JP5261950B2 - セレン含有排水の処理方法及び処理装置 - Google Patents

セレン含有排水の処理方法及び処理装置 Download PDF

Info

Publication number
JP5261950B2
JP5261950B2 JP2007060334A JP2007060334A JP5261950B2 JP 5261950 B2 JP5261950 B2 JP 5261950B2 JP 2007060334 A JP2007060334 A JP 2007060334A JP 2007060334 A JP2007060334 A JP 2007060334A JP 5261950 B2 JP5261950 B2 JP 5261950B2
Authority
JP
Japan
Prior art keywords
selenium
metal
containing wastewater
aluminum
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007060334A
Other languages
English (en)
Other versions
JP2008030020A (ja
Inventor
良弘 恵藤
裕之 朝田
有 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2007060334A priority Critical patent/JP5261950B2/ja
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to US12/308,270 priority patent/US8182697B2/en
Priority to EP07767781.3A priority patent/EP2036866B1/en
Priority to CN2007800252443A priority patent/CN101484392B/zh
Priority to KR1020087032001A priority patent/KR101323943B1/ko
Priority to PCT/JP2007/062987 priority patent/WO2008004488A1/ja
Priority to TW096124139A priority patent/TWI418521B/zh
Publication of JP2008030020A publication Critical patent/JP2008030020A/ja
Application granted granted Critical
Publication of JP5261950B2 publication Critical patent/JP5261950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • C02F11/145Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances using calcium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/106Selenium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/108Boron compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/902Materials removed
    • Y10S210/911Cumulative poison

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、セレン含有排水の処理方法及び処理装置に係り、さらに詳しくは、セレン含有排水を金属チタンと他の金属との合金又は混合物を用いて還元処理して、効果的にセレンを除去することができるセレン含有排水の処理方法及び処理装置に関する。
石炭火力発電所の排煙脱硫排水や非鉄金属精錬工場排水にはセレンを含有する場合がある。排水中にセレンが高濃度で含有されることはまれであるが、数mg/L程度のセレン濃度であっても、環境保全のために、排水中からセレンを除去する必要がある。
従来、セレン含有排水のセレンを除去する方法として、2価鉄を用いる方法、金属鉄を用いる方法、アルミニウム塩または金属アルミニウムを用いる方法などが知られている。
2価鉄を用いる方法は、セレン含有排水に酸と2価鉄との塩を添加し、pHを8.5〜10に調整して反応させたのち固液分離する(たとえば、特許文献1)。
金属鉄を用いる方法は、セレン含有排水をpH5以下に調整して金属鉄と接触させてセレンを還元した後、凝集処理および固液分離する(特許文献2)。
金属アルミニウムを用いる方法は、セレン含有排水にpH6以下に調整して銅イオンか鉄イオンを溶存させ、次いで金属例えば金属鉄、金属アルミニウムを添加してORPを−350mV以下にし、その後pH8〜10に調整して固液分離する(特許文献3)。
しかし、2価鉄または金属鉄を用いる方法では、分離した汚泥が着色しているので、汚泥処分に制限があり、また、金属アルミニウムを用いる方法では、排水を酸性に調整して金属アルミニウムと接触させてもアルミニウムの溶出は容易でなく、期待するほど還元効果は得られない。
特開平6−79286号公報 特開平9−187778号公報 特開平8−224585号公報
本発明は、金属を用いてセレンを還元処理する際に、必要な金属の溶出量を得ることができ、それによってセレンを安定して、確実に還元し、除去できるセレン含有排水の処理方法および処理装置を提供することを目的とする。また、本発明は、その一態様において、汚泥が発生する場合に、汚泥が白色であるようにすることができるセレン含有排水の処理方法および処理装置を提供することを目的とする。
本発明(請求項1)のセレン含有排水の処理方法は、セレン含有排水を、金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させることによりセレンを還元するセレン含有排水の処理方法であって、前記他の金属は、アルミニウム、亜鉛及びスズより選ばれる少なくとも1種であることを特徴とするものである。
請求項2のセレン含有排水の処理方法は、請求項1において、セレン含有排水を金属チタンと他の金属との合金又は混合物と接触させる際に、セレン含有排水に酸を添加することを特徴とする。
請求項3のセレン含有排水の処理方法は、請求項1又は2において、セレンを還元した後、溶出した金属をpH調整して析出させ、析出した金属を固液分離することを特徴とする。
請求項のセレン含有排水の処理方法は、請求項1ないしのいずれか1項において、セレンの少なくとも一部が、6価セレンであることを特徴とする。
請求項のセレン含有排水の処理方法は、請求項1ないしのいずれか1項において、セレン含有排水は、排煙脱硫排水であることを特徴とする。
請求項のセレン含有排水の処理方法は、請求項1ないしのいずれか1項において、セレン含有排水がフッ素又は/及びホウ素を含有するとともに、前記他の金属がアルミニウムであることを特徴とする。
請求項のセレン含有排水の処理方法は、請求項1ないしのいずれか1項において、前記他の金属がアルミニウムであり、金属チタンの容積Tとアルミニウムの容積Aとの比T/Aが1/3〜3/1であることを特徴とする。
請求項のセレン含有排水の処理装置は、金属チタンと他の金属との合金又は混合物が存在し、セレン含有排水が導入される還元反応器であって、該他の金属は、アルミニウム、亜鉛及びスズより選ばれる少なくとも1種であり、該セレン含有排水を、該金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させることにより該排水中のセレンを還元処理する還元反応器を有することを特徴とする。
請求項9のセレン含有排水の処理装置は、請求項8において、前記還元反応器と、該還元反応器から流出する還元処理水が導入される凝集反応槽と、凝集反応槽のpHを調整するpH調整剤添加手段と、凝集反応処理水を固液分離する固液分離装置とを有することを特徴とする。
請求項10のセレン含有排水の処理装置は、請求項8又は9において、前記他の金属がアルミニウムであり、金属チタンの容積Tとアルミニウムの容積Aとの比T/Aが1/3〜3/1であることを特徴とする。
本発明のセレン含有排水の処理方法及び装置によれば、金属チタンと金属チタン以外の他の金属との合金又は混合物と排水とを接触させるので、他の金属単独又は金属チタン単独の場合に比べて還元能力が向上し、少量の金属溶出量でセレンを還元処理できる。特に、6価セレンを含む排水の処理に有効であり、セレンは0価まで還元されて合金又は混合物の金属表面に析出し、あるいは4価以下の低価のセレンに還元されて析出し易い形態になる。
請求項2によれば、酸の添加により、金属チタンと共存する他の金属の溶出が促進され、セレン還元に必要な金属溶出量を得ることができる。
請求項3によれば、還元処理水を、溶出金属が析出するようにpH調整し、次いで固液分離することにより、金属が析出する際、還元処理水中に残留する低価のセレンの一部が金属と共沈現象で析出し、固液分離によって処理水から分離されて、セレン及び金属が除去された処理水を得ることができる。
本発明によれば、金属チタンとともに共存する金属として、アルミニウム、亜鉛又はスズを用いるので、所望の金属溶出量を得ることができる。また、溶出後pH調整して生成した汚泥は、鉄の場合の着色汚泥ではなく、白色であり、石灰石膏法で排煙脱硫を行っている事業場では、回収石膏と混合して汚泥を回収できる。
請求項によれば、セレン含有排水のセレンとして6価セレンを含有するが、十分な金属溶出量を得ることができ、還元力が高いので、6価セレンを還元することができる。6価セレンは、2価鉄塩、ヒドラジンなど通常の還元剤では低価のセレンへの還元は容易でないが、本発明によれば6価セレンも還元可能である。
請求項によれば、排煙脱硫排水の処理を本発明によって効果的に行うことができる。排煙脱硫排水にはセレンが含有されるが、本発明によって還元除去される。そして、請求項のように、他の金属としてアルミニウム、亜鉛又はスズを使用すれば生成する汚泥は白色のものとなり、排煙脱硫排水が発生する排煙脱硫装置において多量に発生する石膏と混合することが可能となり、汚泥処理が軽減できる。
請求項によれば、セレン含有排水にフッ素及び/又はホウ素が共存している場合、溶出アルミニウムでセレンを還元するとともに、溶出アルミニウムの析出にともない、セレンもフッ素もホウ素も同時に不溶化できる。したがって、フッ素除去、ホウ素除去のために別途水処理装置を設けなくてもよい。
請求項及び10によると、セレンを十分に除去することができる。
なお、本発明(請求項8,9)のセレン含有排水の処理装置によれば、金属チタンと金属チタン以外の他の金属との合金又は混合物に排水を接触させるので、他の金属単独又は金属チタン単独の場合に比べて還元能力が向上し、少量の金属溶出量でセレンを還元処理できる。特に、6価セレンを含む排水の処理に有効であり、セレンは0価まで還元されて合金又は混合物の金属表面に析出し、あるいは4価以下の低価のセレンに還元されて析出し易い形態になる。そして、還元処理水を、溶出金属が析出するようにpH調整し、次いで固液分離することにより、金属が析出する際、還元処理水中に残留する低価のセレンの一部が金属と共沈現象で析出し、固液分離によって処理水から分離されて、セレン及び金属が除去された処理水を得ることができる。
以下に本発明のセレン含有排水の処理方法および処理装置の実施の形態を詳細に説明する。
本発明において処理対象となるセレン含有排水は、セレンとしてセレン酸のような6価セレン、亜セレン酸のような4価セレンを含むものであり、例えば、非鉄金属の精錬工程からの精錬排水、石炭燃焼ガスの排煙脱硫工程からの排煙脱硫排水、セレンを原材料、添加材として使用する工場からの各種工場排水などがあげられる。
また、セレン含有排水はフッ素及び/又はホウ素を含有していてもよく、このような排水として排煙脱硫排水が例示できる。
本発明においては、セレン含有排水を、金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させることによりセレンを還元する。還元されたセレンは大部分金属表面に析出するので還元処理水を処理水とすることもできるが、必要に応じ、還元処理後、pH調整して溶出金属を析出させ、固液分離して析出金属を除去し、処理水とする。
この還元処理では、金属チタンと、金属チタン以外の他の金属との合金又は混合物を使用する。金属チタンと合金化又は混合する金属は、各種の金属を使用できるが、金属溶出後のpH調整により生成する水酸化物からなる汚泥が白色を呈する金属であることが好ましい。汚泥が白色であると、褐色などに着色している場合に比べて、汚泥の処分が容易である。白色の汚泥を生成する金属としては、アルミニウム、亜鉛、スズ、銅などがあり、使用できる。特に、アルミニウム、亜鉛、スズは溶解性の面でも優れており、本発明では好適に使用できる。金属チタン以外の他の金属としては、1種金属のみでもよいが、2種以上の複数金属の混合又は合金であってもよい。
本発明で使用する金属チタンと他の金属との合金は、固溶体、金属間化合物、共有合金のいずれをも使用できる。合金化方法としては、例えば、金属のイオン化傾向の差を利用する方法、電解法、溶融法などを採用することができる。
また、本発明では、金属チタンと他の金属とを、合金化しないで、混合物として使用することもできる。粉状物、粒状物、繊維状物などの形態の金属チタンと、粉状物、粒状物、繊維状物などの形態の他の金属とを、同種の形態を混合して、または、異種の形態を混合して混合物とすることができる。
チタンと他の金属との合金または混合物の形状は、表面積が大きいものであることが好ましい。例えば、粒径10μm〜5mm程度の粉状物、粒状物、繊維状物、微細薄膜などとして使用する。
セレン含有排水を、チタンと他の金属との合金又は混合物と接触させる方法に制限はなく、任意の形式の還元反応器で接触させることができる。還元反応器として、例えば、反応槽にセレン含有排水を導入するとともに粉状、細粒状の合金又は混合物を添加するようにした還元反応槽であってもよく、粒状、繊維状などの合金又は混合物を充填し、充填層に排水を通水する充填塔であってもよい。
セレン含有排水を金属チタンと他の金属との合金又は混合物と接触させると、排水中に他の金属が溶出し、溶解する。金属が溶出してイオンになる際に、強い還元作用が生じ、排水中のセレンは還元される。この金属の溶出は中性では長時間を要するために、セレン含有排水に酸を添加して金属の溶出を促進することが好ましい。添加する酸としては、例えば、塩酸、硫酸などを挙げることができる。酸の添加量は、溶出させる金属の量に応じて設定することが好ましい。金属の溶出量は概ね酸の添加量と比例関係にあり、予め実験によって求めた関係式により、酸の添加量を定めることができる。また、金属の溶出量は、還元処理すべき6価セレン濃度に応じて設定することができる。
セレン含有排水中に溶出したセレン以外の金属、例えば、アルミニウム、亜鉛は、セレン酸イオンと下式のように反応して、セレンを還元すると考えられる。
2Al+SeO 2−+8H→2Al3++Se+4H
3Zn+SeO 2−+8H→3Zn2++Se+4H
本発明において金属チタンと他の金属との合金化又は混合による共存状態下で排水と接触させると、金属チタンまたは他の金属の単独接触による処理に比べ、大幅にセレン還元処理性能が向上する。その理由として、アルミニウム、亜鉛などのチタン以外の金属が溶解して、酸が存在してもほとんど溶解しないチタンを通して電子が移動し、チタン表面でセレンが還元される。その際に何らかの電気的効果が発現している可能性が考えられる。
金属チタンの容積Tと他の金属の容積Mとの比T/Mは、1/3以上、特に1/2以上であることが好ましい。この比T/Mが1/3以上であるとセレン還元処理性能が良好になる。この理由は、金属チタンの割合が高いため、他の金属の溶解の際に生じた電子が金属チタンの表面に移動する量が増加し、該金属チタンの表面で還元されるセレンの量が増加するためであると考えられる。これに対し、この比T/Mが1/3未満であると、金属チタンの割合が低いため、他の金属の溶解の際に生じた電子のうち、該他の金属の表面で放出されてしまう電子の量が増加すると共に、金属チタン表面まで移動してセレンの還元に寄与する電子の量が減少するために、セレン還元処理性能が低下するものと考えられる。
なお、他の金属の充填容量を一定とし、かつこの比T/Mを大きくする場合、良好な還元処理性能が維持されるものの、多量の金属チタンが必要になると共に、これら他の金属及び金属チタンを充填する装置の容積を大きくする必要がある。このため、この比T/Mは3/1以下、特に1/1以下であることが好ましい。より好ましくは、この比T/Mは1/3〜3/1、特に1/2〜1/1である。
本発明では、他の金属はアルミニウムが好適である。また、金属チタンの容積をTとし、アルミニウムの容積をAとした場合、T/Aが1/3〜3/1特に1/2〜2/1であると、きわめて効率よくセレンを除去することができる。
還元されたセレン、例えば、6価セレンは大部分が0価のセレンとなり、合金又は混合物のチタン表面に析出して、排水から除去される。残余のセレンは6価から低価数例えば、4価のセレンに還元され、凝集処理により沈殿しやすい形態となる。
本発明においては、セレン含有排水を還元処理後、還元処理水を凝集処理するのが好ましい。凝集処理は、還元処理水のpHを調整して、溶出した金属を水酸化物などの不溶性化合物として析出させ、析出した金属化合物を固液分離することによって行われる。
還元処理水のpH調整は、通常、水酸化ナトリウム、水酸化カリウム、消石灰などのアルカリを添加しておこなう。金属チタンとともに使用した金属がアルミニウムのときは、還元処理水にアルカリを添加し、溶解アルミニウムを水酸化アルミニウムとして析出させる。アルカリの添加によりpHを5〜8に調整するのがよく、pH4以下またはpH9以上では水酸化アルミニウムは溶解するので、不適である。金属チタンとともに使用した金属が亜鉛のときはpHを9〜10、スズのときは8前後にpH調整することにより、水酸化物として析出する。
pH調整によって金属化合物を析出させる際、有機凝集剤、無機凝集剤を添加し、固液分離性を向上させることができる。
析出した金属化合物を水中から分離するために、固液分離操作を行う。固液分離は、通常用いられる任意の方法を採用でき、沈殿、濾過、遠心分離、膜分離などにより、処理水と不溶性金属化合物からなる汚泥とに分離する。
還元処理水のpH調整、固液分離により、還元処理時に溶出した金属が不溶化され、水中から分離され、金属を含まない処理水として排出することができる。また、この溶出金属が不溶性化合物、例えば、水酸化アルミニウムとして析出する際、水中に残留する還元された低価のセレンも水酸化アルミニウムのフロックに吸着され、共沈現象により析出する。
また、セレン含有排水にフッ素及び又はホウ素が共存している場合、金属チタンとともに使用する金属としてアルミニウムを採用すると、還元処理後、pH調整により水酸化アルミニウムが析出する際、フッ素及び/又はホウ素も共沈現象により析出する。
本発明において、溶解アルミニウムを析出させる別の好ましい方法は、アルミン酸カルシウムとして析出させる方法であり、還元処理水にカルシウム化合物を添加し、pH9以上に調整して凝集処理する。添加するカルシウム化合物としては、たとえば、水酸化カルシウム、酸化カルシウム、塩化カルシウムがある。水酸化カルシウムを用いると、カルシウム源になるとともにpH調整のアルカリとしても働き、好ましい。他のカルシウム化合物を用いるときは、任意のアルカリを添加し、pH調整する。pHは9以上、好ましくは9〜12に調整する。pHが9より低いとアルミン酸カルシウムの生成が困難である。
このようにして、溶解アルミニウムがアルミン酸カルシウムとして析出する際、水中の還元された低価のセレンもアルミン酸カルシウムのフロックに吸着され、共沈現象により析出する。
この凝集沈殿では、次の反応が行われていると想定される。
2Al(OH)+Ca(OH)+Se→CaAl・Se↓+4H
アルミン酸カルシウムとの共沈によるセレン除去は、水酸化アルミニウムによる場合よりセレン除去効果が優れている。この理由は明らかでないが、還元が不十分なセレンもアルミン酸カルシウムにより除去されているものと推定する。
加えて、セレン含有排水にフッ素やホウ素が含まれている場合、アルミン酸カルシウムが析出する際、フッ素もホウ素も同時に析出する。このため、セレンと共にフッ素およびホウ素を含有する排水、例えば、排煙脱硫排水にアルミン酸カルシウムによる析出方法を適用することは、極めて好ましい。
本発明において、還元処理、pH調整による金属析出、固液分離の工程を経て、処理水と、析出した金属化合物、セレン、場合により、フッ素、ホウ素を含有する汚泥とに分離する。金属チタンとともに使用する金属を選択することにより、固液分離して生じた汚泥は、白色であるので、排煙脱硫装置で発生する石膏と混合して、回収することができ、汚泥処分が軽減される。
以下に、本発明のセレン含有排水の処理装置について説明する。
図1に、本発明のセレン含有排水の処理装置の実施の形態の一例を示す。符号1は還元反応器、2は凝集反応槽、3は固液分離装置であり、4は還元反応器にセレン含有排水を導入するための排水供給管、5は酸添加装置、6はpH調整剤添加手段である。
還元反応器1は内部に金属チタンと他の金属との合金又は混合物を充填した充填塔であり、塔内の下方部に支持板が配置され、支持板上に前記合金又は混合物の粒子が充填され、金属充填層11が形成されている。支持板は、水の流通は可能であるが、金属粒子の通過は阻止される構造であり、多孔板やストレーナーが用いられる。前述の通り、好ましくは、他の金属がアルミニウムであり、金属チタンとアルミニウムとの容積比T/Aが1/3〜3/1特に1/2〜2/1である。
支持板の下方は排水流入室12であり、該排水流入室12には排水供給管4が開口している。金属充填層11の上方は還元処理水室であり、還元処理水を次段へ移送する管路が開口している。充填層の上表面付近に上部支持板を設けてもよい。
酸添加装置5は排水供給管4に接続されており、排水への酸の注入が可能となっている。なお、酸添加装置は、排水供給管4ではなく排水流入室12に酸を添加するように設けられてもよい。
還元反応器1は、反応器内で生じる還元反応を還元雰囲気下で行わせることができるようにするために、大気遮断可能な反応容器とすることが好ましい。
還元反応器1には、任意の位置、たとえば、反応器の上部壁に開閉可能な、金属合金又は混合物の投入口が設けられ、随時金属を反応器内に充填可能とされている。
還元反応器1または排水供給管4の排水を加温するための加熱手段を配置しておくことが好ましい。たとえば、蒸気注入管、加温ジャケットまたはヒーターを任意の位置に設けるか、熱交換器を排水供給管に設けることができる。
凝集反応槽2は通常用いられる凝集反応槽でよい。この凝集反応槽2には、還元反応器1から流出する還元処理水を導入する管路や、pH調整剤を導入するpH調整剤添加手段6が連絡している。反応槽2内には、均一な凝集反応が生じるように撹拌装置が設けられている。反応槽2には、凝集処理水を固液分離装置3へ移送する管路が接続されている。
固液分離装置3には、固液分離によって生成した処理水を排出する処理水管と、分離汚泥を排出する汚泥排出路とが接続されている。図1に示した固液分離装置3は沈殿槽であるが、膜分離装置などその他の固液分離装置を用いてもよい。
図示していないが、反応槽2と固液分離装置との間に第2の凝集反応槽を設け、第2の凝集反応槽に高分子凝集剤を添加して、凝集反応槽2で生成した微細な凝集フロックを粗大化させてもよい。
このように構成された図1の処理装置によるセレン含有排水の処理方法について次に説明する。なお、この説明では、金属充填層11は、還元反応器1内に、粒状金属チタンと粒状金属アルミニウムとの混合物を充填したものとする。
セレン含有排水は、酸添加装置5から酸が注入、混合された後、排水供給管4を介して還元反応器1に導入される。セレン含有排水に濁質、セレン以外の重金属、有機物などの汚染物質を含有する場合には、還元反応器に導入される前に、あらかじめ排水を、たとえば、凝集装置、濾過装置、膜分離装置、活性炭吸着装置などの前処理装置(図示せず)に通水して、共存汚染物質を除去しておくことが望ましい。
還元反応器1の排水流入室12に導入された排水は、反応器1内を上向流となって流れ、金属充填層11と接触する。この際、排水に注入された酸が金属アルミニウムの溶解を促進する。金属アルミニウムは存在する酸の量に応じてアルミニウムの溶出が円滑に行われ、この溶出時に還元力が発生する。アルミニウム溶出時の還元力によって排水中のセレン、特に6価セレンは還元される。還元されたセレンは4価ないし0価まで還元される。還元された0価セレンの大部分は金属充填層11の金属チタン表面に析出していると推定される。
なお、反応温度、通水速度は特に制限はないが、温度が高いほど、通水速度が遅いほど処理水中のセレン濃度は低下する。このため、排水の温度を50〜70℃程度に加温することが望ましく、また、通水速度をSV1〜30(1/h)とするのが好ましい。
還元されたセレンの一部を含む還元処理水は、還元反応器1上部の還元処理水室から管路を経て凝集反応槽2へ移送される。凝集反応槽2に導入された還元処理水に、pH調整剤添加手段6からアルカリが供給され、撹拌混合される。アルカリの供給によって排水pHが5〜8に調整されると、溶解アルミニウムは水酸化アルミニウムとなって析出し、その際排水中のセレンを吸着、共沈して、セレンを不溶性化する。加えて、セレン含有排水にフッ素が共存していると、溶解アルミニウムがフッ素とも反応し、フッ素を不溶化し、水酸化フロックとともに析出する。
凝集反応槽2で凝集処理された凝集処理水は、好ましくは、高分子凝集剤によるフロックの粗大化を図った後、管路から固液分離装置3へ移送される。固液分離装置3である沈殿槽では、不溶化され、析出したアルミニウム化合物と共沈したセレンは、沈殿し、沈殿槽3底部の汚泥排出路から汚泥として排出され、沈殿槽上部の上澄水は処理水として処理水管から取り出される。処理水は必要に応じてpH調整、残留懸濁物の除去、残留CODの除去などの後処理を受けたのち、放流または回収される。
一方、分離された汚泥は、脱水機による脱水処理を受けた後、処分される。本発明で発生した汚泥は、他の金属としてアルミニウム、亜鉛、スズなどを用いた場合、白色であり、排煙脱硫装置において発生する排煙脱硫装置で発生する石膏スラリーと、分離された汚泥とを混合して、脱水機で脱水することにより回収することができ、汚泥処分が軽減される。
以下に、実施例および比較例をあげて本発明を説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。
実施例1〜3
セレン酸ナトリウム(NaSeO)及び無水硫酸ナトリウムを、超純水で各々Se(VI)として1mg/L程度及びSOとして1000mg/L程度となるように溶解して合成排水を調製した。また、粒径2〜5mm、純度99%以上の金属チタン25mL(36g)と、粒径1〜2mm、純度99.5%の金属アルミニウム50mL(87g)とを均一に混合した金属混合物(表1中では、Al/Tiと表示する。)を調製し、内径25mmのガラスカラムに充填した。前述の合成排水に添加量を変化させて塩酸を添加し、このガラスカラムに、60℃に加温しながらSV5(1/h)の流速で通水し、還元処理した。次いで、カラム出口水に水酸化ナトリウムを添加してpH7前後に調整し、10分間反応後、No.5C濾紙にて濾過した。カラム出口水および濾過水の水質を測定し、その結果を実施例1〜3として表1に示した。この金属混合物の金属チタンと金属アルミニウムとの容積比T/Aは1/2である。
実施例4〜6
実施例1〜3で用いた金属混合物の代わりに、粒径2〜5mm、純度99%以上の金属チタン25mL(36g)と、粒径1〜2mm、純度99.5%の金属亜鉛50mL(181g)とを均一に混合した金属混合物(以下、Zn/Tiと表示する)を用い、還元処理後のpHを10に調整した以外は、実施例1〜3と同様にして試験を行った。その結果を表1に示す。
比較例1、2
ガラスカラムに充填する金属として、粒径1〜2mm、純度99.5%の金属アルミニウムを用いたこと以外は実施例1〜3と同様にして試験を行った。その結果を表1に示す。
比較例3、4
ガラスカラムに充填する金属として、粒径1〜2mm、純度99.5%の金属亜鉛を用いたこと以外は実施例4〜6と同様にして試験を行った。その結果を表1に示す。
比較例5、6
ガラスカラムに充填する金属として、粒径2〜5mm、純度99%以上の金属チタンを用いたこと以外は実施例4〜6と同様にして試験を行った。その結果を表1に示す。
Figure 0005261950
なお、実施例1−6、比較例1−6の処理水のAl濃度、亜鉛濃度は、いずれも1mg/L以下であり、また、チタン濃度はいずれも0.1mg/L以下であった。
表1に見られるように、6価セレンを含有する合成排水を、金属チタンと他の金属(アルミニウム、亜鉛)との混合物と接触させた実施例においては、処理水中のセレン濃度が低く、カラム出口水中のアルミニウム、亜鉛濃度も低い。これに対して、アルミニウム、亜鉛、チタンの各金属を単独で使用した比較例では、カラム出口水中の金属濃度が高いにもかかわらず、処理水中のセレン濃度が高い(比較例1〜3,5,6)。即ち、実施例1〜6では、少量の金属溶出量でセレン濃度を低減することができる。
実施例7
塩化スズ(SnCl・2HO)21.8gを希塩酸(超純水300mLに濃塩酸17mLを加えた液)に溶解した。この溶液を、粒径1〜2mm、純度99.5%の金属アルミニウム87g(50mL)に攪拌しながら添加し、アルミニウム粒子表面に金属スズを析出させた。このAl−Sn系粒子を調製した。このAl−Sn系粒子と、粒径2〜5mm、純度99%以上の金属チタン36g(25mL)とを均一に混合し、ガラスカラムに充填した。セレンを1.09mg/L含む排煙脱硫排水に塩酸を300mg/L添加した排水を、60℃に加温しながら、このカラムにSV5(1/h)の流速で通水した。このカラム出口水に水酸化ナトリウムを添加してpH7前後に調整し、10分間反応後、No.5C濾紙にて濾過した。
その結果、処理水中のセレン濃度は0.32mg/Lであった。カラム出口水中のアルミニウム濃度は59.3mg/Lであった。
比較例7
実施例7と同じAl−Sn合金のみをガラスカラムに充填した以外は、実施例7と同じ条件で通水した。その結果、処理水中のセレン濃度は0.61mg/Lと、実施例7の約2倍の高い濃度であった。カラム出口水中のアルミニウム濃度は60.0mg/Lであった。
実施例8
実施例1と同じAl/Ti混合金属をガラスカラムに充填した。セレン1.16mg/L、フッ素30.2mg/Lを含む排煙脱硫排水に塩酸を900mg/L添加し、60℃に加温しながらこのカラムにSV5(1/h)の流速で通水した。このカラム出口水に水酸化ナトリウムを添加してpH7前後に調整し、10分間反応後、No.5C濾紙にて濾過した。
その結果、処理水中のセレン濃度は0.01mg/L以下、フッ素濃度は5.6mg/Lであった。発生した汚泥は白色であり、排煙脱硫装置で発生する石膏と同色であった。なお、カラム出口水のAl濃度は218mg/Lであったが、処理水のAl濃度は1mg/L以下であった。
実施例9
粒径2〜5mm、純度99%以上の金属チタン12.5ml(18.0g)と、粒径1〜2mm、純度99.5%の金属アルミニウム50ml(87.0g)とを混合し、内径25mmのカラムに充填した。チタンとアルミニウムの容積比T/Aは1/4である。
セレンを1.11mg/l含む排煙脱硫排水に塩酸を300mg/lになるように添加し、60℃に加温しながら、このカラムに250ml/hの流速で通水した。このカラム出口水に苛性ソーダを添加してpH7前後に調整し、10分間反応後、NO.5C濾紙にて濾過した。表2に、カラム出口水中のセレン濃度及びアルミニウム濃度と、処理水中のセレン濃度の測定結果を示す。
実施例10,11,12
金属アルミニウムの量はそのままとし、金属チタンの量を表2の通り多くし、容積比T/Aを次の通りとしたこと以外は実施例9と同一条件にて試験を行った。
表2に、カラム出口水中のセレン濃度及びアルミニウム濃度と、処理水中のセレン濃度の測定結果を示す。
比較例8
金属チタンの量をゼロとしたこと以外は実施例9と同一条件にて試験を行った。
表2に、カラム出口水中のセレン濃度及びアルミニウム濃度と、処理水中のセレン濃度の測定結果を示す。
比較例9
金属アルミニウムの量をゼロとし、金属チタンの量を50.0ml(72.0g)としたこと以外は実施例9と同一条件にて試験を行った。
表2に、カラム出口水中のセレン濃度及びアルミニウム濃度と、処理水中のセレン濃度の測定結果を示す。
Figure 0005261950
表2の通り、実施例9〜12は比較例8,9に比べてカラム出口水及び濾過水中のセレン濃度が低く、特にT/Aを1/2〜2/1とした実施例10〜12によるとこのセレン濃度は十分に低いものとなる。
本発明のセレン含有排水の処理装置の実施の形態を示す系統図である。
符号の説明
1 還元反応器
2 凝集反応槽
3 固液分離装置
4 排水供給管
5 酸添加装置
6 pH調整剤添加手段
11 金属充填層
12 排水流入室

Claims (10)

  1. セレン含有排水を、金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させることによりセレンを還元するセレン含有排水の処理方法であって、前記他の金属は、アルミニウム、亜鉛及びスズより選ばれる少なくとも1種であることを特徴とするセレン含有排水の処理方法。
  2. 請求項1において、セレン含有排水を金属チタンと他の金属との合金又は混合物と接触させる際に、セレン含有排水に酸を添加することを特徴とするセレン含有排水の処理方法。
  3. 請求項1又は2において、セレンを還元した後、溶出した金属をpH調整して析出させ、析出した金属を固液分離することを特徴とするセレン含有排水の処理方法。
  4. 請求項1ないしのいずれか1項において、セレンの少なくとも一部が、6価セレンであることを特徴とするセレン含有排水の処理方法。
  5. 請求項1ないしのいずれか1項において、セレン含有排水は、排煙脱硫排水であることを特徴とするセレン含有排水の処理方法。
  6. 請求項1ないしのいずれか1項において、セレン含有排水がフッ素又は/及びホウ素を含有するとともに、前記他の金属がアルミニウムであることを特徴とするセレン含有排水の処理方法。
  7. 請求項1ないしのいずれか1項において、前記他の金属がアルミニウムであり、金属チタンの容積Tとアルミニウムの容積Aとの比T/Aが1/3〜3/1であることを特徴とするセレン含有排水の処理方法。
  8. 金属チタンと他の金属との合金又は混合物が存在し、セレン含有排水が導入される還元反応器であって、該他の金属は、アルミニウム、亜鉛及びスズより選ばれる少なくとも1種であり、該セレン含有排水を、該金属チタンと他の金属との合金又は混合物と接触させ、該他の金属の一部を溶出させることにより該排水中のセレンを還元処理する還元反応器を有することを特徴とするセレン含有排水の処理装置。
  9. 請求項8において、前記還元反応器と、該還元反応器から流出する還元処理水が導入される凝集反応槽と、凝集反応槽のpHを調整するpH調整剤添加手段と、凝集反応処理水を固液分離する固液分離装置とを有することを特徴とするセレン含有排水の処理装置。
  10. 請求項8又は9において、前記他の金属がアルミニウムであり、金属チタンの容積Tとアルミニウムの容積Aとの比T/Aが1/3〜3/1であることを特徴とするセレン含有排水の処理装置。
JP2007060334A 2006-07-04 2007-03-09 セレン含有排水の処理方法及び処理装置 Active JP5261950B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007060334A JP5261950B2 (ja) 2006-07-04 2007-03-09 セレン含有排水の処理方法及び処理装置
EP07767781.3A EP2036866B1 (en) 2006-07-04 2007-06-28 Method and apparatus for treating selenium-containing wastewater
CN2007800252443A CN101484392B (zh) 2006-07-04 2007-06-28 含有硒的废水的处理方法和处理装置
KR1020087032001A KR101323943B1 (ko) 2006-07-04 2007-06-28 셀레늄 함유 배수의 처리 방법 및 처리 장치
US12/308,270 US8182697B2 (en) 2006-07-04 2007-06-28 Method and apparatus for treating selenium-containing wastewater
PCT/JP2007/062987 WO2008004488A1 (fr) 2006-07-04 2007-06-28 Procédé et appareil destinés au traitement des eaux usées contenant du sélénium
TW096124139A TWI418521B (zh) 2006-07-04 2007-07-03 Treatment method and treatment device of selenium - containing wastewater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006184068 2006-07-04
JP2006184068 2006-07-04
JP2007060334A JP5261950B2 (ja) 2006-07-04 2007-03-09 セレン含有排水の処理方法及び処理装置

Publications (2)

Publication Number Publication Date
JP2008030020A JP2008030020A (ja) 2008-02-14
JP5261950B2 true JP5261950B2 (ja) 2013-08-14

Family

ID=38894460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060334A Active JP5261950B2 (ja) 2006-07-04 2007-03-09 セレン含有排水の処理方法及び処理装置

Country Status (7)

Country Link
US (1) US8182697B2 (ja)
EP (1) EP2036866B1 (ja)
JP (1) JP5261950B2 (ja)
KR (1) KR101323943B1 (ja)
CN (1) CN101484392B (ja)
TW (1) TWI418521B (ja)
WO (1) WO2008004488A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5417927B2 (ja) * 2009-03-24 2014-02-19 電源開発株式会社 石炭ガス化排水の処理方法
JP5810639B2 (ja) 2011-06-03 2015-11-11 栗田工業株式会社 セレン含有水の処理方法及び処理装置
CN102358653B (zh) * 2011-10-20 2013-04-17 铜陵有色金属集团股份有限公司 一种含硒废水的处理方法
AR089948A1 (es) * 2012-02-10 2014-10-01 Kemira Oyj Procedimientos para la extraccion de metales y oxianiones de corrientes acuosas
JP2015039651A (ja) * 2013-08-20 2015-03-02 栗田工業株式会社 セレン含有水の処理方法及び処理装置
JP2016190221A (ja) * 2015-03-31 2016-11-10 国立大学法人九州大学 セレン酸還元触媒、セレン酸還元触媒の製造方法及びセレン酸溶液の還元方法
CN108698870A (zh) * 2016-02-10 2018-10-23 懿华水处理技术有限责任公司 溶解的硒的处理
US10676376B2 (en) * 2016-09-29 2020-06-09 Ecolab Usa Inc. Modification of iron-based media for water treatment
JP6986226B2 (ja) 2017-12-27 2021-12-22 三菱マテリアル株式会社 廃水の処理方法
JP6970917B2 (ja) * 2017-12-27 2021-11-24 三菱マテリアル株式会社 廃水の処理方法
CN111675574A (zh) * 2020-06-28 2020-09-18 北部湾海洋新材料研究院 一种金花茶用缓释富硒生态肥及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766036A (en) * 1972-03-06 1973-10-16 Occidental Petroleum Corp Process for the removal of ionic metallic impurities from water
US3933635A (en) * 1975-07-15 1976-01-20 The United States Of America As Represented By The Secretary Of The Interior Method for removing soluble selenium from acidic waste water
US4096064A (en) * 1976-04-05 1978-06-20 Ameron, Inc. System for removal of toxic heavy metals from drinking water
US4405464A (en) * 1981-08-31 1983-09-20 Kerr-Mcgee Nuclear Corporation Process for the removal of selenium from aqueous systems
US5135654A (en) * 1984-04-30 1992-08-04 Kdf Fluid Treatment, Inc. Method for treating fluids
US4806264A (en) * 1987-09-01 1989-02-21 The United Sates Of America As Represented By The Secretary Of The Interior Method of selectively removing selenium ions from an aqueous solution
JPH0753276B2 (ja) * 1989-10-03 1995-06-07 栗田工業株式会社 フッ化物含有水の処理方法
JPH0679286A (ja) 1992-07-17 1994-03-22 Mitsubishi Materials Corp セレン含有廃水の処理方法
JP3524618B2 (ja) 1995-02-20 2004-05-10 同和鉱業株式会社 排液中のセレンの除去方法
JPH0918778A (ja) * 1995-06-29 1997-01-17 Canon Inc ビデオカメラ一体型記録装置
JP3739480B2 (ja) 1995-10-31 2006-01-25 栗田工業株式会社 排煙脱硫排水の処理方法
US6214238B1 (en) * 1998-07-27 2001-04-10 Tosco Corporation Method for removing selenocyanate ions from waste water
US6235204B1 (en) * 1999-04-15 2001-05-22 Radian International Llc Method and system for removal of selenium from FGD scrubber purge water
JP4507267B2 (ja) * 1999-07-15 2010-07-21 栗田工業株式会社 水処理方法
JP4145431B2 (ja) 1999-07-23 2008-09-03 内外化学製品株式会社 セレン含有排水の処理方法
TW550307B (en) * 2000-04-19 2003-09-01 Getters Spa A process for the purification of organometallic compounds or heteroatomic organic compounds with hydrogenated getter alloys
JP2002086161A (ja) * 2000-09-19 2002-03-26 Kansai Electric Power Co Inc:The セレン含有水の処理方法
BR0114166B1 (pt) * 2000-09-26 2014-10-14 Lanxess Deutschland Gmbh Unidades susceptíveis ao escoamento de meios e uso das mesmas
JP4538706B2 (ja) * 2001-01-18 2010-09-08 栗田工業株式会社 水処理装置の洗浄方法
JP2006116469A (ja) * 2004-10-22 2006-05-11 Dowa Mining Co Ltd セレン含有水の処理方法
JP2007054818A (ja) * 2005-02-25 2007-03-08 Mitsubishi Materials Corp セレン含有汚染水の処理方法および水処理剤
US7833422B2 (en) * 2007-09-11 2010-11-16 Central Research Institute Of Electric Power Industry Process of treating selenium-containing liquid

Also Published As

Publication number Publication date
CN101484392A (zh) 2009-07-15
KR101323943B1 (ko) 2013-10-31
JP2008030020A (ja) 2008-02-14
EP2036866A4 (en) 2012-06-20
EP2036866A1 (en) 2009-03-18
EP2036866B1 (en) 2014-03-05
TW200825028A (en) 2008-06-16
US8182697B2 (en) 2012-05-22
TWI418521B (zh) 2013-12-11
WO2008004488A1 (fr) 2008-01-10
US20100230350A1 (en) 2010-09-16
KR20090028730A (ko) 2009-03-19
CN101484392B (zh) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5261950B2 (ja) セレン含有排水の処理方法及び処理装置
JP5417927B2 (ja) 石炭ガス化排水の処理方法
KR100221556B1 (ko) 배연탈황배수의 처리방법
JP4877103B2 (ja) セレン含有排水の処理方法及び処理装置
JP2007326077A (ja) セレン含有水の処理方法
JP5109505B2 (ja) セレン含有排水の処理方法及び処理装置
JP2017136539A (ja) 高炉排水の処理方法
JP4231934B2 (ja) 排水中のセレンの除去方法
JP6307276B2 (ja) セレン含有水の処理装置およびセレン含有水の処理方法
JP6213044B2 (ja) セレン含有水の処理方法及び処理装置
JP3813052B2 (ja) 重金属等を含有する飛灰の処理方法
JP2014097475A (ja) 石炭ガス化排水の処理方法
JP2006263703A (ja) セレン含有水の処理方法および処理装置
JP2006218343A (ja) セレン含有排水の処理方法および処理装置
JP4771284B2 (ja) セレン含有排水の処理方法及び処理装置
JP6939296B2 (ja) セレン含有水の処理方法及び処理装置
JP6329448B2 (ja) 排水処理方法及び排水処理装置
JP4862191B2 (ja) セレン含有水の処理方法
JP2000167571A (ja) セレン含有水の処理方法
JP2009220102A (ja) 鉄粉を用いるセレン含有廃水の処理方法
JP2015039651A (ja) セレン含有水の処理方法及び処理装置
JP2012250187A (ja) セレン含有水の処理方法及び処理装置
Quiton et al. Reclamation of Cobalt and Copper from Single-and Co-contaminated Wastewater via Carbonate and Hydroxide Precipitation
JP3905588B2 (ja) 排水処理方法
JP2004337808A (ja) セレン処理剤とセレン含有水の処理方法及び処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5261950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250