条件で選別をしなかったAg原料を用いており、Si、Cr、Fe及びNiの各々の含有量が、本発明の含有量の範囲外であるか、或いは、各々の合計含有量が、本発明の合計含有量の範囲外である。
 次に、真空排気装置にて直流マグネトロンスパッタ装置内を5×10-5Pa以下まで排気した後、Arガスを導入して、スパッタガス圧を0.5Paに調整し、続いて、スパッタリングターゲットに、例えば、250Wの直流スパッタリング電力を印加し、以下の手順で連続放電とその間の異常放電回数の計測を実施した。
 上記の装着されたSb含有Ag-In合金スパッタリングターゲットによるスパッタリング時の異常放電回数を測定するため、先ず、上述の条件で、1時間のプレスパッタリングを実施し、これによりターゲット表面の加工層を除去した。さらに、同条件にて、1時間のスパッタリングを行った。この1時間の間に発生した累積異常放電回数を、使用した直流電源に備えられたアーキングカウント機能を用いて計測した。その測定結果が、表3及び表4の「累積以上放電回数(/h)」欄に示されている。
 さらに、実施例1~15及び比較例1~12のAg-In合金スパッタリングターゲットと、実施例16~32及び比較例13~16のSb含有Ag-In合金スパッタリングターゲットとについて、熱処理前後の反射率の変化を測定した。
 上記熱処理試験を行うにあたり、実施例1~32及び比較例1~16のAg合金スパッタリングターゲットならびに市販の直径152.4mm×直径6mmのITOターゲットを、直流マグネトロンスパッタ装置のチャンバー内に装着して、ITO膜/Ag-In合金膜/ITO膜及びITO膜/Ag-In-Sb合金膜/ITO膜の積層構造をスパッタリングにより作製した。
 具体的には、真空排気装置にて上記のスパッタ装置内を5×10-5Pa以下まで排気した後、上記スパッタリングターゲットと平行に配置した50mm角の洗浄済みガラス基板(コーニング社製イーグルXG)に対し、以下に示すスパッタ条件にて、成膜した。その成膜は、ITO膜、Ag-In合金膜又はAg-In-Sb合金膜、ITO膜の順で行われ、真空を破らずに連続で成膜した。ITO膜、Ag-In合金膜、Ag-In-Sb合金膜の成膜条件は次のとおりとした。
<ITO膜>
  電力:直流50W
  ガス全圧:0.67Pa
  ガス:Arガス及びOガス
  Ar/O流量比:50/1
  ターゲットと基板との距離:70mm
  基板加熱:なし
  膜厚:10nm
<Ag-In合金膜及びAg-In-Sb合金膜>
  電力:直流250W
  ガス全圧:0.3Pa
  ガス:Arガス
  ターゲットと基板との距離:70mm
  基板加熱:なし
  膜厚:350nm
ここで、成膜された実施例1~15及び比較例1~12のAg-In合金膜の組成については、表1及び表2に示す。また、実施例16~32及び比較例13~16のAg-In-Sb合金膜の組成については、表3及び表4に示す。
<反射率測定>
 分光光度計(日立ハイテクノロジーズ社製U-4100)により波長380nm~800nmの範囲で、実施例1~15及び比較例1~12のITO膜/Ag-In合金膜/ITO積層膜(以下、Ag-In合金積層膜という)と、実施例16~30及び比較例13~16のITO膜/Ag-In-Sb合金膜/ITO積層膜(以下、Ag-In-Sb合金積層膜という)とについて、熱処理試験を実施する前と、実施した後とにおける反射率をそれぞれ測定した。ここで、熱処理試験は、大気中において250℃で1時間の熱処理をすることにより行われ、反射率の測定には、可視光(380nm~800nm)の代表的な波長として波長550nmを選択した。測定された反射率は、実施例1~15のAg-In合金積層膜に関して、表1の「熱処理試験前膜反射率(%)」欄及び「熱処理試験後膜反射率(%)」欄に、そして、比較例1~12のAg-In合金積層膜に関して、表2の「熱処理試験前膜反射率(%)」欄及び「熱処理試験後膜反射率(%)」欄にそれぞれ示されている。また、実施例16~32のAg-In-Sb合金積層膜に関して、表3の「熱処理試験前膜反射率(%)」欄及び「熱処理試験後膜反射率(%)」欄に、そして、比較例13~16のAg-In-Sb合金積層膜に関して、表4の「熱処理試験前膜反射率(%)」欄及び「熱処理試験後膜反射率(%)」欄にそれぞれ示されている。
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 表3から分かるように、実施例16~32のSb含有Ag-In合金スパッタリングターゲットを用いた直流(DC)スパッタリングでは、異常放電回数が低減されており、異常放電が測定された場合でも、実用上、支障がない頻度であることが確認された。このことに加えて、実施例16~32のSb含有Ag-In合金スパッタリングターゲットにより成膜されたAg-In-Sb合金積層膜に関して、熱処理試験前後で反射率低下を抑制できることが確認された。なお、表1に示されるように、Sbを含有していないAg-In合金スパッタリングターゲットの場合には、熱処理試験前後で反射率が低下した。また、表4から分かるように、比較例13~16のSb含有Ag-In合金スパッタリングターゲットでは、Si、Cr、Fe及びNiのいずれかの含有量が、30ppmを超え、その合計含有量も、90ppmを超えており、異常放電が多発していることが確認された。
 以上の様に、第1の実施形態の場合と同様に、実施例16~32のSb含有Ag-In合金スパッタリングターゲットによれば、Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であり、さらには、その合計含有量が90ppm以下であるので、異常放電の発生を低減できることが確認され、有機ELパネルの一層の精細化と、歩留まり向上に貢献できるものである。
 本発明のAg-In合金スパッタリングターゲットによれば、反射電極として低抵抗及び高反射率であり、表面粗さが小さく、高い耐硫化性及び耐熱性を有するAg合金膜を形成することができる。

Claims (7)

  1.  In:0.1~1.5原子%を含有し、残部がAg及び不可避不純物からなる成分組成を有し、
     元素:Si、Cr、Fe及びNiの各々の含有量が、30ppm以下であることを特徴とするAg-In合金スパッタリングターゲット。
  2.  前記元素:Si、Cr、Fe及びNiの各々の合計含有量が、90ppm以下であることを特徴とする請求項1に記載のAg-In合金スパッタリングターゲット。
  3.  前記元素:Si、Cr、Fe及びNiの各々の合計含有量が、60ppm以下であることを特徴とする請求項1に記載のAg-In合金スパッタリングターゲット。
  4.  Sb:0.2~2.0原子%を含有することを特徴とする請求項1乃至3のいずれかに記載のAg-In合金スパッタリングターゲット。
  5.  Sb:0.4~1.0原子%を含有することを特徴とする請求項1乃至3のいずれかに記載のAg-In合金スパッタリングターゲット。
  6.  電解精製したAgを溶解し、溶解されたAg中にInを添加することにより製造される請求項1乃至3のいずれかに記載のAg-In合金スパッタリングターゲット。
  7.  電解精製したAgを溶解し、溶解されたAg中にIn及びSbを添加することにより製造される請求項4または5に記載のAg-In合金スパッタリングターゲット。
PCT/JP2013/083334 2012-12-21 2013-12-12 Ag-In合金スパッタリングターゲット WO2014097961A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197038997A KR20200003287A (ko) 2012-12-21 2013-12-12 Ag-In 합금 스퍼터링 타겟
CN201380063841.0A CN104838038A (zh) 2012-12-21 2013-12-12 Ag-In合金溅射靶
KR1020147031231A KR20140134723A (ko) 2012-12-21 2013-12-12 Ag-In 합금 스퍼터링 타겟
SG11201504729VA SG11201504729VA (en) 2012-12-21 2013-12-12 Ag-In ALLOY SPUTTERING TARGET
KR1020157021041A KR20150094791A (ko) 2012-12-21 2013-12-12 Ag-In 합금 스퍼터링 타겟
EP13865990.9A EP2937444B1 (en) 2012-12-21 2013-12-12 Ag-in alloy sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012279065 2012-12-21
JP2012-279065 2012-12-21
JP2013221977A JP5522599B1 (ja) 2012-12-21 2013-10-25 Ag合金スパッタリングターゲット
JP2013-221977 2013-10-25

Publications (1)

Publication Number Publication Date
WO2014097961A1 true WO2014097961A1 (ja) 2014-06-26

Family

ID=50978296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083334 WO2014097961A1 (ja) 2012-12-21 2013-12-12 Ag-In合金スパッタリングターゲット

Country Status (7)

Country Link
EP (1) EP2937444B1 (ja)
JP (1) JP5522599B1 (ja)
KR (3) KR20150094791A (ja)
CN (1) CN104838038A (ja)
SG (1) SG11201504729VA (ja)
TW (1) TWI589711B (ja)
WO (1) WO2014097961A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106414793A (zh) * 2015-02-27 2017-02-15 三菱综合材料株式会社 Ag合金溅射靶及Ag合金膜的制造方法
CN106574361A (zh) * 2014-09-18 2017-04-19 三菱综合材料株式会社 Ag合金溅射靶、Ag合金溅射靶的制造方法、Ag合金膜及Ag合金膜的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018310A1 (ja) * 2015-07-28 2017-02-02 三菱マテリアル株式会社 Ag合金膜とその製造方法、Ag合金スパッタリングターゲットおよび積層膜
JP6801264B2 (ja) * 2015-07-28 2020-12-16 三菱マテリアル株式会社 Ag合金膜とその製造方法、Ag合金スパッタリングターゲットおよび積層膜
CN105018778A (zh) * 2015-08-12 2015-11-04 苏州卫生职业技术学院 一种高屈服强度的合金材料及其制备方法
JP2020090707A (ja) * 2018-12-05 2020-06-11 三菱マテリアル株式会社 金属膜、及び、スパッタリングターゲット

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077317A1 (fr) 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Materiau de cible de pulverisation
JP2003138322A (ja) * 2001-10-31 2003-05-14 Nikko Materials Co Ltd 高純度金属の製造方法、高純度金属、同高純度金属からなるスパッタリングターゲット及び該スパッタリングターゲットにより形成した薄膜
JP2003160859A (ja) * 2001-11-26 2003-06-06 Mitsubishi Materials Corp 光記録媒体の反射膜形成用銀合金スパッタリングターゲット
WO2003100112A1 (fr) * 2002-05-28 2003-12-04 Ishifuku Metal Industry Co., Ltd. Matériau pour cible de pulvérisation
WO2005056848A1 (ja) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. 反射膜用の銀合金
JP2006236839A (ja) 2005-02-25 2006-09-07 Mitsubishi Electric Corp 有機電界発光型表示装置
JP2011100719A (ja) * 2009-10-06 2011-05-19 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
WO2012137461A1 (ja) * 2011-04-06 2012-10-11 三菱マテリアル株式会社 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
WO2013099736A1 (ja) * 2011-12-27 2013-07-04 株式会社神戸製鋼所 反射電極用Ag合金膜および反射電極
JP2013142163A (ja) * 2012-01-10 2013-07-22 Mitsubishi Materials Corp 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4305809B2 (ja) * 2002-07-10 2009-07-29 日立金属株式会社 Ag合金系スパッタリングターゲット材
US7514037B2 (en) * 2002-08-08 2009-04-07 Kobe Steel, Ltd. AG base alloy thin film and sputtering target for forming AG base alloy thin film
DE10327336A1 (de) 2003-06-16 2005-01-27 W. C. Heraeus Gmbh & Co. Kg Legierung und deren Verwendung
JP2006294195A (ja) * 2005-04-14 2006-10-26 Kobe Steel Ltd 光情報記録用Ag合金反射膜、光情報記録媒体および光情報記録用Ag合金反射膜の形成用のAg合金スパッタリングターゲット
JP4377861B2 (ja) * 2005-07-22 2009-12-02 株式会社神戸製鋼所 光情報記録媒体用Ag合金反射膜、光情報記録媒体および光情報記録媒体用Ag合金反射膜の形成用のAg合金スパッタリングターゲット
JP5669014B2 (ja) * 2011-04-06 2015-02-12 三菱マテリアル株式会社 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
DE102012006718B3 (de) 2012-04-04 2013-07-18 Heraeus Materials Technology Gmbh & Co. Kg Planares oder rohrförmiges Sputtertarget sowie Verfahren zur Herstellung desselben

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077317A1 (fr) 2001-03-16 2002-10-03 Ishifuku Metal Industry Co., Ltd. Materiau de cible de pulverisation
JP2003138322A (ja) * 2001-10-31 2003-05-14 Nikko Materials Co Ltd 高純度金属の製造方法、高純度金属、同高純度金属からなるスパッタリングターゲット及び該スパッタリングターゲットにより形成した薄膜
JP2003160859A (ja) * 2001-11-26 2003-06-06 Mitsubishi Materials Corp 光記録媒体の反射膜形成用銀合金スパッタリングターゲット
WO2003100112A1 (fr) * 2002-05-28 2003-12-04 Ishifuku Metal Industry Co., Ltd. Matériau pour cible de pulvérisation
WO2005056848A1 (ja) * 2003-12-10 2005-06-23 Tanaka Kikinzoku Kogyo K.K. 反射膜用の銀合金
JP2006236839A (ja) 2005-02-25 2006-09-07 Mitsubishi Electric Corp 有機電界発光型表示装置
JP2011100719A (ja) * 2009-10-06 2011-05-19 Mitsubishi Materials Corp 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
WO2012137461A1 (ja) * 2011-04-06 2012-10-11 三菱マテリアル株式会社 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
WO2013099736A1 (ja) * 2011-12-27 2013-07-04 株式会社神戸製鋼所 反射電極用Ag合金膜および反射電極
JP2013142163A (ja) * 2012-01-10 2013-07-22 Mitsubishi Materials Corp 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2937444A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574361A (zh) * 2014-09-18 2017-04-19 三菱综合材料株式会社 Ag合金溅射靶、Ag合金溅射靶的制造方法、Ag合金膜及Ag合金膜的制造方法
CN106414793A (zh) * 2015-02-27 2017-02-15 三菱综合材料株式会社 Ag合金溅射靶及Ag合金膜的制造方法

Also Published As

Publication number Publication date
KR20150094791A (ko) 2015-08-19
KR20140134723A (ko) 2014-11-24
EP2937444A4 (en) 2016-08-17
JP2014139339A (ja) 2014-07-31
SG11201504729VA (en) 2015-07-30
CN104838038A (zh) 2015-08-12
EP2937444B1 (en) 2017-08-16
TWI589711B (zh) 2017-07-01
TW201439339A (zh) 2014-10-16
EP2937444A1 (en) 2015-10-28
KR20200003287A (ko) 2020-01-08
JP5522599B1 (ja) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5522599B1 (ja) Ag合金スパッタリングターゲット
TWI697572B (zh) Ag合金膜及其製造方法,Ag合金濺鍍靶以及層合膜
JP5612147B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
TWI385263B (zh) Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof
TWI525203B (zh) Silver alloy sputtering target for forming conductive film and its manufacturing method
JP5533545B2 (ja) 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
KR101854009B1 (ko) 도전성 막 형성용 은 합금 스퍼터링 타겟 및 그 제조 방법
JP2014196562A (ja) Ag合金スパッタリングターゲット
JP5830907B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5830908B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669014B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669015B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP2018100437A (ja) Ag合金スパッタリングターゲットおよびAg合金膜
WO2015037582A1 (ja) 有機el用反射電極膜、積層反射電極膜、及び、反射電極膜形成用スパッタリングターゲット
JP6520289B2 (ja) Ag合金膜及びAg合金膜の製造方法
JP6260321B2 (ja) Ag合金膜形成用スパッタリングターゲット
JP5141912B2 (ja) 上部発光型有機EL素子および前記上部発光型有機EL素子の陽極層を構成する反射膜の形成に用いられるAl合金スパッタリングターゲット
TW202120724A (zh) Ag合金濺鍍靶及Ag合金膜
JP5686081B2 (ja) 導電体膜およびその製造方法
JP2010265507A (ja) 上部発光型有機EL素子および前記上部発光型有機EL素子の陽極層を構成する反射膜の形成に用いられるAl合金スパッタリングターゲット
JP2012067371A (ja) レーザー加工用Ni合金薄膜およびこれに用いるNi合金スパッタリングターゲット材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13865990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147031231

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013865990

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013865990

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE