TWI385263B - Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof - Google Patents

Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof Download PDF

Info

Publication number
TWI385263B
TWI385263B TW099134036A TW99134036A TWI385263B TW I385263 B TWI385263 B TW I385263B TW 099134036 A TW099134036 A TW 099134036A TW 99134036 A TW99134036 A TW 99134036A TW I385263 B TWI385263 B TW I385263B
Authority
TW
Taiwan
Prior art keywords
target
reflective electrode
electrode film
silver alloy
particle diameter
Prior art date
Application number
TW099134036A
Other languages
English (en)
Other versions
TW201131001A (en
Inventor
Shozo Komiyama
Ikuo Ito
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of TW201131001A publication Critical patent/TW201131001A/zh
Application granted granted Critical
Publication of TWI385263B publication Critical patent/TWI385263B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Description

有機電激發光元件之反射電極膜形成用銀合金標靶及其製造方法
本發明係關於有機電激發光元件之反射電極膜形成用銀合金標靶及其製造方法。具體而言,係與大型有機電激發光元件之反射電極膜形成用銀合金標靶相關。
傳統上,顯示器裝置以陰極線管(CRT)、液晶顯示器(LCD)、電漿顯示器(PDP)、發光二極體(LED)及EL顯示器等為大家所熟知,被廣泛地應用於電腦用顯示器、液晶顯示器之後面板等。
其中,有機電激發光元件,係將電壓施加於形成在有機EL發光層兩側之陽極及陰極之間,分別由陽極及陰極將電洞及電子注入有機EL膜,而在於有機EL發光層結合電洞及電子時利用發光原理的發光元件,近年來,受到大家的矚目。
有機電激發光元件之驅動方式,包括被動矩陣方式及主動矩陣方式。該主動矩陣方式,藉由一個畫素配設一個以上之薄膜電晶體而可高速地進行開關切換,有有利於高對比比、高精細化,而為可發揮有機電激發光元件之特徵的驅動方式。
此外,光之取出方式上,從透明基板側取出光之向下發光方式及、從基板之相反側取出光之向上發光方式,數值孔徑高之向上發光方式,有利於高亮度化,應為今後之 趨勢。
第1圖係以反射電極做為陽極之向上發光構造的層構成例。此處,反射電極膜1(第1圖中,記載成「反射陽極膜」),為了有效地反射有機EL層2所發出之光,應為具有高反射率且耐蝕性高者。此外,電極,應為低電阻者。此種材料,以Ag合金及Al合金為大家所熟知,然而,為了得到更高亮度之有機電激發光元件,以高可見光反射率而言,Ag合金較為優良。
此處,於有機電激發光元件形成反射電極膜時,係採用濺鍍法,使用銀合金標靶(專利文獻1)。
隨著有機電激發光元件製造時之玻璃基板的大型化,使用於反射電極膜形成上之銀合金標靶也使用了較大型者。所以,對大型標靶投入高電力來進行濺鍍時,發生因標靶異常放電而發生被稱為「濺射」之現象,而有因熔解之微粒子附著於基板而使配線及電極間產生短路並導致有機電激發光元件之產率降低的問題。向上發光方式之有機電激發光元件之反射電極層,因為是有機發光層之基底層,故要求更高之平坦性,而更需要抑制濺射。
[專利文獻1]國際公開第2002/077317號
本發明之課題,係提供一種有機電激發光元件之反射電極膜形成用銀合金標靶,隨著標靶之大型化,即使對標靶投入大電力,亦可抑制濺射。
本發明者等,發現藉由以特定製造方法使有機電激發光元件之反射電極膜形成用銀合金標靶的晶粒之平均粒徑成為150~400μm,即使投入大電力,亦可抑制濺射。具體而言,本發明係與以具有以下構成來解決上述問題之有機電激發光元件之反射電極膜形成用銀合金標靶及其製造方法相關。
(1)一種有機電激發光元件之反射電極膜形成用銀合金標靶,係含有:包含In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之成分組成的銀合金標靶,其特徵為,該合金之晶粒的平均粒徑為150~400μm,前述晶粒之粒徑誤差為平均粒徑之20%以下。
(2)如上述(1)所記載之有機電激發光元件之反射電極膜形成用銀合金標靶,其特徵為,標靶表面具有0.25m2 以上之面積。
(3)一種有機電激發光元件之反射電極膜形成用銀合金標靶之製造方法,其特徵為,依序對含有:包含In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之成分組成的熔解鑄錠,實施重複6~20次之熱鐓鍛製程、冷軋製程、熱處理製程、以及機械加工製程;前述熱鐓鍛製程的溫度為850℃以下;在前述冷軋製程的總軋縮量為60~75%;前述熱處理的溫度為550~650℃。
(4)如上述(3)所記載之有機電激發光元件之反射電極膜形成用銀合金標靶之製造方法,熱鐓鍛之溫度為750~850℃。
(5)一種有機電激發光元件,其特徵為含有;以上述(1)或(2)所記載之有機電激發光元件之反射電極膜 形成用銀合金標靶所形成之反射電極膜。
依據本發明(1)及(2),濺鍍中,即使投入大電力,亦可得到可抑制異常放電而抑制濺射之發生的標靶,藉由濺鍍該標靶,而得到具有高反射率且耐久性優良之有機EL用反射電極膜。
此外,依據本發明(3)及(4),濺鍍中,即使投入大電力,亦可製造可抑制濺射之發生之有機電激發光元件之反射電極膜形成用銀合金標靶。
以下,依據實施形態,針對本發明進行具體說明。此外,%在未特別強調、或數值為固有時除外,為質量%。
[有機電激發光元件之反射電極膜形成用銀合金標靶]
本發明之有機電激發光元件之反射電極膜形成用銀合金大型標靶(以下,稱為本發明標靶),係含有:包含In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之成分組成的合金標靶,其特徵為,本發明標靶之晶粒(以下,稱為銀-銦合金晶粒)之平均粒徑為150~400μm,前述銀-銦合金晶粒之粒徑誤差為平均粒徑之20%以下。
本發明標靶,標靶表面(標靶之供濺鍍之側面),具有0.25m2 以上之面積,矩形標靶時,至少一邊為500mm以上,長度之上限,以標靶之處理之觀點而言,以2500mm為佳。另一方面,寬度之上限,以冷軋製程所使用之輥軋機一般可輥軋之尺寸上限之觀點而言,以1700mm為佳。此外,以標靶之更換頻率之觀點而言,標靶之厚度,以6mm以上為佳,以磁控管濺鍍之放電安定性之觀點而言,以20mm以下為佳。
Ag,對以濺鍍所形成之有機電激發光元件之反射電極膜,賦予高反射率及低電阻。
In,因為提高標靶之硬度,而抑制機械加工時之反翹。尤其是,可以抑制長度:1m以上之大型標靶之機械加工時之反翹。此外,In,具有提高以濺鍍所形成之有機電激發光元件之反射電極膜之耐蝕性及耐熱性的效果。其係因為,In使反射電極膜中之晶粒微細化,降低膜之表面粗細度,此外,溶解於Ag而提高晶粒之強度,抑制晶粒之再結晶化,而具有抑制以濺鍍所形成之反射電極膜之反射率降低的效果。提高反射電極膜之耐蝕性及耐熱性,可以期待有機電激發光元件之高亮度化及長壽命化。此外,In含有量在21質量%以下之組成範圍時,因為不會形成與Ag之化合物相,濺鍍時,不會發生電阻率不同之化合物晶粒所導致的異常放電。
只含有0.1質量%以下之In時,無法得到以添加上述記載之In所造成的效果。另一方面,含有超過1.5質量%之In時,會出現反射率較低之In的特性,而使以濺鍍所形成之反射電極膜之反射率降低,故不適合。以濺鍍所形成之反射電極膜之組成,因為與標靶組成相關,故銀合金標靶所含有之In含有量,以將In定為0.1~1.5質量%較佳,最好定為0.2~1.0質量%。此處,In之定量分析,係利用感應耦合式電漿分析法(ICP法)來實施。
銀合金標靶中之銀-銦合金晶粒之平均粒徑為150~400μm,最好為200~350μm。銀-銦合金晶粒之平均粒徑,若小於150μm,則晶粒徑誤差較大,大電力之濺鍍中,容易發生異常放電,而可能發生濺射。另一方面,若大於400μm,則隨著標靶因為濺鍍之消耗,因為各晶粒之晶向不同所導致之濺鍍效率差異,而導致濺鍍表面之凹凸變大,故大電力之濺鍍中,容易發生異常放電,而容易發生濺射。此處,銀-銦合金晶粒之平均粒徑,以下述方式測量。
於標靶之濺鍍面內,均等地從16個部位,採取一邊為10mm程度之矩形體試料。具體而言,將標靶區分成縱4×橫4之16個部位,從各部位之中央部進行採取。此外,本發明時,在有機電激發光元件之形成上,概念上,係針對從具有500×500(mm)以上之濺鍍面的大型標靶,即從一般使用之矩形標靶的大型標靶來採取試料之採取法進行記載,然而,本發明當然對於圓型標靶之濺射發生的抑制也可發揮效果。此時,係依據大型矩形標靶之試料採取法,將標靶之濺鍍面內,均等地區分成16個部位並進行採取。
研磨各試料片之濺鍍兩側。以#180~#4000之防水紙研磨後,以3μm~1μm之研磨粒進行拋光。
蝕刻至以光學顯微鏡可觀察到粒界的程度。此處,蝕刻液,係使用過氧化氫水及氨水之混合液,在室溫下浸漬1~2秒鐘,使粒界顯現。其次,針對各試料,以光學顯微鏡進行30倍倍率之相片的拍攝。
於各相片,以20mm間隔交叉狀描繪縱橫合計4條之60mm線段,計算各直線所切斷之晶粒數。線段端之晶粒以0.5個來計數。以L=60000/(M‧N)(此處,M為實倍率,N為切斷晶粒數之平均值)來求取平均切片長度:L(μm)。
由求取之平均切片長度:L(μm),以d=(3/2)‧L來計算試料之平均粒徑:d(μm)。
以從16個部位取樣之試料之平均粒徑的平均值,做為標靶之銀-銦合金晶粒之平均粒徑。本發明之標靶之銀-銦合金晶粒的平均粒徑,在150~400μm之範圍。
銀-銦合金晶粒之粒徑之誤差,若為銀-銦合金晶粒之平均粒徑之20%以下,則可以更確實地抑制濺鍍時之濺射。此處,粒徑之誤差,係指定為由16個部位所求取之16個平均粒徑當中,與平均粒徑之偏差之絕對值(∣[(1個部位之平均粒徑)-(16個部位之平均粒徑)]∣)為最大者,利用該指定之平均粒徑(指定平均粒徑),以下述方式進行計算。
∣[(指定平均粒徑)-(16個部位之平均粒徑)]∣/(16個部位之平均粒徑)×100(%)
依據本發明之有機電激發光元件之反射電極膜形成用銀合金標靶,濺鍍中,即使投入大電力,亦可抑制異常放電,而抑制濺射之發生。藉由濺鍍該標靶,得到具有高反射率、優良耐久性之有機EL用反射電極膜。本發明,於標靶尺寸為寬度:500mm、長度:500mm、厚度6mm以上之大型標靶時,特別有效。
[製造方法]
本發明之有機電激發光元件之反射電極膜形成用銀合金標靶,原料係使用純度:99.99質量%以上之Ag、及純度:99.9質量%以上之In。
首先,於高真空或隋性氣體環境中熔解Ag,對所得到之熔態金屬添加特定含有量之In,其後,於真空或隋性氣體環境中進行熔解,製造含有In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之Ag-In合金之熔解鑄錠。此處,以安定Ag及In之組成比率之觀點而言,以下述實施方式為佳,亦即,Ag之熔解,在使環境成為真空後以氬置換之環境下實施,並在熔解後於氬環境中,將In添加於Ag之熔態金屬。
其次,為了使銀-銦合金晶粒之平均粒徑成為指定值,熱鍛熔解鑄錠。熱鍛,以下述方式實施為佳,亦即,以750~850℃加熱1~3小時後,重複實施6~20次之鍛造比1/1.2~1/2之鐓鍛。熱鍛,又以自由鍛造更佳,例如,又以一邊將鍛造方向旋轉90°一邊重複進行最佳。具體而言,如第2圖所示,使用圓柱狀鑄錠用時,首先,鍛造成角形。其後,將角形鑄錠從前次鍛造方向旋轉90°,重複進行鍛造。此時,以使鑄錠整體之銀-銦合金晶粒之平均粒徑成為指定值之觀點而言,以下述方式為佳,亦即,對角形鑄錠之縱、橫、高度方向(第2圖之x、y、z方向)之所有方向進行鍛造。此處,第2圖之虛線之箭頭,皆為鍛造方向,z係鑄造方向,x係相對於z為90°之任意方向,y係相對於z及x為90°之方向。為了使本發明標靶之銀-銦合金晶粒之平均粒徑成為期望之值,且使銀-銦合金晶粒之粒徑之誤差在期望之範圍內,以重複該製程為佳。重複次數為6次以下時,前述效果不彰。另一方面,即使重複執行次數多於20次,抑制銀-銦合金晶粒之粒徑誤差的效果也無法進一步提升。此外,熱鐓鍛之溫度為750℃以下時,因為存在著微晶,粒徑之誤差抑制效果無法充份發揮而應避免,若超過850℃,因為殘存著粗大化之結晶,粒徑之誤差抑制效果無法充份發揮而應避免。此外,為了緩和以熱鍛所形成之各稜及/或各角部之急速冷卻,以對鑄錠本體之鍛冶不會產生影響之程度敲擊鑄錠之該稜及/或該角部為佳,即以適度地實施角部敲擊為佳。
其次,將鍛造後之鑄錠冷軋成期望之厚度為止,使其成為板材。以粒徑誤差之抑制效果的觀點而言,此冷軋之每1行程的軋縮量以5~10%為佳。以在使總軋縮量成為指定值並維持粒徑誤差之抑制效果下進行晶粒徑之微細化的觀點而言,以重複該冷軋來使總軋縮量((冷軋前之鑄錠厚度-冷軋後之鑄錠厚度)/冷軋前之鑄錠厚度)成為60~75%為佳。此外,為了發揮上述效果,以10~20行程為佳。
以利用再結晶化來控制於特定平均粒徑之觀點而言,冷軋後之熱處理,以550~650℃、實施1~2小時為佳。
可以碾磨、放電加工等機械加工將熱處理後之板材加工成期望之尺寸,來製作反射電極膜形成用銀合金標靶。機械加工後之標靶之濺鍍面的算術平均表面粗細度(Ra),以抑制濺鍍時之濺射的觀點而言,以0.2~2μm為佳。
[實施例]
以下,藉由實施例,針對本發明進行說明,然而,本發明並未受限於此。
(實施例1) [銀合金標靶之製造]
準備純度99.99質量%以上之Ag及純度99.9質量%以上之In做為原料,以表1所示之質量比,將原料之Ag及In裝填於高頻真空熔解爐。熔解時之總質量,約為300kg。
進行真空腔室內之真空排氣後,進行Ar氣體置換,Ag熔解後,添加In,將合金熔態金屬鑄造成石墨製鑄模。切除以鑄造所製造之鑄錠上部的縮孔部分,得到健全部約260kg之鑄錠(Φ 290×370mm)。
將所得到之鑄錠,以750~850℃進行1小時加熱後,重複將鍛造方向旋轉90°,對鑄造方向:相對於z、z為90°之任意方向:相對於x、z及x為90°之方向:y之所有方向進行鍛造。重複實施一次鍛造比為1/1.2~1/2、方向改變15次之鐓鍛。以第16次鍛造進行展延,成形為約600×910×45(mm)之尺寸。
冷軋鍛造後之鑄錠,得到約1200×1300×16(mm)之板材。冷軋之1行程的軋縮量為5~10%,計執行15個行程。該冷軋之總軋縮量為64%。
輥軋後,以580℃對對板材保持1小時加熱,實施再結晶化處理。
其次,將該板材機械加工成1000×1200×12(mm)之尺寸,做為大型之本發明標靶。
[銀合金標靶之評估]
(1)機械加工後之反翹
測量實施例1之機械加工後之銀合金標靶的反翹,結果如表2所示。
(2)本發明標靶之銀-銦合金晶粒之粒徑測量,由如上述所製造之1000×1200×12(mm)之本發明標靶,如實施方式項所記載,均等地從16個部位採取試料,測量從各試料之濺鍍面觀察到之表面的平均粒徑,再計算各試料之平均粒徑之平均值之本發明標靶之銀-銦合金晶粒之平均粒徑與銀-銦合金晶粒之平均粒徑的誤差。第3圖係利用光學顯微鏡以30倍倍率所拍攝之實施例1之銀合金標靶的相片,表1係其結果。本發明之標靶材時,銀-銦合金晶粒之平均粒徑在150~400μm之範圍內,銀-銦合金晶粒之粒徑誤差,在銀-銦合金晶粒之平均粒徑之20%以內。
(3)濺鍍時之異常放電次數之測量
從如上述所製造之1000×1200×12(mm)之本發明標靶之任意部分,切取直徑:152.4mm、厚度:6mm之圓板,焊接於銅製背板。耐該經過焊接之標靶,當做濺鍍時之濺射評估用標靶使用,進行濺鍍中之異常放電次數的測量。表2係其結果。
將前述經過焊接之標靶裝設於通常之磁控管濺鍍裝置,直到1×10-4 Pa為止進行排氣後,以Ar氣壓:0.5Pa、投入電力:DC1000W、標靶基板間距離:60mm之條件,實施濺鍍。濺鍍時之異常放電次數,利用MKS INSTRUMENTS,INC.製DC電源(型號:RPDG-50A)之電弧計數機能,從放電開始計測30分鐘之異常放電次數。結果如表2所示。本發明之標靶的異常放電次數,為10次以下。
(4)有機EL膜之基本特性評估
(4-1)膜之表面粗細度
利用前述(3)所示之經過焊接之銀合金標靶,以與前述(2)相同之條件實施濺鍍,於20×20(mm)之玻璃基板上進行100nm之膜厚之成膜,得到銀合金膜。以原子力顯微鏡測量該銀合金膜之平均面粗細度(Ra),結果如表2所示。本發明標靶之膜平均面粗細度Ra,為1nm以下。
(4-2)反射率
以分光光度計測量與上述(4-1)同樣進行成膜之銀合金膜的反射率。本發明之標靶之銀合金膜之波長550nm之絕對反射率為90%以上。結果如表2所示。
(實施例2~4、比較例1~8)
除了記載於表1之成分組成及製造條件以外,與實施例1相同,製造標靶,得到實施例2~4及比較例1~8之銀合金標靶後,與實施例1相同,進行各種評估。其結果如表1及表2所示。
(傳統例1、2)
以記載於表1之In之成分組成,與實施例1相同,進行熔解,鑄造角型之石墨製鑄模,製作約400×400×150(mm)之鑄錠,此外,以600℃對該鑄錠進行1小時加熱後,實施熱軋,製成傳統例1之銀合金標靶。此外,製作傳統例2之銀合金標靶,與傳統例1相同,熱軋鑄錠後,再實施600℃、2小時之熱處理。利用傳統例1及傳統例2之銀合金標靶,與實施例1之評估,進行各種評估。其結果如表1及表2所示。
(參考例1)
以表1所記載之In調合比,投入重量為7kg,進行熔解,將合金熔態金屬鑄造成石墨鑄模,製作Φ 80×110(mm)之鑄錠,對所得到之鑄錠,實施與比較例3相同之鐓鍛次數、冷軋軋縮量、以及熱處理,而得到220×220×11(mm)之板材。與實施例及比較例相同,進行各種評估。結果如表1及表2所示。但是,參考例1之標靶,因為尺寸小於實施例及比較例所製造之標靶,故未評估機械加工後之反翹。
由表1可以得知,實施例1~4,銀-銦合金晶粒之平均粒徑為160~360μm,粒徑之誤差為12~18%,十分良好。相對於此,鐓鍛次數為5次之比較例3時,粒徑誤差為較大之25%,冷軋之總軋縮量為40%之比較例4時,粒徑誤差為較大之23%。此外,冷軋之總軋縮量為80%之比較例5時,粒徑誤差為較大之26%。冷軋後之熱處理溫度為500℃之比較例6及700℃之比較例7時,平均粒徑分別為92及460μm,偏離期望範圍。此外,熱鍛溫度為900℃之比較例8時,平均粒徑為440μm,偏離期望範圍。此外,傳統例1之粒徑誤差為較大之120%,傳統例2之不但平均粒徑為較大之550μm,且粒徑誤差亦為較大之35%。參考例1,係製造相較於本發明為有效之大型標靶為較小型之標靶時之評估,然而,雖然以與比較例3相同之條件製造,粒徑誤差亦為良好之17%。
由表2可以得知,實施例1~4,於異常放電次數、機械加工後之反翹、膜表面粗細度、波長550nm之絕對反射率,全部都有良好結果。相對於此,In為0.07質量%之比較例1時,機械加工後之反翹為較大之1.8mm,膜表面粗細度亦為較大之1.3μm。In為1.7質量%之比較例2時,波長550nm之絕對反射率為較小之89.1%。此外,比較例3、4、6、7、8及傳統例1、2,異常放電次數為較多之13次以上。
如以上可知,本發明之反射電極膜形成用銀合金標靶,異常放電獲得抑制,對該標靶進行濺鍍,因為可以提高反射率,且可以降低反射膜之表面粗細度,故可得到性能優良之有機EL用反射電極膜。
此外,本發明之技術範圍,並未受限於上述實施形態及上述實施例,只要在未背離本發明之要旨範圍,可以實施各種變更。
1‧‧‧反射陽極膜
2‧‧‧有機EL層
3‧‧‧電子注入層
4‧‧‧透明陰極膜
5‧‧‧電洞注入層
6‧‧‧TFT基板
第1圖係以反射電極做為陽極之向上發光構造之層構成例。
第2圖係熱鍛之方法的說明圖。
第3圖係以光學顯微鏡於倍率30倍下對實施例1之銀合金標靶進行拍攝時之相片。

Claims (4)

  1. 一種有機電激發光元件之反射電極膜形成用銀合金標靶,係含有:包含In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之成分組成的銀合金標靶,其特徵為:該合金之晶粒的平均粒徑為150~400μm,前述晶粒之粒徑誤差為平均粒徑之20%以下。
  2. 如申請專利範圍第1項所記載之有機電激發光元件之反射電極膜形成用銀合金標靶,其中標靶表面具有0.25m2 以上之面積。
  3. 一種有機電激發光元件之反射電極膜形成用銀合金標靶之製造方法,其特徵為:依序對含有:包含In:0.1~1.5質量%,其餘為由Ag及無法避免之雜質所構成之成分組成的熔解鑄錠,實施重複6~20次之熱鐓鍛製程、冷軋製程、熱處理製程、以及機械加工製程;前述熱鐓鍛製程的溫度為850℃以下;在前述冷軋製程的總軋縮量為60~75%;前述熱處理的溫度為550~650℃;該合金之晶粒的平均粒徑為150~400μm,前述晶粒之粒徑誤差為平均粒徑之20%以下。
  4. 如申請專利範圍第3項所記載之有機電激發光元件 之反射電極膜形成用銀合金標靶之製造方法,其中前述熱鐓鍛之溫度為750~850℃。
TW099134036A 2009-10-06 2010-10-06 Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof TWI385263B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009232634 2009-10-06
JP2010210149A JP4793502B2 (ja) 2009-10-06 2010-09-17 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法

Publications (2)

Publication Number Publication Date
TW201131001A TW201131001A (en) 2011-09-16
TWI385263B true TWI385263B (zh) 2013-02-11

Family

ID=43856934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099134036A TWI385263B (zh) 2009-10-06 2010-10-06 Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof

Country Status (7)

Country Link
US (1) US8821769B2 (zh)
EP (1) EP2487274B1 (zh)
JP (1) JP4793502B2 (zh)
KR (1) KR101099415B1 (zh)
CN (1) CN102421931B (zh)
TW (1) TWI385263B (zh)
WO (1) WO2011043486A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5533545B2 (ja) * 2010-01-12 2014-06-25 三菱マテリアル株式会社 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
JP5806653B2 (ja) * 2011-12-27 2015-11-10 株式会社神戸製鋼所 反射電極用Ag合金膜、反射電極、およびAg合金スパッタリングターゲット
JP5159962B1 (ja) 2012-01-10 2013-03-13 三菱マテリアル株式会社 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5472353B2 (ja) * 2012-03-27 2014-04-16 三菱マテリアル株式会社 銀系円筒ターゲット及びその製造方法
DE102012006718B3 (de) * 2012-04-04 2013-07-18 Heraeus Materials Technology Gmbh & Co. Kg Planares oder rohrförmiges Sputtertarget sowie Verfahren zur Herstellung desselben
JP5928218B2 (ja) * 2012-07-20 2016-06-01 三菱マテリアル株式会社 Ag合金膜及びその製造方法
JP2014196562A (ja) * 2012-12-21 2014-10-16 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
JP5522599B1 (ja) 2012-12-21 2014-06-18 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
JP5612147B2 (ja) * 2013-03-11 2014-10-22 三菱マテリアル株式会社 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP6198177B2 (ja) * 2013-07-19 2017-09-20 三菱マテリアル株式会社 Ag合金スパッタリングターゲット
CN105316630B (zh) * 2014-06-04 2020-06-19 光洋应用材料科技股份有限公司 银合金靶材、其制造方法及应用该靶材的有机发光二极管
DE102014214683A1 (de) 2014-07-25 2016-01-28 Heraeus Deutschland GmbH & Co. KG Sputtertarget auf der Basis einer Silberlegierung
EP3168325B1 (de) 2015-11-10 2022-01-05 Materion Advanced Materials Germany GmbH Sputtertarget auf der basis einer silberlegierung
CN106893989B (zh) * 2016-12-29 2019-10-01 昆山全亚冠环保科技有限公司 一种银钛合金靶材防开裂轧制工艺
WO2019163745A1 (ja) * 2018-02-20 2019-08-29 三菱マテリアル株式会社 Ag合金スパッタリングターゲット、及び、Ag合金スパッタリングターゲットの製造方法
JP2019143242A (ja) 2018-02-20 2019-08-29 三菱マテリアル株式会社 Ag合金スパッタリングターゲット、及び、Ag合金スパッタリングターゲットの製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100112A1 (fr) * 2002-05-28 2003-12-04 Ishifuku Metal Industry Co., Ltd. Matériau pour cible de pulvérisation
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2857015B2 (ja) * 1993-04-08 1999-02-10 株式会社ジャパンエナジー 高純度アルミニウムまたはその合金からなるスパッタリングターゲット
US7465424B2 (en) 2001-03-16 2008-12-16 Ishifuku Metal Industry Co., Ltd. Sputtering target material
JP4264302B2 (ja) * 2002-06-24 2009-05-13 株式会社コベルコ科研 銀合金スパッタリングターゲットとその製造方法
KR100568392B1 (ko) * 2002-06-24 2006-04-05 가부시키가이샤 코베루코 카겐 은 합금 스퍼터링 타겟 및 그의 제조 방법
JP4351144B2 (ja) * 2004-12-08 2009-10-28 田中貴金属工業株式会社 銀合金

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100112A1 (fr) * 2002-05-28 2003-12-04 Ishifuku Metal Industry Co., Ltd. Matériau pour cible de pulvérisation
JP2005036291A (ja) * 2003-07-16 2005-02-10 Kobe Steel Ltd Ag系スパッタリングターゲット及びその製造方法

Also Published As

Publication number Publication date
JP2011100719A (ja) 2011-05-19
JP4793502B2 (ja) 2011-10-12
EP2487274A1 (en) 2012-08-15
WO2011043486A1 (ja) 2011-04-14
US20120193589A1 (en) 2012-08-02
TW201131001A (en) 2011-09-16
KR20110113214A (ko) 2011-10-14
EP2487274B1 (en) 2018-09-26
CN102421931B (zh) 2013-10-30
CN102421931A (zh) 2012-04-18
KR101099415B1 (ko) 2011-12-27
US8821769B2 (en) 2014-09-02
EP2487274A4 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
TWI385263B (zh) Silver alloy target for forming reflective electrode film for organic electroluminescent element and manufacturing method thereof
TWI576442B (zh) 導電性膜形成用銀合金濺鍍靶材及其製造方法
JP5159962B1 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5533545B2 (ja) 有機el素子の反射電極膜形成用銀合金ターゲットおよびその製造方法
TWI525203B (zh) Silver alloy sputtering target for forming conductive film and its manufacturing method
KR101854009B1 (ko) 도전성 막 형성용 은 합금 스퍼터링 타겟 및 그 제조 방법
WO2014097961A1 (ja) Ag-In合金スパッタリングターゲット
JP5830907B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5830908B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669014B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP5669015B2 (ja) 導電性膜形成用銀合金スパッタリングターゲットおよびその製造方法
JP6375829B2 (ja) Ag合金スパッタリングターゲット
JP2014196562A (ja) Ag合金スパッタリングターゲット
JP4524577B2 (ja) 透明導電膜およびスパッタリングターゲット
JP2006219357A (ja) 酸化物焼結体、スパッタリングターゲットおよび透明導電性薄膜