WO2014061598A1 - 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法 - Google Patents

薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法 Download PDF

Info

Publication number
WO2014061598A1
WO2014061598A1 PCT/JP2013/077789 JP2013077789W WO2014061598A1 WO 2014061598 A1 WO2014061598 A1 WO 2014061598A1 JP 2013077789 W JP2013077789 W JP 2013077789W WO 2014061598 A1 WO2014061598 A1 WO 2014061598A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
exfoliated graphite
reactive compound
producing
resin
Prior art date
Application number
PCT/JP2013/077789
Other languages
English (en)
French (fr)
Inventor
延彦 乾
和洋 沢
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2013548692A priority Critical patent/JP6294077B2/ja
Priority to US14/436,668 priority patent/US20160167969A1/en
Priority to EP13846668.5A priority patent/EP2910524A4/en
Priority to CN201380048211.6A priority patent/CN104661958A/zh
Priority to KR1020157006961A priority patent/KR20150070106A/ko
Publication of WO2014061598A1 publication Critical patent/WO2014061598A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/005Dendritic macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a simple method for producing exfoliated graphite derivatives and a method for producing exfoliated graphite / resin composite materials.
  • Non-Patent Document 1 or 2 requires a radical polymerization initiator such as peroxide or alkyl halide.
  • the main object of the present invention is to provide a simple method for producing exfoliated graphite derivatives that does not necessarily require the use of a radical polymerization initiator.
  • the method for producing a exfoliated graphite derivative according to the present invention includes a step of preparing a mixture containing a reactive compound to be grafted to the exfoliated graphite by irradiation with active energy rays, and an active energy ray for the mixture. To graft the reactive compound onto the exfoliated graphite.
  • the reactive compound includes a functional group having reactivity with a resin.
  • the functional group having reactivity with the resin is a (meth) acryl group, a vinyl group, a vinyl ether group, a glycidyl group, a thiol group, or a halogen group.
  • the reactive compound includes a functional group having reactivity with exfoliated graphite.
  • the functional group having reactivity with the exfoliated graphite is a (meth) acryl group, a vinyl group, a vinylidene group, a vinylene group, an azo group. And at least one selected from the group consisting of a group, an azide group, a diazo group, a peroxy group, an ylide group, a halogen group, and derivatives thereof.
  • these functional groups are irradiated with active energy rays and free radicals are generated, the reactivity with exfoliated graphite is remarkably increased.
  • the radical reactive compound is a monomer or an oligomer.
  • the reactive compound is a radical reactive compound.
  • the active energy ray is an electromagnetic wave. More preferably, it is a microwave.
  • the method for producing exfoliated graphite / resin composite material according to the present invention includes a step of preparing a mixture containing exfoliated graphite and a reactive compound that is grafted to the exfoliated graphite by irradiation with active energy rays, Irradiating the mixture with active energy rays to graft the reactive compound onto the exfoliated graphite to obtain an exfoliated graphite derivative; and mixing the exfoliated graphite derivative and a resin.
  • a simple method for producing a exfoliated graphite derivative that does not necessarily require the use of a radical polymerization initiator can be provided.
  • FIG. 1 is a Raman spectrum of exfoliated graphite derivative A obtained in Example 1.
  • FIG. FIG. 2 is an IR spectrum of exfoliated graphite derivative A obtained in Example 1.
  • the method for producing the exfoliated graphite derivative of the present invention comprises a step of preparing a mixture containing a reactive compound to be grafted to the exfoliated graphite by irradiation with active energy rays, and an active energy ray for the mixture. And a step of grafting the reactive compound onto the exfoliated graphite by irradiation.
  • Exfoliated graphite is obtained by exfoliating graphite.
  • Exfoliated graphite is, for example, a chemical treatment method in which ions such as nitrate ions are inserted between graphite layers, a heat treatment method, a physical treatment method in which ultrasonic waves are applied, and the like. It can be obtained by a known method such as a chemical method.
  • Exfoliated graphite is a graphene sheet laminate that is thinner than the original graphite.
  • the number of graphene sheets laminated in exfoliated graphite is usually about several to 200 layers.
  • Exfoliated graphite has a structure in which thin graphene sheets are laminated. Therefore, the aspect ratio of exfoliated graphite is relatively large.
  • the exfoliated graphite derivative of the present invention also has a relatively large aspect ratio, like exfoliated graphite as a raw material.
  • the exfoliated graphite / resin composite material of the present invention contains the exfoliated graphite derivative of the present invention.
  • the aspect ratio means the ratio of the maximum dimension of the exfoliated graphite or exfoliated graphite derivative to the thickness of the exfoliated graphite or exfoliated graphite derivative.
  • the preferable lower limit of the aspect ratio of exfoliated graphite derivative and exfoliated graphite as a raw material is about 50, and the preferable upper limit is about 5000.
  • the maximum dimension of the exfoliated graphite in the direction of the laminated surface is preferably about 0.5 ⁇ m to 50 ⁇ m, and more preferably about 1.0 ⁇ m to 10 ⁇ m.
  • the thickness of exfoliated graphite is preferably about 0.3 nm to 300 nm, and more preferably about 10 nm to 100 nm.
  • the BET specific surface area of exfoliated graphite is preferably about 30 m 2 / g to 7000 m 2 / g, and more preferably about 100 m 2 / g to 1000 m 2 / g. When the BET specific surface area of exfoliated graphite is in such a range, a high reinforcing effect is exhibited.
  • the reactive compound means a compound that is grafted to the exfoliated graphite by irradiation with active energy rays.
  • the reactive compound preferably has a functional group reactive with a resin contained in the exfoliated graphite / resin composite material described later.
  • the exfoliated graphite derivative is combined with the resin in the exfoliated graphite / resin composite material. Therefore, the mechanical strength of exfoliated graphite / resin composite material can be further increased.
  • Functional groups having reactivity with the resin are (meth) acryl group, vinyl group, vinyl ether group, glycidyl group, thiol group, halogen group, carbonyl group, carboxyl group, sulfo group, amino group, hydroxy group, oxime group, It is preferably at least one selected from the group consisting of a nitrile group, an isocyanate group, a silyl group, and derivatives thereof. Since these functional groups are relatively highly reactive, they can react well with the polymer to form bonds.
  • the reactive compound preferably has a functional group that is reactive with exfoliated graphite. In this case, the reactive compound can be grafted onto exfoliated graphite more efficiently.
  • Examples of the functional group having reactivity with the exfoliated graphite include (meth) acryl group, vinyl group, vinylidene group, vinylene group, azo group, azi group, diazo group, peroxy group, ylide group, halogen group, and these It is preferable that it is at least one selected from the group consisting of these derivatives.
  • these functional groups are irradiated with active energy rays and free radicals are generated, the reactivity with exfoliated graphite is remarkably increased.
  • Examples of the reactive compound include N- (2-aminoethyl) glycine, 2,2′-azobis (2-amidinopropane) dihydrochloride, 4-nitrobenzenediazonium tetrafluoroborate, maleic anhydride, zidobusine, Examples thereof include glycidyl methacrylate and vinyl methacrylate. Moreover, it is preferable to use the radical compound which shows a specific example below.
  • radical reactive compound having an amino group examples include azodicarboxamide and aminoazobenzene.
  • radical reactive compound having a glycidyl group examples include diepoxy compounds such as glycidyl methacrylate and octadiene diepoxide, vinyl alkyls such as 1,2-epoxyhexene, and vinyl ethers such as vinyl glycidyl ether.
  • radical reactive compound having a carboxyl group examples include vinyl alkyls such as acrylic acid and 10-undecenoic acid, and 4,4-azobis (4-cyanovaleric acid).
  • radical reactive compound having a nitrile group examples include azobisisobutyronitrile.
  • radical reactive compound having a hydroxy group examples include vinyl alkyls such as 4-penten-2-ol, 2-hydroxyethyl acrylate, ethylene glycol monovinyl ether, and the like.
  • the reactive compound may be a monomer or an oligomer of the above reactive compound.
  • a mixture of the above exfoliated graphite and a reactive compound is obtained.
  • the mixing ratio of exfoliated graphite and the reactive compound can be appropriately adjusted depending on the mass ratio of exfoliated graphite and the reactive compound in the exfoliated graphite derivative to be obtained.
  • the mass ratio of the exfoliated graphite and the reactive compound in the exfoliated graphite derivative is preferably in the range of about 1:10 to 10: 1, and more preferably in the range of about 1: 3 to 3: 1. .
  • the exfoliated graphite derivative can be more uniformly dispersed in the resin. Therefore, the mechanical strength of exfoliated graphite / resin composite material can be further increased.
  • the mixture of exfoliated graphite and a reactive compound are irradiated to the mixture of exfoliated graphite and a reactive compound.
  • a radical reactive compound is grafted on exfoliated graphite.
  • the mixture of exfoliated graphite and a radical reactive compound further contains a solvent.
  • the solvent include tetrahydrofuran (THF), N-methylpyrrolidone (NMP), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO) and the like.
  • the activation energy ray is not particularly limited, and electromagnetic waves, ultraviolet rays, heat, infrared rays, and heat can be used.
  • it is an electromagnetic wave.
  • it is more preferable to use a microwave.
  • microwaves it is preferable because a process such as a general microwave oven can be used and the process is easy.
  • the microwave irradiation conditions can be set as appropriate.
  • the frequency of the microwave is preferably about 0.1 GHz to 40 GHz, and more preferably about 1 GHz to 20 GHz.
  • the microwave irradiation time is preferably about 1 second to 10 minutes, more preferably about 15 seconds to 3 minutes.
  • the microwave irradiation may be performed only once continuously or may be performed in a plurality of times.
  • the microwave irradiation can be performed using, for example, a microwave oven.
  • the method for producing the exfoliated graphite / resin composite material of the present invention includes a step of obtaining the exfoliated graphite derivative and a step of mixing the exfoliated graphite derivative and a resin.
  • the above resin contained in the exfoliated graphite / resin composite material is not particularly limited, and various known resins can be used.
  • the resin is functionally reactive with the functional group of the radical reactive compound. It preferably has a group.
  • functional groups that the resin has, (meth) acryl group, vinyl group, vinyl ether group, glycidyl group, thiol group, halogeno group, carbonyl group, carboxyl group, sulfo group, amino group, hydroxy group, oxime group, It is preferably at least one selected from the group consisting of a nitrile group, an isocyanate group, a silyl group, and derivatives thereof.
  • thermoplastic resin As the resin, a thermoplastic resin is used.
  • the exfoliated graphite / resin composite material using a thermoplastic resin can be easily formed into various molded articles by using various molding methods under heating.
  • thermoplastic resin include polyethylene, polypropylene, polystyrene, polyacrylate, polyacrylonitrile, polyester, polyamide, polyurethane, polyethersulfone, polyetherketone, polyimide, polydimethylsiloxane, and copolymers thereof.
  • polyolefin can be used as the resin.
  • Polyolefin is inexpensive and easy to mold under heating. Therefore, by using polyolefin as a thermoplastic resin, the cost of exfoliated graphite / resin composite material can be reduced, and exfoliated graphite / resin composite material can be easily molded.
  • the polyolefin is not particularly limited.
  • polyethylene polypropylene, ethylene homopolymer, ethylene- ⁇ -olefin copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester copolymer
  • Polyethylene resins such as ethylene-vinyl acetate copolymer, polypropylene resins such as propylene homopolymer, propylene- ⁇ -olefin copolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, butene
  • examples thereof include homopolymers, homopolymers or copolymers of conjugated dienes such as butadiene and isoprene. More preferably, the cheaper polypropylene is used as the thermoplastic resin.
  • the polyolefin may be modified with maleic acid or silane. Only one type of resin may be used, or a plurality of types may be used.
  • a coupling agent may be further added to the resin.
  • the functional group of the resin can be further modified, and the number of graphene functional groups that can be bonded increases.
  • the coupling agent 3-aminopropyltriethoxysilane, titanium (IV) tetraisopropoxide, 3-glycidoxypropyltriethoxysilane, or the like can be used.
  • the blending ratio of the exfoliated graphite derivative and the resin is not particularly limited, but the exfoliated graphite derivative is preferably in the range of 0.1 to 50 parts by mass with respect to 100 parts by mass of the resin.
  • the mechanical strength such as tensile elastic modulus of the exfoliated graphite / resin composite material of the present invention can be effectively increased.
  • the mechanical strength of the exfoliated graphite / resin composite material may not be sufficiently increased.
  • the mixing ratio of the exfoliated graphite derivative exceeds 50 parts by mass, the exfoliated graphite / resin composite material becomes brittle and may be easily broken.
  • the exfoliated graphite / resin composite material of the present invention may contain various additives as long as the object of the present invention is not impaired.
  • additives include phenol, phosphorus, amine or sulfur antioxidants; UV absorbers such as benzotriazole and hydroxyphenyl triazine; metal hazard inhibitors; hexabromobiphenyl ether or deca Halogenated flame retardants such as bromodiphenyl ether; flame retardants such as ammonium polyphosphate or trimethyl phosphate; various fillers; antistatic agents; stabilizers;
  • Example 1 In a glass container, 5 g of glycidyl methacrylate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2 g of exfoliated graphite were well dispersed. The exfoliated graphite was observed with a scanning electron microscope (SEM) before use. As a result, the maximum dimension in the plane direction of the layer surface was about 5.0 ⁇ m, the layer thickness was 30 nm, and the number of graphene layers was about 90 layers. Met. Next, the operation of irradiating the obtained dispersion with microwaves for 1 minute using a 100 W microwave oven and allowing to cool to room temperature was repeated 10 times.
  • SEM scanning electron microscope
  • exfoliated graphite derivative A The Raman spectrum and IR spectrum of exfoliated graphite derivative A are shown in FIGS.
  • Example 2 0.25 g of graphite single crystal powder was supplied to 11.5 ml of 65% by mass concentrated sulfuric acid, and the resulting mixture was stirred while further cooling in a 10 ° C. water bath. Next, the concentrated sulfuric acid mixture is stirred while gradually adding 1.5 g of potassium permanganate to the mixture obtained by stirring the concentrated sulfuric acid graphite single crystal powder and concentrated sulfuric acid, and the mixture is stirred at 35 ° C. for 30 minutes. And reacted.
  • the obtained graphite oxide was dispersed in water at an amount of 0.2 mg / ml, and then the graphite oxide was subjected to ultrasonic treatment using an ultrasonic cleaner under conditions of 45 kHz and 100 W. By irradiating for 60 minutes, the graphite oxide was exfoliated and fragmented between the layer interfaces to obtain exfoliated graphite in which the layer surface was oxidized. Hydrazine was added to exfoliated graphite in which the obtained layer surface was oxidized, and reduction treatment was performed for 3 minutes to obtain reduced exfoliated graphite.
  • the obtained exfoliated graphite had a BET specific surface area of 450 m 2 / g and an average size along the surface direction of the layer surface of 5 ⁇ m.
  • Example 3 A glass container was charged with 5 g of azodicarbonamide (trade name “VINYHALL AC # K3” manufactured by Eiwa Kasei Kogyo Co., Ltd.), 40 g of N, N-dimethylformamide (DMF), and 2 g of exfoliated graphite, and well dispersed.
  • azodicarbonamide trade name “VINYHALL AC # K3” manufactured by Eiwa Kasei Kogyo Co., Ltd.
  • DMF N, N-dimethylformamide
  • exfoliated graphite was observed with an SEM before use, the maximum dimension in the plane direction of the layer surface was about 5.0 ⁇ m, the layer thickness was about 30 nm, and the number of graphene layers was about 90 layers.
  • the operation of irradiating the obtained sample with microwaves using a 400 W microwave for 1 minute and allowing to cool to room temperature was repeated 10 times.
  • the sample was filtered, and washing with DMF was repeated to completely remove unreacted azodi
  • Example 4 5 g of N- (2-aminoethyl) glycine (manufactured by Tokyo Chemical Industry Co., Ltd.) was reacted with formaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) to produce azomethine ylide. Next, the obtained sample was put into a flask and mixed with 50 g of toluene in which 2 g of exfoliated graphite as in Example 1 was dispersed. The flask containing the sample was provided with a reflux tower and reacted at 110 ° C. for 5 hours. The sample was filtered, and washing with water was repeated to completely remove unreacted compounds. Next, vacuum drying was performed to obtain exfoliated graphite derivative D.
  • Example 5 In a glass container, 5 g of 4-nitrobenzenediazonium tetrafluoroborate (manufactured by Tokyo Chemical Industry Co., Ltd.) and 2 g of exfoliated graphite as in Example 1 were placed and dispersed well. Next, the operation of irradiating the obtained sample with microwaves using a 400 W microwave for 1 minute and allowing to cool to room temperature was repeated 10 times. Next, hydrogen was blown under a platinum catalyst, and reduction was performed for 1 hour. The sample was filtered, and washing with water was repeated to completely remove unreacted compounds. Next, vacuum drying was performed to obtain exfoliated graphite derivative E.
  • 4-nitrobenzenediazonium tetrafluoroborate manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 6 In a glass container, 5 g of 2,2′-azobis (2-amidinopropane) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd.) is dissolved in 20 g of water, and 40 g of N-methylpyrrolidone (NMP) and 2 g of exfoliated graphite as in Example 1 are used. And dispersed well. Next, the operation of irradiating the obtained sample with microwaves for 30 seconds using a microwave oven of 750 W and allowing it to cool to room temperature was repeated 10 times. The sample was filtered, and washing with water was repeated to completely remove unreacted compounds. Vacuum-dried to obtain exfoliated graphite derivative F.
  • NMP N-methylpyrrolidone
  • a sheet made of a polyolefin resin composite material having a smooth surface thickness of 0.5 mm was obtained by press molding at 180 ° C. for 3 minutes. Thereafter, the obtained sheet was impregnated in warm water at 80 ° C. for 24 hours to complete the crosslinking reaction. Next, the surface was rinsed with ethanol and then dried in a vacuum oven at 80 ° C. for 24 hours.
  • Example 7 In a glass container, 5 g of maleic anhydride, 40 g of N-methylpyrrolidone (NMP) and 2 g of exfoliated graphite as in Example 1 were placed and dispersed well. Next, the operation of irradiating the obtained sample with microwaves for 20 seconds using a 750 W microwave oven and allowing to cool to room temperature was repeated 10 times. Unreacted maleic anhydride was completely removed by filtering the sample and repeating washing with acetone. The exfoliated graphite derivative G was obtained by vacuum drying.
  • NMP N-methylpyrrolidone
  • Example 8 In a glass container, 5 g of zidobosine dissolved in water was added, and 40 g of ethanol and 2 g of exfoliated graphite as in Example 1 were well dispersed. Next, the obtained sample was irradiated with ultraviolet rays for 10 minutes. The sample was filtered, and washing with ethanol was repeated to completely remove unreacted dydopsin. Vacuum-dried to obtain exfoliated graphite derivative H.
  • Example 7 An unmodified exfoliated graphite G1 that was not irradiated with microwaves was obtained in the same manner as in Example 7 except that microwave irradiation was not performed. A sheet was obtained in the same manner as in Example 7 except that this unmodified exfoliated graphite G1 was used.
  • the good solvent mentioned here is not particularly limited as long as it is a general solvent that dissolves a desired resin.
  • olefinic resin is 130 ° C. hot xylene
  • acrylic resin such as PMMA is acetone
  • dichlorobenzene
  • polyamide resins such as nylon include 200 ° C. heat benzyl alcohol, 200 ° C. heat nitrobenzene
  • polystyrene resins include THF and dichlorobenzene
  • polycarbonate resins include THF and dichloromethane.
  • Tables 2 and 3 show the measurement results of the grafting rate and tensile modulus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 簡便な薄片化黒鉛誘導体の製造方法を提供する。 薄片化黒鉛と、活性エネルギー線の照射により、上記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、上記混合物に対して、活性エネルギー線を照射することにより、上記薄片化黒鉛に上記反応性化合物をグラフト化させる工程とを備える、薄片化黒鉛誘導体の製造方法。

Description

薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
 本発明は、簡便な薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法に関する。
 従来、フィラーとして薄片化黒鉛を樹脂などに加えることにより、樹脂の機械的強度を高めることが知られている。しかしながら、樹脂と薄片化黒鉛とは、親和性が低い。このため、薄片化黒鉛の表面を改質して薄片化黒鉛誘導体とし、樹脂と薄片化黒鉛との親和性を高める方法が提案されている。薄片化黒鉛の表面改質法としては、例えば、非特許文献1に開示されているように、グラフェンがラジカル重合性モノマー中に分散した状態でラジカル重合することにより、グラフェンの表面が改質されたグラフェンコンポジットを得る方法が挙げられる。また、非特許文献2に開示されているように、酸化黒鉛の酸性官能基をハロゲン化し原子移動ラジカル重合を行う方法なども挙げられる。
Jeffrey R. Potts, et al, Carbon, 49, Issue 8, 2615-2623 Lee SH, Dreyer DR, et al. Macromol. Rapid Commun., 2010, 31, 281-8
 しかしながら、非特許文献1または2に開示された方法では、パーオキサイドやハロゲン化アルキルなどのラジカル重合開始剤が必要である。
 本発明の主な目的は、ラジカル重合開始剤を用いる必要が必ずしもない、簡便な薄片化黒鉛誘導体の製造方法を提供することにある。
 本発明に係る薄片化黒鉛誘導体の製造方法は、活性エネルギー線の照射により、前記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、上記混合物に対して、活性エネルギー線を照射することにより、前記薄片化黒鉛に前記反応性化合物をグラフト化させる工程とを備える。
 本発明に係る薄片化黒鉛誘導体の製造方法のある特定の局面では、反応性化合物が、樹脂との反応性を有する官能基を備える。
 本発明に係る薄片化黒鉛誘導体の製造方法の別の特定の局面では、樹脂との反応性を有する官能基が、(メタ)アクリル基、ビニル基、ビニルエーテル基、グリシジル基、チオール基、ハロゲン基、カルボニル基、カルボキシル基、スルホ基、アミノ基、ヒドロキシ基、オキシム基、ニトリル基、イソシアネート基、シリル基、およびこれらの誘導体からなる群から選択された少なくとも1種である。
 本発明に係る薄片化黒鉛誘導体の製造方法の他の特定の局面では、上記反応性化合物が、薄片化黒鉛との反応性を有する官能基を含む。
 本発明に係る薄片化黒鉛誘導体の製造方法のさらに別の特定の局面では、上記薄片化黒鉛との反応性を有する官能基が、(メタ)アクリル基、ビニル基、ビニリデン基、ビニレン基、アゾ基、アジ基、ジアゾ基、ペルオキシ基、イリド基、ハロゲン基、およびこれらの誘導体からなる群から選択された少なくとも1種である。これらの官能基は、活性エネルギー線を照射し、フリーラジカルが発生することにより、薄片化黒鉛との反応性が格段にあがる。
 本発明に係る薄片化黒鉛誘導体の製造方法のさらに他の特定の局面では、ラジカル反応性化合物が、モノマーまたはオリゴマーである。
 本発明に係る薄片化黒鉛誘導体の製造方法のさらに他の特定の局面では、上記反応性化合物が、ラジカル反応性化合物である。
 本発明に係る薄片化黒鉛誘導体の製造方法のさらに他の特定の局面では、上記活性エネルギー線が、電磁波である。より好ましくは、マイクロ波である。
 本発明に係る薄片化黒鉛・樹脂複合材料の製造方法は、薄片化黒鉛と、活性エネルギー線の照射により、上記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、上記混合物に対して、活性エネルギー線を照射することにより、上記薄片化黒鉛に上記反応性化合物をグラフト化させて、薄片化黒鉛誘導体を得る工程と、前記薄片化黒鉛誘導体と樹脂とを混合する工程とを備える。
 本発明によれば、ラジカル重合開始剤を用いる必要が必ずしもない、簡便な薄片化黒鉛誘導体の製造方法を提供することができる。
図1は、実施例1で得られた薄片化黒鉛誘導体Aのラマンスペクトルである。 図2は、実施例1で得られた薄片化黒鉛誘導体AのIRスペクトルである。
 以下、本発明の薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法について、詳述する。
 (薄片化黒鉛誘導体の製造方法)
 本発明の薄片化黒鉛誘導体の製造方法は、活性エネルギー線の照射により、前記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、上記混合物に対して、活性エネルギー線を照射することにより、前記薄片化黒鉛に前記反応性化合物をグラフト化させる工程とを備える。
 薄片化黒鉛は、黒鉛を剥離処理して得られるものである。薄片化黒鉛は、例えば、黒鉛の層間に硝酸イオンなどのイオンを挿入した後に加熱処理する化学的処理方法、超音波の印加などを行う物理的処理方法、黒鉛を作用極として電気分解を行う電気化学的方法などの公知の方法により得ることができる。
 薄片化黒鉛は、元の黒鉛よりも薄いグラフェンシート積層体である。薄片化黒鉛におけるグラフェンシートの積層数は、通常、数層~200層程度である。
 薄片化黒鉛は、薄いグラフェンシートが積層された構造を有する。よって、薄片化黒鉛のアスペクト比は、比較的大きい。また、本発明の薄片化黒鉛誘導体も、原料である薄片化黒鉛と同様、アスペクト比が比較的大きい。後述のとおり、本発明の薄片化黒鉛・樹脂複合材料には、本発明の薄片化黒鉛誘導体が含まれている。このため、本発明の薄片化黒鉛誘導体を樹脂に含ませることにより、薄片化黒鉛誘導体の積層面に交差する方向に加わる外力に対する樹脂の機械的強度を効果的に高めることができる。なお、本発明において、アスペクト比とは、薄片化黒鉛または薄片化黒鉛誘導体の積層面方向における最大寸法の薄片化黒鉛または薄片化黒鉛誘導体の厚みに対する比をいう。
 薄片化黒鉛誘導体のアスペクト比が低すぎると、上記積層面に交差する方向に加わった外力に対する補強効果が充分でないことがある。薄片化黒鉛誘導体のアスペクト比が高すぎると、効果が飽和してそれ以上の補強効果を望めないことがある。従って、薄片化黒鉛誘導体及び原料となる薄片化黒鉛のアスペクト比の好ましい下限は50程度であり、好ましい上限は5000程度である。
 薄片化黒鉛の積層面方向における最大寸法は、0.5μm~50μm程度であることが好ましく、1.0μm~10μm程度であることがより好ましい。薄片化黒鉛の厚みは、0.3nm~300nm程度であることが好ましく、10nm~100nm程度であることがより好ましい。
 薄片化黒鉛のBET比表面積は、30m/g~7000m/g程度であることが好ましく、100m/g~1000m/g程度であることがより好ましい。薄片化黒鉛のBET比表面積がこのような範囲にあることにより、高い補強効果が奏される。
 本発明において、反応性化合物とは、活性エネルギー線の照射により、上記薄片化黒鉛にグラフト化する化合物をいう。反応性化合物は、後述の薄片化黒鉛・樹脂複合材料に含まれる樹脂と反応性を有する官能基を備えていることが好ましい。これにより、薄片化黒鉛・樹脂複合材料中において、薄片化黒鉛誘導体が樹脂と結合される。よって、薄片化黒鉛・樹脂複合材料の機械的強度をより高めることができる。
 樹脂との反応性を有する官能基は、(メタ)アクリル基、ビニル基、ビニルエーテル基、グリシジル基、チオール基、ハロゲン基、カルボニル基、カルボキシル基、スルホ基、アミノ基、ヒドロキシ基、オキシム基、ニトリル基、イソシアネート基、シリル基、およびこれらの誘導体からなる群から選択された少なくとも1種であることが好ましい。これらの官能基は、反応性が比較的高いため、ポリマーと良好に反応して結合を形成することができる。
 また、上記反応性化合物は、薄片化黒鉛と反応性を有する官能基を備えていることが好ましい。この場合、反応性化合物をより一層効率的に薄片化黒鉛にグラフトできるからである。
 上記薄片化黒鉛との反応性を有する官能基としては、(メタ)アクリル基、ビニル基、ビニリデン基、ビニレン基、アゾ基、アジ基、ジアゾ基、ペルオキシ基、イリド基、ハロゲン基、およびこれらの誘導体からなる群から選択された少なくとも1種であることが好ましい。これらの官能基は、活性エネルギー線を照射し、フリーラジカルが発生することにより、薄片化黒鉛との反応性が格段にあがる。
 上記反応性化合物としては、例えば、N-(2-アミノエチル)グリシン、2,2’-アゾビス(2-アミジノプロパン)ジハイドロクロライド、4-ニトロベンゼンジアゾニウムテトラフルオロボレイト、無水マレイン酸、ジドブシン、グリシジルメタクリレート、ビニルメタクリレート等が挙げられる。また、下記に具体例を示すラジカル化合物を用いることが好ましい。
 アミノ基を有するラジカル反応性化合物の具体例としては、アゾジカルボアミド、アミノアゾベンゼンなどが挙げられる。
 グリシジル基を有するラジカル反応性化合物の具体例としては、グリシジルメタクリレート、オクタジエンジエポキシド等のジエポキシ類、1,2-エポキシヘキセン等のビニルアルキル類、ビニルグリシジルエーテル等のビニルエーテル類などが挙げられる。
 カルボキシル基を有するラジカル反応性化合物の具体例としては、アクリル酸、10-ウンデセン酸等のビニルアルキル類、4,4-アゾビス(4-シアノ吉草酸)などが挙げられる。
 ニトリル基を有するラジカル反応性化合物の具体例としては、アゾビスイソブチロニトリルなどが挙げられる。
 ヒドロキシ基を有するラジカル反応性化合物の具体例としては、4-ペンテン-2-オール等のビニルアルキル類、アクリル酸2-ヒドロキシエチル、エチレングリコールモノビニルエーテルなどが挙げられる。
 反応性化合物は、1種類のみを用いてもよいし、複数種類を用いてもよい。反応性化合物は、モノマーであってもよいし、上記の反応性化合物のオリゴマーであってもよい。
 本発明においては、まず、上記の薄片化黒鉛と反応性化合物との混合物を得る。薄片化黒鉛と反応性化合物との混合比は、得ようとする薄片化黒鉛誘導体における薄片化黒鉛と反応性化合物との質量比によって、適宜調整することができる。
 薄片化黒鉛誘導体における薄片化黒鉛と反応性化合物との質量比は、1:10~10:1程度の範囲にあることが好ましく、1:3~3:1程度の範囲にあることがより好ましい。このような範囲にあることにより、後述の薄片化黒鉛・樹脂複合材料において、薄片化黒鉛誘導体を樹脂中により均一に分散させることができる。よって、薄片化黒鉛・樹脂複合材料の機械的強度をより高めることができる。
 次に、薄片化黒鉛と反応性化合物との混合物に対して、活性エネルギー線を照射する。これにより、薄片化黒鉛にラジカル反応性化合物がグラフト化する。薄片化黒鉛とラジカル反応性化合物との混合物は、溶媒をさらに含むことが好ましい。溶媒としては、テトラヒドロフラン(THF)、N-メチルピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)などが挙げられる。
 上記活性化エネルギー線としては、特に限定されないが、電磁波、紫外線、熱、赤外線、熱を用いることができる。好ましくは、電磁波である。なかでも、マイクロ波を用いることが、より好ましい。マイクロ波を用いた場合、一般的な電子レンジ等の設備を用いることができるためプロセス的に容易であるため好適である。
 マイクロ波の照射条件は、適宜設定することができる。反応性化合物を薄片化黒鉛に効率的にグラフト化させるためには、マイクロ波の周波数は、0.1GHz~40GHz程度とすることが好ましく、1GHz~20GHz程度とすることがより好ましい。また、マイクロ波の照射時間は、1秒~10分程度であることが好ましく、15秒~3分程度であることがより好ましい。マイクロ波の照射は、連続的に1回のみ行ってもよいし、複数回に分けて行ってもよい。マイクロ波の照射は、例えば、電子レンジなどを用いて行うことができる。
 本発明においては、反応性化合物の薄片化黒鉛へのグラフト化に際して、ラジカル重合開始剤などを用いる必要が必ずしもない。よって、反応性化合物の薄片化黒鉛へのグラフト化を簡便に行うことができる。また、活性エネルギー線を用いて反応性化合物の薄片化黒鉛へのグラフト化できるため、種々の官能基を有する反応性化合物を薄片化黒鉛にグラフト化することができる。
 (薄片化黒鉛・樹脂複合材料の製造方法)
 本発明の薄片化黒鉛・樹脂複合材料の製造方法は、上記の薄片化黒鉛誘導体を得る工程と、薄片化黒鉛誘導体と樹脂とを混合する工程とを備える。
 薄片化黒鉛・樹脂複合材料に含まれる上記樹脂は特に限定されず、様々な公知の樹脂を用いることができる。
 上記の薄片化黒鉛誘導体を得る工程において、反応性化合物として、樹脂との反応性を有する官能基を備えるものを用いた場合、樹脂は、ラジカル反応性化合物の官能基との反応性を有する官能基を有することが好ましい。樹脂が有するこのような官能基としては、(メタ)アクリル基、ビニル基、ビニルエーテル基、グリシジル基、チオール基、ハロゲノ基、カルボニル基、カルボキシル基、スルホ基、アミノ基、ヒドロキシ基、オキシム基、ニトリル基、イソシアネート基、シリル基、およびこれらの誘導体からなる群から選択された少なくとも1種であることが好ましい。
 樹脂としては、熱可塑性樹脂が用いられる。熱可塑性樹脂を用いた薄片化黒鉛・樹脂複合材料では、加熱下により様々な成形方法を用いて、容易に様々な成形品とすることができる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリレート、ポリアクリロニトリル、ポリエステル、ポリアミド、ポリウレタン、ポリエーテルスルホン、ポリエーテルケトン、ポリイミド、ポリジメチルシロキサン及びこれらの共重合体などが挙げられる。
 特に好ましくは、樹脂としてポリオレフィンを用いることができる。ポリオレフィンは安価であり、加熱下の成形が容易である。そのため、熱可塑性樹脂としてポリオレフィンを用いることにより、薄片化黒鉛・樹脂複合材料のコストを低減でき、かつ薄片化黒鉛・樹脂複合材料を容易に成形することができる。上記ポリオレフィンは特に限定されず、例えば、ポリエチレン、ポリプロピレン、エチレン単独重合体、エチレン-α-オレフィン共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのポリエチレン系樹脂、プロピレン単独重合体、プロピレン-α-オレフィン共重合体、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体などのポリプロピレン系樹脂、ブテン単独重合体、ブタジエン、イソプレンなどの共役ジエンの単独重合体又は共重合体などが挙げられる。さらに好ましくは、熱可塑性樹脂としては、より安価であるポリプロピレンが用いられる。ポリオレフィンは、マレイン酸やシランなどで変性されたものであってもよい。樹脂は、1種のみを用いてもよく、複数種類を用いてもよい。
 また、樹脂には、カップリング剤をさらに添加してもよい。この場合、樹脂の官能基の変性がさらに可能となり、結合できるグラフェン官能基の種類が増える。上記カップリング剤としては、3-アミノプロピルトリエトキシシラン、チタン(IV)テトライソプロポキシド、3-グリシドキシプロピルトリエトキシシラン等を用いることができる。
 薄片化黒鉛誘導体と樹脂との配合割合は特に限定されないが、好ましくは、樹脂100質量部に対し、薄片化黒鉛誘導体が0.1~50質量部の範囲である。配合割合をこのような範囲とすることにより、本発明の薄片化黒鉛・樹脂複合材料の引張弾性率等の機械的強度を効果的に高めることができる。薄片化黒鉛誘導体の配合割合が0.1質量部未満であると、薄片化黒鉛・樹脂複合材料の機械的強度を十分に高められないことがある。薄片化黒鉛誘導体の配合割合が50質量部を超えると、薄片化黒鉛・樹脂複合材料が脆くなり、割れやすくなることがある。
 本発明の薄片化黒鉛・樹脂複合材料においては、本発明の目的を阻害しない範囲で、様々な添加剤を含んでいてもよい。このような添加剤としては、フェノール系、リン系、アミン系もしくはイオウ系等の酸化防止剤;ベンゾトリアゾール系、ヒドロキシフェニルトリアジン系等の紫外線吸収剤;金属害防止剤;ヘキサブロモビフェニルエーテルもしくはデカブロモジフェニルエーテル等のハロゲン化難燃剤;ポリリン酸アンモニウムもしくはトリメチルフォスフェート等の難燃剤;各種充填剤;帯電防止剤;安定剤;顔料等を挙げることができる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明する。本発明は、以下の実施例に何ら限定されず、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1)
 ガラス容器にグリシジルメタクリレート(東京化成工業社製)5gと薄片化黒鉛2gを入れ、よく分散させた。なお、薄片化黒鉛は、使用前に走査型電子顕微鏡(SEM)を用いて観察したところ、層面の面方向における最大寸法が約5.0μm、層厚みが30nm、グラフェンの積層数が約90層であった。次に、得られた分散体を100Wの電子レンジを用いて1分間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。得られた試料を濾過し、THFを用いた洗浄を繰り返すことで、未反応のグリシジルメタクリレートを完全に除去して、真空乾燥して薄片化黒鉛誘導体Aを得た。薄片化黒鉛誘導体AのラマンスペクトルとIRスペクトルを図1及び図2に示す。
 上記で得られた薄片化黒鉛誘導体Aを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とを押出機に供給して溶融混練し、押出機先端に取り付けたTダイから押出し冷却ロールにてシート成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。
 (実施例2)
 黒鉛単結晶粉末0.25gを65質量%の濃硫酸11.5mlに供給して、得られた混合物を10℃の水浴にてより冷却しながら撹拌した。次に、濃硫酸黒鉛単結晶粉末と濃硫酸との撹拌によって得られた混合物に、過マンガン酸カリウム1.5gを徐々に加えながら濃硫酸混合物を撹拌し、混合物を35℃で30分に亘って反応させた。
 次に、濃硫酸反応混合物に水23gを徐々に加えて、混合物を98℃で15分に亘って反応させた。しかる後、濃硫酸反応混合物に水70gと30質量%の過酸化水素水4.5gを加えて反応を停止させた。得られた酸化黒鉛混合物を14000rpmの回転速度にて30分に亘って延伸遠心分離した後、得られた酸化黒鉛を5質量%の希塩酸および及び水を用いてにより十分に洗浄して、しかる後に乾燥させた。得られた酸化黒鉛を0.2mg/mlの量にて水に分散させた後、酸化黒鉛に超音波洗浄機を用いて45kHz、100Wの条件化下にて用いて、酸化黒鉛に超音波を60分に亘って照射してすることにより、酸化黒鉛をその層界面間において剥離断片化して、層面が酸化されてなる薄片化黒鉛を得た。得られた層面が酸化されてなる薄片化黒鉛にヒドラジンを添加して、3分間にわたって還元処理を行って、還元した薄片化黒鉛を得た。得られた薄片化黒鉛のBET比表面積は450m/gで、層面の面方向に沿った大きさの平均値が5μmであった。
 ガラス容器にグリシジルメタクリレート(東京化成工業社製)5g、N-メチルピロリドン(NMP)40gと上記の薄片化黒鉛2gを入れ、よく分散させた。次に750Wの電子レンジを用いて20秒間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。試料を濾過し、THFを用いた洗浄を繰り返すことで、未反応のグリシジルメタクリレートを完全に除去して、真空乾燥して薄片化黒鉛誘導体Bを得た。
 上記で得られた薄片化黒鉛誘導体B10質量部とポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とを押出機に供給して溶融混練し、押出機先端に取り付けたTダイから押出し冷却ロールにてシート成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。
 (実施例3)
 ガラス容器にアゾジカルボンアミド(永和化成工業社製 商品名「ビニホールAC#K3」)5g、N,N-ジメチルホルムアミド(DMF)40g、薄片化黒鉛2gを入れ、よく分散させた。なお、薄片化黒鉛は、使用前にSEMを用いて観察したところ、層面の面方向における最大寸法が約5.0μm、層厚みが約30nm、グラフェンの積層数が約90層であった。次に、得られた試料に対して400Wの電子レンジを用いて1分間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。試料を濾過し、DMFを用いた洗浄を繰り返すことで、未反応のアゾジカルボンアミドを完全に除去した。次に、真空乾燥して薄片化黒鉛誘導体Cを得た。
 上記で得られた薄片化黒鉛誘導体Cを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とを押出機に供給して溶融混練し、押出機先端に取り付けたTダイから押出し冷却ロールにてシート成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。
 (実施例4)
 N-(2-アミノエチル)グリシン(東京化成社製)5gをホルムアルデヒド(東京化成社製)で反応させアゾメチンイリドを生成した。次に、得られた試料をフラスコにいれ、トルエン50gに実施例1と同じ薄片化黒鉛2gを分散させたものと混合した。試料の入ったフラスコに還流塔を設け、110℃で5時間反応させた。試料を濾過し、水を用いた洗浄を繰り返すことで、未反応の化合物を完全に除去した。次に、真空乾燥して薄片化黒鉛誘導体Dを得た。
 上記で得られた薄片化黒鉛誘導体Dを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製  商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とをマイクロプラストミルに供給して溶融混練し、180℃で3分プレス成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。
 (実施例5)
 ガラス容器に4-ニトロベンゼンジアゾニウムテトラフルオロボレイト(東京化成社製)5g、実施例1と同じ薄片化黒鉛2gを入れ、よく分散させた。次に、得られた試料に対して400Wの電子レンジを用いて1分間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。次に、白金触媒下で水素を吹き込み、1時間にわたって還元した。試料を濾過し、水を用いた洗浄を繰り返すことで、未反応の化合物を完全に除去した。次に、真空乾燥して薄片化黒鉛誘導体Eを得た。
 上記で得られた薄片化黒鉛誘導体Eを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とをマイクロプラストミルに供給して溶融混練し、180℃で3分プレス成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。
 (実施例6)
 ガラス容器に2,2’-アゾビス(2-アミジノプロパン)ジハイドロクロライド(和光純薬社製)5gを水20gに溶かし、N-メチルピロリドン(NMP)40gと実施例1と同じ薄片化黒鉛2gを入れ、よく分散させた。次に、得られた試料に対して750Wの電子レンジを用いて30秒間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。試料を濾過し、水を用いた洗浄を繰り返すことで、未反応の化合物を完全に除去した。真空乾燥して薄片化黒鉛誘導体Fを得た。
 上記で得られた薄片化黒鉛誘導体Fを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、シラン変性ポリプロピレン系樹脂(三菱化学社製 商品名「XPM800HM」、23℃における引張弾性率:1.5GPa)10質量部とをマイクロプラストミルに供給して溶融混練し、3-アミノプロピルトリエトキシシラン(信越化学社製 商品名「KBE903」)をさらに加えて混錬した。次に、180℃で3分プレス成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。その後、得られたシートを80℃の温水に、24時間含侵し、架橋反応を完結させた。次に、表面をエタノールですすいだ後に、80℃の真空オーブンで、24時間乾燥した。
 (実施例7)
 ガラス容器に無水マレイン酸5g、N-メチルピロリドン(NMP)40gと実施例1と同じ薄片化黒鉛2gを入れ、よく分散させた。次に、得られた試料に対して750Wの電子レンジを用いて20秒間マイクロ波を照射し、室温まで放冷する作業を10回繰り返した。試料を濾過し、アセトンを用いた洗浄を繰り返すことで、未反応の無水マレイン酸を完全に除去した。真空乾燥して薄片化黒鉛誘導体Gを得た。
 上記で得られた薄片化黒鉛誘導体Eを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、マレイン酸変性ポリプロピレン系樹脂(三井化学社製 商品名「アドマーQE800」、23℃における引張弾性率:1.0GPa)10質量部とをマイクロプラストミルに供給して溶融混練しチタン(IV)テトライソプロポキシド(東京化成社製)をさらに加えて混錬した。次に、180℃で3分プレス成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合からなるシートを得た。
 (実施例8)
 ガラス容器に水に溶解したジドブシン5gを、エタノール40gと実施例1と同じ薄片化黒鉛2gを入れ、よく分散させた。次に、得られた試料に対して、10分間紫外線を照射した。試料を濾過し、エタノールを用いた洗浄を繰り返すことで、未反応のジドプシンを完全に除去した。真空乾燥して薄片化黒鉛誘導体Hを得た。
 上記で得られた薄片化黒鉛誘導体Hを10質量部と、ポリプロピレン系樹脂(プライムポリマー社製 商品名「J-721GR」、23℃における引張弾性率:1.2GPa)90質量部と、シラン変性ポリプロピレン系樹脂(三菱化学社製 商品名「XPM800HM」、23℃における引張弾性率:1.5GPa)10質量部とをマイクロプラストミルに供給して溶融混練した。次に、180℃で3分プレス成形することにより、表面平滑な厚み0.5mmのポリオレフィン系樹脂複合材料からなるシートを得た。その後、得られたシートを80℃の温水に、24時間含侵し、架橋反応を完結させた。次に、表面をエタノールですすいだ後に、80℃の真空オーブンで、24時間乾燥した。
 (比較例1)
 マイクロ波を照射しなかったこと以外は、実施例1と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛A1を得た。この非改質の薄片化黒鉛A1を用いたこと以外は実施例1と同様にしてシートを得た。
 (比較例2)
 マイクロ波を照射しなかったこと以外は、実施例2と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛B1を得た。この非改質の薄片化黒鉛B1を用いたこと以外は実施例2と同様にしてシートを得た。
 (比較例3)
 マイクロ波を照射しなかったこと以外は、実施例3と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛C1を得た。この非改質の薄片化黒鉛C1を用いたこと以外は実施例3と同様にしてシートを得た。
 (比較例4)
 熱を加えなかったこと以外は実施例4と同様にして、熱を加えていない非改質の薄片化黒鉛D1を得た。この非改質の薄片化黒鉛D1を用いたこと以外は実施例4と同様にしてシートを得た。
 (比較例5)
 マイクロ波を照射しなかったこと以外は実施例5と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛E1を得た。この非改質の薄片化黒鉛E1を用いたこと以外は実施例5と同様にしてシートを得た。
 (比較例6)
 マイクロ波を照射しなかったこと以外は実施例6と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛F1を得た。この非改質の薄片化黒鉛F1を用いたこと以外は実施例6と同様にしてシートを得た。
 (比較例7)
 マイクロ波を照射しなかったこと以外は実施例7と同様にして、マイクロ波照射されていない非改質の薄片化黒鉛G1を得た。この非改質の薄片化黒鉛G1を用いたこと以外は実施例7と同様にしてシートを得た。
 (比較例8)
 紫外線を照射しなかったこと以外は実施例8と同様にして、紫外線照射されていない非改質の薄片化黒鉛H1を得た。この非改質の薄片化黒鉛H1を用いたこと以外は実施例8と同様にしてシートを得た。
 なお、上記実施例1~8及び比較例1~8の詳細は表1に示す。
Figure JPOXMLDOC01-appb-T000001
 (実施例及び比較例の評価)
 実施例1~8で得られたシートに含まれる薄片化黒鉛誘導体のグラフト化率、及び実施例1~8及び比較例1~8で得られた引張弾性率は、以下の要領で測定した。
 (1)グラフト化率測定
 実施例及び比較例で得られたシートを小さく裁断し、濾紙で包んで内容物が漏れ出ないよう濾紙を折り込み、さらにその周囲を金属クリップで封止した後に、過剰量の良溶媒に12時間浸すことで非グラフト性の樹脂を溶解除去した後、真空乾燥させることを3回繰り返した。得られた試料を真空乾燥することで薄片化黒鉛誘導体を単離回収した。精製した薄片化黒鉛誘導体を空気雰囲気下、30~600℃、10℃/分でTGA測定を行い、500℃までの分解物量をAwt%、未分解物量をBwt%として下記の式により求めた。
 グラフト化率(wt%)=A/B×100
 また、ここで言う良溶媒とは所望の樹脂を溶解させる一般的な溶媒であれば特に限定されず、例えばオレフィン系樹脂では130℃熱キシレン、PMMA等のアクリル系樹脂ではアセトンや、ジクロロベンゼン、ナイロン等のポリアミド系樹脂では200℃熱ベンジルアルコールや、200℃熱ニトロベンゼン、ポリスチレン系樹脂ではTHFやジクロロベンゼン、ポリカーボネート系樹脂ではTHF、ジクロロメタンなどを挙げることができる。
 (2)引張弾性率測定
 実施例及び比較例で得られたシートの23℃における引張弾性率をJIS K6767に準拠して測定した。
 グラフト化率と引張弾性率の測定結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (10)

  1.  薄片化黒鉛と、活性エネルギー線の照射により、前記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、
     前記混合物に対して、活性エネルギー線を照射することにより、前記薄片化黒鉛に前記反応性化合物をグラフト化させる工程とを備える、薄片化黒鉛誘導体の製造方法。
  2.  前記反応性化合物が、樹脂との反応性を有する官能基を含む、請求項1に記載の薄片化黒鉛誘導体の製造方法。
  3.  前記樹脂との反応性を有する官能基が、(メタ)アクリル基、ビニル基、ビニルエーテル基、グリシジル基、チオール基、ハロゲン基、カルボニル基、カルボキシル基、スルホ基、アミノ基、ヒドロキシ基、オキシム基、ニトリル基、イソシアネート基、シリル基、およびこれらの誘導体からなる群から選択された少なくとも1種である、請求項2に記載の薄片化黒鉛誘導体の製造方法。
  4.  前記反応性化合物が、薄片化黒鉛との反応性を有する官能基を含む、請求項1~3のいずれか1項に記載の薄片化黒鉛誘導体の製造方法。
  5.  前記薄片化黒鉛との反応性を有する官能基が、(メタ)アクリル基、ビニル基、ビニリデン基、ビニレン基、アゾ基、アジ基、ジアゾ基、ペルオキシ基、イリド基、ハロゲン基、およびこれらの誘導体からなる群から選択された少なくとも1種である、請求項4に記載の薄片化黒鉛誘導体の製造方法。
  6.  前記反応性化合物が、モノマーまたはオリゴマーである、請求項1~5のいずれか一項に記載の薄片化黒鉛誘導体の製造方法。
  7.  前記反応性化合物が、ラジカル反応性化合物である、請求項1~6のいずれか一項に記載の薄片化黒鉛誘導体の製造方法。
  8.  前記活性エネルギー線が、電磁波である、請求項1~7のいずれか一項に記載の薄片化黒鉛誘導体の製造方法。
  9.  前記活性エネルギー線が、マイクロ波である、請求項1~8のいずれか一項に記載の薄片化黒鉛誘導体の製造方法。
  10.  薄片化黒鉛と、活性エネルギー線の照射により、前記薄片化黒鉛にグラフト化する反応性化合物とを含む混合物を用意する工程と、
     前記混合物に対して、活性エネルギー線を照射することにより、前記薄片化黒鉛に前記反応性化合物をグラフト化させて、薄片化黒鉛誘導体を得る工程と、
     前記薄片化黒鉛誘導体と樹脂とを混合する工程とを備える、薄片化黒鉛・樹脂複合材料の製造方法。
PCT/JP2013/077789 2012-10-19 2013-10-11 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法 WO2014061598A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013548692A JP6294077B2 (ja) 2012-10-19 2013-10-11 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
US14/436,668 US20160167969A1 (en) 2012-10-19 2013-10-11 Method for manufacturing exfoliated graphite derivative, and method for manufacturing exfoliated graphite-resin composite material
EP13846668.5A EP2910524A4 (en) 2012-10-19 2013-10-11 PROCESS FOR PREPARING A FLUFFY GRAPHITE DERIVATIVE AND METHOD FOR PRODUCING A FLUFFY GRAPHITE DERIVATIVE AND RESIN COMPOSITE
CN201380048211.6A CN104661958A (zh) 2012-10-19 2013-10-11 薄片化石墨衍生物的制造方法、以及薄片化石墨-树脂复合材料的制造方法
KR1020157006961A KR20150070106A (ko) 2012-10-19 2013-10-11 박편화 흑연 유도체의 제조 방법 및 박편화 흑연·수지 복합 재료의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012232120 2012-10-19
JP2012-232120 2012-10-19

Publications (1)

Publication Number Publication Date
WO2014061598A1 true WO2014061598A1 (ja) 2014-04-24

Family

ID=50488164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077789 WO2014061598A1 (ja) 2012-10-19 2013-10-11 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法

Country Status (6)

Country Link
US (1) US20160167969A1 (ja)
EP (1) EP2910524A4 (ja)
JP (1) JP6294077B2 (ja)
KR (1) KR20150070106A (ja)
CN (1) CN104661958A (ja)
WO (1) WO2014061598A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157748A (ja) * 2014-01-27 2015-09-03 積水化学工業株式会社 薄片化黒鉛、薄片化黒鉛誘導体、薄片化黒鉛−樹脂複合材料及びそれらの製造方法
JP5873588B1 (ja) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 薄片状炭素材料の製造方法
JP2016029002A (ja) * 2014-07-18 2016-03-03 積水化学工業株式会社 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
JP2016029003A (ja) * 2014-07-18 2016-03-03 積水化学工業株式会社 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5636096B2 (ja) * 2012-03-27 2014-12-03 積水化学工業株式会社 樹脂複合材料
CN112424120A (zh) * 2018-07-30 2021-02-26 株式会社艾迪科 复合材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500179A (ja) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブからのグラフェンナノリボンの製造
WO2012105344A1 (ja) * 2011-02-04 2012-08-09 積水化学工業株式会社 薄片化黒鉛-ポリマー複合材料の製造方法
JP2013112590A (ja) * 2011-11-30 2013-06-10 Sekisui Chem Co Ltd イソシアネート基変成炭素材料及びその製造方法
JP5352028B1 (ja) * 2012-08-27 2013-11-27 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287699B2 (en) * 2009-07-27 2012-10-16 Nanotek Instruments, Inc. Production of chemically functionalized nano graphene materials
FR2962052B1 (fr) * 2010-07-02 2015-04-03 Commissariat Energie Atomique Materiau comprenant des nanotubes ou des nanofils greffes dans une matrice, procede de preparation et utilisations
EP2612889A4 (en) * 2010-09-03 2014-01-08 Sekisui Chemical Co Ltd RESIN COMPOSITE MATERIAL AND METHOD FOR PRODUCING A RESIN COMPOSITE MATERIAL
CN102731733B (zh) * 2011-04-08 2016-05-04 中国科学院上海应用物理研究所 一种高分子接枝的氧化石墨烯及其制备方法
JP5775366B2 (ja) * 2011-06-06 2015-09-09 積水化学工業株式会社 炭素質材料−ポリマー複合材料の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012500179A (ja) * 2008-08-19 2012-01-05 ウィリアム・マーシュ・ライス・ユニバーシティ カーボンナノチューブからのグラフェンナノリボンの製造
WO2012105344A1 (ja) * 2011-02-04 2012-08-09 積水化学工業株式会社 薄片化黒鉛-ポリマー複合材料の製造方法
JP2013112590A (ja) * 2011-11-30 2013-06-10 Sekisui Chem Co Ltd イソシアネート基変成炭素材料及びその製造方法
JP5352028B1 (ja) * 2012-08-27 2013-11-27 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JEFFREY R. POTTS ET AL., CARBON, vol. 49, no. 8, pages 2615 - 2623
LEE SH; DREYER DR ET AL., MACROMOL. RAPID COMMUN., vol. 31, 2010, pages 281 - 8
REN, P.-G. ET AL.: "Improved properties of highly oriented graphene/polymer nanocomposites", J. APPL. POLYM. SCI., vol. 121, 6 April 2011 (2011-04-06), pages 3167 - 3174, XP055072910 *
See also references of EP2910524A4
XU, C. ET AL.: "Synthesis of hemin functionalized graphene and its application as a conter electrode in dye-sensitized solar cells", MATER. CHEM. PHYS., vol. 132, 15 February 2012 (2012-02-15), pages 858 - 864, XP055251660 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157748A (ja) * 2014-01-27 2015-09-03 積水化学工業株式会社 薄片化黒鉛、薄片化黒鉛誘導体、薄片化黒鉛−樹脂複合材料及びそれらの製造方法
JP2016029002A (ja) * 2014-07-18 2016-03-03 積水化学工業株式会社 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
JP2016029003A (ja) * 2014-07-18 2016-03-03 積水化学工業株式会社 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
JP5873588B1 (ja) * 2015-05-12 2016-03-01 マイクロ波化学株式会社 薄片状炭素材料の製造方法
WO2016181760A1 (ja) * 2015-05-12 2016-11-17 マイクロ波化学株式会社 薄片状炭素材料、及びその製造方法
EP3138813A4 (en) * 2015-05-12 2018-02-28 Microwave Chemical Co., Ltd. Lamellar carbonaceous material and method for producing same

Also Published As

Publication number Publication date
US20160167969A1 (en) 2016-06-16
KR20150070106A (ko) 2015-06-24
CN104661958A (zh) 2015-05-27
JP6294077B2 (ja) 2018-03-14
EP2910524A4 (en) 2016-05-25
JPWO2014061598A1 (ja) 2016-09-05
EP2910524A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP6294077B2 (ja) 薄片化黒鉛誘導体の製造方法、及び薄片化黒鉛・樹脂複合材料の製造方法
JP5007371B1 (ja) 樹脂複合材料及び樹脂複合材料の製造方法
JP5576532B2 (ja) 薄片化黒鉛・樹脂複合材料及びその製造方法
JP7224184B2 (ja) グラフトコポリマー含有固形物およびその用途
Yuan et al. Efficient grafting of polypropylene onto silica nanoparticles and the properties of PP/PP-g-SiO2 nanocomposites
JP4734480B2 (ja) 太陽電池用裏面保護シート及びその製造方法
WO2017022180A1 (ja) フレーク状ガラス及び樹脂組成物
US9604884B2 (en) Composite material and method for producing the same
JP2013151133A (ja) 熱成形用ハードコートフィルム
JP2007271539A (ja) 樹脂タングステン複合材料
WO2014136642A1 (ja) 樹脂複合材料の製造方法及び樹脂複合材料
JP6397342B2 (ja) 薄片化黒鉛、薄片化黒鉛誘導体、薄片化黒鉛−樹脂複合材料及びそれらの製造方法
JP2016029003A (ja) 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
KR101135429B1 (ko) 탄소나노튜브를 이용한 전도성 발포폼 제조방법 및 이를 이용하여 제조된 전도성 발포폼
JPWO2014034156A1 (ja) 薄片化黒鉛・樹脂複合材料及びその製造方法
WO2013077178A1 (ja) 樹脂複合材料及び樹脂複合材料の製造方法
Zhidan et al. Investigation on preparation and property of nano‐CaCO3/PP masterbatch modified by reactive monomers
JP2020164742A (ja) ポリマー被覆無機フィラーの製造方法
JP7360249B2 (ja) ポリマー被覆無機フィラー、及び、これを含む樹脂組成物、ドライフィルム、硬化物、電子部品
JP6054587B1 (ja) フレーク状ガラス及び樹脂組成物
JP2016029002A (ja) 薄片化黒鉛、電極材料及び薄片化黒鉛−樹脂複合材料
CN113874436A (zh) 热塑性树脂组合物
Torabi et al. Preparation of cationic acrylic nanoparticles via emulsion polymerization with potential application in reactive mixing with chitosan
JPH05222254A (ja) プロピレン系重合体組成物およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013548692

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157006961

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013846668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013846668

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14436668

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE