CN110615570B - 一种有色金属冶炼污酸的资源化处理方法 - Google Patents

一种有色金属冶炼污酸的资源化处理方法 Download PDF

Info

Publication number
CN110615570B
CN110615570B CN201810636175.XA CN201810636175A CN110615570B CN 110615570 B CN110615570 B CN 110615570B CN 201810636175 A CN201810636175 A CN 201810636175A CN 110615570 B CN110615570 B CN 110615570B
Authority
CN
China
Prior art keywords
acid
waste
heavy metal
ions
halide ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810636175.XA
Other languages
English (en)
Other versions
CN110615570A (zh
Inventor
石绍渊
曹宏斌
李玉平
刘晨明
张曼曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Handan Iron and Steel Group Co., Ltd
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201810636175.XA priority Critical patent/CN110615570B/zh
Publication of CN110615570A publication Critical patent/CN110615570A/zh
Application granted granted Critical
Publication of CN110615570B publication Critical patent/CN110615570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明涉及一种有色金属冶炼污酸的资源化处理方法,包括如下步骤:(1)过滤除去污酸中的不溶杂质,得到含有卤离子和重金属离子的酸液;(2)采用孔径为0.5~5nm、表面ZETA电位为‑5~‑50mV的非对称膜将酸液进行膜分离,得到含重金属离子和少量卤离子的酸液,同时得到富集卤离子的废水;(3)去除酸液中的重金属离子,得到净化稀酸;(4)净化稀酸进行浓缩或回用于制备聚合硫酸铁絮凝剂。本发明提出采用膜分离对污酸进行除杂的技术手段,所述非对称膜使污酸中杂质卤离子的去除率达98%以上,且本发明将物化法和膜技术进行耦合,充分发挥二者的协同作用,杂质脱除效率高,重金属和酸的资源化回收率高。

Description

一种有色金属冶炼污酸的资源化处理方法
技术领域
本发明涉及冶炼污酸资源化处理工艺领域,尤其涉及一种有色金属冶炼污酸的资源化处理方法。
背景技术
黄金湿法冶炼污酸是金精矿焙烧产生的烟气在制硫酸过程中洗涤烟气产生的废酸,在铜、镍、铅、锌等有色金属冶炼过程也会产生这种酸性废水。其特点是酸度高、成分复杂、重金属种类多且浓度高,主要含有铅、汞、锌、镉、砷及氟、氯等杂质,是重金属废水的主要来源。这种废水外排对环境污染严重,是黄金湿法冶炼行业亟待解决的问题。
污酸处理是有色冶金行业面临的重大难题之一,尚未有普遍认可且较为理想的处理方法。目前国内处理污酸废水的方法主要有石灰中和法、硫化法-中和法、中和-铁盐共沉淀、铁盐-氧化-中和等方法,这些方法仍存在处理成本高、效果不理想的不足。一方面大量的污酸资源没有得到回收利用,另一方面会产生大量含重金属的固态废渣易造成二次污染。具体介绍如下:
(1)中和沉淀法:在污酸中投加碱中和剂,可使污酸中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除。通常采用碱石灰(CaO)、消石灰(Ca(OH)2)、石灰粉(CaO)、白云石(CaO·MgO)等,可去除汞以外的重金属离子。中和过程中重金属进入中和渣,属于含有重金属的危险废物。然而,采用中和法处理污酸,污酸中的酸和重金属离子均不能实现回收,且需修建渣场安全处置中和渣,否则渣中的重金属离子容易被浸出造成二次污染。
(2)硫化-中和法:硫化法是利用可溶性硫化物与重金属反应生成难溶硫化物,将其从污酸中除去。硫化渣中砷、镉等含量大大提高,在去除污酸中有毒重金属的同时实现了重金属的资源化。由于污酸酸度高,硫化物投加到污酸中会产生大量剧毒的H2S气体,易产生二次污染。而且经硫化后的污酸仍需要中和处理,同样会产生大量的中和渣。
(3)中和-铁盐法:利用石灰中和污酸并调节pH值,利用砷与铁生成比较稳定的砷酸铁化合物,氢氧化铁与砷酸铁共同沉淀这一性质将砷除去。铁的氢氧化物具有强大的吸附和絮凝能力的特性,达到去除污酸中砷、镉等有害重金属的目的。提高pH值将污酸中的重金属离子以氢氧化物的形式脱除,但调节pH过高会引起砷酸铁反溶。
(4)铁盐-氧化-中和法:利用FeAsO4比FeAsO3更稳定的性质,通常采用氧化法将三价砷氧化成五价砷和使Fe2+氧化成Fe3+,然后生成铁盐共沉淀。除砷后的污酸,仍需要中和处理,同样会产生大量的中和渣。
CN104386654A公开了一种硫化矿焙烧烟气制酸系统污酸的处理方法。将烟气洗涤产生的低浓污酸和部分中浓污酸循环洗涤烟气,逐步使硫酸浓度达到中浓污酸,在循环过程中脱除污酸中部分的F、Cl;采用自热系统将中浓污酸通过换热器加热,脱除污酸中90wt%以上的F、Cl,得到高浓污酸,挥发出的氢氟酸和盐酸分别采用低浓度氢氟酸和盐酸吸收;将高浓污酸冷却至室温,结晶析出有价金属离子的沉淀,但是蒸馏分离存在能耗高、腐蚀严重等问题。
CN108128917A公开了一种利用拜耳法赤泥去除铜冶炼污酸中多种污染物的方法,通过边加热边持续曝气的手段,将污酸中的三价砷氧化为五价砷,然后加入拜耳法赤泥颗粒,控制砷铁摩尔比和pH值,利用拜耳法赤泥中的铁和铜冶炼污酸中的砷形成无定形砷酸铁,再氧化形成稳定的砷酸铁除去污酸中的砷以及吸附污酸中的多种污染物。此方法除砷后的污酸,仍需要中和处理,同样会产生大量的中和渣。
CN104445095A公开了一种冶炼污酸净化的方法公开了采用扩散渗析和离子交换、多效蒸发净化污酸的方法,虽然解决了回收酸度低的问题,但扩散渗析过程中需要补充大量新水,增加了污酸的处理量,低酸含氟氯及重金属的废水仍然需要中和处理,不利于回用。
因此,需要开发一种适用于有色金属冶炼污酸的资源化处理方法,将污酸中的重金属回收同时将酸回收,避免常规电石渣中和污酸造成酸资源浪费,以及生成大量含重金属的石膏渣危废造成二次污染的问题,可广泛应用于金、锌、铅、铜、镍等有色金属冶炼污酸的资源化处理。
发明内容
针对黄金湿法冶炼污酸的化学组成与水质特点及现有处理技术存在的无法充分将酸资源回用、大量中和渣与硫化氢气体造成二次污染、废水处理后难以稳定达标的缺陷,本发明的目的在于提出一种适用于有色金属冶炼污酸的资源化处理方法,将污酸中的重金属回收同时将酸回收,避免常规电石渣中和污酸造成酸资源浪费,以及生成大量含重金属的石膏渣危废造成二次污染的问题,可广泛应用于金、锌、铅、铜、镍等有色金属冶炼污酸的资源化处理。
为达此目的,本发明采用如下技术方案:
第一方面,本发明提供一种有色金属冶炼污酸的资源化处理方法,包括如下步骤:
(1)过滤除去污酸中的不溶杂质,得到含有卤离子和重金属离子的酸液;
(2)采用孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜将步骤(1)所得酸液进行膜分离,得到含重金属离子和少量卤离子的酸液,同时得到富集卤离子的废水;
(3)去除步骤(2)所得酸液中的重金属离子,得到净化稀酸;
(4)将步骤(3)所得净化稀酸进行浓缩或回用于制备聚合硫酸铁絮凝剂。
其中,步骤(2)中所述非对称膜的孔径可以是0.5nm、0.75nm、1nm、1.5nm、2nm、2.5nm、3nm、3.5nm、4nm或5nm等,表面ZETA电位可以是-5mV、-10mV、-15mV、-20mV、-25mV、-30mV、-35mV、-40mV、-45mV或-50mV等。
本发明所述的“包括”,意指其除所述步骤外,还可以包括其他步骤,这些其他步骤赋予所述资源化处理方法含硅复合材料不同的特性。除此之外,本发明所述的“包括”,还可以替换为封闭式的“为”或“由……组成”。
非对称膜是与对称膜相对的概念,区别于膜的不同形态结构,非对称膜是指沿膜的厚度方向结构不均一、不同性,在膜的表面是致密的或极细孔的薄的表层,相当于膜厚的1/100左右,表层下面是大孔的支撑层,两层之间还存在着过渡层。
本发明中孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜具有化学稳定性好、耐强酸、对Cl-和F-等卤离子截留率低而对SO4 2-截留率高的特点。相较于用于工业废水进行盐分离的常规纳滤膜,本发明中的非对称膜无需考虑一价阳离子Na+与二价阳离子Mg2+和Ca2+等的干扰,且耐酸性突出。
另外,常规污酸中去除Cl-和F-等杂质离子主要是通过蒸馏方法实现,即在蒸馏过程中使HCl和HF从污酸中分离出来;本发明采用了特种膜的选择性分离作用实现杂质阴离子的高效分离与去除,而且通过特种膜的多级分离提高杂质阴离子的分离效率;克服了蒸馏分离方法存在的能耗高、腐蚀严重、分离效率低等问题。此外,膜分离也避免蒸馏产生的HCl和HF对金属管道和反应器的腐蚀。
本发明利用物化法与膜技术耦合与协同作用,去除污酸中的多种重金属如Pb、Cd、Hg、Zn、As、Se等及Cl、F等杂质阴离子,并通过净化稀酸浓缩后回用或用于制备聚合硫酸铁用作絮凝剂,避免常规电石渣中和污酸造成酸资源浪费,以及生成大量含重金属的石膏渣危废造成二次污染的问题,可广泛应用于金、锌、铅、铜、镍等有色金属冶炼污酸的资源化处理。
此外,如果调换步骤(2)与步骤(3)的工序,由于铁碳微电解去除重金属离子的过程会给污酸带入Fe及其他杂质,会对膜造成污染,不利于杂质阴离子的有效分离。
优选地,所述有色金属冶炼污酸包括有色金属冶炼制酸时所产生的稀酸废水。
优选地,所述有色金属包括金、铜、镍、铅和锌中的任意一种。
优选地,所述有色金属冶炼污酸中H2SO4的浓度为3wt%~20wt%,例如3wt%、5wt%、8wt%、10wt%、12wt%、15wt%、18wt%或20wt%等。
优选地,步骤(1)所用的过滤介质为石英砂。
优选地,步骤(1)所述过滤在过滤器中进行。
优选地,步骤(1)所用的过滤器为多介质过滤器。
优选地,所述多介质过滤器中包括石英砂层,还包括无烟煤和/或活性炭层。
优选地,步骤(1)所述过滤之后还包括用精密过滤器再次过滤。
优选地,步骤(2)所得酸液中卤离子是未处理污酸中卤离子的2%以下,例如2%、1.8%、1.5%、1.2%、1.0%、0.5%、0.2%、0.1%、0.05%、0.01%或0.001%等。
优选地,步骤(2)所得富集卤离子的废水经去除F-之后分别得到含氟废渣和无氟废水。
优选地,所述去除F-的方法包括:加入沉淀剂,与F-反应得到含氟废渣和无氟废水。
优选地,所述沉淀剂包括氧化钙、CaCl2、氢氧化钙和电石渣中的任意一种或至少两种的组合。
优选地,步骤(3)去除重金属离子的方法包括铁碳微电解和/或硫化,优选先进行铁碳微电解沉积出重金属,过滤掉重金属后再将电解液进行硫化。铁碳微电解通过氧化还原、化合和沉淀等反应机理去除其中部分重金属离子。本发明巧妙利用了铁碳微电解和酸液的配合作用,电极在酸液中电极活性高,一是不至于被沉积出的重金属覆盖,同时电极与酸产生的[H]也有进一步活化电极的作用;从而提高去除重金属的效率,本发明中铁碳微电解可有效去除污酸中大部分重金属离子,其总去除率>85%,并且实现了重金属的回收;铁碳微电解之后再通过硫化去除污酸中残余的重金属,总去除率>95%。
如果不采用铁碳微电解,直接将步骤(2)所得酸液中加入硫化钠,则由于重金属初始浓度较高,需要添加的硫化剂量较多,这样会产生大量的H2S,造成操作环境恶劣,需要在密闭体系中进行。而且对重金属去除效率也较低,成本增加。
如果采用铁粉还原去除重金属代替铁碳微电解,则一方面只能去除氧化还原电位较低的重金属,对氧化活性较高的重金属Zn等去除效果不理想,另一方面铁粉本身也会与酸发生反应,因此会损耗部分酸,降低酸的回收率。
优选地,所述铁碳微电解的期间通入氧化性气体,和/或,添加氧化剂。
优选地,所述氧化性气体包括SO2和/或O3
优选地,所属氧化剂包括次氯酸钠。
优选地,所述硫化剂包括硫化钠、硫化铵、硫氢化钠和硫化亚铁中的任意一种或至少两种的组合,其中典型但非限制性的组合为:硫化钠与硫化铵的组合,硫氢化钠与硫化亚铁的组合,硫化铵、硫氢化钠与硫化亚铁的组合,硫化钠、硫化铵、硫氢化钠与硫化亚铁的组合。
优选地,所述硫化之后还包括:经戈尔膜过滤后再用离子交换法去除残余的重金属离子。
优选地,所述离子交换法采用的离子交换树脂包括对残余重金属离子具有选择吸附性的螯合树脂。
优选地,步骤(4)所述浓缩包括蒸发浓缩。
优选地,所述步骤(4)将净化稀酸浓缩后H2SO4的浓度>30wt%,例如31wt%、32wt%、35wt%、38wt%、40wt%、45wt%、50wt%、55wt%或60wt%等。
作为本发明优选的技术方案,所述有色金属冶炼污酸的资源化处理方法包括如下步骤:
(1)用过滤介质为石英砂的过滤器或多介质过滤器过滤除去污酸中的不溶杂质,用精密过滤器再次过滤,得到含有卤离子和重金属离子的酸液;
(2)将步骤(1)所得酸液采用孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜进行膜分离,得到含重金属离子和少量卤离子的酸液;所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,所述废水中加入包括氧化钙、CaCl2、氢氧化钙和电石渣中的任意一种沉淀剂或至少两种沉淀剂的组合,经去除F-之后分别得到含氟废渣和无氟废水;
(3)步骤(2)所得酸液先进行铁碳微电解,期间通入SO2和/或O3,添加氧化剂,沉积出重金属,过滤掉重金属后再将电解液中加入硫化剂进行硫化;经戈尔膜过滤后再用离子交换法去除残余的重金属离子,得到净化稀酸;
(4)将步骤(3)所得净化稀酸进行蒸发浓缩至酸浓度>30%或回用于制备聚合硫酸铁絮凝剂。
与现有技术相比,本发明至少具有如下有益效果:
1.本发明首次提出膜分离污酸的技术手段,通过选择孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜对污酸进行膜分离,实现了Cl-和F-等卤离子与SO4 2-的高选择性分离,使污酸中杂质卤离子的去除率达98%以上;且克服了蒸馏分离方法存在的能耗高、腐蚀严重、分离效率低等问题;
2.本发明提出的有色金属冶炼污酸的资源化处理方法通过合理设计工序,将物化法和膜技术进行耦合,充分发挥二者的协同作用,杂质脱除效率高,重金属的去除率大于98%,卤离子的去除率大于98%;重金属和酸的资源化回收率高,避免常规中和处理造成污酸资源浪费和产生大量含重金属的石膏渣危废造成二次污染的问题;
3.本发明提出的有色金属冶炼污酸的资源化处理方法可广泛应用于有色金属冶炼污酸的资源化处理,可大规模推广应用。
附图说明
图1为本发明实施例1中有色金属冶炼污酸的资源化处理方法的工艺流程图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。但下述的实施例仅仅是本发明的简易例子,并不代表或限制本发明的权利保护范围,本发明的保护范围以权利要求书为准。
实施例1
一种有色金属冶炼污酸的资源化处理方法,如图1所示,步骤如下:
(1)黄金湿法冶炼污酸先采用石英砂和多介质过滤器过滤,去除污酸中的悬浮或胶态杂质及微小颗粒等;其中石英砂过滤器的填料选用精制石英砂,避免污酸过滤过程中带入其他杂质;多介质过滤器的填料选用精制石英砂、无烟煤和活性炭等,不同介质在过滤器中进行分层填装,用于去除污酸中的悬浮或胶态杂质及微小颗粒等,再用精密过滤器过滤后得到含卤离子和重金属离子的酸液;
(2)步骤(1)所得酸液采用孔径分布为0.5~1nm、表面ZETA电位为-30mV的非对称膜膜分离去除污酸中的Cl-、F-等杂质阴离子,得到含重金属离子和少量卤离子的酸液,所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,废水中添加电石渣进行中和,F-离子生成的CaF2沉淀经板框过滤得到废渣,可直接外排,而残余的废液主要含氯化物,可直接外排;
(3)步骤(2)所得酸液采用铁碳微电解处理,通过氧化还原、化合和沉淀等反应机理去除其中部分重金属离子,电解期间添加次氯酸钠,通入SO2,促进污酸中As、Se等杂质的去除;过滤掉重金属后再将电解液中加入硫化钠,经戈尔膜过滤后再用对残余重金属离子具有选择吸附性的螯合树脂进行离子交换,以去除残余的重金属离子,得到净化稀酸;
(4)经离子交换法处理后的净化稀酸经蒸发浓缩到酸浓度>30%以上或更高后可直接回用。
实施例2
一种铜湿法冶炼污酸的资源化处理方法,步骤如下:
(1)污酸先采用石英砂过滤,去除污酸中的悬浮或胶态杂质及微小颗粒等;其中石英砂过滤器的填料选用精制石英砂,避免污酸过滤过程中带入其他杂质;再用精密过滤器过滤后得到含卤离子和重金属离子的酸液;
(2)步骤(1)所得酸液采用孔径分布为1~2nm、表面ZETA电位为-50mV的非对称膜膜分离去除污酸中的Cl-、F-等杂质阴离子,得到含重金属离子和少量卤离子的酸液,所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,废水中添加氧化钙进行中和,F-离子生成的CaF2沉淀经板框过滤得到废渣,可直接外排,而残余的废液主要含氯化物,可直接外排;
(3)步骤(2)所得酸液采用铁碳微电解处理,通过氧化还原、化合和沉淀等反应机理去除其中部分重金属离子,电解期间添加漂白粉,促进污酸中As、Se等杂质的去除;过滤掉重金属后再将电解液中加入硫化铵,经戈尔膜过滤后再用对残余重金属离子具有选择吸附性的螯合树脂进行离子交换,以去除残余的重金属离子,得到净化稀酸;
(4)经离子交换法处理后的净化稀酸回用于制备聚合硫酸铁用作絮凝剂。
实施例3
一种镍湿法冶炼污酸的资源化处理方法,步骤如下:
(1)污酸先采用石英砂过滤,去除污酸中的悬浮或胶态杂质及微小颗粒等;其中石英砂过滤器的填料选用精制石英砂,避免污酸过滤过程中带入其他杂质;再用精密过滤器过滤后得到含卤离子和重金属离子的酸液;
(2)步骤(1)所得酸液采用孔径分布为0.5~1nm、表面ZETA电位为-25mV的非对称膜膜分离去除污酸中的Cl-、F-等杂质阴离子,得到含重金属离子和少量卤离子的酸液,所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,废水中添加石灰乳进行中和,F-离子生成的CaF2沉淀经过滤得到废渣,可直接外排,而残余的废液主要含氯化物,可直接外排;
(3)步骤(2)所得酸液采用铁碳微电解处理,通过氧化还原、化合和沉淀等反应机理去除其中部分重金属离子,电解期间添加漂白粉,通入O3,促进污酸中As、Se等杂质的去除;过滤掉重金属后再将电解液中加入硫化铵,经戈尔膜过滤后再用对残余重金属离子具有选择吸附性的螯合树脂进行离子交换,以去除残余的重金属离子,得到净化稀酸;
(4)经离子交换法处理后的净化稀酸回用于制备聚合硫酸铁用作絮凝剂。
实施例4
一种锌湿法冶炼污酸的资源化处理方法,步骤如下:
(1)污酸先采用石英砂过滤,去除污酸中的悬浮或胶态杂质及微小颗粒等;其中石英砂过滤器的填料选用精制石英砂,避免污酸过滤过程中带入其他杂质;再用精密过滤器过滤后得到含卤离子和重金属离子的酸液;
(2)步骤(1)所得酸液采用孔径分布为1~2nm、表面ZETA电位为-40mV的非对称膜膜分离去除污酸中的Cl-、F-等杂质阴离子,得到含重金属离子和少量卤离子的酸液,所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,进行后处理;
(3)步骤(2)所得酸液采用铁碳微电解处理,通过氧化还原、化合和沉淀等反应机理去除其中部分重金属离子,电解期间添加次氯酸钠,促进污酸中As、Se等杂质的去除;过滤掉重金属后再将电解液中加入硫氢化钠,经戈尔膜过滤后再用对残余重金属离子具有选择吸附性的螯合树脂进行离子交换,以去除残余的重金属离子,得到净化稀酸;
(4)经离子交换法处理后的净化稀酸回用于制备聚合硫酸铁用作絮凝剂。
对比例1
与实施例1的区别仅在于:将非对称膜替换为对称膜,但是孔径分布和表面ZETA电位与实施例1相同。
对比例2
与实施例1的区别仅在于:将非对称膜的孔径分布替换为8~10nm。
对比例3
与实施例1的区别仅在于:将非对称膜的孔径分布替换为10~15nm。
对比例4
与实施例1的区别仅在于:将非对称膜的表面ZETA电位替换为-2mV。
对比例5
与实施例1的区别仅在于:将非对称膜的表面ZETA电位替换为-100mV。
对比例6
与实施例1的区别仅在于:调换步骤(2)和(3)的操作顺序。
各实施例所提供方法中酸的回收率(指所得硫酸摩尔量占理论占原污酸中硫酸根总量的百分比)、重金属的回收率、重金属的去除率、卤离子的去除率整理于表1。
表1
卤离子去除率 重金属去除率 重金属回收率wt% 酸回收率%
实施例1 99.5wt% 98.6wt% 87.5wt% 89.2wt%
实施例2 98.6wt% 97.8wt% 86.3wt% 88.1wt%
实施例3 99.6wt% 96.6wt% 85.7wt% 87.5wt%
实施例4 99.4wt% 95.9wt% 85.1wt% 86.4wt%
对比例1 90.4wt% 88.3wt% 81.5wt% 76.5wt%
对比例2 80.6wt% 47.8wt% 36.3wt% 43.9wt%
对比例3 80.8wt% 36.6wt% 31.7wt% 41.1wt%
对比例4 76.4wt% 45.9wt% 29.1wt% 38.9wt%
对比例5 80.2wt% 52.4wt% 41.7wt% 63.2wt%
对比例6 92.3wt% 78.3wt% 65.2wt% 70.6wt%
如表1所示,本发明克服了传统膜无法应用于分离污酸的难题,首次将特种分离膜应用于污酸除杂,且杂质卤离子的去除率大于98%,重金属的回收率大于85%,酸的回收率大于86%。步骤(2)中膜分离必须同时满足孔径为0.5~5nm、表面ZETA电位为-5~-50mV、非对称结构三个条件,当孔径分布不满足时,对阴离子的分离选择性下降,表面ZETA电位不满足-5~-50mV时,即使孔径合适结构且非对称也不能良好发挥膜表面电荷对卤离子和硫酸根离子的吸附截留作用差异,从而分离效率降低,总之三者中任一条件不在本发明限定范围内则会导致卤离子的去除率显著降低。
此外,本发明巧妙利用了铁碳微电解和酸液的配合作用,电极在酸液中电极活性高,一是不至于被沉积出的重金属覆盖,同时电极与酸产生的[H]也有进一步活化电极的作用;从而提高去除重金属的效率,本发明中铁碳微电解可有效去除污酸中大部分重金属离子,并且实现了重金属的回收,回收率为85wt%以上;铁碳微电解之后再通过硫化去除污酸中残余的重金属,使得本发明总重金属去除率>95%。如果调换步骤(2)与步骤(3)的工序,去除重金属离子的过程会给污酸带入其他杂质,从而对膜造成污染,杂质阴离子的去除率明显下降,重金属的去除率和回收率随之下降。
因此,本发明所述方法的污酸高效资源化效果是通过合理设计工序,物化法和膜技术充分发挥协同作用的结果。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (23)

1.一种有色金属冶炼污酸的资源化处理方法,其特征在于,包括如下步骤:
(1)过滤除去污酸中的不溶杂质,得到含有卤离子和重金属离子的酸液;
(2)采用孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜将步骤(1)所得酸液进行膜分离,得到含重金属离子和少量卤离子的酸液,同时得到富集卤离子的废水;
其中,所得酸液中卤离子是未处理污酸中卤离子的2%以下;
(3)去除步骤(2)所得酸液中的重金属离子,得到净化稀酸;
(4)将步骤(3)所得净化稀酸进行浓缩或回用于制备聚合硫酸铁絮凝剂。
2.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述有色金属冶炼污酸包括有色金属冶炼制酸时所产生的稀酸废水。
3.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述有色金属包括金、铜、镍、铅和锌中的任意一种。
4.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述有色金属冶炼污酸中H2SO4的浓度为3wt%~20wt%。
5.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(1)所用的过滤介质为石英砂。
6.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(1)所述过滤在过滤器中进行。
7.如权利要求6所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(1)所用的过滤器为多介质过滤器。
8.如权利要求7所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述多介质过滤器中包括石英砂层,还包括无烟煤和/或活性炭层。
9.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(1)所述过滤之后还包括用精密过滤器再次过滤。
10.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(2)所得富集卤离子的废水经去除F-之后分别得到含氟废渣和无氟废水。
11.如权利要求10所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述去除F-的方法包括:加入沉淀剂,与F-反应得到含氟废渣和无氟废水。
12.如权利要求11所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述沉淀剂包括氧化钙、CaCl2、氢氧化钙和电石渣中的任意一种或至少两种的组合。
13.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(3)去除重金属离子的方法包括铁碳微电解和/或硫化。
14.如权利要求13所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(3)去除重金属离子的方法先进行铁碳微电解沉积出重金属,过滤掉重金属后再将电解液进行硫化。
15.如权利要求14所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述铁碳微电解的期间通入氧化性气体,和/或,添加氧化剂。
16.如权利要求15所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述氧化性气体包括SO2和/或O3
17.如权利要求15所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所属氧化剂包括次氯酸钠。
18.如权利要求14所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述硫化剂包括硫化钠、硫化铵、硫氢化钠和硫化亚铁中的任意一种或至少两种的组合。
19.如权利要求14所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述硫化之后还包括:经戈尔膜过滤后再用离子交换法去除残余的重金属离子。
20.如权利要求19所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述离子交换法采用的离子交换树脂包括对残余重金属离子具有选择吸附性的螯合树脂。
21.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,步骤(4)所述浓缩包括蒸发浓缩。
22.如权利要求1所述的有色金属冶炼污酸的资源化处理方法,其特征在于,所述步骤(4)将净化稀酸浓缩后H2SO4的浓度>30wt%。
23.如权利要求1~22任一项所述的有色金属冶炼污酸的资源化处理方法,其特征在于,包括如下步骤:
(1)用过滤介质为石英砂的过滤器或多介质过滤器过滤除去污酸中的不溶杂质,用精密过滤器再次过滤,得到含有卤离子和重金属离子的酸液;
(2)采用孔径为0.5~5nm、表面ZETA电位为-5~-50mV的非对称膜将步骤(1)所得酸液进行膜分离,得到含重金属离子和少量卤离子的酸液;所得酸液中卤离子是未处理污酸中卤离子的2%以下;同时得到富集卤离子的废水,所述废水中加入包括氧化钙、CaCl2、氢氧化钙和电石渣中的任意一种沉淀剂或至少两种沉淀剂的组合,经去除F-之后分别得到含氟废渣和无氟废水;
(3)步骤(2)所得酸液先进行铁碳微电解,期间通入SO2和/或O3,添加氧化剂,沉积出重金属,过滤掉重金属后再将电解液中加入硫化剂进行硫化;经戈尔膜过滤后再用离子交换法去除残余的重金属离子,得到净化稀酸;
(4)将步骤(3)所得净化稀酸进行蒸发浓缩至酸浓度>30%或回用于制备聚合硫酸铁絮凝剂。
CN201810636175.XA 2018-06-20 2018-06-20 一种有色金属冶炼污酸的资源化处理方法 Active CN110615570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810636175.XA CN110615570B (zh) 2018-06-20 2018-06-20 一种有色金属冶炼污酸的资源化处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810636175.XA CN110615570B (zh) 2018-06-20 2018-06-20 一种有色金属冶炼污酸的资源化处理方法

Publications (2)

Publication Number Publication Date
CN110615570A CN110615570A (zh) 2019-12-27
CN110615570B true CN110615570B (zh) 2020-11-10

Family

ID=68920804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810636175.XA Active CN110615570B (zh) 2018-06-20 2018-06-20 一种有色金属冶炼污酸的资源化处理方法

Country Status (1)

Country Link
CN (1) CN110615570B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113149310A (zh) * 2021-03-26 2021-07-23 张加余 一种冶炼废水处理再利用的方法
CN114455771B (zh) * 2022-03-18 2022-09-20 北京中科瑞升资源环境技术有限公司 污酸的处理系统和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560031B1 (en) * 2005-12-14 2009-07-14 Dr. Phosphate, Inc. Process for treating pond water
CN103553248A (zh) * 2013-10-23 2014-02-05 中南大学 重金属污酸废水资源化回收方法及装置
CN104386654A (zh) * 2014-11-17 2015-03-04 云南华联锌铟股份有限公司 一种硫化矿焙烧烟气制酸系统污酸的处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560031B1 (en) * 2005-12-14 2009-07-14 Dr. Phosphate, Inc. Process for treating pond water
CN103553248A (zh) * 2013-10-23 2014-02-05 中南大学 重金属污酸废水资源化回收方法及装置
CN104386654A (zh) * 2014-11-17 2015-03-04 云南华联锌铟股份有限公司 一种硫化矿焙烧烟气制酸系统污酸的处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis;Hui-Fang Xiao et al;《Journal of Membrane Science》;20170504;第537卷;第111-118页 *

Also Published As

Publication number Publication date
CN110615570A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN102765831B (zh) 一种含重金属及砷的废水净化方法
JP3842907B2 (ja) 金属含有排水の処理および有価金属の回収方法
EP1955980A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
JP5261950B2 (ja) セレン含有排水の処理方法及び処理装置
CN109081409B (zh) 一种选冶联合清洁处理污酸的方法
CN111003834B (zh) 一种污酸中除砷除氯的方法
CN110615570B (zh) 一种有色金属冶炼污酸的资源化处理方法
CN102642953A (zh) 一种高盐度含重金属生产污水的化处理方法
CN102775197A (zh) 利用线路板退锡废液沉锡后的母液制备肥料级硝酸铵浓缩液的方法
CN110775998A (zh) 一种工业化回收锌生产纳米氧化锌的系统及方法
CN111302525B (zh) 一种冶炼烟气洗涤废水资源化治理方法
CN1108885C (zh) 一种电镀污泥的资源化及无害化处理工艺
CN112897730A (zh) 一种对高砷高氟污酸处理回用系统及处理回用方法
JP3945216B2 (ja) 廃酸石膏製造方法
CN112079478A (zh) 一种从硫酸盐处理液脱除氟及重金属的方法
CN111542499B (zh) 废水的处理方法
Liang et al. A novel Fe recycling method from pickling wastewater producing a KFeS 2 whisker for electroplating wastewater treatment
JP3813052B2 (ja) 重金属等を含有する飛灰の処理方法
CN106396164A (zh) 一种工业酸性废水处理工艺
JP4261857B2 (ja) 金属含有排水中の有価金属の回収方法および利用方法
JP6213044B2 (ja) セレン含有水の処理方法及び処理装置
CN114084904A (zh) 一种铜电解液净化与污酸协同资源化处理的方法
CN111661971A (zh) 一种铅锌冶炼烟气洗涤高浓度污酸零排放工艺
CN217437965U (zh) 一种脱硫废水的处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220207

Address after: 100190 No. two, No. 1, North Haidian District, Beijing, Zhongguancun

Patentee after: Institute of Process Engineering, Chinese Academy of Sciences

Patentee after: Handan Iron and Steel Group Co., Ltd

Address before: 100190 north two street, Zhongguancun, Haidian District, Beijing, 1

Patentee before: Institute of Process Engineering, Chinese Academy of Sciences

TR01 Transfer of patent right