WO2014077199A1 - 半導体基板のエッチング方法及び半導体素子の製造方法 - Google Patents

半導体基板のエッチング方法及び半導体素子の製造方法 Download PDF

Info

Publication number
WO2014077199A1
WO2014077199A1 PCT/JP2013/080259 JP2013080259W WO2014077199A1 WO 2014077199 A1 WO2014077199 A1 WO 2014077199A1 JP 2013080259 W JP2013080259 W JP 2013080259W WO 2014077199 A1 WO2014077199 A1 WO 2014077199A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching
etching solution
silicon
substrate
nitride film
Prior art date
Application number
PCT/JP2013/080259
Other languages
English (en)
French (fr)
Inventor
篤史 水谷
清水 哲也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020157007889A priority Critical patent/KR101743101B1/ko
Publication of WO2014077199A1 publication Critical patent/WO2014077199A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means

Definitions

  • the present invention relates to a method for etching a semiconductor substrate and a method for manufacturing a semiconductor element.
  • the silicon nitride film (SiN) is used as a mask material for forming a silicon (Si) selective oxide film known by a LOCOS (Local Oxidation of Silicon) structure.
  • a thermal oxide film is first formed on a silicon substrate.
  • a silicon nitride film is formed using CVD (Chemical Vapor Deposition) so as to cover this.
  • CVD Chemical Vapor Deposition
  • the silicon nitride film is patterned, and the exposed silicon oxide film is further heat-treated to selectively oxidize the region. Thereafter, the silicon nitride film used for patterning is removed. In this way, a LOCOS structure having a difference in thickness of the silicon oxide film, which is the basis of the MOS capacitor, is obtained.
  • STI Shallow Trench Isolation
  • a silicon nitride film is also used there.
  • a silicon oxide film is formed on the upper surface of the silicon substrate, and a silicon nitride film is applied by CVD so as to cover it.
  • a photoresist film is laid and patterned, and a trench is formed by etching in the order of SiN, SiO 2 and Si.
  • silicon oxide is buried in the trench.
  • CMP Chemical Mechanical Polishing
  • the silicon nitride film (SiN) is made to function as a stopper to remove excess silicon oxide.
  • the silicon nitride film can be removed by wet etching to obtain a desired isolation structure.
  • silicon nitride films are used as an indispensable mask material in recent semiconductor manufacturing.
  • this material is not incorporated into the element and needs to be accurately removed after a predetermined process.
  • etching solution for selectively removing a silicon nitride film (SiN)
  • SiN silicon nitride film
  • Patent Documents 1 and 2 an etching solution containing phosphoric acid and hexafluorosilicic acid
  • the present invention provides a method for etching a semiconductor substrate that exhibits good etching selectivity of a silicon nitride film relative to a silicon oxide film, and that can suppress or prevent the deposition of silicon oxide on the silicon oxide film, and a semiconductor using the same.
  • An object is to provide a method for manufacturing an element.
  • the present inventors have analyzed in detail the behavior when a specific chemical solution is applied in the selective removal of the silicon nitride film relative to the silicon oxide film.
  • the chemical solution was not heated and applied, but once the chemical solution was boiled and applied, the selective etching performance of the silicon nitride film was maintained and the silicon oxide film was oxidized. It was found that silicon oxide deposition on the film was suppressed. This appears as a significant difference when applied to a substrate at a predetermined temperature below the boiling point, and only the chemical solution that once experienced a boiling state despite the processing of the substrate at the same temperature is the above silicon oxide. It has been found that the effect of preventing precipitation is exhibited.
  • This invention is made
  • etching solution containing a phosphoric acid compound, a silicon-containing compound, and water is prepared, and the etching solution is applied to a substrate on which a silicon nitride film (SiN) and a silicon oxide film (SiO 2 ) are exposed to form a silicon nitride film.
  • the etching method according to [1] wherein the etching solution is cooled before and after the discharge.
  • the etchant is boiled in a tank that is held before the discharge, and then transferred to the nozzle through the flow path, and the etchant is discharged from the nozzle toward the substrate.
  • Any one of [1] to [6] The etching method according to item.
  • [8] The etching method according to any one of [1] to [7], wherein the silicon-containing compound is H 2 SiF 6 , (NH 4 ) 2 SiF 6 , or Na 2 SiF 6 .
  • Formula (2): Si (OR 4 ) 4 (R 2 represents an alkyl group having 1 to 12 carbon atoms.
  • R 3 represents an alkyl group having 1 to 24 carbon atoms.
  • R 4 is an alkyl group having 1 to 20 carbon atoms.)
  • [15] The etching method according to any one of [1] to [14], wherein the phosphoric acid compound is at least one selected from the group consisting of orthophosphoric acid, metaphosphoric acid, and pyrophosphoric acid.
  • [16] A method of manufacturing a semiconductor device, wherein the silicon nitride film is removed by the etching method according to any one of [1] to [15], and a semiconductor device is manufactured from the remaining substrate.
  • R 4 is an alkyl group having 1 to 20 carbon atoms.
  • the etching selectivity of the silicon nitride film with respect to the silicon oxide film is exhibited, the silicon nitride film can be efficiently removed, and the silicon oxide is deposited on the silicon oxide film. It can be suppressed or prevented. Furthermore, according to the method of the present invention, it is not necessary to perform the etching while maintaining the boiling state, but rather, the etching solution can be applied to the substrate at a temperature lower than this, so that the chemical solution is discharged and applied to the substrate. It is particularly suitable for processing by a sheet format apparatus, and can contribute to improvement in manufacturing efficiency, manufacturing suitability, and manufacturing quality.
  • FIG. 1 is a view showing a semiconductor substrate before etching.
  • a silicon layer Si layer 3
  • a silicon oxide film SiO 2 layer 2
  • the first layer is disposed above the silicon layer.
  • a silicon nitride film (SiN layer 1) to be a layer is formed.
  • the SiN layer 1 is removed by applying the etching solution (not shown) in this embodiment to the substrate 10 in this state. As a result, as shown in FIG. 2, the substrate 20 with the SiN layer 1 removed can be obtained.
  • FIG. 3 is process explanatory drawing which showed embodiment which concerns on the comparative example which is not based on the etching method of this invention.
  • a mode in which a chemical solution that has not been boiled is applied to etching as it is. With such a chemical solution, the effect of the present invention cannot be obtained, and a deposited film 5 of silicon oxide (SiO 2 ) is formed as illustrated.
  • silicon substrate or “semiconductor substrate”, or simply “substrate”, includes not only a silicon wafer but also a substrate structure in which a circuit structure is provided.
  • the member of the substrate refers to a member constituting the silicon substrate defined above and may be made of one material or a plurality of materials.
  • a processed semiconductor substrate is sometimes referred to as a semiconductor substrate product. Further, if necessary, the chip further processed and diced out and the processed product are called a semiconductor element or a semiconductor device.
  • the orientation of the substrate unless otherwise specified, in FIG. 1, the side opposite to the silicon wafer (SiN side) is referred to as “up” or “top”, and the silicon wafer side (Si side) is referred to as “down” or “ The bottom.
  • the etching solution of this embodiment contains a phosphoric acid compound and a silicon-containing compound.
  • a phosphoric acid compound and a silicon-containing compound.
  • each component including an arbitrary one will be described.
  • the etching solution of the present invention contains phosphoric acid as an essential component, and the phosphoric acid to be used is preferably at least one selected from the group consisting of polyphosphoric acids such as orthophosphoric acid, metaphosphoric acid, and pyrophosphoric acid.
  • the phosphoric acid compound is preferably contained in an amount of 60% by mass or more, more preferably 65% by mass or more, and particularly preferably 70% by mass or more based on the total mass of the etching solution of the present embodiment.
  • As an upper limit it is preferable that it is 95 mass% or less, 90 mass% or less is more preferable, and 85 mass% or less is further more preferable. It is preferable to set it to the upper limit value or less because excessive etching of the second layer can be further suppressed. It is preferable from the viewpoint of etching the first layer at a sufficient rate to be not less than the above lower limit.
  • the said phosphoric acid compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • the silicon-containing compound is preferably a compound represented by H 2 SiF 6 , and as its salt, ammonium salt ((NH 4 ) 2 SiF 6 ), sodium salt (Na 2 SiF 6 ), potassium salt (K 2 SiF And alkali metal salts such as 6 ).
  • ammonium salt (NH 4 ) 2 SiF 6 ), sodium salt (Na 2 SiF 6 ), potassium salt (K 2 SiF And alkali metal salts such as 6 ).
  • a hexafluorosilicic acid compound as a general term for hexafluorosilicic acid or a salt thereof.
  • the silicon-containing compound is preferably an alkoxysilane compound.
  • the alkoxysilane compound is a general term for compounds in which an alkoxy group is substituted on silicon, and may be further accompanied by an alkyl group, an aryl group, or the like. Of these, alkyltrialkoxysilanes represented by the following formula (1) are preferable.
  • R 2 R 2 represents an alkyl group having 1 to 12 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms). Specific examples include a methyl group, an ethyl group, a propyl group, and an isopropyl group. Among them, a methyl group or an ethyl group is preferable, and a methyl group is particularly preferable.
  • R 3 R 3 represents an alkyl group having 1 to 24 carbon atoms. Of these, a linear or branched alkyl group having 1 to 20 carbon atoms is preferable. Of these, a carbon number of 1 to 10 is preferable, and a carbon number of 1 to 4 is more preferable. In particular, an ethoxy group in which R 3 is an ethyl group is preferable.
  • alkyltrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltripropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, and propyltriethoxysilane.
  • the silicon-containing compound is also preferably a tetraalkoxysilane. Especially, what is represented by following formula (2) is preferable.
  • R 4 R 4 is an alkyl group having 1 to 20 carbon atoms. Of these, a carbon number of 1 to 10 is preferable, and a carbon number of 1 to 4 is more preferable. In particular, an ethoxy group in which R 4 is an ethyl group is preferable.
  • tetraalkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-tert-butoxysilane, and the like. . Of these, tetramethoxysilane and tetraethoxysilane are preferably used.
  • the silicon-containing compound is preferably contained in an amount of 0.01% by mass or more, more preferably 0.02% by mass or more, and more preferably 0.05% by mass or more, based on the total mass of the etching solution of the present embodiment. It is particularly preferred that As an upper limit, 1 mass% or less is preferable, 0.5 mass% or less is more preferable, 0.3 mass% or less is more preferable, 0.15 mass% or less is especially preferable.
  • the effect of preventing the precipitation of SiO 2 and preventing the damage of the second layer becomes more conspicuous by setting it to the upper limit value or less.
  • the said silicon containing compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • substituent T examples include the following.
  • An alkyl group preferably an alkyl group having 1 to 20 carbon atoms, such as methyl, ethyl, isopropyl, t-butyl, pentyl, heptyl, 1-ethylpentyl, benzyl, 2-ethoxyethyl, 1-carboxymethyl, etc.
  • alkenyl A group preferably an alkenyl group having 2 to 20 carbon atoms such as vinyl, allyl, oleyl and the like
  • an alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms such as ethynyl, butadiynyl, phenylethynyl and the like
  • a cycloalkyl group preferably a cycloalkyl group having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, 4-methylcyclohex
  • the compound or substituent / linking group contains an alkyl group / alkylene group, alkenyl group / alkenylene group, etc.
  • these may be cyclic or chain-like, and may be linear or branched, and substituted as described above. It may be substituted or unsubstituted.
  • an aryl group, a heterocyclic group, etc. are included, they may be monocyclic or condensed and may be similarly substituted or unsubstituted.
  • the technical matters such as temperature and thickness, as well as the choices of substituents and linking groups of the compounds, can be combined with each other even if the list is described independently.
  • aqueous medium In the etching liquid of the present invention, water (aqueous medium) is preferably applied as the medium, and an aqueous solution in which each component is uniformly dissolved is preferable.
  • the water content is preferably set to an amount obtained by subtracting the amount of the phosphoric acid compound and silicon-containing compound and, if necessary, optional additives. Specifically, the amount is preferably 1 to 60% by mass, and more preferably 5 to 50% by mass with respect to the total mass of the etching solution.
  • the water (aqueous medium) may be an aqueous medium containing a dissolved component as long as the effects of the present invention are not impaired, or may contain an unavoidable trace mixed component.
  • water that has been subjected to purification treatment such as distilled water, ion-exchanged water, or ultrapure water is preferable, and ultrapure water that is used for semiconductor manufacturing is particularly preferable.
  • the pH of the etching solution it is preferable to adjust the pH of the etching solution to ⁇ 2 or more.
  • the pH is preferably 2 or less, more preferably 1.5 or less, and even more preferably 1 or less.
  • pH is a value measured with F-51 (trade name) manufactured by HORIBA at room temperature (25 ° C.).
  • pH adjuster examples include quaternary ammonium salts such as tetramethylammonium and choline, alkali hydroxide metal salts such as potassium hydroxide, and alkaline earth metal hydroxides such as calcium hydroxide, It is preferable to use amino compounds such as aminoethanol and guanidine.
  • inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, or formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, Examples thereof include organic acids such as succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, and lactic acid.
  • the amount of the pH adjuster used is not particularly limited, and may be used in an amount
  • the etching solution of the present invention can be stored, transported and used in any container as long as corrosion resistance or the like does not matter (whether or not it is a kit).
  • a container having a high cleanliness and a low impurity elution is preferable.
  • the containers that can be used include, but are not limited to, “Clean Bottle” series manufactured by Aicero Chemical Co., Ltd., “Pure Bottle” manufactured by Kodama Resin Co., Ltd., and the like.
  • the etching solution is discharged and brought into contact with the semiconductor substrate.
  • the embodiment will be described with reference to FIG. 5.
  • An etching solution is sprayed from the discharge port 23 and applied to the upper surface of the semiconductor substrate S in the reaction vessel 21.
  • the etching solution is supplied from the introduction part A, and then moves to the discharge port 23 through the boiling tank 25 via the flow path fc.
  • the etching solution can be allowed to flow for a predetermined time, and the boiling state can be maintained here.
  • a flow path fd indicates a return path for reusing the chemical solution.
  • the semiconductor substrate S is on the turntable 22 and is preferably rotated together with the turntable by the rotation drive unit M.
  • etching it is preferable to perform the etching using a single wafer type apparatus.
  • a semiconductor substrate is transported or rotated in a predetermined direction, and an etching solution is injected or outflowed into the space to bring the etching solution into contact with the semiconductor substrate.
  • an etching solution is ejected from a nozzle and applied to a substrate. This “ejection” is a mode in which an etching solution is sprayed by pressurization, and no pressurization is performed. Including the aspect of dropping or flowing down.
  • the above-mentioned single-wafer type apparatus is processed by an immersion type (batch type) apparatus, it is difficult to control the in-plane uniformity of the wafer, and the adhering material adhering to the wafer is another wafer in the liquid. It tends to re-adhere. Further, with respect to temperature control, it is preferable to use a single-wafer type apparatus in that the chemical solution is remarkably deteriorated if the boiling temperature is maintained, and when the temperature is lowered to a predetermined temperature, detour process management is required.
  • the etching solution is boiled at least once and then applied to the substrate.
  • the effective etching property of SiN can be maintained, while the precipitation of SiO 2 can be effectively suppressed.
  • the reason for this is unclear, but it is presumed that by bringing the temperature of the etching solution to the boiling point, some change was given to the components contained, and the efficacy of the chemical solution was exhibited.
  • boiling temperature (Tbp) changes with the component composition of a chemical
  • the boiling treatment time (time for maintaining the boiling temperature after boiling) is not particularly limited, but is preferably 5 minutes or more, and more preferably 10 minutes or more. As an upper limit, it is preferable that it is 24 hours or less, and it is more preferable that it is 12 hours or less. In order to more suitably suppress the deactivation of the etching solution, the boiling time is preferably 120 minutes or less, and more preferably 60 minutes or less.
  • Such control of the boiling time can be performed, for example, by temporarily storing the etching solution in the boiling tank (reservoir) 25 shown in FIG. 5 and heating it here. Thereafter, the etching solution can be transferred to the nozzle 23 and applied to the substrate S.
  • the boiling treatment time may be ensured continuously, intermittently, or while raising the temperature, so that the setting may be changed as appropriate within the range where the effects of the present invention are achieved. is there.
  • Etching temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and 110 ° C. or higher in the temperature measurement method shown in Examples described later. It is particularly preferred.
  • As an upper limit it is preferable that it is 170 degrees C or less, and it is more preferable that it is 150 degrees C or less.
  • By setting it to the above lower limit or more it is preferable because a sufficient etching rate for the SiN layer can be ensured and SiO 2 precipitation can be effectively suppressed.
  • the upper limit value or less it is preferable because the temporal stability of the etching processing rate can be maintained.
  • the boiled etching solution may be applied to the substrate as it is in the boiled state, or the desired effect can be obtained even if it is applied at a temperature lower than its boiling point (Tbp).
  • the upper limit is preferably 20 ° C. or lower, more preferably 10 ° C. or lower in consideration of etching efficiency.
  • medical solution and the post-processing boiling processing temperature become the same value, However, When processing below a boiling point, a boiling processing temperature includes temperature lower than it.
  • the cooling is performed before and after the etching solution is discharged. That is, during the transition from the tank outlet 25a to the nozzle outlet 23, the etching liquid is cooled until it is discharged from the outlet 23 and reaches the substrate S (see flight time described later).
  • the cooling temperature may be controlled by optimizing the transition time.
  • the rotary table 22 may be a mechanism capable of adjusting the temperature so that the etching solution cooled as described above may stably act on the material to be etched on the substrate at a desired application temperature (Tap). Further, if necessary, the temperature can be adjusted by applying a heating mechanism to the flow path from the tank outlet 25a to the nozzle outlet 23, and the circulating etching solution can be maintained at a predetermined temperature.
  • the supply rate of the etching solution is not particularly limited, but is preferably 0.3 to 4 L (liter) / min, and more preferably 0.5 to 3 L / min.
  • the supply rate of the etching solution is not particularly limited, but is preferably 0.3 to 4 L (liter) / min, and more preferably 0.5 to 3 L / min.
  • the time from nozzle discharge to contact with the substrate can be calculated from the above flow rate and the distance between the substrate and the nozzle.
  • the flight time from nozzle discharge to substrate contact (which may be a droplet or a liquid flow) is preferably more than 0 seconds, and preferably 1 millisecond or more.
  • the upper limit is preferably 2 seconds or less, and preferably 1 second or less.
  • the distance between the nozzle and the substrate is not particularly limited, but is generally in the range of 5 to 50 mm.
  • the semiconductor substrate is transported or rotated in a predetermined direction, an etching solution is sprayed into the space, and the etching solution is brought into contact with the semiconductor substrate.
  • the supply rate of the etching solution and the rotation speed of the substrate are the same as those already described.
  • the etching solution in the single wafer type apparatus configuration according to the preferred embodiment of the present invention, as shown in FIG. 6, it is preferable to apply the etching solution while moving the discharge port (nozzle).
  • the discharge port moves along a movement trajectory line t extending from the center to the end of the semiconductor substrate.
  • the direction of rotation of the substrate and the direction of movement of the discharge port are set to be different directions, so that both move relative to each other.
  • the etching solution can be applied evenly over the entire surface of the semiconductor substrate, and the etching uniformity is suitably ensured.
  • the moving speed of the discharge port (nozzle) is not particularly limited, but is preferably 0.1 cm / s or more, and more preferably 1 cm / s or more.
  • the upper limit is preferably 30 cm / s or less, and more preferably 15 cm / s or less.
  • the movement trajectory line may be a straight line or a curved line (for example, an arc shape). In either case, the moving speed can be calculated from the actual distance of the trajectory line and the time spent for the movement.
  • any material can be etched by applying the etching solution of the present embodiment, but a substrate having a first layer containing SiN and a second layer containing SiO 2 is used.
  • the SiN layer can be formed by CVD.
  • the SiN layer has a specific composition of Si 3 N 4 , but the present invention is not limited to this.
  • the first layer contains SiN as its main component, but may contain other components as long as the effects of the present invention are achieved.
  • the SiO2 layer may be formed by a conventional method. For example, it can be suitably produced by a method called CVD (Chemical Vapor Deposition) or ALD (Atomic Layer Deposition).
  • the silicon oxide film (SiO 2 layer) is preferably a film obtained by heating and oxidizing a silicon film (Si layer).
  • the first layer is preferably etched at a high etching rate.
  • the thickness of the first layer is not particularly limited, but it is practical that the thickness is about 0.005 to 0.3 ⁇ m in consideration of the structure of a normal element.
  • the etching rate [R1] of the first layer is not particularly limited, but in consideration of production efficiency, it is preferably 30 ⁇ ⁇ / min or more, more preferably 50 ⁇ / min or more, and particularly preferably 70 ⁇ / min or more. . Although there is no upper limit in particular, it is practical that it is 500 kg / min or less.
  • the thickness of the second layer is not particularly limited, but it is practical that the thickness is about 0.005 to 0.3 ⁇ m in consideration of the structure of a normal element.
  • the etching rate [R2] of the second layer (SiO 2 layer) is not particularly limited, but is preferably not removed as much as possible, preferably 10 ⁇ / min or less, more preferably 5 ⁇ / min or less, and more preferably 1 ⁇ / Min or less is particularly preferable. Although there is no lower limit in particular, it is practical that it is 0.001 kg / min or more.
  • the speed ratio ([R1] / [R2]) between the etching rate [R1] of the silicon nitride film and the etching rate [R2] of the silicon oxide film is preferably 50 or more, more preferably 100 or more. More preferred. Furthermore, when making it a high etching rate, 200 or more are preferable and 300 or more are more preferable. Although there is no upper limit in particular, it is practical that it is 100,000 or less. Considering more practical aspects of the applied material, it may be 10,000 or less, 5,000 or less, or 1,000 or less.
  • the term “preparation” means that a specific material is synthesized or blended, and a predetermined item is procured by purchase or the like.
  • using an etchant to etch each material of a semiconductor substrate is referred to as “application”, but the embodiment is not particularly limited.
  • the method widely includes contacting the etching solution with the substrate.
  • the etching solution may be immersed and etched in a batch type or may be etched by discharge in a single wafer type.
  • FIG. 4 is a plan view schematically showing a TCAT (Terbit Cell Array Transistor) process of the NAND flash memory.
  • the silicon nitride film has been conventionally used in the manufacture of MOS or the like, but recently, it is also used in the manufacturing process of a flash memory or the like.
  • the silicon oxide film 12 and the silicon nitride film 13 are disposed on the upper side of the wafer 14 on both the left and right sides. Further, the left and right silicon oxide films 12 and silicon nitride films 13 are respectively arranged on both sides via a polysilicon layer 11 serving as an electrode, while both layers are alternately arranged in the front-rear direction.
  • One pattern (line width) is formed in nanometer order.
  • the etching solution is applied to the substrate 100 having such a fine pattern. Then, only the silicon nitride film is preferably removed, and the semiconductor substrate product 200 is formed in which the silicon oxide film 12 and the polysilicon layer 11 are left.
  • a high performance and large capacity flash memory can be formed by using a large number of fine grooves 15 formed on the substrate and further providing a trap layer, a blocking layer and a metal gate in each of them. According to the etching method of the present invention, it is possible to cope with the selective removal of the silicon nitride film in the element having such a fine structure.
  • the direction of the semiconductor substrate is not particularly limited, for convenience of explanation, in this specification, the SiN side is an upper side and the Si side is a lower side.
  • the structure of the semiconductor substrate or its members is illustrated in a simplified manner, and may be interpreted as a necessary form as necessary.
  • Example 1 An etching solution was prepared by containing the components shown in Table 1 below in the composition (% by mass) shown in the same table. The balance is water (ultra pure water).
  • a silicon oxide film (SiO 2 layer) was formed on a commercially available 300 mm silicon substrate by thermal oxidation. Further, a silicon nitride film (SiN layer) was produced by CVD. The silicon nitride film on the silicon substrate was 300 nm thick, and the silicon oxide film on the silicon substrate was 300 nm thick.
  • a radiation thermometer IT-550F (trade name) manufactured by HORIBA, Ltd. was fixed at a height of 30 cm above the wafer in the single wafer type apparatus. A thermometer was directed to the wafer center (Tap-c) and the wafer surface outside 250 mm (Tap-e) from there, and the temperature was measured while flowing a chemical solution. The temperature was digitally output from the radiation thermometer and recorded continuously with a personal computer. Of these, the value obtained by averaging the temperatures for 10 seconds at which the temperature was stabilized was defined as the temperature (Tap) on the wafer.
  • the etching rate (ER) was calculated by measuring the film thickness before and after the etching process using an ellipsometer (spectral ellipsometer, using JA Woolum Japan Co., Ltd. Vase). An average value of 5 points was adopted (measurement condition measurement range: 1.2-2.5 eV, measurement angle: 70, 75 degrees).
  • the pure water rinse process after etching is 2 L / min. 60 sec. Performed at 500 rpm.
  • the drying process is 1500 rpm 60 sec. I went there.
  • the test was carried out by maintaining the temperature for 10 minutes after the chemical in the tank reached the boiling point (Tbp) and then discharging it.
  • the flight time estimated from the supply speed and the distance between the nozzle and the substrate was 0.01 seconds. Precipitation on the silicon oxide film was evaluated using Applied Materials COMPLUS 3T.
  • SiN can be selectively removed selectively, and precipitation of SiO 2 on the SiO 2 layer can be effectively suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Weting (AREA)
  • Non-Volatile Memory (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Semiconductor Memories (AREA)

Abstract

リン酸化合物とケイ素含有化合物と水とを含むエッチング液をシリコン窒化膜(SiN)及びシリコン酸化膜(SiO)が露出した基板に適用してシリコン窒化膜を選択的に除去するに当たり、エッチング液を沸騰させた後、エッチング液を吐出して、基板に接触させる半導体基板のエッチング方法。

Description

半導体基板のエッチング方法及び半導体素子の製造方法
 本発明は、半導体基板のエッチング方法及び半導体素子の製造方法に関する。
 シリコン窒化膜(SiN)はLOCOS(Local Oxidation of Silicon)構造で知られるケイ素(Si)の選択酸化膜を形成するマスク材として用いられる。これは選択酸化法によりアイソレーション構造を形成するものであり、MOS(Metal Oxide Semiconductor)型キャパシタの製造技術として広く応用されている。具体的にこの技術においては、まずシリコン基板に熱酸化膜を形成する。さらにこれを覆うようにCVD(Chemical Vapor Deposition)を利用してシリコン窒化膜を形成する。この状態でシリコン窒化膜をパターニングし、そこで露出したシリコン酸化膜をさらに熱処理しその領域を選択的に酸化させる。その後にパターニングに用いたシリコン窒化膜を除去する。このようにして、MOS型キャパシタの基礎となる、シリコン酸化膜の厚みに差をつけたLOCOS構造が得られる。
 最近ではさらにSTI(Shallow Trench Isolation)技術が開発され、そこでもシリコン窒化膜が用いられている。この技術においても、シリコン基板の上面にシリコン酸化膜が形成され、それを覆うようにシリコン窒化膜がCVDにより施される。その後、フォトレジスト膜を敷設してこれをパターニングし、SiN、SiO、Siの順にエッチングしてトレンチを形成する。次いで、このトレンチに酸化シリコンを埋め込む。このとき、トレンチ以外にも酸化シリコンの膜(SiO)が形成されることとなるため、これをCMP(Chemical Mechanical Polishing)で研削し除去する。このCMP工程で、スラリにSiNを侵さない薬液を用い、シリコン窒化膜(SiN)をストッパとして機能させ、余剰の酸化シリコンを除去する。最後に、シリコン窒化膜をウエットエッチングにより除去して、所望のアイソレーション構造を得ることができる。
 上記のように、昨今の半導体製造において、シリコン窒化膜は不可欠なマスク材料として利用されている。一方で、この材料は素子のなかには組み込まれず、所定の加工の後は、的確に除去される必要がある。とりわけ、基板内部に残されるシリコン酸化膜は損傷せずに、選択的にシリコン窒化膜のみを除去することが望まれる。
 上記の要望に鑑み、シリコン窒化膜(SiN)を選択的に除去する薬液(エッチング液)として、例えば、リン酸とヘキサフルオロケイ酸とを含むエッチング液が提案されている(特許文献1、2参照)。また、上記の成分を含むエッチング液を150℃~180℃に加熱して、その選択性を高めることが提案されている。
特開2007-258405号公報 特開2007-318057号公報 特開2000-133631号公報
 上記特許文献1~3で示された処方の薬液によれば、シリコン酸化膜(SiO)に対する、シリコン窒化膜(SiN)の選択的なエッチングを達成することができる。また、特許文献3で提案されているように、薬液の温度を高めることはその選択性を改善する点で効果を発揮しうる。しかしながら、本発明者の確認によると、単に上記処方の薬液を加熱して適用すると、一度溶解した酸化シリコンが析出してシリコン酸化膜上に膜を形成することがあることが分かってきた(図3参照)。
 そこで本発明は、シリコン酸化膜に対するシリコン窒化膜の良好なエッチング選択性を発揮し、しかもシリコン酸化膜上への酸化シリコンの析出を抑制ないし防止しうる半導体基板のエッチング方法及びこれを利用した半導体素子の製造方法の提供を目的とする。
 本発明者らは上記の課題認識のもと、シリコン酸化膜に対するシリコン窒化膜の選択的除去における、特定の処方の薬液を適用したときの挙動について詳細に分析した。様々な条件や処方でその解析を行ったところ、単に加熱して薬液を適用するのではなく、一度薬液を沸騰させて適用すると、シリコン窒化膜の選択的なエッチング性能は維持して、シリコン酸化膜上の酸化シリコンの析出が抑えられることが分かった。これは、沸点以下の所定の温度で基板に適用したときに顕著な差として現われ、同じ温度で基板を処理しているのにもかかわらず、一度沸騰状態を経験した薬液のみが上記の酸化シリコンの析出防止効果を発揮することが分かった。本発明は上記の知見に基づいてなされたものであり、以下の手段を有する。
〔1〕リン酸化合物とケイ素含有化合物と水とを含むエッチング液を準備し、当該エッチング液をシリコン窒化膜(SiN)及びシリコン酸化膜(SiO)が露出した基板に適用してシリコン窒化膜を選択的に除去するに当たり、エッチング液を沸騰させた後、エッチング液を吐出して、基板に接触させる半導体基板のエッチング方法。
〔2〕エッチング液がその吐出前後で冷却される〔1〕に記載のエッチング方法。
〔3〕エッチング液の基板との接触温度が沸騰の温度より0℃超20℃以下の範囲で低い〔1〕または〔2〕に記載のエッチング方法。
〔4〕エッチング液をノズルから吐出し、滴下もしくは流下して基板と接触させる〔1〕~〔3〕のいずれか1項に記載のエッチング方法。
〔5〕エッチング液が、0.5~3L/minの速度で吐出される〔1〕~〔4〕のいずれか1項に記載のエッチング方法。
〔6〕エッチング液の沸点が110~180℃である〔1〕~〔5〕のいずれか1項に記載のエッチング方法。
〔7〕エッチング液をその吐出前に保持するタンク内で沸騰させ、その後流路を介してノズルに移行させ、ノズルからエッチング液を基板に向け吐出する〔1〕~〔6〕のいずれか1項に記載のエッチング方法。
〔8〕ケイ素含有化合物が、HSiF、(NHSiF、またはNaSiFである〔1〕~〔7〕のいずれか1項に記載のエッチング方法。
〔9〕ケイ素含有化合物が、下記式(1)または(2)で表される化合物である〔1〕~〔7〕のいずれか1項に記載のエッチング方法。
 式(1):RSi(OR 
 式(2):Si(OR
(Rは炭素数1~12のアルキル基を表す。Rは炭素数1~24のアルキル基を表す。Rは、炭素数1~20のアルキル基である。)
〔10〕エッチング液の煮沸時間が5分以上24時間以下である〔1〕~〔9〕のいずれか1項に記載のエッチング方法。
〔11〕エッチング液がケイ素含有化合物を0.01~1質量%で含む〔1〕~〔10〕のいずれか1項に記載のエッチング方法。
〔12〕エッチング液がリン酸化合物を60~95質量%で含む〔1〕~〔11〕のいずれか1項に記載のエッチング方法。
〔13〕前記エッチング液のpHが-2以上2以下である〔1〕~〔12〕のいずれか1項に記載のエッチング方法。
〔14〕シリコン窒化膜のエッチングレート[R1]と、シリコン酸化膜のエッチングレート[R2]との速度比([R1]/[R2])が、50以上である〔1〕~〔13〕のいずれか1項に記載のエッチング方法。
〔15〕前記リン酸化合物が、オルトリン酸、メタリン酸、およびピロリン酸からなる群より選ばれる少なくとも1種である[1]~[14]のいずれか1項に記載のエッチング方法。
〔16〕〔1〕~〔15〕のいずれか1項に記載のエッチング方法によりシリコン窒化膜を除去し、残された基板から半導体素子を製造する半導体素子の製造方法。
〔17〕シリコン窒化膜(SiN)及びシリコン酸化膜(SiO)が露出した基板に適用してシリコン窒化膜を選択的に除去するエッチング液であって、
 リン酸化合物とケイ素含有化合物と水とを含み、加熱による沸騰処理を施された半導体基板のエッチング液。
〔18〕前記ケイ素含有化合物が、下記式(1)または(2)で表される化合物である〔17に記載のエッチング液。
 式(1):RSi(OR 
 式(2):Si(OR
(Rは炭素数1~12のアルキル基を表す。Rは炭素数1~24のアルキル基を表す。Rは、炭素数1~20のアルキル基である。)
〔19〕前記エッチング液がケイ素含有化合物を0.01~1質量%で含む〔17〕または〔18〕に記載のエッチング液。
〔20〕前記エッチング液がリン酸化合物を60~95質量%で含む〔17〕または〔18〕に記載のエッチング液。
 本発明の方法によれば、シリコン酸化膜に対するシリコン窒化膜の良好なエッチング選択性を発揮し、効率的にシリコン窒化膜を除去することができ、しかもシリコン酸化膜上への酸化シリコンの析出を抑制ないし防止することができる。さらに、本発明の方法によれば、煮沸状態を維持してエッチングを行う必要はなく、むしろこれより低い温度でエッチング液を基板に適用することができるため、薬液を吐出して基板に適用する枚様式装置による処理に特に適しており、製造効率および製造適性、製造品質の良化に貢献することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
本発明の一実施形態における半導体基板の作製工程例(エッチング前)を模式的に示す断面図である。 本発明の一実施形態における半導体基板の作製工程例(エッチング後)を模式的に示す断面図である。 比較のための実施形態における半導体基板の作製工程例(エッチング後)を模式的に示す断面図である。 本発明の別の実施形態に係る半導体基板の作製工程例(エッチング前後)を模式的に示す平面図である。 本発明の好ましい実施形態に係るウエットエッチング装置の一部を示す装置構成図である。 本発明の一実施形態における半導体基板に対するノズルの移動軌跡線を模式的に示す平面図である。
 まず、本発明のエッチング方法に係るエッチング工程の好ましい実施形態について、図1、図2に基づき説明する。
[エッチング工程]
 図1はエッチング前の半導体基板を示した図である。本実施形態の製造例においては、シリコンウエハ内に、特定の第3層としてシリコン層(Si層3)、第2層としてシリコン酸化膜(SiO層2)を配し、その上側に第1層となるシリコン窒化膜(SiN層1)を形成したものを用いている。この状態の基板10に本実施形態におけるエッチング液(図示せず)を適用して、SiN層1を除去する。結果として、図2に示したように、SiN層1が除去された状態の基板20を得ることができる。言うまでもないが、本発明ないしその好ましい実施形態においては、図示したようなエッチングが理想的ではあるが、SiN層の残り、あるいはSiO層の多少の腐食は、製造される半導体素子の要求品質等に応じて適宜許容されるものであり、本発明がこの説明により限定して解釈されるものではない。
 一方、図3は本発明のエッチング方法によらない比較例に係る実施形態を示した工程説明図である。この比較例では、例えば沸騰処理をしていない薬液をそのままエッチングに適用する態様が挙げられる。このような薬液では本発明の効果は得られず、図示したもののように酸化シリコン(SiO)の析出膜5が形成されてしまう。
 なお、シリコン基板ないし半導体基板、あるいは単に基板というときには、シリコンウエハのみではなくそこに回路構造が施された基板構造体を含む意味で用いる。基板の部材とは、上記で定義されるシリコン基板を構成する部材を指し1つの材料からなっていても複数の材料からなっていてもよい。加工済みの半導体基板を半導体基板製品として区別して呼ぶことがある。これに必要によりさらに加工を加えダイシングして取り出したチップ及びその加工製品を半導体素子ないし半導体装置という。基板の向きについては、特に断らない限り、図1で言うと、シリコンウエハと反対側(SiN側)を「上」もしくは「天」といい、シリコンウエハ側(Si側)を「下」もしくは「底」という。
[エッチング液]
 次に、本発明のエッチング液の好ましい実施形態について説明する。本実施形態のエッチング液はリン酸化合物とケイ素含有化合物とを含有する。以下、任意のものを含め、各成分について説明する。
(リン酸化合物)
 本発明のエッチング液はリン酸を必須成分とするが、使用するリン酸は、オルトリン酸、メタリン酸、ピロリン酸などのポリリン酸からなる群より選ばれる少なくとも1種であることが好ましい。
 リン酸化合物は、本実施形態のエッチング液の全質量に対して、60質量%以上含有させることが好ましく、65質量%以上がより好ましく、70質量%以上含有させることが特に好ましい。上限としては95質量%以下であることが好ましく、90質量%以下がより好ましく、85質量%以下がさらに好ましい。上記上限値以下とすることで、第2層の過剰なエッチングをより抑制できるため好ましい。上記下限値以上とすることが、十分な速度で第1層をエッチングする観点で好ましい。また、この量を好適な範囲に調整することで、薬液の安全性・粘度調整・第1層のエッチング選択性の良化を一層効果的に図ることができ好ましい。
 上記リン酸化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(ケイ素含有化合物)
(ヘキサフルオロケイ酸化合物)
 ケイ素含有化合物はHSiFで表される化合物であることが好ましく、その塩としてはアンモニウム塩((NHSiF)、ナトリウム塩(NaSiF)、カリウム塩(KSiF)等のアルカリ金属塩等が挙げられる。本明細書においては、ヘキサフルオロケイ酸又はその塩の総称として、これをヘキサフルオロケイ酸化合物と呼ぶ。
(アルコキシシラン化合物)
 別の実施形態として、ケイ素含有化合物は、アルコキシシラン化合物であることが好ましい。アルコキシシラン化合物とは、ケイ素にアルコキシ基が置換した化合物の総称であり、さらにアルキル基やアリール基等を伴っていてもよい。なかでも、下記の式(1)で表されるアルキルトリアルコキシシランであることが好ましい。
 式(1):RSi(OR
・R
 Rは炭素数1~12のアルキル基(好ましくは炭素数1~6、より好ましくは炭素数1~3)を表す。具体的には、メチル基、エチル基、プロピル基、イソプロピル基などが挙げられる。また、その中でメチル基又はエチル基が好ましく、特に好ましいのはメチル基である。
・R
 Rは炭素数1~24のアルキル基を表す。なかでも、炭素数1~20の直鎖状または分岐状のアルキル基が好ましい。なかでも、炭素数1~10が好ましく、炭素数1~4がより好ましい。特に、Rがエチル基である、エトキシ基が好ましい。
 アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、などが挙げられる。
 ケイ素含有化合物はテトラアルコキシシランであることも好ましい。なかでも、下記の式(2)で表されるものが好ましい。
 式(2):Si(OR
・R
 Rは、炭素数1~20のアルキル基である。なかでも、炭素数1~10が好ましく、炭素数1~4がより好ましい。特に、Rがエチル基である、エトキシ基が好ましい。
 テトラアルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ-n-プロポキシシラン、テトライソプロポキシシラン、テトラ-n-ブトキシシラン、テトライソブトキシシラン、テトラ-tert-ブトキシシランなどが挙げられる。なかでも、テトラメトキシシラン、テトラエトキシシランが好適に用いられる。
 ケイ素含有化合物は、本実施形態のエッチング液の全質量に対して、0.01質量%以上含有させることが好ましく、0.02質量%以上含有させることがより好ましく、0.05質量%以上含有させることが特に好ましい。上限としては、1質量%以下が好ましく、0.5質量%以下がより好ましく、0.3質量%以下がさらに好ましく、0.15質量%以下が特に好ましい。ケイ素含有化合物を上記の範囲にすることで、第1層のエッチング性を十分に確保し、かつ第1層と第2層とのエッチング選択性を高め、同時に酸化シリコンの析出の抑制および防止を効果的に図ることができ好ましい。なかでも、フッ素原子を含むケイ素含有化合物においては、上記上限値以下とすることで、SiOの析出防止および第2層の損傷防止効果が一層顕著になる。
 上記ケイ素含有化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、本明細書において化合物の表示(例えば、化合物と末尾に付して呼ぶとき)については、当該化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、置換基を導入するなど一部を変化させた誘導体を含む意味である。
 本明細書において置換・無置換を明記していない置換基(連結基についても同様)については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基Tが挙げられる。
 置換基Tとしては、下記のものが挙げられる。
 アルキル基(好ましくは炭素原子数1~20のアルキル基、例えばメチル、エチル、イソプロピル、t-ブチル、ペンチル、ヘプチル、1-エチルペンチル、ベンジル、2-エトキシエチル、1-カルボキシメチル等)、アルケニル基(好ましくは炭素原子数2~20のアルケニル基、例えば、ビニル、アリル、オレイル等)、アルキニル基(好ましくは炭素原子数2~20のアルキニル基、例えば、エチニル、ブタジイニル、フェニルエチニル等)、シクロアルキル基(好ましくは炭素原子数3~20のシクロアルキル基、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4-メチルシクロヘキシル等)、アリール基(好ましくは炭素原子数6~26のアリール基、例えば、フェニル、1-ナフチル、4-メトキシフェニル、2-クロロフェニル、3-メチルフェニル等)、ヘテロ環基(好ましくは炭素原子数2~20のヘテロ環基、好ましくは、少なくとも1つの酸素原子、硫黄原子、窒素原子を有する5または6員環のヘテロ環基が好ましく、例えば、2-ピリジル、4-ピリジル、2-イミダゾリル、2-ベンゾイミダゾリル、2-チアゾリル、2-オキサゾリル等)、アルコキシ基(好ましくは炭素原子数1~20のアルコキシ基、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アリールオキシ基(好ましくは炭素原子数6~26のアリールオキシ基、例えば、フェノキシ、1-ナフチルオキシ、3-メチルフェノキシ、4-メトキシフェノキシ等)、アルコキシカルボニル基(好ましくは炭素原子数2~20のアルコキシカルボニル基、例えば、エトキシカルボニル、2-エチルヘキシルオキシカルボニル等)、アミノ基(好ましくは炭素原子数0~20のアミノ基、アルキルアミノ基、アリールアミノ基を含み、例えば、アミノ、N,N-ジメチルアミノ、N,N-ジエチルアミノ、N-エチルアミノ、アニリノ等)、スルファモイル基(好ましくは炭素原子数0~20のスルホンアミド基、例えば、N,N-ジメチルスルファモイル、N-フェニルスルファモイル等)、アシル基(好ましくは炭素原子数1~20のアシル基、例えば、アセチル、プロピオニル、ブチリル、ベンゾイル等)、アシルオキシ基(好ましくは炭素原子数1~20のアシルオキシ基、例えば、アセチルオキシ、ベンゾイルオキシ等)、カルバモイル基(好ましくは炭素原子数1~20のカルバモイル基、例えば、N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、アシルアミノ基(好ましくは炭素原子数1~20のアシルアミノ基、例えば、アセチルアミノ、ベンゾイルアミノ等)、スルホンアミド基(好ましくは炭素原子数0~20のスルファモイル基、例えば、メタンスルホンアミド、ベンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-エチルベンゼンスルホンアミド等)、アルキルチオ基(好ましくは炭素原子数1~20のアルキルチオ基、例えば、メチルチオ、エチルチオ、イソプロピルチオ、ベンジルチオ等)、アリールチオ基(好ましくは炭素原子数6~26のアリールチオ基、例えば、フェニルチオ、1-ナフチルチオ、3-メチルフェニルチオ、4-メトキシフェニルチオ等)、アルキルもしくはアリールスルホニル基(好ましくは炭素原子数1~20のアルキルもしくはアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、ベンゼンスルホニル等)、ヒドロキシル基、シアノ基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等)であり、より好ましくはアルキル基、アルケニル基、アリール基、ヘテロ環基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基、ヒドロキシル基またはハロゲン原子であり、特に好ましくはアルキル基、アルケニル基、ヘテロ環基、アルコキシ基、アルコキシカルボニル基、アミノ基、アシルアミノ基またはヒドロキシル基である。
 また、これらの置換基Tで挙げた各基は、上記の置換基Tがさらに置換していてもよい。
 化合物ないし置換基・連結基等がアルキル基・アルキレン基、アルケニル基・アルケニレン基等を含むとき、これらは環状でも鎖状でもよく、また直鎖でも分岐していてもよく、上記のように置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、同様に置換されていても無置換でもよい。
 本明細書において、化合物の置換基や連結基の選択肢を始め、温度、厚さといった各技術事項は、そのリストがそれぞれ独立に記載されていても、相互に組み合わせることができる。
(水媒体)
 本発明のエッチング液には、その媒体として水(水媒体)が適用されることが好ましく、各含有成分が均一に溶解した水溶液であることが好ましい。水の含有量は、前記リン酸化合物およびケイ素含有化合物、さらに必要により任意の添加剤の量を減じた量で設定されることが好ましい。具体的には、エッチング液の全質量に対して、1~60質量%であることが好ましく、5~50質量%であることが好ましい。水(水媒体)としては、本発明の効果を損ねない範囲で溶解成分を含む水性媒体であってもよく、あるいは不可避的な微量混合成分を含んでいてもよい。なかでも、蒸留水やイオン交換水、あるいは超純水といった浄化処理を施された水が好ましく、半導体製造に使用される超純水を用いることが特に好ましい。
(pH)
 本発明においては、エッチング液のpHを-2以上に調整することが好ましい。上限側は、pHを2以下とすることが好ましく、1.5以下とすることがより好ましく、1以下とすることがさらに好ましい。上記下限値以上とすることで、SiNのエッチング速度を実用的レベルするだけでなく、面内均一性をも一層良化することができる観点で好ましい。一方、上記上限値以下とすることがSiOに対する損傷防止のために好ましい。なお、本明細書においてpHは、室温(25℃)においてHORIBA社製、F-51(商品名)で測定した値とする。
(その他の成分)
・pH調整剤
 本実施形態においては、エッチング液のpHを上記の範囲にするが、この調整にpH調整剤を用いることが好ましい。pH調整剤としては、pHを上げるためにテトラメチルアンモニウム、コリン等の四級アンモニウム塩、水酸化カリウム等の水酸化アルカリ金属塩、又は水酸化カルシウム等の水酸化アルカリ土類金属塩、2-アミノエタノール、グアニジン等のアミノ化合物を用いることが好ましい。pHを下げるためには、塩酸、硝酸、硫酸、リン酸などの無機酸、又はギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2-メチル酪酸、n-ヘキサン酸、3,3-ジメチル酪酸、2-エチル酪酸、4-メチルペンタン酸、n-ヘプタン酸、2-メチルヘキサン酸、n-オクタン酸、2-エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸等の有機酸が挙げられる。
 pH調整剤の使用量は特に限定されず、pHを上記の範囲に調整するために必要な量で用いればよい。
 上記pH調整剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(容器)
 本発明のエッチング液は、(キットであるか否かに関わらず)対腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、そして使用することができる。また、半導体用途向けに、容器のクリーン度が高く、不純物の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、コダマ樹脂工業(株)製の「ピュアボトル」などが挙げられるが、これらに限定されるものではない。
[エッチング]
 本発明においては、エッチング液を吐出し、これを半導体基板と接触させる。その実施形態について、図5を用いて説明すると、エッチング液が吐出口23から噴射され、反応容器21内の半導体基板Sの上面に適用される。同図に示した実施形態では、導入部Aからエッチング液が供給され、その後流路fcを介して煮沸タンク25を経て吐出口23に移行するようにされている。煮沸タンクでは所定の時間エッチング液を溜流させることができ、ここで煮沸状態を維持することができる。流路fdは薬液を再利用するための返戻経路を示している。半導体基板Sは回転テーブル22上にあり、回転駆動部Mによって回転テーブルとともに回転されることが好ましい。
 本発明の実施形態においては、エッチングを枚葉式の装置により行うことが好ましい。枚葉式のエッチングにおいては、半導体基板を所定の方向に搬送もしくは回転させ、その空間にエッチング液を噴射ないし流出して前記半導体基板に前記エッチング液を接触させる。なお、枚葉式の装置においては、エッチング液をノズルから吐出して基板に適用することになるが、この「吐出」とは加圧によりエッチング液を噴射する態様のほか、加圧はせずに滴下ないし流下する態様を含む意味である。
 上記枚葉式の装置に対し、浸漬式(バッチ式)の装置で処理を行う場合、ウェハの面内均一性のコントロールが難しく、またウェハに付着していた付着物が液中で別のウェハに再付着してしまいやすい。さらに、温度管理についても煮沸温度を維持すれば薬液の劣化が著しく、そこから所定温度に降温するとなると、迂遠な工程管理が必要になる点で、枚葉式装置によることが好ましい。
 本発明においては、エッチング液を少なくとも1度沸騰させた後に基板に適用する。それにより、SiNの効果的なエッチング性を維持し、一方でSiOの析出を効果的に抑制することができる。この理由は不明であるが、エッチング液の温度を沸点にまで到達させることで、含有する成分に何らかの変化が付与され、上記薬液の効能を呈するに至ったものと推定される。沸騰温度(Tbp)は薬液の成分組成により変化するが、例えば、100℃以上であることが好ましく、110℃以上であることがより好ましい。上限としては、180℃以下であることが好ましく、170℃以下であることがより好ましく、160℃以下であることがさらに好ましく、150℃以下であることが特に好ましい。
 沸騰処理時間(沸騰後にその沸騰温度を維持する時間)は特に限定されないが、5分以上であることが好ましく、10分以上であることがより好ましい。上限としては、24時間以下であることが好ましく、12時間以下であることがより好ましい。エッチング液の失活をより好適に抑制するためには、沸騰時間を120分以下とすることが好ましく、60分以下とすることがより好ましい。このような沸騰時間の制御は、例えば、図5に示した沸騰タンク(リザーバー)25においてエッチング液を一時貯留しここで加熱することにより行うことができる。その後、エッチング液をノズル23に移行させ、基板Sに適用することができる。なお、この沸騰処理時間は連続的に確保しても、断続的に確保してもよく、昇温しながら行うなど、本発明の効果を奏する範囲でその設定を適宜変更してもよい意味である。
 エッチングを行う温度(基板への適用温度(Tap))は、後記実施例で示す温度測定方法において、80℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることが特に好ましい。上限としては、170℃以下であることが好ましく、150℃以下であることがより好ましい。上記下限値以上とすることにより、SiN層に対する十分なエッチング速度を確保し、かつSiOの析出を効果的に抑制でき好ましい。上記上限値以下とすることにより、エッチング処理速度の経時安定性を維持することができ好ましい。
 本発明においては、沸騰させたエッチング液をそのまま沸騰状態で基板に適用させてもよく、またその沸点(Tbp)より低い温度で適用しても所望の効果を得ることができる。沸点(Tbp)と基板適用温度(Tap)との差(ΔT=Tbp-Tap)は、枚葉式装置での吐出適用を考慮し、0℃超であることが好ましく、5℃以上であることがより好ましい。上限は、エッチング効率を考慮し、20℃以下であることが好ましく、10℃以下であることがより好ましい。なお、沸点で処理する場合には、薬液の沸点と後記沸騰処理温度とは同じ値となるが、沸点未満で処理する場合には沸騰処理温度はそれより低い温度を含むものとなる。
 ここで、エッチング液の冷却の形態について述べると、本実施形態においては、エッチング液を吐出する前後に行われることとなる。すなわち、タンク出口25aからノズル吐出口23に移行する間、さらに吐出口23から吐出され基板Sに到達するまでの間(後記飛翔時間参照)、当該エッチング液は冷却されることとなる。この移行の時間を好適化することにより冷却温度を制御してもよい。また、回転テーブル22を温度調整可能な機構として、上記のように冷却されたエッチング液が所望の適用温度(Tap)で安定して基板上の被エッチング材料に作用するようにしてもよい。さらに、必要により、前記タンク出口25aからノズル吐出口23までの流路に加熱機構を適用して温度調節可能にし、流通するエッチング液を所定温度に維持することなどもできる。
 エッチング液の供給速度は特に限定されないが、0.3~4L(リットル)/minとすることが好ましく、0.5~3L/minとすることがより好ましい。上記下限値以上とすることにより、エッチングの面内の均一性を一層良好に確保することができ好ましい。上記上限値以下とすることにより、連続処理時に安定した処理性能を確保でき好ましい。半導体基板を回転させるときには、その大きさ等にもよるが、上記と同様の観点から、300~1000rpmで回転させることが好ましい。
 ノズル吐出の後、基板と接触するまでの時間は上記の流速および基板とノズルとの距離から算出することができる。本発明においては、ノズル吐出から基板接触までの飛翔時間(液滴であっても液流であってもよい)を0秒超とすることが好ましく、1ミリ秒以上とすることが好ましい。上限は2秒以下とすることが好ましく、1秒以下とすることが好ましい。ノズルと基板との間の距離は特に限定されないが、5~50mmの範囲であることが一般的である。
 本発明の好ましい実施形態に係る枚葉式のエッチングにおいては、半導体基板を所定の方向に搬送もしくは回転させ、その空間にエッチング液を噴射して前記半導体基板に前記エッチング液を接触させることが好ましい。エッチング液の供給速度や基板の回転速度についてはすでに述べたことと同様である。
 本発明の好ましい実施形態に係る枚葉式の装置構成においては、図6に示すように、吐出口(ノズル)を移動させながら、エッチング液を付与することが好ましい。具体的に、本実施形態においては、SiN層を有する半導体基板Sに対してエッチング液を適用する際に、基板がr方向に回転させられている。他方、該半導体基板の中心部から端部に延びる移動軌跡線tに沿って、吐出口が移動するようにされている。このように本実施形態においては、基板の回転方向と吐出口の移動方向とが異なる方向に設定されており、これにより両者が互いに相対運動するようにされている。その結果、半導体基板の全面にまんべんなくエッチング液を付与することができ、エッチングの均一性が好適に確保される構成とされている。
 吐出口(ノズル)の移動速度は特に限定されないが、0.1cm/s以上であることが好ましく、1cm/s以上であることがより好ましい。一方、その上限としては、30cm/s以下であることが好ましく、15cm/s以下であることがより好ましい。移動軌跡線は直線でも曲線(例えば円弧状)でもよい。いずれの場合にも移動速度は実際の軌跡線の距離とその移動に費やされた時間から算出することができる。
[被加工物]
 本実施形態のエッチング液を適用することによりエッチングされる材料はどのようなものでもよいが、SiNを含む第1層とSiOを含む第2層とを有する基板を用いる。SiN層の形成は、CVDによって行うことができる。SiN層は具体的な組成としてはSiとなるが、本発明はこれに限定されない。なお、SiNと記載するときには、SixNy(x、y任意)を広く含む意味である。このことは、本明細書において共通し、別の金属化合物についても同様である。第1層は、その主たる成分としてSiNを含むが本発明の効果を奏する範囲でそれ以外の成分を含んでいてもよい。このことは第2層等の他の層についても同様である。なお、SiO2の層は定法によって作製すればよい。例えば、CVD(Chemical Vapor Deposition)、ALD(Atomic layer deposition)と呼ばれる方法で適宜に作製することができる。
 シリコン酸化膜(SiO層)としてはシリコン膜(Si層)を加熱酸化して得られる膜であることが好ましい。
 前記第1層は高いエッチングレートでエッチングされることが好ましい。第1層の厚さは特に限定されないが、通常の素子の構成を考慮したとき、0.005~0.3μm程度であることが実際的である。第1層のエッチングレート[R1]は、特に限定されないが、生産効率を考慮し、30Å/min以上であることが好ましく、50Å/min以上がより好ましく、70Å/min以上であることが特に好ましい。上限は特にないが、500Å/min以下であることが実際的である。
 第2層の厚さは特に限定されないが、通常の素子の構成を考慮したとき、0.005~0.3μm程度であることが実際的である。第2層(SiO層)のエッチングレート[R2]は、特に限定されないが、できるだけ除去されないことが好ましく、10Å/min以下であることが好ましく、5Å/min以下であることがより好ましく、1Å/min以下であることが特に好ましい。下限は特にないが、0.001Å/min以上であることが実際的である。
 前記シリコン窒化膜のエッチングレート[R1]と、シリコン酸化膜のエッチングレート[R2]との速度比([R1]/[R2])が、50以上であることが好ましく、100以上であることがより好ましい。さらに、高いエッチングレートとするときには、200以上が好ましく、300以上がより好ましい。上限は特にないが、100,000以下であることが実際的である。適用される材料のより実際的な側面を考慮すると、10,000以下であってもよく、5,000以下であってもよく、1,000以下であってもよい。
[半導体基板製品の製造]
 本実施形態においては、シリコンウエハ上に、前記第1層と第2層とを形成した半導体基板とする工程と、前記半導体基板にエッチング液を適用し、前記第1層を選択的に除去する工程とを介して、所望の構造を有する半導体基板製品を製造することが好ましい。このとき、エッチングには前記特定のエッチング液を用いる。
 なお、本明細書においてエッチングに係る各工程および半導体基板の製造方法については、本発明の効果を奏する範囲で適宜工程の順序を入れ替えて適用することが許容されるものである。本明細書において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。また、半導体基板の各材料をエッチングするようエッチング液を用いることを「適用」と称するが、その実施態様は特に限定されない。例えば、エッチング液と基板とを接触させることを広く含み、具体的には、バッチ式のもので浸漬してエッチングしても、枚葉式のもので吐出によりエッチングしてもよい。
 図4は、NANDフラッシュメモリのTCAT(Terabit Cell Array Transistor)工程を概略的に示す平面図である。シリコン窒化膜は上述したようにMOSの製造等で従来利用されてきたが、最近ではフラッシュメモリなどの製造過程においても活用されている。本実施形態の製造工程においては、ウェハ14の上側でその左右両側にシリコン酸化膜12およびシリコン窒化膜13が配設されている。さらに左右のシリコン酸化膜12およびシリコン窒化膜13は、それぞれ、電極となるポリシリコンの層11を介して両側に配置され、一方その前後方向に向けては両層が交互に配置されている。1つのパターン(線幅)はナノメートルオーダーで形成されている。このような微細パターンを有する基板100に前記のエッチング液を適用する。するとシリコン窒化膜のみが好適に除去され、シリコン酸化膜12とポリシリコンの層11が残された半導体基板製品200が形成される。この基板上に形成された多数の微細溝部15を利用し、さらにそのそれぞれにトラップ層、ブロッキング層、メタルゲートを配設し、高性能かつ大容量のフラッシュメモリを形成することができる。本発明のエッチング方法によれば、このような微細構造を有する素子におけるシリコン窒化膜の選択的除去に特に好適に対応することができる。
 半導体基板の方向は特に限定されないが、説明の便宜上、本明細書では、SiN側を上方とし、Si側を下方とする。なお、添付の図面では、半導体基板ないしその部材の構造を簡略化して図示しており、必要に応じて必要な形態として解釈すればよい。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は、以下の実施例に限定されるものではない。なお、実施例で示した量や比率の規定は特に断らない限り質量基準である。
<実施例1、比較例1>
 以下の表1に示す成分を同表に示した組成(質量%)で含有させてエッチング液を調液した。なお、残部は水(超純水)である。
(基板の作成方法)
 市販の300mmシリコン基板上に、熱酸化して、シリコン酸化膜(SiO層)を形成した。さらに、CVDにより、シリコン窒化膜(SiN層)を作製した。シリコン基板上の窒化シリコン膜は300nmの厚さとし、シリコン基板上の酸化シリコン膜は300nmの厚さとした。
(エッチング試験)
 上記の試験用基板に対して、枚葉式装置(SPS-Europe B.V.社製、POLOS(商品名)))にて下記の条件でエッチングを行い、評価試験を実施した。
 ・基板適用温度(Tap):表1参照
 ・吐出量:1L/min.
 ・5min
 ・ウェハ回転数500rpm
(処理温度の測定方法)
 株式会社堀場製作所製の放射温度計IT-550F(商品名)を前記枚葉式装置内のウェハ上30cmの高さに固定した。ウェハ中心(Tap-c)及びそこから250mm(Tap-e)外側のウェハ表面上に温度計を向け、薬液を流しながら温度を計測した。温度は、放射温度計からデジタル出力し、パソコンで連続的に記録した。このうち温度が安定した10秒間の温度を平均した値をウェハ上の温度(Tap)とした。
(エッチング速度)
 エッチング速度(ER)については、エリプソメトソー(分光エリプソメーター、ジェー・エー・ウーラム・ジャパン株式会社 Vaseを使用した)を用いてエッチング処理前後の膜厚を測定することにより算出した。5点の平均値を採用した(測定条件 測定範囲:1.2-2.5eV、測定角:70,75度)。
(その他の条件)
 エッチング後の純水リンスプロセスは、2L/min. 60sec. 500rpmで行った。乾燥プロセスは、1500rpm 60sec.で行った。
 試験はタンク内薬液が沸点(Tbp)になってから10分間その温度を維持して、その後に吐出して実施した。供給速度とノズル-基板間距離から見積もった飛翔時間は0.01秒であった。
 酸化ケイ素膜上の析出は、Applied Materials社COMPLUS 3Tを使用して評価した。
 使用薬品:リン酸、燐化学工業社製 半導体グレート EL-Sリン酸、その他については、下記表中Aldrich社製の試薬を用いて試験を実施した。
Figure JPOXMLDOC01-appb-T000001
(表の注釈)
 Cで始まる試験は比較例
 Si-化合物:ケイ素含有化合物
 Tbp:タンク内の温度(沸騰処理温度)
 Tap-c:ウェハ上の温度(ウェハ中心部)
 Tap-e:ウェハ上の温度(ウェハ中心より250mmの位置)
 SiN[R1]:SiN層のエッチング速度
 SiO[R2]:SiO層のエッチング速度
 SiO析出:SiO層上へのSiOの析出
 1Å=0.1nm
a:HSiF,sigma-aldrich社製 製品番号 01302
b:NaSiF,sigma-aldrich社製 製品番号 250171
c:(NHSiF,sigma-aldrich社製 製品番号 204331
d:(CO)Si,Tetra ethoxy silane, sigma-aldrich社製 製品番号 333859
e:(CHO)CHSi,Trimethoxy methyl silane, sigma-aldrich社製 製品番号 246174
 上記の結果から、本発明によれば、SiNの好適な選択的除去を行うとともに、SiO層へのSiOの析出を効果的に抑制することができることが分かる。
 なお、タンク内薬液が沸点(Tbp)になってから10分間より長くその温度を維持して、その後に吐出して、上記と同様の試験を実施した場合であっても、同様の効果が得られた。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2012年11月13日に日本国で特許出願された特願2012-249674に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。
1 SiN層(第1層)
2 SiO層(第2層)
3 Si層(第3層)
5 SiO析出層
10、20、30 半導体基板
21 反応容器
22 回転テーブル
23 吐出口
S 半導体基板
25 煮沸タンク
25a タンク出口

Claims (20)

  1.  リン酸化合物とケイ素含有化合物と水とを含むエッチング液を準備し、当該エッチング液をシリコン窒化膜(SiN)及びシリコン酸化膜(SiO)が露出した基板に適用して前記シリコン窒化膜を選択的に除去するに当たり、前記エッチング液を沸騰させた後、当該エッチング液を吐出して、前記基板に接触させる半導体基板のエッチング方法。
  2.  前記エッチング液がその吐出前後で冷却される請求項1に記載のエッチング方法。
  3.  前記エッチング液の前記基板との接触温度が前記沸騰の温度より0℃超20℃以下の範囲で低い請求項1または2に記載のエッチング方法。
  4.  前記エッチング液をノズルから吐出し、滴下もしくは流下して前記基板と接触させる請求項1~3のいずれか1項に記載のエッチング方法。
  5.  前記エッチング液が、0.5~3L/minの速度で吐出される請求項1~4のいずれか1項に記載のエッチング方法。
  6.  前記エッチング液の沸点が110~180℃である請求項1~5のいずれか1項に記載のエッチング方法。
  7.  前記エッチング液をその吐出前に保持するタンク内で沸騰させ、その後流路を介してノズルに移行させ、当該ノズルから前記エッチング液を前記基板に向け吐出する請求項1~6のいずれか1項に記載のエッチング方法。
  8.  前記ケイ素含有化合物が、HSiF、(NHSiF、またはNaSiFである請求項1~7のいずれか1項に記載のエッチング方法。
  9.  前記ケイ素含有化合物が、下記式(1)または(2)で表される化合物である請求項1~7のいずれか1項に記載のエッチング方法。
     式(1):RSi(OR
     式(2):Si(OR
    (Rは炭素数1~12のアルキル基を表す。Rは炭素数1~24のアルキル基を表す。Rは、炭素数1~20のアルキル基である。)
  10.  前記エッチング液の煮沸時間が5分以上24時間以下である請求項1~9のいずれか1項に記載のエッチング方法。
  11.  前記エッチング液がケイ素含有化合物を0.01~1質量%で含む請求項1~10のいずれか1項に記載のエッチング方法。
  12.  前記エッチング液がリン酸化合物を60~95質量%で含む請求項1~11のいずれか1項に記載のエッチング方法。
  13.  前記エッチング液のpHが-2以上2以下である請求項1~12のいずれか1項に記載のエッチング方法。
  14.  前記シリコン窒化膜のエッチングレート[R1]と、シリコン酸化膜のエッチングレート[R2]との速度比([R1]/[R2])が、50以上である請求項1~13のいずれか1項に記載のエッチング方法。
  15.  前記リン酸化合物が、オルトリン酸、メタリン酸、およびピロリン酸からなる群より選ばれる少なくとも1種である請求項1~14のいずれか1項に記載のエッチング方法。
  16.  請求項1~15のいずれか1項に記載のエッチング方法によりシリコン窒化膜を除去し、残された基板から半導体素子を製造する半導体素子の製造方法。
  17.  シリコン窒化膜(SiN)及びシリコン酸化膜(SiO)が露出した基板に適用して前記シリコン窒化膜を選択的に除去するエッチング液であって、
     リン酸化合物とケイ素含有化合物と水とを含み、加熱による沸騰処理を施された半導体基板のエッチング液。
  18.  前記ケイ素含有化合物が、下記式(1)または(2)で表される化合物である請求項17に記載のエッチング液。
     式(1):RSi(OR 
     式(2):Si(OR
    (Rは炭素数1~12のアルキル基を表す。Rは炭素数1~24のアルキル基を表す。Rは、炭素数1~20のアルキル基である。)
  19.  前記エッチング液がケイ素含有化合物を0.01~1質量%で含む請求項17または18に記載のエッチング液。
  20.  前記エッチング液がリン酸化合物を60~95質量%で含む請求項17または18に記載のエッチング液。
     
     
PCT/JP2013/080259 2012-11-13 2013-11-08 半導体基板のエッチング方法及び半導体素子の製造方法 WO2014077199A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020157007889A KR101743101B1 (ko) 2012-11-13 2013-11-08 반도체 기판의 에칭 방법 및 반도체 소자의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012249674A JP2014099480A (ja) 2012-11-13 2012-11-13 半導体基板のエッチング方法及び半導体素子の製造方法
JP2012-249674 2012-11-13

Publications (1)

Publication Number Publication Date
WO2014077199A1 true WO2014077199A1 (ja) 2014-05-22

Family

ID=50731111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080259 WO2014077199A1 (ja) 2012-11-13 2013-11-08 半導体基板のエッチング方法及び半導体素子の製造方法

Country Status (4)

Country Link
JP (1) JP2014099480A (ja)
KR (1) KR101743101B1 (ja)
TW (1) TWI683361B (ja)
WO (1) WO2014077199A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653475B1 (en) 2015-12-01 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
CN109686681A (zh) * 2017-10-19 2019-04-26 东京毅力科创株式会社 基板处理装置、基板处理方法以及存储介质
WO2020102228A1 (en) * 2018-11-15 2020-05-22 Entegris, Inc. Silicon nitride etching composition and method
JP2020533786A (ja) * 2017-09-06 2020-11-19 インテグリス・インコーポレーテッド 窒化ケイ素含有基板をエッチングするための組成物および方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147619B2 (en) 2015-08-27 2018-12-04 Toshiba Memory Corporation Substrate treatment apparatus, substrate treatment method, and etchant
JP6446003B2 (ja) * 2015-08-27 2018-12-26 東芝メモリ株式会社 基板処理装置、基板処理方法およびエッチング液
KR102446076B1 (ko) * 2015-11-19 2022-09-22 솔브레인 주식회사 식각 조성물 및 이를 이용한 반도체 소자의 제조방법
CN106783739B (zh) * 2015-11-24 2019-08-23 旺宏电子股份有限公司 垂直存储单元的半导体元件及其制造方法
US10325779B2 (en) 2016-03-30 2019-06-18 Tokyo Electron Limited Colloidal silica growth inhibitor and associated method and system
US10515820B2 (en) 2016-03-30 2019-12-24 Tokyo Electron Limited Process and apparatus for processing a nitride structure without silica deposition
KR102113189B1 (ko) * 2016-08-23 2020-06-03 오씨아이 주식회사 식각 후 식각 용액의 후처리 방법
CN109689838A (zh) 2016-12-26 2019-04-26 秀博瑞殷株式公社 蚀刻用组合物和使用该蚀刻用组合物制造半导体器件的方法
WO2018168874A1 (ja) * 2017-03-15 2018-09-20 株式会社 東芝 エッチング液、エッチング方法、及び電子部品の製造方法
KR101828437B1 (ko) * 2017-04-06 2018-03-29 주식회사 디엔에스 실리콘 질화막 식각용 조성물.
KR102030068B1 (ko) 2017-10-12 2019-10-08 세메스 주식회사 기판 처리 장치 및 기판 처리 방법
KR102084164B1 (ko) * 2018-03-06 2020-05-27 에스케이씨 주식회사 반도체 공정용 조성물 및 반도체 공정
KR102324275B1 (ko) * 2018-05-03 2021-11-09 삼성에스디아이 주식회사 실리콘 질화막 에칭 조성물 및 이를 이용한 에칭 방법
KR102005963B1 (ko) 2018-05-26 2019-07-31 에스케이이노베이션 주식회사 식각액 조성물 및 실란화합물
KR102024758B1 (ko) 2018-05-26 2019-09-25 에스케이이노베이션 주식회사 식각액 조성물, 절연막의 식각방법, 반도체 소자의 제조방법 및 실란화합물
JP7160642B2 (ja) * 2018-11-16 2022-10-25 株式会社Screenホールディングス 基板処理方法、3次元メモリデバイスの製造方法および基板処理装置
CN110804441A (zh) * 2019-11-08 2020-02-18 湖北兴福电子材料有限公司 一种抑制二氧化硅蚀刻的磷酸蚀刻液

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092211A (en) * 1976-11-18 1978-05-30 Northern Telecom Limited Control of etch rate of silicon dioxide in boiling phosphoric acid
JPH1050682A (ja) * 1996-08-01 1998-02-20 Seiko Epson Corp 半導体装置の製造方法及び製造装置及び半導体装置
JPH11154665A (ja) * 1997-11-20 1999-06-08 Dainippon Screen Mfg Co Ltd 基板の表面処理方法
JP2008047796A (ja) * 2006-08-21 2008-02-28 Tosoh Corp エッチング用組成物及びエッチング方法
JP2012182272A (ja) * 2011-03-01 2012-09-20 Seiko Npc Corp 半導体製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04188728A (ja) * 1990-11-22 1992-07-07 Hitachi Ltd 湿式エッチング装置
US5472562A (en) * 1994-08-05 1995-12-05 At&T Corp. Method of etching silicon nitride
US6162370A (en) * 1998-08-28 2000-12-19 Ashland Inc. Composition and method for selectively etching a silicon nitride film
EP1193493A1 (en) * 2000-09-29 2002-04-03 Infineon Technologies SC300 GmbH & Co. KG Method and apparatus for measuring and controlling the water content of a water containing liquid mixture
US7238295B2 (en) * 2002-09-17 2007-07-03 m·FSI Ltd. Regeneration process of etching solution, etching process, and etching system
JP3788985B2 (ja) * 2002-09-17 2006-06-21 エム・エフエスアイ株式会社 エッチング液の再生方法、エッチング方法およびエッチング装置
JP2007258405A (ja) * 2006-03-23 2007-10-04 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
TW200849371A (en) * 2007-02-28 2008-12-16 Tosoh Corp Etching method and etching composition useful for the method
US9257292B2 (en) * 2011-03-30 2016-02-09 Tokyo Electron Limited Etch system and method for single substrate processing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092211A (en) * 1976-11-18 1978-05-30 Northern Telecom Limited Control of etch rate of silicon dioxide in boiling phosphoric acid
JPH1050682A (ja) * 1996-08-01 1998-02-20 Seiko Epson Corp 半導体装置の製造方法及び製造装置及び半導体装置
JPH11154665A (ja) * 1997-11-20 1999-06-08 Dainippon Screen Mfg Co Ltd 基板の表面処理方法
JP2008047796A (ja) * 2006-08-21 2008-02-28 Tosoh Corp エッチング用組成物及びエッチング方法
JP2012182272A (ja) * 2011-03-01 2012-09-20 Seiko Npc Corp 半導体製造装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9653475B1 (en) 2015-12-01 2017-05-16 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2020533786A (ja) * 2017-09-06 2020-11-19 インテグリス・インコーポレーテッド 窒化ケイ素含有基板をエッチングするための組成物および方法
JP7026782B2 (ja) 2017-09-06 2022-02-28 インテグリス・インコーポレーテッド 窒化ケイ素含有基板をエッチングするための組成物および方法
CN109686681A (zh) * 2017-10-19 2019-04-26 东京毅力科创株式会社 基板处理装置、基板处理方法以及存储介质
CN109686681B (zh) * 2017-10-19 2024-03-01 东京毅力科创株式会社 基板处理装置、基板处理方法以及存储介质
WO2020102228A1 (en) * 2018-11-15 2020-05-22 Entegris, Inc. Silicon nitride etching composition and method
CN112996881A (zh) * 2018-11-15 2021-06-18 恩特格里斯公司 氮化硅蚀刻组合物及方法
US11053440B2 (en) 2018-11-15 2021-07-06 Entegris, Inc. Silicon nitride etching composition and method
US11697767B2 (en) 2018-11-15 2023-07-11 Entegris, Inc. Silicon nitride etching composition and method

Also Published As

Publication number Publication date
TW201432809A (zh) 2014-08-16
JP2014099480A (ja) 2014-05-29
KR20150048221A (ko) 2015-05-06
TWI683361B (zh) 2020-01-21
KR101743101B1 (ko) 2017-06-02

Similar Documents

Publication Publication Date Title
WO2014077199A1 (ja) 半導体基板のエッチング方法及び半導体素子の製造方法
JP6063206B2 (ja) エッチング液、これを用いたエッチング方法及び半導体素子の製造方法
WO2014077320A1 (ja) 半導体基板のエッチング液、これを用いたエッチング方法及び半導体素子の製造方法
JP6017273B2 (ja) 半導体基板のエッチング方法及び半導体素子の製造方法
TWI731790B (zh) 用以處理氮化物結構而不生矽土沉積之製程與設備
WO2014196468A1 (ja) エッチング液およびそのキット、これらを用いたエッチング方法、半導体基板製品の製造方法および半導体素子の製造方法
CN110628435B (zh) 氮化硅膜蚀刻组合物
JP6917961B2 (ja) 半導体デバイスの製造中に窒化チタンに対して窒化タンタルを選択的に除去するためのエッチング液
TW201411712A (zh) 蝕刻方法、半導體基板製品的製造方法及使用該方法的半導體元件的製造方法、以及蝕刻液調製用套組
WO2014115805A1 (ja) 半導体基板のエッチング方法、エッチング液及び半導体素子の製造方法並びにエッチング液のキット
KR20140099955A (ko) 반도체 기판 제품의 제조방법 및 이것에 이용되는 에칭방법
JP6198671B2 (ja) エッチング方法、これに用いるエッチング液、ならびに半導体基板製品の製造方法
WO2014077270A1 (ja) 半導体基板のエッチング方法及び半導体素子の製造方法
KR101630654B1 (ko) 에칭방법, 이것을 사용한 반도체 기판 제품 및 반도체 소자의 제조방법
JP6198384B2 (ja) 半導体基板のエッチング方法及び半導体素子の製造方法
KR20130086564A (ko) 커패시터 형성방법
US20240043719A1 (en) Polishing composition for semiconductor processing,method for preparing polishing composition, and method for manufacturing semiconductor element to which polishing composition is applied
JP2024520474A (ja) 窒化ケイ素膜を選択的にエッチングするための組成物および方法
TW202409252A (zh) 蝕刻液、使用該蝕刻液之矽裝置的製造方法及基板處理方法
JP2022502835A (ja) エッチング組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13855697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157007889

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13855697

Country of ref document: EP

Kind code of ref document: A1