WO2014078499A1 - Thermoplastic composite and its manufacturing - Google Patents
Thermoplastic composite and its manufacturing Download PDFInfo
- Publication number
- WO2014078499A1 WO2014078499A1 PCT/US2013/070037 US2013070037W WO2014078499A1 WO 2014078499 A1 WO2014078499 A1 WO 2014078499A1 US 2013070037 W US2013070037 W US 2013070037W WO 2014078499 A1 WO2014078499 A1 WO 2014078499A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermoplastic
- process according
- polyurethane
- film
- composite
- Prior art date
Links
- 229920001169 thermoplastic Polymers 0.000 title claims abstract description 65
- 239000004416 thermosoftening plastic Substances 0.000 title claims abstract description 64
- 239000002131 composite material Substances 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 49
- 239000004744 fabric Substances 0.000 claims abstract description 29
- 238000004513 sizing Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 13
- 238000010030 laminating Methods 0.000 claims abstract description 8
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 8
- 238000002844 melting Methods 0.000 claims abstract description 6
- 230000008018 melting Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 55
- 239000000203 mixture Substances 0.000 claims description 22
- 239000004417 polycarbonate Substances 0.000 claims description 20
- 229920000515 polycarbonate Polymers 0.000 claims description 19
- -1 polyethylene terephthalate Polymers 0.000 claims description 18
- 229920002635 polyurethane Polymers 0.000 claims description 18
- 239000004814 polyurethane Substances 0.000 claims description 18
- 229920000642 polymer Polymers 0.000 claims description 12
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 claims description 6
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims description 6
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 239000004593 Epoxy Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229920000742 Cotton Polymers 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 239000004760 aramid Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000000919 ceramic Substances 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 3
- 239000010439 graphite Substances 0.000 claims description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 3
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 3
- 239000011435 rock Substances 0.000 claims description 3
- 210000002268 wool Anatomy 0.000 claims description 3
- 229920001634 Copolyester Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims description 2
- 229920003235 aromatic polyamide Polymers 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229920002647 polyamide Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 35
- 239000003365 glass fiber Substances 0.000 description 20
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 19
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 18
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 10
- 229920007019 PC/ABS Polymers 0.000 description 10
- 239000004970 Chain extender Substances 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 9
- 229920000728 polyester Polymers 0.000 description 8
- 229920000049 Carbon (fiber) Polymers 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 239000004917 carbon fiber Substances 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 238000010924 continuous production Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 229930185605 Bisphenol Natural products 0.000 description 5
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000001294 propane Substances 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 4
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 150000008065 acid anhydrides Chemical class 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000012783 reinforcing fiber Substances 0.000 description 4
- 238000003856 thermoforming Methods 0.000 description 4
- 239000012815 thermoplastic material Substances 0.000 description 4
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 3
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Norphytane Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 238000010923 batch production Methods 0.000 description 3
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 125000005442 diisocyanate group Chemical group 0.000 description 3
- 150000002009 diols Chemical class 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- HILAULICMJUOLK-UHFFFAOYSA-N 1,3-diethyl-5-methylbenzene Chemical compound CCC1=CC(C)=CC(CC)=C1 HILAULICMJUOLK-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- UIAFKZKHHVMJGS-UHFFFAOYSA-N 2,4-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1O UIAFKZKHHVMJGS-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 229920000914 Metallic fiber Polymers 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- SHCHCHQAWASKSM-UHFFFAOYSA-N [SiH4].C(=C)NCC1=CC=CC=C1 Chemical compound [SiH4].C(=C)NCC1=CC=CC=C1 SHCHCHQAWASKSM-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000037452 priming Effects 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical class O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- DEQUKPCANKRTPZ-UHFFFAOYSA-N (2,3-dihydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1O DEQUKPCANKRTPZ-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- AFVMPODRAIDZQC-UHFFFAOYSA-N 1-isocyanato-2-(isocyanatomethyl)cyclopentane Chemical compound O=C=NCC1CCCC1N=C=O AFVMPODRAIDZQC-UHFFFAOYSA-N 0.000 description 1
- VLNDSAWYJSNKOU-UHFFFAOYSA-N 1-isocyanato-4-[(4-isocyanato-3-methylcyclohexyl)methyl]-2-methylcyclohexane Chemical compound C1CC(N=C=O)C(C)CC1CC1CC(C)C(N=C=O)CC1 VLNDSAWYJSNKOU-UHFFFAOYSA-N 0.000 description 1
- YXZQSMBYXJWRSP-UHFFFAOYSA-N 1-methylcyclohexane-1,4-diol Chemical compound CC1(O)CCC(O)CC1 YXZQSMBYXJWRSP-UHFFFAOYSA-N 0.000 description 1
- YIYBRXKMQFDHSM-UHFFFAOYSA-N 2,2'-Dihydroxybenzophenone Chemical class OC1=CC=CC=C1C(=O)C1=CC=CC=C1O YIYBRXKMQFDHSM-UHFFFAOYSA-N 0.000 description 1
- SLGGJMDAZSEJNG-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethanol;terephthalic acid Chemical compound OCCOCCO.OC(=O)C1=CC=C(C(O)=O)C=C1 SLGGJMDAZSEJNG-UHFFFAOYSA-N 0.000 description 1
- VXHYVVAUHMGCEX-UHFFFAOYSA-N 2-(2-hydroxyphenoxy)phenol Chemical class OC1=CC=CC=C1OC1=CC=CC=C1O VXHYVVAUHMGCEX-UHFFFAOYSA-N 0.000 description 1
- BLDLRWQLBOJPEB-UHFFFAOYSA-N 2-(2-hydroxyphenyl)sulfanylphenol Chemical class OC1=CC=CC=C1SC1=CC=CC=C1O BLDLRWQLBOJPEB-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RNLHGQLZWXBQNY-UHFFFAOYSA-N 3-(aminomethyl)-3,5,5-trimethylcyclohexan-1-amine Chemical compound CC1(C)CC(N)CC(C)(CN)C1 RNLHGQLZWXBQNY-UHFFFAOYSA-N 0.000 description 1
- YNWRQXYZKFAPSH-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfinyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 YNWRQXYZKFAPSH-UHFFFAOYSA-N 0.000 description 1
- SUCTVKDVODFXFX-UHFFFAOYSA-N 4-(4-hydroxy-3,5-dimethylphenyl)sulfonyl-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(S(=O)(=O)C=2C=C(C)C(O)=C(C)C=2)=C1 SUCTVKDVODFXFX-UHFFFAOYSA-N 0.000 description 1
- ODJUOZPKKHIEOZ-UHFFFAOYSA-N 4-[2-(4-hydroxy-3,5-dimethylphenyl)propan-2-yl]-2,6-dimethylphenol Chemical compound CC1=C(O)C(C)=CC(C(C)(C)C=2C=C(C)C(O)=C(C)C=2)=C1 ODJUOZPKKHIEOZ-UHFFFAOYSA-N 0.000 description 1
- NIRYBKWMEWFDPM-UHFFFAOYSA-N 4-[3-(4-hydroxyphenyl)-3-methylbutyl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)(C)CCC1=CC=C(O)C=C1 NIRYBKWMEWFDPM-UHFFFAOYSA-N 0.000 description 1
- CIEGINNQDIULCT-UHFFFAOYSA-N 4-[4,6-bis(4-hydroxyphenyl)-4,6-dimethylheptan-2-yl]phenol Chemical compound C=1C=C(O)C=CC=1C(C)CC(C)(C=1C=CC(O)=CC=1)CC(C)(C)C1=CC=C(O)C=C1 CIEGINNQDIULCT-UHFFFAOYSA-N 0.000 description 1
- CNPURSDMOWDNOQ-UHFFFAOYSA-N 4-methoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amine Chemical compound COC1=NC(N)=NC2=C1C=CN2 CNPURSDMOWDNOQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RYECOJGRJDOGPP-UHFFFAOYSA-N Ethylurea Chemical compound CCNC(N)=O RYECOJGRJDOGPP-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 238000012696 Interfacial polycondensation Methods 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- SVYKKECYCPFKGB-UHFFFAOYSA-N N,N-dimethylcyclohexylamine Chemical compound CN(C)C1CCCCC1 SVYKKECYCPFKGB-UHFFFAOYSA-N 0.000 description 1
- 229920002274 Nalgene Polymers 0.000 description 1
- 229920000784 Nomex Polymers 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical class CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 150000005840 aryl radicals Chemical class 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229940114055 beta-resorcylic acid Drugs 0.000 description 1
- VCCBEIPGXKNHFW-UHFFFAOYSA-N biphenyl-4,4'-diol Chemical group C1=CC(O)=CC=C1C1=CC=C(O)C=C1 VCCBEIPGXKNHFW-UHFFFAOYSA-N 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- MGNCLNQXLYJVJD-UHFFFAOYSA-N cyanuric chloride Chemical compound ClC1=NC(Cl)=NC(Cl)=N1 MGNCLNQXLYJVJD-UHFFFAOYSA-N 0.000 description 1
- PNOXNTGLSKTMQO-UHFFFAOYSA-L diacetyloxytin Chemical compound CC(=O)O[Sn]OC(C)=O PNOXNTGLSKTMQO-UHFFFAOYSA-L 0.000 description 1
- 239000012975 dibutyltin dilaurate Chemical class 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical class COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 1
- 239000012971 dimethylpiperazine Substances 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- UODXSCCNACAPCE-UHFFFAOYSA-N draft:flumetramide Chemical compound C1=CC(C(F)(F)F)=CC=C1C1OCC(=O)NC1 UODXSCCNACAPCE-UHFFFAOYSA-N 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- KVKFRMCSXWQSNT-UHFFFAOYSA-N n,n'-dimethylethane-1,2-diamine Chemical compound CNCCNC KVKFRMCSXWQSNT-UHFFFAOYSA-N 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000004763 nomex Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229960005382 phenolphthalein Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001692 polycarbonate urethane Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 150000003462 sulfoxides Chemical class 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- AUHHYELHRWCWEZ-UHFFFAOYSA-N tetrachlorophthalic anhydride Chemical compound ClC1=C(Cl)C(Cl)=C2C(=O)OC(=O)C2=C1Cl AUHHYELHRWCWEZ-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 150000004072 triols Chemical group 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
- B32B5/024—Woven fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B15/00—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
- B29B15/08—Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
- B29B15/10—Coating or impregnating independently of the moulding or shaping step
- B29B15/12—Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/12—Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/302—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
- B32B27/365—Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/04—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/10—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
- B32B37/1027—Pressing using at least one press band
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B37/00—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
- B32B37/14—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
- B32B37/15—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
- B32B37/153—Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/001—Combinations of extrusion moulding with other shaping operations
- B29C48/0021—Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/07—Flat, e.g. panels
- B29C48/08—Flat, e.g. panels flexible, e.g. films
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/09—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
- B29C48/10—Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/02—Synthetic macromolecular fibres
- B32B2262/0261—Polyamide fibres
- B32B2262/0269—Aromatic polyamide fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/08—Animal fibres, e.g. hair, wool, silk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/103—Metal fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/105—Ceramic fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/106—Carbon fibres, e.g. graphite fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2305/00—Condition, form or state of the layers or laminate
- B32B2305/10—Fibres of continuous length
- B32B2305/18—Fabrics, textiles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/714—Inert, i.e. inert to chemical degradation, corrosion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/75—Printability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2398/00—Unspecified macromolecular compounds
- B32B2398/20—Thermoplastics
Definitions
- the present invention is directed in general to thermoplastic polymers and in particular to methods of producing thermoplastic composites.
- thermoplastic article comprising a) a first thermoplastic layer; and b) a fiber-reinforced thermoplastic composite that contains a thermoplastic resin and a plurality of continuous reinforcing fibers impregnated with the resin, wherein the first thermoplastic layer is thermoformed or blow- molded to the thermoplastic composite.
- U.S. Published Patent Application No. 2008/0160281 in the name of Viekery et al. provides a composition for a reinforcing fiber used to reinforce thermoset resins comprising: at least one silane coupling agent; and one or more film forming agents, wherein said composition is free of any additives that are typically, included in conventional sizing applications to impose desired properties or characteristics to the size composition.
- Larson et al, in U.S. Published Patent Application No. 2008/0233364 detail a dimensionally stable continuous laminate structure comprising: a reinforcement layer comprising, by weight, from about 20% to about 80% fiber reinforcement and from about 80% to about 20% thermoset polymer selected from polyester, phenolic, epoxy and mixtures thereof; a surface layer comprising a substrate layer and a decorative layer, the substrate layer comprising, by weight, from about 20% to 80% by weight fiber reinforcement and from about 80% to about 20% polymer selected from polyvinyl chloride, polyester, phenolic, epoxy and mixtures thereof and the decorative !ayer comprising at least one of polyvinyl chloride, acrylic, and polyurethane; an adhesive layer disposed between the reinforcement layer and the substrate layer of the surface layer; an adhesive primer layer disposed between the reinforcement layer and the adhesive layer, wherein the adhesive primer is of a material composition different than the adhesive layer.
- U.S. Published Patent Application No. 2012/0061013 in the name of Kubota et al. discloses a composite article and a process for manufacturing the composite article.
- the composite article comprises multiple layers including high tenacity fibers incorporated into a fabric and a core thermoplastic resin.
- the fabric may be coated with a surface treatment agent and a polymer matrix resin.
- Single or multipie layers of the composite articles may be formed into a composite part said to have high strength, rigidity, fast molding cycle time and extremely good conformability in a 3-dimensional mold.
- the composite parts formed by the process of Kubota et al. are said to have high part strength in all directions.
- 2012/0148803 teach a long fiber reinforced polyurethane molded part which has three-dimensional raised structures, especially ribs, struts and/or domes, characterized by further containing short fibers in addition to said long fibers, wherein the weight ratio of short fibers and/or plate-like fillers to the fiber-free polyurethane matrix in a volume of ribs, struts and/or domes is higher than the weight ratio of shor fibers and/or plate-like fillers to the fiber-free polyurethane matrix in two-dimensional areas outside the raised structures.
- a method for manufacturing a composite molded body comprising: a step of manufacturing a molded body containing polyethylene terephthaiate, acrylonitrile-butadiene-styrene, and glass or carbon fibers; and a step of coating the molded body with a reactive polyurethane composition or with a rubber composition.
- the composite molded body can be used in lieu of a wheel hub casting to minimize the weight of a wheel, can be manufactured at a low cost in terms of materials, and ears be mass-produced.
- the composite molded body is said to have remarkably superior adhesion to the coating composition, and the strength and durability thereof corresponds to that of cast metal such as east iron, stainless steel, aluminum, etc.
- a method for making a molded carbon fiber prepreg which includes the steps of: (a) thermocompressing a pristine carbon fiber prepreg thai includes a carbon fiber substrate and a matrix resin impregnated into the carbon fiber substrate, and a thermoplastic material at an elevated temperature such that the thermoplastic material and the matrix resin of the pristine carbon fiber prepreg are subjected to a crasslinking reaction so as to form a crosslinked thermoplastic layer on the pristine carbon fiber prepreg; and (b) injection molding a thermoplastic elastomer onto the crosslinked thermoplastic layer.
- U.S. Published Patent Application No. 2013/0252059 in the name of Choi et al. discloses a battery pack case assembly for an electric or hybrid vehicle and a method for manufacturing the same.
- the battery pack case assembly includes a case body and a cover.
- the ease body receives a battery pack, and the cover is coupled to the case body.
- the case body is formed of a plastic composite in which a long fiber or a blend of a long fiber and a continuous fiber is used as a reinforcing fiber in a plastic matrix.
- a separate reinforced member is bonded to both side bracket parts for coupling to a vehicle body, and is formed of a plastic composite in which a long fiber, a continuous, or a blend of a long fiber and a continuous fiber is used as the reinforcing fiber in the plastic matrix.
- the present invention provides such a roll-to-roll continuous manufacturing process for producing thermoplastic composite laminates.
- a thermoplastic polyurethane resin optionally having soft segments in its backbone structure is extruded into a film article by either blown film or flat-die process.
- a silane coupling agent is optionally added in the thermoplastic film.
- a woven fiber cloth material is surfaced treated with a polymer based sizing, and optional silane coupling agent is added. At least one layer of theiTnoplastic film and at least one layer of the surfaced treated fiber cloth material are laminated into composite sheets under temperatures above the melting or softening point of the
- thermoplastic film and under pressure that is applied by nipping rolls or nipping belts.
- a continuous roll-to-roll lamination process realized in the above described way can produce thermoplastic composite sheets using rolls of fiber cloth and thermoplastic film materials,
- thermoplastic/fiber composite sheets can be used to make parts by thermoforming in short molding cycles and are recyclable. These parts possess good chemical resistance, mechanical properties and are paintable or printable without priming or other surface preparations.
- FIG. 1 shows thermoplastic composites processing with films
- FIG. 2 demonstrates thermoplastic composites processing with pre-pregs
- FIGS. 3A, 3B and 3C illustrate three processes for forming or molding thermoplastic composites: a batch process (FIG. 3A), a semi-continuous process (FIG.3B) and a continuous process (FIG. 3C);
- FIG. 4A shows layer structure and thermoforming conditions for a TPU film and PC/ABS film using glass fiber A
- FIG. 4B shows layer structure and thermoforming conditions for a TPU film and PC/ABS film using glass fiber B;
- FIG. 5 is a photograph illustrating the data of Table I for a thermoplastic polyurethane/glass fiber laminate treated with the various sizings.
- thermoplastic films suitable for use in the present invention as a substrate for the thermoplastic composite sheet include, without limitation, polyethylene terephthalate glycol-modified (PETG), TRITAN copolyester, polycarbonate (PC), poly(methyl methacrylate) (PMMA), polyacrylonitrile-co-butadiene-co-styrene (ABS), polycarbonate/acrylonitrile butadiene styrene (PC/ABS) blend and polystyrene (PS). Both flame retardant and non-flame retardant grades of the thermoplastic films are suitable for use in the present invention.
- the thermoplastic films preferably will have a high enough melt fiowabiiity, above 200°C, for the inventive composite lamination process.
- the melt flow index of the extruded film tested at 210°C and under 8.7 kg is above 2g/10 rain., more preferably between 5 g/'10 min. and 60 g/10 min. and most preferably from 20 g/10 min. and 40 g/10 rain.
- the films also are preferably amorphous or with very tow crystallinity, and preferably have a glass transition temperature lower than 170°C, more preferably from 70 to 160°C.
- the amorphous feature of the polymer substrate can significantly reduce the forming cycle time and warping of final parts.
- Suitable polycarbonate resins for preparing thermoplastic films useful in the present invention are homopolycarbonates and copolycarbonates, both linear or branched resins and mixtures thereof.
- the polycarbonates have a weight average molecular weight of preferably 10,000 to 200,000, more preferably 20,000 to 80,000 and their melt flow rate, per ASTM D-1238 at 300°C, is preferably 1 to 65 g/10 min., more preferably 2 to 35 g/10 min.
- They may be prepared, for example, by the known diphasic interface process from a carbonic acid derivative such as phosgene and dihydroxy compounds by poiycondensation (See, German Offenlegungssehriften 2,063,050; 2,063,052; 1,570,703; 2,211,956; 2,211,957 and 2,248,817; French Patent 1,561,518; and the monograph by H. Schnell, "Chemistry and Physics of Polycarbonates", interscience Publishers. New York, New York, 1964).
- dihydroxy compounds suitable for the preparation of the polycarbonates of the invention conform to the structural formulae (1) or (2) below.
- A denotes an alkylene group with 1 to 8 carbon atoms, an alkylidene group with 2 to 8 carbon atoms, a eycloalkylene group with 5 to 15 carbon atoms, a cyc!oaikylidene group with 5 to 15 carbon atoms, a carbonyl group, an oxygen atom, a sulfur atom, -SO- or -S0 2 or a radical conforming to
- e and g both denote the number 0 to 1;
- Z denotes F, CI, Br or Ci-Ct-aikyl and if several Z radicals are substi merits in one aryl radical, they may be identical or different from one another;
- [ 033J d denotes an integer of from 0 to 4.
- f denotes an integer of from 0 to 3.
- dihydroxy compounds useful in the practice of the invention are hydroquinone, resorcinol, bis-(hydroxyphenyl)-alkanes, bis-(hydroxy-phenyl)- ethers, bis-(hydroxyphenyl)-ketones, bis-(hydroxy-phenyl) ⁇ sulfoxides, bis- (hydroxyphenyl)-sulfides, bis-(hydroxyphenyl) ⁇ sulfones, and ⁇ , ⁇ -bis- (hydroxyphenyl)-diisopropylbenzenes, as well as their nuclear-alkylated compounds.
- aromatic dihydroxy compounds are described, for example, in U.S. Pat. Nos.
- bisphenols are 2,2-bis-(4-hydroxyphenyl)- propane (bisphenol A), 2,4-bis-(4-hydroxyphenyl)-2-methyl-butane, l,l -bis-(4- hydroxyphenyi)-cyclohexane, a,a'-bis-(4-hydroxy-phenyl)-p-diisopropylbenzene, 2,2-bis-(3-methyI-4-hydroxyphenyl)-pfopaiie, 2,2-bis-(3- hloro-4- hydroxyphenyl)-propane, 4,4'-dihydroxy- diphenyl, bis-(3,5-dimethyl-4- hydroxypheny]) ⁇ methane, 2,2-bis-(3,5-dimethyi-4-hydroxyphenyl)-propane, bis- (3,5-dsmethyl-4-hydroxyphenyi)-sulfide, bis-(3,5-dimethyl-4-hydroxy-pheny
- aromatic bisphenols examples include 2,2-bis- (4- hydroxyphenyl)-propane, 2,2-bis-(3,5-dimethyl-4-hydroxyphenyl)-propane, 1,1- bis-(4-hydroxyphenyl)-cyclohexane and 1 , 1 -bis-(4-hydroxy-phenyl)-3,3,5- trimeihyleyclohexane.
- the most preferred bisphenol is 2,2-bis-(4- hydroxyphenyl)-propane (bisphenol A).
- the polycarbonates of the invention may entail in their structure units derived from one or more of the suitable bisphenols.
- the polycarbonates of the invention may also be branched by condensing therein small quantities, e.g., 0.05 to 2.0 mol % (relative to the bisphenols) of po!yhydroxyl compounds.
- small quantities e.g., 0.05 to 2.0 mol % (relative to the bisphenols) of po!yhydroxyl compounds.
- Polycarbonates of this ty pe have been described, for example, in German Offeniegungsschriften 1 ,570,533; 2,116,974 and 2, 113,374; British Patents 885,442 and 1 ,079,821 and U.S. Pat, No. 3,544,514, which is incorporated herein by reference.
- po!yhydroxyl compounds which may be used for this purpose: phlorogiucinol; 4,6-dimethyl-2,4,6-tri-(4-hydroxy-phenyl)-heptane; l,3,5-tri-(4-hydroxyphenyl)- taenzene; 1,1.1 -tri-(4-hydroxyphenyi)-ethane; tri-(4-hydroxyphenyi)-phenyI- methane; 2,2 ⁇ bis-[4 5 4-(4,4'-dihydroxydipheny])]-cyclohexyl-propane; 2,4 ⁇ bis- 4- hydroxy- i -isopropyIidine)-phenol; 2,6-his- ⁇ 2'-dihydiOxy-5 '-methylbenzy l)-4- methyl-phenol; 2,4-dihydroxybenzoic acid; 2-(4-hydroxy-phenyi)-2-(2,4- dihydroxy-phenyl)-propane and 1 ,4-dihydroxybenz
- Some of the other polyfunclional compounds are 2,4-dihydroxy-benzoie acid, triraesic acid, cyanuric chloride and 3,3-bis-(4 rydroxyphenyl) ⁇ 2-oxo-2,3 ⁇ dihydroiiidole.
- the preferred process for the preparation of polycarbonates is the interfacial polycondensation process.
- Other methods of synthesis in forming the polycarbonates of the invention such as disclosed in U.S. Pat. No, 3,912,688, incorporated herein by reference, may be used.
- Suitable polycarbonate resins are available in commerce, for instance, from Bayer MaterialScience under the MA OLON trademark.
- the polycarbonate is present in the thermoplastic blend in from preferably 50 to 70 % by weight of the combined weights of the thermoplastic aromatic polycarbonate and thermoplastic polyurethane present.
- Aliphatic thermoplastic poiyurethanes are particularly preferred in the methods of the present invention such as those prepared according to U.S. Pat. No. 6,518,389, the entire contents of which are incorporated herein by reference.
- Thermoplastic polyurethaiie elastomers are well known to those skilled in the art. They are of commercial importance due to their combination of high- grade mechanical properties with the known advantages of cost-effective thermoplastic processability. A.
- thermoplastic polyurethanes their properties and applications are givers in Kunststoffe [Plastics] 68 (1978), pages 819 to 825, and in autschuk, Kunststoffe [Natural and Vulcanised Rubber and Plastics] 35 (1982), pages 568 to 584.
- Thermoplastic polyurethanes are synthesized from linear polyois, mainly polyester diols or polyether diols, organic diisocyanates and short chain diols (chain extenders). Catalysts may be added to the reaction to speed up the reaction of the components.
- Thermoplastic polyurethanes can be produced either in stages (prepolymer method) or by the simultaneous reaction of all the components in one step (one shot). In the former, a prepolymer formed from the polyol and diisocyanate is first formed and then reacted with the chain extender. Thermoplastic
- polyurethanes may be produced continuously or batch-wise.
- the best-known industrial production processes are the so-called belt process and the extruder process.
- Examples of the suitable polyois include difunctional polyether polyois, polyester polyois, and polycarbonate polyois. Small amounts of Afunctional polyois may be used, yet care must be taken to make certain that the
- Suitable polyester polyols include the ones which are prepared by polymerizing ⁇ -capro lactone using an initiator such as ethylene glycol, ethanolamine and the like. Further suitable examples are those prepared by esieriflcation of poiycarboxylic acids.
- the poiycarboxylic acids may be aliphatic, cycloaliphatic, aromatic and/or heterocyclic and they may be substituted, e.g., by halogen atoms, and/or unsaturated.
- succinic acid adipie acid; suberic acid; azelaic acid; sebacic acid
- phthaiic acid isophthalic acid; trimellitic acid
- phthaiic acid anhydride tetrahydrophthaiic acid anhydride; hexahydrophthalic acid anhydride; tetrachlorophthalic acid anhydride, endomethyiene tetrahydrophthaiic acid anhydride
- glutaric acid anhydride maieic acid; maieic acid anhydride
- fumaric acid dimeric and trimeric fatty acids such as oleic acid, which may be mixed with monomelic fatty acids; dimethyl terephthalates and bis-giycol terephthalate.
- Suitable polyhydric alcohols include, e.g., ethylene glycol; propylene glycol -(1,2) and -(1 ,3); butylene glycol-(l,4) and - (1,3); hexanediol-(l,6); octanediol-(l,8); neopentyl glycol; (1,4-bis-hydroxy- methylcyclohexane); 2.-methyl- 1,3 -propanediol; 2,2,4-tri-methyl-i,3-pentanediol; triethylene glycol; tetraethylene glycol; polyethylene glycol; dipropylene glycol; polypropylene glycol; dibutylene glycol and polybutylene glycol, glycerine and trimethlyol propane.
- Suitable polyisocyanates for producing the thermoplastic polyurethanes useful in the present invention may be, for example, organic aliphatic
- dlisocyanates including, for example, 1,4-tetramethylene diisocyanate, 1,6- hexamethylene diisocyanate, 2,2,4-trimethyl-l,6-hexamethylene diisocyanate, 1,12-dodecam ethylene diisocyanate, cyclohexane-1.,3- a «d -1,4-diisocyanate, 1- isocyanato-2-isocyanatomethyl cyclopentane, 1 -isocyanato-3 -isocyanatomethyl- 3,5,5-trimethyl-cyclohexane (isophorone diisocyanate or iPDi), bis-(4- isocyanatocyclohexyl)-methane, 2,4'-dicyclohexylmethane diisocyanate, 1,3- and l,4-bis-(isocyanatomethyl)-cyclohexane, bis-(4-isocyanato-3-methyl
- Preferred chain extenders with molecular weights of 62 to 500 include aliphatic diols containing 2 to 14 carbon atoms, such as ethanedioi, 1 ,6- hexanediol, diethylene glycol, dipropylene glycol, and 1,4-butanediol in particular, for example.
- diesters of terephthalic acid with glycols containing 2 to 4 carbon atoms are also suitable, such as terephthalic acid-bis- ethylene glycol or -1,4-butanediol for example, or hydroxyalkyl ethers of hydroquinone, such as l,4-di-(B-hydroxyethyi)-hydroquinone for example, or (cycio)aliphatic diamines, such as isophorone diamine, 1,2- and 1,3- propylenediamine, N-methyl-propylenediamine-1,3 or N,N'-dimethyl- ethylenediamine, for example, and aromatic diamines, such as toluene 2,4- and 2,6-diamines, 3,5-diethyltoluene 2,4- and/or 2,6-diamme, and primary ortho-, di-, tri- and/or tetraaikyl-substituted 4,4'-di
- triol chain extenders having a molecular weight of 62 to 500 may also be used.
- customary monofunctional compounds may also be used in small amounts, e.g., as chain terminators or demoiding agents.
- Alcohols such as octanol and stearyl alcohol or amines such as butylamine and stearylamine may be cited as examples,
- the synthesis components may be reacted, optionally in the presence of catalysts, auxiliary agents and/or additives, in amounts such that the equivalent ratio of NCO groups to the sum of the groups which react with NCO, particularly the OH groups of the low molecular weight diols triols and polyols, is 0.9: 1.0 to 1.2: 1.0, preferably 0.95:1.0 to 1.10:1.0.
- Suitable catalysts include tertiary amines which are known in the art, such as triethyiamine, dimethyl-cyclohexylamine, N-methylmorpholine, ⁇ , ⁇ '- dimethyl-piperazine, 2-(dimethyl-aminoethoxy)-ethano], diazahicyck (2,2,2) ⁇ octane and the like, for example, as well as organic metal compounds in particular, such as titanic acid esters, iron compounds, tin compounds, e.g., tin diacetate, tin dioctoate, tin dilaurate or the dialkyltin salts of aliphatic carboxylic acids such as dihutyltin diacetate, dibutyltin dilaurate or the like.
- the preferred catalysts are organic metal compounds, particularly titanic acid esters and iron and/or tin compounds.
- Trifunctional or more than trifunctional chain extenders of the type in question are, for example, glycerol, Irimethylolpropane, hexanetriol,
- thermoplastic polyurethanes are available in commerce, for instance, from Bayer MaterialSctence under the TEXIN trademark, from BASF under the ELA STOLE AN trademark and from Lubrizoi under the trade names of ESTANE and PELLETHANE.
- Fibers or strands and combinations may be utilized in the practice of the present invention, including but not limited to glass, rock, ceramic, carbon, graphite, polyamide, aramid (NOMEX, KEVLAR), wool and cotton fibers of other organic and inorganic materials.
- Various metallic fibers such as copper and aluminum may also be utilized in various proportions with non-metallic fibers. The fibers amount to 20% to 60%, more preferably 35% to 60%, and most preferably 45% to 55% by volume of the composite.
- FIG. 1 shows thermoplastic composites processing with films.
- a laminator comprising of heated nip rolls and nipping belts.
- the thermoplastic film layers turn into a melt and are squeezed to fill into all voids inside the fiber clothing materia! as the laminating layers moving forward continuously inside the laminator.
- the laminate Upon exiting the laminator, the laminate is cooled to below melting or glass transition temperature of the thermoplastic film by passing through cooling rolls and consolidates into a rigid composite sheet. The resultant composite sheet is wound up into a roll for further forming and molding uses.
- FIG. 2 illustrates thermoplastic composites processing with pre-pregs.
- fiber cloth is unwound from a roll and fine powder of a thermoplastic material is uniformly sputtered onto the fiber cloth web so that the volume fraction of the fiber material is about 40-50%.
- the fiber cloth with thermoplastic power on top of it is then heated while passing through an oven, so that the thermoplastic powder will melt and be fused into a continuous layer on top of the fiber cloth.
- a fiber cloth pre-preg is thus formed and subsequently cooled and wound into pre-preg rolls. At least two fiber cloth pre- preg rolls are unwound continuously and guided to meet in a laminator containing heated nip rolls and nipping belts.
- the thermoplastic in the fiber cloth pre-preg turns into a melt and is squeezed to fill into all voids inside the fiber clothing material.
- the laminate Upon exiting the laminator, the laminate is cooled to below melting or glass transition temperature of the thermoplastic film by passing through cooling rolls and consolidates into rigid composite sheet. The composite sheet is wound into a roll for further forming and molding uses.
- FIGS. 3A, 3B and 3C illustrate three processes for forming or molding thermoplastic composites: a batch process, a semi-continuous process and a continuous process.
- the batch process involves cutting thermoplastic film and fiber cloth into certain size sheets, then stacking layers of the sheets and using a static hot press or an auto clave to melt thermoplastic film and fuse the discrete fiber cloth and polymer layers together.
- one composite sheet is made in one processing cycle, in a serai-continuous process shown in FIG, 3B, the fiber cloth and thermoplastic film are intermittently unwound and stacked together and guided to enter into a hoi press to melt and fuse the fiber cloth and thermoplastic material together and then cooled and trimmed into individual composite sheets.
- thermoplastic depicted in FIG. 3C film and fiber cloth rolls are continuously unwound and stacked and then laminated by heated nip rolls and belts under pressure, the laminate is then cooled and wound into rolls.
- FIG. 4A shows layer structure and thermoforniing conditions for a TPU film and PC/ABS film based composite using glass fiber cloth A, whose base weight is at 208g/m 2 .
- a glass fiber/TPU composite material was made by stacking and laminating three layers of glass fiber A and two iayers of 84 Shore D TPU film at 10 mil, producing a composite with a fiber volume fraction at about 49% and a total gauge of 0,9 mm.
- This composite sheet may be thermoformed into tablet housing shown in Figure 5 at 240°C for only 40 seconds.
- glass fiber/PC/ABS blend composite was made by stacking and laminating three layers of glass fiber cloth A and seven layers of PC/ABS blend film, producing a composi te with a fiber volume fraction at about 48% and a total gauge of 0,9 mm.
- This composite sheet may be thermoformed into tablet housing as indicated in Figure 5 at 255°C for only 40 seconds.
- FIG. 4B shows layer structure and thermoforniing conditions for a TPU film and PC/ABS film based composite with glass fiber B, whose base weight is 140g/m 2 .
- a glass fiber/TPU composite material was made by stacking and laminating four layers of glass fiber cloth B and two layers of 84 Shore D TPU film at 10 mil together, producing a composite with a fiber volume fraction at about 46% and a total gauge of 0.85 mm.
- This composite sheet may be thermoformed into a tablet housing at 240°C for only 40 seconds.
- a glass fiber/PC/ABS blend composite was made by stacking and laminating four layers of glass fiber cloth B and six layers of PC/ABS blend film, resulting in a composite with a fiber volume fraction at about 45% and a total gauge of 0.85 mm.
- This composite sheet may be themioibrmed into tablet housing as indicated in Figure 5 at 255°C for only 40 seconds.
- TPU a thermoplastic polyurethane film (10 mil thickness) available from Bayer MateriaiScience as DURAFLEX X-2311, 84 Shore D, base weight of 320g/m 2
- PC/ABS a polycarbonate/acrylonitrile-butadiene-styrene blend
- Sizing D is a polyester based reactive water-bome PUD available from Bayer MateriaiScience mixed with 1 wt.% vinylbenzylamine silane;
- Glass fiber A glass fiber cloth having a base weight of 208 g/m 2
- Laminates were made according to the process of the present invention and the flexural modulus and tensile strengths were determined. Flexural modulus was determined at 30°C by dynamic mechanical analysis (DMA). Tensile strength was determined by ASTM D3039 and is reported for machine direction
- FIG. 5 is a photograph illustrating the data in Table I for a TPU/glass fiber laminate treated with the various sizings.
- the TPU penetrated best into the glass fibers with sizing B at both 1.0% and 2.0% concentrations.
- the laminates of these two examples (Ex. 5 and Ex. 6) had the best combination of flexural modulus and tensile strength.
- thermoplastic/fiber composite sheets made by the instant process may preferably be used to make parts by thermoforming in short molding cycles and are recyclable. These parts possess good chemical resistance, mechanical properties and are paintable or printable without priming or other surface preparations.
- a roll-to-roll continuous manufacturing process for producing a thermoplastic composite laminate comprising: extruding a thermoplastic resin into a film article; surface treating a woven fiber cloth material with a polymer sizing; and laminating at least one layer of thermoplastic film and at least one layer of the surfaced treated fiber cloth material into a composite sheet at a temperature above the melting or softening point of the thermoplastic film and under pressure applied by nipping rolls or nipping belts.
- thermoplastic resin is selected from the group consisting of thermoplastic polyuretiiane, polyethylene terephthalate glycol-modified copolyester, polycarbonate, poly(methyl methacrylaie), polycarbonate/acrylonitrile butadiene styrene blend and polystyrene.
- thermoplastic resin is polyurethane
- polymer sizing is selected from the group consisting of polyurethane, epoxy, phenolic and polyacrylate based dispersion in water or an organic solvent.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/442,535 US20160279896A1 (en) | 2012-11-16 | 2013-11-14 | Thermoplastic composite and its manufacturing |
CN201380059804.2A CN104936781A (zh) | 2012-11-16 | 2013-11-14 | 热塑性复合材料及其制造 |
EP13854332.7A EP2919991A4 (en) | 2012-11-16 | 2013-11-14 | THERMOPLASTIC COMPOSITE AND ITS MANUFACTURE |
IN4167DEN2015 IN2015DN04167A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2012-11-16 | 2013-11-14 | |
JP2015542766A JP2016501747A (ja) | 2012-11-16 | 2013-11-14 | 熱可塑性複合体およびその製造 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261727273P | 2012-11-16 | 2012-11-16 | |
US61/727,273 | 2012-11-16 | ||
US201261731632P | 2012-11-30 | 2012-11-30 | |
US61/731,632 | 2012-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014078499A1 true WO2014078499A1 (en) | 2014-05-22 |
Family
ID=50731675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2013/070037 WO2014078499A1 (en) | 2012-11-16 | 2013-11-14 | Thermoplastic composite and its manufacturing |
Country Status (8)
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016097676A (ja) * | 2014-11-25 | 2016-05-30 | ザ・ボーイング・カンパニーThe Boeing Company | ファイバベッドに融着された厚み方向領域を有する中間層を含む複合材料積層体 |
US9771109B2 (en) | 2013-01-18 | 2017-09-26 | Sabic Global Technologies B.V. | Reinforced body in white and reinforcement therefor |
US11008050B2 (en) | 2016-12-30 | 2021-05-18 | Sabic Global Technologies B.V. | Hybrid structures and methods of making the same |
WO2022015742A1 (en) * | 2020-07-13 | 2022-01-20 | Neuvotec, Llc | Extrusion or mold process and assembly for forming a single or multi-layer material having a polymerized layer |
US11603142B2 (en) | 2014-06-16 | 2023-03-14 | Sabic Global Technologies B.V. | Structural body of a vehicle having an energy absorbing device and a method of forming the energy absorbing device |
US12390308B2 (en) | 2018-12-31 | 2025-08-19 | Solventum Intellectual Properties Company | Multi-layered dental appliance |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017515955A (ja) * | 2014-05-14 | 2017-06-15 | エピュレックス・フィルムズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・カンパニー・コマンディートゲゼルシャフト | 熱可塑性複合材およびその製造 |
US20170021596A1 (en) * | 2015-05-05 | 2017-01-26 | Sunrez Corp. | Fiber Reinforced Core |
EP3181346A1 (en) * | 2015-12-14 | 2017-06-21 | Habasit AG | Sheet material and punching tape containing same |
CN106926525B (zh) * | 2015-12-31 | 2020-01-03 | 中国科学院宁波材料技术与工程研究所 | 一种纤维增强热塑性复合材料及其制备方法和实施该方法的系统 |
CN107189408A (zh) * | 2017-06-16 | 2017-09-22 | 商洛学院 | 一种环保型热塑性体育用品的生产工艺 |
CN108262972A (zh) * | 2018-02-09 | 2018-07-10 | 厦门新凯复材科技有限公司 | 安全帽帽壳的初胚结构及安全帽帽壳的生产方法 |
US11090912B2 (en) * | 2018-08-07 | 2021-08-17 | Taj Tech Llc | Heat sealable thermo-printable tape |
WO2020118207A1 (en) | 2018-12-07 | 2020-06-11 | TekModo OZ Holdings, LLC | Composite laminate resin and fiberglass structure |
CN112549397A (zh) * | 2019-09-26 | 2021-03-26 | 科思创德国股份有限公司 | 用于结构部件的制造方法和结构部件 |
WO2021058677A1 (en) * | 2019-09-26 | 2021-04-01 | Covestro Intellectual Property Gmbh & Co. Kg | Manufacturing method for structural components and structural component |
TWI758030B (zh) | 2020-12-24 | 2022-03-11 | 科森複合材料股份有限公司 | 無鹵阻燃熱塑性編織型纖維強化高分子複合板之製造方法及其製品 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2991273A (en) | 1956-07-07 | 1961-07-04 | Bayer Ag | Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates |
US2999846A (en) | 1956-11-30 | 1961-09-12 | Schnell Hermann | High molecular weight thermoplastic aromatic sulfoxy polycarbonates |
US3028365A (en) | 1953-10-16 | 1962-04-03 | Bayer Ag | Thermoplastic aromatic polycarbonates and their manufacture |
US3153008A (en) | 1955-07-05 | 1964-10-13 | Gen Electric | Aromatic carbonate resins and preparation thereof |
US3912688A (en) | 1971-06-12 | 1975-10-14 | Bayer Ag | Flameproof polycarbonates |
EP0474123A1 (en) * | 1990-09-06 | 1992-03-11 | Kimberly-Clark Corporation | Extrusion coated nonwoven laminate, process of making and use of same |
US5821180A (en) * | 1994-07-01 | 1998-10-13 | Kuraray Co., Ltd. | Laminate comprising a polyurethane layer |
WO2001005900A1 (de) * | 1999-07-15 | 2001-01-25 | E.I. Du Pont De Nemours And Company | Pigmentpasten, deren herstellung und diese enthaltende kathodisch abscheidbare überzugsmittel |
US6518389B1 (en) | 1998-12-16 | 2003-02-11 | Bayer Aktiengesellschaft | Aliphatic thermoplastic polyurethanes, processes for their preparation and their use |
US20080233364A1 (en) * | 2007-03-23 | 2008-09-25 | Larson Brent K | Dimensionally stable laminate and method |
US20120061013A1 (en) * | 2007-12-12 | 2012-03-15 | Masanori Kubota | Composite article and method of manufacture |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1345150A (en) * | 1970-10-23 | 1974-01-30 | Monsanto Chemicals | Footwear |
US4762751A (en) * | 1984-07-30 | 1988-08-09 | Ppg Industries, Inc. | Flexible, chemically treated bundles of fibers, woven and nonwoven fabrics and coated bundles and fabrics thereof |
US4746565A (en) * | 1986-09-26 | 1988-05-24 | United Merchants And Manufacturers, Inc. | Fire barrier fabrics |
JPH03185185A (ja) * | 1989-12-13 | 1991-08-13 | Unitika Ltd | 溶融押出しコーティング加工方法 |
JPH0691815A (ja) * | 1992-09-09 | 1994-04-05 | Toray Ind Inc | 複合シート状物およびその製造方法 |
JPH07329059A (ja) * | 1994-06-13 | 1995-12-19 | Nitto Boseki Co Ltd | 成形用シート材料の製造方法 |
JP3392760B2 (ja) * | 1998-09-14 | 2003-03-31 | ニッシンコーポレーション株式会社 | 耐薬品性シートの製造方法 |
MXPA02007287A (es) * | 2000-01-28 | 2003-01-28 | 3M Innovative Properties Co | Laminado elastico/no tejido unido por extrusion. |
US6743742B1 (en) * | 2001-02-08 | 2004-06-01 | American Made, Llc | Method of partially embedding non-woven fiber mat to reinforcing fibers impregnated with a thermoplastic resin and composition therefrom |
US7507680B2 (en) * | 2003-11-12 | 2009-03-24 | Tredegar Film Products Corporation | Composite elastic web |
DE102005025980A1 (de) * | 2005-06-03 | 2006-12-07 | Basf Ag | Verbundelemente, enthaltend Vliesstoff aus thermoplastischem Polyurehthan |
BRPI0716296B1 (pt) * | 2006-11-01 | 2019-01-15 | Dow Global Technologies Inc | composição, artigo, estrutura laminada, dispersão, artigo moldado por injeção, artigo moldado, artigo para calçados e peça automotiva |
CN101583488A (zh) * | 2007-01-17 | 2009-11-18 | 巴斯夫欧洲公司 | 包含基于热塑性聚氨酯的膜和非织造材料的层压材料 |
DE102007054002A1 (de) * | 2007-11-13 | 2009-05-14 | Bayer Materialscience Ag | Nicht-ionisch hydrophilierte Bindemittel-Dispersionen |
CN101713151A (zh) * | 2008-10-06 | 2010-05-26 | E.I.内穆尔杜邦公司 | 复合增强材料及其制造方法和用途 |
WO2010111025A1 (en) * | 2009-03-24 | 2010-09-30 | Lubrizol Advanced Materials, Inc. | Cured in place pipe liner with styrene barrier |
JP5551386B2 (ja) * | 2009-06-25 | 2014-07-16 | 三菱樹脂株式会社 | 繊維・樹脂複合化シート及びfrp成形体 |
CN103582567B (zh) * | 2011-06-03 | 2015-12-09 | 路博润高级材料公司 | 多层复合材料 |
-
2013
- 2013-11-14 WO PCT/US2013/070037 patent/WO2014078499A1/en active Application Filing
- 2013-11-14 IN IN4167DEN2015 patent/IN2015DN04167A/en unknown
- 2013-11-14 KR KR1020157012494A patent/KR20150086260A/ko not_active Withdrawn
- 2013-11-14 JP JP2015542766A patent/JP2016501747A/ja active Pending
- 2013-11-14 US US14/442,535 patent/US20160279896A1/en not_active Abandoned
- 2013-11-14 EP EP13854332.7A patent/EP2919991A4/en not_active Withdrawn
- 2013-11-14 CN CN201380059804.2A patent/CN104936781A/zh active Pending
- 2013-11-15 TW TW102141688A patent/TW201437026A/zh unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3028365A (en) | 1953-10-16 | 1962-04-03 | Bayer Ag | Thermoplastic aromatic polycarbonates and their manufacture |
US3153008A (en) | 1955-07-05 | 1964-10-13 | Gen Electric | Aromatic carbonate resins and preparation thereof |
US2991273A (en) | 1956-07-07 | 1961-07-04 | Bayer Ag | Process for manufacture of vacuum moulded parts of high molecular weight thermoplastic polycarbonates |
US2999846A (en) | 1956-11-30 | 1961-09-12 | Schnell Hermann | High molecular weight thermoplastic aromatic sulfoxy polycarbonates |
US3912688A (en) | 1971-06-12 | 1975-10-14 | Bayer Ag | Flameproof polycarbonates |
EP0474123A1 (en) * | 1990-09-06 | 1992-03-11 | Kimberly-Clark Corporation | Extrusion coated nonwoven laminate, process of making and use of same |
US5821180A (en) * | 1994-07-01 | 1998-10-13 | Kuraray Co., Ltd. | Laminate comprising a polyurethane layer |
US6518389B1 (en) | 1998-12-16 | 2003-02-11 | Bayer Aktiengesellschaft | Aliphatic thermoplastic polyurethanes, processes for their preparation and their use |
WO2001005900A1 (de) * | 1999-07-15 | 2001-01-25 | E.I. Du Pont De Nemours And Company | Pigmentpasten, deren herstellung und diese enthaltende kathodisch abscheidbare überzugsmittel |
US20080233364A1 (en) * | 2007-03-23 | 2008-09-25 | Larson Brent K | Dimensionally stable laminate and method |
US20120061013A1 (en) * | 2007-12-12 | 2012-03-15 | Masanori Kubota | Composite article and method of manufacture |
Non-Patent Citations (3)
Title |
---|
KAUTSCHUK; GUMMI; KUNSTSTOFFE, NATURAL AND VULCANIZED RUBBER AND PLASTICS, vol. 35, 1982 |
KUNSTSTOFFE, PLASTICS, vol. 68, 1978, pages 819 - 825 |
See also references of EP2919991A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9771109B2 (en) | 2013-01-18 | 2017-09-26 | Sabic Global Technologies B.V. | Reinforced body in white and reinforcement therefor |
US11603142B2 (en) | 2014-06-16 | 2023-03-14 | Sabic Global Technologies B.V. | Structural body of a vehicle having an energy absorbing device and a method of forming the energy absorbing device |
US12384469B2 (en) | 2014-06-16 | 2025-08-12 | Sabic Global Technologies B.V. | Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool |
JP2016097676A (ja) * | 2014-11-25 | 2016-05-30 | ザ・ボーイング・カンパニーThe Boeing Company | ファイバベッドに融着された厚み方向領域を有する中間層を含む複合材料積層体 |
US11008050B2 (en) | 2016-12-30 | 2021-05-18 | Sabic Global Technologies B.V. | Hybrid structures and methods of making the same |
US12390308B2 (en) | 2018-12-31 | 2025-08-19 | Solventum Intellectual Properties Company | Multi-layered dental appliance |
WO2022015742A1 (en) * | 2020-07-13 | 2022-01-20 | Neuvotec, Llc | Extrusion or mold process and assembly for forming a single or multi-layer material having a polymerized layer |
Also Published As
Publication number | Publication date |
---|---|
EP2919991A4 (en) | 2016-07-20 |
IN2015DN04167A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2015-10-16 |
CN104936781A (zh) | 2015-09-23 |
KR20150086260A (ko) | 2015-07-27 |
EP2919991A1 (en) | 2015-09-23 |
JP2016501747A (ja) | 2016-01-21 |
TW201437026A (zh) | 2014-10-01 |
US20160279896A1 (en) | 2016-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2919991A1 (en) | Thermoplastic composite and its manufacturing | |
US20170182760A1 (en) | Thermoplastic composite and its manufacturing | |
TWI619737B (zh) | 碳纖維強化塑膠用樹脂組成物 | |
US20090092807A1 (en) | Two-way shape memory composite polymer and methods of making | |
KR20180089413A (ko) | 현장 중합형 열가소성 프리프레그, 열가소성 컴포지트 및 그 제조 방법 | |
EP3251827A1 (en) | Combined carbon- and glass-fiber reinforced thermoplastic polyurethane and polyamide composites and its manufacturing | |
JP5862740B1 (ja) | 離型フィルムおよび離型フィルムの使用方法 | |
KR20090098786A (ko) | 분지형 중합체를 이용한 라미네이션 공정 중의 물품의 치수 안정성 제어 방법 | |
CN103619895B (zh) | 纤维复合材料构件及其制备方法 | |
KR102115535B1 (ko) | 폴리에스테르계 저온 접착파우더를 이용한 자동차 천장재 및 제조방법 | |
JP6627266B2 (ja) | 強化繊維複合積層体 | |
JP6918546B2 (ja) | 表面被覆フィルム | |
JP6060256B2 (ja) | 複合材料の製造方法 | |
US20120077038A1 (en) | A process for incorporating an interpenetrating network or blend into the surface layer of a polymeric article | |
CN111356720A (zh) | 具有降低的表面波纹度的纤维增强复合材料 | |
WO2008053756A1 (fr) | Film de revêtement de polyester destiné à être utilisé dans un stratifié de caoutchouc, stratifié de caoutchouc-film de polyester, procédé de fabrication du stratifié et matériau composite | |
US11787129B2 (en) | Surface-coated film, surface-coated fiber-reinforced resin molded product, and manufacturing method thereof | |
JP5135762B2 (ja) | プラスチック成型体 | |
KR102115026B1 (ko) | 폴리에스테르 필름의 제조방법 및 폴리에스테르 성형품의 제조방법 | |
CN110576586A (zh) | 热塑性复合材料制件及其制备方法 | |
JP2010264643A (ja) | 易接着性ポリエステルフィルム及びゴム/ポリエステルフィルム積層体 | |
KR101905559B1 (ko) | 유무기 복합 적층체 및 이를 적용한 제품 | |
WO2019233929A1 (en) | Thermoplastic composite article and preparation method thereof | |
CN111356724A (zh) | 制备纤维增强复合材料的方法 | |
JPS6260990B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13854332 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013854332 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015542766 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157012494 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14442535 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |