WO2014091904A1 - 重金属除去方法及び重金属除去装置 - Google Patents

重金属除去方法及び重金属除去装置 Download PDF

Info

Publication number
WO2014091904A1
WO2014091904A1 PCT/JP2013/081472 JP2013081472W WO2014091904A1 WO 2014091904 A1 WO2014091904 A1 WO 2014091904A1 JP 2013081472 W JP2013081472 W JP 2013081472W WO 2014091904 A1 WO2014091904 A1 WO 2014091904A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy metal
reaction vessel
neutralization
aqueous solution
heavy
Prior art date
Application number
PCT/JP2013/081472
Other languages
English (en)
French (fr)
Inventor
中井 隆行
諭 松原
中井 修
京田 洋治
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CA2894639A priority Critical patent/CA2894639C/en
Priority to AU2013358259A priority patent/AU2013358259A1/en
Priority to CN201380064945.3A priority patent/CN104968610A/zh
Priority to EP13862448.1A priority patent/EP2933234B1/en
Priority to US14/651,354 priority patent/US20150315046A1/en
Publication of WO2014091904A1 publication Critical patent/WO2014091904A1/ja
Priority to PH12015501315A priority patent/PH12015501315B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/206Manganese or manganese compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This invention relates to the heavy metal removal method and heavy metal removal apparatus in the final neutralization process of a nickel oxide ore plant.
  • This application claims priority on the basis of Japanese Patent Application No. 2012-270722 filed on Dec. 11, 2012 in Japan. By reference to this application, the present application Incorporated.
  • Nickel oxide ore contains many kinds of heavy metals, and is dissolved under high temperature and high pressure conditions using sulfuric acid. After that, chemical treatment is performed to remove impurities to recover necessary metals such as nickel.
  • Methods for removing heavy metals from industrial wastewater include coagulation sedimentation, ion exchange, adsorption on activated carbon and other adsorbents, electrical adsorption, magnetic adsorption, etc.
  • the aggregation and precipitation method used is used in many factories.
  • the pH is increased by adding a neutralizing agent to solidify the heavy metal as a hydroxide, and then the solid and the liquid are separated by an operation such as filtration, and the liquid is discharged outside the factory. Is treated at the disposal site.
  • a neutralizing agent an inexpensive calcium-based neutralizing agent such as limestone or slaked lime is often used.
  • heavy metals can be removed from the solution by forming a hydroxide by raising the pH, but heavy metals such as iron and manganese are oxidized to form a more stable hydroxide. It is known to do.
  • aeration is a very useful method in terms of equipment cost and operation cost.
  • a high pressure acid leaching method (HPAL) for obtaining a nickel / cobalt mixed sulfide includes a pretreatment process (1), a leaching process (2), a solid process as shown in FIG. A liquid separation process (3), a neutralization process (4), a dezincification process (5), a sulfurization process (6), and a detoxification process (7) are included (for example, refer patent document 1).
  • nickel oxide ore is crushed and classified into a slurry.
  • the leaching step (2) sulfuric acid is added to the slurry obtained in the pretreatment step (1), and the mixture is stirred at 220 to 280 ° C., and high-temperature pressure acid leaching is performed to obtain a leaching slurry.
  • the leaching slurry obtained in the leaching step (2) is subjected to solid-liquid separation to obtain a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”) and the leaching residue. obtain.
  • the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (3) is neutralized.
  • step (5) hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (4) to precipitate and remove zinc as zinc sulfide.
  • the sulfidation step (6) hydrogen sulfide gas is added to the dezincification final solution obtained in the dezincification step (5) to obtain a nickel / cobalt composite sulfide and a nickel poor solution.
  • the detoxification step (7) the leaching residue generated in the solid-liquid separation step (3) and the nickel poor solution generated in the sulfidation step (6) are detoxified.
  • HPAL high-temperature pressure leaching method
  • leaching slurry after leaching nickel from nickel laterite ore, and waste liquid (baren liquor) obtained by collecting Ni and Co are discarded to the dam, Since the pH is low as it is, it is detoxified in the detoxification step (7).
  • the detoxification step (7) as shown in FIG. 4, in the final stage in which four stages of stirring tanks are connected in series to the poor liquid that is the process liquid discharged from the sulfurization process (6).
  • neutralization treatment with limestone (limestone) and slaked lime as neutralizers is performed, detoxified and discarded.
  • slurry heavy metal ions contained in the process liquid (slurry) are oxidized, so that gas is discharged into the treatment tank to oxidize heavy metal ions.
  • the slurry to be added has a pH of about 2, and the slurry is neutralized with CaCO 3 in the initial stage where the pH is low and Ca (OH) 2 in the latter half, and finally reaches about pH 9. increase.
  • gas evacuation in order to precipitate Mg, Mn and other trace metals (Ni, Co, Fe, Al, Cr), gas evacuation (aeration) is performed to increase the valence. As a result, the metal content is reduced from 0.0 n to 0.00. Decrease from about ng / l to about 0.001 g / l (other than Mg).
  • the required amount of neutralizing agent varies depending on the flow rate and acidity of the process liquid to be treated, and the concentration of heavy metal contained, but in any process, cost reduction can be achieved. From the viewpoint, it is desired to reduce the amount of neutralizing agent used.
  • JP 2011-225908 A Japanese Patent Application Laid-Open No. 08-071585 JP-A-10-258222
  • the present invention has been made in view of such a situation, and the object of the present invention is to remove a heavy metal that can be used in a reduced amount of the neutralizing agent and to remove the heavy metal used in the method. To provide an apparatus.
  • annular aeration tube having a large number of air outlets is provided at the bottom of a vertical cylindrical reaction vessel, and while the aqueous solution containing heavy metal ions is stirred in the reaction vessel, many annular aeration tubes are provided. Aeration is performed using a simple aeration apparatus that blows an oxidizing gas from the air outlet of the gas, neutralizing the aqueous solution containing heavy metal ions with a neutralizing agent, and solidifying the heavy metal as a hydroxide. To remove.
  • the present invention is a method for removing heavy metals, comprising a vertical cylindrical reaction vessel, a stirring blade provided in the reaction vessel, and a number of outlets provided at the bottom of the reaction vessel. While stirring an aqueous solution containing at least one kind of divalent iron ion and divalent manganese ion as a heavy metal element by rotating the stirring blade in a neutralization tank having an annular aeration tube. , Aeration gas is introduced from a large number of outlets of the aeration pipe and aerated, and a neutralizing agent is added to the aqueous solution to neutralize it to remove the heavy metals as hydroxides.
  • the present invention is also a heavy metal removal apparatus, comprising a vertical cylindrical reaction vessel, a stirring blade provided in the reaction vessel, and a number of outlets provided at the bottom of the reaction vessel.
  • a neutralization tank equipped with an annular aeration tube, and stirring the aqueous solution containing at least one kind of divalent iron ion or divalent manganese ion as a heavy metal element in the neutralization tank While agitating by rotating blades, aeration gas is introduced from a number of outlets of the aeration pipe and aerated, and a neutralizing agent is added to the aqueous solution to neutralize the heavy metal. It is characterized by being removed as an oxide.
  • the neutralization treatment in the final neutralization step in the nickel oxide ore hydrometallurgical plant, can be performed in the neutralization tank to solidify and remove heavy metals as hydroxides.
  • the oxidizing gas may be air.
  • the diameter of the annular aeration tube may be 60 to 85% of the diameter of the reaction vessel.
  • the air outlet is circular and can have a size of 18 to 22 mm ⁇ .
  • the air outlets can be installed at equal intervals at a position in an angle range of 45 ° on both sides from directly below the annular aeration pipe.
  • an annular aeration tube having a large number of air outlets is provided at the bottom of a vertical cylindrical reaction vessel, and an aqueous solution containing heavy metal ions is stirred in the reaction vessel and oxidized from the aeration tube.
  • Aeration is performed by using an aeration apparatus that blows gas for use, and neutralization of the aqueous solution is performed, thereby reducing the amount of neutralizing agent used for neutralizing heavy metals contained in the aqueous solution and efficiently removing it. be able to.
  • FIG. 1 is an external perspective view showing a configuration of a heavy metal removing apparatus to which the present invention is applied.
  • FIG. 2 is a process diagram of a nickel oxide ore hydrometallurgical plant in which a heavy metal removing device is used.
  • FIG. 3 is a process diagram of a nickel oxide ore plant by a high pressure acid leaching method.
  • FIG. 4 is a diagram showing the configuration of the final neutralization treatment facility in the detoxification process of the nickel oxide ore plant.
  • the heavy metal removal method according to the present embodiment is implemented by a heavy metal removal apparatus 100 having a configuration as shown in FIG.
  • This heavy metal removing apparatus 100 is an annular shape having a vertical cylindrical reaction vessel 110, a stirring blade 120 provided in the reaction vessel 110, and a large number of air outlets 131 provided at the bottom of the reaction vessel 110. It is a neutralization tank provided with the aeration pipe
  • At least one of divalent iron ions and divalent manganese ions is used as a heavy metal element in the vertical cylindrical reaction vessel 110 using the heavy metal removal device 100.
  • an oxidizing gas is introduced from a number of outlets 131 of the aeration tube 130 and aerated, and a neutralizing agent is added to the aqueous solution.
  • a neutralization treatment is performed to solidify and remove heavy metals as hydroxides.
  • the heavy metal is solidified and removed as a hydroxide by the final neutralization treatment, thereby removing the leach residue generated in the solid-liquid separation process.
  • the nickel poor solution generated in the sulfurization process is made harmless and discarded.
  • the neutralization process using the heavy metal removing device 100 is performed in the final neutralization process step to solidify the heavy metal as a hydroxide. Remove.
  • the poor liquid that is the process liquid discharged in the sulfidation process is charged into the vertical cylindrical reaction vessel 110 of the heavy metal removal apparatus 100, and the neutralization process is performed. .
  • the poor liquid which is a process liquid discharged from a nickel oxide ore hydrometallurgical plant, mainly contains pure metals such as iron and manganese. These heavy metals can be separated from the process liquid as a hydroxide precipitate (neutralized precipitation) by performing a neutralization treatment for adjusting the pH of the poor solution.
  • the pH required to bring the heavy metal concentration in the solution to 1 mg / l or less is, as shown in Table 1, with a divalent iron ion of pH 9.0, trivalent.
  • the pH is 2.7
  • divalent manganese ions the pH is 10.0
  • trivalent manganese ions the pH is 3.6.
  • the heavy metal ions in the solution can be precipitated at a lower pH when they are trivalent than when they are divalent. Since the process liquid charged in the final neutralization process is originally an acidic solution, the amount of neutralizing agent used can be reduced when adjusting to a low pH.
  • reaction vessel In the final neutralization step in the nickel oxide ore hydrometallurgical plant, a reaction vessel with a stirring blade has been used.
  • This reaction tank is usually a vertical cylindrical shape, and it is common to prevent stirring unevenness.
  • an oxidizing gas is further blown into the reaction tank to aerate the poor solution.
  • an annular aeration pipe 130 having a large number of air outlets 131 at the bottom in the vertical cylindrical reaction vessel 110. is used.
  • the process liquid containing heavy metal ions in the reaction vessel 110 is stirred by the rotation of the stirring blade 120 and aeration is performed by blowing an oxidizing gas from the outlet 131 of the aeration pipe 130 to include heavy metal ions.
  • the solution should be neutralized.
  • the heavy metal in the process liquid is solidified as a hydroxide and separated into a solid and a liquid with a specific gravity. The solid obtained by the specific gravity separation is discarded at the disposal site, while the liquid is returned to the solid-liquid separation step and reused as washing water or discarded.
  • the heavy metal removal apparatus 100 used in the heavy metal removal method according to the present embodiment as described above includes a vertical cylindrical reaction vessel 110, a stirring blade 120 provided in the reaction vessel 110, and a reaction vessel 110. It consists of a neutralization tank provided with the annular aeration pipe
  • the aeration gas is introduced from the outlet 131 of the aeration tube 130 and aeration is performed to neutralize the aqueous solution containing heavy metal ions with a neutralizing agent. Apply neutralization treatment.
  • the bubbles flowing into the reaction vessel 110 are broken into small pieces.
  • the total area of the bubbles can be increased.
  • By uniformly stirring the aqueous solution containing heavy metal ions in the reaction vessel 110 many bubbles can be brought into contact with the aqueous solution, and a high aeration effect can be obtained. That is, since the oxidizing gas supplied into the reaction vessel 110 is dispersed on the bottom surface of the neutralization tank immediately after being supplied, the entire aqueous solution containing heavy metal ions can be efficiently oxidized.
  • heavy metal ions in an aqueous solution can be efficiently oxidized from divalent to trivalent. And since it can be oxidized to trivalent heavy metal ions in this way, a precipitate of hydroxide can be formed at a low pH, effectively reducing the amount of neutralizing agent used for neutralization treatment. Can be made.
  • the oxidizing gas is not particularly limited as long as it is a gas that maintains bubbles in the liquid, that is, a gas that does not easily dissolve in the liquid, but it is preferable in terms of cost to use air.
  • the aeration tube 130 in the heavy metal removing apparatus 100 is preferably formed in an annular shape having a size of 60 to 85% of the diameter of the reaction vessel 110.
  • the aeration tube 130 When the aeration effect was observed by changing the diameter of the aeration tube 130 with respect to the diameter of the reaction vessel 110, the aeration tube 130 was formed in an annular shape having a size of 60 to 85% of the diameter of the reaction vessel 110, thereby The degree of dispersion was improved and a high aeration effect could be obtained.
  • the shape of the numerous air outlets 131 formed in the aeration pipe 130 is preferably circular and has a size of 18 to 22 mm ⁇ .
  • the strength reduction of the aeration pipe 130 can be minimized as compared with the case where the air outlet having the same opening area is formed in another shape. Further, the diameter of 18 mm to 22 mm is preferable because the effect of oxidizing heavy metal ions can be enhanced.
  • the air outlet 131 is set at one place directly under the aeration pipe 130 and one place at an angle of 45% on both sides thereof, a total of three sets, and this set is equally spaced from the annular aeration pipe 130. It is preferable to arrange them side by side.
  • Example 1 in the final neutralization process in the nickel oxide ore hydrometallurgical plant, the heavy metal ions in the solution using the heavy metal removal apparatus 100 described above are used for the poor liquid that is the process liquid discharged from the sulfidation process.
  • the detoxification process which removes was performed.
  • an aeration tube 130 is installed at a position where the distance from the center of the cylindrical reaction vessel 110 is 72% of the diameter of the reaction vessel 110, and a diameter is provided at the bottom of the aeration tube 130. 189 20 mm air outlets 131 were provided. At this time, the results of the air hold-up amount were compared between the case where aeration was performed using the aeration tube 130 and the case where aeration was performed from a conventional simple blowing tube (three blowing tubes). Table 2 shows the comparison results.
  • Example 2 Next, in the final neutralization process in the nickel oxide ore hydrometallurgical plant, the same heavy metal removal apparatus 100 as used in Example 1 was used to reduce the poor liquid that was the process liquid discharged from the sulfurization process.
  • the neutralization process which adds a summing agent was performed, and it compared with the usage-amount of slaked lime required in the neutralization process in the conventional last neutralization process. Table 3 shows the comparison results.
  • the Mn concentration at the outlet of the reaction tank can be made less than 1 mg / l, and the amount of slaked lime used is Compared to the conventional case, it can be reduced by 0.3 t / hr.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Removal Of Specific Substances (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 中和剤使用量の低減を可能にした重金属除去方法及び重金属除去装置を提供する。縦型円筒形状の反応容器110と、反応容器110内に設けられた撹拌羽根120と、反応容器110内の底部に設けられた多数の吹出口131を有する円環状のエアレーション管130とを備える中和槽内で、重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を撹拌羽根120の回転により撹拌しながら、エアレーション管130の多数の吹出口131から酸化用の気体を導入してエアレーションし、その水溶液に対する中和処理を施す。

Description

重金属除去方法及び重金属除去装置
 本発明は、ニッケル酸化鉱石プラントの最終中和工程における重金属除去方法及び重金属除去装置に関する。本出願は、日本国において2012年12月11日に出願された日本特許出願番号特願2012-270722を基礎として優先権を主張するものであり、この出願を参照されることにより、本出願に援用される。
 ニッケル酸化鉱石には多種類の重金属が含まれており、硫酸を用いて高温高圧条件で溶解し、その後、化学処理を行って不純物を除去することで、ニッケル等の必要な金属を回収する。
 ニッケル回収後の溶液を環境中に排出するためには、溶液中に残っている重金属を何らかの方法で除去する必要がある。工場排水から重金属を除去する方法として、凝集沈殿法、イオン交換法、活性炭等の吸着剤への吸着法、電気的吸着法、磁気吸着法等があるが、一般的な方法として中和剤を用いた凝集沈殿方法が多くの工場で用いられている。
 具体的には、中和剤の添加によりpHを上昇させて、重金属を水酸化物として固体化させた後、ろ過等の操作で固体と液体を分離し、液体は工場外へ排出し、固体は廃棄場で処理する方法が取られている。また、中和剤としては、石灰石や消石灰等の安価なカルシウム系の中和剤がよく使用される。
 一般的に、重金属はpHを上昇させることで水酸化物を形成して溶液中から除去することが可能であるが、鉄やマンガン等の重金属は酸化することでより安定な水酸化物を形成することが知られている。重金属の酸化方法として、エアレーションは設備コストや操業コストの面から非常に有用な方法である。
 ここで、ニッケル・コバルト混合硫化物を得るための高圧酸浸出法(HPAL:High Pressure Acid Leaching)は、図3に示すように、前処理工程(1)と、浸出工程(2)と、固液分離工程(3)と、中和工程(4)と、脱亜鉛工程(5)と、硫化工程(6)と、無害化工程(7)とを含む(例えば、特許文献1参照。)。
 前処理工程(1)では、ニッケル酸化鉱石を解砕分級してスラリーとする。
 浸出工程(2)では、前処理工程(1)で得られたスラリーに硫酸を添加し、220~280℃で撹拌して高温加圧酸浸出し、浸出スラリーを得る。
 固液分離工程(3)では、浸出工程(2)で得られた浸出スラリーを固液分離して、ニッケル及びコバルトを含む浸出液(以下、「粗硫酸ニッケル水溶液」という。)と浸出残渣とを得る。
 中和工程(4)では、固液分離工程(3)で得られた粗硫酸ニッケル水溶液を中和する。
 脱亜鉛工程(5)では、中和工程(4)で中和した粗硫酸ニッケル水溶液に硫化水素ガスを添加して亜鉛を硫化亜鉛として沈殿除去する。
 硫化工程(6)では、脱亜鉛工程(5)で得られた脱亜鉛終液に硫化水素ガスを添加してニッケル・コバルト複合硫化物とニッケル貧液を得る。無害化工程(7)では、固液分離工程(3)で発生した浸出残渣と、硫化工程(6)で発生したニッケル貧液とを無害化する。
 上述した高温加圧浸出法(HPAL)により、例えばニッケルラテライト鉱石からニッケルを浸出した後の浸出スラリーや、NiやCoを回収して得られた廃液(バレンリカー)は、ダムへ廃棄されるが、そのままだとpHが低いので、上述の無害化工程(7)において無害化される。具体的に、その無害化工程(7)では、硫化工程(6)から排出された工程液である貧液に対して、図4に示すように、撹拌槽を直列に4段接続した最終中和処理設備を用いて、中和剤としての石灰石(ライムストーン)と消石灰による中和処理が施され、無害化されて廃棄される。
 このとき、中和処理設備内では、工程液(スラリー)中に含まれる重金属イオンを酸化するため、その処理槽内に気体を排出して重金属イオンを酸化させるようにしている。そして、投入されるスラリーは、pH2程度であり、このスラリーに対して、pHが低い初期段階ではCaCOを、後半ではCa(OH)を用いて中和し、最終的にpH9程度にまで上げる。また、Mg,Mnやその他微量金属(Ni,Co,Fe,Al,Cr)を沈澱させるために、気体排出(エアレーション)を行って価数を上げるようにする。これにより、金属含有量を0.0n~0.ng/l程度から0.001g/l(Mg以外)程度まで下げる。
 この無害化処理(最終中和処理)においては、処理対象となる工程液の流量や酸性度、また含まれる重金属濃度によって、中和剤の必要量は変化するが、如何なるプロセスにおいてもコスト低減の観点から、中和剤の使用量を低減させることが望まれている。
特開2011-225908号公報 特開平08-071585号公報 特開平10-258222号公報
 そこで、本発明はこのような状況を鑑みてなされたものであり、その目的とするところは、中和剤の使用量の低減させることを可能にする重金属除去方法及びその方法に用いられる重金属除去装置を提供することにある。
 本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
 本発明では、縦型円筒形の反応容器内の底部に多数の吹出口を有する円環状のエアレーション管を設け、反応容器内で重金属イオンを含む水溶液を撹拌しながら、円環状のエアレーション管の多数の吹出口から酸化用の気体を吹き込む簡便なエアレーション装置を用いてエアレーションすることにより、重金属イオンを含む水溶液を中和剤で中和させる中和処理を行い、重金属を水酸化物として固体化させて除去する。
 すなわち、本発明は、重金属除去方法であって、縦型円筒形状の反応容器と、該反応容器内に設けられた撹拌羽根と、該反応容器内の底部に設けられた多数の吹出口を有する円環状のエアレーション管とを備える中和槽内で、重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を上記撹拌羽根の回転により撹拌しながら、上記エアレーション管の多数の吹出口から酸化用の気体を導入してエアレーションし、該水溶液に対して中和剤を添加して中和処理を施して該重金属を水酸化物として除去することを特徴とする。
 また、本発明は、重金属除去装置であって、縦型円筒形状の反応容器と、上記反応容器内に設けられた撹拌羽根と、上記反応容器内の底部に設けられた多数の吹出口を有する円環状のエアレーション管とを備える中和槽からなり、上記中和槽内で、重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を上記撹拌羽根の回転により撹拌しながら、上記エアレーション管の多数の吹出口から酸化用の気体を導入してエアレーションし、該水溶液に対して中和剤を添加して中和処理を施し、該重金属を水酸化物として除去することを特徴とする。
 本発明では、ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程において、上記中和槽により中和処理を行い、重金属を水酸化物として固体化させて除去することができる。
 また、本発明において、上記酸化用の気体は、空気とすることができる。
 また、本発明において、上記円環状のエアレーション管の直径は、上記反応容器の直径の60~85%のサイズとすることができる。
 また、本発明において、上記吹出口は、円形であって、18~22mmφのサイズとすることができる。
 さらに、本発明において、上記吹出口は、上記円環状のエアレーション管の真下から両隣に45°の角度範囲の位置で、且つ等間隔に設置することができる。
 本発明によれば、縦型円筒形の反応容器内の底部に多数の吹出口を有する円環状のエアレーション管を設け、反応容器内で重金属イオンを含む水溶液を撹拌しながら、そのエアレーション管から酸化用の気体を吹き込むエアレーション装置を用いてエアレーションして水溶液に対する中和処理を施すことにより、その水溶液中に含まれる重金属の中和に必要な中和剤使用量を低減させて、効率よく除去することができる。
図1は、本発明を適用した重金属除去装置の構成を示す外観斜視図である。 図2は、重金属除去装置が用いられるニッケル酸化鉱石の湿式製錬プラントの工程図である。 図3は、高圧酸浸出法によるニッケル酸化鉱石プラントの工程図である。 図4は、ニッケル酸化鉱石プラントの無害化工程における最終中和処理設備の構成を示す図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
 本実施の形態に係る重金属除去方法は、例えば図1に示すような構成の重金属除去装置100により実施される。
 この重金属除去装置100は、縦型円筒形状の反応容器110と、反応容器110内に設けられた撹拌羽根120と、反応容器110内の底部に設けられた多数の空気吹出口131を有する円環状のエアレーション管130とを備える中和槽である。なお、この縦型円筒形状の反応容器110内には、3枚のバッフル板151が配設されている。
 本実施の形態に係る重金属除去方法では、この重金属除去装置100を用い、縦型円筒形の反応容器110内で、重金属元素として、2価の鉄イオン及び2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を撹拌羽根120の回転により撹拌しながら、エアレーション管130の多数の吹出口131から酸化用の気体を導入してエアレーションし、その水溶液に対して中和剤を添加して中和処理を施して、重金属を水酸化物として固体化させて除去する。
 例えば、ニッケル酸化鉱石の湿式製錬プラントでは、上述の如く無害化工程において、最終中和処理により重金属を水酸化物として固体化させて除去することにより、固液分離工程で発生した浸出残渣と、硫化工程で発生したニッケル貧液とを無害化して廃棄する。このとき、本実施の形態では、例えば、図2の工程図に示すように、最終中和処理工程において重金属除去装置100を用いた中和処理を行い、重金属を水酸化物として固体化させて除去する。
 具体的には、最終中和工程において、硫化工程にて排出された工程液である貧液が、重金属除去装置100の縦型円筒形の反応容器110に装入され、中和処理が行われる。
 ニッケル酸化鉱石の湿式製錬プラントにおいて排出される工程液である貧液には、主として、鉄、マンガン等の純金属が含まれる。これらの重金属は、その貧液のpHを調整する中和処理を施すことによって、水酸化物の沈殿(中和沈殿)として、工程液から分離することができる。
 ここで、この最終中和工程において、溶液中の重金属濃度を1mg/l以下にするのに必要なpHとしては、表1に示すように、2価の鉄イオンではpH9.0、3価の鉄イオンではpH2.7、2価のマンガンイオンではpH10.0、3価のマンガンイオンではpH3.6となる。
Figure JPOXMLDOC01-appb-T000001
 すなわち、溶液中の重金属イオンは、2価であるよりも、3価である方が低いpHで沈殿させることができる。最終中和工程に装入される工程液は、もともと酸性側の溶液であるため、低いpHに調整する場合には、中和剤の使用量を削減することができる。
 ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程では、従来より撹拌翼付の反応槽が使用されている。この反応槽は、通常縦型の円筒形であり、撹拌ムラを生じさせないようにするのが一般的である。このとき、本実施の形態では、更に、この反応槽中に酸化用の気体を吹き込んで、貧液を曝気する。
 具体的に、本実施の形態では、ニッケル酸化鉱石の湿式製錬プラントの最終中和工程において、縦型円筒形の反応容器110内の底部に多数の吹出口131を有する円環状のエアレーション管130を設けた重金属除去装置100を用いる。そして、その反応容器110内で重金属イオンを含む工程液を撹拌羽根120の回転により撹拌しながら、そのエアレーション管130の吹出口131から酸化用の気体を吹き込むエアレーションを行って、重金属イオンを含む工程液に対する中和処理を施すようにする。工程液中の重金属を水酸化物として固体化させ、固体と液体に比重分離する。比重分離して得られた固体は、廃棄場にて廃棄し、一方で液体は、固液分離工程に戻して洗浄水として再利用するか、又は廃棄する。
 すなわち、上述の如き本実施の形態に係る重金属除去方法において用いる重金属除去装置100は、縦型円筒形状の反応容器110と、反応容器110内に設けられた撹拌羽根120と、反応容器110内の底部に設けられた多数の空気吹出口131を有する円環状のエアレーション管130とを備える中和槽からなる。そして、縦型円筒形の反応容器110、すなわち中和槽内で、最終中和工程における工程液、すなわち重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を撹拌羽根120の回転により撹拌しながら、そのエアレーション管130の吹出口131から酸化用の気体を導入してエアレーションを行って、重金属イオンを含む水溶液に対して中和剤で中和させる中和処理を施す。
 このように、反応容器110内の底部に設けられた多数の空気吹出口131を有する円環状のエアレーション管130を介してエアレーションを行うことにより、反応容器110内に流入させる気泡を小さく分裂させて気泡の総面積を大きくすることができる。そして、重金属イオンを含む水溶液を反応容器110内で均一に撹拌することによって、その多くの気泡を水溶液に接触させることができ、高いエアレーション効果を得ることができる。すなわち、反応容器110中に供給された酸化用の気体は、供給された直後から中和槽底面に分散された状態となるため、重金属イオンを含む水溶液の全体を効率よく酸化することができる。
 つまり、水溶液中の重金属イオンを2価から3価に効率的に酸化させることができる。そして、このように3価の重金属イオンに酸化させることができたことにより、低いpHで水酸化物の沈殿物を形成できることから、中和処理に要する中和剤の使用量を効果的に低減させることができる。
 ここで、酸化用の気体として、液中で気泡を維持する気体、すなわち液中に容易に溶け込まない気体であれば特に限定されるものではないが、空気を用いることがコスト面で好ましい。
 ここで、重金属除去装置100の反応容器110内における流れを安定にするためには、槽壁に沿って空気を上昇させる必要がある。その点において、重金属除去装置100におけるエアレーション管130は、反応容器110の直径の60~85%のサイズの円環状に形成することが好ましい。
 反応容器110の直径に対するエアレーション管130の直径を変更して、エアレーション効果を観察したところ、反応容器110の直径の60~85%のサイズの円環状にエアレーション管130を形成することにより、気体の分散程度が向上して、高いエアレーション効果を得ることができた。
 また、重金属除去装置100において、エアレーション管130に形成されている多数の空気吹出口131の形状としては、円形であって、18~22mmφのサイズであることが好ましい。
 円形の空気吹出口131とすることにより、他の形状で同じ開口面積の空気吹出口を形成する場合と比較するとエアレーション管130の強度低下を最も少なくすることができる。また、その直径を18mm~22mmとすることにより、重金属イオンを酸化する効果を高くすることができ、好ましい。
 なお、中和処理対象の工程液の密度や流動特性に最適な気泡サイズがあると考えられ、空気吹出口の直径が18mm未満の場合は液中における気泡の上昇速度が遅すぎて時間がかかり、22mmより大きいとその上昇速度が速くなりすぎて、充分に水溶液と接触しなくなる可能性がある。
 また、空気吹出口131は、エアレーション管130の真下に1箇所、またその両隣45%の角度の位置にそれぞれ1箇所、合計3箇所のセットとし、このセットを円環状のエアレーション管130に等間隔に並べて配置することが好ましい。
 以下に、本発明についての実施例を説明するが、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 本実施例では、ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程において、硫化工程から排出された工程液である貧液に対して、上述した重金属除去装置100を用いて溶液中の重金属イオンを除去する無害化処理を行った。
 重金属除去装置100においては、その底部に、円筒形状の反応容器110の中心からの距離がその反応容器110の直径の72%の位置にエアレーション管130を設置し、エアレーション管130の底面部に直径20mmの空気吹出口131を189個設けた。このとき、このエアレーション管130を用いてエアレーションを行った場合と、従来の単純な吹き込み管(吹き込み管は3本)からエアレーションを行った場合について、空気のホールドアップ量の結果を比較した。表2に、比較結果を示す。
Figure JPOXMLDOC01-appb-T000002
 この表2に示すように、エアレーション管130を用いてエアレーションを行った場合、空気吹き込み流量を約2300kg/hにすると、従来の単純な吹き込み管3本によるエアレーションと比較して約65%のエアレーションで同等の効果が得られ、吹き込んだ気体を効果的に利用することができることが分かった。
 (実施例2)
 次に、ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程において、実施例1で用いたものと同じ重金属除去装置100により、硫化工程から排出された工程液である貧液に対して、中和剤を添加する中和処理を行い、従来の最終中和工程における中和処理において必要となる消石灰の使用量と比較した。表3に、比較結果を示す。
Figure JPOXMLDOC01-appb-T000003
 この表3に示すように、エアレーション管130を用いてエアレーションを行いながら中和処理を施すことにより、反応槽出口のMn濃度を1mg/l未満にすることができるとともに、使用した消石灰量を、従来に比べて0.3t/hrも低減させることができる。
 100 重金属除去装置、110 反応容器、120 撹拌羽根、130 エアレーション管、131 空気吹出口、151 バッフル板

Claims (9)

  1.  縦型円筒形状の反応容器と、該反応容器内に設けられた撹拌羽根と、該反応容器内の底部に設けられた多数の吹出口を有する円環状のエアレーション管とを備える中和槽内で、
     重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を上記撹拌羽根の回転により撹拌しながら、上記エアレーション管の多数の吹出口から酸化用の気体を導入してエアレーションし、該水溶液に対して中和剤を添加して中和処理を施して該重金属を水酸化物として除去することを特徴とする重金属除去方法。
  2.  ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程において、上記中和槽により中和処理を施し、上記重金属を水酸化物として除去することを特徴とする請求項1記載の重金属除去方法。
  3.  上記酸化用の気体は空気であることを特徴とする請求項1に記載の重金属の除去方法。
  4.  縦型円筒形状の反応容器と、
     上記反応容器内に設けられた撹拌羽根と、
     上記反応容器内の底部に設けられた多数の吹出口を有する円環状のエアレーション管とを備える中和槽からなり、
     上記中和槽内で、重金属元素として、2価の鉄イオン、2価のマンガンイオンのうち、少なくとも1種類のイオンを含む水溶液を上記撹拌羽根の回転により撹拌しながら、上記エアレーション管の多数の吹出口から酸化用の気体を導入してエアレーションし、該水溶液に対して中和剤を添加して中和処理を施し、該重金属を水酸化物として除去することを特徴とする重金属除去装置。
  5.  ニッケル酸化鉱石の湿式製錬プラントにおける最終中和工程における中和処理に用いられることを特徴とする請求項4記載の重金属除去装置。
  6.  上記円環状のエアレーション管の直径は、上記反応容器の直径の60~85%のサイズであることを特徴とする請求項4に記載の重金属除去装置。
  7.  上記吹出口は、円形であって、18~22mmφのサイズであることを特徴とする請求項6に記載の重金属除去装置。
  8.  上記吹出口は、上記円環状のエアレーション管の真下から両隣に45°の角度範囲の位置で、且つ等間隔に設置されることを特徴とする請求項7に記載の重金属除去装置。
  9.  上記酸化用の気体は空気であることを特徴とする請求項4に記載の重金属除去装置。
PCT/JP2013/081472 2012-12-11 2013-11-22 重金属除去方法及び重金属除去装置 WO2014091904A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2894639A CA2894639C (en) 2012-12-11 2013-11-22 Heavy-metal removal method and heavy-metal removal device
AU2013358259A AU2013358259A1 (en) 2012-12-11 2013-11-22 Heavy-metal removal method and heavy-metal removal device
CN201380064945.3A CN104968610A (zh) 2012-12-11 2013-11-22 重金属去除方法及重金属去除装置
EP13862448.1A EP2933234B1 (en) 2012-12-11 2013-11-22 Heavy-metal removal method
US14/651,354 US20150315046A1 (en) 2012-12-11 2013-11-22 Heavy-metal removal method and heavy-metal removal device
PH12015501315A PH12015501315B1 (en) 2012-12-11 2015-06-09 Heavy-metal removal method and heavy-metal removal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012270722A JP5720665B2 (ja) 2012-12-11 2012-12-11 重金属除去方法及び重金属除去装置
JP2012-270722 2012-12-11

Publications (1)

Publication Number Publication Date
WO2014091904A1 true WO2014091904A1 (ja) 2014-06-19

Family

ID=50934199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081472 WO2014091904A1 (ja) 2012-12-11 2013-11-22 重金属除去方法及び重金属除去装置

Country Status (8)

Country Link
US (1) US20150315046A1 (ja)
EP (1) EP2933234B1 (ja)
JP (1) JP5720665B2 (ja)
CN (1) CN104968610A (ja)
AU (1) AU2013358259A1 (ja)
CA (1) CA2894639C (ja)
PH (1) PH12015501315B1 (ja)
WO (1) WO2014091904A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942830B2 (ja) * 2012-12-11 2016-06-29 住友金属鉱山株式会社 撹拌反応装置
JP5700029B2 (ja) * 2012-12-11 2015-04-15 住友金属鉱山株式会社 硫化水素を含む貧液の処理方法及び処理装置
JP6544059B2 (ja) * 2015-06-08 2019-07-17 栗田エンジニアリング株式会社 排水の処理方法
JP7247729B2 (ja) * 2019-04-18 2023-03-29 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬において発生する貧液の中和処理方法
JP7238686B2 (ja) * 2019-08-15 2023-03-14 住友金属鉱山株式会社 中和処理方法
CN115677110B (zh) * 2022-11-02 2024-05-10 广东工业大学 一种磁性淀粉水凝胶复合重金属吸附设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186425A (ja) * 1982-04-14 1983-10-31 Takeda Chem Ind Ltd 気液接触装置
JPS62125834A (ja) * 1985-11-21 1987-06-08 シユベン・ヨルト 羽根車装置
JPH03249930A (ja) * 1990-02-27 1991-11-07 Sumitomo Heavy Ind Ltd 攪拌装置
JPH0871585A (ja) 1994-09-02 1996-03-19 Japan Organo Co Ltd 曝気槽
JPH09248578A (ja) * 1996-03-15 1997-09-22 Kurita Water Ind Ltd 第一鉄イオン含有水の処理装置
JPH09314169A (ja) * 1996-06-03 1997-12-09 Zeniya Kaiyo Service Kk 曝気装置の散気管
JPH10258222A (ja) 1997-01-20 1998-09-29 Ajinomoto Co Inc 撹拌翼
JP2002282664A (ja) * 2001-03-28 2002-10-02 Dainippon Ink & Chem Inc ガス吹き出しノズル及びこれを用いた槽
JP2004167386A (ja) * 2002-11-20 2004-06-17 Dainippon Ink & Chem Inc 撹拌槽用バッフル及び撹拌方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010095788A (ja) * 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010207674A (ja) * 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd 排水からのマンガンの除去方法
JP2011225908A (ja) 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式精錬プラント及びその操業方法
JP2012240012A (ja) * 2011-05-23 2012-12-10 Sumitomo Metal Mining Co Ltd 排水処理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4207275A (en) * 1974-03-29 1980-06-10 General Signal Corporation Mixing apparatus
JPH0489541U (ja) * 1990-12-14 1992-08-05
JP3225836B2 (ja) * 1996-03-14 2001-11-05 大平洋金属株式会社 マグネシュウムを含有するマンガン酸性溶液からのマンガンの優先的除去法
JP4204020B2 (ja) * 1998-08-26 2009-01-07 三井造船株式会社 攪拌曝気装置
JP4525428B2 (ja) * 2004-05-13 2010-08-18 住友金属鉱山株式会社 ニッケル酸化鉱石の湿式製錬方法
BRPI0601717A (pt) * 2006-05-04 2007-12-18 Du Pont Brasil processo para a fabricação de carbonato de cálcio
CN101844822B (zh) * 2010-05-11 2012-09-26 沈阳建筑大学 三维电极/电芬顿反应器
CN101913692B (zh) * 2010-08-17 2012-09-05 安徽金星钛白(集团)有限公司 处理钛白酸性废水的方法和中和桶
CN102674533B (zh) * 2012-05-10 2014-02-19 武汉市政工程设计研究院有限责任公司 一种用于污水处理的旋转式微孔曝气圆环盘管系统
JP5700029B2 (ja) * 2012-12-11 2015-04-15 住友金属鉱山株式会社 硫化水素を含む貧液の処理方法及び処理装置
JP5942830B2 (ja) * 2012-12-11 2016-06-29 住友金属鉱山株式会社 撹拌反応装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186425A (ja) * 1982-04-14 1983-10-31 Takeda Chem Ind Ltd 気液接触装置
JPS62125834A (ja) * 1985-11-21 1987-06-08 シユベン・ヨルト 羽根車装置
JPH03249930A (ja) * 1990-02-27 1991-11-07 Sumitomo Heavy Ind Ltd 攪拌装置
JPH0871585A (ja) 1994-09-02 1996-03-19 Japan Organo Co Ltd 曝気槽
JPH09248578A (ja) * 1996-03-15 1997-09-22 Kurita Water Ind Ltd 第一鉄イオン含有水の処理装置
JPH09314169A (ja) * 1996-06-03 1997-12-09 Zeniya Kaiyo Service Kk 曝気装置の散気管
JPH10258222A (ja) 1997-01-20 1998-09-29 Ajinomoto Co Inc 撹拌翼
JP2002282664A (ja) * 2001-03-28 2002-10-02 Dainippon Ink & Chem Inc ガス吹き出しノズル及びこれを用いた槽
JP2004167386A (ja) * 2002-11-20 2004-06-17 Dainippon Ink & Chem Inc 撹拌槽用バッフル及び撹拌方法
JP2010031302A (ja) * 2008-07-25 2010-02-12 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010095788A (ja) * 2008-09-19 2010-04-30 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式製錬方法
JP2010207674A (ja) * 2009-03-09 2010-09-24 Sumitomo Metal Mining Co Ltd 排水からのマンガンの除去方法
JP2011225908A (ja) 2010-04-15 2011-11-10 Sumitomo Metal Mining Co Ltd ニッケル酸化鉱石の湿式精錬プラント及びその操業方法
JP2012240012A (ja) * 2011-05-23 2012-12-10 Sumitomo Metal Mining Co Ltd 排水処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933234A4

Also Published As

Publication number Publication date
EP2933234A4 (en) 2016-05-11
CN104968610A (zh) 2015-10-07
JP2014113566A (ja) 2014-06-26
AU2013358259A1 (en) 2015-07-23
US20150315046A1 (en) 2015-11-05
CA2894639C (en) 2019-12-31
PH12015501315A1 (en) 2015-08-24
CA2894639A1 (en) 2014-06-19
EP2933234B1 (en) 2017-01-04
JP5720665B2 (ja) 2015-05-20
PH12015501315B1 (en) 2015-08-24
EP2933234A1 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2014091904A1 (ja) 重金属除去方法及び重金属除去装置
US9731980B2 (en) Processing device and processing method for hydrogen-sulphide-containing barren solution
JP5942830B2 (ja) 撹拌反応装置
JP5765498B2 (ja) 硫化水素を含む貧液の処理方法及び処理装置
JP5751393B1 (ja) 重金属除去方法及び重金属除去装置
CN105439209B (zh) 一种红土镍矿中和废酸后制备臭氧氧化催化剂γ‑FeOOH的方法
JP2007252969A (ja) 鉄鋼製造排水の浄化処理方法
JP2014113566A5 (ja)
JP6953988B2 (ja) 硫化剤の除去方法
JP2012176864A (ja) ポリ硫酸第二鉄の製造方法
WO2007057521A1 (en) Method for removing substances from aqueous solution
CN107416959A (zh) 一种去除酸洗废液中铬镍的方法
CN110615570B (zh) 一种有色金属冶炼污酸的资源化处理方法
JP7147362B2 (ja) ニッケル酸化鉱石の湿式製錬法における臭気低減方法
JP6413772B2 (ja) クロム含有水の処理方法
JP7087601B2 (ja) 硫化剤の除去方法及びニッケル酸化鉱石の湿式製錬方法
JP2010196122A (ja) 有機相からの金属元素の除去方法
JP2019210514A (ja) 固液分離処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12015501315

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2894639

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14651354

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013862448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013862448

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201504306

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2013358259

Country of ref document: AU

Date of ref document: 20131122

Kind code of ref document: A