WO2014065391A1 - ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 - Google Patents

ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 Download PDF

Info

Publication number
WO2014065391A1
WO2014065391A1 PCT/JP2013/078928 JP2013078928W WO2014065391A1 WO 2014065391 A1 WO2014065391 A1 WO 2014065391A1 JP 2013078928 W JP2013078928 W JP 2013078928W WO 2014065391 A1 WO2014065391 A1 WO 2014065391A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
alkyl
substituted
aryl
carbons
Prior art date
Application number
PCT/JP2013/078928
Other languages
English (en)
French (fr)
Inventor
明子 影山
Original Assignee
Jnc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jnc株式会社 filed Critical Jnc株式会社
Priority to KR1020157011395A priority Critical patent/KR102342591B1/ko
Priority to JP2014543357A priority patent/JP6156389B2/ja
Priority to CN201380054831.0A priority patent/CN104768929B/zh
Publication of WO2014065391A1 publication Critical patent/WO2014065391A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a benzofluorene compound, a light emitting layer material using the compound, and an organic electroluminescent element.
  • the organic electroluminescent element is a self-luminous light emitting element, and is expected as a light emitting element for display or illumination. 2. Description of the Related Art Conventionally, display devices using light-emitting elements that emit electroluminescence have been studied variously because they can save power and can be thinned. Further, organic electroluminescent elements made of organic materials can be easily reduced in weight and size. Therefore, it has been actively studied. In particular, the development of organic materials with light emission characteristics such as blue, which is one of the three primary colors of light, and organic materials that have charge transporting ability (such as semiconductors and superconductors) such as holes and electrons The development of materials has been actively studied so far, regardless of whether it is a high molecular compound or a low molecular compound.
  • the organic electroluminescent element has a structure composed of a pair of electrodes composed of an anode and a cathode, and one or a plurality of layers including an organic compound disposed between the pair of electrodes.
  • the layer containing an organic compound includes a light-emitting layer and a charge transport / injection layer that transports or injects charges such as holes and electrons, and various organic materials have been developed as the organic compound (for example, International Publication No. 2004/061047, International Publication No. 2004/061048 (Special Table No. 2006-512395), International Publication No. 2005/056633 (see Patent Documents 1, 2, and 3).
  • an organic electroluminescence device having sufficient performance with respect to the device life and the like has not been obtained yet even if the organic material described above is used. Under such circumstances, it has been desired to develop an organic electroluminescent device having higher performance in device lifetime, that is, a compound capable of obtaining the device.
  • the present inventor found a benzofluorene compound represented by the following general formula (1) and succeeded in the production thereof.
  • the present inventors have found that an organic electroluminescence device improved in device lifetime and the like can be obtained by arranging an organic electroluminescence device by arranging a layer containing this benzofluorene compound between a pair of electrodes. Completed. That is, the present invention provides the following benzofluorene compounds.
  • a benzofluorene compound represented by the following general formula (1) (Where R each independently represents an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl, and two Rs may be bonded to form a ring.
  • R each independently represents an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl, and two Rs may be bonded to form a ring.
  • Each Ar is independently an optionally substituted aryl or an optionally substituted heteroaryl;
  • A is N connected to O, S, or R 2
  • R 2 is hydrogen, an optionally substituted alkyl, an optionally substituted cycloalkyl, an optionally substituted aryl, an optionally substituted heteroaryl, or an optionally substituted acyl.
  • At least one hydrogen in the compound represented by the formula (1) may be substituted with deuterium.
  • Each R is independently alkyl having 1 to 12 carbons or aryl having 6 to 16 carbons, and these may be substituted with alkyl having 1 to 6 carbons or substituted silyl, Two Rs may be bonded to form a ring, Ar is each independently an aryl having 6 to 16 carbon atoms or a heteroaryl having 2 to 30 carbon atoms, and these are alkyl having 1 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, May be substituted with 15 heteroaryls, cycloalkyls having 3 to 12 carbon atoms, fluorinated alkyls having 1 to 6 carbon atoms, cyano, fluorine, substituted silyl, or substituted germyl, and have 1 to 6 carbon atoms When two alkyls are adjacently substituted, these may be bonded to form a ring; A is N connected to O, S, or R 2 , R 2 is hydrogen, alkyl having 1 to 12 carbons, cycloalkyl having
  • Each R is independently an alkyl having 1 to 6 carbon atoms or an aryl having 6 to 12 carbon atoms which may be substituted with an alkyl having 1 to 4 carbon atoms. May combine to form a cyclopentane ring, a cyclohexane ring, or a fluorene ring, Ar is independently an aryl having 6 to 12 carbon atoms or a heteroaryl having 2 to 15 carbon atoms, and these are alkyl having 1 to 4 carbon atoms, aryl having 6 to 12 carbon atoms, and 2 to Silyl substituted with 15 heteroaryl, cycloalkyl having 3 to 6 carbon atoms, fluorinated alkyl having 1 to 4 carbon atoms, cyano, fluorine, alkyl having 1 to 4 carbon atoms and / or aryl having 6 to 12 carbon atoms Or may be substituted with Germyl substituted with alkyl having 1 to 4 carbons and / or aryl having 6 to to 12
  • Optionally substituted with alkyl of 1 to 4, aryl of 6 to 12 carbons, cyano, or fluorine, and At least one hydrogen in the compound represented by the formula (1) may be substituted with deuterium;
  • R is both methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, phenyl, or naphthyl;
  • Ar is both phenyl, biphenylyl, terphenylyl, naphthyl, pyridyl, dibenzofuranyl, or dibenzothiophenyl, which are methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, Optionally substituted with phenyl, pyridyl, cyclopentyl, cyclohexyl, fluorinated methyl, cyano, fluorine, trimethylsilyl, phenyldimethylsilyl, trimethylgermyl, or phenyldimethylgermyl, and A is N, O, S, or R 2 linked, and R
  • R is both methyl, ethyl, or phenyl; Ar is both phenyl or naphthyl, both optionally substituted with methyl or fluorine, and A is N, O, S, or R 2 linked, and R 2 is hydrogen, methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, or phenyl.
  • Ar is each independently an optionally substituted aryl or an optionally substituted heteroaryl, and two adjacent Ars may be bonded via N to form a ring;
  • A is N connected to O, S, or R 2 ,
  • R 2 is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or acyl; and
  • At least one hydrogen in the compound represented by the formula (2X) or (2Y) may be substituted with deuterium.
  • Each R is independently alkyl having 1 to 12 carbons or aryl having 6 to 16 carbons, and these may be substituted with alkyl having 1 to 6 carbons or substituted silyl, Two Rs may be bonded to form a ring, Ar is each independently an aryl having 6 to 16 carbon atoms or a heteroaryl having 2 to 30 carbon atoms, and these are alkyl having 1 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, May be substituted with 15 heteroaryls, cycloalkyls having 3 to 12 carbon atoms, fluorinated alkyls having 1 to 6 carbon atoms, cyano, fluorine, substituted silyl, or substituted germyl, and have 1 to 6 carbon atoms When two alkyl groups are adjacently substituted, these may be bonded to form a ring, and two adjacent Ar atoms may be bonded via N to form an alkyl having 1 to 6 carbon atoms or A carbazole ring or
  • Each R is independently an alkyl having 1 to 6 carbon atoms, or an aryl having 6 to 12 carbon atoms which may be substituted with an alkyl having 1 to 4 carbon atoms. May combine to form a cyclopentane ring, a cyclohexane ring, or a fluorene ring, Ar is independently an aryl having 6 to 12 carbon atoms or a heteroaryl having 2 to 15 carbon atoms, and these are alkyl having 1 to 4 carbon atoms, aryl having 6 to 12 carbon atoms, and 2 to Silyl substituted with 15 heteroaryl, cycloalkyl having 3 to 6 carbon atoms, fluorinated alkyl having 1 to 4 carbon atoms, cyano, fluorine, alkyl having 1 to 4 carbon atoms and / or aryl having 6 to 12 carbon atoms Or may be substituted with Germyl substituted with alkyl having 1 to 4 carbons and / or aryl having 6
  • Optionally substituted with alkyl of 1 to 4, aryl of 6 to 12 carbons, cyano, or fluorine, and At least one hydrogen in the compound represented by the formula (2X) or (2Y) may be substituted with deuterium;
  • R each independently represents an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl, and two Rs may be bonded to form a ring.
  • Each Ar is independently an optionally substituted aryl or an optionally substituted heteroaryl;
  • R 1 is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, substituted silyl, substituted germyl, or cyano.
  • A is N connected to O, S, or R 2 , R 2 is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, or acyl;
  • the benzofluorene ring in formula (3X) or (3Y) may be substituted with alkyl, and At least one hydrogen in the compound represented by the formula (3X) or (3Y) may be substituted with deuterium.
  • Each R is independently alkyl having 1 to 12 carbons or aryl having 6 to 16 carbons, and these may be substituted with alkyl having 1 to 6 carbons or substituted silyl, Two Rs may be bonded to form a ring, Ar is each independently an aryl having 6 to 16 carbon atoms or a heteroaryl having 2 to 30 carbon atoms, and these are alkyl having 1 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, Silyl substituted with 15 heteroaryl, cycloalkyl having 3 to 12 carbons, fluorinated alkyl having 1 to 6 carbons, cyano, fluorine, alkyl having 1 to 4 carbons and / or aryl having 6 to 12 carbons Or may be substituted with Germyl substituted with alkyl having 1 to 4 carbons and / or aryl having 6 to 12 carbons, and when 2 alkyls having 1 to 6 carbons are adjacently substituted They may combine to form a ring, R 1 is
  • alkyls When two alkyls are substituted adjacent to each other, they may be bonded to form a ring; A is N connected to O, S, or R 2 , R 2 is hydrogen, alkyl having 1 to 12 carbons, cycloalkyl having 3 to 6 carbons, aryl having 6 to 16 carbons, heteroaryl having 2 to 15 carbons, formyl, or acetyl, which are carbon May be substituted with alkyl of 1 to 6, aryl of 6 to 12 carbons, cyano, or fluorine,
  • the benzofluorene ring in formula (3X) or (3Y) may be substituted with alkyl having 1 to 4 carbon atoms, and At least one hydrogen in the compound represented by the formula (3X) or (3Y) may be substituted with deuterium;
  • Each R is independently an alkyl having 1 to 6 carbon atoms or an aryl having 6 to 12 carbon atoms which may be substituted with an alkyl having 1 to 4 carbon atoms. May combine to form a cyclopentane ring, a cyclohexane ring, or a fluorene ring, Ar is independently an aryl having 6 to 12 carbon atoms or a heteroaryl having 2 to 15 carbon atoms, and these are alkyl having 1 to 4 carbon atoms, aryl having 6 to 12 carbon atoms, and 2 to 15 heteroaryls, cycloalkyl having 3 to 6 carbon atoms, fluorinated alkyl having 1 to 4 carbon atoms, cyano, fluorine, silyl substituted with alkyl having 1 to 4 carbon atoms, or alkyl having 1 to 4 carbon atoms It may be substituted with a substituted germyl, and when two alkyl groups having 1 to 6 carbon atoms are substituted.
  • R 1 is hydrogen, alkyl having 1 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, or heteroaryl having 2 to 15 carbon atoms, and the aryl and heteroaryl are alkyl having 1 to 4 carbon atoms, carbon number Optionally substituted with amino disubstituted by 6-12 aryl, heteroaryl having 2-15 carbons, or aryl having 6-12 carbons;
  • A is N connected to O, S, or R 2
  • R 2 is hydrogen, alkyl having 1 to 6 carbon atoms, cycloalkyl having 3 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, heteroaryl having 2 to 15 carbon atoms, formyl, or acetyl.
  • Optionally substituted with alkyl of 1 to 4, aryl of 6 to 12 carbons, cyano, or fluorine, and At least one hydrogen in the compound represented by the formula (3X) or (3Y) may be substituted with deuterium;
  • a material for a light emitting layer of a light emitting element the material for a light emitting layer containing the benzofluorene compound according to any one of the above [1] to [18].
  • An organic electroluminescence device comprising a pair of electrodes composed of an anode and a cathode, and a light emitting layer disposed between the pair of electrodes and containing the light emitting layer material described in [19].
  • the organic electroluminescence device comprising at least one selected from the group consisting of a pyridine derivative, a phenanthroline derivative, a borane derivative and a benzimidazole derivative.
  • the electron transport layer and / or the electron injection layer may further include an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal oxide, an alkali metal halide, an alkaline earth metal oxide, or alkaline earth. Containing at least one selected from the group consisting of halides of rare earth metals, oxides of rare earth metals, halides of rare earth metals, organic complexes of alkali metals, organic complexes of alkaline earth metals, and organic complexes of rare earth metals
  • the organic electroluminescent element as described in [21] above.
  • a display device comprising the organic electroluminescent element according to any one of [20] to [22].
  • a benzofluorene compound having excellent characteristics as a light emitting layer material can be provided.
  • the organic electroluminescent element improved about characteristics, such as element lifetime, can be provided.
  • Benzofluorene compound represented by the general formula (1) The benzofluorene compound of the present invention will be described in detail.
  • One of the benzofluorene compounds according to the present invention is a benzofluorene compound represented by the general formula (1).
  • This benzofluorene compound is a compound in which two “amino groups substituted with an Ar group and a dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group)” are bonded to a central benzofluorene skeleton.
  • the dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group) is bonded to nitrogen at positions 1 to 4, and the bonding position of the two dibenzofuranyl groups (or dibenzothiophenyl group or carbazolyl group) is Although they may be the same or different, they are preferably the same bonding position from the viewpoint of ease of synthesis.
  • a compound in which two dibenzofuranyl groups (or dibenzothiophenyl group or carbazolyl group) have the same bonding form is a compound represented by the following formulas (1A) to (1D).
  • the compound represented by the following formula (1A) is a type in which a 4-dibenzofuranyl group (or 4-dibenzothiophenyl group or 4-carbazolyl group) is bonded
  • the compound represented by the following formula (1B) is 3 -A compound having a dibenzofuranyl group (or 3-dibenzothiophenyl group or 3-carbazolyl group) bonded thereto
  • the compound represented by the following formula (1C) is a 2-dibenzofuranyl group (or 2-dibenzothiophenyl) Group or 2-carbazolyl group)
  • the compound represented by the following formula (1D) has a 1-dibenzofuranyl group (or 1-dibenzothiophenyl group or 1-carbazolyl group)
  • Ar in the general formula (1) can be selected from an optionally substituted aryl or an optionally substituted heteroaryl.
  • aryl in Ar in the general formula (1) examples include aryl having 6 to 30 carbon atoms.
  • Preferred “aryl” is aryl having 6 to 16 carbon atoms, more preferably aryl having 6 to 12 carbon atoms.
  • aryl include monocyclic aryl phenyl, (o-, m-, p-) tolyl, (2,3-, 2,4-, 2,5-, 2,6-, 3,4-, 3,5-) xylyl, mesityl, (o-, m-, p-) cumenyl, bicyclic aryl (2-, 3-, 4-) biphenylyl, fused bicyclic aryl Certain (1-, 2-) naphthyl, tricyclic arylterphenylyl (m-terphenyl-2'-yl, m-terphenyl-4'-yl, m-terphenyl-5'-yl, o- Terphenyl-3'-yl, o-terphenyl-4'-yl, p-terphenyl-2'-yl, m-terphenyl-2-yl, m-terphenyl-3-yl, m-terphenyl -4-yl, o-terpheny
  • heteroaryl in Ar in the general formula (1) include heteroaryl having 2 to 30 carbon atoms.
  • Preferred “heteroaryl” is heteroaryl having 2 to 25 carbon atoms, more preferably heteroaryl having 2 to 20 carbon atoms, still more preferably heteroaryl having 2 to 15 carbon atoms, particularly preferably carbon. It is a heteroaryl of 2-10.
  • the “heteroaryl” includes, for example, a heterocyclic group containing 1 to 5 heteroatoms selected from oxygen, sulfur and nitrogen in addition to carbon as a ring constituent atom, such as an aromatic heterocyclic group. Can be given.
  • heterocyclic group examples include pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, oxadiazolyl, thiadiazolyl, triazolyl, tetrazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, indolyl, isoindolyl, 1H-indazolyl, Benzoimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quinolyl, isoquinolyl, cinnolyl, quinazolyl, quinoxalinyl, phthalazinyl, naphthyridinyl, purinyl, pteridinyl, carbazolyl, acridinyl, phenoxa
  • Examples of the ⁇ aromatic heterocyclic group '' include furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl, oxadiazolyl, furazanyl, thiadiazolyl, triazolyl, tetrazolyl, pyridyl, pyrimidinyl, pyridazinyl, pyrazinyl, triazinyl, Benzofuranyl, isobenzofuranyl, (1-, 2-, 3-, 4-) dibenzofuranyl, benzo [b] thienyl, (1-, 2-, 3-, 4-) dibenzothiophenyl, indolyl, isoindolyl 1H-indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, 1H-benzotriazolyl, quino
  • Aryl or “heteroaryl” which is Ar in the general formula (1) may be substituted, and examples thereof include alkyl having 1 to 6 carbon atoms, aryl having 6 to 12 carbon atoms, and heteroaryl having 2 to 15 carbon atoms. It may be substituted with aryl, cycloalkyl having 3 to 12 carbon atoms, fluorinated alkyl having 1 to 6 carbon atoms, cyano, fluorine, substituted silyl, or substituted germyl.
  • the number of substituents is, for example, the maximum possible number of substitution, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1, but is preferably unsubstituted.
  • alkyl having 1 to 6 carbon atoms as a substituent for Ar the description of “alkyl” in the column of R described later can be cited for the specific description.
  • heteroaryl having 2 to 15 carbon atoms as a substituent for Ar
  • the description of “heteroaryl” in the above-mentioned column of Ar can be cited for the specific description.
  • cycloalkyl having 3 to 12 carbon atoms as a substituent for Ar, a cycloalkyl having 3 to 10 carbon atoms is preferable, a cycloalkyl having 3 to 8 carbon atoms is more preferable, and a cycloalkyl having 3 to 6 carbon atoms is preferable. Further preferred. Specific examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl, and the like.
  • fluorinated alkyl as a substituent for Ar include, for example, those obtained by fluorinating “alkyl” described in the column of R, which will be described later.
  • the hydrogen may be fluorinated.
  • Preferred is a fluorinated alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms), and fluorinated alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms). More preferred is.
  • Specific examples include total (or partial) fluorinated methyl, total (or partial) fluorinated ethyl, total (or partial) fluorinated propyl, or total (or partial) fluorinated isopropyl, and the like. Is particularly preferred.
  • the three hydrogens in the silyl group are each independently substituted with alkyl having 1 to 4 carbon atoms or aryl having 6 to 12 carbon atoms. What is there. More specifically, the three hydrogens in the silyl group are each independently substituted with methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, phenyl, biphenylyl, naphthyl, or the like. I can give you.
  • substituted silyls include trimethylsilyl (TMS), triethylsilyl, tripropylsilyl, triisopropylsilyl, tributylsilyl, tris-butylsilyl, tri-t-butylsilyl, ethyldimethylsilyl, propyldimethylsilyl, isopropyldimethylsilyl.
  • TMS trimethylsilyl
  • triethylsilyl tripropylsilyl
  • triisopropylsilyl tributylsilyl
  • tris-butylsilyl tri-t-butylsilyl
  • ethyldimethylsilyl propyldimethylsilyl
  • isopropyldimethylsilyl isopropyldimethylsilyl.
  • phenyldimethylsilyl phenyldiethylsilyl, phenyldi-t-butylsilyl, methyldiphenylsilyl, ethyldiphenylsilyl, propyldiphenylsilyl, isopropyldiphenylsilyl, butyldiphenylsilyl, s-butyldiphenylsilyl, t-butyldiphenylsilyl, triphenylsilyl Etc.
  • the three hydrogen atoms in the germyl group are each independently substituted with alkyl having 1 to 4 carbon atoms or aryl having 6 to 12 carbon atoms. What is there. More specifically, three hydrogens in the germyl group are each independently substituted with methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl, t-butyl, phenyl, biphenylyl, naphthyl, or the like. I can give you.
  • substituted gel mills include trimethyl gel mill, triethyl gel mill, tripropyl gel mill, triisopropyl gel mill, tributyl gel mill, tris-butyl gel mill, tri-t-butyl gel mill, ethyl dimethyl gel mill, propyl dimethyl gel.
  • phenyl dimethyl gel mill phenyl diethyl gel mill, phenyl di-t-butyl gel mill, methyl diphenyl gel mill, ethyl diphenyl gel mill, propyl diphenyl gel mill, isopropyl diphenyl gel mill, butyl diphenyl gel mill, s-butyl diphenyl gel mill, t -Butyl diphenyl gel mill, triphenyl gel mill and the like.
  • alkyl for example, alkyl having 1 to 6 carbon atoms
  • these may be bonded to form a ring.
  • the ring thus formed include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, and trimethylcyclohexane.
  • R in the general formula (1) can be selected from an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl.
  • the “alkyl” in R in the general formula (1) may be either a straight chain or a branched chain, and examples thereof include a straight chain alkyl having 1 to 24 carbon atoms and a branched chain alkyl having 3 to 24 carbon atoms. .
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl examples include methyl (Me), ethyl (Et), n-propyl, isopropyl (i-Pr), n-butyl, isobutyl, s-butyl, t-butyl (t-Bu), n -Pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n- Octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl,
  • heteroaryl in R of the general formula (1), the description of “heteroaryl” in the column of Ar can be cited for the specific description.
  • Alkyl “aryl” or “heteroaryl” as R in the general formula (1) may be substituted, and may be substituted with, for example, alkyl having 1 to 6 carbon atoms or substituted silyl. .
  • the description of “substituent to Ar” in the above-mentioned column of Ar can be cited.
  • the 5-membered ring of the benzofluorene skeleton includes, for example, cyclobutane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, methylcyclohexane, dimethylcyclohexane,
  • An aliphatic ring such as trimethylcyclohexane or an aromatic ring such as a fluorene ring may be spiro-condensed.
  • the aliphatic ring may be condensed with a benzene ring (for example, cyclopentadiene having a condensed benzene ring).
  • R 2 linked thereto is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, substituted An optionally substituted aryl, an optionally substituted heteroaryl, or an optionally substituted acyl.
  • Alkyl in R 2 may be either linear or branched, and examples thereof include linear alkyl having 1 to 24 carbons and branched alkyl having 3 to 24 carbons.
  • Preferred “alkyl” is alkyl having 1 to 18 carbons (branched alkyl having 3 to 18 carbons). More preferable “alkyl” is alkyl having 1 to 12 carbons (branched alkyl having 3 to 12 carbons). More preferable “alkyl” is alkyl having 1 to 6 carbon atoms (branched alkyl having 3 to 6 carbon atoms). Particularly preferred “alkyl” is alkyl having 1 to 4 carbon atoms (branched alkyl having 3 to 4 carbon atoms).
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, n-pentyl, isopentyl, neopentyl, t-pentyl, n-hexyl, 1 -Methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 1-methylhexyl, n-octyl, t-octyl, 1-methylheptyl, 2-ethylhexyl, 2 -Propylpentyl, n-nonyl, 2,2-dimethylheptyl, 2,6-dimethyl-4-heptyl, 3,5,5-trimethylhexyl, n-decyl, n-undecy
  • cycloalkyl in R 2 examples include cycloalkyl having 3 to 12 carbon atoms. Preferred “cycloalkyl” is cycloalkyl having 3 to 10 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 8 carbon atoms. More preferred “cycloalkyl” is cycloalkyl having 3 to 6 carbon atoms.
  • cycloalkyl examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, and dimethylcyclohexyl.
  • heteroaryl in R 2 can be referred to the description of “heteroaryl” in the column of Ar above.
  • “Acyl” in R 2 is a group generally represented by “— (C ⁇ O) —R 3 ”, and the specific description of “R 3 ” is the explanation of “alkyl” in R 2 above. Can be quoted. And “optionally substituted acyl” means that “R 3 ” may be substituted.
  • acyl includes formyl and acetyl.
  • Alkyl, cycloalkyl, aryl, heteroaryl and acyl as R 2 may be substituted, and a specific description of this substituent is the substitution of “aryl” or “heteroaryl” in the column of Ar above. The explanation of the group can be cited.
  • Specific examples of the compound represented by the general formula (1) include, for example, the following formula (1-1) to formula (1-185), the following formula (1-201) to formula (1 to 388), and Examples thereof include compounds represented by the following formulas (1-401) to (1-612). Further, for example, the following formulas (1-701) to (1-762), the following formulas (1-801) to (1-854), the following formulas (1-901) to (1-958), and Examples thereof include compounds represented by the following formulas (1-1001) to (1-1046).
  • Benzofluorene Compound Represented by General Formula (2X) or (2Y) The benzofluorene compound of the present invention will be described in detail.
  • One of the benzofluorene compounds according to the present invention is a benzofluorene compound represented by the general formula (2X) or (2Y).
  • This benzofluorene compound has an “amino group substituted with Ar group and dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group)” and “amino group substituted with two Ar” with respect to the central benzofluorene skeleton. It is a bound compound.
  • a dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group) is bonded to nitrogen at positions 1 to 4.
  • the benzofluorene compound represented by the general formula (2X) or (2Y) has the following formulas (2XA) to (2XD) and the following formulas depending on the bonding mode of the dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group).
  • the compounds are classified into compounds represented by (2YA) to (2YD).
  • R in the general formula (2X) or (2Y) can be selected from an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl. Two Rs may be bonded to form a ring.
  • the description in the general formula (1) can be cited.
  • Ar in the general formula (2X) or (2Y) can be selected from an optionally substituted aryl or an optionally substituted heteroaryl.
  • the description in the general formula (1) can be cited.
  • two adjacent Ars may be bonded via N to form a ring.
  • the resulting ring include a carbazole ring and a benzocarbazole ring.
  • These rings may also be substituted with alkyl having 1 to 6 carbons or aryl having 6 to 12 carbons, and the specific description of these substituents is the same as that in the above general formula (1). Can be quoted.
  • a in the general formula (2X) or (2Y) is N in which O, S, or R 2 is linked, and for the specific description thereof, the description in the general formula (1) can be cited. .
  • a hydrogen atom in the benzofluorene ring, R, Ar, and a dibenzofuranyl group (or dibenzothiophenyl group) substituted on the benzofluorene ring All or some of the hydrogen atoms may be deuterium.
  • Specific examples of the compound represented by the general formula (2X) or (2Y) include, for example, the following formulas (2-1) to (2-230) and formula (2) classified into the general formula (2X): -601) to formula (2-830), and the following formula (2-301) to formula (2-576) and formula (2-901) to formula (2Y) classified into general formula (2Y) 2-1176).
  • Benzofluorene Compound Represented by General Formula (3X) or (3Y) The benzofluorene compound of the present invention will be described in detail.
  • One of the benzofluorene compounds according to the present invention is a benzofluorene compound represented by the above general formula (3X) or (3Y).
  • This benzofluorene compound is a compound in which “amino group substituted with Ar group and dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group)” and “R 1 group” are bonded to the central benzofluorene skeleton. .
  • a dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group) is bonded to nitrogen at positions 1 to 4.
  • the benzofluorene compound represented by the general formula (3X) or (3Y) has the following formulas (3XA) to (3XD) and the following formulas depending on the bonding mode of the dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group).
  • the compounds are classified into compounds represented by (3YA) to (3YD).
  • R in the general formula (3X) or (3Y) can be selected from an optionally substituted alkyl, an optionally substituted aryl, or an optionally substituted heteroaryl. Two Rs may be bonded to form a ring.
  • the description in the general formula (1) can be cited.
  • Ar in the general formula (3X) or (3Y) can be selected from an optionally substituted aryl or an optionally substituted heteroaryl.
  • the description in the general formula (1) can be cited.
  • R 1 in general formula (3X) or (3Y) is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, It can be selected from substituted silyl, substituted germyl, or cyano.
  • R 1 in general formula (3) is hydrogen, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, It can be selected from substituted silyl, substituted germyl, or cyano.
  • substituent for aryl and heteroaryl in addition to the explanation in the general formula (1), there can be mentioned substitution by an amino group (ie, diarylamino group) disubstituted by aryl having 6 to 12 carbon atoms.
  • aryl having 6 to 12 carbon atoms For the specific description of the aryl having 6 to 12 carbon atoms, the description in the general formula (1) can be cited. Further, when two alkyl groups having 1 to 6 carbon atoms are substituted adjacent to aryl or heteroaryl, these may be bonded to form a ring, and the ring thus formed is Examples thereof include cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, and trimethylcyclohexane.
  • cycloalkyl A cycloalkyl having 3 to 12 carbon atoms is preferred, a cycloalkyl having 3 to 10 carbon atoms is more preferred, a cycloalkyl having 3 to 8 carbon atoms is further preferred, and a cycloalkyl having 3 to 6 carbon atoms is particularly preferred.
  • cyclopropyl cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopentyl, cycloheptyl, methylcyclohexyl, cyclooctyl, dimethylcyclohexyl, and the like.
  • benzofluorene ring in the general formula (3X) or (3Y) may be substituted with alkyl, and for the specific description of this alkyl, the description in the general formula (1) can be cited.
  • a in the general formula (3X) or (3Y) is N in which O, S, or R 2 is linked, and for the specific description thereof, the description in the general formula (1) can be cited. .
  • the hydrogen atom in the benzofluorene ring, the R, Ar, R 1 and dibenzofuranyl groups (or dibenzothiophenyl groups) substituted on the benzofluorene ring, which constitute the compound represented by the general formula (3X) or (3Y) All or some of the hydrogen atoms in the group) may be deuterium.
  • Specific examples of the compound represented by the general formula (3X) or (3Y) include, for example, the following formulas (3-1) to (3-86) and formula (3) classified into the general formula (3X): -201) to formula (3-296), and the following formula (3-101) to formula (3-196) and formula (3-301) to formula (3Y) classified into general formula (3Y) 3-396).
  • the Buchwald-Hartwig reaction is a method of coupling an aromatic halide with a primary aromatic amine or a secondary aromatic amine using a palladium catalyst or a copper catalyst in the presence of a base.
  • Specific examples of the reaction route for obtaining the compound represented by the general formula (1) by this method are as follows (Schemes 1 to 3).
  • reaction shown in the first stage of Scheme 1 is Suzuki coupling, and the reaction can be performed by alternately exchanging the X group and the Y group in the two compounds to be reacted.
  • Negishi coupling can be used instead of Suzuki coupling.
  • a zinc chloride complex is used instead of boronic acid or boronic acid ester as the compound having Y group. .
  • the reaction can be carried out even if the X group and the Y group are alternately exchanged (that is, using a zinc chloride complex of naphthalene), as described above.
  • a raw material in which —COOR ′′ is previously substituted next to the carbon to be coupled to the benzene ring is used, but instead, a naphthalene ring is used.
  • a raw material in which —COOR ′′ is substituted at the 2-position (next to the carbon to be coupled) can also be used.
  • Ar and A in each scheme correspond to those used in the general formula (1).
  • Scheme 2 shows a compound represented by the general formula (1) formed by bonding two “amino groups substituted with Ar group and dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group)” to the benzofluorene skeleton.
  • an amino group substituted with an Ar group and a dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group) is synthesized in advance, and this is bonded to the benzofluorene skeleton.
  • the example which used the amine compound of Ar as the starting material is shown in the scheme 2, this is synthesized from the amine compound of dibenzofuranyl (or dibenzothiophenyl or carbazolyl) when Ar is, for example, phenyl. This is because it is easy to obtain, and this may be reversed depending on the type of Ar. Therefore, the production method may be determined in consideration of the synthesis and availability of the starting material.
  • Scheme 3 is a method in which the sites corresponding to the Ar group and the dibenzofuranyl group (or dibenzothiophenyl group or carbazolyl group) are bonded one by one.
  • Ar amine compound as a starting material is shown in Scheme 3
  • an amine compound of dibenzofuranyl (or dibenzothiophenyl or carbazolyl) can also be used as a starting material.
  • the production method may be determined in consideration of the steric hindrance associated with the reaction with benzofluorene.
  • palladium catalyst used in the above reaction are tetrakis (triphenylphosphine) palladium (0): Pd (PPh 3 ) 4 , bis (triphenylphosphine) palladium (II) dichloride: PdCl 2 (PPh 3 ) 2 , Palladium (II) acetate: Pd (OAc) 2 , tris (dibenzylideneacetone) dipalladium (0): Pd 2 (dba) 3 , tris (dibenzylideneacetone) dipalladium (0) chloroform complex: Pd 2 (dba 3 ⁇ CHCl 3 , bis (dibenzylideneacetone) palladium (0): Pd (dba) 2 , PdCl 2 ⁇ P (t-Bu) 2- (p-NMe 2 -Ph) ⁇ 2 , bis (tri-o - tolylphosphine) - palladium (II)
  • a phosphine compound may be added to these palladium compounds in some cases.
  • the phosphine compound include tri (t-butyl) phosphine, tricyclohexylphosphine, 1- (N, N-dimethylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (N, N -Dibutylaminomethyl) -2- (di-t-butylphosphino) ferrocene, 1- (methoxymethyl) -2- (di-t-butylphosphino) ferrocene, 1,1'-bis (di-t-butylphosphino) ) Ferrocene, 2,2′-bis (di-t-butylphosphino) -1,1′-binaphthyl, 2-methoxy-2 ′-(di-t-butylphosphino) -1,
  • base used in this reaction are sodium carbonate, potassium carbonate, cesium carbonate, sodium bicarbonate, sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, sodium t-butoxide, sodium acetate, phosphoric acid. Tripotassium, potassium fluoride, etc.
  • solvent used in this reaction examples include benzene, 1,2,4-trimethylbenzene, toluene, xylene, N, N-dimethylformamide, tetrahydrofuran, diethyl ether, t-butyl methyl ether, 1,4- Dioxane, methanol, ethanol, isopropyl alcohol and the like.
  • solvents can be appropriately selected according to the structure of the aromatic halide, triflate, aromatic boronic acid ester and aromatic boronic acid to be reacted.
  • a solvent may be used independently and may be used as a mixed solvent.
  • the Ullmann reaction is a method of coupling an aromatic halide and a primary aromatic amine or a secondary aromatic amine using a copper catalyst in the presence of a base.
  • a copper catalyst used in the Ullmann reaction include copper powder, copper chloride, copper bromide or copper iodide.
  • specific examples of the base used in this reaction can be selected from the same ones as in the Buchwald-Hartwig reaction.
  • specific examples of the solvent used in the Ullmann reaction include nitrobenzene, dichlorobenzene, N, N-dimethylformamide and the like.
  • the compound represented by the general formula (1) can also be produced by utilizing the following reaction (Scheme 4 or 5).
  • the reaction shown in the first stage of Scheme 4 and Scheme 5 is Suzuki coupling, and the reaction can be carried out even if the X group and the Y group in the two compounds to be reacted are interchanged.
  • Negishi coupling can be used instead of Suzuki coupling.
  • a zinc chloride complex is used instead of boronic acid or boronic acid ester as the compound having Y group. .
  • a compound in which two R's in the benzofluorene compound represented by the formula (1) are combined to form a ring is described in, for example, JP-A-2009-184993. It can be synthesized with reference to a method for synthesizing a benzofluorene compound having a spiro structure.
  • Paragraph [0055] of the publication describes a synthesis method (Scheme 1c) cited below. In the scheme below, M is Li, MgCl, MgBr, or MgI.
  • one tertiary amine (a naphthalene derivative or a benzene derivative to which a secondary amino group is bonded) of the starting materials used in the scheme (4) or (5) is bonded to the naphthalene derivative to which the nitrogen-containing aromatic ring is bonded or
  • a benzene derivative the type represented by the formula (2Y) from the naphthalene derivative to which the nitrogen-containing aromatic ring is bonded, and the type represented by the formula (2X) from the benzene derivative to which the nitrogen-containing aromatic ring is bondedcan be manufactured.
  • a compound in a form in which two adjacent Ars are bonded via N to form a ring can be obtained according to the following schemes (6) and (7). After the production, it can be produced by bonding an amine moiety and a nitrogen-containing aromatic ring moiety thereto.
  • carbazole is taken as an example of the nitrogen-containing aromatic ring compound, but a nitrogen-containing aromatic ring compound can be appropriately selected and used depending on the target compound.
  • the benzofluorene compound represented by the formula (2Y) is obtained. It can also be manufactured.
  • the benzofluorene compound represented by the general formula (3X) or (3Y) can also be produced by applying the schemes (6) and (7).
  • scheme (7) a secondary amine is reacted and then a nitrogen-containing aromatic ring compound (carbazole) is reacted.
  • R 1 boronic acid, boronic ester or zinc chloride complex The benzofluorene compound represented by the formula (3X) can be produced by using Suzuki coupling or Negishi coupling.
  • the compounds of the present invention include those in which at least a part of the hydrogen atoms are substituted with deuterium.
  • a compound can be obtained by using a raw material in which a desired position is deuterated. It can be synthesized in the same way.
  • FIG. 1 is a schematic cross-sectional view showing an organic electroluminescent element according to this embodiment.
  • An organic electroluminescent device 100 shown in FIG. 1 includes a substrate 101, an anode 102 provided on the substrate 101, a hole injection layer 103 provided on the anode 102, and a hole injection layer 103.
  • the cathode 108 provided on the electron injection layer 107.
  • the organic electroluminescent element 100 is manufactured in the reverse order, for example, the substrate 101, the cathode 108 provided on the substrate 101, the electron injection layer 107 provided on the cathode 108, and the electron injection layer.
  • a structure including the hole injection layer 103 provided above and the anode 102 provided on the hole injection layer 103 may be employed.
  • each said layer may consist of a single layer, respectively, and may consist of multiple layers.
  • the substrate 101 serves as a support for the organic electroluminescent device 100, and usually quartz, glass, metal, plastic, or the like is used.
  • the substrate 101 is formed into a plate shape, a film shape, or a sheet shape according to the purpose.
  • a glass plate, a metal plate, a metal foil, a plastic film, a plastic sheet, or the like is used.
  • glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate, polysulfone and the like are preferable.
  • soda lime glass, non-alkali glass, or the like is used, and the thickness only needs to be sufficient to maintain the mechanical strength.
  • the upper limit value of the thickness is, for example, 2 mm or less, preferably 1 mm or less.
  • the glass material is preferably alkali-free glass because it is better to have less ions eluted from the glass.
  • soda lime glass with a barrier coat such as SiO 2 is also commercially available, so it can be used. it can.
  • the substrate 101 may be provided with a gas barrier film such as a dense silicon oxide film on at least one surface in order to improve the gas barrier property, and a synthetic resin plate, film or sheet having a low gas barrier property is used as the substrate 101. When used, it is preferable to provide a gas barrier film.
  • the anode 102 serves to inject holes into the light emitting layer 105.
  • the hole injection layer 103 and / or the hole transport layer 104 are provided between the anode 102 and the light emitting layer 105, holes are injected into the light emitting layer 105 through these layers. .
  • Examples of the material for forming the anode 102 include inorganic compounds and organic compounds.
  • Examples of inorganic compounds include metals (aluminum, gold, silver, nickel, palladium, chromium, etc.), metal oxides (indium oxide, tin oxide, indium-tin oxide (ITO), etc.), halogenated Examples thereof include metals (such as copper iodide), copper sulfide, carbon black, ITO glass, and nesa glass.
  • Examples of the organic compound include polythiophene such as poly (3-methylthiophene), conductive polymer such as polypyrrole and polyaniline, and the like. In addition, it can select suitably from the substances currently used as an anode of an organic electroluminescent element, and can use it.
  • the resistance of the transparent electrode is not particularly limited as long as a current sufficient for light emission of the light-emitting element can be supplied.
  • an ITO substrate of 300 ⁇ / ⁇ or less functions as an element electrode, but at present, since it is possible to supply a substrate of about 10 ⁇ / ⁇ , for example, 100 to 5 ⁇ / ⁇ , preferably 50 to 5 ⁇ . It is particularly desirable to use a low resistance product of / ⁇ .
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 100 to 300 nm.
  • the hole injection layer 103 plays a role of efficiently injecting holes moving from the anode 102 into the light emitting layer 105 or the hole transport layer 104.
  • the hole transport layer 104 plays a role of efficiently transporting holes injected from the anode 102 or holes injected from the anode 102 through the hole injection layer 103 to the light emitting layer 105.
  • the hole injection layer 103 and the hole transport layer 104 are each formed by laminating and mixing one kind or two or more kinds of hole injection / transport materials or a mixture of the hole injection / transport material and the polymer binder. Is done.
  • an inorganic salt such as iron (III) chloride may be added to the hole injection / transport material to form a layer.
  • a hole injection / transport material As a hole injection / transport material, it is necessary to efficiently inject and transport holes from the positive electrode between electrodes to which an electric field is applied. The hole injection efficiency is high, and the injected holes are transported efficiently. It is desirable to do. For this purpose, it is preferable to use a substance that has a low ionization potential, a high hole mobility, excellent stability, and is less likely to generate trapping impurities during production and use.
  • a compound conventionally used as a charge transport material for holes, a p-type semiconductor, and a hole injection of an organic electroluminescent element are used.
  • Any known material used for the layer and the hole transport layer can be selected and used. Specific examples thereof include carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), triarylamine derivatives (aromatic tertiary class).
  • NPD N-diphenyl-N, N'- Di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine, N, N′-dinaphthyl-N, N′-diphenyl -4,4'-diphenyl-1,1'-diamine, triphenylamine derivatives such as 4,4 ', 4 "-tris (3-methylphenyl (phenyl) amino) triphenylamine, starburst amine derivatives
  • Stilbene derivatives phthalocyanine derivatives (metal-free, copper phthalocyanine, etc.), pyrazoline derivatives, hydrazone compounds, benzofuran derivatives, thiophene derivatives, heterocyclic compounds such as oxadiazole derivatives, porphyrin derivatives, polysilanes, etc.
  • Polycarbonate, styrene derivatives, polyvinyl carbazole, polysilane, etc. having a monomer in the side chain are preferred, but a compound that forms a thin film necessary for the production of a light-emitting element, can inject holes from the anode, and can further transport holes. If limited No.
  • organic semiconductors are strongly influenced by the doping.
  • Such an organic semiconductor matrix material is composed of a compound having a good electron donating property or a compound having a good electron accepting property.
  • Strong electron acceptors such as tetracyanoquinone dimethane (TCNQ) or 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane (F4TCNQ) are known for doping of electron donor materials.
  • TCNQ tetracyanoquinone dimethane
  • F4TCNQ 2,3,5,6-tetrafluorotetracyano-1,4-benzoquinone dimethane
  • the light emitting layer 105 emits light by recombining holes injected from the anode 102 and electrons injected from the cathode 108 between electrodes to which an electric field is applied.
  • the material for forming the light-emitting layer 105 may be a compound that emits light by being excited by recombination of holes and electrons (a light-emitting compound), can form a stable thin film shape, and is in a solid state It is preferable that the compound exhibits a high emission (fluorescence and / or phosphorescence) efficiency.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed of a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone. Or either. That is, in each layer of the light emitting layer, only the host material or the dopant material may emit light, or both the host material and the dopant material may emit light. Each of the host material and the dopant material may be one kind or a plurality of combinations.
  • the dopant material may be included in the host material as a whole, or may be included partially. The amount of dopant used varies depending on the dopant and may be determined according to the characteristics of the dopant.
  • the standard of the amount of dopant used is preferably 0.001 to 50% by weight, more preferably 0.1 to 10% by weight, and still more preferably 1 to 5% by weight of the entire light emitting material.
  • a doping method it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
  • the host material is not particularly limited, but has previously been known as a phosphor, fused ring derivatives such as anthracene and pyrene, metal chelated oxinoid compounds such as tris (8-quinolinolato) aluminum, bis Bisstyryl derivatives such as styrylanthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, thiadiazolopyridine derivatives, pyrrolopyrrole
  • polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives are preferably used.
  • the host material can be appropriately selected from the compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
  • the amount of the host material used is preferably 50 to 99.999% by weight of the entire light emitting material, more preferably 80 to 99.95% by weight, and still more preferably 90 to 99.9% by weight.
  • a benzofluorene compound represented by the above general formula (1), general formula (2X), general formula (2Y), general formula (3X), or general formula (3Y) can be used.
  • the amount of the benzofluorene compound represented by the general formula (1), general formula (2X), general formula (2Y), general formula (3X) or general formula (3Y) as a dopant material is preferably a light emitting material.
  • the total content is 0.001 to 50% by weight, more preferably 0.05 to 20% by weight, and still more preferably 0.1 to 10% by weight.
  • a doping method it can be formed by a co-evaporation method with a host material, but it may be pre-mixed with the host material and then simultaneously deposited.
  • the other dopant material is not particularly limited, and a known compound can be used, and can be selected from various materials according to a desired emission color.
  • condensed ring derivatives such as phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopylene, dibenzopyrene and rubrene
  • benzoxazole derivatives benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives, oxazole derivatives, Bisstyryl derivatives such as oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives
  • pyrazoline derivatives stilbene derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanth
  • blue to blue-green dopant materials include aromatic hydrocarbon compounds such as naphthalene, anthracene, phenanthrene, pyrene, triphenylene, perylene, fluorene, indene and derivatives thereof, furan, pyrrole, thiophene, silole, Aromatic heterocyclic compounds such as 9-silafluorene, 9,9'-spirobisilafluorene, benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene And its derivatives, distyrylbenzene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, coumarin derivatives, imidazole, thiazole
  • examples of the green to yellow dopant material include coumarin derivatives, phthalimide derivatives, naphthalimide derivatives, perinone derivatives, pyrrolopyrrole derivatives, cyclopentadiene derivatives, acridone derivatives, quinacridone derivatives, and naphthacene derivatives such as rubrene.
  • a compound in which a substituent capable of increasing the wavelength such as aryl, heteroaryl, arylvinyl, amino and cyano is introduced into the compound exemplified as a blue-green dopant material is also a suitable example.
  • orange to red dopant materials include naphthalimide derivatives such as bis (diisopropylphenyl) perylenetetracarboxylic imide, perinone derivatives, rare earth complexes such as Eu complexes having acetylacetone, benzoylacetone and phenanthroline as ligands, 4 -(Dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran and its analogs, metal phthalocyanine derivatives such as magnesium phthalocyanine and aluminum chlorophthalocyanine, rhodamine compounds, deazaflavin derivatives, coumarin derivatives, quinacridone Derivatives, phenoxazine derivatives, oxazine derivatives, quinazoline derivatives, pyrrolopyridine derivatives, squarylium derivatives, violanthrone derivatives, phenazine derivatives, phenoxazo Derivatives, thi
  • the general formula (1), the general formula (2X), the general formula (2Y), the general formula (3X), or the general formula ( 3Y) is most suitable, and examples of dopant materials that can be used at the same time include perylene derivatives, borane derivatives, amine-containing styryl derivatives, aromatic amine derivatives, coumarin derivatives, pyran derivatives, iridium complexes, and platinum complexes. preferable.
  • perylene derivatives examples include 3,10-bis (2,6-dimethylphenyl) perylene, 3,10-bis (2,4,6-trimethylphenyl) perylene, 3,10-diphenylperylene, 3,4- Diphenylperylene, 2,5,8,11-tetra-t-butylperylene, 3,4,9,10-tetraphenylperylene, 3- (1'-pyrenyl) -8,11-di (t-butyl) perylene 3- (9′-anthryl) -8,11-di (t-butyl) perylene, 3,3′-bis (8,11-di (t-butyl) perylenyl), and the like.
  • JP-A-11-97178, JP-A-2000-133457, JP-A-2000-26324, JP-A-2001-267079, JP-A-2001-267078, JP-A-2001-267076, Perylene derivatives described in JP-A No. 2000-34234, JP-A No. 2001-267075, JP-A No. 2001-217077 and the like may be used.
  • borane derivatives examples include 1,8-diphenyl-10- (dimesitylboryl) anthracene, 9-phenyl-10- (dimesitylboryl) anthracene, 4- (9′-anthryl) dimesitylborylnaphthalene, 4- (10 ′ -Phenyl-9'-anthryl) dimesitylborylnaphthalene, 9- (dimesitylboryl) anthracene, 9- (4'-biphenylyl) -10- (dimesitylboryl) anthracene, 9- (4 '-(N-carbazolyl) phenyl) And -10- (dimesitylboryl) anthracene.
  • amine-containing styryl derivatives include N, N, N ′, N′-tetra (4-biphenylyl) -4,4′-diaminostilbene, N, N, N ′, N′-tetra (1-naphthyl).
  • aromatic amine derivative examples include N, N, N, N-tetraphenylanthracene-9,10-diamine, 9,10-bis (4-diphenylamino-phenyl) anthracene, and 9,10-bis (4- Di (1-naphthylamino) phenyl) anthracene, 9,10-bis (4-di (2-naphthylamino) phenyl) anthracene, 10-di-p-tolylamino-9- (4-di-p-tolylamino-1) -Naphthyl) anthracene, 10-diphenylamino-9- (4-diphenylamino-1-naphthyl) anthracene, 10-diphenylamino-9- (6-diphenylamino-2-naphthyl) anthracene, [4- (4-diphenyl Amino-phenyl) naphthalen-1-yl]
  • Examples of coumarin derivatives include coumarin-6 and coumarin-334. Moreover, you may use the coumarin derivative described in Unexamined-Japanese-Patent No. 2004-43646, Unexamined-Japanese-Patent No. 2001-76876, and Unexamined-Japanese-Patent No. 6-298758.
  • Examples of the pyran derivative include the following DCM and DCJTB. Also, JP 2005-126399, JP 2005-097283, JP 2002-234892, JP 2001-220577, JP 2001-081090, and JP 2001-052869. Alternatively, pyran derivatives described in the above may be used.
  • iridium complex examples include Ir (ppy) 3 described below. Further, the iridium complexes described in JP-A-2006-089398, JP-A-2006-080419, JP-A-2005-298483, JP-A-2005-097263, JP-A-2004-111379, etc. It may be used.
  • platinum complex examples include the following PtOEP. Further, the platinum complexes described in JP-A-2006-190718, JP-A-2006-128634, JP-A-2006-093542, JP-A-2004-335122, JP-A-2004-331508, etc. It may be used.
  • the dopant can be appropriately selected from the compounds described in Chemical Industry, June 2004, page 13, and references cited therein.
  • the electron injection layer 107 plays a role of efficiently injecting electrons moving from the cathode 108 into the light emitting layer 105 or the electron transport layer 106.
  • the electron transport layer 106 plays a role of efficiently transporting electrons injected from the cathode 108 or electrons injected from the cathode 108 through the electron injection layer 107 to the light emitting layer 105.
  • the electron transport layer 106 and the electron injection layer 107 are each formed by laminating and mixing one or more electron transport / injection materials or a mixture of the electron transport / injection material and the polymer binder.
  • the electron injection / transport layer is a layer that administers electrons injected from the cathode and further transports electrons, and it is desirable that the electron injection efficiency is high and the injected electrons are transported efficiently.
  • the electron transport capability is much higher. Even if it is not high, the effect of improving the luminous efficiency is equivalent to that of a material having a high electron transport capability. Therefore, the electron injection / transport layer in this embodiment may include a function of a layer that can efficiently block the movement of holes.
  • Materials used for the electron transport layer and the electron injection layer include compounds conventionally used as electron transport compounds in photoconductive materials, and known compounds used for the electron injection layer and the electron transport layer of organic electroluminescent elements. Any of these can be selected and used.
  • pyridine derivatives naphthalene derivatives, anthracene derivatives, phenanthroline derivatives, perinone derivatives, coumarin derivatives, naphthalimide derivatives, anthraquinone derivatives, diphenoquinone derivatives, diphenylquinone derivatives, perylene derivatives, thiophene derivatives, thiadiazole derivatives, quinoxaline derivatives, quinoxaline Derivative polymers, benzazole compounds, pyrazole derivatives, perfluorinated phenylene derivatives, triazine derivatives, pyrazine derivatives, imidazopyridine derivatives, borane derivatives, benzoxazole derivatives, benzothiazole derivatives, quinoline derivatives, aldazine derivatives, carbazole derivatives, indole derivatives, Examples thereof include phosphorus oxide derivatives and bisstyryl derivatives.
  • oxadiazole derivatives (1,3-bis [(4-t-butylphenyl) 1,3,4-oxadiazolyl] phenylene, etc.
  • triazole derivatives N-naphthyl-2,5-diphenyl-1,3, etc. 4-triazole
  • benzoquinoline derivatives (2,2′-bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, etc.)
  • benzimidazole derivatives tris (N-phenylbenzimidazole) -2-yl) benzene
  • bipyridine derivatives terpyridine derivatives (1,3-bis (4 ′-(2,2 ′: 6′2 ′′ -terpyridinyl)) benzene, etc.
  • naphthyridine derivatives bis (1-naphthyl) ) -4- (1,8-naphthyridin-2-yl) phenyl
  • metal complexes having electron-accepting nitrogen can also be used, such as hydroxyazole complexes such as quinolinol-based metal complexes and hydroxyphenyloxazole complexes, azomethine complexes, tropolone metal complexes, flavonol metal complexes, and benzoquinoline metal complexes. can give. These materials can be used alone or in combination with different materials.
  • quinolinol metal complexes pyridine derivatives, phenanthroline derivatives, borane derivatives or benzimidazole derivatives are preferable.
  • the quinolinol-based metal complex is a compound represented by the following general formula (E-1).
  • R 1 to R 6 are hydrogen or a substituent
  • M is Li, Al, Ga, Be or Zn
  • n is an integer of 1 to 3.
  • quinolinol metal complexes include 8-quinolinol lithium, tris (8-quinolinolato) aluminum, tris (4-methyl-8-quinolinolato) aluminum, tris (5-methyl-8-quinolinolato) aluminum, tris (3 , 4-dimethyl-8-quinolinolato) aluminum, tris (4,5-dimethyl-8-quinolinolato) aluminum, tris (4,6-dimethyl-8-quinolinolato) aluminum, bis (2-methyl-8-quinolinolato) ( Phenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-methylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-methylphenolato) aluminum, bis (2-methyl-8- Quinolinolato) (4- Tylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (2-phenylphenolate) aluminum, bis (2-methyl-8-quinolinolato) (3-phenylphenolate)
  • the pyridine derivative is a compound represented by the following general formula (E-2).
  • G represents a simple bond or an n-valent linking group, and n is an integer of 2 to 8. Carbon atoms that are not used for the bond of pyridine-pyridine or pyridine-G may be substituted.
  • G in the general formula (E-2) examples include the following structural formulas.
  • each R is independently hydrogen, methyl, ethyl, isopropyl, cyclohexyl, phenyl, 1-naphthyl, 2-naphthyl, biphenylyl or terphenylyl.
  • pyridine derivative examples include 2,5-bis (2,2′-bipyridin-6-yl) -1,1-dimethyl-3,4-diphenylsilole, 2,5-bis (2,2′- Bipyridin-6-yl) -1,1-dimethyl-3,4-dimesitylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4 Diphenylsilole, 2,5-bis (2,2′-bipyridin-5-yl) -1,1-dimethyl-3,4-dimesitylsilole 9,10-di (2,2′-bipyridine-6- Yl) anthracene, 9,10-di (2,2′-bipyridin-5-yl) anthracene, 9,10-di (2,3′-bipyridin-6-yl) anthracene, 9,10-di (2, 3′-b
  • the phenanthroline derivative is a compound represented by the following general formula (E-3-1) or (E-3-2).
  • R 1 to R 8 are hydrogen or a substituent, adjacent groups may be bonded to each other to form a condensed ring, G represents a simple bond or an n-valent linking group, and n represents 2 It is an integer of ⁇ 8.
  • Examples of G in the general formula (E-3-2) include the same ones as described in the bipyridine derivative column.
  • phenanthroline derivatives include 4,7-diphenyl-1,10-phenanthroline, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, 9,10-di (1,10-phenanthroline- 2-yl) anthracene, 2,6-di (1,10-phenanthroline-5-yl) pyridine, 1,3,5-tri (1,10-phenanthroline-5-yl) benzene, 9,9′-difluor -Bis (1,10-phenanthroline-5-yl), bathocuproin, 1,3-bis (2-phenyl-1,10-phenanthroline-9-yl) benzene and the like.
  • a phenanthroline derivative is used for the electron transport layer and the electron injection layer.
  • the substituent itself has a three-dimensional structure, or a phenanthroline skeleton or Those having a three-dimensional structure by steric repulsion with an adjacent substituent or those having a plurality of phenanthroline skeletons linked to each other are preferred.
  • a compound containing a conjugated bond, an optionally substituted aromatic hydrocarbon, and an optionally substituted aromatic heterocycle in the linking unit is more preferable.
  • the borane derivative is a compound represented by the following general formula (E-4), and is disclosed in detail in JP-A-2007-27587.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X is an optionally substituted arylene
  • Y is a substituted Aryl having 16 or less carbon atoms, substituted boryl, or optionally substituted carbazole
  • each n is independently an integer of 0 to 3.
  • the compound represented by -1-4) is preferred. Specific examples include 9- [4- (4-Dimesitylborylnaphthalen-1-yl) phenyl] carbazole, 9- [4- (4-Dimesitylborylnaphthalen-1-yl) naphthalen-1-yl. Carbazole and the like.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • R 21 and R 22 are each independently hydrogen, alkyl, or substituted.
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • n is each Each independently represents an integer of 0 to 3, and each m independently represents an integer of 0 to 4;
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 20 or less carbon atoms
  • N is an integer of 0 to 3 independently.
  • R 31 to R 34 are each independently any of methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently any of hydrogen, methyl, isopropyl or phenyl It is.
  • R 11 and R 12 are each independently at least one of hydrogen, alkyl, optionally substituted aryl, substituted silyl, optionally substituted nitrogen-containing heterocycle, or cyano
  • R 13 to R 16 are each independently an optionally substituted alkyl or an optionally substituted aryl
  • X 1 is an optionally substituted arylene having 10 or less carbon atoms
  • Y 1 is an optionally substituted aryl having 14 or less carbon atoms
  • n is each independently an integer of 0 to 3.
  • R 31 to R 34 are each independently methyl, isopropyl or phenyl
  • R 35 and R 36 are each independently hydrogen, methyl, isopropyl or phenyl. It is.
  • the benzimidazole derivative is a compound represented by the following general formula (E-5).
  • Ar 1 to Ar 3 are each independently hydrogen or aryl having 6 to 30 carbon atoms which may be substituted.
  • a benzimidazole derivative which is anthryl optionally substituted with Ar 1 is preferable.
  • aryl having 6 to 30 carbon atoms include phenyl, 1-naphthyl, 2-naphthyl, acenaphthylene-1-yl, acenaphthylene-3-yl, acenaphthylene-4-yl, acenaphthylene-5-yl, and fluorene-1- Yl, fluoren-2-yl, fluoren-3-yl, fluoren-4-yl, fluoren-9-yl, phenalen-1-yl, phenalen-2-yl, 1-phenanthryl, 2-phenanthryl, 3-phenanthryl, 4-phenanthryl, 9-phenanthryl, 1-anthryl, 2-anthryl, 9-anthryl, fluoranthen-1-yl, fluoranthen-2-yl, fluoranthen-3-yl, fluoranthen-7-yl, fluoranthen-8-yl, Triphenylene-1-yl, 2-
  • benzimidazole derivative examples include 1-phenyl-2- (4- (10-phenylanthracen-9-yl) phenyl) -1H-benzo [d] imidazole, 2- (4- (10- (naphthalene-2) -Yl) anthracen-9-yl) phenyl) -1-phenyl-1H-benzo [d] imidazole, 2- (3- (10- (naphthalen-2-yl) anthracen-9-yl) phenyl) -1- Phenyl-1H-benzo [d] imidazole, 5- (10- (naphthalen-2-yl) anthracen-9-yl) -1,2-diphenyl-1H-benzo [d] imidazole, 1- (4- (10 -(Naphthalen-2-yl) anthracen-9-yl) phenyl) -2-phenyl-1H-benzo [d] imidazole, 2- (4- (9,10-di (n)-
  • the electron transport layer or the electron injection layer may further contain a substance capable of reducing the material forming the electron transport layer or the electron injection layer.
  • a substance capable of reducing the material forming the electron transport layer or the electron injection layer various substances can be used as long as they have a certain reducing ability.
  • Preferred reducing substances include alkali metals such as Na (work function 2.36 eV), K (2.28 eV), Rb (2.16 eV) or Cs (1.95 eV), and Ca (2. 9eV), Sr (2.0 to 2.5 eV) or Ba (2.52 eV) and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • a more preferable reducing substance is an alkali metal of K, Rb or Cs, more preferably Rb or Cs, and most preferably Cs.
  • alkali metals have particularly high reducing ability, and by adding a relatively small amount to the material forming the electron transport layer or the electron injection layer, the luminance of the organic EL element can be improved and the lifetime can be extended.
  • a reducing substance having a work function of 2.9 eV or less a combination of two or more alkali metals is also preferable.
  • a combination containing Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • Cs such as Cs and Na, Cs and K, Cs and Rb, or A combination of Cs, Na and K is preferred.
  • the cathode 108 serves to inject electrons into the light emitting layer 105 through the electron injection layer 107 and the electron transport layer 106.
  • the material for forming the cathode 108 is not particularly limited as long as it is a substance that can efficiently inject electrons into the organic layer, but the same material as that for forming the anode 102 can be used.
  • metals such as tin, magnesium, indium, calcium, aluminum, silver, copper, nickel, chromium, gold, platinum, iron, zinc, lithium, sodium, potassium, cesium and magnesium or alloys thereof (magnesium-silver alloy)
  • Lithium, sodium, potassium, cesium, calcium, magnesium, or alloys containing these low work function metals are effective for increasing the electron injection efficiency and improving device characteristics.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride Lamination of hydrocarbon polymer compounds and the like is a preferred example.
  • the method for producing these electrodes is not particularly limited as long as conduction can be achieved, such as resistance heating, electron beam, sputtering, ion plating, and coating.
  • the materials used for the hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer can form each layer alone, but as a polymer binder, polyvinyl chloride, polycarbonate, Polystyrene, poly (N-vinylcarbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polyamide, ethyl cellulose, vinyl acetate resin, ABS resin, polyurethane resin It can also be used by dispersing it in solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins, unsaturated polyester resins, alkyd resins, epoxy resins, silicone resins, etc. is there.
  • solvent-soluble resins such as phenol resins, xylene resins, petroleum resins, urea resins, melamine resins,
  • Each layer constituting the organic electroluminescent element is formed by a method such as vapor deposition, resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, printing method, spin coating method or cast method, coating method, etc. It can be formed by using a thin film.
  • the film thickness of each layer thus formed is not particularly limited and can be appropriately set according to the properties of the material, but is usually in the range of 2 nm to 5000 nm. The film thickness can usually be measured with a crystal oscillation type film thickness measuring device or the like.
  • the vapor deposition conditions vary depending on the type of material, the target crystal structure and association structure of the film, and the like.
  • Deposition conditions generally include boat heating temperature +50 to + 400 ° C., vacuum degree 10 ⁇ 6 to 10 ⁇ 3 Pa, deposition rate 0.01 to 50 nm / second, substrate temperature ⁇ 150 to + 300 ° C., film thickness 2 nm to 5 ⁇ m. It is preferable to set appropriately within the range.
  • an organic electric field composed of an anode / hole injection layer / hole transport layer / a light emitting layer composed of a host material and a dopant material / electron transport layer / electron injection layer / cathode.
  • a method for manufacturing a light-emitting element will be described.
  • a thin film of an anode material is formed on a suitable substrate by vapor deposition or the like to produce an anode, and then a thin film of a hole injection layer and a hole transport layer is formed on the anode.
  • a host material and a dopant material are co-evaporated to form a thin film to form a light emitting layer.
  • An electron transport layer and an electron injection layer are formed on the light emitting layer, and a thin film made of a cathode material is formed by vapor deposition. By forming it as a cathode, a desired organic electroluminescent element can be obtained.
  • the order of preparation may be reversed, and the cathode, electron injection layer, electron transport layer, light emitting layer, hole transport layer, hole injection layer, and anode may be fabricated in this order. Is possible.
  • the anode When a DC voltage is applied to the organic electroluminescent device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, the organic electroluminescent device is transparent or translucent. Luminescence can be observed from the electrode side (anode or cathode, and both). The organic electroluminescence device emits light when a pulse current or an alternating current is applied. The alternating current waveform to be applied may be arbitrary.
  • the present invention can also be applied to a display device provided with an organic electroluminescent element or a lighting device provided with an organic electroluminescent element.
  • a display device or an illuminating device including an organic electroluminescent element can be manufactured by a known method such as connecting the organic electroluminescent element according to the present embodiment and a known driving device, such as direct current driving, pulse driving, or alternating current. It can be driven by appropriately using a known driving method such as driving.
  • Examples of the display device include a panel display such as a color flat panel display and a flexible display such as a flexible color organic electroluminescence (EL) display (for example, JP-A-10-335066 and JP-A-2003-321546). Gazette, Japanese Patent Application Laid-Open No. 2004-2886, etc.).
  • Examples of the display method of the display include a matrix and / or segment method. Note that the matrix display and the segment display may coexist in the same panel.
  • a matrix is a pixel in which pixels for display are arranged two-dimensionally, such as a grid or mosaic, and displays characters and images as a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix.
  • the line-sequential driving has an advantage that the structure is simple. However, the active matrix may be superior in consideration of the operation characteristics, so that it is necessary to properly use it depending on the application.
  • a pattern is formed so as to display predetermined information, and a predetermined region is caused to emit light.
  • a predetermined region is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
  • the illuminating device examples include an illuminating device such as indoor lighting, a backlight of a liquid crystal display device, and the like (for example, Japanese Patent Application Laid-Open Nos. 2003-257621, 2003-277741, and 2004-119211). Etc.)
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • a backlight for liquid crystal display devices especially personal computers for which thinning is an issue, considering that conventional methods are made of fluorescent lamps and light guide plates, it is difficult to reduce the thickness.
  • the backlight using the light emitting element according to the embodiment is thin and lightweight.
  • N-phenyldibenzo [b, d] thiophen-4-amine was confirmed by MS spectrum and NMR measurement.
  • 1 H-NMR (CDCl 3 ): ⁇ 8.18-8.14 (m, 1H), 7.87 (dd, 1H), 7.85 (d, 1H), 7.49-7.45 ( m, 2H), 7.41 (t, 1H), 7.36 (d, 1H), 7.31 (t, 2H), 7.09 (d, 2H), 6.98 (t, 1H), 5.66 (s, 1H).
  • benzofluorene compounds can be synthesized by a method according to the above synthesis example by appropriately selecting the raw material compounds.
  • the organic EL elements according to Example 1, Example 2, and Comparative Example 1 were produced, and voltage (V), current density (mA / cm 2 ), and luminous efficiency (lm / cm 2 ), which are characteristics at 1000 cd / m 2 emission, respectively.
  • W current efficiency
  • cd / A current efficiency
  • EL emission wavelength nm
  • external quantum efficiency %
  • the quantum efficiency of a light-emitting element includes an internal quantum efficiency and an external quantum efficiency.
  • the ratio of external energy injected as electrons (or holes) into the light-emitting layer of the light-emitting element is converted into photons purely. What is shown is the internal quantum efficiency.
  • the external quantum efficiency is calculated based on the amount of photons emitted to the outside of the light emitting element, and some of the photons generated in the light emitting layer are absorbed inside the light emitting element.
  • the external quantum efficiency is lower than the internal quantum efficiency because it is continuously reflected and is not emitted outside the light emitting element.
  • the external quantum efficiency is measured as follows.
  • a voltage / current generator R6144 manufactured by Advantest Corporation was used to apply a voltage at which the luminance of the element was 1000 cd / m 2 to cause the element to emit light.
  • a spectral radiance meter SR-3AR manufactured by TOPCON the spectral radiance in the visible light region was measured from the direction perpendicular to the light emitting surface. Assuming that the light emitting surface is a completely diffusing surface, the value obtained by dividing the measured spectral radiance value of each wavelength component by the wavelength energy and multiplying by ⁇ is the number of photons at each wavelength.
  • the value obtained by dividing the applied current value by the elementary charge is the number of carriers injected into the device, and the number obtained by dividing the total number of photons emitted from the device by the number of carriers injected into the device is the external quantum efficiency.
  • Table 1 below shows the material configuration of each layer in the produced organic EL elements according to Example 1, Example 2, and Comparative Example 1.
  • HI is N 4 , N 4 ′ -diphenyl-N 4 , N 4 ′ -bis (9-phenyl-9H-carbazol-3-yl)-[1,1′-biphenyl] -4, 4′-diamine
  • NPD is N, N′-diphenyl-N, N′-di (naphthalen-1-yl) -4,4′-diaminobiphenyl
  • BH1 is 9-phenyl-10- (4 -(Naphthalen-1-yl) phenyl) anthracene
  • ET1 is 5,5 ′-(2-phenylanthracene-9,10-diyl) di-2,2′-bipyridine
  • Liq is 8-quinolinol lithium
  • compound (A) is 7,7, -dimethyl-N 5 , N 5 , N 9 , N 9 -tetraphenyl-7H-benzo [c] fluoren
  • Example 1 ⁇ Device Using Compound (1-1) for Light-Emitting Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and a molybdenum vapor vessel containing BH1.
  • Vapor deposition boat molybdenum vapor deposition boat with compound (1-1), molybdenum vapor deposition boat with ET1, molybdenum vapor deposition boat with Liq, molybdenum vapor deposition boat with magnesium and silver
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 20 nm to form a hole transport layer. Next, the vapor deposition boat containing BH1 and the vapor deposition boat containing the compound (1-1) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm.
  • the deposition rate was adjusted so that the weight ratio of BH1 to compound (1-1) was approximately 95: 5.
  • the evaporation boat containing ET1 was heated and evaporated to a thickness of 20 nm to form an electron transport layer.
  • the above deposition rate was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and a cathode was formed so that the deposition rate was 0.1 to 10 nm to obtain an organic electroluminescent device.
  • the driving voltage was 4.18 V
  • the current density was 25.60 mA / cm 2
  • the light emission efficiency was 2.94 (lm / W)
  • the current efficiency was 3.91 cd / A
  • the external quantum efficiency was 4.67%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 82 hours.
  • the driving voltage was 4.14 V
  • the current density was 20.05 mA / cm 2
  • the light emission efficiency was 3.79 (lm / W)
  • the current efficiency was 4.99 cd / A
  • the external quantum efficiency was 4.62%. It was. Further, the time for maintaining the luminance of 90% or more of the initial luminance was 31 hours.
  • organic EL elements according to Examples 3 to 23 and Comparative Example 2 were produced, and voltage (V), current density (mA / cm 2 ), and luminous efficiency (lm), which are characteristics at 1000 cd / m 2 emission, respectively. / W), current efficiency (cd / A), EL emission wavelength (nm), external quantum efficiency (%) were measured, and then when constant current driving was performed at a current density at which a luminance of 2000 cd / m 2 was obtained. % (Time) for maintaining luminance of 1 % (1800 cd / m 2 ) or more was measured.
  • Table 3 shows the material structure of each layer in the manufactured organic EL elements according to Examples 3 to 23 and Comparative Example 2.
  • BH2 is 9-phenyl-10- [6- (1,1 ′; 3,1 ′′) terphenyl-5′-yl] naphthalen-2-ylanthracene. Indicates.
  • Example 3 ⁇ Device Using Compound (1-3) for Light-Emitting Layer>
  • a glass substrate of 26 mm ⁇ 28 mm ⁇ 0.7 mm obtained by polishing ITO deposited to a thickness of 180 nm by sputtering to 150 nm was used as a transparent support substrate.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Showa Vacuum Co., Ltd.), a molybdenum vapor deposition boat containing HI, a molybdenum vapor deposition boat containing NPD, and a molybdenum vapor vessel containing BH2.
  • Vapor deposition boat molybdenum vapor deposition boat with compound (1-3), molybdenum vapor deposition boat with ET1, molybdenum vapor deposition boat with Liq, molybdenum vapor deposition boat with magnesium and silver
  • the following layers were sequentially formed on the ITO film of the transparent support substrate.
  • the vacuum chamber was depressurized to 5 ⁇ 10 ⁇ 4 Pa, first, a vapor deposition boat containing HI was heated and vapor-deposited to a film thickness of 40 nm to form a hole injection layer, and then NPD was contained. The vapor deposition boat was heated and vapor-deposited to a film thickness of 20 nm to form a hole transport layer. Next, the vapor deposition boat containing BH2 and the vapor deposition boat containing the compound (1-3) were heated at the same time to form a light emitting layer by vapor deposition to a film thickness of 25 nm.
  • the deposition rate was adjusted so that the weight ratio of BH2 to compound (1-3) was approximately 95: 5.
  • the evaporation boat containing ET1 was heated and evaporated to a film thickness of 15 nm to form an electron transport layer.
  • the above deposition rate was 0.01 to 1 nm / second.
  • the evaporation boat containing Liq was heated to deposit at a deposition rate of 0.01 to 0.1 nm / second so as to have a film thickness of 1 nm.
  • a boat containing magnesium and a boat containing silver were heated at the same time and evaporated to a film thickness of 100 nm to form a cathode.
  • the deposition rate was adjusted so that the atomic ratio of magnesium and silver was 10: 1, and a cathode was formed so that the deposition rate was 0.1 to 10 nm to obtain an organic electroluminescent device.
  • Example 4> ⁇ Device Using Compound (1-101) in Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was changed to the compound (1-101).
  • the driving voltage was 3.62 V
  • the current density was 18.94 mA / cm 2
  • the light emission efficiency was 4.59 (lm / W)
  • the current efficiency was 5.29 cd / A
  • the external quantum efficiency was 4.78%. It was.
  • Example 5 ⁇ Element Using Compound (1-151) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was changed to the compound (1-151).
  • the driving voltage was 3.56 V
  • the current density was 18.05 mA / cm 2
  • the light emission efficiency was 4.90 (lm / W)
  • the current efficiency was 5.54 cd / A
  • the external quantum efficiency was 4.72%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 126 hours.
  • Example 6> ⁇ Element Using Compound (1-351) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was changed to the compound (1-351).
  • the driving voltage was 3.71 V
  • the current density was 18.59 mA / cm 2
  • the light emission efficiency was 4.55 (lm / W)
  • the current efficiency was 5.38 cd / A
  • the external quantum efficiency was 4.61%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 78 hours.
  • Example 7 ⁇ Element Using Compound (1-1001) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (1-1001).
  • the driving voltage was 3.76 V
  • the current density was 20.50 mA / cm 2
  • the light emission efficiency was 4.09 (lm / W)
  • the current efficiency was 4.88 cd / A
  • the external quantum efficiency was 4.48%. It was.
  • Example 8> ⁇ Device Using Compound (2-1) in Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-1).
  • the driving voltage was 3.69 V
  • the current density was 25.70 mA / cm 2
  • the light emission efficiency was 3.31 (lm / W)
  • the current efficiency was 3.89 cd / A
  • the external quantum efficiency was 4.08%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 147 hours.
  • Example 9 ⁇ Element Using Compound (2-41) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-41).
  • the driving voltage was 3.77 V
  • the current density was 25.90 mA / cm 2
  • the light emission efficiency was 3.23 (lm / W)
  • the current efficiency was 3.87 cd / A
  • the external quantum efficiency was 4.20%. It was.
  • Example 10 ⁇ Element Using Compound (2-83) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-83).
  • blue light emission having a wavelength of 455 nm and CIE chromaticity (x, y) (0.142, 0.122) was obtained.
  • the driving voltage was 3.81 V
  • the current density was 26.60 mA / cm 2
  • the light emission efficiency was 3.10 (lm / W)
  • the current efficiency was 3.76 cd / A
  • the external quantum efficiency was 4.15%. It was.
  • Example 11 ⁇ Device Using Compound (2-84) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-84).
  • the driving voltage was 3.78 V
  • the current density was 24.91 mA / cm 2
  • the light emission efficiency was 3.34 (lm / W)
  • the current efficiency was 4.02 cd / A
  • the external quantum efficiency was 4.07%. It was.
  • Example 12 ⁇ Element Using Compound (2-301) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was changed to the compound (2-301).
  • the driving voltage was 3.77 V
  • the current density was 27.07 mA / cm 2
  • the light emission efficiency was 3.09 (lm / W)
  • the current efficiency was 3.70 cd / A
  • the external quantum efficiency was 3.95%. It was.
  • Example 13 ⁇ Element Using Compound (2-601) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (2-601).
  • the driving voltage was 3.68 V
  • the current density was 23.53 mA / cm 2
  • the light emission efficiency was 3.63 (lm / W)
  • the current efficiency was 4.25 cd / A
  • the external quantum efficiency was 4.13%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 178 hours.
  • Example 14 ⁇ Element Using Compound (2-630) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (2-630).
  • blue light emission having a wavelength of 457 nm and CIE chromaticity (x, y) (0.141, 0.118) was obtained.
  • the driving voltage was 3.89 V
  • the current density was 29.37 mA / cm 2
  • the light emission efficiency was 2.75 (lm / W)
  • the current efficiency was 3.41 cd / A
  • the external quantum efficiency was 3.89%. It was.
  • Example 15 ⁇ Element Using Compound (2-641) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was changed to the compound (2-641).
  • the driving voltage was 3.68 V
  • the current density was 22.77 mA / cm 2
  • the light emission efficiency was 3.75 (lm / W)
  • the current efficiency was 4.39 cd / A
  • the external quantum efficiency was 4.40%. It was.
  • Example 16> ⁇ Element Using Compound (2-683) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-683).
  • blue light emission having a wavelength of 457 nm and CIE chromaticity (x, y) (0.140, 0.124) was obtained.
  • the driving voltage was 3.77 V
  • the current density was 26.10 mA / cm 2
  • the light emission efficiency was 3.20 (lm / W)
  • the current efficiency was 3.84 cd / A
  • the external quantum efficiency was 4.23%. It was.
  • Example 17 ⁇ Element Using Compound (2-901) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (2-901).
  • the driving voltage was 3.80 V
  • the current density was 23.84 mA / cm 2
  • the light emission efficiency was 3.47 (lm / W)
  • the current efficiency was 4.20 cd / A
  • the external quantum efficiency was 4.33%. It was.
  • Example 18 ⁇ Element Using Compound (2-1537) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (2-1537).
  • blue light emission having a wavelength of 458 nm and CIE chromaticity (x, y) (0.140, 0.139) was obtained.
  • the driving voltage was 3.82 V
  • the current density was 22.64 mA / cm 2
  • the light emission efficiency was 3.64 (lm / W)
  • the current efficiency was 4.42 cd / A
  • the external quantum efficiency was 4.41%. It was.
  • Example 19 ⁇ Element Using Compound (2-1538) for Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (2-1538).
  • blue light emission having a wavelength of 459 nm and CIE chromaticity (x, y) (0.139, 0.144) was obtained.
  • the driving voltage was 4.27 V
  • the current density was 22.74 mA / cm 2
  • the light emission efficiency was 3.23 (lm / W)
  • the current efficiency was 4.40 cd / A
  • the external quantum efficiency was 4.24%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 120 hours.
  • Example 20> ⁇ Device Using Compound (2-1901) for Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was replaced with the compound (2-1901).
  • the driving voltage was 3.64 V
  • the current density was 21.59 mA / cm 2
  • the light emission efficiency was 4.01 (lm / W)
  • the current efficiency was 4.64 cd / A
  • the external quantum efficiency was 4.33%. It was.
  • the time for maintaining the luminance of 90% or more of the initial luminance was 82 hours.
  • Example 21 ⁇ Element Using Compound (3-230) in Light-Emitting Layer>
  • An organic EL device was obtained in the same manner as in Example 3 except that the compound (1-3) was changed to the compound (3-230).
  • the driving voltage was 3.98 V
  • the current density was 29.25 mA / cm 2
  • the light emission efficiency was 2.70 (lm / W)
  • the current efficiency was 3.42 cd / A
  • the external quantum efficiency was 3.59%. It was.
  • Example 22> ⁇ Device Using Compound (3-231) in Light-Emitting Layer>
  • An organic EL device was obtained by the method according to Example 3 except that the compound (1-3) was replaced with the compound (3-231).
  • blue light emission having a wavelength of 456 nm and CIE chromaticity (x, y) (0.142, 0.110) was obtained.
  • the driving voltage was 4.02 V and the current density was 41.14 mA / cm 2 .
  • an organic electroluminescent element having an excellent element lifetime, a display device including the same, a lighting device including the same, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

 例えば、有機電界発光素子に適用して優れた性能を発揮するベンゾフルオレン化合物を提供することを課題とする。例えば、下記一般式(1)で表される、ベンゾフルオレン骨格に対して「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」が2つ結合したベンゾフルオレン化合物を、有機電界発光素子の発光層用材料として用いることで、素子寿命が優れた発光素子を提供することができる。(式中、Rは置換されていてもよいアルキルなどであり、Arは置換されていてもよいアリールなどであり、AはO、S、または、Rが連結したNであり、Rは、水素やアルキルなどであり、そして、式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)

Description

ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
 本発明は、ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子に関する。
 有機電界発光素子は、自己発光型の発光素子であり、表示用または照明用の発光素子として期待されている。従来、電界発光する発光素子を用いた表示装置は、省電力化や薄型化が可能なことから、種々研究され、さらに、有機材料からなる有機電界発光素子は、軽量化や大型化が容易なことから活発に検討されてきた。特に、光の三原色の一つである青色をはじめとする発光特性を有する有機材料の開発、および正孔、電子などの電荷輸送能(半導体や超電導体となる可能性を有する)を備えた有機材料の開発については、高分子化合物、低分子化合物を問わずこれまで活発に研究されてきた。
 有機電界発光素子は、陽極および陰極からなる一対の電極と、当該一対の電極間に配置され、有機化合物を含む一層または複数の層とからなる構造を有する。有機化合物を含む層には、発光層や、正孔、電子などの電荷を輸送または注入する電荷輸送/注入層があるが、当該有機化合物としては種々の有機材料が開発されている(例えば、国際公開第2004/061047号パンフレット、国際公開第2004/061048号パンフレット(特表2006-512395号公報)、国際公開第2005/056633号パンフレット:特許文献1、2および3を参照)。
 しかし、これらの特許文献の実施例には、ベンゾフルオレンの高分子化合物しか開示されてない。また、例えば、国際公開第2003/051092号パンフレット(特表2005-513713号公報)には、アリール置換アミノを有するジベンゾフルオレン化合物が示されている(特許文献4を参照)。しかしながら、当該文献にはその構造式のみが開示されていて、その具体的な特性は報告されていない。
 また、例えば、国際公開第2009/084512号パンフレットや特開平08-199162号公報には、ジベンゾフランやジベンゾチオフェンが置換したアミノ基を有する縮合芳香族炭化水素化合物が示されている(特許文献5および6を参照)。しかしながら、当該文献にあげられた縮合芳香族炭化水素化合物は特定の構造に限られている。
国際公開第2004/061047号パンフレット 国際公開第2004/061048号パンフレット(特表2006-512395号公報) 国際公開第2005/056633号パンフレット 国際公開第2003/051092号パンフレット(特表2005-513713号公報) 国際公開第2009/084512号パンフレット 特開平08-199162号公報
 しかしながら、上述する有機材料を用いても素子寿命などに関して十分な性能を有する有機電界発光素子は、未だ得られていない。このような状況下、素子寿命などにおいてさらに性能のよい有機電界発光素子、すなわち、該素子を得ることができる化合物の開発が望まれている。
 本発明者は、上記課題を解決するため鋭意検討した結果、下記一般式(1)で表されるベンゾフルオレン化合物を見出し、その製造に成功した。また、このベンゾフルオレン化合物を含有する層を一対の電極間に配置して有機電界発光素子を構成することにより、素子寿命などにおいて改善された有機電界発光素子が得られることを見出し、本発明を完成させた。すなわち本発明は、以下のようなベンゾフルオレン化合物を提供する。
[1] 下記一般式(1)で表されるベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000011

(式中、
 Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、または置換されていてもよいアシルであり、そして、
 式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
[2] Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、置換シリル、または置換ゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[1]に記載するベンゾフルオレン化合物。
[3] Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[1]に記載するベンゾフルオレン化合物。
[4] 下記一般式(1A)、一般式(1B)、一般式(1C)または一般式(1D)で表される、上記[1]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000012

(式中、
 Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
[5] Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
 Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
 Aは、O、S、または、Rが連結したNであり、そして、
 Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである、
 上記[4]に記載するベンゾフルオレン化合物。
[6] Rは、共に、メチル、エチル、またはフェニルであり、
 Arは、共に、メチルまたはフッ素で置換されていてもよい、フェニル、またはナフチルであり、そして、
 Aは、O、S、または、Rが連結したNであり、そして、
 Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、またはフェニルである、
 上記[4]に記載するベンゾフルオレン化合物。
[7] 下記式(1-1)、または式(1-201)で表される、上記[4]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000013
[8] 下記式(1-3)、式(1-101)、式(1-151)、式(1-351)、または式(1-1001)で表される、上記[4]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000014
[9] 下記一般式(2X)または(2Y)で表されるベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000015

(式中、
 Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、Nを介して隣接する2つのArが結合して環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、またはアシルであり、そして、
 式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
[10] Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、置換シリル、または置換ゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、また、Nを介して隣接する2つのArが結合して、炭素数1~6のアルキルまたは炭素数6~12のアリールで置換されていてもよいカルバゾール環またはベンゾカルバゾール環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[9]に記載するベンゾフルオレン化合物。
[11] Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[9]に記載するベンゾフルオレン化合物。
[12] 下記一般式(2XA)、一般式(2XD)、一般式(2YA)または一般式(2YD)で表される、上記[9]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000016

(式中、
 Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
 Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
 Aは、O、S、または、Rが連結したNであり、そして、
 Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである。)
[13] 下記式(2-1)、式(2-41)、式(2-83)、式(2-84)、式(2-301)、式(2-601)、式(2-630)、式(2-641)、式(2-683)、式(2-901)、式(2-1537)、式(2-1538)、または式(1-1901)で表される、上記[9]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000017
[14] 下記一般式(3X)または(3Y)で表されるベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000018

(式中、
 Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、
 Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換シリル、置換ゲルミル、またはシアノであり、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、またはアシルであり、
 式(3X)または(3Y)におけるベンゾフルオレン環がアルキルで置換されていてもよく、そして、
 式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
[15] Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
 Rは、水素、炭素数1~12のアルキル、炭素数3~12のシクロアルキル、炭素数6~16のアリール、炭素数2~30のヘテロアリール、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミル、またはシアノであり、前記アリールおよびヘテロアリールは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、シアノ、炭素数1~4のアルキルで置換されたシリル、炭素数1~4のアルキルで置換されたゲルミル、または炭素数6~12のアリールで二置換されたアミノで置換されていてもよく、また、前記アリールおよびヘテロアリールへの置換基である炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、
 式(3X)または(3Y)におけるベンゾフルオレン環が炭素数1~4のアルキルで置換されていてもよく、そして、
 式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[14]に記載するベンゾフルオレン化合物。
[16] Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
 Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルで置換されたシリル、または炭素数1~4のアルキルで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
 Rは、水素、炭素数1~6のアルキル、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、前記アリールおよびヘテロアリールは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、または炭素数6~12のアリールで二置換されたアミノで置換されていてもよく、
 Aは、O、S、または、Rが連結したNであり、
 Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
 式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
 上記[14]に記載するベンゾフルオレン化合物。
[17] 下記一般式(3XA)または一般式(3YC)で表される、上記[14]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000019

(式中、
 Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
 Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
 Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、ジベンゾチオフェニル、またはカルバゾリルであり、
 Aは、O、S、または、Rが連結したNであり、そして、
 Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである。)
[18] 下記式(3-230)、式(3-231)、または式(3-369)で表される、上記[14]に記載するベンゾフルオレン化合物。
Figure JPOXMLDOC01-appb-C000020
[19] 発光素子の発光層用材料であって、上記[1]ないし[18]のいずれかに記載するベンゾフルオレン化合物を含有する発光層用材料。
[20] 陽極および陰極からなる一対の電極と、該一対の電極間に配置され、上記[19]に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
[21] さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、上記[20]に記載する有機電界発光素子。
[22] 前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、上記[21]に記載の有機電界発光素子。
[23] 上記[20]ないし[22]のいずれかに記載する有機電界発光素子を備えた表示装置。
[24] 上記[20]ないし[22]のいずれかに記載する有機電界発光素子を備えた照明装置。
 本発明の好ましい態様によれば、例えば、発光層用材料として優れた特性を有するベンゾフルオレン化合物を提供することができる。また、素子寿命などの特性について改善された有機電界発光素子を提供することができる。
本実施形態に係る有機電界発光素子を示す概略断面図である。
1.一般式(1)で表されるベンゾフルオレン化合物
 本発明のベンゾフルオレン化合物について詳細に説明する。本発明に係るベンゾフルオレン化合物の一つは、上記一般式(1)で表されるベンゾフルオレン化合物である。
 このベンゾフルオレン化合物は、中央のベンゾフルオレン骨格に対して「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」が2つ結合した化合物である。ジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)は1位~4位の位置で窒素に結合しており、2つのジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)の結合位置は同じであっても異なっていてもよいが、合成のしやすさの観点からは同じ結合位置であることが好ましい。
 2つのジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が同じ結合形態となったものが、下記式(1A)~(1D)で表される化合物である。下記式(1A)で表される化合物は4-ジベンゾフラニル基(または4-ジベンゾチオフェニル基または4-カルバゾリル基)が結合したタイプであり、下記式(1B)で表される化合物は3-ジベンゾフラニル基(または3-ジベンゾチオフェニル基または3-カルバゾリル基)が結合したタイプであり、下記式(1C)で表される化合物は2-ジベンゾフラニル基(または2-ジベンゾチオフェニル基または2-カルバゾリル基)が結合したタイプであり、そして、下記式(1D)で表される化合物は1-ジベンゾフラニル基(または1-ジベンゾチオフェニル基または1-カルバゾリル基)が結合したタイプである。
Figure JPOXMLDOC01-appb-C000021
 一般式(1)のArは、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。
 一般式(1)のArにおける「アリール」としては、例えば、炭素数6~30のアリールがあげられる。好ましい「アリール」は炭素数6~16のアリールであり、より好ましくは炭素数6~12のアリールである。
 具体的な「アリール」としては、単環系アリールであるフェニル、(o-,m-,p-)トリル、(2,3-,2,4-,2,5-,2,6-,3,4-,3,5-)キシリル、メシチル、(o-,m-,p-)クメニル、二環系アリールである(2-,3-,4-)ビフェニリル、縮合二環系アリールである(1-,2-)ナフチル、三環系アリールであるテルフェニリル(m-テルフェニル-2’-イル、m-テルフェニル-4’-イル、m-テルフェニル-5’-イル、o-テルフェニル-3’-イル、o-テルフェニル-4’-イル、p-テルフェニル-2’-イル、m-テルフェニル-2-イル、m-テルフェニル-3-イル、m-テルフェニル-4-イル、o-テルフェニル-2-イル、o-テルフェニル-3-イル、o-テルフェニル-4-イル、p-テルフェニル-2-イル、p-テルフェニル-3-イル、p-テルフェニル-4-イル)、縮合三環系アリールである、アセナフチレン-(1-,3-,4-,5-)イル、フルオレン-(1-,2-,3-,4-,9-)イル、フェナレン-(1-,2-)イル、(1-,2-,3-,4-,9-)フェナントリル、四環系アリールであるクアテルフェニリル(5’-フェニル-m-テルフェニル-2-イル、5’-フェニル-m-テルフェニル-3-イル、5’-フェニル-m-テルフェニル-4-イル、m-クアテルフェニル)、縮合四環系アリールであるトリフェニレン-(1-,2-)イル、ピレン-(1-,2-,4-)イル、ナフタセン-(1-,2-,5-)イル、縮合五環系アリールであるペリレン-(1-,2-,3-)イル、ペンタセン-(1-,2-,5-,6-)イルなどがあげられる。
 一般式(1)のArにおける「ヘテロアリール」としては、例えば、炭素数2~30のヘテロアリールがあげられる。好ましい「ヘテロアリール」は、炭素数2~25のヘテロアリールであり、より好ましくは炭素数2~20のヘテロアリールであり、さらに好ましくは炭素数2~15のヘテロアリールであり、特に好ましくは炭素数2~10のヘテロアリールである。また、「ヘテロアリール」としては、例えば環構成原子として炭素以外に酸素、硫黄および窒素から選ばれるヘテロ原子を1ないし5個含有する複素環基などがあげられ、例えば、芳香族複素環基などがあげられる。
 「複素環基」としては、例えば、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、オキサジアゾリル、チアジアゾリル、トリアゾリル、テトラゾリル、ピラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、インドリジニルなどがあげられ、イミダゾリル、ピリジル、カルバゾリルなどが好ましい。
 「芳香族複素環基」としては、例えば、フリル、チエニル、ピロリル、オキサゾリル、イソオキサゾリル、チアゾリル、イソチアゾリル、イミダゾリル、ピラゾリル、オキサジアゾリル、フラザニル、チアジアゾリル、トリアゾリル、テトラゾリル、ピリジル、ピリミジニル、ピリダジニル、ピラジニル、トリアジニル、ベンゾフラニル、イソベンゾフラニル、(1-,2-,3-,4-)ジベンゾフラニル、ベンゾ[b]チエニル、(1-,2-,3-,4-)ジベンゾチオフェニル、インドリル、イソインドリル、1H-インダゾリル、ベンゾイミダゾリル、ベンゾオキサゾリル、ベンゾチアゾリル、1H-ベンゾトリアゾリル、キノリル、イソキノリル、シンノリル、キナゾリル、キノキサリニル、フタラジニル、ナフチリジニル、プリニル、プテリジニル、(1-,2-,3-,4-)カルバゾリル、アクリジニル、フェノキサジニル、フェノチアジニル、フェナジニル、フェノキサチイニル、チアントレニル、インドリジニルなどがあげられ、チエニル、イミダゾリル、ピリジル、(1-,2-,3-,4-)カルバゾリル、(1-,2-,3-,4-)ジベンゾフラニル、(1-,2-,3-,4-)ジベンゾチオフェニルなどが好ましい。
 一般式(1)のArである「アリール」または「ヘテロアリール」は置換されていてもよく、例えば、炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、置換シリル、または置換ゲルミルなどで置換されていてもよい。置換基の数は、例えば、最大置換可能な数であり、好ましくは1~3個、より好ましくは1~2個、さらに好ましくは1個であるが、無置換であることが好ましい。
 Arへの置換基としての炭素数1~6のアルキルについては、その具体的な説明は後述するRの欄での「アルキル」の説明を引用することができる。
 Arへの置換基としての炭素数6~12のアリールについては、その具体的な説明は上記Arの欄での「アリール」の説明を引用することができる。
 Arへの置換基としての炭素数2~15のヘテロアリールについては、その具体的な説明は上記Arの欄での「ヘテロアリール」の説明を引用することができる。
 Arへの置換基としての炭素数3~12のシクロアルキルについては、炭素数3~10のシクロアルキルが好ましく、炭素数3~8のシクロアルキルがより好ましく、炭素数3~6のシクロアルキルがさらに好ましい。具体例には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
 Arへの置換基としてのフッ素化アルキルについては、例えば、後述するRの欄で説明する「アルキル」がフッ素化されたものがあげられ、一部の水素がフッ素化されたものでも、すべての水素がフッ素化されたものでもよい。炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)がフッ素化されたものが好ましく、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)がフッ素化されたものがより好ましい。具体的には、全(または部分)フッ素化メチル、全(または部分)フッ素化エチル、全(または部分)フッ素化プロピル、または全(または部分)フッ素化イソプロピルなどがあげられ、三フッ素化メチルが特に好ましい。
 Arへの置換基としての置換シリルについては、シリル基(-SiH)における3つの水素が、それぞれ独立して、炭素数1~4のアルキルや炭素数6~12のアリールなどで置換されているものがあげられる。より具体的には、シリル基における3つの水素が、それぞれ独立して、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ビフェニリルまたはナフチルなどで置換されているものがあげられる。
 具体的な「置換シリル」としては、トリメチルシリル(TMS)、トリエチルシリル、トリプロピルシリル、トリイソプロピルシリル、トリブチルシリル、トリs-ブチルシリル、トリt-ブチルシリル、エチルジメチルシリル、プロピルジメチルシリル、イソプロピルジメチルシリル、ブチルジメチルシリル、s-ブチルジメチルシリル、t-ブチルジメチルシリル、メチルジエチルシリル、プロピルジエチルシリル、イソプロピルジエチルシリル、ブチルジエチルシリル、s-ブチルジエチルシリル、t-ブチルジエチルシリル、メチルジプロピルシリル、エチルジプロピルシリル、ブチルジプロピルシリル、s-ブチルジプロピルシリル、t-ブチルジプロピルシリル、メチルジイソプロピルシリル、エチルジイソプロピルシリル、ブチルジイソプロピルシリル、s-ブチルジイソプロピルシリル、t-ブチルジイソプロピルシリルなどのトリアルキルシリルがあげられる。また、フェニルジメチルシリル、フェニルジエチルシリル、フェニルジt-ブチルシリル、メチルジフェニルシリル、エチルジフェニルシリル、プロピルジフェニルシリル、イソプロピルジフェニルシリル、ブチルジフェニルシリル、s-ブチルジフェニルシリル、t-ブチルジフェニルシリル、トリフェニルシリルなどがあげられる。
 Arへの置換基としての置換ゲルミルについては、ゲルミル基(-GeH)における3つの水素が、それぞれ独立して、炭素数1~4のアルキルや炭素数6~12のアリールなどで置換されているものがあげられる。より具体的には、ゲルミル基における3つの水素が、それぞれ独立して、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ビフェニリルまたはナフチルなどで置換されているものがあげられる。
 具体的な「置換ゲルミル」としては、トリメチルゲルミル、トリエチルゲルミル、トリプロピルゲルミル、トリイソプロピルゲルミル、トリブチルゲルミル、トリs-ブチルゲルミル、トリt-ブチルゲルミル、エチルジメチルゲルミル、プロピルジメチルゲルミル、イソプロピルジメチルゲルミル、ブチルジメチルゲルミル、s-ブチルジメチルゲルミル、t-ブチルジメチルゲルミル、メチルジエチルゲルミル、プロピルジエチルゲルミル、イソプロピルジエチルゲルミル、ブチルジエチルゲルミル、s-ブチルジエチルゲルミル、t-ブチルジエチルゲルミル、メチルジプロピルゲルミル、エチルジプロピルゲルミル、ブチルジプロピルゲルミル、s-ブチルジプロピルゲルミル、t-ブチルジプロピルゲルミル、メチルジイソプロピルゲルミル、エチルジイソプロピルゲルミル、ブチルジイソプロピルゲルミル、s-ブチルジイソプロピルゲルミル、t-ブチルジイソプロピルゲルミルなどのトリアルキルゲルミルがあげられる。また、フェニルジメチルゲルミル、フェニルジエチルゲルミル、フェニルジt-ブチルゲルミル、メチルジフェニルゲルミル、エチルジフェニルゲルミル、プロピルジフェニルゲルミル、イソプロピルジフェニルゲルミル、ブチルジフェニルゲルミル、s-ブチルジフェニルゲルミル、t-ブチルジフェニルゲルミル、トリフェニルゲルミルなどがあげられる。
 Arへの置換基としてアルキル(例えば炭素数1~6のアルキル)が隣接して2つ置換する場合には、これらは結合して環を形成していてもよい。このようにして形成された環としては、例えばシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、またはトリメチルシクロヘキサンなどがあげられる。
 一般式(1)のRは、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。
 一般式(1)のRにおける「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。
 具体的な「アルキル」としては、メチル(Me)、エチル(Et)、n-プロピル、イソプロピル(i-Pr)、n-ブチル、イソブチル、s-ブチル、t-ブチル(t-Bu)、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
 一般式(1)のRにおける「アリール」として、その具体的な説明は上記Arの欄での「アリール」の説明を引用することができる。
 一般式(1)のRにおける「ヘテロアリール」として、その具体的な説明は上記Arの欄での「ヘテロアリール」の説明を引用することができる。
 一般式(1)のRである「アルキル」、「アリール」または「ヘテロアリール」は置換されていてもよく、例えば、炭素数1~6のアルキルまたは置換シリルでなどで置換されていてもよい。この具体的な説明は、上記Arの欄での「Arへの置換基」の説明を引用することができる。
 また、2つのRは結合して環を形成していてもよく、この結果、ベンゾフルオレン骨格の5員環には、例えばシクロブタン、シクロペンタン、シクロペンテン、シクロペンタジエン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサンなどの脂肪族環や、例えばフルオレン環などの芳香族環がスピロ縮合していてもよい。また、上記脂肪族環にベンゼン環が縮合したもの(例えばベンゼン環が縮合したシクロペンタジエンなど)もあげられる。
 一般式(1)のAが「N(窒素原子)」である場合に、これに連結するRは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、または置換されていてもよいアシルである。
 Rにおける「アルキル」としては、直鎖および分枝鎖のいずれでもよく、例えば、炭素数1~24の直鎖アルキルまたは炭素数3~24の分枝鎖アルキルがあげられる。好ましい「アルキル」は、炭素数1~18のアルキル(炭素数3~18の分枝鎖アルキル)である。より好ましい「アルキル」は、炭素数1~12のアルキル(炭素数3~12の分枝鎖アルキル)である。さらに好ましい「アルキル」は、炭素数1~6のアルキル(炭素数3~6の分枝鎖アルキル)である。特に好ましい「アルキル」は、炭素数1~4のアルキル(炭素数3~4の分枝鎖アルキル)である。
 具体的な「アルキル」としては、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、s-ブチル、t-ブチル、n-ペンチル、イソペンチル、ネオペンチル、t-ペンチル、n-ヘキシル、1-メチルペンチル、4-メチル-2-ペンチル、3,3-ジメチルブチル、2-エチルブチル、n-ヘプチル、1-メチルヘキシル、n-オクチル、t-オクチル、1-メチルヘプチル、2-エチルヘキシル、2-プロピルペンチル、n-ノニル、2,2-ジメチルヘプチル、2,6-ジメチル-4-ヘプチル、3,5,5-トリメチルヘキシル、n-デシル、n-ウンデシル、1-メチルデシル、n-ドデシル、n-トリデシル、1-ヘキシルヘプチル、n-テトラデシル、n-ペンタデシル、n-ヘキサデシル、n-ヘプタデシル、n-オクタデシル、n-エイコシルなどがあげられる。
 Rにおける「シクロアルキル」としては、例えば、炭素数3~12のシクロアルキルがあげられる。好ましい「シクロアルキル」は、炭素数3~10のシクロアルキルである。より好ましい「シクロアルキル」は、炭素数3~8のシクロアルキルである。さらに好ましい「シクロアルキル」は、炭素数3~6のシクロアルキルである。
 具体的な「シクロアルキル」としては、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
 Rにおける「アリール」として、その具体的な説明は上記Arの欄での「アリール」の説明を引用することができる。
 Rにおける「ヘテロアリール」として、その具体的な説明は上記Arの欄での「ヘテロアリール」の説明を引用することができる。
 Rにおける「アシル」は、一般に「-(C=O)-R」で表される基であり、ここで「R」の具体的な説明は、上記Rにおける「アルキル」の説明を引用することができる。そして、「置換されていてもよいアシル」とは、この「R」が置換されていてもよいことを表す。
 具体的な「アシル」としては、ホルミル、およびアセチルがあげられる。
 Rとしてのアルキル、シクロアルキル、アリール、ヘテロアリールおよびアシルは置換されていてもよく、この置換基の具体的な説明は、上記Arの欄での「アリール」または「ヘテロアリール」への置換基の説明を引用することができる。
 また、一般式(1)で表される化合物を構成する、ベンゾフルオレン環における水素原子、ベンゾフロオレン環に置換するR、Arおよびジベンゾフラニル基(またはジベンゾチオフェニル基)における水素原子の全てまたは一部が重水素であってもよい。
 上記一般式(1)で表される化合物の具体例としては、例えば、下記式(1-1)~式(1-185)、下記式(1-201)~式(1-388)、および下記式(1-401)~式(1-612)で表される化合物があげられる。さらに、例えば、下記式(1-701)~式(1-762)、下記式(1-801)~式(1-854)、下記式(1-901)~式(1-958)、および下記式(1-1001)~式(1-1046)、で表される化合物があげられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
2.一般式(2X)または(2Y)で表されるベンゾフルオレン化合物
 本発明のベンゾフルオレン化合物について詳細に説明する。本発明に係るベンゾフルオレン化合物の一つは、上記一般式(2X)または(2Y)で表されるベンゾフルオレン化合物である。
 このベンゾフルオレン化合物は、中央のベンゾフルオレン骨格に対して「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」と「2つのArが置換したアミノ基」が結合した化合物である。ジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)は1位~4位の位置で窒素に結合している。
 上記一般式(2X)または(2Y)で表されるベンゾフルオレン化合物は、ジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)の結合態様によって、下記式(2XA)~(2XD)および下記式(2YA)~(2YD)で表される化合物に分類される。
Figure JPOXMLDOC01-appb-C000093
 一般式(2X)または(2Y)のRは、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。また、2つのRが結合して環を形成していてもよい。これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 一般式(2X)または(2Y)のArは、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 また、一般式(2X)または(2Y)では、Nを介して隣接する2つのArが結合して環を形成してもよく、この結果形成された環としては例えばカルバゾール環やベンゾカルバゾール環などがあげられる。これらの環は、また、炭素数1~6のアルキルまたは炭素数6~12のアリールで置換されていてもよく、これらの置換基の具体的な説明は、上記一般式(1)における説明を引用することができる。
 一般式(2X)または(2Y)のAは、O、S、または、Rが連結したNであり、これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 また、一般式(2X)または(2Y)で表される化合物を構成する、ベンゾフルオレン環における水素原子、ベンゾフロオレン環に置換するR、Arおよびジベンゾフラニル基(またはジベンゾチオフェニル基)における水素原子の全てまたは一部が重水素であってもよい。
 上記一般式(2X)または(2Y)で表される化合物の具体例としては、例えば、一般式(2X)に分類される下記式(2-1)~式(2-230)および式(2-601)~式(2-830)で表される化合物、および一般式(2Y)に分類される下記式(2-301)~式(2-576)および式(2-901)~式(2-1176)で表される化合物があげられる。さらに、例えば、一般式(2X)に分類される下記式(2-1201)~式(2-1268)、下記式(2-1301)~式(2-1336)、下記式(2-1401)~式(2-1442)および下記式(2-1501)~式(2-1536)で表される化合物、および一般式(2Y)に分類される下記式(2-1601)~式(2-1649)、下記式(2-1701)~式(2-1740)、下記式(2-1801)~式(2-1842)および下記式(2-1901)~式(2-1936)で表される化合物があげられる。
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
Figure JPOXMLDOC01-appb-C000131
Figure JPOXMLDOC01-appb-C000132
Figure JPOXMLDOC01-appb-C000133
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
Figure JPOXMLDOC01-appb-C000148
Figure JPOXMLDOC01-appb-C000149
Figure JPOXMLDOC01-appb-C000150
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
Figure JPOXMLDOC01-appb-C000154
Figure JPOXMLDOC01-appb-C000155
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
Figure JPOXMLDOC01-appb-C000158
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
Figure JPOXMLDOC01-appb-C000170
Figure JPOXMLDOC01-appb-C000171
Figure JPOXMLDOC01-appb-C000172
Figure JPOXMLDOC01-appb-C000173
Figure JPOXMLDOC01-appb-C000174
Figure JPOXMLDOC01-appb-C000175
Figure JPOXMLDOC01-appb-C000176
Figure JPOXMLDOC01-appb-C000177
Figure JPOXMLDOC01-appb-C000178
Figure JPOXMLDOC01-appb-C000179
Figure JPOXMLDOC01-appb-C000180
Figure JPOXMLDOC01-appb-C000181
Figure JPOXMLDOC01-appb-C000182
Figure JPOXMLDOC01-appb-C000183
Figure JPOXMLDOC01-appb-C000184
Figure JPOXMLDOC01-appb-C000185
Figure JPOXMLDOC01-appb-C000186
Figure JPOXMLDOC01-appb-C000187
Figure JPOXMLDOC01-appb-C000188
Figure JPOXMLDOC01-appb-C000189
Figure JPOXMLDOC01-appb-C000190
Figure JPOXMLDOC01-appb-C000191
Figure JPOXMLDOC01-appb-C000192
Figure JPOXMLDOC01-appb-C000193
Figure JPOXMLDOC01-appb-C000194
Figure JPOXMLDOC01-appb-C000195
Figure JPOXMLDOC01-appb-C000196
Figure JPOXMLDOC01-appb-C000197
Figure JPOXMLDOC01-appb-C000198
Figure JPOXMLDOC01-appb-C000199
Figure JPOXMLDOC01-appb-C000200
Figure JPOXMLDOC01-appb-C000201
Figure JPOXMLDOC01-appb-C000202
Figure JPOXMLDOC01-appb-C000203
Figure JPOXMLDOC01-appb-C000204
Figure JPOXMLDOC01-appb-C000205
Figure JPOXMLDOC01-appb-C000206
Figure JPOXMLDOC01-appb-C000207
Figure JPOXMLDOC01-appb-C000208
Figure JPOXMLDOC01-appb-C000209
Figure JPOXMLDOC01-appb-C000210
Figure JPOXMLDOC01-appb-C000211
Figure JPOXMLDOC01-appb-C000212
Figure JPOXMLDOC01-appb-C000213
Figure JPOXMLDOC01-appb-C000214
Figure JPOXMLDOC01-appb-C000215
Figure JPOXMLDOC01-appb-C000216
Figure JPOXMLDOC01-appb-C000217
Figure JPOXMLDOC01-appb-C000218
Figure JPOXMLDOC01-appb-C000219
Figure JPOXMLDOC01-appb-C000220
Figure JPOXMLDOC01-appb-C000221
Figure JPOXMLDOC01-appb-C000222
Figure JPOXMLDOC01-appb-C000223
Figure JPOXMLDOC01-appb-C000224
Figure JPOXMLDOC01-appb-C000225
Figure JPOXMLDOC01-appb-C000226
Figure JPOXMLDOC01-appb-C000227
Figure JPOXMLDOC01-appb-C000228
Figure JPOXMLDOC01-appb-C000229
Figure JPOXMLDOC01-appb-C000230
Figure JPOXMLDOC01-appb-C000231
Figure JPOXMLDOC01-appb-C000232
Figure JPOXMLDOC01-appb-C000233
Figure JPOXMLDOC01-appb-C000234
Figure JPOXMLDOC01-appb-C000235
Figure JPOXMLDOC01-appb-C000236
3.一般式(3X)または(3Y)で表されるベンゾフルオレン化合物
 本発明のベンゾフルオレン化合物について詳細に説明する。本発明に係るベンゾフルオレン化合物の一つは、上記一般式(3X)または(3Y)で表されるベンゾフルオレン化合物である。
 このベンゾフルオレン化合物は、中央のベンゾフルオレン骨格に対して「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」と「R基」が結合した化合物である。ジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)は1位~4位の位置で窒素に結合している。
 上記一般式(3X)または(3Y)で表されるベンゾフルオレン化合物は、ジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)の結合態様によって、下記式(3XA)~(3XD)および下記式(3YA)~(3YD)で表される化合物に分類される。
Figure JPOXMLDOC01-appb-C000237
 一般式(3X)または(3Y)のRは、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。また、2つのRが結合して環を形成していてもよい。これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 一般式(3X)または(3Y)のArは、置換されていてもよいアリール、または置換されていてもよいヘテロアリールから選択することができる。これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 一般式(3X)または(3Y)のRは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換シリル、置換ゲルミル、またはシアノから選択することができる。これら(置換されていてもよいシクロアルキルを除く)の具体的な説明は、上記一般式(1)における説明を引用することができる。なお、アリールおよびヘテロアリールへの置換基については、上記一般式(1)における説明に加えて、炭素数6~12のアリールで二置換されたアミノ基(すなわちジアリールアミノ基)による置換もあげられ、炭素数6~12のアリールの具体的な説明は、上記一般式(1)における説明を引用することができる。さらに、アリールまたはヘテロアリールへ炭素数1~6のアルキルが隣接して2つ置換する場合には、これらは結合して環を形成していてもよく、このようにして形成された環としては、例えばシクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、またはトリメチルシクロヘキサンなどがあげられる。
 Rとしての「置換されていてもよいシクロアルキル」については、「置換基」の具体的な説明は上記一般式(1)における説明を引用することができ、「シクロアルキル」については、炭素数3~12のシクロアルキルが好ましく、炭素数3~10のシクロアルキルがより好ましく、炭素数3~8のシクロアルキルがさらに好ましく、炭素数3~6のシクロアルキルが特に好ましい。具体例には、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、メチルシクロペンチル、シクロヘプチル、メチルシクロヘキシル、シクロオクチルまたはジメチルシクロヘキシルなどがあげられる。
 また、一般式(3X)または(3Y)におけるベンゾフルオレン環がアルキルで置換されていてもよく、このアルキルの具体的な説明は、上記一般式(1)における説明を引用することができる。
 一般式(3X)または(3Y)のAは、O、S、または、Rが連結したNであり、これらの具体的な説明は、上記一般式(1)における説明を引用することができる。
 さらに、一般式(3X)または(3Y)で表される化合物を構成する、ベンゾフルオレン環における水素原子、ベンゾフロオレン環に置換するR、Ar、Rおよびジベンゾフラニル基(またはジベンゾチオフェニル基)における水素原子の全てまたは一部が重水素であってもよい。
 上記一般式(3X)または(3Y)で表される化合物の具体例としては、例えば、一般式(3X)に分類される下記式(3-1)~式(3-86)および式(3-201)~式(3-296)で表される化合物、および一般式(3Y)に分類される下記式(3-101)~式(3-196)および式(3-301)~式(3-396)で表される化合物があげられる。さらに、例えば、一般式(3X)に分類される下記式(3-501)~式(3-546)、下記式(3-601)~式(3-640)、下記式(3-701)~式(3-742)および下記式(3-801)~式(3-836)で表される化合物、および一般式(3Y)に分類される下記式(3-901)~式(3-944)、下記式(3-1001)~式(3-1040)、下記式(3-1101)~式(3-1142)および下記式(3-1201)~式(3-1236)で表される化合物があげられる。
Figure JPOXMLDOC01-appb-C000238
Figure JPOXMLDOC01-appb-C000239
Figure JPOXMLDOC01-appb-C000240
Figure JPOXMLDOC01-appb-C000241
Figure JPOXMLDOC01-appb-C000242
Figure JPOXMLDOC01-appb-C000243
Figure JPOXMLDOC01-appb-C000244
Figure JPOXMLDOC01-appb-C000245
Figure JPOXMLDOC01-appb-C000246
Figure JPOXMLDOC01-appb-C000247
Figure JPOXMLDOC01-appb-C000248
Figure JPOXMLDOC01-appb-C000249
Figure JPOXMLDOC01-appb-C000250
Figure JPOXMLDOC01-appb-C000251
Figure JPOXMLDOC01-appb-C000252
Figure JPOXMLDOC01-appb-C000253
Figure JPOXMLDOC01-appb-C000254
Figure JPOXMLDOC01-appb-C000255
Figure JPOXMLDOC01-appb-C000256
Figure JPOXMLDOC01-appb-C000257
Figure JPOXMLDOC01-appb-C000258
Figure JPOXMLDOC01-appb-C000259
Figure JPOXMLDOC01-appb-C000260
Figure JPOXMLDOC01-appb-C000261
Figure JPOXMLDOC01-appb-C000262
Figure JPOXMLDOC01-appb-C000263
Figure JPOXMLDOC01-appb-C000264
Figure JPOXMLDOC01-appb-C000265
Figure JPOXMLDOC01-appb-C000266
Figure JPOXMLDOC01-appb-C000267
Figure JPOXMLDOC01-appb-C000268
Figure JPOXMLDOC01-appb-C000269
Figure JPOXMLDOC01-appb-C000270
Figure JPOXMLDOC01-appb-C000271
Figure JPOXMLDOC01-appb-C000272
Figure JPOXMLDOC01-appb-C000273
Figure JPOXMLDOC01-appb-C000274
Figure JPOXMLDOC01-appb-C000275
Figure JPOXMLDOC01-appb-C000276
Figure JPOXMLDOC01-appb-C000277
Figure JPOXMLDOC01-appb-C000278
Figure JPOXMLDOC01-appb-C000279
Figure JPOXMLDOC01-appb-C000280
Figure JPOXMLDOC01-appb-C000281
Figure JPOXMLDOC01-appb-C000282
Figure JPOXMLDOC01-appb-C000283
Figure JPOXMLDOC01-appb-C000284
Figure JPOXMLDOC01-appb-C000285
Figure JPOXMLDOC01-appb-C000286
Figure JPOXMLDOC01-appb-C000287
Figure JPOXMLDOC01-appb-C000288
Figure JPOXMLDOC01-appb-C000289
Figure JPOXMLDOC01-appb-C000290
Figure JPOXMLDOC01-appb-C000291
Figure JPOXMLDOC01-appb-C000292
Figure JPOXMLDOC01-appb-C000293
Figure JPOXMLDOC01-appb-C000294
Figure JPOXMLDOC01-appb-C000295
Figure JPOXMLDOC01-appb-C000296
Figure JPOXMLDOC01-appb-C000297
Figure JPOXMLDOC01-appb-C000298
Figure JPOXMLDOC01-appb-C000299
Figure JPOXMLDOC01-appb-C000300
Figure JPOXMLDOC01-appb-C000301
Figure JPOXMLDOC01-appb-C000302
Figure JPOXMLDOC01-appb-C000303
4.ベンゾフルオレン化合物の製造方法
<一般式(1)で表されるベンゾフロオレン化合物>
 一般式(1)で表されるように、ベンゾフロオレン骨格に対して「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基(以降、「芳香族置換アミノ基」とも言う)」が2つ結合した化合物は、Buchwald-Hartwig反応またはUllmann反応などの既存の反応を利用して製造することができる。
 Buchwald-Hartwig反応は、塩基の存在下、パラジウム触媒または銅触媒を用いて、芳香族ハライドと、一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。この方法により一般式(1)で表される化合物を得る反応経路の具体例は下記の通りである(スキーム1~3)。
 なお、スキーム1で説明する芳香族ハライドの合成方法に関しては、例えば国際公開第2005/056633号パンフレットが参考になる。また、スキーム1の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを交互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを交互に入れ替えても(すなわち、ナフタレンの塩化亜鉛錯体を用いる)反応させることができる。さらには、スキーム1ではカップリング反応の後に五員環を形成するために、ベンゼン環のカップリングさせる炭素の隣に予め-COOR”を置換させた原料を用いているが、代わりに、ナフタレン環の2位(カップリングさせる炭素の隣)に-COOR”を置換させた原料を用いることもできる。各スキーム中のArおよびAは、それぞれ一般式(1)中で用いられるものに対応する。
 スキーム2は、ベンゾフルオレン骨格に「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」が2つ結合してできる一般式(1)で表される化合物の製造方法において、予め「Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換したアミノ基」を合成しておき、これをベンゾフルオレン骨格に結合させる方法である。なお、スキーム2ではArのアミン化合物を出発原料とした例を示しているが、これはArが例えばフェニルなどの場合には、ジベンゾフラニル(またはジベンゾチオフェニルまたはカルバゾリル)のアミン化合物よりも合成や入手が容易なためであり、Arの種類によってはこれが逆になることもあるため、出発原料の合成や入手の容易性を考慮して製造方法を決定すればよい。
 また、スキーム3は、Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)に相当する部位を1つずつ結合させる方法である。なお、スキーム3ではArのアミン化合物を出発原料とした例を示しているが、ジベンゾフラニル(またはジベンゾチオフェニルまたはカルバゾリル)のアミン化合物を出発原料とすることもでき、上述するように出発原料の合成や入手の容易性に加えて、ベンゾフルオレンとの反応に伴う立体障害性を考慮して製造方法を決定すればよい。
 なお、スキーム2および3ではベンゾフルオレンに同じハロゲンXが結合したジハロゲン体を用いているが、一般式(1)で表される化合物には2つの「芳香族置換アミノ基」が異なる(一般式(1)で表される化合物構造が非対称となった例)も含まれるため、このような化合物を合成する場合には、反応性が異なるハロゲンが結合したジハロゲン体を用いて、ハロゲン活性の違いを利用して選択的な反応を用いたり、精製分離技術などを利用したりすればよい。
Figure JPOXMLDOC01-appb-C000304
Figure JPOXMLDOC01-appb-C000305
Figure JPOXMLDOC01-appb-C000306
 以上の反応で用いられるパラジウム触媒の具体例は、テトラキス(トリフェニルホスフィン)パラジウム(0):Pd(PPh、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド:PdCl(PPh、酢酸パラジウム(II):Pd(OAc)、トリス(ジベンジリデンアセトン)二パラジウム(0):Pd(dba)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体:Pd(dba)・CHCl、ビス(ジベンジリデンアセトン)パラジウム(0):Pd(dba)、PdCl{P(t-Bu)-(p-NMe-Ph)}、ビス(トリ-o-トリルホスフィン)-パラジウム(II)ジクロリド:PdCl(o-tolylなどである。
 反応を促進させるため、場合によりこれらのパラジウム化合物にホスフィン化合物を加えてもよい。そのホスフィン化合物の具体例は、トリ(t-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1-(N,N-ジメチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(N,N-ジブチルアミノメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1-(メトキシメチル)-2-(ジt-ブチルホスフィノ)フェロセン、1,1’-ビス(ジt-ブチルホスフィノ)フェロセン、2,2’-ビス(ジt-ブチルホスフィノ)-1,1’-ビナフチル、2-メトキシ-2’-(ジt-ブチルホスフィノ)-1,1’-ビナフチル、1,1’-ビス(ジフェニルホスフィノ)フェロセン、ビス(ジフェニルホスフィノ)ビナフチル、4-ジメチルアミノフェニルジt-ブチルホスフィン、フェニルジt-ブチルホスフィンなどである。
 この反応で用いられる塩基の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、ナトリウムt-ブトキシド、酢酸ナトリウム、リン酸三カリウム、フッ化カリウムなどである。
 さらに、この反応で用いられる溶媒の具体例は、ベンゼン、1,2,4-トリメチルベンゼン、トルエン、キシレン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジエチルエーテル、t-ブチルメチルエーテル、1,4-ジオキサン、メタノール、エタノール、イソプロピルアルコールなどである。これらの溶媒は、反応させる芳香族ハライド、トリフラート、芳香族ボロン酸エステルおよび芳香族ボロン酸の構造に応じて適宜選択できる。溶媒は単独で用いてもよく、混合溶媒として用いてもよい。
 またUllmann反応は、塩基の存在下、銅触媒を用いて、芳香族ハライドと一級芳香族アミンもしくは二級芳香族アミンとをカップリングする方法である。Ullmann反応で用いられる銅触媒の具体例は、銅粉、塩化銅、臭化銅またはヨウ化銅などである。また、この反応で用いられる塩基の具体例は、Buchwald-Hartwig反応と同じものから選択することができる。さらに、Ullmann反応で用いられる溶媒の具体例は、ニトロベンゼン、ジクロロベンゼン、N,N-ジメチルホルムアミドなどである。
 また、一般式(1)で表される化合物は、以下の反応を利用しても製造することができる(スキーム4または5)。なお、スキーム4およびスキーム5の第一段目に示した反応は鈴木カップリングであり、反応させる2つの化合物におけるX基とY基とを相互に入れ替えても反応させることができる。さらに、この第一段目の反応において、鈴木カップリングではなく根岸カップリングを用いることもでき、この場合には、Y基を有する化合物としてボロン酸やボロン酸エステルの代わりに塩化亜鉛錯体を用いる。また、この根岸カップリングの場合も上記と同様に、X基とY基とを相互に入れ替えても(すなわち、芳香族置換アミノ基が結合したナフタレンの塩化亜鉛錯体を用いる)反応させることができる。なお、各スキーム中のArおよびAは、それぞれ一般式(1)中で用いられるものに対応する。
Figure JPOXMLDOC01-appb-C000307
Figure JPOXMLDOC01-appb-C000308
 また、式(1)で表されるベンゾフルオレン化合物において2つのRが結合して環(たとえば脂肪族環や芳香族環)を形成した化合物については、例えば特開2009-184993号公報に記載されたスピロ構造を有するベンゾフルオレン化合物の合成方法を参考にして合成することができる。当該公報の段落[0055]には以下に引用する合成方法(スキーム1c)が記載されている。なお、下記スキーム中のMはLi、MgCl、MgBrまたはMgIである。
Figure JPOXMLDOC01-appb-C000309
<一般式(2X)または(2Y)で表されるベンゾフロオレン化合物>
 また、一般式(2X)または(2Y)で表されるベンゾフルオレン化合物は、上記スキーム(4)または(5)を利用して製造することができる。上記スキーム(4)または(5)では、Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換した2種類の3級アミンを出発原料として用いているが、この出発原料のうちの一方の3級アミンを2つのAr基が置換したものに変更することで、式(2X)または(2Y)で表されるベンゾフルオレン化合物を製造することができる。
 なお、一般式(2X)または(2Y)で表されるベンゾフルオレン化合物の中には、Nを介して隣接する2つのArが結合して環(含窒素芳香環)を形成した形態(例えば式(2-73)~式(2-82)で表される化合物)が含まれるが、これも上記スキーム(4)または(5)を利用して製造することができる。例えば、上記スキーム(4)または(5)で用いられる出発原料のうちの一方の3級アミン(2級アミノ基が結合したナフタレン誘導体またはベンゼン誘導体)を上記含窒素芳香環が結合したナフタレン誘導体またはベンゼン誘導体に変更することで、含窒素芳香環が結合したナフタレン誘導体からは式(2Y)で表されるタイプを、含窒素芳香環が結合したベンゼン誘導体からは式(2X)で表されるタイプを製造することができる。
 Nを介して隣接する2つのArが結合して環(含窒素芳香環)を形成した形態の化合物は、以下に示すスキーム(6)および(7)に従って、反応活性の異なるベンゾフルオレンジハライドを製造した後、これにアミン部位と含窒素芳香環部位とを結合させて製造することもできる。スキーム(7)では含窒素芳香環化合物としてカルバゾールを例にしたが、目的とする化合物に応じて含窒素芳香環化合物を適宜選択して用いることができる。また、XとXの反応活性の強さを逆にしたり、2級アミンと含窒素芳香環化合物との結合順序を逆にしたりすれば、式(2Y)で表されるベンゾフルオレン化合物を製造することもできる。
Figure JPOXMLDOC01-appb-C000310
Figure JPOXMLDOC01-appb-C000311
<一般式(3X)または(3Y)で表されるベンゾフロオレン化合物>
 また、一般式(3X)または(3Y)で表されるベンゾフルオレン化合物は、上記スキーム(4)または(5)を利用して製造することができる。上記スキーム(4)または(5)では、Ar基およびジベンゾフラニル基(またはジベンゾチオフェニル基またはカルバゾリル基)が置換した2種類の3級アミンを出発原料として用いているが、この出発原料のうちの一方の3級アミン(2級アミノ基が結合したナフタレン誘導体またはベンゼン誘導体)をR基が結合したナフタレン誘導体またはベンゼン誘導体に変更することで、R基が結合したナフタレン誘導体からは式(3Y)で表されるタイプを、R基が結合したベンゼン誘導体からは式(3X)で表されるタイプを製造することができる。Rが水素の場合には、スキーム(4)またはスキーム(5)の出発原料のどちらか一方にアミノ基がない化合物を用いることにより製造することができる。
 さらに、一般式(3X)または(3Y)で表されるベンゾフルオレン化合物は、上記スキーム(6)および(7)を応用して製造することもできる。スキーム(7)では、2級アミンを反応させた後に含窒素芳香環化合物(カルバゾール)を反応させているが、含窒素芳香環化合物の代わりにRのボロン酸、ボロン酸エステルまたは塩化亜鉛錯体を用いて鈴木カップリングや根岸カップリングさせることにより、式(3X)で表されるベンゾフルオレン化合物を製造することができる。また、XとXの反応活性の強さを逆にしたり、2級アミンとRのボロン酸、ボロン酸エステルまたは塩化亜鉛錯体との反応順序を逆にしたりすれば、式(3Y)で表されるベンゾフルオレン化合物を製造することができる。Rが水素の場合には、スキーム(6)の途中で製造されるベンゾフルオレンのモノハライドを用いて、スキーム(7)において2級アミンを反応させることにより製造することができる。
 また、本発明の化合物には、少なくとも一部の水素原子が重水素で置換されているものも含まれるが、このような化合物は所望の箇所が重水素化された原料を用いることで、上記と同様に合成することができる。
3.有機電界発光素子
 本発明に係るベンゾフルオレン化合物は、例えば、有機電界発光素子の材料として用いることができる。
 この実施形態に係る有機電界発光素子について図面に基づいて詳細に説明する。図1は、本実施形態に係る有機電界発光素子を示す概略断面図である。
<有機電界発光素子の構造>
 図1に示された有機電界発光素子100は、基板101と、基板101上に設けられた陽極102と、陽極102の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた発光層105と、発光層105の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた電子注入層107と、電子注入層107の上に設けられた陰極108とを有する。
 なお、有機電界発光素子100は、作製順序を逆にして、例えば、基板101と、基板101上に設けられた陰極108と、陰極108の上に設けられた電子注入層107と、電子注入層107の上に設けられた電子輸送層106と、電子輸送層106の上に設けられた発光層105と、発光層105の上に設けられた正孔輸送層104と、正孔輸送層104の上に設けられた正孔注入層103と、正孔注入層103の上に設けられた陽極102とを有する構成としてもよい。
 上記各層すべてがなくてはならないわけではなく、最小構成単位を陽極102と発光層105と陰極108とからなる構成として、正孔注入層103、正孔輸送層104、電子輸送層106および電子注入層107は任意に設けられる層である。また、上記各層は、それぞれ単一層からなってもよいし、複数層からなってもよい。
 有機電界発光素子を構成する層の態様としては、上述する「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」の構成態様の他に、「基板/陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子輸送層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子注入層/陰極」、「基板/陽極/正孔輸送層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/発光層/電子注入層/陰極」、「基板/陽極/正孔注入層/発光層/電子輸送層/陰極」、「基板/陽極/正孔注入層/正孔輸送層/発光層/陰極」、「基板/陽極/正孔注入層/発光層/陰極」、「基板/陽極/正孔輸送層/発光層/陰極」、「基板/陽極/発光層/電子輸送層/陰極」、「基板/陽極/発光層/電子注入層/陰極」、「基板/陽極/発光層/陰極」の構成態様であってもよい。
<有機電界発光素子における基板>
 基板101は、有機電界発光素子100の支持体となるものであり、通常、石英、ガラス、金属、プラスチックなどが用いられる。基板101は、目的に応じて板状、フィルム状またはシート状に形成され、例えば、ガラス板、金属板、金属箔、プラスチックフィルムまたはプラスチックシートなどが用いられる。なかでも、ガラス板、およびポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂製の板が好ましい。ガラス基板であれば、ソーダライムガラスや無アルカリガラスなどが用いられ、また、厚みも機械的強度を保つのに十分な厚みがあればよいので、例えば、0.2mm以上あればよい。厚さの上限値としては、例えば、2mm以下、好ましくは1mm以下である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましいが、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することができる。また、基板101には、ガスバリア性を高めるために、少なくとも片面に緻密なシリコン酸化膜などのガスバリア膜を設けてもよく、特にガスバリア性が低い合成樹脂製の板、フィルムまたはシートを基板101として用いる場合にはガスバリア膜を設けるのが好ましい。
<有機電界発光素子における陽極>
 陽極102は、発光層105へ正孔を注入する役割を果たすものである。なお、陽極102と発光層105との間に正孔注入層103および/または正孔輸送層104が設けられている場合には、これらを介して発光層105へ正孔を注入することになる。
 陽極102を形成する材料としては、無機化合物および有機化合物があげられる。無機化合物としては、例えば、金属(アルミニウム、金、銀、ニッケル、パラジウム、クロムなど)、金属酸化物(インジウムの酸化物、スズの酸化物、インジウム-スズ酸化物(ITO)など)、ハロゲン化金属(ヨウ化銅など)、硫化銅、カーボンブラック、ITOガラスやネサガラスなどがあげられる。有機化合物としては、例えば、ポリ(3-メチルチオフェン)などのポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなどがあげられる。その他、有機電界発光素子の陽極として用いられている物質の中から適宜選択して用いることができる。
 透明電極の抵抗は、発光素子の発光に十分な電流が供給できさえすれば特に限定されないが、発光素子の消費電力の観点からは低抵抗であることが望ましい。例えば、300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、例えば100~5Ω/□、好ましくは50~5Ω/□の低抵抗品を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100~300nmの間で用いられることが多い。
<有機電界発光素子における正孔注入層、正孔輸送層>
 正孔注入層103は、陽極102から移動してくる正孔を、効率よく発光層105内または正孔輸送層104内に注入する役割を果たすものである。正孔輸送層104は、陽極102から注入された正孔または陽極102から正孔注入層103を介して注入された正孔を、効率よく発光層105に輸送する役割を果たすものである。正孔注入層103および正孔輸送層104は、それぞれ、正孔注入・輸送材料の一種または二種以上を積層、混合するか、正孔注入・輸送材料と高分子結着剤の混合物により形成される。また、正孔注入・輸送材料に塩化鉄(III)のような無機塩を添加して層を形成してもよい。
 正孔注入・輸送性物質としては電界を与えられた電極間において正極からの正孔を効率よく注入・輸送することが必要で、正孔注入効率が高く、注入された正孔を効率よく輸送することが望ましい。そのためにはイオン化ポテンシャルが小さく、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。
 正孔注入層103および正孔輸送層104を形成する材料としては、光導電材料において、正孔の電荷輸送材料として従来から慣用されている化合物、p型半導体、有機電界発光素子の正孔注入層および正孔輸送層に使用されている公知のものの中から任意のものを選択して用いることができる。それらの具体例は、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、トリアリールアミン誘導体(芳香族第3級アミノを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジアミノビフェニル、N,N’-ジフェニル-N,N’-ジナフチル-4,4’-ジアミノビフェニル(以下、NPDと略記する。)、N,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミン、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミン、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミンなどのトリフェニルアミン誘導体、スターバーストアミン誘導体など、スチルベン誘導体、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ピラゾリン誘導体、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、ポルフィリン誘導体などの複素環化合物、ポリシランなどである。ポリマー系では上記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリビニルカルバゾールおよびポリシランなどが好ましいが、発光素子の作製に必要な薄膜を形成し、陽極から正孔が注入できて、さらに正孔を輸送できる化合物であれば特に限定されるものではない。
 また、有機半導体の導電性は、そのドーピングにより、強い影響を受けることも知られている。このような有機半導体マトリックス物質は、電子供与性の良好な化合物、または電子受容性の良好な化合物から構成されている。電子供与物質のドーピングのために、テトラシアノキノンジメタン(TCNQ)または2,3,5,6-テトラフルオロテトラシアノ-1,4-ベンゾキノンジメタン(F4TCNQ)などの強い電子受容体が知られている(例えば、文献「M.Pfeiffer,A.Beyer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(22),3202-3204(1998)」および文献「J.Blochwitz,M.Pheiffer,T.Fritz,K.Leo,Appl.Phys.Lett.,73(6),729-731(1998)」を参照)。これらは、電子供与型ベース物質(正孔輸送物質)における電子移動プロセスによって、いわゆる正孔を生成する。正孔の数および移動度によって、ベース物質の伝導性が、かなり大きく変化する。正孔輸送特性を有するマトリックス物質としては、例えばベンジジン誘導体(TPDなど)またはスターバーストアミン誘導体(TDATAなど)、あるいは、特定の金属フタロシアニン(特に、亜鉛フタロシアニンZnPcなど)が知られている(特開2005-167175号公報)。
<有機電界発光素子における発光層>
 発光層105は、電界を与えられた電極間において、陽極102から注入された正孔と、陰極108から注入された電子とを再結合させることにより発光するものである。発光層105を形成する材料としては、正孔と電子との再結合によって励起されて発光する化合物(発光性化合物)であればよく、安定な薄膜形状を形成することができ、かつ、固体状態で強い発光(蛍光および/または燐光)効率を示す化合物であるのが好ましい。
 発光層は単一層でも複数層からなってもどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、発光層の各層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれであってもよい。ドーパントの使用量はドーパントによって異なり、そのドーパントの特性に合わせて決めればよい。ドーパントの使用量の目安は、好ましくは発光材料全体の0.001~50重量%であり、より好ましくは0.1~10重量%であり、さらに好ましくは1~5重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 ホスト材料としては、特に限定されるものではないが、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラト)アルミニウムをはじめとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ピロロピロール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体が好適に用いられる。
 その他、ホスト材料としては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
 ホスト材料の使用量は、好ましくは発光材料全体の50~99.999重量%であり、より好ましくは80~99.95重量%であり、さらに好ましくは90~99.9重量%である。
 また、ドーパント材料としては、上記一般式(1)、一般式(2X)、一般式(2Y)、一般式(3X)または一般式(3Y)で表されるベンゾフルオレン化合物を用いることができる。上記一般式(1)、一般式(2X)、一般式(2Y)、一般式(3X)または一般式(3Y)で表されるベンゾフルオレン化合物のドーパント材料としての使用量は、好ましくは発光材料全体の0.001~50重量%であり、より好ましくは0.05~20重量%であり、さらに好ましくは0.1~10重量%である。ドーピング方法としては、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
 また、その他のドーパント材料も同時に使用できる。その他のドーパント材料としては、特に限定されるものではなく、既知の化合物を用いることができ、所望の発光色に応じて様々な材料の中から選択することができる。具体的には、例えば、フェナンスレン、アントラセン、ピレン、テトラセン、ペンタセン、ペリレン、ナフトピレン、ジベンゾピレンおよびルブレンなどの縮合環誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、チアゾール誘導体、イミダゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラゾリン誘導体、スチルベン誘導体、チオフェン誘導体、テトラフェニルブタジエン誘導体、シクロペンタジエン誘導体、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体(特開平1-245087号公報)、ビススチリルアリーレン誘導体(特開平2-247278号公報)、ジアザインダセン誘導体、フラン誘導体、ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメシチルイソベンゾフラン、ジ(2-メチルフェニル)イソベンゾフラン、ジ(2-トリフルオロメチルフェニル)イソベンゾフラン、フェニルイソベンゾフランなどのイソベンゾフラン誘導体、ジベンゾフラン誘導体、7-ジアルキルアミノクマリン誘導体、7-ピペリジノクマリン誘導体、7-ヒドロキシクマリン誘導体、7-メトキシクマリン誘導体、7-アセトキシクマリン誘導体、3-ベンゾチアゾリルクマリン誘導体、3-ベンゾイミダゾリルクマリン誘導体、3-ベンゾオキサゾリルクマリン誘導体などのクマリン誘導体、ジシアノメチレンピラン誘導体、ジシアノメチレンチオピラン誘導体、ポリメチン誘導体、シアニン誘導体、オキソベンゾアンスラセン誘導体、キサンテン誘導体、ローダミン誘導体、フルオレセイン誘導体、ピリリウム誘導体、カルボスチリル誘導体、アクリジン誘導体、オキサジン誘導体、フェニレンオキサイド誘導体、キナクリドン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、フロピリジン誘導体、1,2,5-チアジアゾロピレン誘導体、ピロメテン誘導体、ペリノン誘導体、ピロロピロール誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、アクリドン誘導体およびデアザフラビン誘導体などがあげられる。
 発色光ごとに例示すると、青~青緑色ドーパント材料としては、ナフタレン、アントラセン、フェナンスレン、ピレン、トリフェニレン、ペリレン、フルオレン、インデンなどの芳香族炭化水素化合物やその誘導体、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどの芳香族複素環化合物やその誘導体、ジスチリルベンゼン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、クマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などがあげられる。
 また、緑~黄色ドーパント材料としては、クマリン誘導体、フタルイミド誘導体、ナフタルイミド誘導体、ペリノン誘導体、ピロロピロール誘導体、シクロペンタジエン誘導体、アクリドン誘導体、キナクリドン誘導体およびルブレンなどのナフタセン誘導体などがあげられ、さらに上記青~青緑色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。
 さらに、橙~赤色ドーパント材料としては、ビス(ジイソプロピルフェニル)ペリレンテトラカルボン酸イミドなどのナフタルイミド誘導体、ペリノン誘導体、アセチルアセトンやベンゾイルアセトンとフェナントロリンなどを配位子とするEu錯体などの希土類錯体、4-(ジシアノメチレン)-2-メチル-6-(p-ジメチルアミノスチリル)-4H-ピランやその類縁体、マグネシウムフタロシアニン、アルミニウムクロロフタロシアニンなどの金属フタロシアニン誘導体、ローダミン化合物、デアザフラビン誘導体、クマリン誘導体、キナクリドン誘導体、フェノキサジン誘導体、オキサジン誘導体、キナゾリン誘導体、ピロロピリジン誘導体、スクアリリウム誘導体、ビオラントロン誘導体、フェナジン誘導体、フェノキサゾン誘導体およびチアジアゾロピレン誘導体などあげられ、さらに上記青~青緑色および緑~黄色ドーパント材料として例示した化合物に、アリール、ヘテロアリール、アリールビニル、アミノ、シアノなど長波長化を可能とする置換基を導入した化合物も好適な例としてあげられる。さらに、トリス(2-フェニルピリジン)イリジウム(III)に代表されるイリジウムや白金を中心金属とした燐光性金属錯体も好適な例としてあげられる。
 本発明の発光層用材料に適したドーパント材料としては、上述するドーパント材料の中でも、上記一般式(1)、一般式(2X)、一般式(2Y)、一般式(3X)または一般式(3Y)で表されるベンゾフルオレン化合物が最適であり、同時に使用できるドーパント材料としては、ペリレン誘導体、ボラン誘導体、アミン含有スチリル誘導体、芳香族アミン誘導体、クマリン誘導体、ピラン誘導体、イリジウム錯体または白金錯体が好ましい。
 ペリレン誘導体としては、例えば、3,10-ビス(2,6-ジメチルフェニル)ペリレン、3,10-ビス(2,4,6-トリメチルフェニル)ペリレン、3,10-ジフェニルペリレン、3,4-ジフェニルペリレン、2,5,8,11-テトラ-t-ブチルペリレン、3,4,9,10-テトラフェニルペリレン、3-(1’-ピレニル)-8,11-ジ(t-ブチル)ペリレン、3-(9’-アントリル)-8,11-ジ(t-ブチル)ペリレン、3,3’-ビス(8,11-ジ(t-ブチル)ペリレニル)などがあげられる。
 また、特開平11-97178号公報、特開2000-133457号公報、特開2000-26324号公報、特開2001-267079号公報、特開2001-267078号公報、特開2001-267076号公報、特開2000-34234号公報、特開2001-267075号公報、および特開2001-217077号公報などに記載されたペリレン誘導体を用いてもよい。
 ボラン誘導体としては、例えば、1,8-ジフェニル-10-(ジメシチルボリル)アントラセン、9-フェニル-10-(ジメシチルボリル)アントラセン、4-(9’-アントリル)ジメシチルボリルナフタレン、4-(10’-フェニル-9’-アントリル)ジメシチルボリルナフタレン、9-(ジメシチルボリル)アントラセン、9-(4’-ビフェニリル)-10-(ジメシチルボリル)アントラセン、9-(4’-(N-カルバゾリル)フェニル)-10-(ジメシチルボリル)アントラセンなどがあげられる。
 また、国際公開第2000/40586号パンフレットなどに記載されたボラン誘導体を用いてもよい。
 アミン含有スチリル誘導体としては、例えば、N,N,N’,N’-テトラ(4-ビフェニリル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(1-ナフチル)-4、4’-ジアミノスチルベン、N,N,N’,N’-テトラ(2-ナフチル)-4、4’-ジアミノスチルベン、N,N’-ジ(2-ナフチル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、N,N’-ジ(9-フェナントリル)-N,N’-ジフェニル-4、4’-ジアミノスチルベン、4,4’-ビス[4”-ビス(ジフェニルアミノ)スチリル]-ビフェニル、1,4-ビス[4’-ビス(ジフェニルアミノ)スチリル]-ベンゼン、2,7-ビス[4’-ビス(ジフェニルアミノ)スチリル]-9,9-ジメチルフルオレン、4,4’-ビス(9-エチル-3-カルバゾビニレン)-ビフェニル、4,4’-ビス(9-フェニル-3-カルバゾビニレン)-ビフェニルなどがあげられる。 また、特開2003-347056号公報、および特開2001-307884号公報などに記載されたアミン含有スチリル誘導体を用いてもよい。
 芳香族アミン誘導体としては、例えば、N,N,N,N-テトラフェニルアントラセン-9,10-ジアミン、9,10-ビス(4-ジフェニルアミノ-フェニル)アントラセン、9,10-ビス(4-ジ(1-ナフチルアミノ)フェニル)アントラセン、9,10-ビス(4-ジ(2-ナフチルアミノ)フェニル)アントラセン、10-ジ-p-トリルアミノ-9-(4-ジ-p-トリルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(4-ジフェニルアミノ-1-ナフチル)アントラセン、10-ジフェニルアミノ-9-(6-ジフェニルアミノ-2-ナフチル)アントラセン、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[4-(4-ジフェニルアミノ-フェニル)ナフタレン-1-イル]-ジフェニルアミン、[6-(4-ジフェニルアミノ-フェニル)ナフタレン-2-イル]-ジフェニルアミン、4,4’-ビス[4-ジフェニルアミノナフタレン-1-イル]ビフェニル、4,4’-ビス[6-ジフェニルアミノナフタレン-2-イル]ビフェニル、4,4”-ビス[4-ジフェニルアミノナフタレン-1-イル]-p-テルフェニル、4,4”-ビス[6-ジフェニルアミノナフタレン-2-イル]-p-テルフェニルなどがあげられる。
 また、特開2006-156888号公報などに記載された芳香族アミン誘導体を用いてもよい。
 クマリン誘導体としては、クマリン-6、クマリン-334などがあげられる。
 また、特開2004-43646号公報、特開2001-76876号公報、および特開平6-298758号公報などに記載されたクマリン誘導体を用いてもよい。
 ピラン誘導体としては、下記のDCM、DCJTBなどがあげられる。
Figure JPOXMLDOC01-appb-C000312

 また、特開2005-126399号公報、特開2005-097283号公報、特開2002-234892号公報、特開2001-220577号公報、特開2001-081090号公報、および特開2001-052869号公報などに記載されたピラン誘導体を用いてもよい。
 イリジウム錯体としては、下記のIr(ppy)などがあげられる。
Figure JPOXMLDOC01-appb-C000313

 また、特開2006-089398号公報、特開2006-080419号公報、特開2005-298483号公報、特開2005-097263号公報、および特開2004-111379号公報などに記載されたイリジウム錯体を用いてもよい。
 白金錯体としては、下記のPtOEPなどがあげられる。
Figure JPOXMLDOC01-appb-C000314

 また、特開2006-190718号公報、特開2006-128634号公報、特開2006-093542号公報、特開2004-335122号公報、および特開2004-331508号公報などに記載された白金錯体を用いてもよい。
 その他、ドーパントとしては、化学工業2004年6月号13頁、および、それにあげられた参考文献などに記載された化合物などの中から適宜選択して用いることができる。
<有機電界発光素子における電子注入層、電子輸送層>
 電子注入層107は、陰極108から移動してくる電子を、効率よく発光層105内または電子輸送層106内に注入する役割を果たすものである。電子輸送層106は、陰極108から注入された電子または陰極108から電子注入層107を介して注入された電子を、効率よく発光層105に輸送する役割を果たすものである。電子輸送層106および電子注入層107は、それぞれ、電子輸送・注入材料の一種または二種以上を積層、混合するか、電子輸送・注入材料と高分子結着剤の混合物により形成される。
 電子注入・輸送層とは、陰極から電子が注入され、さらに電子を輸送することを司る層であり、電子注入効率が高く、注入された電子を効率よく輸送することが望ましい。そのためには電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たす場合には、電子輸送能力がそれ程高くなくても、発光効率を向上させる効果は電子輸送能力が高い材料と同等に有する。したがって、本実施形態における電子注入・輸送層は、正孔の移動を効率よく阻止できる層の機能も含まれてもよい。
 電子輸送層および電子注入層に用いられる材料としては、光導電材料において電子伝達化合物として従来から慣用されている化合物、有機電界発光素子の電子注入層および電子輸送層に使用されている公知の化合物の中から任意に選択して用いることができる。
 具体的には、ピリジン誘導体、ナフタレン誘導体、アントラセン誘導体、フェナントロリン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノン誘導体、ジフェノキノン誘導体、ジフェニルキノン誘導体、ペリレン誘導体、チオフェン誘導体、チアジアゾール誘導体、キノキサリン誘導体、キノキサリン誘導体のポリマー、ベンザゾール類化合物、ピラゾール誘導体、パーフルオロ化フェニレン誘導体、トリアジン誘導体、ピラジン誘導体、イミダゾピリジン誘導体、ボラン誘導体、ベンゾオキサゾール誘導体、ベンゾチアゾール誘導体、キノリン誘導体、アルダジン誘導体、カルバゾール誘導体、インドール誘導体、リンオキサイド誘導体、ビススチリル誘導体などがあげられる。また、オキサジアゾール誘導体(1,3-ビス[(4-t-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなど)、トリアゾール誘導体(N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなど)、ベンゾキノリン誘導体(2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなど)、ベンゾイミダゾール誘導体(トリス(N-フェニルベンゾイミダゾール-2-イル)ベンゼンなど)、ビピリジン誘導体、テルピリジン誘導体(1,3-ビス(4’-(2,2’:6’2”-テルピリジニル))ベンゼンなど)、ナフチリジン誘導体(ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなど)などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 また、電子受容性窒素を有する金属錯体を用いることもでき、例えば、キノリノール系金属錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体、フラボノール金属錯体およびベンゾキノリン金属錯体などがあげられる。これらの材料は単独でも用いられるが、異なる材料と混合して使用しても構わない。
 上述した材料の中でも、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体またはベンゾイミダゾール誘導体が好ましい。
 キノリノール系金属錯体は、下記一般式(E-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000315

 式中、R~Rは水素または置換基であり、MはLi、Al、Ga、BeまたはZnであり、nは1~3の整数である。
 キノリノール系金属錯体の具体例としては、8-キノリノールリチウム、トリス(8-キノリノラート)アルミニウム、トリス(4-メチル-8-キノリノラート)アルミニウム、トリス(5-メチル-8-キノリノラート)アルミニウム、トリス(3,4-ジメチル-8-キノリノラート)アルミニウム、トリス(4,5-ジメチル-8-キノリノラート)アルミニウム、トリス(4,6-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(フェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-メチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,3-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,4-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,6-ジフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリフェニルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,6-トリメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2,4,5,6-テトラメチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(1-ナフトラート)アルミニウム、ビス(2-メチル-8-キノリノラート)(2-ナフトラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(2-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(4-フェニルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジメチルフェノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)(3,5-ジ-t-ブチルフェノラート)アルミニウム、ビス(2-メチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-8-キノリノラート)アルミニウム、ビス(2,4-ジメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2,4-ジメチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-エチル-8-キノリノラート)アルミニウム、ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-4-メトキシ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-シアノ-8-キノリノラート)アルミニウム、ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム-μ-オキソ-ビス(2-メチル-5-トリフルオロメチル-8-キノリノラート)アルミニウム、ビス(10-ヒドロキシベンゾ[h]キノリン)ベリリウムなどがあげられる。
 ピリジン誘導体は、下記一般式(E-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000316

 式中、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、ピリジン-ピリジンまたはピリジン-Gの結合に用いられない炭素原子は置換されていてもよい。
 一般式(E-2)のGとしては、例えば、以下の構造式のものがあげられる。なお、下記構造式中のRは、それぞれ独立して、水素、メチル、エチル、イソプロピル、シクロヘキシル、フェニル、1-ナフチル、2-ナフチル、ビフェニリルまたはテルフェニリルである。
Figure JPOXMLDOC01-appb-C000317
 ピリジン誘導体の具体例としては、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-6-イル)-1,1-ジメチル-3,4-ジメシチルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジフェニルシロール、2,5-ビス(2,2’-ビピリジン-5-イル)-1,1-ジメチル-3,4-ジメシチルシロール9,10-ジ(2,2’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)アントラセン、9,10-ジ(2,3’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,3’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,2’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(2,4’-ビピリジン-5-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-6-イル)-2-フェニルアントラセン、9,10-ジ(3,4’-ビピリジン-5-イル)-2-フェニルアントラセン、3,4-ジフェニル-2,5-ジ(2,2’-ビピリジン-6-イル)チオフェン、3,4-ジフェニル-2,5-ジ(2,3’-ビピリジン-5-イル)チオフェン、6’6”-ジ(2-ピリジル)2,2’:4’,4”:2”,2”’-クアテルピリジンなどがあげられる。
 フェナントロリン誘導体は、下記一般式(E-3-1)または(E-3-2)で表される化合物である。
Figure JPOXMLDOC01-appb-C000318

 式中、R~Rは水素または置換基であり、隣接する基は互いに結合して縮合環を形成してもよく、Gは単なる結合手またはn価の連結基を表し、nは2~8の整数である。また、一般式(E-3-2)のGとしては、例えば、ビピリジン誘導体の欄で説明したものと同じものがあげられる。
 フェナントロリン誘導体の具体例としては、4,7-ジフェニル-1,10-フェナントロリン、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、9,10-ジ(1,10-フェナントロリン-2-イル)アントラセン、2,6-ジ(1,10-フェナントロリン-5-イル)ピリジン、1,3,5-トリ(1,10-フェナントロリン-5-イル)ベンゼン、9,9’-ジフルオル-ビス(1,10-フェナントロリン-5-イル)、バソクプロインや1,3-ビス(2-フェニル-1,10-フェナントロリン-9-イル)ベンゼンなどがあげられる。
 特に、フェナントロリン誘導体を電子輸送層、電子注入層に用いた場合について説明する。長時間にわたって安定な発光を得るには、熱的安定性や薄膜形成性に優れた材料が望まれ、フェナントロリン誘導体の中でも、置換基自身が三次元的立体構造を有するか、フェナントロリン骨格とのあるいは隣接置換基との立体反発により三次元的立体構造を有するもの、あるいは複数のフェナントロリン骨格を連結したものが好ましい。さらに、複数のフェナントロリン骨格を連結する場合、連結ユニット中に共役結合、置換されていてもよい芳香族炭化水素、置換されていてもよい芳香複素環を含んでいる化合物がより好ましい。
 ボラン誘導体は、下記一般式(E-4)で表される化合物であり、詳細には特開2007-27587号公報に開示されている。
Figure JPOXMLDOC01-appb-C000319

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよいアリーレンであり、Yは、置換されていてもよい炭素数16以下のアリール、置換ボリル、または置換されていてもよいカルバゾールであり、そして、nはそれぞれ独立して0~3の整数である。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-1)で表される化合物、さらに下記一般式(E-4-1-1)~(E-4-1-4)で表される化合物が好ましい。具体例としては、9-[4-(4-ジメシチルボリルナフタレン-1-イル)フェニル]カルバゾール、9-[4-(4-ジメシチルボリルナフタレン-1-イル)ナフタレン-1-イル]カルバゾールなどがあげられる。
Figure JPOXMLDOC01-appb-C000320

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、R21およびR22は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、nはそれぞれ独立して0~3の整数であり、そして、mはそれぞれ独立して0~4の整数である。
Figure JPOXMLDOC01-appb-C000321

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-2)で表される化合物、さらに下記一般式(E-4-2-1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000322

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数20以下のアリーレンであり、そして、nはそれぞれ独立して0~3の整数である。
Figure JPOXMLDOC01-appb-C000323

 式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 上記一般式(E-4)で表される化合物の中でも、下記一般式(E-4-3)で表される化合物、さらに下記一般式(E-4-3-1)または(E-4-3-2)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000324

 式中、R11およびR12は、それぞれ独立して、水素、アルキル、置換されていてもよいアリール、置換シリル、置換されていてもよい窒素含有複素環、またはシアノの少なくとも一つであり、R13~R16は、それぞれ独立して、置換されていてもよいアルキル、または置換されていてもよいアリールであり、Xは、置換されていてもよい炭素数10以下のアリーレンであり、Yは、置換されていてもよい炭素数14以下のアリールであり、そして、nはそれぞれ独立して0~3の整数である。
Figure JPOXMLDOC01-appb-C000325

 各式中、R31~R34は、それぞれ独立して、メチル、イソプロピルまたはフェニルのいずれかであり、そして、R35およびR36は、それぞれ独立して、水素、メチル、イソプロピルまたはフェニルのいずれかである。
 ベンゾイミダゾール誘導体は、下記一般式(E-5)で表される化合物である。
Figure JPOXMLDOC01-appb-C000326

 式中、Ar~Arはそれぞれ独立に水素または置換されてもよい炭素数6~30のアリールである。特に、Arが置換されてもよいアントリルであるベンゾイミダゾール誘導体が好ましい。
 炭素数6~30のアリールの具体例は、フェニル、1-ナフチル、2-ナフチル、アセナフチレン-1-イル、アセナフチレン-3-イル、アセナフチレン-4-イル、アセナフチレン-5-イル、フルオレン-1-イル、フルオレン-2-イル、フルオレン-3-イル、フルオレン-4-イル、フルオレン-9-イル、フェナレン-1-イル、フェナレン-2-イル、1-フェナントリル、2-フェナントリル、3-フェナントリル、4-フェナントリル,9-フェナントリル、1-アントリル、2-アントリル、9-アントリル、フルオランテン-1-イル、フルオランテン-2-イル、フルオランテン-3-イル、フルオランテン-7-イル、フルオランテン-8-イル、トリフェニレン-1-イル、トリフェニレン-2-イル、ピレン-1-イル、ピレン-2-イル、ピレン-4-イル、クリセン-1-イル、クリセン-2-イル、クリセン-3-イル、クリセン-4-イル、クリセン-5-イル、クリセン-6-イル、ナフタセン-1-イル、ナフタセン-2-イル、ナフタセン-5-イル、ペリレン-1-イル、ペリレン-2-イル、ペリレン-3-イル、ペンタセン-1-イル、ペンタセン-2-イル、ペンタセン-5-イル、ペンタセン-6-イルである。
 ベンゾイミダゾール誘導体の具体例は、1-フェニル-2-(4-(10-フェニルアントラセン-9-イル)フェニル)-1H-ベンゾ[d]イミダゾール、2-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、2-(3-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、5-(10-(ナフタレン-2-イル)アントラセン-9-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾール、1-(4-(10-(ナフタレン-2-イル)アントラセン-9-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、2-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-1-フェニル-1H-ベンゾ[d]イミダゾール、1-(4-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)フェニル)-2-フェニル-1H-ベンゾ[d]イミダゾール、5-(9,10-ジ(ナフタレン-2-イル)アントラセン-2-イル)-1,2-ジフェニル-1H-ベンゾ[d]イミダゾールである。
 電子輸送層または電子注入層には、さらに、電子輸送層または電子注入層を形成する材料を還元できる物質を含んでいてもよい。この還元性物質は、一定の還元性を有するものであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを好適に使用することができる。
 好ましい還元性物質としては、Na(仕事関数2.36eV)、K(同2.28eV)、Rb(同2.16eV)またはCs(同1.95eV)などのアルカリ金属や、Ca(同2.9eV)、Sr(同2.0~2.5eV)またはBa(同2.52eV)などのアルカリ土類金属があげられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち、より好ましい還元性物質は、K、RbまたはCsのアルカリ金属であり、さらに好ましくはRbまたはCsであり、最も好ましいのはCsである。これらのアルカリ金属は、特に還元能力が高く、電子輸送層または電子注入層を形成する材料への比較的少量の添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。また、仕事関数が2.9eV以下の還元性物質として、これら2種以上のアルカリ金属の組み合わせも好ましく、特に、Csを含んだ組み合わせ、例えば、CsとNa、CsとK、CsとRb、またはCsとNaとKとの組み合わせが好ましい。Csを含むことにより、還元能力を効率的に発揮することができ、電子輸送層または電子注入層を形成する材料への添加により、有機EL素子における発光輝度の向上や長寿命化が図られる。
<有機電界発光素子における陰極>
 陰極108は、電子注入層107および電子輸送層106を介して、発光層105に電子を注入する役割を果たすものである。
 陰極108を形成する材料としては、電子を有機層に効率よく注入できる物質であれば特に限定されないが、陽極102を形成する材料と同様のものを用いることができる。なかでも、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀、銅、ニッケル、クロム、金、白金、鉄、亜鉛、リチウム、ナトリウム、カリウム、セシウムおよびマグネシウムなどの金属またはそれらの合金(マグネシウム-銀合金、マグネシウム-インジウム合金、フッ化リチウム/アルミニウムなどのアルミニウム-リチウム合金など)などが好ましい。電子注入効率をあげて素子特性を向上させるためには、リチウム、ナトリウム、カリウム、セシウム、カルシウム、マグネシウムまたはこれら低仕事関数金属を含む合金が有効である。しかしながら、これらの低仕事関数金属は一般に大気中で不安定であることが多い。この点を改善するために、例えば、有機層に微量のリチウム、セシウムやマグネシウムをドーピングして、安定性の高い電極を使用する方法が知られている。その他のドーパントとしては、フッ化リチウム、フッ化セシウム、酸化リチウムおよび酸化セシウムのような無機塩も使用することができる。ただし、これらに限定されるものではない。
 さらに、電極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、そしてシリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、塩化ビニル、炭化水素系高分子化合物などを積層することが、好ましい例としてあげられる。これらの電極の作製法も、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど、導通を取ることができれば特に制限されない。
<各層で用いてもよい結着剤>
 以上の正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層に用いられる材料は単独で各層を形成することができるが、高分子結着剤としてポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリ(N-ビニルカルバゾール)、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル樹脂、ABS樹脂、ポリウレタン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キシレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、シリコーン樹脂などの硬化性樹脂などに分散させて用いることも可能である。
<有機電界発光素子の作製方法>
 有機電界発光素子を構成する各層は、各層を構成すべき材料を蒸着法、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、印刷法、スピンコート法またはキャスト法、コーティング法などの方法で薄膜とすることにより、形成することができる。このようにして形成された各層の膜厚については特に限定はなく、材料の性質に応じて適宜設定することができるが、通常2nm~5000nmの範囲である。膜厚は通常、水晶発振式膜厚測定装置などで測定できる。蒸着法を用いて薄膜化する場合、その蒸着条件は、材料の種類、膜の目的とする結晶構造および会合構造などにより異なる。蒸着条件は一般的に、ボート加熱温度+50~+400℃、真空度10-6~10-3Pa、蒸着速度0.01~50nm/秒、基板温度-150~+300℃、膜厚2nm~5μmの範囲で適宜設定することが好ましい。
 次に、有機電界発光素子を作製する方法の一例として、陽極/正孔注入層/正孔輸送層/ホスト材料とドーパント材料からなる発光層/電子輸送層/電子注入層/陰極からなる有機電界発光素子の作製法について説明する。適当な基板上に、陽極材料の薄膜を蒸着法などにより形成させて陽極を作製した後、この陽極上に正孔注入層および正孔輸送層の薄膜を形成させる。この上にホスト材料とドーパント材料を共蒸着し薄膜を形成させて発光層とし、この発光層の上に電子輸送層、電子注入層を形成させ、さらに陰極用物質からなる薄膜を蒸着法などにより形成させて陰極とすることにより、目的の有機電界発光素子が得られる。なお、上述の有機電界発光素子の作製においては、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 このようにして得られた有機電界発光素子に直流電圧を印加する場合には、陽極を+、陰極を-の極性として印加すればよく、電圧2~40V程度を印加すると、透明または半透明の電極側(陽極または陰極、および両方)より発光が観測できる。また、この有機電界発光素子は、パルス電流や交流電流を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
<有機電界発光素子の応用例>
 また、本発明は、有機電界発光素子を備えた表示装置または有機電界発光素子を備えた照明装置などにも応用することができる。
 有機電界発光素子を備えた表示装置または照明装置は、本実施形態にかかる有機電界発光素子と公知の駆動装置とを接続するなど公知の方法によって製造することができ、直流駆動、パルス駆動、交流駆動など公知の駆動方法を適宜用いて駆動することができる。
 表示装置としては、例えば、カラーフラットパネルディスプレイなどのパネルディスプレイ、フレキシブルカラー有機電界発光(EL)ディスプレイなどのフレキシブルディスプレイなどがあげられる(例えば、特開平10-335066号公報、特開2003-321546号公報、特開2004-281086号公報など参照)。また、ディスプレイの表示方式としては、例えば、マトリクスおよび/またはセグメント方式などがあげられる。なお、マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
 マトリクスとは、表示のための画素が格子状やモザイク状など二次元的に配置されたものをいい、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法としては、線順次駆動方法やアクティブマトリックスのどちらでもよい。線順次駆動の方が構造が簡単であるという利点があるが、動作特性を考慮した場合、アクティブマトリックスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
 セグメント方式(タイプ)では、予め決められた情報を表示するようにパターンを形成し、決められた領域を発光させることになる。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などがあげられる。
 照明装置としては、例えば、室内照明などの照明装置、液晶表示装置のバックライトなどがあげられる(例えば、特開2003-257621号公報、特開2003-277741号公報、特開2004-119211号公報など参照)。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が課題となっているパソコン用途のバックライトとしては、従来方式のものが蛍光灯や導光板からなっているため薄型化が困難であることを考えると、本実施形態に係る発光素子を用いたバックライトは薄型で軽量が特徴になる。
<ベンゾフルオレン化合物の合成例(1)>
 以下、式(1-1)および式(1-201)で表される化合物の合成例について説明する。
[合成例1]化合物(1-1)の合成
Figure JPOXMLDOC01-appb-C000327
<N-フェニルジベンゾ[b,d]フラン-4-アミンの合成>
 アルゴン雰囲気下、4-ブロモジベンゾ[b,d]フラン5.0gとアニリン2.0gを脱水キシレン150mlに溶解させ、パラジウム ビス(ジベンジリデン)0.13g、ナトリウム t-ブトキシド5.8g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.18gを加えて120℃で15時間加熱した。反応液を室温まで冷却後、水を100ml添加し、攪拌後分液した。有機層を水洗した後、溶媒を減圧留去して粗製品を得た。粗製品をトルエンに溶解して、アルミナでカラム精製(溶媒:トルエン/ヘプタン=1/1(容量比))を行って着色成分を除いた。溶媒を減圧留去し、さらにヘプタンから再結晶して、N-フェニルジベンゾ[b,d]フラン-4-アミンを2.2g(収率42%)得た。
 MSスペクトルおよびNMR測定によりN-フェニルジベンゾ[b,d]フラン-4-アミンの構造を確認した。
H-NMR(CDCl):δ=7.96(dd,1H)、7.58(d,1H)、7.51(dd,1H)、7.46(dt,1H)、7.39-7.31(m,4H)、7.24-7.21(m,3H)、7.01(t,1H)、6.19(bs,1H).
<N,N-ビス(ジベンゾ[b,d]フラン-4-イル)-7,7-ジメチル-N,N-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミンの合成>
 アルゴン雰囲気下、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[c]フルオレン1.0gとN-フェニルジベンゾ[b,d]フラン-4-アミン1.1gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.050g、ナトリウム t-ブトキシド1.2g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.065gを加えて150℃で3時間加熱した。反応液を室温まで冷却後、水を50ml添加し、攪拌後分液した。有機層を水洗した後、溶媒を減圧留去して粗製品を得た。粗製品をトルエンに溶解して、シリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、式(1-1)で表される化合物、N,N-ビス(ジベンゾ[b,d]フラン-4-イル)-7,7-ジメチル-N,N-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミンを1.1g(収率63%)得た。
 MSスペクトルおよびNMR測定により式(1-1)で表される化合物の構造を確認した。
H-NMR(CDCl):δ=8.66(brd,1H)、8.16(m,2H)、7.95(m,3H)、7.77(brd,1H)、7.70(brs,1H)、7.58-7.53(m,3H)、7.42-7.05(m,18H)、6.89-6.83(m,3H)、1.36(s,6H).
[合成例2]化合物(1-201)の合成
Figure JPOXMLDOC01-appb-C000328
<N-フェニルジベンゾ[b,d]チオフェン-4-アミンの合成>
 アルゴン雰囲気下、4-ブロモジベンゾ[b,d]チオフェン5.0gとアニリン1.9gを脱水キシレン150mlに溶解させ、パラジウム ビス(ジベンジリデン)0.11g、ナトリウム t-ブトキシド5.4g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.15gを加えて120℃で3時間加熱した。反応液を室温まで冷却後、水を100ml添加し、攪拌後分液した。有機層を水洗した後、溶媒を減圧留去して粗製品を得た。粗製品をトルエンに溶解して、アルミナでカラム精製(溶媒:トルエン)を行って着色成分を除いた。溶媒を減圧留去し、さらにヘプタンから再結晶して、N-フェニルジベンゾ[b,d]チオフェン-4-アミンを3.3g(収率68%)得た。
 MSスペクトルおよびNMR測定によりN-フェニルジベンゾ[b,d]チオフェン-4-アミンの構造を確認した。
H-NMR(CDCl):δ=8.18-8.14(m,1H)、7.87(dd,1H)、7.85(d,1H)、7.49-7.45(m,2H)、7.41(t,1H)、7.36(d,1H)、7.31(t,2H)、7.09(d,2H)、6.98(t,1H)、5.66(s,1H).
<N,N-ビス(ジベンゾ[b,d]チオフェン-4-イル)-7,7-ジメチル-N,N-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミンの合成>
 アルゴン雰囲気下、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[c]フルオレン1.0gとN-フェニルジベンゾ[b,d]チオフェン-4-アミン1.5gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.070g、ナトリウム t-ブトキシド1.8g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.100gを加えて150℃で4時間加熱した。反応液を室温まで冷却後、水を50ml添加し、攪拌後分液した。有機層を水洗した後、溶媒を減圧留去して粗製品を得た。粗製品をトルエンに溶解して、シリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、式(1-201)で表される化合物、N,N-ビス(ジベンゾ[b,d]チオフェン-4-イル)-7,7-ジメチル-N,N-ジフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミンを0.27g(収率11%)得た。
 MSスペクトルおよびNMR測定により式(1-201)で表される化合物の構造を確認した。
H-NMR(CDCl):δ=8.67(d,1H)、8.16(t,3H)、8.10(d,1H)、8.02(d,1H)、7.93(d,1H)、7.70(d,1H)、7.55(t,1H)、7.49-6.91(m,23H)、1.34(s,6H).
<ベンゾフルオレン化合物の合成例(2)>
 以下、式(1-351)、式(1-151)、式(1-101)、式(1-3)、式(1-1001)、式(2-601)、式(2-641)、式(2-683)、式(2-630)、式(3-230)、式(2-231)、式(3-369)、式(2-1)、式(2-83)、式(2-41)、式(2-84)、式(2-901)、式(2-301)、式(2-1901)、式(2-1537)、および式(2-1538)で表される化合物の合成例について説明する。
[合成例3]化合物(1-351)の合成
Figure JPOXMLDOC01-appb-C000329
 アルゴン雰囲気下、2-ブロモジベンゾチオフェン5.0gとアニリン1.9gを脱水キシレン150mlに溶解させ、パラジウム ビス(ジベンジリデン)0.11g、ナトリウム t-ブトキシド5.4g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.15gを加えて120℃で3時間加熱した。室温に冷却後、水を100ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をアルミナでカラム精製(溶媒:トルエン)を行って着色成分を除き、溶媒をエバポレーターで除いた。さらにヘプタンを用いて再結晶を行い、下記原料(a1)を3.1g(収率:59%)得た。
Figure JPOXMLDOC01-appb-C000330
 MSスペクトルおよびNMR測定により上記原料(a1)の構造を確認した。
H-NMR(CDCl):δ=8.05(d,1H)、7.90(s,1H)、7.83(d,1H)、7.72(d,1H)、7.47-7.41(m,3H)、7.32-7.26(m,2H)、7.13(s,1H)、7.11(s,1H)、6.95(t,1H)、5.82(s,1H).
 アルゴン雰囲気下、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[C]フルオレン1.5gと上記原料(a1)1.8gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.030g、ナトリウム t-ブトキシド1.8g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.05gを加えて120℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(1-351)を1.5g(収率:64%)得た。
 MSスペクトルおよびNMR測定により化合物(1-351)の構造を確認した。
H-NMR(CDCl):δ=8.70(br,1H)、8.17-8.13(br,2H)、7.97(d,1H)、7.88(d,1H)、7.84(d,1H)、7.81(d,1H)、7.76(d,1H)、7.67(brd,1H)、7.46-6.95(m,23H)、1.40(s,6H).
[合成例4]化合物(1-151)の合成
Figure JPOXMLDOC01-appb-C000331
 アルゴン雰囲気下、2-ブロモジベンゾ[b,d]フラン1.0gとアニリン0.4gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.070g、ナトリウム t-ブトキシド1.8g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.100gを加えて100℃で2時間加熱した。室温に冷却後、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[C]フルオレン1.5gを添加して、再度130℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(1-151)を0.20g(収率:13%)得た。
 MSスペクトルおよびNMR測定により化合物(1-151)の構造を確認した。
H-NMR(CDCl):δ=8.68(br,1H)、8.13(br,1H)、7.81(d,1H)、7.76(d,1H)、7.80-7.70(br,2H)、7.577.50(m,4H)、7.46-6.99(m,22H)、1.38(s,6H).
[合成例5]化合物(1-101)の合成
Figure JPOXMLDOC01-appb-C000332
 アルゴン雰囲気下、3-ブロモジベンゾ[b,d]フラン1.0gとアニリン0.4gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.070g、ナトリウム t-ブトキシド1.8g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.100gを加えて100℃で2時間加熱した。室温に冷却後、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[C]フルオレン1.5gを添加して、再度130℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(1-101)を0.36g(収率:24%)得た。
 MSスペクトルおよびNMR測定により化合物(1-101)の構造を確認した。
H-NMR(CDCl):δ=8.69(d,1H)、8.19(br,1H)、8.07(br,1H)、7.87(d,1H)、7.81(m,2H)、7.71(d,1H)、7.55(t,1H)、7.51-6.98(m,24H)、1.41(s,6H).
[合成例6]化合物(1-3)の合成
Figure JPOXMLDOC01-appb-C000333
 アルゴン雰囲気下、5,9-ジブロモ-7,7-ジフェニル-7H-ベンゾ[C]フルオレン1.0gとN-フェニルジベンゾ[b,d]フラン-4-アミン1.1gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.55g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて140℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=1/1(容量比))を行った。さらにトルエン/ヘプタンで再結晶を行った後、これを昇華精製して、化合物(1-3)を1.0g(収率:58%)得た。
 MSスペクトルおよびNMR測定により化合物(1-3)の構造を確認した。
H-NMR(CDCl):δ=8.74(d,1H)、8.22(br,1H)、8.12(br,1H)、7.92(t,2H)、7.60(d,1H)、7.57-6.78(m,37H).
[合成例7]化合物(1-1001)の合成
Figure JPOXMLDOC01-appb-C000334
 アルゴン雰囲気下、4-ブロモ-9-メチル-9H-カルバゾール2.9gとアニリン1.0gを脱水キシレン70mlに溶解させ、パラジウム ビス(ジベンジリデン)0.14g、ナトリウム t-ブトキシド3.3g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.19gを加えて130℃で3時間加熱した。室温に冷却後、水を100ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をアルミナでカラム精製(溶媒:トルエン)を行って着色成分を除いた。溶媒をエバポレーターで除いた。さらに酢酸エチルを用いて再結晶を行い、下記原料(b1)を2.3g(収率:77%)得た。
Figure JPOXMLDOC01-appb-C000335
 MSスペクトルおよびNMR測定により上記原料(b1)の構造を確認した。
H-NMR(CDCl):δ=7.98(d,1H)、7.47-7.39(m,3H)、7.29(m,2H)、7.20-7.17(m,1H)、7.12(m,1H)、7.09(s,2H)、7.05(s,1H)、6.95(tt,1H)、6.18(br,1H)、3.87(s,3H).
 アルゴン雰囲気下、5,9-ジヨード-7,7-ジメチル-7H-ベンゾ[C]フルオレン1.0gと上記原料(b1)1.1gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.58g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.032gを加えて130℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(1-1001)を0.96g(収率:64%)得た。
 MSスペクトルおよびNMR測定により化合物(1-1001)の構造を確認した。
H-NMR(CDCl):δ=8.60(br,1H)、8.08(br,2H)、7.72(d,1H)、7.64(d,1H)、7.56-6.62(m,28H)、3.91(s,6H)、1.28(s,6H).
[合成例8]化合物(2-601)の合成
Figure JPOXMLDOC01-appb-C000336
 アルゴン雰囲気下、9-クロロ-5-ヨード-7,7-ジメチル-7H-ベンゾ[c]フルオレン8.5gとN-フェニルジベンゾ[b,d]チオフェン-4-アミン5.7gを脱水キシレン200mlに溶解させ、ジクロロビス(トリ-o-トリルホスフィン)パラジウム 0.50gとナトリウム t-ブトキシド3.0gを加えて130℃で2時間加熱した。室温に冷却後、水を100ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行って、下記原料(A1)を7.5g(収率:65%)得た。
Figure JPOXMLDOC01-appb-C000337
 MSスペクトルおよびNMR測定により上記原料(A1)の構造を確認した。
H-NMR(CDCl):δ=8.69(d,1H)、8.22(d,1H)、8.15(dt,1H)、8.12(dt,1H)、7.94(dd,1H)、7.70(dd,1H)、7.61-7.58(m,1H)、7.47-7.33(m,7H)、7.23-7.20(m,2H)、7.16(dd,1H)、7.01-6.98(m,1H)、6.93(d,1H)、6.92(d,1H)、1.46(s,6H).
 アルゴン雰囲気下、上記原料(A1)1.2gとジフェニルアミン0.4gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.65g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.035gを加えて130℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-601)を1.3g(収率:84%)得た。
 MSスペクトルおよびNMR測定により化合物(2-601)の構造を確認した。
H-NMR(CDCl):δ=8.69(d,1H)、8.15(dd,1H)、8.10(d,1H)、7.92(d,1H)、7.93(d,1H)、7.70(dd,1H)、7.46-6.91(m,24H)、1.35(s,6H).
[合成例9]化合物(2-641)の合成
Figure JPOXMLDOC01-appb-C000338
 アルゴン雰囲気下、上記原料(A1)1.0gと(4-トリメチルシリルフェニル)フェニルアミン0.48gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.52g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて140℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-641)を0.59g(収率:43%)得た。
 MSスペクトルおよびNMR測定により化合物(2-641)の構造を確認した。
H-NMR(CDCl):δ=8.69(d,1H)、8.15-8.10(m,3H)、7.92(d,1H)、7.70(dd,1H)、7.57-6.91(m,23H)、1.36(s,6H)、0.26(s,9H).
[合成例10]化合物(2-683)の合成
Figure JPOXMLDOC01-appb-C000339
 アルゴン雰囲気下、上記原料(A1)1.0gと(2-フルオロ-4,6-ジフェニル-フェニル)フェニルアミン0.68gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.53g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて130℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらに酢酸エチルに溶解後、メタノールを添加して再沈殿を行った後、これを昇華精製して、化合物(2-683)を1.1g(収率:73%)得た。
 MSスペクトルおよびNMR測定により化合物(2-683)の構造を確認した。
H-NMR(CDCl):δ=8.63(d,1H)、8.15(d,1H)、8.08(d,1H)、8.00(d,1H)、7.92(d,1H)、7.70(d,1H)、7.67(d,2H)、7.53(t,1H)、7.48-6.91(m,28H)、1.28(s,3H)、1.20(s,3H).
[合成例11]化合物(2-630)の合成
Figure JPOXMLDOC01-appb-C000340
 アルゴン雰囲気下、原料(A1)1.2gと(4-シアノフェニル)フェニルアミン0.4gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.63g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.035gを加えて150℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/3(容量比))を行った。さらにトルエンで再沈殿を行った後、これを昇華精製して、化合物(2-630)を0.84g(収率:66%)得た。
 MSスペクトルおよびNMR測定により化合物(2-630)の構造を確認した。
H-NMR(CDCl):δ=8.69(d,1H)、8.24(d,1H)、8.15(d,1H)、8.12(d,1H)、7.94(d,1H)、7.69(dd,1H)、7.58(t,1H)、7.47-7.33(m,9H)、7.25-7.17(m,9H)、7.06-7.05(m,2H)、6.99(t,1H)、6.93(d,1H)、1.37(s,6H).
[合成例12]化合物(3-230)の合成
Figure JPOXMLDOC01-appb-C000341
 アルゴン雰囲気下、上記原料(A1)1.0gと2-ナフチルボロン酸1.0gを脱水キシレン40mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、リン酸三カリウム1.5g、そして(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.060gを加えて150℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/1(容量比))を行った。さらにヘプタンで再沈殿を行った後、これを昇華精製して、化合物(3-230)を0.34g(収率:30%)得た。
 MSスペクトルおよびNMR測定により化合物(3-230)の構造を確認した。
H-NMR(CDCl):δ=8.83(d,1H)、8.42(d,1H)、8.17-8.13(m,3H)、7.97-7.94(m,3H)、7.90-7.81(m,4H)、7.71(dd,1H)、7.63(t,1H)、7.54-7.34(m,7H)、7.25-7.19(m,3H)、7.00(t,1H)、6.95(dd,2H)、1.52(s,6H).
[合成例13]化合物(3-231)の合成
Figure JPOXMLDOC01-appb-C000342
 アルゴン雰囲気下、上記原料(A1)1.2gと9H-カルバゾール0.36gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.050g、ナトリウム t-ブトキシド1.1g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.070gを加えて150℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンで再結晶を行った後、これを昇華精製して、化合物(3-231)を1.0g(収率:68%)得た。
 MSスペクトルおよびNMR測定により化合物(3-231)の構造を確認した。
H-NMR(CDCl):δ=8.82(d,1H)、8.53(d,1H)、8.18-8.16(m,4H)、7.96(dd,1H)、7.71(dd,1H)、7.69-7.59(m,3H)、7.52(s,1H)、7.50(s,2H)、7.46-7.41(m,4H)、7.38(t,2H)、7.31(t,2H)、7.24-7.20(m,3H)、7.20(t,1H)、6.97(dd,2H)、1.50(s,6H).
[合成例14]化合物(3-369)の合成
Figure JPOXMLDOC01-appb-C000343
 アルゴン雰囲気下、9-(9-クロロ-7,7-ジメチル-7H-ベンゾ[c]フルオレン-5-イル)-9H-カルバゾール1.0gとN-フェニルジベンゾ[b,d]チオフェン-2-アミン0.65gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.65g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.035gを加えて140℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらに酢酸エチル/ヘプタンで再結晶を行った後、これを昇華精製して、化合物(3-369)を0.98g(収率:64%)得た。
 MSスペクトルおよびNMR測定により化合物(3-369)の構造を確認した。
H-NMR(CDCl):δ=8.82(d,1H)、8.27(d,1H)、8.23(d,2H)、7.95(d,1H)、8.02(s,1H)、7.99(d,1H)、7.86(d,1H)、7.79(d,1H)、7.72(s,1H)、7.65(t,1H)、7.45(t,1H)、7.40-7.30(m,11H)、7.27(s,1H)、7.22(d,1H)、7.10(t,1H)、7.06(d,2H)、1.50(s,6H).
[合成例15]化合物(2-1)の合成
Figure JPOXMLDOC01-appb-C000344
 アルゴン雰囲気下、9-クロロ-5-ヨード-7,7-ジメチル-7H-ベンゾ[c]フルオレン5.9gとN-フェニルジベンゾ[b,d]フラン-4-アミン4.0gを脱水キシレン200mlに溶解させ、ジクロロビス(トリ-o-トリルホスフィン)パラジウム0.61gとナトリウム t-ブトキシド2.2gを加えて130℃で3時間加熱した。室温に冷却後、水を100ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行って、下記原料(B1)を3.0g(収率:39%)得た。
Figure JPOXMLDOC01-appb-C000345
 MSスペクトルおよびNMR測定により上記原料(B1)の構造を確認した。
1H-NMR(CDCl):δ=8.68(d,1H)、8.23(d,1H)、8.22(d,1H)、8.15(d,1H)、8.13(d,1H)、7.95(dt,1H)、7.71(dd,1H)、7.61-7.58(m,5H)、7.24-7.13(m,5H)、6.98(t,1H)、6.93(d,1H)、6.92(d,1H)、1.46(s,6H).
 アルゴン雰囲気下、上記原料(B1)1.0gとジフェニルアミン0.35gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド1.1g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.07gを加えて150℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-1)を0.90g(収率:72%)得た。
 MSスペクトルおよびNMR測定により化合物(2-1)の構造を確認した。
H-NMR(CDCl):δ=8.68(d,1H)、8.16(br,2H)、7.95(d,1H)、7.69(d,1H)、7.58-7.53(m,2H)、7.41-6.81(m,23H)、1.39(s,6H).
[合成例16]化合物(2-83)の合成
Figure JPOXMLDOC01-appb-C000346
 アルゴン雰囲気下、上記原料(B1)0.53gと1-ナフチルフェニルアミン0.23gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.3g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.023gを加えて150℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-83)を0.40g(収率:56%)得た。
 MSスペクトルおよびNMR測定により化合物(2-83)の構造を確認した。
H-NMR(CDCl):δ=8.64(br,1H)、8.15(br,1H)、8.10(br,1H)、7.97(d,1H)、7.95(d,1H)、7.90(d,1H)、7.79(d,1H)、7.69(br,1H)、7.57-7.30(m,12H)、7.23-6.81(m,12H)、1.51(s,6H).
[合成例17]化合物(2-41)の合成
Figure JPOXMLDOC01-appb-C000347
 アルゴン雰囲気下、上記原料(B1)1.0gと(4-トリメチルシリルフェニル)フェニルアミン0.54gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.54g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて150℃で3時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-41)を0.86g(収率:61%)得た。
 MSスペクトルおよびNMR測定により化合物(2-41)の構造を確認した。
H-NMR(CDCl):δ=8.68(d,1H)、8.17(br,2H)、7.95(d,1H)、7.70(d,1H)、7.59-7.54(m,2H)、7.41-6.81(m,22H)、1.41(s,6H)、0.24(s,9H).
[合成例18]化合物(2-84)の合成
Figure JPOXMLDOC01-appb-C000348
 アルゴン雰囲気下、上記原料(B1)1.0gと(2,4-ジメチルフェニル)フェニルアミン0.37gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.54g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて150℃で5時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-84)を0.82g(収率:62%)得た。
 MSスペクトルおよびNMR測定により化合物(2-84)の構造を確認した。
H-NMR(CDCl):δ=8.66(d,1H)、8.15(br,1H)、8.10(br,1H)、7.95(d,1H)、7.69(br,1H)、7.58-7.31(m,7H)、7.25-6.83(m,16H)、2.47(s,3H)、2.04(s,3H)、1.39(s,6H).
[合成例19]化合物(2-901)の合成
Figure JPOXMLDOC01-appb-C000349
 アルゴン雰囲気下、9-クロロ-5-ヨード-7,7-ジメチル-7H-ベンゾ[c]フルオレン10gとジフェニルアミン4.2gを脱水キシレン200mlに溶解させ、ジクロロビス(トリ-o-トリルホスフィン)パラジウム 0.60gとナトリウム t-ブトキシド2.2gを加えて130℃で3時間加熱した。室温に冷却後、水を100ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行って、下記原料(C1)を5.1g(収率:45%)得た。
Figure JPOXMLDOC01-appb-C000350
 MSスペクトルおよびNMR測定により上記原料(C1)の構造を確認した。
H-NMR(CDCl):δ=8.67(d,1H)、8.22(d,1H)、8.08(d,1H)、7.60(m,1H)、7.46(d,1H)、7.44(s,1H)、7.42-7.36(m,4H)、7.21-7.18(m,4H)、6.96-6.92(m,2H)、1.46(s,6H).
 アルゴン雰囲気下、上記原料(C1)1.5gとN-フェニルジベンゾ[b,d]チオフェン-4-アミン0.97gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド1.0g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて150℃で6時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-901)を1.7g(収率:73%)得た。
 MSスペクトルおよびNMR測定により化合物(2-901)の構造を確認した。
H-NMR(CDCl):δ=8.67(br,1H)、8.17(d,1H)、8.15(br,1H)、8.03(m,2H)、7.70(d,1H)、7.54-6.92(m,24H)、1.38(s,6H).
[合成例20]化合物(2-301)の合成
Figure JPOXMLDOC01-appb-C000351
 アルゴン雰囲気下、上記原料(C1)1.5gとN-フェニルジベンゾ[b,d]フラン-4-アミン0.9gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.97g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて150℃で2時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=3/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-301)を1.9g(収率:87%)得た。
 MSスペクトルおよびNMR測定により化合物(2-301)の構造を確認した。
H-NMR(CDCl):δ=8.67(br,1H)、8.15-8.03(br,2H)、7.95(d,1H)、7.76(br,1H)、7.54(br,1H)、7.46-7.04(m,24H)、1.35(s,6H).
[合成例21]化合物(2-1901)の合成
Figure JPOXMLDOC01-appb-C000352
 アルゴン雰囲気下、上記原料(C1)1.0gと上記原料(b1)0.8gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.65g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて150℃で2時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=4/1(容量比))を行った。さらにトルエンに溶解後、ヘプタンを添加して再沈殿を行った後、これを昇華精製して、化合物(2-1901)を1.2g(収率:80%)得た。
 MSスペクトルおよびNMR測定により化合物(2-1901)の構造を確認した。
H-NMR(CDCl):δ=8.62(br,1H)、8.03(br,2H)、7.72(d,1H)、7.49-6.91(m,23H)、2.90(s,3H)、1.34(s,6H).
[合成例22]化合物(2-1537)の合成
Figure JPOXMLDOC01-appb-C000353
 1-ヒドロキシ安息香酸メチル34gとN-クロロスクシンイミド25gをDMF/酢酸(8:2(容量比))250mlに溶解させて80℃で3時間加熱した。室温に冷却後、炭酸水素ナトリウム水溶液を添加した後、分液ロートを用いて、トルエン500mlで抽出を行った。さらに炭酸水素ナトリウム水溶液で3回続けて純水で有機層を洗浄した後、有機層を集めて、無水硫酸マグネシウムで乾燥した。無水硫酸マグネシウムをろ別後、ロータリーエバポレーターにて濃縮を行い粗製品を得た。その粗製品をヘプタン/トルエンにて再結晶を行うことで、以下の4-クロロ-1-ヒドロキシナフトエ酸メチルを32g(収率:80%)得た。
Figure JPOXMLDOC01-appb-C000354
 上記4-クロロ-1-ヒドロキシナフトエ酸メチル32gと無水トリフルオロメタンスルホン酸68gをピリジン400mlに溶解させて室温で6時間撹拌した。純水を添加した後、分液ロートを用いて、トルエン500mlで抽出を行った。さらに純水で3回、希塩酸水溶液で3回、炭酸水素ナトリウム水溶液で3回、そして純水で3回、有機層を洗浄した。有機層を集めて、無水硫酸マグネシウムで乾燥した。無水硫酸マグネシウムをろ別後、ロータリーエバポレーターにて濃縮を行い粗製品を得た。その粗製品をヘプタンにて再結晶を行うことで、以下の4-クロロ-1-(((トリフルオロメチル)スルホニル)ヒドロキシ)ナフトエ酸メチルを20g(収率:40%)得た。
Figure JPOXMLDOC01-appb-C000355
 上記4-クロロ-1-(((トリフルオロメチル)スルホニル)ヒドロキシ)ナフトエ酸メチル37gと4-(ナフタレン-1-イル(フェニル)アミノ)フェニル ボロン酸エステル30gをトルエン/エタノール/純水(150/45/15ml)に溶解させて、パラジウム テトラキス(トリフェニルホスフィン)0.3gとリン酸三カリウム42gを加えて150℃で2時間加熱した。反応終了後、水層を除去した後、溶媒をエバポレーターで濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/3(容量比))を行った。溶媒を除去することで、以下の4-クロロ-1-(4-ナフタレン-1-イル(フェニル)アミノ)フェニル)-2-ナフトエ酸メチルを31g(収率:60%)得た。
Figure JPOXMLDOC01-appb-C000356
 上記4-クロロ-1-(4-ナフタレン-1-イル(フェニル)アミノ)フェニル)-2-ナフトエ酸メチル31gをテトラヒドロフラン400mlに溶解させて、臭化メチルマグネシウム-テトラヒドロフラン溶液(1.0mol/L)144mlを加えて、環流で3時間加熱した。反応終了後、水層を除去した後、溶媒をエバポレーターで濃縮を行い粗製品を得た。その粗製品をヘプタン/トルエン=2/1で再結晶を行って、以下の2-(4-クロロ-(1-(4-(ナフタレン-1-イル)(フェニル)アミノ)フェニル)ナフタレン-2-イル)プロパン-2-オールを25g(収率:82%)得た。
Figure JPOXMLDOC01-appb-C000357
 上記2-(4-クロロ-(1-(4-(ナフタレン-1-イル)(フェニル)アミノ)フェニル)ナフタレン-2-イル)プロパン-2-オール25gをクロロホルム300mlに溶解させて、窒素雰囲気下で三フッ化ホウ素ジエチルエーテル錯体を加えて0℃で3時間撹拌した。反応終了後、水層を除去した後、溶媒をエバポレーターで濃縮を行い粗製品を得た。その粗製品をヘプタンにて再結晶を行って、以下の5-クロロ-7,7-ジメチル-N-(ナフタレン-1-イル)-N-フェニル-7H-ベンゾ[c]フルオレン-9-アミンを15g(収率:62%)得た。
Figure JPOXMLDOC01-appb-C000358
 MSスペクトルおよびNMR測定により上記化合物の構造を確認した。
H-NMR(CDCl):δ=8.63(dd,1H)、8.36(m,1H)、8.06(d,2H)、7.97(d,2H)、7.91(d,1H)、7.80(d,1H)、7.64-7.57(m,3H)、7.52-7.45(m,2H)、7.40-7.34(m,2H)、7.25-7.22(m,3H)、7.13-7.11(m,2H)、7.00-6.97(m,2H)、1.41(s,6H).
 アルゴン雰囲気下、上記5-クロロ-7,7-ジメチル-N-(ナフタレン-1-イル)-N-フェニル-7H-ベンゾ[c]フルオレン-9-アミン0.70gと上記原料(B1)0.38gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.020g、ナトリウム t-ブトキシド0.40g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.030gを加えて130℃で2時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/1(容量比))を行った。さらにトルエン/ヘプタンで再結晶を行った後、これを昇華精製して、化合物(2-1537)を0.59g(収率:60%)得た。
 MSスペクトルおよびNMR測定により化合物(2-1537)の構造を確認した。
H-NMR(CDCl):δ=8.62(br,1H)、8.09(br,2H)、7.97(d,2H)、7.90(d,1H)、7.79(d,1H)、7.64(d,1H)、7.57-7.33(m,7H)、7.27-6.80(m,17H)、6.61(br,1H)、3.90(s,3H)、1.34(s,6H).
[合成例23]化合物(2-1538)の合成
Figure JPOXMLDOC01-appb-C000359
 アルゴン雰囲気下、5-クロロ-7,7-ジメチル-N-(ナフタレン-1-イル)-N-フェニル-7H-ベンゾ[c]フルオレン-9-アミン1.0gと9-フェニル-N-フェニル-9H-カルバゾール-4-アミン0.70gを脱水キシレン50mlに溶解させ、パラジウム ビス(ジベンジリデン)0.025g、ナトリウム t-ブトキシド0.58g、そして(4-(ジメチルアミノ)フェニル)ジt-ブチルホスフィン0.035gを加えて130℃で4時間加熱した。室温に冷却後、水を50ml添加した後、分液ロートを用いて、有機層を水洗した。水層を除去した後、有機層を集めて、ロータリーエバポレーターにて、濃縮を行い粗製品を得た。その粗製品をシリカゲルでカラム精製(溶媒:ヘプタン/トルエン=2/1(容量比))を行った。さらに酢酸エチルに溶解後、メタノールで再沈殿を行った後、これを昇華精製して、化合物(2-1538)を0.62g(収率:40%)得た。
 MSスペクトルおよびNMR測定により化合物(2-1538)の構造を確認した。
H-NMR(CDCl):δ=8.63(br,1H)、8.16(br,1H)、8.10(br,1H)、7.98(d,1H)、7.90(d,1H)、7.79(d,1H)、7.71(d,1H)、7.63-7.60(m,6H)、7.51-7.45(m,4H)、7.39-7.31(m,4H)、7.23-6.84(m,15H)、6.69(br,1H)、1.34(s,6H).
 原料の化合物を適宜選択することにより、上記の合成例に準じた方法で、他のベンゾフルオレン化合物を合成することができる。
<電界発光素子に用いた場合の特性>
 以下、本発明をさらに詳細に説明するために、本発明の化合物を用いた有機EL素子の実施例を示すが、本発明はこれらに限定されるものではない。
 実施例1、実施例2および比較例1に係る有機EL素子を作製し、それぞれ1000cd/m発光時の特性である電圧(V)、電流密度(mA/cm)、発光効率(lm/W)、電流効率(cd/A)、EL発光波長(nm)、外部量子効率(%)を測定し、次に電流密度を1.5mA/cmとして得られた輝度で定電流駆動した際に初期輝度の90%以上の輝度を保持する時間(時間)を測定した。以下、実施例および比較例について詳細に説明する。
 なお、発光素子の量子効率には、内部量子効率と外部量子効率とがあるが、発光素子の発光層に電子(または正孔)として注入される外部エネルギーが純粋に光子に変換される割合を示したものが内部量子効率である。一方、この光子が発光素子の外部にまで放出された量に基づいて算出されるものが外部量子効率であり、発光層において発生した光子は、その一部が発光素子の内部で吸収されたりあるいは反射され続けたりして、発光素子の外部に放出されないため、外部量子効率は内部量子効率よりも低くなる。
 外部量子効率の測定方法は次の通りである。アドバンテスト社製電圧/電流発生器R6144を用いて、素子の輝度が1000cd/mになる電圧を印加して素子を発光させた。TOPCON社製分光放射輝度計SR-3ARを用いて、発光面に対して垂直方向から可視光領域の分光放射輝度を測定した。発光面が完全拡散面であると仮定して、測定した各波長成分の分光放射輝度の値を波長エネルギーで割ってπを掛けた数値が各波長におけるフォトン数である。次いで、観測した全波長領域でフォトン数を積算し、素子から放出された全フォトン数とした。印加電流値を素電荷で割った数値を素子へ注入したキャリア数として、素子から放出された全フォトン数を素子へ注入したキャリア数で割った数値が外部量子効率である。
 作製した実施例1、実施例2および比較例1に係る有機EL素子における、各層の材料構成を下記表1に示す。
Figure JPOXMLDOC01-appb-T000360
 表1において、「HI」はN,N4’-ジフェニル-N,N4’-ビス(9-フェニル-9H-カルバゾール-3-イル)-[1,1’-ビフェニル]-4,4’-ジアミン、「NPD」はN,N’-ジフェニル-N,N’-ジ(ナフタレン-1-イル)-4,4’-ジアミノビフェニル、「BH1」は9-フェニル-10-(4-(ナフタレン-1-イル)フェニル)アントラセン、「ET1」は5,5’-(2-フェニルアントラセン-9,10-ジイル)ジ-2,2’-ビピリジン、「Liq」は8-キノリノールリチウム、そして化合物(A)は7,7,-ジメチル-N,N,N,N-テトラフェニル-7H-ベンゾ[c]フルオレン-5,9-ジアミンである。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000361
<実施例1>
<化合物(1-1)を発光層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、BH1を入れたモリブデン製蒸着用ボート、化合物(1-1)を入れたモリブデン製蒸着用ボート、ET1を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して正孔輸送層を形成した。次に、BH1が入った蒸着用ボートと化合物(1-1)の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH1と化合物(1-1)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、ET1の入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して電子輸送層を形成した。以上の蒸着速度は0.01~1nm/秒であった。
 その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1~10nmになるように陰極を形成し有機電界発光素子を得た。
 ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、直流電圧を印加して1000cd/m発光時の特性を測定したところ、波長452nm、CIE色度(x,y)=(0.145,0.109)の青色発光が得られた。また、駆動電圧は4.18V、電流密度は25.60mA/cm、発光効率は2.94(lm/W)、電流効率は3.91cd/A、外部量子効率は4.67%であった。また、初期輝度の90%以上の輝度を保持する時間は82時間であった。
<実施例2>
<化合物(1-201)を発光層に用いた素子>
 化合物(1-1)を化合物(1-201)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、直流電圧を印加して1000cd/m発光時の特性を測定したところ、波長453nm、CIE色度(x,y)=(0.144,0.120)の青色発光が得られた。また、駆動電圧は4.03V、電流密度は25.45mA/cmであった。また、初期輝度の90%以上の輝度を保持する時間は68時間であった。
<比較例1>
<化合物(A)を発光層に用いた素子>
 化合物(1-1)を化合物(A)に替えた以外は実施例1に準じた方法で有機EL素子を得た。ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、直流電圧を印加して1000cd/m発光時の特性を測定したところ、波長459nm、CIE色度(x,y)=(0.141,0.150)の青色発光が得られた。また、駆動電圧は4.14V、電流密度は20.05mA/cm、発光効率は3.79(lm/W)、電流効率は4.99cd/A、外部量子効率は4.62%であった。また、初期輝度の90%以上の輝度を保持する時間は31時間であった。
 以上の結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000362
 次に、実施例3~23および比較例2に係る有機EL素子を作製し、それぞれ1000cd/m発光時の特性である電圧(V)、電流密度(mA/cm)、発光効率(lm/W)、電流効率(cd/A)、EL発光波長(nm)、外部量子効率(%)を測定し、次に2000cd/mの輝度が得られる電流密度で定電流駆動した際に90%(1800cd/m)以上の輝度を保持する時間(時間)を測定した。以下、実施例および比較例について詳細に説明する。
 作製した実施例3~23および比較例2に係る有機EL素子における、各層の材料構成を下記表3に示す。
Figure JPOXMLDOC01-appb-T000363
 表3において、「BH2」は、9-フェニル-10-[6-(1,1’;3,1”)テルフェニル-5’-イル]ナフタレン-2-イルアントラセンである。以下に化学構造を示す。
Figure JPOXMLDOC01-appb-C000364
<実施例3>
<化合物(1-3)を発光層に用いた素子>
 スパッタリングにより180nmの厚さに製膜したITOを150nmまで研磨した、26mm×28mm×0.7mmのガラス基板((株)オプトサイエンス製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(昭和真空(株)製)の基板ホルダーに固定し、HIを入れたモリブデン製蒸着用ボート、NPDを入れたモリブデン製蒸着用ボート、BH2を入れたモリブデン製蒸着用ボート、化合物(1-3)を入れたモリブデン製蒸着用ボート、ET1を入れたモリブデン製蒸着用ボート、Liqを入れたモリブデン製蒸着用ボート、マグネシウムを入れたモリブデン製蒸着用ボートおよび銀を入れたタングステン製蒸着用ボートを装着した。
 透明支持基板のITO膜の上に順次、下記各層を形成した。真空槽を5×10-4Paまで減圧し、まず、HIが入った蒸着用ボートを加熱して膜厚40nmになるように蒸着して正孔注入層を形成し、次いで、NPDが入った蒸着用ボートを加熱して膜厚20nmになるように蒸着して正孔輸送層を形成した。次に、BH2が入った蒸着用ボートと化合物(1-3)の入った蒸着用ボートを同時に加熱して膜厚25nmになるように蒸着して発光層を形成した。BH2と化合物(1-3)の重量比がおよそ95対5になるように蒸着速度を調節した。次に、ET1の入った蒸着用ボートを加熱して膜厚15nmになるように蒸着して電子輸送層を形成した。以上の蒸着速度は0.01~1nm/秒であった。
 その後、Liqが入った蒸着用ボートを加熱して膜厚1nmになるように0.01~0.1nm/秒の蒸着速度で蒸着した。次いで、マグネシウムの入ったボートと銀の入ったボートを同時に加熱して膜厚100nmになるように蒸着して陰極を形成した。このとき、マグネシウムと銀の原子数比が10対1となるように蒸着速度を調節し、蒸着速度が0.1~10nmになるように陰極を形成し有機電界発光素子を得た。
 ITO電極を陽極、Liq/マグネシウムと銀の共蒸着物からなる電極を陰極として、直流電圧を印加して1000cd/m発光時の特性を測定したところ、波長458nm、CIE色度(x,y)=(0.138,0.136)の青色発光が得られた。また、駆動電圧は4.74V、電流密度は25.38mA/cm、発光効率は2.61(lm/W)、電流効率は3.94cd/A、外部量子効率は4.04%であった。
<実施例4>
<化合物(1-101)を発光層に用いた素子>
 化合物(1-3)を化合物(1-101)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長463nm、CIE色度(x,y)=(0.137,0.160)の青色発光が得られた。また、駆動電圧は3.62V、電流密度は18.94mA/cm、発光効率は4.59(lm/W)、電流効率は5.29cd/A、外部量子効率は4.78%であった。
<実施例5>
<化合物(1-151)を発光層に用いた素子>
 化合物(1-3)を化合物(1-151)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長463nm、CIE色度(x,y)=(0.138,0.171)の青色発光が得られた。また、駆動電圧は3.56V、電流密度は18.05mA/cm、発光効率は4.90(lm/W)、電流効率は5.54cd/A、外部量子効率は4.72%であった。また、初期輝度の90%以上の輝度を保持する時間は126時間であった。
<実施例6>
<化合物(1-351)を発光層に用いた素子>
 化合物(1-3)を化合物(1-351)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長463nm、CIE色度(x,y)=(0.138,0.166)の青色発光が得られた。また、駆動電圧は3.71V、電流密度は18.59mA/cm、発光効率は4.55(lm/W)、電流効率は5.38cd/A、外部量子効率は4.61%であった。また、初期輝度の90%以上の輝度を保持する時間は78時間であった。
<実施例7>
<化合物(1-1001)を発光層に用いた素子>
 化合物(1-3)を化合物(1-1001)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長462nm、CIE色度(x,y)=(0.138,0.158)の青色発光が得られた。また、駆動電圧は3.76V、電流密度は20.50mA/cm、発光効率は4.09(lm/W)、電流効率は4.88cd/A、外部量子効率は4.48%であった。
<実施例8>
<化合物(2-1)を発光層に用いた素子>
 化合物(1-3)を化合物(2-1)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長456nm、CIE色度(x,y)=(0.141,0.129)の青色発光が得られた。また、駆動電圧は3.69V、電流密度は25.70mA/cm、発光効率は3.31(lm/W)、電流効率は3.89cd/A、外部量子効率は4.08%であった。また、初期輝度の90%以上の輝度を保持する時間は147時間であった。
<実施例9>
<化合物(2-41)を発光層に用いた素子>
 化合物(1-3)を化合物(2-41)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長456nm、CIE色度(x,y)=(0.141,0.126)の青色発光が得られた。また、駆動電圧は3.77V、電流密度は25.90mA/cm、発光効率は3.23(lm/W)、電流効率は3.87cd/A、外部量子効率は4.20%であった。
<実施例10>
<化合物(2-83)を発光層に用いた素子>
 化合物(1-3)を化合物(2-83)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長455nm、CIE色度(x,y)=(0.142,0.122)の青色発光が得られた。また、駆動電圧は3.81V、電流密度は26.60mA/cm、発光効率は3.10(lm/W)、電流効率は3.76cd/A、外部量子効率は4.15%であった。
<実施例11>
<化合物(2-84)を発光層に用いた素子>
 化合物(1-3)を化合物(2-84)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長458nm、CIE色度(x,y)=(0.141,0.136)の青色発光が得られた。また、駆動電圧は3.78V、電流密度は24.91mA/cm、発光効率は3.34(lm/W)、電流効率は4.02cd/A、外部量子効率は4.07%であった。
<実施例12>
<化合物(2-301)を発光層に用いた素子>
 化合物(1-3)を化合物(2-301)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長456nm、CIE色度(x,y)=(0.142,0.125)の青色発光が得られた。また、駆動電圧は3.77V、電流密度は27.07mA/cm、発光効率は3.09(lm/W)、電流効率は3.70cd/A、外部量子効率は3.95%であった。
<実施例13>
<化合物(2-601)を発光層に用いた素子>
 化合物(1-3)を化合物(2-601)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長460nm、CIE色度(x,y)=(0.139,0.143)の青色発光が得られた。また、駆動電圧は3.68V、電流密度は23.53mA/cm、発光効率は3.63(lm/W)、電流効率は4.25cd/A、外部量子効率は4.13%であった。また、初期輝度の90%以上の輝度を保持する時間は178時間であった。
<実施例14>
<化合物(2-630)を発光層に用いた素子>
 化合物(1-3)を化合物(2-630)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長457nm、CIE色度(x,y)=(0.141,0.118)の青色発光が得られた。また、駆動電圧は3.89V、電流密度は29.37mA/cm、発光効率は2.75(lm/W)、電流効率は3.41cd/A、外部量子効率は3.89%であった。
<実施例15>
<化合物(2-641)を発光層に用いた素子>
 化合物(1-3)を化合物(2-641)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長459nm、CIE色度(x,y)=(0.139,0.139)の青色発光が得られた。また、駆動電圧は3.68V、電流密度は22.77mA/cm、発光効率は3.75(lm/W)、電流効率は4.39cd/A、外部量子効率は4.40%であった。
<実施例16>
<化合物(2-683)を発光層に用いた素子>
 化合物(1-3)を化合物(2-683)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長457nm、CIE色度(x,y)=(0.140,0.124)の青色発光が得られた。また、駆動電圧は3.77V、電流密度は26.10mA/cm、発光効率は3.20(lm/W)、電流効率は3.84cd/A、外部量子効率は4.23%であった。
<実施例17>
<化合物(2-901)を発光層に用いた素子>
 化合物(1-3)を化合物(2-901)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長457nm、CIE色度(x,y)=(0.140,0.133)の青色発光が得られた。また、駆動電圧は3.80V、電流密度は23.84mA/cm、発光効率は3.47(lm/W)、電流効率は4.20cd/A、外部量子効率は4.33%であった。
<実施例18>
<化合物(2-1537)を発光層に用いた素子>
 化合物(1-3)を化合物(2-1537)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長458nm、CIE色度(x,y)=(0.140,0.139)の青色発光が得られた。また、駆動電圧は3.82V、電流密度は22.64mA/cm、発光効率は3.64(lm/W)、電流効率は4.42cd/A、外部量子効率は4.41%であった。
<実施例19>
<化合物(2-1538)を発光層に用いた素子>
 化合物(1-3)を化合物(2-1538)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長459nm、CIE色度(x,y)=(0.139,0.144)の青色発光が得られた。また、駆動電圧は4.27V、電流密度は22.74mA/cm、発光効率は3.23(lm/W)、電流効率は4.40cd/A、外部量子効率は4.24%であった。また、初期輝度の90%以上の輝度を保持する時間は120時間であった。
<実施例20>
<化合物(2-1901)を発光層に用いた素子>
 化合物(1-3)を化合物(2-1901)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長459nm、CIE色度(x,y)=(0.140,0.145)の青色発光が得られた。また、駆動電圧は3.64V、電流密度は21.59mA/cm、発光効率は4.01(lm/W)、電流効率は4.64cd/A、外部量子効率は4.33%であった。また、初期輝度の90%以上の輝度を保持する時間は82時間であった。
<実施例21>
<化合物(3-230)を発光層に用いた素子>
 化合物(1-3)を化合物(3-230)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長461nm、CIE色度(x,y)=(0.139,0.132)の青色発光が得られた。また、駆動電圧は3.98V、電流密度は29.25mA/cm、発光効率は2.70(lm/W)、電流効率は3.42cd/A、外部量子効率は3.59%であった。
<実施例22>
<化合物(3-231)を発光層に用いた素子>
 化合物(1-3)を化合物(3-231)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長456nm、CIE色度(x,y)=(0.142,0.110)の青色発光が得られた。また、駆動電圧は4.02V、電流密度は41.14mA/cmであった。
<実施例23>
<化合物(3-369)を発光層に用いた素子>
 化合物(1-3)を化合物(3-369)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長457nm、CIE色度(x,y)=(0.142,0.103)の青色発光が得られた。また、駆動電圧は4.17V、電流密度は47.17mA/cmであった。
<比較例2>
<化合物(A)を発光層に用いた素子>
 化合物(1-3)を化合物(A)に替えた以外は実施例3に準じた方法で有機EL素子を得た。同様にして測定したところ、波長458nm、CIE色度(x,y)=(0.140,0.141)の青色発光が得られた。また、駆動電圧は3.72V、電流密度は27.82mA/cm、発光効率は3.03(lm/W)、電流効率は3.59cd/A、外部量子効率は3.49%であった。また、初期輝度の90%以上の輝度を保持する時間は75時間であった。
 本発明の好ましい態様によれば、素子寿命が優れた有機電界発光素子、それを備えた表示装置およびそれを備えた照明装置などを提供することができる。
 100  有機電界発光素子
 101  基板
 102  陽極
 103  正孔注入層
 104  正孔輸送層
 105  発光層
 106  電子輸送層
 107  電子注入層
 108  陰極

Claims (24)

  1.  下記一般式(1)で表されるベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式中、
     Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、または置換されていてもよいアシルであり、そして、
     式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
  2.  Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、置換シリル、または置換ゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項1に記載するベンゾフルオレン化合物。
  3.  Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項1に記載するベンゾフルオレン化合物。
  4.  下記一般式(1A)、一般式(1B)、一般式(1C)または一般式(1D)で表される、請求項1に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000002

    (式中、
     Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(1)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
  5.  Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
     Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
     Aは、O、S、または、Rが連結したNであり、そして、
     Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである、
     請求項4に記載するベンゾフルオレン化合物。
  6.  Rは、共に、メチル、エチル、またはフェニルであり、
     Arは、共に、メチルまたはフッ素で置換されていてもよい、フェニル、またはナフチルであり、そして、
     Aは、O、S、または、Rが連結したNであり、そして、
     Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、またはフェニルである、
     請求項4に記載するベンゾフルオレン化合物。
  7.  下記式(1-1)、または式(1-201)で表される、請求項4に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000003
  8.  下記式(1-3)、式(1-101)、式(1-151)、式(1-351)、または式(1-1001)で表される、請求項4に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000004
  9.  下記一般式(2X)または(2Y)で表されるベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000005

    (式中、
     Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、Nを介して隣接する2つのArが結合して環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、またはアシルであり、そして、
     式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
  10.  Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、置換シリル、または置換ゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、また、Nを介して隣接する2つのArが結合して、炭素数1~6のアルキルまたは炭素数6~12のアリールで置換されていてもよいカルバゾール環またはベンゾカルバゾール環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項9に記載するベンゾフルオレン化合物。
  11.  Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(2X)または(2Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項9に記載するベンゾフルオレン化合物。
  12.  下記一般式(2XA)、一般式(2XD)、一般式(2YA)または一般式(2YD)で表される、請求項9に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000006

    (式中、
     Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
     Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
     Aは、O、S、または、Rが連結したNであり、そして、
     Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである。)
  13.  下記式(2-1)、式(2-41)、式(2-83)、式(2-84)、式(2-301)、式(2-601)、式(2-630)、式(2-641)、式(2-683)、式(2-901)、式(2-1537)、式(2-1538)、または式(1-1901)で表される、請求項9に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000007
  14.  下記一般式(3X)または(3Y)で表されるベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000008

    (式中、
     Rは、それぞれ独立して、置換されていてもよいアルキル、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、置換されていてもよいアリール、または置換されていてもよいヘテロアリールであり、
     Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、置換シリル、置換ゲルミル、またはシアノであり、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、置換されていてもよいアルキル、置換されていてもよいシクロアルキル、置換されていてもよいアリール、置換されていてもよいヘテロアリール、またはアシルであり、
     式(3X)または(3Y)におけるベンゾフルオレン環がアルキルで置換されていてもよく、そして、
     式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい。)
  15.  Rは、それぞれ独立して、炭素数1~12のアルキル、または炭素数6~16のアリールであり、これらは炭素数1~6のアルキルまたは置換シリルで置換されていてもよく、また、2つのRが結合して環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~16のアリール、または炭素数2~30のヘテロアリールであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~12のシクロアルキル、炭素数1~6のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、または炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
     Rは、水素、炭素数1~12のアルキル、炭素数3~12のシクロアルキル、炭素数6~16のアリール、炭素数2~30のヘテロアリール、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたシリル、炭素数1~4のアルキルおよび/または炭素数6~12のアリールで置換されたゲルミル、またはシアノであり、前記アリールおよびヘテロアリールは炭素数1~6のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、シアノ、炭素数1~4のアルキルで置換されたシリル、炭素数1~4のアルキルで置換されたゲルミル、または炭素数6~12のアリールで二置換されたアミノで置換されていてもよく、また、前記アリールおよびヘテロアリールへの置換基である炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合して環を形成していてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~12のアルキル、炭素数3~6のシクロアルキル、炭素数6~16のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~6のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、
     式(3X)または(3Y)におけるベンゾフルオレン環が炭素数1~4のアルキルで置換されていてもよく、そして、
     式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項14に記載するベンゾフルオレン化合物。
  16.  Rは、それぞれ独立して、炭素数1~6のアルキル、または炭素数1~4のアルキルで置換されていてもよい炭素数6~12のアリールであり、また、2つのRが結合してシクロペンタン環、シクロヘキサン環、またはフルオレン環を形成していてもよく、
     Arは、それぞれ独立して、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、炭素数3~6のシクロアルキル、炭素数1~4のフッ素化アルキル、シアノ、フッ素、炭素数1~4のアルキルで置換されたシリル、または炭素数1~4のアルキルで置換されたゲルミルで置換されていてもよく、また、炭素数1~6のアルキルが隣接して2つ置換する場合にはこれらは結合してシクロペンタン環、またはシクロヘキサン環を形成していてもよく、
     Rは、水素、炭素数1~6のアルキル、炭素数6~12のアリール、または炭素数2~15のヘテロアリールであり、前記アリールおよびヘテロアリールは炭素数1~4のアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、または炭素数6~12のアリールで二置換されたアミノで置換されていてもよく、
     Aは、O、S、または、Rが連結したNであり、
     Rは、水素、炭素数1~6のアルキル、炭素数3~6のシクロアルキル、炭素数6~12のアリール、炭素数2~15のヘテロアリール、ホルミル、またはアセチルであり、これらは炭素数1~4のアルキル、炭素数6~12のアリール、シアノ、またはフッ素で置換されていてもよく、そして、
     式(3X)または(3Y)で表される化合物における少なくとも1つの水素が重水素で置換されていてもよい、
     請求項14に記載するベンゾフルオレン化合物。
  17.  下記一般式(3XA)または一般式(3YC)で表される、請求項14に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000009

    (式中、
     Rは、共に、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、またはナフチルであり、
     Arは、共に、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、またはジベンゾチオフェニルであり、これらはメチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、フェニル、ピリジル、シクロペンチル、シクロヘキシル、フッ素化メチル、シアノ、フッ素、トリメチルシリル、フェニルジメチルシリル、トリメチルゲルミル、またはフェニルジメチルゲルミルで置換されていてもよく、そして、
     Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ターフェニリル、ナフチル、ピリジル、ジベンゾフラニル、ジベンゾチオフェニル、またはカルバゾリルであり、
     Aは、O、S、または、Rが連結したNであり、そして、
     Rは、水素、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、s-ブチル、t-ブチル、シクロペンチル、シクロヘキシル、フェニル、ビフェニリル、ナフチル、またはピリジルである。)
  18.  下記式(3-230)、式(3-231)、または式(3-369)で表される、請求項14に記載するベンゾフルオレン化合物。
    Figure JPOXMLDOC01-appb-C000010
  19.  発光素子の発光層用材料であって、請求項1ないし18のいずれかに記載するベンゾフルオレン化合物を含有する発光層用材料。
  20.  陽極および陰極からなる一対の電極と、該一対の電極間に配置され、請求項19に記載する発光層用材料を含有する発光層とを有する、有機電界発光素子。
  21.  さらに、前記陰極と該発光層との間に配置される電子輸送層および/または電子注入層を有し、該電子輸送層および電子注入層の少なくとも1つは、キノリノール系金属錯体、ピリジン誘導体、フェナントロリン誘導体、ボラン誘導体およびベンゾイミダゾール誘導体からなる群から選択される少なくとも1つを含有する、請求項20に記載する有機電界発光素子。
  22.  前記電子輸送層および/または電子注入層が、さらに、アルカリ金属、アルカリ土類金属、希土類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の酸化物、アルカリ土類金属のハロゲン化物、希土類金属の酸化物、希土類金属のハロゲン化物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体および希土類金属の有機錯体からなる群から選択される少なくとも1つを含有する、請求項21に記載の有機電界発光素子。
  23.  請求項20ないし22のいずれかに記載する有機電界発光素子を備えた表示装置。
  24.  請求項20ないし22のいずれかに記載する有機電界発光素子を備えた照明装置。
PCT/JP2013/078928 2012-10-26 2013-10-25 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子 WO2014065391A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157011395A KR102342591B1 (ko) 2012-10-26 2013-10-25 벤조플루오렌 화합물, 그 화합물을 사용한 발광층용 재료 및 유기 전계 발광 소자
JP2014543357A JP6156389B2 (ja) 2012-10-26 2013-10-25 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
CN201380054831.0A CN104768929B (zh) 2012-10-26 2013-10-25 苯并芴化合物、使用该化合物的发光层用材料、有机电场发光元件、显示装置及照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-236904 2012-10-26
JP2012236904 2012-10-26

Publications (1)

Publication Number Publication Date
WO2014065391A1 true WO2014065391A1 (ja) 2014-05-01

Family

ID=50544762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078928 WO2014065391A1 (ja) 2012-10-26 2013-10-25 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子

Country Status (5)

Country Link
JP (1) JP6156389B2 (ja)
KR (1) KR102342591B1 (ja)
CN (1) CN104768929B (ja)
TW (1) TWI588238B (ja)
WO (1) WO2014065391A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185128A (ja) * 2013-03-25 2014-10-02 Tosoh Corp 4−アミノカルバゾール化合物及びその用途
CN104263351A (zh) * 2014-08-22 2015-01-07 华南理工大学 一种基于硫杂蒽-芴螺式结构的发光材料及以该材料为发光层的有机光电器件
JPWO2014069602A1 (ja) * 2012-11-02 2016-09-08 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2016064671A3 (en) * 2014-10-20 2016-10-20 E. I. Du Pont De Nemours And Company Blue luminescent compounds
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP3444241A1 (en) * 2017-08-18 2019-02-20 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US10897015B2 (en) 2017-02-27 2021-01-19 Samsung Display Co., Ltd. Organic light emitting device
US20210234105A1 (en) * 2018-10-16 2021-07-29 Lg Chem, Ltd. Novel Compound And Organic Light Emitting Device Comprising The Same
US11114621B2 (en) 2016-07-20 2021-09-07 Lg Chem, Ltd. Electroactive materials
JP2022517336A (ja) * 2019-02-28 2022-03-08 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
US11744146B2 (en) * 2017-02-03 2023-08-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7113455B2 (ja) * 2017-02-09 2022-08-05 学校法人関西学院 有機電界発光素子
KR102261646B1 (ko) * 2017-08-18 2021-06-08 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512395A (ja) * 2002-12-31 2006-04-13 イーストマン コダック カンパニー 複合フルオレン含有化合物及びエレクトロルミネセント・デバイス
WO2009084512A1 (ja) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012026780A1 (en) * 2010-08-27 2012-03-01 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN102702075A (zh) * 2012-06-13 2012-10-03 吉林奥来德光电材料股份有限公司 含有三芳胺结构的有机电致发光材料及制备方法和应用
JP2013056877A (ja) * 2011-08-17 2013-03-28 Jnc Corp ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3506281B2 (ja) 1995-01-26 2004-03-15 出光興産株式会社 有機エレクトロルミネッセンス素子
US6686065B2 (en) 2001-12-12 2004-02-03 Canon Kabushiki Kaisha [5]-helicene and dibenzofluorene materials for use in organic light emitting devices
US20040131881A1 (en) 2002-12-31 2004-07-08 Eastman Kodak Company Complex fluorene-containing compounds for use in OLED devices
TW201235442A (en) 2003-12-12 2012-09-01 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
EP2006278B2 (en) * 2006-04-13 2016-10-12 Tosoh Corporation Benzofluorene compound and use thereof
JP5233228B2 (ja) * 2006-10-05 2013-07-10 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP5066945B2 (ja) * 2007-03-05 2012-11-07 東ソー株式会社 新規なベンゾ[c]フルオレン誘導体及びその用途
JP5617398B2 (ja) * 2009-07-14 2014-11-05 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
KR101551526B1 (ko) * 2009-08-19 2015-09-08 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
CN102712612A (zh) * 2010-01-21 2012-10-03 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
JP5834442B2 (ja) * 2010-03-29 2015-12-24 Jnc株式会社 ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
KR20120011445A (ko) * 2010-07-29 2012-02-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
JP6278894B2 (ja) * 2012-11-02 2018-02-14 出光興産株式会社 有機エレクトロルミネッセンス素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512395A (ja) * 2002-12-31 2006-04-13 イーストマン コダック カンパニー 複合フルオレン含有化合物及びエレクトロルミネセント・デバイス
WO2009084512A1 (ja) * 2007-12-28 2009-07-09 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2012026780A1 (en) * 2010-08-27 2012-03-01 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP2013056877A (ja) * 2011-08-17 2013-03-28 Jnc Corp ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
CN102702075A (zh) * 2012-06-13 2012-10-03 吉林奥来德光电材料股份有限公司 含有三芳胺结构的有机电致发光材料及制备方法和应用

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JPWO2014069602A1 (ja) * 2012-11-02 2016-09-08 出光興産株式会社 有機エレクトロルミネッセンス素子
US10388885B2 (en) 2012-11-02 2019-08-20 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2014185128A (ja) * 2013-03-25 2014-10-02 Tosoh Corp 4−アミノカルバゾール化合物及びその用途
CN104263351A (zh) * 2014-08-22 2015-01-07 华南理工大学 一种基于硫杂蒽-芴螺式结构的发光材料及以该材料为发光层的有机光电器件
CN107074763A (zh) * 2014-10-20 2017-08-18 E.I.内穆尔杜邦公司 蓝色发光化合物
WO2016064671A3 (en) * 2014-10-20 2016-10-20 E. I. Du Pont De Nemours And Company Blue luminescent compounds
US10544123B2 (en) 2014-10-20 2020-01-28 Lg Chem, Ltd. Blue luminescent compounds
US11114621B2 (en) 2016-07-20 2021-09-07 Lg Chem, Ltd. Electroactive materials
US11744146B2 (en) * 2017-02-03 2023-08-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US10897015B2 (en) 2017-02-27 2021-01-19 Samsung Display Co., Ltd. Organic light emitting device
JP2019034936A (ja) * 2017-08-18 2019-03-07 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン系化合物、及びそれを含む有機発光素子
US10875825B2 (en) 2017-08-18 2020-12-29 Samsung Display Co., Lid. Amine-based compound and organic light-emitting device including the same
EP3444241A1 (en) * 2017-08-18 2019-02-20 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
JP7364325B2 (ja) 2017-08-18 2023-10-18 三星ディスプレイ株式會社 アミン系化合物、及びそれを含む有機発光素子
US20210234105A1 (en) * 2018-10-16 2021-07-29 Lg Chem, Ltd. Novel Compound And Organic Light Emitting Device Comprising The Same
US11751470B2 (en) * 2018-10-16 2023-09-05 Lg Chem, Ltd. Compound and organic light emitting device comprising the same
JP7250400B2 (ja) 2019-02-28 2023-04-03 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子
JP2022517336A (ja) * 2019-02-28 2022-03-08 エルジー・ケム・リミテッド 新規な化合物およびこれを利用した有機発光素子

Also Published As

Publication number Publication date
CN104768929B (zh) 2018-07-24
JPWO2014065391A1 (ja) 2016-09-08
CN104768929A (zh) 2015-07-08
TWI588238B (zh) 2017-06-21
TW201425531A (zh) 2014-07-01
KR102342591B1 (ko) 2021-12-22
JP6156389B2 (ja) 2017-07-05
KR20150074015A (ko) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5617398B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5786578B2 (ja) 発光層用材料およびこれを用いた有機電界発光素子
JP5233228B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料及び有機電界発光素子
JP5780132B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5556168B2 (ja) ピリジルナフチル基を有するアントラセン誘導体及び有機電界発光素子
JP5353233B2 (ja) ピリジルフェニル基を有するアントラセン誘導体化合物及び有機電界発光素子
JP6156389B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5982966B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5824827B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
WO2015005440A1 (ja) 環縮合フルオレン化合物またはフルオレン化合物を含む発光補助層用材料
JP5834442B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
CN110049990B (zh) 多环芳香族氨基化合物、有机元件用材料、有机电场发光元件、显示装置以及照明装置
JP5949779B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP6464985B2 (ja) 自己組織化し得る多環式芳香族化合物およびそれを用いた有機el素子
JP5794155B2 (ja) 新規な2,7−ビスアントリルナフタレン化合物およびこれを用いた有機電界発光素子
JP5783173B2 (ja) 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子
JP5776384B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP6349902B2 (ja) アントラセン誘導体および有機el素子
JP5867269B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5949354B2 (ja) 電子受容性窒素含有へテロアリールを含む置換基を有するカルバゾール化合物および有機電界発光素子
JP5549270B2 (ja) アントラセン誘導体およびこれを用いた有機電界発光素子
JP2017226608A (ja) 自己組織化し得る多環式芳香族化合物およびそれを用いた有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014543357

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157011395

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13848515

Country of ref document: EP

Kind code of ref document: A1