WO2014056565A1 - Elektronische vorrichtung - Google Patents

Elektronische vorrichtung Download PDF

Info

Publication number
WO2014056565A1
WO2014056565A1 PCT/EP2013/002727 EP2013002727W WO2014056565A1 WO 2014056565 A1 WO2014056565 A1 WO 2014056565A1 EP 2013002727 W EP2013002727 W EP 2013002727W WO 2014056565 A1 WO2014056565 A1 WO 2014056565A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole transport
transport layer
electronic device
layer
layers
Prior art date
Application number
PCT/EP2013/002727
Other languages
English (en)
French (fr)
Inventor
Frank Voges
Jonas Valentin Kroeber
Christof Pflumm
Joachim Kaiser
Arne Buesing
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP2015536003A priority Critical patent/JP6449162B2/ja
Priority to KR1020187008239A priority patent/KR102153871B1/ko
Priority to KR1020197022140A priority patent/KR102071843B1/ko
Priority to KR1020157012027A priority patent/KR102023232B1/ko
Priority to KR1020187008238A priority patent/KR102007150B1/ko
Priority to CN201380052539.5A priority patent/CN104718636B/zh
Priority to US14/434,277 priority patent/US9917272B2/en
Priority to EP13763188.3A priority patent/EP2907173B1/de
Publication of WO2014056565A1 publication Critical patent/WO2014056565A1/de
Priority to US15/870,165 priority patent/US10270052B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/611Charge transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • A61N2005/0653Organic light emitting diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present application relates to an electronic device comprising a hole transport layer A, a doped hole transport layer B and a hole transport layer C, wherein the hole transport layers A, B and C between anode and emitting layer are arranged, and wherein hole transport layer B cathode side of hole transport layer A and hole transport layer C on the cathode side Hole transport layer B is arranged.
  • electronic devices are understood as meaning in particular so-called organic electronic devices (organic electronic devices), which are organic
  • OLEDs organic electroluminescent devices
  • Electrons and holes in the device determined. This balance is established by the charge carrier distribution and the associated field distribution in the device.
  • Electron blocking layer between anode and emitting layer
  • the subject of the present application is thus an electronic device comprising anode, cathode and at least one emitting layer arranged between anode and cathode as well as
  • At least one hole transport layer C containing at least one hole transport material, wherein the hole transport layers A, B and C are arranged between the anode and the emitting layer, and
  • Hole transport layer A is arranged, and the hole transport layer C is arranged on the cathode side of the hole transport layer B.
  • the electronic device according to the invention has the advantage that it has higher efficiency, preferably combined with longer life. Furthermore, it can be operated at a comparatively low voltage.
  • the device according to the invention furthermore has the advantage that it can use materials with a deep-lying HOMO in a hole transport layer, in particular in combination with materials with a higher HOMO in another hole transport layer.
  • the hole transport layer B has to be p-doped, compared to a construction in which all
  • Hole transport layers are p-doped, the amount of required p-dopant and thus the costs lower. This is an advantage over prior art devices in which all hole transport layers are p-doped.
  • a hole transport layer is understood to mean an organic layer which
  • hole transporting properties it is understood to mean an organic layer which is located between the anode and the emitting layer and has hole-transporting properties.
  • hole transport material is accordingly understood a material with hole-transporting properties.
  • a p-dopant is understood as meaning a compound which can at least partially oxidize the other compound present in the layer (the matrix) and in this way increases the conductivity of the layer.
  • p-dopants are according to the present invention
  • a matrix designates that connection or those
  • the electronic device according to the invention is preferably selected from organic light-emitting transistors (OLETs), organic light-emitting electrochemical cells (OLECs), organic
  • Laser diodes O-lasers
  • organic electroluminescent devices OLEDs
  • OLEDs organic electroluminescent devices
  • the anode of the electronic device is preferably made of a high work function material.
  • the anode has a
  • Metals with high redox potential suitable such as Ag, Pt or Au.
  • metal / metal oxide electrodes eg.
  • AI / Ni / NiO x, Al / PtOx may be preferred.
  • at least one of the electrodes must be transparent or partially transparent to either irradiate the organic material (organic
  • Preferred anode materials here are conductive mixed metal oxides. Particularly preferred are indium tin oxide (ITO) or indium zinc oxide (IZO). Preference is furthermore given to conductive, doped organic materials, in particular conductive doped polymers.
  • Molybdenum oxide and / or vanadium oxide such that it consists of indium tin oxide (ITO), which is coated with wolf ramoxid, molybdenum oxide and / or vanadium oxide.
  • ITO indium tin oxide
  • the hole transport layer A ' preferably contains a p-dopant selected from organic electron acceptor compounds.
  • the p-dopant in hole transport layer A ' is preferably in one
  • the hole transporting material matrix of the hole transporting layer A ' may be any organic material having hole transporting properties.
  • Hole transport layer A Indenofluorenamine derivatives (eg according to WO 06/122630 or WO 06/100896) which were disclosed in EP 1661888
  • Amine derivatives for example according to WO 01/049806
  • amine derivatives with condensed aromatics for example according to US Pat. No. 5,061,569
  • the amine derivatives disclosed in WO 95/09147 monobenzoindenofluorenamines (for example according to WO 08/006449)
  • Dibenzoindenofluoreneamines for example according to WO 07/140847)
  • spirobifluorene-mono-triarylamines for example according to US Pat
  • spirobifluorene-tetrakis-triarylamines for example spiro-TAD or spiro-TTB
  • fluorene amines for example according to those not yet disclosed
  • EP 12005369.9, EP 12005370.7 and EP 12005371.5 Spiro-dibenzopyran amines (eg according to WO 2013/083216) and
  • the hole transport material matrix is preferably selected from triarylamine compounds, preferably mono-triarylamine compounds, particularly preferably from mono-triarylamine compounds of the abovementioned structural classes.
  • the hole transporting material matrix is selected from bis-triarylamine compounds or higher-valent triarylamine compounds, for example tetrakis-triarylamine compounds.
  • a triarylamine compound is understood as meaning a compound which has one or more triarylamine groups.
  • a mono-triarylamine compound is meant a compound having a single triarylamine group.
  • a triarylamine group is a group in which three aryl or heteroaryl groups are bonded to a common nitrogen atom.
  • a mono-triarylamine compound contains no further arylamino group.
  • a mono-triarylamine compound contains no further
  • the hole transport layer A preferably follows in direct contact with the anode or the hole transport layer A 1 .
  • the hole transport layer A preferably has a thickness of 100 to 300 nm, particularly preferably 130 to 230 nm.
  • Preferred hole transporting materials contained in the hole transport layer A are indenofluorenamine derivatives (e.g.
  • EP 12005369.9, EP 12005370.7 and EP 12005371.5 spiro-dibenzopyran amines (eg according to WO 2013/083216) and dihydroacridine derivatives (eg according to WO 2012/150001).
  • the hole transport material is preferably selected from triarylamine
  • Triarylamine compounds for example tetrakis-triarylamine compounds. According to a preferred embodiment, the
  • Hole transport layer A as hole transport material the same compound as the hole transport layer A 'as hole transport material matrix.
  • the hole transport layer A preferably contains no p-dopant. It particularly preferably contains a single compound, ie it does not constitute a mixed layer.
  • the hole transport layer B is p-doped according to the invention. According to a preferred embodiment, the
  • Preferred hole transport material matrices of the hole transport layer B belong to the same structural classes as above for hole transport layer A. described.
  • these are indenofluorenamine derivatives (for example according to WO 06/122630 or WO 06/100896), which are described in US Pat
  • EP 1661888 disclosed amine derivatives, hexaazatriphenylene derivatives (for example according to WO 01/049806), aromatic fused amine derivatives (for example according to US Pat. No. 5,061,569), the amine derivatives disclosed in WO 95/09147, monobenzoindenofluoreneamines (for example according to US Pat WO 08/006449),
  • Dibenzoindenofluoreneamines for example according to WO 07/140847), spirobifluorene amines (for example according to WO 2012/034627 or the not yet disclosed EP 12000929.5), spirobifluorene-tetrakis-triarylamines, for example spiro-TAD or spiro-TTB, Fluorene amines (for example, according to the not yet disclosed applications EP 12005369.9, EP 12005370.7 and
  • the hole transport material of the layer B is selected from
  • Triarylamine compounds preferably mono-triarylamine compounds, particularly preferably from ono-triarylamine compounds of the abovementioned structural classes.
  • p-dopants are quinodimethane compounds, azaindenofluorendiones, azaphenalens, azatriphenylenes,
  • Metal halides preferably transition metal halides, metal oxides, preferably metal oxides containing at least one transition metal or a metal of the 3rd main group, and transition metal complexes, preferably complexes of Cu, Co, Ni, Pd and Pt with ligands containing at least one oxygen atom as a binding site. Preference is still given
  • Transition metal oxides as dopants preferably oxides of rhenium, Molybdenum and tungsten, more preferably Re 2 0 7 , M0O 3 , W0 3 and ReO 3 .
  • the p-dopants are preferably present largely uniformly distributed in the p-doped layers. This can be achieved, for example, by co-evaporation of the p-dopant and the hole transport material matrix.
  • the p-dopant in hole transport layer B is preferably in one
  • the hole transport layer B preferably has a thickness of 5 to 50 nm, particularly preferably 10 to 40 nm.
  • the hole transport layer C preferably contains no p-dopant.
  • Hole transport layer B on. Furthermore, it preferably adjoins the emitting layer in direct contact on the anode side.
  • Preferred hole transport materials of the hole transport layer C belong to the same structural classes as described above for hole transport layer A.
  • these are indenofluorenamine derivatives (for example according to WO 06/122630 or WO 06/100896), which are described in US Pat
  • EP 1661888 disclosed amine derivatives, hexaazatriphenylene derivatives (for example according to WO 01/049806), aromatic fused amine derivatives (for example according to US Pat. No. 5,061,569), the amine derivatives disclosed in WO 95/09147, monobenzoindenofluoreneamines (for example according to US Pat WO 08/006449),
  • Dibenzoindenofluoreneamines for example according to WO 07/140847), spirobifluoro-amines (for example according to WO 2012/034627 or the not yet disclosed EP 12000929.5), spirobifluorene-tetrakis-triarylamines, for example spiro-TAD or spiro-TTB, Fluorene amines (for example, according to the not yet disclosed applications EP 12005369.9, EP 12005370.7 and
  • the hole transport material of layer C is preferably selected from triarylamine compounds, preferably mono-triarylamine compounds, particularly preferably from mono-triarylamine compounds of the abovementioned structural classes.
  • the hole transport layer C preferably has a thickness of 5 to 50 nm, particularly preferably 10 to 40 nm.
  • Hole transport layer C is between -4.9 and -5.6 eV, preferably between -5.0 and -5.5 eV, and more preferably between -5.1 to -5.4 eV.
  • the value for the HOMO of the hole transport material of the hole transport layer A preferably lies between -4.7 and -5.4 eV, preferably between
  • the HOMO highest occupied molecular orbital
  • the HOMO is determined by quantum-chemical calculations and calibrated by cyclic voltammetry measurements, as will be explained in more detail in the embodiments.
  • Hole transport layer A contains a bis-triarylamine compound or higher-valent triarylamine compound, for example a tetrakis-triarylamine compound, and in the hole transport layer C is a mono- Triarylamine compound included. Particularly preferred is in the
  • Hole transport layer A contains a bis-triarylamine compound or higher triarylamine compound, for example a tetrakis-triarylamine compound, and in the hole transport layers B and C is a mono-triarylamine compound.
  • hole transport layers A, B and C and, if present, hole transport layer A ' directly adjacent to each other.
  • the emitting layer or one of the emitting layers directly adjoin the emitting layer
  • hole transport layers A, B, C and, if present, A 'each contain one or more identical or different triarylamine compounds.
  • Hole transport layers A, B, C and A ' at least one compound according to one of the formulas
  • Z is the same or different at each occurrence as N or CR 1 , wherein Z is C when a substituent is bonded;
  • X, Y are the same or different at each occurrence
  • E is O, S, Se, BR 1 , C (R) 2 , Si (R 1 ) 2 , NR 1 , PR 1 , C (R 1 ) 2 -C (R 1 ) 2 , or
  • CR 1 CR 1 ; is the same or different at each occurrence an aromatic or heteroaromatic ring system with 5 to 60 aromatic
  • Form ring system is identical or different at each occurrence H, D, CN or an aliphatic, aromatic and / or heteroaromatic hydrocarbon radical having 1 to 20 C-atoms, in which also H atoms may be replaced by D or F; two or more adjacent substituents R 2 may also together form a mono- or polycyclic, aliphatic or aromatic ring system; each occurrence is equal to or different from 0 or 1, the sum of all i being at least equal to 1; p is 0 or 1; m, n are the same or different 0 or 1, where the sum of m and n is 1 or 2.
  • the group Y is preferably selected from O and C (R 1 ) 2, more preferably it is O.
  • the group E is preferably selected from C (R 1 ) 2, O and S, more preferably it is C (R 1 ) 2 .
  • the group Ar 1 is the same or different at each occurrence selected from aromatic or heteroaromatic ring systems having 6 to 30 aromatic ring atoms which may be substituted by one or more radicals R 1 .
  • Ar 1 is particularly preferably selected from aryl or heteroaryl groups having 6 to 18 aromatic ring atoms which may be substituted by one or more radicals R 1 .
  • An aryl group in the sense of this invention contains 6 to 60 aromatic ring atoms;
  • a heteroaryl group contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom.
  • the heteroatoms are preferably selected from N, O and S. This is the basic definition. If other preferences are given in the description of the present invention, for example with respect to the number of aromatic ring atoms or the heteroatoms contained, these apply.
  • an aryl group or heteroaryl group is either a simple aromatic cycle, ie benzene, or a simpler one
  • heteroaromatic cycle for example pyridine, pyrimidine or
  • heteroaromatic polycycle for example, naphthalene, phenanthrene, quinoline or carbazole understood.
  • a condensed (fused) aromatic or heteroaromatic polycycle consists of two or more simple aromatic or heteroaromatic rings condensed together.
  • An aryl or heteroaryl group which may be substituted in each case by the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic compounds is understood in particular to mean groups which are derived from benzene, naphthalene, anthracene, phenanthrene, pyrene, Dihydropyrenes, chrysene, perylene, fluoranthene, benzanthracene, benzphenanthrene, tetracene, pentacene, benzopyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine,
  • Phenanthridine benzo-5,6-quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, indazole, imidazole, benzimidazole, naphthimidazole, phenanthrimidazole, pyrimididazole, pyrazine imidazole, quinoxaline imidazole, oxazole, Benzoxazole, naphthoxazole, anthroxazole, phenanthroxazole, isoxazole, 1, 2-thiazole, 1, 3-thiazole, benzothiazole,
  • An aromatic ring system in the sense of this invention contains 6 to 60 carbon atoms in the ring system.
  • a heteroaromatic ring system in the context of this invention contains 5 to 60 aromatic ring atoms, at least one of which represents a heteroatom.
  • the heteroatoms are preferably selected from N, O and / or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which also several aryl or heteroaryl groups a non-aromatic moiety (preferably less than 10% of the atoms other than H), such as e.g. An sp 3 -hybridized C, Si, N or O atom, an sp 2 -hybridized C- or N-
  • Atom or a sp-hybridized carbon atom can be connected.
  • systems such as 9,9'-spirobifluorene, 9,9'-diarylfluorene, triarylamine, diaryl ethers, stilbene, etc. are to be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example by a linear or cyclic alkyl, alkenyl or alkynyl group or linked by a silyl group.
  • systems in which two or more aryl or heteroaryl groups are linked together via single bonds are understood as aromatic or heteroaromatic ring systems in the context of this invention, such as systems such as biphenyl, terphenyl or diphenyltriazine.
  • An aromatic or heteroaromatic ring system having 5-60 aromatic ring atoms, which may be substituted in each case by radicals as defined above and which may be linked via any positions on the aromatic or heteroaromatic compounds, is understood in particular to mean groups derived from benzene, naphthalene .
  • alkoxy or thioalkyl group having 1 to 40 carbon atoms methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, n-pentoxy, s Pentoxy, 2-methylbutoxy, n- Hexoxy, cyclohexyloxy, n-heptoxy, cycloheptyloxy, n-octyloxy,
  • the two radicals are linked together by a chemical bond, under the formulation that two or more radicals can form a ring with one another.
  • the second radical forms a ring to the position to which the hydrogen atom
  • the electronic device according to the invention may contain one or more emitting layers.
  • the emitting layers can be fluorescent or phosphorescent, that is to say contain fluorescent or phosphorescent emitters.
  • phosphorescent emitter typically includes compounds in which the light emission occurs through a spin-forbidden transition, for example a transition from an excited triplet state or a state with a higher one
  • Particularly suitable as phosphorescent emitters are compounds which emit light, preferably in the visible range, with suitable excitation and also contain at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80.
  • phosphorescent dopants compounds containing copper, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, iridium, palladium, platinum, silver, gold or europium are preferably used, in particular compounds containing iridium, platinum or copper. In this case, for the purposes of the present invention, all luminescent iridium, platinum or copper complexes as phosphorescent
  • Examples of the phosphorescent dopants described above can be found in applications WO 2000/70655, WO 2001/415 2, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO
  • Electroluminescent devices are known, for use in the inventive devices. Also, the skilled person without inventive step further phosphorescent complexes in
  • Electronic devices of the invention are selected from the class of triarylamine compounds as defined above.
  • Nitrogen atom are bonded, a fused ring system, more preferably having at least 14 aromatic ring atoms.
  • Preferred examples of these are aromatic anthraceneamines, aromatic
  • Anthracenediamines, aromatic pyrenamines, aromatic pyrenediamines, aromatic chrysenamines or aromatic chrysendiamines By an aromatic anthracene amine is meant a compound in which a diarylamino group is bonded directly to an anthracene group, preferably in the 9-position. By an aromatic anthracenediamine is meant a compound in which two diarylamino groups are bonded directly to an anthracene group, preferably in the 9, 10 position.
  • Aromatic pyrenamines, pyrenediamines, chrysenamines and chrysenediamines are defined analogously thereto, the diarylamino groups on the pyrene preferably being bonded in the 1-position or in the 1, 6-position.
  • Further preferred dopants are indenofluoreneamines or -diamines, for example according to WO 2006/108497 or WO 2006/122630, benzoindeno fluorenamines or diamines, for example according to WO 2008/006449, and dibenzoindenofluoreneamines or diamines, for example according to
  • the emitting layer preferably contains one or more
  • Dopant materials (emitter materials).
  • An emitting layer contains according to a preferred
  • Embodiment multiple matrix materials (mixed-matrix systems) and / or multiple dopants.
  • the dopants are generally those materials whose proportion in the system is smaller and the matrix materials are those materials whose proportion in the system is larger. In individual cases, however, the proportion of a single matrix material in the system may be smaller than the proportion of a single dopant.
  • Matrix materials one material with hole-transporting properties and the other material a material with electron-transporting properties
  • the desired electron-transporting and hole-transporting properties of the mixed-matrix components may also be mainly or completely united in a single mixed-matrix component, with the further or the further mixed-matrix components fulfilling other functions.
  • the two different matrix materials can be in one
  • the mixed-matrix systems may comprise one or more dopants, preferably one or more phosphorescent dopants.
  • mixed-matrix systems are preferably used in phosphorescent emitting layers.
  • Preferred matrix materials for fluorescent emitters are selected from the classes of the oligoarylenes (for example 2,2 ', 7,7'-tetraphenylspirobifluorene according to EP 676461 or dinaphthylanthracene), in particular the
  • Oligoarylenevinylenes eg DPVBi or spiro-DPVBi according to EP 676461
  • the polypodal metal complexes eg according to WO 2004/081017)
  • the hole-conducting compounds eg according to WO 2004/058911
  • the electron-conducting compounds in particular ketones, phosphine oxides, sulfoxides, etc.
  • the atropisomers for example according to WO 2006/048268
  • the boronic acid derivatives for example according to WO 2006 / 117052
  • benzanthracenes eg according to WO 2008/145239).
  • Particularly preferred matrix materials are selected from the classes of oligoarylenes containing naphthalene, anthracene, benzanthracene and / or pyrene or atropisomers of these compounds, the oligoarylenevinylenes, the ketones, the phosphine oxides and the sulfoxides.
  • Very particularly preferred matrix materials are selected from the classes of oligoarylenes containing anthracene, benzanthracene, benzphenanthrene and / or pyrene or atropisomers of these compounds.
  • an oligoarylene is to be understood as meaning a compound in which at least three aryl or arylene groups are bonded to one another.
  • Preferred matrix materials for phosphorescent emitters are aromatic ketones, aromatic phosphine oxides or aromatic
  • Sulfoxides or sulfones e.g. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, carbazole derivatives, z. B. CBP ( ⁇ , ⁇ -biscarbazolylbiphenyl) or in WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 2008/086851 disclosed carbazole derivatives, indolocarbazole derivatives, e.g. B. according to WO 2007/063754 or WO 2008/056746, indenocarbazole derivatives, for. B.
  • Triphenylene derivatives eg. B. according to WO 2012/048781, or lactams, z. B. according to WO 2011/116865 or WO 2011/137951.
  • the electronic device according to the invention can have several
  • these emission layers particularly preferably have a total of several emission maxima between 380 nm and 750 nm, so that overall white emission results, ie. H.
  • various emitting compounds are used which can fluoresce or phosphoresce and which emit blue or yellow or orange or red light.
  • Particularly preferred are three-layer systems, ie systems with three emitting layers, wherein preferably at least one of these layers contains at least one compound according to formula (I) and wherein the three layers show blue, green and orange or red emission (for the basic structure see eg ,
  • Compounds according to the invention may also be present in the hole transport layer or in another layer. It should be noted that for the production of white light, instead of a plurality of color-emitting emitter compounds, a single used one
  • Emitter compound may be suitable, which in a broad
  • low work function metals, metal alloys or multilayer structures of various metals are preferable, such as alkaline earth metals, alkali metals, main group metals or lanthanides (e.g., Ca, Ba, Mg, Al, In, Mg, Yb, Sm , Etc.). Furthermore, alloys of an alkali or alkaline earth metal and silver, for example a
  • Alloy of magnesium and silver In multilayer structures, it is also possible, in addition to the metals mentioned, to use further metals which have a relatively high work function, such as, for example, As Ag or Al, which then usually combinations of metals, such as Ca / Ag, Mg / Ag or Ba / Ag are used. It may also be preferred to provide a thin intermediate layer of a high material between a metallic cathode and the organic semiconductor
  • dielectric constant Suitable examples of these are alkali metal or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (eg LiF, Li 2 O, BaF 2 , MgO, NaF, CsF, Cs 2 CO 3 , etc.). Furthermore, lithium quinolinate (LiQ) can be used for this purpose.
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • the electronic device according to the invention preferably also contains further
  • the sequence of the layers of the electronic device is preferably the following:
  • These additional layers are preferably selected from hole injection layers, hole transport layers, electron blocking layers, emitting layers, interlayers,
  • Electron transport layers electron injection layers
  • Charge generating layers Charge generating layers, pn-junctions and outcoupling layers.
  • the electronic device according to the invention preferably has at least one electron transport layer, which is arranged between emitting layer and cathode, wherein the
  • Electron transport layer preferably contains at least one n-dopant and at least one electron transport material matrix.
  • n-dopant is understood as meaning a compound which can at least partially reduce the other compound present in the layer (the matrix) and in this way increases the conductivity of the layer.
  • n-dopants are according to the present invention
  • n-dopants for example, the materials disclosed in Chem. Rev. 2007, 107, p. 1233 ff., Section 2.2 can be used, such as alkali metals, alkaline earth metals and electron-rich and easily oxidizable organic compounds or transition metal complexes.
  • the electronic device according to the invention preferably comprises at least one electron injection layer, which between
  • Electron transport layer and cathode is arranged.
  • the electron injection layer directly adjoins the cathode.
  • Electron injection layer can be used all materials, as used in the prior art as electron transport materials in the electron transport layer.
  • aluminum complexes are, for example, Alq3, zirconium, for example Zrq 4, benzimidazole derivatives, triazine derivatives,
  • Pyrimidine derivatives pyridine derivatives, pyrazine derivatives, quinoxaline derivatives, quinoline derivatives, oxadiazole derivatives, aromatic ketones, lactams, boranes, diazaphosphole derivatives and phosphine oxide derivatives.
  • Farther suitable materials are derivatives of the abovementioned compounds, as disclosed in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 and WO 20/072300.
  • the device is preferably patterned, contacted and finally sealed to provide water and / or air
  • the materials in vacuum sublimation are evaporated at an initial pressure less than 10 "5 mbar, preferably less than 10 -6 mbar. However, it is also possible that the initial pressure is even lower, for example less than 10 -7 mbar.
  • one or more layers are coated with the OVPD (Organic Vapor Phase Deposition) method or with the aid of a carrier gas sublimation.
  • the materials are applied at a pressure between 10 "5 mbar and 1 bar, a special case of this
  • Method is the OVJP (Organic Vapor Jet Printing) method, in which the materials are applied directly through a nozzle and thus structured (for example, M. S. Arnold et al., Appl. Phys. Lett., 2008, 92, 053301). It is also preferred that in the electronic device according to the invention one or more layers of solution, such. B. by spin coating, or with any printing process, such. B.
  • OVJP Organic Vapor Jet Printing
  • LITI Light Induced Thermal Imaging, thermal transfer printing
  • ink-jet printing ink jet printing
  • the electronic device according to the invention it is further preferred that for the production of the electronic device according to the invention one or more layers of solution and one or more layers are applied by a sublimation method.
  • the electronic devices according to the invention can be used in displays, as light sources in illumination applications and as light sources in medical and / or cosmetic applications (eg light therapy).
  • the HOMO layers of the materials are quantum chemical
  • inventive OLEDs and OLEDs according to the prior art is carried out according to a general method according to WO 04/058911, based on the conditions described here
  • Reference examples V1-V present the data of different OLEDs.
  • the substrates used are glass plates coated with structured ITO (indium tin oxide) of thickness 50 nm.
  • the OLEDs have in principle the following layer structure: Substrate / p-doped hole transport layer A '(HIL1) / hole transport layer A (HTL) / p-doped hole transport layer B (HIL2) / hole transport layer C (EBL) /
  • Emission Layer Emission Layer
  • ETL Electron Transport Layer
  • Electron injection layer EIL
  • cathode is formed by a 00 nm thick aluminum layer.
  • Table 1 The materials needed to make the OLEDs are shown in Table 1, the construction of the various manufactured electronic devices in Table 2.
  • the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter), which is admixed to the matrix material or the matrix materials by co-evaporation in a specific volume fraction.
  • the electron transport layer or the hole injection layers may consist of a mixture of two materials.
  • the OLEDs are characterized by default.
  • the electroluminescence spectra are determined at a luminance of 1000 cd / m 2 and from this the CIE 1931 x and y color coordinates are calculated.
  • the term EQE @ 10 mA / cm 2 denotes the external quantum efficiency at a current density of 10 mA / cm 2 .
  • LD80 @ 60 mA / cm 2 is the lifetime until the OLED has dropped to 80% of the initial intensity at a starting current at constant current of 60mA / cm 2 .
  • HIM1 F4TCNQ (3%) HIM1 HTM1 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • V1 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM1 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1 H2: TEG (10%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM1 H2: TEG (10%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM2 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • V3 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
  • HIM1 F4TCNQ (3%) HIM1 HTM2: F4TCNQ (3%) HTM2 H1: SEB1 (5%) ETM (50% j: LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM2 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM3 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM3: F4TCNQ (3%) HTM3 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM3 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 NPB H1: SEB1 (5%) ETM LiQ
  • V5 20 nm 175 nm. 20 nm 20 nm 30 nm 3 nm
  • HIM1 F4TCNQ (3%) HIM1 NPB: F4TCNQ (3%) NPB H1: SEB1 (5%) ETM LiQ
  • HIM2 F4TCNQ (3%) HIM2 HTM1 H1: SEB2 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM2 F4TCNQ (3%) HTM1 H1: SEB2 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM2 F4TCNQ (3%) HIM2 HTM1: F4TCNQ (3%) HTM1 H1: SEB2 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM4 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM5: F4TCNQ (3%) HTM4 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM5 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • V9 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
  • HIM1 F4TCNQ (3%) HIM1 HTM6: F4TCNQ (3%) HTM5 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM5 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM6 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM6: F4TCNQ (3%) HTM6 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM1 F4TCNQ (3%) HIM1 HTM1: F4TCNQ (3%) HTM6 H1: SEB1 (5%) ETM (50%): LiQ (50%) LiQ
  • HIM2 F4TCNQ (3%) HIM2 Hat-CN HTM1 H1: SEB2 (5%) ETM (50%): LiQ (50%) LiQ
  • inventive sample E1 compared.
  • HIM1 and HTM1 are the same material in this example.
  • the reference sample V1 has at a
  • both the external quantum efficiency at a current density of 10 mA / cm 2 is 8.1% higher and the measured life (LD80 @ 60 mA / cm 2 ) is 220 h lower with simultaneously lower voltage of
  • inventive sample E2 Again, the material HIM1 and HTM1 is identical. Again, the inventive sample E2 has both a higher quantum efficiency (@ 2 mA / cm 2 ) of 20.0% compared to the reference sample V2 of 19.9% and a longer life (LD80 @ 20 mA / cm 2 ) of 165 h compared to the reference sample E2 from 110 h.
  • the voltage of the reference sample (@ 2 mA) was 3.3 V and higher than the voltage of the E2 sample at 3.1 V.
  • the CIE color coordinates of the samples were (0.34 / 0.63).
  • Reference sample V3 has a significantly longer service life (LD80 @ 60 mA / cm 2 ) of 305 h (E3) and of 135 h (E4) compared to 45 h (V3).
  • Quantum efficiency (@ 10 mA / cm 2 ) of reference sample V3 at 8.9% is slightly higher than that of sample E3 at 8.3% and slightly lower than that of sample E4 at 9.8%.
  • the voltage of the reference sample was 4.4 V at 10 mA / cm 2 higher than that of the samples E3 with 4.1 V and E4 with 4.2 V.
  • the reference sample V4 shows a significantly lower lifetime (LD80 @ 60 mA / cm 2 ) compared to the inventive samples E5 and E6 of 75 h compared to E5 of 175 h and E6 of 145 h.
  • the voltage of the two samples according to the invention is respectively lower with 4.0 V (E5) and 3.8 V (E6) compared to the reference with 4.2 V at 10 mA / cm 2 .
  • the reference sample V5 exhibits a shorter lifetime (LD80 @ 60 mA / cm 2 ) of 105 h compared to E7 of 125 h and higher voltage of 3.8 V compared to 3.6 V at 10 mA / cm 2 compared to the sample E7 according to the invention.
  • Reference samples V6 and V7 have a lower lifetime (LD80 @ 80 mA / cm 2 ) of 65 h (V6) or 95 h (V7) compared to E8 of 270 h and higher compared to the sample E8 according to the invention
  • the reference sample V11 which has a layer containing the compound HAT-CN instead of the p-doped intermediate layer, although also very low voltages of 3.8 V, but a lower life (LD80 @ 80 mA / cm 2 ) of about 210 h.
  • the sample E9 according to the invention shows a better lifetime (LD80 @ 60 mA / cm 2 ) of 215 h compared to 155 h and lower voltages of 3.7 V compared to 4.4 V compared to the reference sample V8
  • the reference sample V9 exhibits a lower life (LD80 @ 60 mA / cm 2 ) of 175 h and a lower efficiency (EQE @ 10 mA) of 9.2% compared to the samples E10 and E11 of 210 h and 9.7%, respectively, compared to E10 and E11 according to the invention, or E11 with 255 h and 9.8% EQE.
  • the voltage of the reference sample at 4.0 V is higher than that of E10 with 3.7 V and E11 with 3.8 V at 10 mA / cm 2 .
  • the reference sample V10 shows a shorter lifetime (LD80 @ 60 mA / cm 2 ) of 165 h compared to 450 h (E12) and 405 h (E13).
  • the voltage of the reference sample is 4.3 V higher than that of E12 with 3.96 V and E13 with 3.7 V at 10 mA / cm 2 .
  • Devices according to the invention have a higher efficiency and preferably a longer life than devices according to the prior art. Furthermore, the operating voltage of the

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Die vorliegende Anmeldung betrifft eine elektronische Vorrichtung enthaltend eine Lochtransportschicht A, eine dotierte Lochtransportschicht B und eine Lochtransportschicht C, wobei die Lochtransportschichten A, B und C zwischen Anode und emittierender Schicht angeordnet sind, und wobei Lochtransportschicht B kathodenseitig von Lochtransportschicht A und Lochtransportschicht C kathodenseitig von Lochtransportschicht B angeordnet ist.

Description

ELEKTRONISCHE VORRICHTUNG MIT MEHREREN
LOCHTRANSPORTSCHICHTEN
Die vorliegende Anmeldung betrifft eine elektronische Vorrichtung enthaltend eine Lochtransportschicht A, eine dotierte Lochtransportschicht B und eine Lochtransportschicht C, wobei die Lochtransportschichten A, B und C zwischen Anode und emittierender Schicht angeordnet sind, und wobei Lochtransportschicht B kathodenseitig von Lochtransportschicht A und Lochtransportschicht C kathodenseitig von Lochtransportschicht B angeordnet ist. Unter elektronischen Vorrichtungen im Sinne dieser Anmeldung werden insbesondere sogenannte organische elektronische Vorrichtungen verstanden (organic electronic devices), welche organische
Halbleitermaterialien als Funktionsmaterialien enthalten. Nochmals insbesondere werden darunter organische Elektrolumineszenz- Vorrichtungen (OLEDs) und andere elektronische Vorrichtungen
verstanden, welche weiter unten aufgeführt sind.
Der Aufbau von OLEDs, in denen organische Halbleiter als funktionelle Materialien eingesetzt werden, ist beispielsweise in US 4539507,
US 5151629, EP 0676461 und WO 98/27136 beschrieben.
Bei den betreffenden elektronischen Vorrichtungen, insbesondere OLEDs, besteht großes Interesse an der Verbesserung der Leistungsdaten, insbesondere Lebensdauer, Effizienz und Betriebsspannung.
Die Effizienz und Lebensdauer von elektronischen Vorrichtungen wie OLEDs wird unter anderem durch die Ladungsträgerbalance von
Elektronen und Löchern in der Vorrichtung bestimmt. Diese Balance stellt sich durch die Ladungsträgerverteilung und die damit verbundene Feldver- teilung in der Vorrichtung ein.
Für gute Leistungsdaten sind insbesondere gute Mobilitäten der
Ladungsträger in den Lochtransportschichten und gute Loch- Injektionseigenschaften entscheidend. Weiterhin ist es von entscheidender Bedeutung, dass der Unterschied der HOMOs der Materialien der verschiedenen Lochtransportschichten nicht zu groß ist.
Im Stand der Technik bekannt ist die Verwendung einer p-dotierten Lochtransportschicht, gefolgt von einer nicht dotierten
Elektronenblockierschicht, zwischen Anode und emittierender Schicht
(WO 2002/041414). Auf die p-dotierte Lochtransportschicht folgt in diesem Fall keine weitere Lochtransportschicht, sondern direkt die emittierende Schicht. Weiterhin ist im Stand der Technik die Verwendung von zwei oder mehr Lochtransportschichten zwischen Anode und emittierender Schicht bekannt (WO 2010/094378).
Es stellt sich ausgehend von diesem Stand der Technik die technische Aufgabe, elektronische Vorrichtungen, insbesondere OLEDs,
bereitzustellen, welche verbesserte Leistungsdaten, insbesondere in Bezug auf Lebensdauer und Effizienz, aufweisen.
Überraschend wurde nun gefunden, dass die Verwendung einer p- dotierten Lochtransportschicht zwischen einer ersten Lochtransportschicht und einer weiteren Lochtransportschicht, gesehen von der Anode, eine Verbesserung in den oben genannten Punkten bewirkt und somit die technische Aufgabe löst. Gegenstand der vorliegenden Anmeldung ist somit eine elektronische Vorrichtung enthaltend Anode, Kathode und mindestens eine zwischen Anode und Kathode angeordnete emittierende Schicht sowie
- mindestens eine Lochtransportschicht A, enthaltend mindestens ein Lochtransportmaterial
- mindestens eine p-dotierte Lochtransportschicht B, enthaltend
mindestens einen p-Dotanden und mindestens eine Lochtransportmaterial- Matrix
- mindestens eine Lochtransportschicht C, enthaltend mindestens ein Lochtransportmaterial, wobei die Lochtransportschichten A, B und C zwischen Anode und emittierender Schicht angeordnet sind, und
wobei die Lochtransportschicht B kathodenseitig von der
Lochtransportschicht A angeordnet ist, und die Lochtransportschicht C kathodenseitig von der Lochtransportschicht B angeordnet ist.
Die erfindungsgemäße elektronische Vorrichtung weist den Vorteil auf, dass sie höhere Effizienz, bevorzugt kombiniert mit längerer Lebensdauer aufweist. Weiterhin lässt sie sich bei vergleichsweise niedriger Spannung betreiben.
Die erfindungsgemäße Vorrichtung weist weiterhin den Vorteil auf, dass damit Materialien mit tiefliegendem HOMO in einer Lochtransportschicht verwendet werden können, insbesondere in Kombination mit Materialien mit höherliegendem HOMO in einer anderen Lochtransportschicht.
Dadurch, dass gemäß der Erfindung nur die Lochtransportschicht B p-dotiert sein muss, sind gegenüber einem Aufbau, bei dem alle
Lochtransportschichten p-dotiert sind, die Menge an benötigtem p- Dotanden und damit die Kosten geringer. Dies stellt einen Vorteil gegenüber Vorrichtungen gemäß dem Stand der Technik dar, bei denen alle Lochtransportschichten p-dotiert sind.
Unter einer Lochtransportschicht wird im Rahmen der vorliegenden Anmeldung eine organische Schicht verstanden, welche
lochtransportierende Eigenschaften aufweist. Insbesondere wird darunter eine organische Schicht verstanden, die sich zwischen Anode und emittierender Schicht befindet und lochtransportierende Eigenschaften aufweist. Unter einem Lochtransportmaterial wird entsprechend ein Material mit lochtransportierenden Eigenschaften verstanden.
Unter einem p-Dotanden wird eine Verbindung verstanden, welche die andere in der Schicht vorhandene Verbindung (die Matrix) zumindest teilweise oxidieren kann und auf diese Weise die Leitfähigkeit der Schicht erhöht. Typischerweise sind p-Dotanden gemäß der vorliegenden
Anmeldung organische Elektronenakzeptorverbindungen. Eine Matrix bezeichnet dabei diejenige Verbindung bzw. diejenigen
Verbindungen, die in einer Schicht enthaltend einen Dotanden die überwiegende Komponente (Gew.-%) darstellen. Entsprechend stellt der Dotand die Mindermengen-Komponente in der entsprechenden Schicht dar. Entsprechendes gilt für die speziellen Bezeichnungen
Lochtransportmaterial-Matrix und p-Dotand.
Die erfindungsgemäße elektronische Vorrichtung ist bevorzugt gewählt aus organischen lichtemittierenden Transistoren (OLETs), organischen licht- emittierenden elektrochemischen Zellen (OLECs), organischen
Laserdioden (O-Laser) und organischen Elektrolumineszenzvorrichtungen (OLEDs).
Besonders bevorzugt sind organische Elektrolumineszenzvorrichtungen (OLEDs).
Die Anode der elektronischen Vorrichtung besteht bevorzugt aus einem Material mit hoher Austrittsarbeit. Bevorzugt weist die Anode eine
Austrittsarbeit größer 4.5 eV vs. Vakuum auf. Hierfür sind einerseits
Metalle mit hohem Redoxpotential geeignet, wie beispielsweise Ag, Pt oder Au. Es können andererseits auch Metall/Metalloxid-Elektroden (z. B.
AI/Ni/NiOx, Al/PtOx) bevorzugt sein. Für einige Anwendungen muss mindestens eine der Elektroden transparent oder teiltransparent sein, um entweder die Bestrahlung des organischen Materials (organische
Solarzelle) oder die Auskopplung von Licht (OLED, O-LASER) zu ermöglichen. Bevorzugte Anodenmaterialien sind hier leitfähige gemischte Metalloxide. Besonders bevorzugt sind Indium-Zinn-Oxid (ITO) oder Indium-Zink Oxid (IZO). Bevorzugt sind weiterhin leitfähige, dotierte organische Materialien, insbesondere leitfähige dotierte Polymere.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist die
elektronische Vorrichtung dadurch gekennzeichnet, dass die Anode
Wolframoxid, Molybdänoxid und/oder Vanadiumoxid enthält, und/oder dass zwischen der Anode und der Lochtransportschicht A eine p-dotierte Lochtransportschicht Α', enthaltend mindestens einen p-Dotanden und eine Lochtransportmaterial-Matrix, angeordnet ist.
Bevorzugt ist die oben genannte Anode enthaltend Wolframoxid,
Molybdänoxid und/oder Vanadiumoxid derart aufgebaut, dass sie aus Indium-Zinn-Oxid (ITO) besteht, welches mit Wolf ramoxid, Molybdänoxid und/oder Vanadiumoxid beschichtet ist.
Die Lochtransportschicht A' enthält bevorzugt einen p-Dotanden gewählt aus organischen Elektronenakzeptorverbindungen.
Besonders bevorzugte Ausführungsformen von p-Dotanden sind unten beschrieben im Zusammenhang mit p-Dotanden der Lochtransportschicht B.
Der p-Dotand in Lochtransportschicht A' liegt bevorzugt in einer
Konzentration von 0.1 bis 20 Vol-%, bevorzugt 0.5 bis 12 Vol-%, besonders bevorzugt 1 bis 8 Vol-% und ganz besonders bevorzugt 2 bis 6 Vol-% vor.
Die Lochtransportmaterial-Matrix der Lochtransportschicht A' kann ein beliebiges organisches Material mit lochtransportierenden Eigenschaften darstellen.
Bevorzugt sind als Lochtransportmaterial-Matrix für die
Lochtransportschicht A' Indenofluorenamin-Derivate (z. B. gemäß WO 06/122630 oder WO 06/100896), die in EP 1661888 offenbarten
Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449), Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847), Spirobifluoren-Mono-Triarylamine (z. B. gemäß
WO 2012/034627 oder der noch nicht offengelegten EP 12000929.5), Spirobifluoren-Tetrakis-Triarylamine, beispielsweise Spiro-TAD oder Spiro- TTB, Fluoren-Amine (z. B. gemäß den noch nicht offengelegten
Anmeldungen EP 12005369.9, EP 12005370.7 und EP 12005371.5), Spiro-Dibenzopyran-Amine (z. B. gemäß WO 2013/083216) und
Dihydroacridin-Derivate (z. B. gemäß WO 2012/150001).
Bevorzugt ist die Lochtransportmaterial-Matrix gewählt aus Triarylaminverbindungen, bevorzugt Mono-Triarylaminverbindungen, besonders bevorzugt aus Mono-Triarylamin-Verbindungen der oben genannten Strukturklassen.
Alternativ kann es auch bevorzugt sein, dass die Lochtransportmaterial- Matrix gewählt ist aus Bis-Triarylaminverbindungen oder höherwertigen Triarylaminverbindungen, beispielsweise Tetrakis- Triarylaminverbindungen.
Unter einer Triarylamin-Verbindung wird eine Verbindung verstanden, welche eine oder mehrere Triarylamin-Gruppen aufweist. Unter einer Mono-Triarylaminverbindung wird eine Verbindung verstanden, welche eine einzige Triarylamingruppe aufweist. Eine Triarylamingruppe ist eine Gruppe, in der drei Aryl- oder Heteroarylgruppen an ein gemeinsames Stickstoffatom gebunden sind. Bevorzugt enthält eine Mono- Triarylaminverbindung keine weitere Arylaminogruppe. Besonders bevorzugt enthält eine Mono-Triarylaminverbindung keine weitere
Aminogruppe. Analog sind Bis-Triarylaminverbindungen und Tetrakis- Triarylaminverbindungen als Verbindungen definiert, welche zwei bzw. vier Triarylamingruppen enthalten. Die Lochtransportschicht A schließt sich bevorzugt in unmittelbarem Kontakt an die Anode oder die Lochtransportschicht A1 an.
Bevorzugt weist die Lochtransportschicht A eine Dicke von 100 bis 300 nm auf, besonders bevorzugt von 130 bis 230 nm.
Bevorzugte Lochtransportmaterialien, die in der Lochtransportschicht A enthalten sind, sind Indenofluorenamin-Derivate (z. B. gemäß
WO 06/122630 oder WO 06/100896), die in EP 1661888 offenbarten Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061 ,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449), Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847), Spirobifluoren-Amine (z. B. gemäß WO 2012/034627 oder der noch nicht offengelegten EP 12000929.5), Spirobifluoren- Tetrakis-Triarylamine, beispielsweise Spiro-TAD oder Spiro-TTB, Fluoren- Amine (z. B. gemäß den noch nicht offengelegten Anmeldungen
EP 12005369.9, EP 12005370.7 und EP 12005371.5), Spiro- Dibenzopyran-Amine (z. B. gemäß WO 2013/083216) und Dihydroacridin- Derivate (z. B. gemäß WO 2012/150001). Bevorzugt ist das Lochtransportmaterial gewählt aus Triarylamin-
Verbindungen, bevorzugt Mono-Triarylaminverbindungen, besonders bevorzugt aus Mono-Triarylamin-Verbindungen der oben genannten Strukturklassen. Alternativ kann es auch bevorzugt sein, dass das Lochtransportmaterial gewählt ist aus Bis-Triarylaminverbindungen oder höherwertigen
Triarylaminverbindungen, beispielsweise Tetrakis- Triarylaminverbindungen. Gemäß einer bevorzugten Ausführungsform enthält die
Lochtransportschicht A als Lochtransportmaterial dieselbe Verbindung wie die Lochtransportschicht A' als Lochtransportmaterial-Matrix.
Weiterhin bevorzugt enthält die Lochtransportschicht A bevorzugt keinen p- Dotanden. Besonders bevorzugt enthält sie eine einzige Verbindung, stellt also keine gemischte Schicht dar.
Die Lochtransportschicht B ist erfindungsgemäß p-dotiert. Gemäß einer bevorzugten Ausführungsform schließt sich die
Lochtransportschicht B in unmittelbarem Kontakt an die
Lochtransportschicht A an.
Bevorzugte Lochtransportmaterial-Matrices der Lochtransportschicht B gehören denselben Strukturklassen an wie oben für Lochtransportschicht A beschrieben. Insbesondere sind dies Indenofluorenamin-Derivate (z. B. gemäß WO 06/122630 oder WO 06/100896), die in
EP 1661888 offenbarten Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061 ,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449),
Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847), Spirobifluoren- Amine (z. B. gemäß WO 2012/034627 oder der noch nicht offengelegten EP 12000929.5), Spirobifluoren-Tetrakis-Triarylamine, beispielsweise Spiro-TAD oder Spiro-TTB, Fluoren-Amine (z. B. gemäß den noch nicht offengelegten Anmeldungen EP 12005369.9, EP 12005370.7 und
EP 12005371.5), Spiro-Dibenzopyran-Amine (z. B. gemäß
WO 2013/083216) und Dihydroacridin-Derivate (z. B. gemäß
WO 2012/150001). Bevorzugt ist das Lochtransportmaterial der Schicht B gewählt aus
Triarylamin-Verbindungen, bevorzugt Mono-Triarylaminverbindungen, besonders bevorzugt aus ono-Triarylamin-Verbindungen der oben genannten Strukturklassen. Besonders bevorzugte Ausführungsformen von p-Dotanden, insbesondere für die p-dotierten Lochtransportschichten A' und B, sind die in
WO 2011/073149, EP 1968131 , EP 2276085, EP 2213662, EP 1722602, EP 2045848, DE 102007031220, US 8044390, US 8057712,
WO 2009/003455, WO 2010/094378, WO 2011/120709,
US 2010/0096600 und WO 2012/095143 offenbarten Verbindungen.
Besonders bevorzugt als p-Dotanden sind Chinodimethanverbindungen, Azaindenofluorendione, Azaphenalene, Azatriphenylene, ,
Metallhalogenide, bevorzugt Übergangsmetallhalogenide, Metalloxide, bevorzugt Metalloxide enthaltend mindestens ein Übergangsmetall oder ein Metall der 3. Hauptgruppe, und Übergangsmetallkomplexe, bevorzugt Komplexe von Cu, Co, Ni, Pd und Pt mit Liganden enthaltend mindestens ein Sauerstoffatom als Bindungsstelle. Bevorzugt sind weiterhin
Übergangsmetalloxide als Dotanden, bevorzugt Oxide von Rhenium, Molybdän und Wolfram, besonders bevorzugt Re207, M0O3, W03 und ReO3.
Die p-Dotanden liegen bevorzugt weitgehend gleichmäßig verteilt in den p- dotierten Schichten vor. Dies kann beispielsweise durch Co-Verdampfung des p-Dotanden und der Lochtransportmaterial-Matrix erreicht werden.
Bevorzugt sind als p-Dotanden inbesondere die folgenden Verbindungen:
Figure imgf000010_0001
(D-10) (D-11) (D-12) Der p-Dotand in Lochtransportschicht B liegt bevorzugt in einer
Konzentration von 0.1 bis 20 Vol-%, bevorzugt 0.5 bis 12 Vol-%, besonders bevorzugt 1 bis 8 Vol-% und ganz besonders bevorzugt 2 bis 6 Vol-% vor. Die Lochtransportschicht B weist bevorzugt eine Dicke von 5 bis 50 nm, besonders bevorzugt 10 bis 40 nm, auf.
Die Lochtransportschicht C enthält bevorzugt keinen p-Dotanden.
Besonders bevorzugt enthält sie eine einzige Verbindung, stellt also keine gemischte Schicht dar.
Gemäß einer bevorzugten Ausführungsform schließt sich die
Lochtransportschicht C in unmittelbarem Kontakt an die
Lochtransportschicht B an. Weiterhin bevorzugt schließt sie sich in unmittelbarem Kontakt anodenseitig an die emittierende Schicht an.
Bevorzugte Lochtransportmaterialien der Lochtransportschicht C gehören denselben Strukturklassen an wie oben für Lochtransportschicht A beschrieben. Insbesondere sind dies Indenofluorenamin-Derivate (z. B. gemäß WO 06/122630 oder WO 06/100896), die in
EP 1661888 offenbarten Aminderivate, Hexaazatriphenylenderivate (z. B. gemäß WO 01/049806), Aminderivate mit kondensierten Aromaten (z. B. gemäß US 5,061 ,569), die in WO 95/09147 offenbarten Aminderivate, Monobenzoindenofluorenamine (z. B. gemäß WO 08/006449),
Dibenzoindenofluorenamine (z. B. gemäß WO 07/140847), Spirobifluoreh- Amine (z. B. gemäß WO 2012/034627 oder der noch nicht offengelegten EP 12000929.5), Spirobifluoren-Tetrakis-Triarylamine, beispielsweise Spiro-TAD oder Spiro-TTB, Fluoren-Amine (z. B. gemäß den noch nicht offengelegten Anmeldungen EP 12005369.9, EP 12005370.7 und
EP 12005371.5), Spiro-Dibenzopyran-Amine (z. B. gemäß
WO 2013/083216) und Dihydroacridin-Derivate (z. B. gemäß
WO 2012/150001).
Bevorzugt ist das Lochtransportmaterial der Schicht C gewählt aus Triarylamin-Verbindungen, bevorzugt Mono-Triarylaminverbindungen, besonders bevorzugt aus Mono-Triarylamin-Verbindungen der oben genannten Strukturklassen.
Die Lochtransportschicht C weist bevorzugt eine Dicke von 5 bis 50 nm, besonders bevorzugt 10 bis 40 nm, auf.
Gemäß einer bevorzugten Ausführungsform sind die
Lochtransportmaterialien der Lochtransportschichten A und C
unterschiedlich. Es ist bevorzugt, dass das HOMO des Lochtransportmaterials der
Lochtransportschicht C zwischen -4,9 und -5,6 eV, bevorzugt zwischen -5,0 und -5,5 eV, und besonders bevorzugt zwischen -5,1 bis -5,4 eV liegt.
Es ist bevorzugt, dass das HOMO des Lochtransportmaterials der
Lochtransportschicht A um einen Betrag von mindestens 0,2 eV, bevorzugt mindestens 0,3 eV, besonders bevorzugt mindestens 0,4 eV, höher liegt als das HOMO des Lochtransportmaterials der Lochtransportschicht C.
Bevorzugt liegt der Wert für das HOMO des Lochtransportmaterials der Lochtransportschicht A zwischen -4.7 und -5.4 eV, bevorzugt zwischen
-4.8 und -5.3 eV, und besonders bevorzugt zwischen -4.9 eV und -5.2 eV.
Dabei wird das HOMO (highest occupied molecular orbital) durch quantenchemische Rechnungen bestimmt und anhand von Cyclovoltammetrie- Messungen kalibriert, wie bei den Ausführungsbeispielen näher erläutert wird.
Gemäß einer weiteren bevorzugten Ausführungsform weist die
Lochtransportschicht B als Lochtransportmaterial-Matrix dieselbe
Verbindung auf wie die Lochtransportschicht C als Lochtransportmaterial.
In einer weiteren bevorzugten Ausführungsform ist in der
Lochtransportschicht A eine Bis-Triarylamin-Verbindung oder höherwertige Triarylamin-Verbindung enthalten, beispielsweise eine Tetrakis- Triarylaminverbindung, und in der Lochtransportschicht C ist eine Mono- Triarylamin-Verbindung enthalten. Besonders bevorzugt ist in der
Lochtransportschicht A eine Bis-Triarylamin-Verbindung oder höherwertige Triarylamin-Verbindung enthalten, beispielsweise eine Tetrakis- Triarylaminverbindung, und in den Lochtransportschichten B und C ist eine Mono-Triarylamin-Verbindung enthalten.
Es ist erfindungsgemäß bevorzugt, dass die Lochtransportschichten A, B und C und, falls vorhanden, Lochtransportschicht A', unmittelbar aneinander angrenzen. Zusätzlich ist es bevorzugt, dass die emittierende Schicht oder eine der emittierenden Schichten unmittelbar an die
Lochtransportschicht C angrenzt.
Es ist bevorzugt, dass die Lochtransportschichten A, B, C und, falls vorhanden, A' jeweils eine oder mehrere gleiche oder verschiedene Triarylamin-Verbindungen enthalten.
Bevorzugt enthalten sie jeweils eine oder mehrere gleiche oder
verschiedene Mono-Triarylamin-Verbindungen.
Es ist weiterhin bevorzugt, dass mindestens eine der
Lochtransportschichten A, B, C und A' mindestens eine Verbindung gemäß einer der Formeln
Figure imgf000013_0001
Formel (I)
Figure imgf000014_0001
Formel (II)
Figure imgf000014_0002
Formel (III)
Figure imgf000014_0003
Formel (IV)
Figure imgf000014_0004
Formel (V)
Figure imgf000015_0001
Formel (VI) enthält, wobei gilt:
Z ist bei jedem Auftreten gleich oder verschieden N oder CR1 , wobei Z gleich C ist, wenn ein Substituent gebunden ist;
X,Y sind bei jedem Auftreten gleich oder verschieden eine
Einfachbindung, O, S, Se, BR1, C(R1)2) Si(R1)2, NR1, PR1, C(R )2- C(R1)2, oder CR1=CR1;
E ist O, S, Se, BR1, C(R )2, Si(R1)2, NR1, PR1, C(R1)2-C(R1)2, oder
CR1=CR1; ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen
Ringatomen, welches durch einen oder mehrere Reste R substituiert sein kann; und R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, CHO, C(=0)R2, P(=0)(R2)2, S(=0)R2, S(=O)2R2, CR2=CR2R2, CN, N02, Si(R2)3, OS02R2, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit
3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C , Si(R2)2, Ge(R2)2, Sn(R2)2, C=0, C=S, C=Se, C=NR2, P(=O)(R2), SO, SO2) NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder N02 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere benachbarte Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches
Ringsystem bilden; ist bei jedem Auftreten gleich oder verschieden H, D, CN oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere benachbarte Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; bei jedem Auftreten gleich oder verschieden 0 oder 1 ist, wobei die Summe aller i mindestens gleich 1 ist; p gleich 0 oder 1 ist; m, n gleich oder verschieden 0 oder 1 sind, wobei die Summe aus m und n gleich 1 oder 2 ist.
Bevorzugt enthalten mindestens zwei der Lochtransportschichten A, B, C und A' mindestens eine Verbindung gemäß einer der Formeln (I) bis (VI), besonders bevorzugt mindestens drei der Lochtransportschichten A, B, C und A', und ganz besonders bevorzugt alle der Lochtransportschichten A, B, C und A'.
In Lochtransportschicht A werden bevorzugt Verbindungen der Formeln (I), (Ii), (Hl) und (V) eingesetzt.
Für die oben genannten Formeln (I) bis (VI) gilt bevorzugt, dass nicht mehr als drei Gruppen Z in einem Ring gleich N sind. Es gilt allgemein als bevorzugt, dass Z gleich CR1 ist. Die Gruppe X ist bei jedem Auftreten bevorzugt gleich oder verschieden gewählt aus einer Einfachbindung, C(R1)2, O und S, besonders bevorzugt ist sie eine Einfachbindung.
Die Gruppe Y ist bevorzugt gewählt aus O und C(R1)2, besonders bevorzugt ist sie O.
Die Gruppe E ist bevorzugt gewählt aus C(R1)2, O und S, besonders bevorzugt ist sie C(R1)2. Die Gruppe Ar1 ist bei jedem Auftreten gleich oder verschieden gewählt aus aromatischen oder heteroaromatischen Ringsystemen mit 6 bis 30 aromatischen Ringatomen, die mit einem oder mehreren Resten R1 substituiert sein können. Besonders bevorzugt ist Ar1 gewählt aus Aryl- oder Heteroarylgruppen mit 6 bis 18 aromatischen Ringatomen, die mit einem oder mehreren Resten R1 substituiert sein können.
R1 ist bei jedem Auftreten gleich oder verschieden gewählt aus H, D, F, Cl, Br, I, C(=0)R2, CN, Si(R2)3, N(R2)2, N02, P(=O)(R2)2, S(=0)R2, S(=0)2R2, einer geradkettige Alkyl-, Alkoxy- oder Thioalkylgruppe mit 1 bis 20 C- Atomen oder einer verzweigten oder cyclischen Alkyl-, Alkoxy- oder Thioalkylgruppe mit 3 bis 20 C-Atomen oder einer Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen, wobei die oben genannten Gruppen jeweils mit einem oder mehreren Resten R2 substituiert sein können und wobei eine oder mehrere CH2-Gruppen in den oben genannten Gruppen durch
-R2C=CR2-, -C=C-, Si(R2)2, C=0, C=S, C=NR2, -C(=0)0-, -C(=0)NR2-,
NR2, P(=0)(R2), -O-, -S-, SO oder SO2 ersetzt sein können und wobei ein oder mehrere H-Atome in den oben genannten Gruppen durch D, F, Cl, Br, I, CN oder NO2 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, wobei zwei oder mehr Reste R1 miteinander verknüpft sein können und einen Ring bilden können.
Folgende Definitionen gelten allgemein: Eine Arylgruppe im Sinne dieser Erfindung enthält 6 bis 60 aromatische Ringatome; eine Heteroarylgruppe im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und S. Dies stellt die grundlegende Definition dar. Werden in der Beschreibung der vorliegenden Erfindung andere Bevorzugungen angegeben, beispielsweise bezüglich der Zahl der aromatischen Ringatome oder der enthaltenen Heteroatome, so gelten diese.
Dabei wird unter einer Arylgruppe bzw. Heteroarylgruppe entweder ein einfacher aromatischer Cyclus, also Benzol, bzw. ein einfacher
heteroaromatischer Cyclus, beispielsweise Pyridin, Pyrimidin oder
Thiophen, oder ein kondensierter (anneliierter) aromatischer bzw.
heteroaromatischer Polycyclus, beispielsweise Naphthalin, Phenanthren, Chinolin oder Carbazol verstanden. Ein kondensierter (annellierter) aromatischer bzw. heteroaromatischer Polycyclus besteht im Sinne der vorliegenden Anmeldung aus zwei oder mehr miteinander kondensierten einfachen aromatischen bzw. heteroaromatischen Cyclen.
Unter einer Aryl- oder Heteroarylgruppe, die jeweils mit den oben genannten Resten substituiert sein kann und die über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, welche abgeleitet sind von Benzol, Naphthalin, Anthracen, Phenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Fluoranthen, Benzanthracen, Benzphenanthren, Tetracen, Pentacen, Benzpyren, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen, Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol, Isoindol, Carbazol, Pyridin, Chinolin, Isochinolin, Acridin,
Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzothiazol,
Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, Pyrazin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthrolin, 1 ,2,3- Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5- Thiadiazol, 1 ,3,4-Thiadiazol, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, Purin,
Pteridin, Indolizin und Benzothiadiazol. Ein aromatisches Ringsystem im Sinne dieser Erfindung enthält 6 bis 60 C- Atome im Ringsystem. Ein heteroaromatisches Ringsystem im Sinne dieser Erfindung enthält 5 bis 60 aromatische Ringatome, von denen mindestens eines ein Heteroatom darstellt. Die Heteroatome sind bevorzugt ausgewählt aus N, O und/oder S. Unter einem aromatischen oder heteroaromatischen Ringsystem im Sinne dieser Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur Aryl- oder Heteroarylgruppen enthält, sondern in dem auch mehrere Aryl- oder Heteroarylgruppen durch eine nicht-aromatische Einheit (bevorzugt weniger als 10 % der von H verschiedenen Atome), wie z. B. ein sp3- hybridisiertes C-, Si-, N- oder O-Atom, ein sp2-hybridisiertes C- oder N-
Atom oder ein sp-hybridisiertes C-Atom, verbunden sein können. So sollen beispielsweise auch Systeme wie 9,9'-Spirobifluoren, 9,9'-Diarylfluoren, Triarylamin, Diarylether, Stilben, etc. als aromatische Ringsysteme im Sinne dieser Erfindung verstanden werden, und ebenso Systeme, in denen zwei oder mehrere Arylgruppen beispielsweise durch eine lineare oder cyclische Alkyl-, Alkenyl- oder Alkinylgruppe oder durch eine Silylgruppe verbunden sind. Weiterhin werden auch Systeme, in denen zwei oder mehr Aryl- oder Heteroarylgruppen über Einfachbindungen miteinander verknüpft sind, als aromatische oder heteroaromatische Ringsysteme im Sinne dieser Erfindung verstanden, wie beispielsweise Systeme wie Biphenyl, Terphenyl oder Diphenyltriazin.
Unter einem aromatischen oder heteroaromatischen Ringsystem mit 5 - 60 aromatischen Ringatomen, welches noch jeweils mit Resten wie oben definiert substituiert sein kann und welches über beliebige Positionen am Aromaten bzw. Heteroaromaten verknüpft sein kann, werden insbesondere Gruppen verstanden, die abgeleitet sind von Benzol, Naphthalin,
Anthracen, Benzanthracen, Phenanthren, Benzphenanthren, Pyren, Chrysen, Perylen, Fluoranthen, Naphthacen, Pentacen, Benzpyren, Biphenyl, Biphenylen, Terphenyl, Terphenylen, Quaterphenyl, Fluoren, Spirobifluoren, Dihydrophenanthren, Dihydropyren, Tetrahydropyren, cis- oder trans-lndenofluoren, Truxen, Isotruxen, Spirotruxen, Spiroisotruxen, Furan, Benzofuran, Isobenzofuran, Dibenzofuran, Thiophen,
Benzothiophen, Isobenzothiophen, Dibenzothiophen, Pyrrol, Indol,
Isoindol, Carbazol, Indolocarbazol, Indenocarbazol, Pyridin, Chinolin, Isochinolin, Acridin, Phenanthridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Phenothiazin, Phenoxazin, Pyrazol, Indazol, Imidazol, Benzimidazol, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazin- imidazol, Chinoxalinimidazol, Oxazol, Benzoxazol, Naphthoxazol,
Anthroxazol, Phenanthroxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, Benzo- thiazol, Pyridazin, Benzopyridazin, Pyrimidin, Benzpyrimidin, Chinoxalin, 1 ,5-Diazaanthracen, 2,7-Diazapyren, 2,3-Diazapyren, 1 ,6-Diazapyren, 1 ,8- Diazapyren, 4,5-Diazapyren, 4,5,9,10-Tetraazaperylen, Pyrazin, Phenazin, Phenoxazin, Phenothiazin, Fluorubin, Naphthyridin, Azacarbazol, Benzo- carbolin, Phenanthrolin, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Benzotriazol, 1 ,2,3- Oxadiazol, ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-ThiadiazoI, 1 ,3,5- Triazin, 1 ,2,4-Triazin, ,2,3-Triazin, Tetrazol, 1 ,2,4,5-Tetrazin, 1,2,3,4- Tetrazin, 1 ,2,3,5-Tetrazin, Purin, Pteridin, Indolizin und Benzothiadiazol oder Kombinationen dieser Gruppen.
Im Rahmen der vorliegenden Erfindung werden unter einer geradkettigen Alkylgruppe mit 1 bis 40 C-Atomen bzw. einer verzweigten oder cyclischen Alkylgruppe mit 3 bis 40 C-Atomen bzw. einer Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen, in der auch einzelne H-Atome oder CH2-Gruppen durch die oben bei der Definition der Reste genannten Gruppen substituiert sein können, bevorzugt die Reste Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, neo- Pentyl, n-Hexyl, Cyclohexyl, neo-Hexyl, n-Heptyl, Cycloheptyl, n-Octyl, Cyclooctyl, 2-Ethylhexyl, Trifluormethyl, Pentafluorethyl, 2,2,2-Trifluorethyl, Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl,
Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl, Cyclooctenyl, Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl oder Octinyl verstanden. Unter einer Alkoxy- oder Thioalkylgruppe mit 1 bis 40 C-Atomen werden bevorzugt Methoxy, Trifluormethoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, n-Pentoxy, s-Pentoxy, 2-Methylbutoxy, n- Hexoxy, Cyclohexyloxy, n-Heptoxy, Cycloheptyloxy, n-Octyloxy,
Cyclooctyloxy, 2-Ethylhexyloxy, Pentafluorethoxy, 2,2,2-Trifluorethoxy, Methylthio, Ethylthio, n-Propylthio, i-Propylthio, n-Butylthio, i-Butylthio, s- Butylthio, t-Butylthio, n-Pentylthio, s-Pentylthio, n-Hexylthio, Cyclohexylthio, n-Heptylthio, Cycloheptylthio, n-Octylthio, Cyclooctylthio, 2-Ethylhexylthio, Trifluormethylthio, Pentafluorethylthio, 2,2,2-Trifluorethylthio, Ethenylthio, Propenylthio, Butenylthio, Pentenylthio, Cyclopentenylthio, Hexenylthio, Cyclohexenylthio, Heptenylthio, Cycloheptenylthio, Octenylthio,
Cyclooctenylthio, Ethinylthio, Propinylthio, Butinylthio, Pentinylthio,
Hexinylthio, Heptinylthio oder Octinylthio verstanden.
Unter der Formulierung, dass zwei oder mehr Reste miteinander einen Ring bilden können, soll im Rahmen der vorliegenden Anmeldung unter anderem verstanden werden, dass die beiden Reste miteinander durch eine chemische Bindung verknüpft sind. Weiterhin soll unter der oben genannten Formulierung aber auch verstanden werden, dass für den Fall, dass einer der beiden Reste Wasserstoff darstellt, der zweite Rest unter Bildung eines Rings an die Position, an die das Wasserstoffatom
gebunden war, bindet. Beispiele für bevorzugte Lochtransportmaterialien zur Verwendung in der elektronischen Vorrichtung gemäß der vorliegenden Erfindung,
insbesondere in den Schichten A', A, B und C, sind im Folgenden gezeigt.
(1) (2) (3)
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001

Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001

Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Die erfindungsgemäße elektronische Vorrichtung kann eine oder mehrere emittierende Schichten enthalten. Die emittierenden Schichten können fluoreszierend oder phosphoreszierend sein, das heißt fluoreszierende oder phosphoreszierende Emitter enthalten.
Vom Begriff phosphoreszierende Emitter (Dotanden) sind typischerweise Verbindungen umfasst, bei denen die Lichtemission durch einen spinverbotenen Übergang erfolgt, beispielsweise einen Übergang aus einem angeregten Triplettzustand oder einem Zustand mit einer höheren
Spinquantenzahl, beispielsweise einem Quintett-Zustand.
Als phosphoreszierende Emitter eignen sich insbesondere Verbindungen, die bei geeigneter Anregung Licht, vorzugsweise im sichtbaren Bereich, emittieren und außerdem mindestens ein Atom der Ordnungszahl größer 20, bevorzugt größer 38 und kleiner 84, besonders bevorzugt größer 56 und kleiner 80 enthalten. Bevorzugt werden als phosphoreszierende Dotanden Verbindungen, die Kupfer, Molybdän, Wolfram, Rhenium, Ruthenium, Osmium, Rhodium, Iridium, Palladium, Platin, Silber, Gold oder Europium enthalten, verwendet, insbesondere Verbindungen, die Iridium, Platin oder Kupfer enthalten. Dabei werden im Sinne der vorliegenden Erfindung alle lumineszierenden Iridium-, Platin- oder Kupferkomplexe als phosphoreszierende
Verbindungen angesehen.
Beispiele der oben beschriebenen phosphoreszierenden Dotanden können den Anmeldungen WO 2000/70655, WO 2001/415 2, WO 2002/02714, WO 2002/15645, EP 1191613, EP 1191612, EP 1191614, WO
2005/033244, WO 2005/019373 und US 2005/0258742 entnommen werden. Generell eignen sich alle phosphoreszierenden Komplexe, wie sie gemäß dem Stand der Technik für phosphoreszierende OLEDs verwendet werden und wie sie dem Fachmann auf dem Gebiet der organischen
Elektrolumineszenzvorrichtungen bekannt sind, zur Verwendung in den erfindungsgemäßen Vorrichtungen. Auch kann der Fachmann ohne erfinderisches Zutun weitere phosphoreszierende Komplexe in
Kombination mit den erfindungsgemäßen Verbindungen in OLEDs einsetzen.
Bevorzugte fluoreszierende Emitter zur Verwendung in den
erfindungsgemäßen elektronischen Vorrichtungen sind gewählt aus der Klasse der Triarylamin-Verbindungen, wie oben definiert. Bevorzugt ist mindestens eine der Aryl- oder Heteroarylgruppen, die an das
Stickstoffatom gebunden sind, ein kondensiertes Ringsystem, besonders bevorzugt mit mindestens 14 aromatischen Ringatomen. Bevorzugte Beispiele hierfür sind aromatische Anthracenamine, aromatische
Anthracendiamine, aromatische Pyrenamine, aromatische Pyrendiamine, aromatische Chrysenamine oder aromatische Chrysendiamine. Unter einem aromatischen Anthracenamin wird eine Verbindung verstanden, in der eine Diarylaminogruppe direkt an eine Anthracengruppe gebunden ist, vorzugsweise in 9-Position. Unter einem aromatischen Anthracendiamin wird eine Verbindung verstanden, in der zwei Diarylaminogruppen direkt an eine Anthracengruppe gebunden sind, vorzugsweise in 9, 10-Position. Aromatische Pyrenamine, Pyrendiamine, Chrysenamine und Chrysendiamine sind analog dazu definiert, wobei die Diarylaminogruppen am Pyren bevorzugt in 1-Position bzw. in 1 ,6-Position gebunden sind. Weitere bevorzugte Dotanden sind Indenofluorenamine bzw. -diamine, beispiels- weise gemäß WO 2006/108497 oder WO 2006/122630, Benzoindeno- fluorenamine bzw. -diamine, beispielsweise gemäß WO 2008/006449, und Dibenzoindenofluorenamine bzw. -diamine, beispielsweise gemäß
WO 2007/140847, sowie die in WO 20 0/012328 offenbarten Indeno- fluorenderivate mit kondensierten Arylgruppen. Ebenfalls bevorzugt sind die in WO 2012/048780 und der noch nicht offengelegten EP 12004426.8 offenbarten Pyren-Arylamine. Ebenfalls bevorzugt sind die in der noch nicht offengelegten EP 12006239.3 offenbarten Benzoindenofluoren-Amine und die in der noch nicht offengelegten EP 13000012.8 offenbarten
Benzofluoren-Amine. Die emittierende Schicht enthält bevorzugt ein oder mehrere
Hostmaterialien (Matrixmaterialien) sowie ein oder mehrere
Dotandmaterialien (Emittermaterialien).
Eine emittierende Schicht enthält gemäß einer bevorzugten
Ausführungsform mehrere Matrixmaterialien (Mixed-Matrix-Systeme) und/oder mehrere Dotanden. Auch in diesem Fall sind die Dotanden im Allgemeinen diejenigen Materialien, deren Anteil im System der kleinere ist und die Matrixmaterialien sind diejenigen Materialien, deren Anteil im System der größere ist. In Einzelfällen kann jedoch der Anteil eines einzelnen Matrixmaterials im System kleiner sein als der Anteil eines einzelnen Dotanden.
In Mixed-Matrix-Systemen stellt bevorzugt eines der beiden
Matrixmaterialien ein Material mit lochtransportierenden Eigenschaften und das andere Material ein Material mit elektronentransportierenden
Eigenschaften dar. Die gewünschten elektronentransportierenden und lochtransportierenden Eigenschaften der Mixed-Matrix-Komponenten können jedoch auch hauptsächlich oder vollständig in einer einzigen Mixed-Matrix-Komponente vereinigt sein, wobei die weitere bzw. die weiteren Mixed-Matrix-Komponenten andere Funktionen erfüllen. Die beiden unterschiedlichen Matrixmaterialien können dabei in einem
Verhältnis von 1 :50 bis 1 :1 , bevorzugt 1 :20 bis 1 :1 , besonders bevorzugt 1 :10 bis 1 :1 und ganz besonders bevorzugt 1 :4 bis 1 :1 vorliegen.
Bevorzugt werden Mixed-Matrix-Systeme in phosphoreszierenden organischen Elektrolumineszenzvorrichtungen eingesetzt. Bevorzugte Ausführungsformen von Mixed-Matrix-Systemen sind unter anderem in der Anmeldung WO 2010/108579 offenbart.
Die Mixed-Matrix-Systeme können einen oder mehrere Dotanden umfassen, bevorzugt einen oder mehrere phosphoreszierende Dotanden. Allgemein werden Mixed-Matrix-Systeme bevorzugt in phosphoreszierenden emittierenden Schichten eingesetzt.
Bevorzugte Matrixmaterialien für fluoreszierende Emitter sind ausgewählt aus den Klassen der Oligoarylene (z. B. 2,2',7,7'-Tetraphenylspirobifluoren gemäß EP 676461 oder Dinaphthylanthracen), insbesondere der
Oligoarylene enthaltend kondensierte aromatische Gruppen, der
Oligoarylenvinylene (z. B. DPVBi oder Spiro-DPVBi gemäß EP 676461), der polypodalen Metallkomplexe (z. B. gemäß WO 2004/081017), der lochleitenden Verbindungen (z. B. gemäß WO 2004/058911), der elektronenleitenden Verbindungen, insbesondere Ketone, Phosphinoxide, Sulfoxide, etc. (z. B. gemäß WO 2005/084081 und WO 2005/084082), der Atropisomere (z. B. gemäß WO 2006/048268), der Boronsäurederivate (z. B. gemäß WO 2006/117052) oder der Benzanthracene (z. B. gemäß WO 2008/145239). Besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Naphthalin, Anthracen, Benzanthracen und/oder Pyren oder Atropisomere dieser Verbindungen, der Oligoarylenvinylene, der Ketone, der Phosphinoxide und der Sulfoxide. Ganz besonders bevorzugte Matrixmaterialien sind ausgewählt aus den Klassen der Oligoarylene, enthaltend Anthracen, Benzanthracen, Benzphenanthren und/oder Pyren oder Atropisomere dieser Verbindungen. Unter einem Oligoarylen im Sinne dieser Erfindung soll eine Verbindung verstanden werden, in der mindestens drei Aryl- bzw. Arylengruppen aneinander gebunden sind. Bevorzugte Matrixmaterialien für phosphoreszierende Emitter sind aromatische Ketone, aromatische Phosphinoxide oder aromatische
Sulfoxide oder Sulfone, z. B. gemäß WO 2004/013080, WO 2004/093207, WO 2006/005627 oder WO 2010/006680, Triarylamine, Carbazolderivate, z. B. CBP (Ν,Ν-Biscarbazolylbiphenyl) oder die in WO 2005/039246, US 2005/0069729, JP 2004/288381 , EP 1205527 oder WO 2008/086851 offenbarten Carbazolderivate, Indolocarbazolderivate, z. B. gemäß WO 2007/063754 oder WO 2008/056746, Indenocarbazolderivate, z. B. gemäß WO 2010/136109, WO 2011/000455 oder WO 2013/04 176, Aza- carbazolderivate, z. B. gemäß EP 1617710, EP 1617711 , EP 1731584, JP 2005/347160, bipolare Matrixmaterialien, z. B. gemäß
WO 2007/137725, Silane, z. B. gemäß WO 2005/111172, Azaborole oder Boronester, z. B. gemäß WO 2006/ 17052, Triazinderivate, z. B. gemäß WO 2010/015306, WO 2007/063754 oder WO 2008/056746, Zink- komplexe, z. B. gemäß EP 652273 oder WO 2009/062578, Diazasilol- bzw. Tetraazasilol-Derivate, z. B. gemäß WO 2010/054729, Diaza- phosphol-Derivate, z. B. gemäß WO 2010/054730, überbrückte Carbazol- Derivate, z. B. gemäß US 2009/0136779, WO 2010/050778, WO
2011/042107, WO 2011/088877 oder WO 2012/143080,
Triphenylenderivaten, z. B. gemäß WO 2012/048781 , oder Lactame, z. B. gemäß WO 2011/116865 oder WO 2011/137951.
Die erfindungsgemäße elektronische Vorrichtung kann mehrere
emittierende Schichten enthalten. Besonders bevorzugt weisen diese Emissionsschichten in diesem Fall insgesamt mehrere Emissionsmaxima zwischen 380 nm und 750 nm auf, so dass insgesamt weiße Emission resultiert, d. h. in den emittierenden Schichten werden verschiedene emittierende Verbindungen verwendet, die fluoreszieren oder phosphoreszieren können und die blaues oder gelbes oder orangefarbenes oder rotes Licht emittieren. Insbesondere bevorzugt sind Dreischichtsysteme, also Systeme mit drei emittierenden Schichten, wobei bevorzugt mindestens eine dieser Schichten mindestens eine Verbindung gemäß Formel (I) enthält und wobei die drei Schichten blaue, grüne und orange oder rote Emission zeigen (für den prinzipiellen Aufbau siehe z. B.
WO 2005/011013). Alternativ und/oder zusätzlich können die
erfindungsgemäßen Verbindungen auch in der Lochtransportschicht oder in einer anderen Schicht vorhanden sein. Es soll angemerkt werden, dass sich für die Erzeugung von weißem Licht anstelle mehrerer farbig emittierender Emitterverbindungen auch eine einzeln verwendete
Emitterverbindung eignen kann, welche in einem breiten
Wellenlängenbereich emittiert. Als Kathode der erfindungsgemäßen elektronischen Vorrichtung sind Metalle mit geringer Austrittsarbeit, Metalllegierungen oder mehrlagige Strukturen aus verschiedenen Metallen bevorzugt, wie beispielsweise Erdalkalimetalle, Alkalimetalle, Hauptgruppenmetalle oder Lanthanoide (z. B. Ca, Ba, Mg, AI, In, Mg, Yb, Sm, etc.). Weiterhin eignen sich Legierungen aus einem Alkali- oder Erdalkalimetall und Silber, beispielsweise eine
Legierung aus Magnesium und Silber. Bei mehrlagigen Strukturen können auch zusätzlich zu den genannten Metallen weitere Metalle verwendet werden, die eine relativ hohe Austrittsarbeit aufweisen, wie z. B. Ag oder AI, wobei dann in der Regel Kombinationen der Metalle, wie beispielsweise Ca/Ag, Mg/Ag oder Ba/Ag verwendet werden. Es kann auch bevorzugt sein, zwischen einer metallischen Kathode und dem organischen Halbleiter eine dünne Zwischenschicht eines Materials mit einer hohen
Dielektrizitätskonstante einzubringen. Hierfür kommen beispielsweise Alkalimetall- oder Erdalkalimetallfluoride, aber auch die entsprechenden Oxide oder Carbonate in Frage (z. B. LiF, Li2O, BaF2, MgO, NaF, CsF, Cs2CO3, etc.). Weiterhin kann dafür Lithiumchinolinat (LiQ) verwendet werden. Die Schichtdicke dieser Schicht beträgt bevorzugt zwischen 0.5 und 5 nm. Die erfindungsgemäße elektronische Vorrichtung enthält neben Anode, Kathode, emittierender Schicht und den Lochtransportschichten A, B, C und wahlweise Lochtransportschicht A' bevorzugt noch weitere
Funktionsschichten. Die Abfolge der Schichten der elektronischen Vorrichtung ist bevorzugt die folgende:
Anode-Lochtransportschicht A'-Lochtransportschicht A- Lochtransportschicht B-Lochtransportschicht C-emittierende Schicht- Elektronentransportschicht-Elektroneninjektionsschicht-Kathode.
Es müssen nicht alle der genannten Schichten vorhanden sein, und/oder es können zusätzlich zu den genannten Schichten weitere Schichten vorhanden sein.
Diese zusätzlichen Schichten sind bevorzugt gewählt aus Lochinjektions- schichten, Lochtransportschichten, Elektronenblockierschichten, emittierenden Schichten, Zwischenschichten (Interlayers),
Elektronentransportschichten, Elektroneninjektionsschichten,
Lochblockierschichten, Excitonenblockierschichten,
Ladungserzeugungsschichten (Charge generating layers), p/n-Übergängen und Auskopplungsschichten.
Die erfindungsgemäße elektronische Vorrichtung weist bevorzugt mindestens eine Elektronentransportschicht auf, welche zwischen emittierender Schicht und Kathode angeordnet ist, wobei die
Elektronentransportschicht bevorzugt mindestens einen n-Dotanden und mindestens eine Elektronentransportmaterial-Matrix enthält.
Unter einem n-Dotanden wird eine Verbindung verstanden, welche die andere in der Schicht vorhandene Verbindung (die Matrix) zumindest teilweise reduzieren kann und auf diese Weise die Leitfähigkeit der Schicht erhöht. Typischerweise sind n-Dotanden gemäß der vorliegenden
Anmeldung Elektronendonatorverbindungen bzw. starke Reduktionsmittel. Als n-Dotanden können beispielsweise die in Chem. Rev. 2007, 107, S. 1233 ff., Abschnitt 2.2, offenbarten Materialien verwendet werden, wie Alkalimetalle, Erdalkalimetalle und elektronenreiche und leicht oxidierbare organische Verbindungen oder Übergangsmetallkomplexe.
Weiterhin weist die erfindungsgemäße elektronische Vorrichtung bevorzugt mindestens eine Elektroneninjektionsschicht aus, welche zwischen
Elektronentransportschicht und Kathode angeordnet ist. Bevorzugt grenzt die Elektroneninjektionsschicht unmittelbar an die Kathode an.
Als Materialien für die Elektronentransportschicht und
Elektroneninjektionsschicht können alle Materialien verwendet werden, wie sie gemäß dem Stand der Technik als Elektronentransportmaterialien in der Elektronentransportschicht verwendet werden. Insbesondere eignen sich Aluminiumkomplexe, beispielsweise Alq3, Zirkoniumkomplexe, beispielsweise Zrq4, Benzimidazolderivate, Triazinderivate,
Pyrimidinderivate, Pyridinderivate, Pyrazinderivate, Chinoxalinderivate, Chinolinderivate, Oxadiazolderivate, aromatische Ketone, Lactame, Borane, Diazaphospholderivate und Phosphinoxidderivate. Weiterhin geeignete Materialien sind Derivate der oben genannten Verbindungen, wie sie in JP 2000/053957, WO 2003/060956, WO 2004/028217, WO 2004/080975 und WO 20 0/072300 offenbart werden.
Während der Herstellung wird die Vorrichtung bevorzugt strukturiert, kontaktiert und schließlich versiegelt, um Wasser und/oder Luft
auszuschließen.
In einer bevorzugten Ausführungsform ist die erfindungsgemäße
elektronische Vorrichtung dadurch gekennzeichnet, dass eine oder mehrere Schichten mit einem Sublimationsverfahren beschichtet werden. Dabei werden die Materialien in Vakuum-Sublimationsanlagen bei einem Anfangsdruck kleiner 10"5 mbar, bevorzugt kleiner 10~6 mbar aufgedampft. Dabei ist es jedoch auch möglich, dass der Anfangsdruck noch geringer ist, beispielsweise kleiner 10~7 mbar.
Bevorzugt ist ebenfalls, dass in der erfindungsgemäßen elektronischen Vorrichtung eine oder mehrere Schichten mit dem OVPD (Organic Vapour Phase Deposition) Verfahren oder mit Hilfe einer Trägergassublimation beschichtet werden. Dabei werden die Materialien bei einem Druck zwischen 10"5 mbar und 1 bar aufgebracht. Ein Spezialfall dieses
Verfahrens ist das OVJP (Organic Vapour Jet Printing) Verfahren, bei dem die Materialien direkt durch eine Düse aufgebracht und so strukturiert werden (z. B. M. S. Arnold et al., Appl. Phys. Lett. 2008, 92, 053301). Bevorzugt ist ebenfalls, dass in der erfindungsgemäßen elektronischen Vorrichtung eine oder mehrere Schichten aus Lösung, wie z. B. durch Spincoating, oder mit einem beliebigen Druckverfahren, wie z. B.
Siebdruck, Flexodruck, Nozzle Printing oder Offsetdruck, besonders bevorzugt aber LITI (Light Induced Thermal Imaging, Thermotransferdruck) oder Ink-Jet Druck (Tintenstrahldruck), hergestellt werden.
Weiterhin bevorzugt ist es, dass zur Herstellung der erfindungsgemäßen elektronischen Vorrichtung eine oder mehrere Schichten aus Lösung und eine oder mehrere Schichten durch ein Sublimationsverfahren aufgetragen werden. Die erfindungsgemäßen elektronischen Vorrichtungen können in Displays, als Lichtquellen in Beleuchtungsanwendungen sowie als Lichtquellen in medizinischen und/oder kosmetischen Anwendungen (z.B. Lichttherapie) eingesetzt werden.
Ausführungsbeispiele
Teil A: Bestimmung der HOMO-Lagen von Verbindungen
Die HOMO-Lagen der Materialien werden über quantenchemische
Rechnungen bestimmt. Hierzu wird das Programmpaket„Gaussian03W" (Gaussian Inc.) verwendet. Zur Berechnung organischer Substanzen ohne Metalle wird zuerst eine Geometrieoptimierung mit der Methode„Ground State/Semi-empirical/Default Spin/AM1 /Charge O/Spin Singlet"
durchgeführt. Im Anschluss erfolgt auf Grundlage der optimierten Geometrie eine Energierechnung. Hierbei wird die Methode„TD-SFC/DFT/Default Spin/B3PW91" mit dem Basissatz ,,6-31G(d)" verwendet (Charge 0, Spin Singlet). Aus der Energierechnung erhält man das HOMO HEh in Hartree- Einheiten. Daraus werden die anhand von Cyclovoltammetriemessungen kalibrierten HOMO-Werte in Elektronenvolt wie folgt bestimmt:
HOMO(eV) = ((HEh*27.212)-0.9899)/1.1206
Diese Werte sind im Sinne dieser Anmeldung als HOMO der Materialien anzusehen.
Tabelle mit HOMO-Daten der verwendeten Verbindungen (Strukturen s. u.)
Material HOMO
HIM1/HTM1 -5,25 eV
HIM 2 -4,85 eV
NPB -5,16 eV
HTM2 -5,43 eV HTM3 -5,23 eV
HTM4 -5,35 eV
HTM5 -5,32 eV
HT 6 -5,23 eV
Teil B: Herstellung der OLEDs
Die Herstellung von erfindungsgemäßen OLEDs sowie OLEDs nach dem Stand der Technik erfolgt nach einem allgemeinen Verfahren gemäß WO 04/058911 , das auf die hier beschriebenen Gegebenheiten
(Schichtdickenvariation, Materialien) angepasst wird.
In den folgenden erfinderischen Beispielen E1 bis E13 und in den
Referenzbeispielen V1-V werden die Daten verschiedener OLEDs vorgestellt. Als Substrate werden Glasplättchen verwendet, die mit strukturiertem ITO (Indium Zinn Oxid) der Dicke 50 nm beschichtet sind. Die OLEDs haben prinzipiell folgenden Schichtaufbau: Substrat / p-dotierte Lochtransportschicht A' (HIL1) / Lochtransportschicht A (HTL) / p-dotierte Lochtransportschicht B (HIL2) / Lochtransportschicht C (EBL) /
Emissionsschicht (EML) / Elektronentransportschicht (ETL) /
Elektroneninjektionsschicht (EIL) und abschließend eine Kathode. Die Kathode wird durch eine 00 nm dicke Aluminiumschicht gebildet. Die zur Herstellung der OLEDs benötigten Materialien sind in Tabelle 1 gezeigt, der Aufbau der verschiedenen hergestellten elektronischen Vorrichtungen in Tabelle 2.
Alle Materialien werden in einer Vakuumkammer thermisch aufgedampft. Dabei besteht die Emissionsschicht immer aus mindestens einem Matrixmaterial (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter), der dem Matrixmaterial bzw. den Matrixmaterialien durch Coverdampfung in einem bestimmten Volumenanteil beigemischt wird. Eine Angabe wie H1 :SEB1(5%) bedeutet hierbei, dass das Material H1 in einem Volumenanteil von 95% und SEB1 in einem Anteil von 5% in der Schicht vorliegt. Analog kann auch die Elektronentransportschicht oder die Lochinjektionsschichten aus einer Mischung von zwei Materialien bestehen. Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, die Stromeffizienz (gemessen in cd/A), die Leistungseffizienz (gemessen in Im/W) und die externe Quanteneffizienz (EQE, gemessen in Prozent) in Abhängigkeit der Leuchtdichte, berechnet aus Strom-Spannungs-Leuchtdichte-Kennlinien (IUL-Kennlinien) unter Annahme einer lambertschen Abstrahlcharakteristik sowie die
Lebensdauer bestimmt. Die Elektrolumineszenzspektren werden bei einer Leuchtdichte von 1000 cd/m2 bestimmt und daraus die CIE 1931 x und y Farbkoordinaten berechnet. Die Angabe EQE @ 10 mA/cm2 bezeichnet die externe Quanteneffizienz bei einer Stromdichte von 10mA/cm2. LD80 @ 60 mA/cm2 ist die Lebensdauer, bis das OLED bei einer Starthelligkeit bei konstantem Strom von 60mA/cm2 auf 80 % der Anfangsintensität abgefallen ist.
Tabelle 1 : Strukturen der verwendeten Materialien
Figure imgf000045_0001
F4TCNQ HIM1 HIM2
H1 SEB1 SEB2
Figure imgf000046_0001
H2 TEG ETM
Figure imgf000046_0002
LiQ NPB
Figure imgf000046_0003
HTM2 HTM3
Figure imgf000046_0004
HTM5 HTM6 HAT-CN Tabelle 2: Aufbau der OLEDs
Bsp. HIL1 HTL HIL2 EBL EMI- ETL EIL
Dicke / Dicke/
Dicke /nm Dicke /nm Dicke /nm Dicke /nm Dicke /nm nm nm
HIM1:F4TCNQ(3%) HIM1 HTM1 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V1 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM1 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E1 20 nm 155 nm 20 nm 20 n 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1 H2:TEG(10%) ETM(50%):LiQ(50%) LiQ
V2
20 nm 210 nm 20 nm 40 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM1 H2:TEG(10%) ETM(50%):LiQ(50%) LiQ
E2 20 nm 190 nm 20 nm 20 nm 40 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM2 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V3 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM2:F4TCNQ(3%) HTM2 H1:SEB1(5%) ETM(50%j:LiQ(50%) LiQ
E3 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM2 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E4 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM3 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V4
20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM3:F4TCNQ(3%) HTM3 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E5 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM3 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E6 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 NPB H1:SEB1(5%) ETM LiQ
V5 20 nm 175 nm . 20 nm 20 nm 30 nm 3 nm
HIM1:F4TCNQ(3%) HIM1 NPB:F4TCNQ(3%) NPB H1:SEB1(5%) ETM LiQ
E7 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 3 nm
HIM2:F4TCNQ(3%) HIM2 HTM1 H1:SEB2(5%) ETM(50%):LiQ(50%) LiQ
V6 10 nm 140 nm 30 nm 20 nm 30 nm 1 nm
HIM2:F4TCNQ(3%) HTM1 H1:SEB2(5%) ETM(50%):LiQ(50%) LiQ
V7 150 nm 30 nm 20 nm 30 nm 1 nm
HIM2:F4TCNQ(3%) HIM2 HTM1:F4TCNQ(3%) HTM1 H1:SEB2(5%) ETM(50%):LiQ(50%) LiQ
E8 10 nm 140 nm 20 nm 10 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM4 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V8 20 nm 160 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM5:F4TCNQ(3%) HTM4 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E9 20 nm 140 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM5 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V9 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM6:F4TCNQ(3%) HTM5 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E10 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM5 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E11 20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM6 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
V10 20 nm 175 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM6:F4TCNQ(3%) HTM6 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E12
20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM1:F4TCNQ(3%) HIM1 HTM1:F4TCNQ(3%) HTM6 H1:SEB1(5%) ETM(50%):LiQ(50%) LiQ
E13
20 nm 155 nm 20 nm 20 nm 20 nm 30 nm 1 nm
HIM2:F4TCNQ(3%) HIM2 Hat-CN HTM1 H1:SEB2(5%) ETM(50%):LiQ(50%) LiQ
V11 10 nm 140 nm 10 nm 20 nm 20 nm 30 nm 1 nm Beispiel 1
Es wurde eine Referenzprobe V1 hergestellt und mit der
erfindungsgemäßen Probe E1 verglichen. HIM1 und HTM1 sind in diesem Beispiel dasselbe Material. Die Referenzprobe V1 hat bei einer
Stromdichte von 10 mA/cm2 eine Spannung von 4.0 V, eine externe
Quanteneffizienz von 7.7 % und eine Lebensdauer (LD80 @ 60 mA/cm2) von 105 h. Verglichen damit ist bei der erfindungsgemäßen Probe E1 sowohl die externe Quanteneffizienz bei einer Stromdichte von 10 mA/cm2 mit 8.1 % höher, als auch die gemessene Lebensdauer (LD80 @ 60 mA/cm2) von 220 h niedriger bei gleichzeitig niedrigerer Spannung von
3.9 V. Die Farbkoordinaten nach CIE 1931 sind für die Vergleichsprobe V1 (0.14 / 0.14) und für die erfindungsgemäße Probe E1 (0.14 / 0.14).
Ein weiterer Vergleich ist die Referenzprobe V2 mit der
erfindungsgemäßen Probe E2. Auch hierbei ist das Material HIM1 und HTM1 identisch. Auch hier hat die erfindungsgemäße Probe E2 sowohl eine höhere Quanteneffizienz (@ 2 mA/cm2) von 20.0 % gegenüber der Referenzprobe V2 von 19.9% als auch eine höhere Lebensdauer (LD80 @ 20 mA/cm2) von 165 h gegenüber der Referenzprobe E2 von 110 h. Die Spannung der Referenzprobe (@ 2 mA) betrug 3.3 V und lag höher als die Spannung der Probe E2 mit 3.1 V. Die CIE-Farbkoordinaten der Proben waren (0.34 / 0.63).
Beispiel 2
in diesem Beispiel sind jeweils unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Die erfindungsgemäßen Proben E3 und E4 zeigen gegenüber der
Referenzprobe V3 eine deutlich höhere Lebensdauer (LD80 @ 60 mA/cm2) von 305 h (E3) und von 135 h (E4) gegenüber 45 h (V3). Die
Quantemeffizienz (@ 10 mA/cm2) der Referenzprobe V3 ist mit 8.9 % etwas höher als die von Probe E3 mit 8.3 % und etwas niedriger als die von Probe E4 mit 9.8 %. Die Spannung der Referenzprobe war mit 4.4 V bei 10 mA/cm2 höher als die der Proben E3 mit 4.1 V und E4 mit 4.2 V. Beispiel 3
In diesem Beispiel sind jeweils unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Die Referenzprobe V4 zeigt gegenüber den erfindungsgemäßen Proben E5 und E6 eine deutlich niedrigere Lebensdauer (LD80 @ 60 mA/cm2) von 75 h im Vergleich zu E5 von 175 h und E6 von 145 h. Die Spannung der beiden erfindungsgemäßen Proben ist jeweils niedriger mit 4.0 V (E5) und 3.8 V (E6) im Vergleich zur Referenz mit 4.2 V bei 10 mA/cm2.
Beispiel 4
In diesem Beispiel sind unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Die Referenzprobe V5 zeigt gegenüber der erfindungsgemäßen Probe E7 eine kürzere Lebensdauer (LD80 @ 60 mA/cm2) von 105 h im Vergleich zu E7 von 125 h und höhere Spannung von 3.8 V im Vergleich zu 3.6 V bei 10 mA/cm2.
Beispiel 5
In diesem Beispiel sind unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Die Referenzproben V6 und V7 zeigen gegenüber der erfindungsgemäßen Probe E8 eine niedrigere Lebensdauer (LD80 @ 80 mA/cm2) von 65 h (V6), bzw. 95 h (V7) im Vergleich zu E8 von 270 h und höhere
Spannungen von 4.6 V (V6) und 4.1 V (V7) gegenüber E8 mit 4.0 V bei 10 mA/cm2. Die CIE-Farbkoordinaten für alle 3 Proben lagen bei
(0.14/0.19).
Im Vergleich dazu hat die Referenzprobe V11 , welche statt der p-dotierten Zwischenschicht eine Schicht enthaltend die Verbindung HAT-CN besitzt, zwar auch sehr niedrige Spannungen von 3.8 V, aber eine niedrigere Lebensdauer (LD80 @ 80 mA/cm2) von ca. 210 h.
Beispiel 6
In diesem Beispiel sind unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden. Die erfindungsgemäße Probe E9 zeigt gegenüber der Referenzprobe V8 eine bessere Lebensdauer (LD80 @ 60 mA/cm2) von 215 h im Vergleich zu 155 h und niedrigere Spannungen von 3.7 V im Vergleich zu 4.4 V
Beispiel 7
In diesem Beispiel sind unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Die Referenzprobe V9 zeigt gegenüber den erfindungsgemäßen Proben E10 und E11 eine niedrigere Lebensdauer (LD80 @ 60 mA/cm2) von 175 h und eine niedrigere Effizienz (EQE @ 10 mA) von 9.2 % im Vergleich zu E10 von 210 h und 9.7 %, bzw. E11 mit 255 h und 9.8 % EQE. Auch hier ist die Spannung der Referenzprobe mit 4.0 V höher als die von E10 mit 3.7 V und E11 mit 3.8 V bei 10 mA/cm2.
Beispiel 8
in diesem Beispiel sind unterschiedliche Materialien in der
Lochtransportschicht A und C vorhanden.
Im Vergleich zu den erfindungsgemäßen Proben E12 und E13 zeigt die Referenzprobe V10 eine kürzere Lebensdauer (LD80 @ 60 mA/cm2) von 165 h im Vergleich zu 450 h (E12) und 405 h (E13). Auch hier ist die Spannung der Referenzprobe mit 4.3 V höher als die von E12 mit 3.96 V und E13 mit 3.7 V bei 10 mA/cm2.
Wie in den obenstehenden Beispielen gezeigt, weisen die
erfindungsgemäßen Vorrichtungen eine höhere Effizienz auf sowie bevorzugt eine längere Lebensdauer als Vorrichtungen gemäß dem Stand der Technik. Weiterhin ist bevorzugt die Betriebsspannung der
Vorrichtungen niedriger als bei Vorrichtungen gemäß dem Stand der Technik.

Claims

Patentansprüche
1. Elektronische Vorrichtung enthaltend Anode, Kathode und
mindestens eine zwischen Anode und Kathode angeordnete emittierende Schicht sowie
- mindestens eine Lochtransportschicht A, enthaltend mindestens ein Lochtransportmaterial
- mindestens eine p-dotierte Lochtransportschicht B, enthaltend mindestens einen p-Dotanden und mindestens eine
Lochtransportmaterial-Matrix
- mindestens eine Lochtransportschicht C, enthaltend mindestens ein Lochtransportmaterial,
wobei die Lochtransportschichten A, B und C zwischen Anode und emittierender Schicht angeordnet sind, und
wobei die Lochtransportschicht B kathodenseitig von der
Lochtransportschicht A angeordnet ist, und die Lochtransportschicht C kathodenseitig von der Lochtransportschicht B angeordnet ist.
2. Elektronische Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass sie gewählt ist aus organischen lichtemittierenden Transistoren (OLETs), organischen lichtemittierenden elektrochemischen Zellen (OLECs), organischen Laserdioden (O-Laser) und organischen Elektrolumineszenzvorrichtungen (OLEDs).
3. Elektronische Vorrichtung nach Anspruch 1 oder 2, dadurch
gekennzeichnet, dass die Anode Wolframoxid, Molybdänoxid und/oder Vanadiumoxid enthält, und/oder dass zwischen der Anode und der Lochtransportschicht A eine p-dotierte Lochtransportschicht A', enthaltend mindestens einen p-Dotanden und eine
Lochtransportmaterial-Matrix, angeordnet ist.
4. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Lochtransportschicht A eine Dicke von 100 bis 300 nm aufweist.
Elektronische Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Lochtransportschicht A als Lochtransportmaterial dieselbe Verbindung enthält wie die Lochtransportschicht A' als
Lochtransportmaterial-Matrix.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Lochtransportschicht A keinen p-Dotanden enthält.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der p-Dotand gewählt ist aus Chinodimethanverbindungen, Azaindenofluorendionen,
Azaphenalenen, Azatriphenylenen, l2, Metallhalogeniden,
Metalloxiden, Übergangsmetallkomplexen, und
Übergangsmetalloxiden.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüch 1 bis 7, dadurch gekennzeichnet, dass der p-Dotand in
Lochtransportschicht B in einer Konzentration von 0.1 bis 20 Vol-% vorliegt.
Elektronische Vorrichtung nach einem oder mehreren der Ansprüch 1 bis 8, dadurch gekennzeichnet, dass die Lochtransportschicht C keinen p-Dotanden enthält.
10. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Lochtransportmaterialien der Lochtransportschichten A und C unterschiedlich sind.
11 Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Lochtransportschicht B als Lochtransportmaterial-Matrix dieselbe Verbindung aufweist wie die Lochtransportschicht C als Lochtransportmaterial.
12. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Lochtransportschichten A, B und C und, falls vorhanden, Lochtransportschicht , unmittelbar aneinander angrenzen.
13. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Lochtransportschichten A, B, C und, falls vorhanden, A' jeweils eine oder mehrere gleiche oder verschiedene Mono-Triarylamin-Verbindungen enthalten.
14. Elektronische Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mindestens eine der
Lochtransportschichten A, B, C und A' mindestens eine Verbindung gemäß einer der Formeln (I) bis (VI) enthält
Figure imgf000053_0001
Figure imgf000054_0001
Formel (II)
Figure imgf000054_0002
Formel (IV)
Figure imgf000054_0003
Figure imgf000055_0001
Ar'
Formel (VI), wobei gilt: ist bei jedem Auftreten gleich oder verschieden N oder CR1, wobei Z gleich C ist, wenn ein Substituent gebunden ist; sind bei jedem Auftreten gleich oder verschieden eine Einfachbindung, O, S, Se, BR1, C(R1)2, Si(R1)2, NR1, PR1, C(R1)2-C(R1)2, oder CR1=CR1;
E ist O, S, Se, BR1, C(R1)2, Si(R1)2, NR1, PR1, C(R1)2-C(R1)2, oder CR1=CR1; ist bei jedem Auftreten gleich oder verschieden ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, welches durch einen oder mehrere Reste R1 substituiert sein kann; und
R1 ist bei jedem Auftreten gleich oder verschieden H, D, F, Cl, Br, I, CHO, C(=O)R2, P(=0)(R2)2, S(=0)R2, S(=0)2R2, CR2=CR2R2, CN, N02, Si(R2)3, OS02R2, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine geradkettige Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkenyl-, Alkinyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R2 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R2C=CR2, C=C , Si(R2)2, Ge(R2)2, Sn(R2)2, C=0, C=S, C=Se, C=NR2, P(=O)(R2), SO, S02) NR2, O, S oder CONR2 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, Cl, Br, I, CN oder N02 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Rihg- atomen, das jeweils durch einen oder mehrere Reste R2 substituiert sein kann, oder eine Kombination dieser Systeme; dabei können zwei oder mehrere benachbarte Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; ist bei jedem Auftreten gleich oder verschieden H, D, CN oder ein aliphatischer, aromatischer und/oder heteroaromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, in dem auch H-Atome durch D oder F ersetzt sein können; dabei können zwei oder mehrere benachbarte Substituenten R2 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden; bei jedem Auftreten gleich oder verschieden 0 oder 1 ist, wobei die Summe aller i mindestens gleich 1 ist; gleich 0 oder 1 ist; m, n gleich oder verschieden 0 oder 1 sind, wobei die Summe aus m und n gleich 1 oder 2 ist.
Verwendung einer elektronischen Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 14 in Displays, als Lichtquelle in Beleuchtungsanwendungen sowie als Lichtquelle in medizinischen und/oder kosmetischen Anwendungen.
PCT/EP2013/002727 2012-10-09 2013-09-11 Elektronische vorrichtung WO2014056565A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015536003A JP6449162B2 (ja) 2012-10-09 2013-09-11 電子素子
KR1020187008239A KR102153871B1 (ko) 2012-10-09 2013-09-11 전자 디바이스
KR1020197022140A KR102071843B1 (ko) 2012-10-09 2013-09-11 전자 디바이스
KR1020157012027A KR102023232B1 (ko) 2012-10-09 2013-09-11 전자 디바이스
KR1020187008238A KR102007150B1 (ko) 2012-10-09 2013-09-11 전자 디바이스
CN201380052539.5A CN104718636B (zh) 2012-10-09 2013-09-11 电子器件
US14/434,277 US9917272B2 (en) 2012-10-09 2013-09-11 Electronic device
EP13763188.3A EP2907173B1 (de) 2012-10-09 2013-09-11 Elektronische vorrichtung
US15/870,165 US10270052B2 (en) 2012-10-09 2018-01-12 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12006991.9 2012-10-09
EP12006991 2012-10-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/434,277 A-371-Of-International US9917272B2 (en) 2012-10-09 2013-09-11 Electronic device
US15/870,165 Continuation US10270052B2 (en) 2012-10-09 2018-01-12 Electronic device

Publications (1)

Publication Number Publication Date
WO2014056565A1 true WO2014056565A1 (de) 2014-04-17

Family

ID=47143484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/002727 WO2014056565A1 (de) 2012-10-09 2013-09-11 Elektronische vorrichtung

Country Status (7)

Country Link
US (2) US9917272B2 (de)
EP (1) EP2907173B1 (de)
JP (2) JP6449162B2 (de)
KR (4) KR102153871B1 (de)
CN (2) CN109346615B (de)
TW (1) TWI637541B (de)
WO (1) WO2014056565A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489787A (zh) * 2014-10-06 2016-04-13 三星显示有限公司 有机电致发光装置
CN105655492A (zh) * 2014-12-02 2016-06-08 三星显示有限公司 有机电致发光装置
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
WO2017157744A1 (de) * 2016-03-15 2017-09-21 Osram Oled Gmbh Organische leuchtdiode und kfz-rücklicht
EP3190639A4 (de) * 2014-09-04 2018-05-02 Boe Technology Group Co. Ltd. Organische elektrolumineszierende anzeigevorrichtung, herstellungsverfahren dafür und anzeigevorrichtung
WO2018158232A1 (en) 2017-03-01 2018-09-07 Merck Patent Gmbh Organic electroluminescent device
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
EP3378865A4 (de) * 2015-11-17 2019-07-03 LG Chem, Ltd. Spiroverbindung und organisches lichtemittierendes element damit
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2020165064A1 (de) 2019-02-11 2020-08-20 Merck Patent Gmbh Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie
WO2021110720A1 (de) 2019-12-04 2021-06-10 Merck Patent Gmbh Metallkomplexe
WO2022069380A1 (de) 2020-09-29 2022-04-07 Merck Patent Gmbh Mononukleare tripodale hexadentate iridium komplexe zur verwendung in oleds
EP4079742A1 (de) 2021-04-14 2022-10-26 Merck Patent GmbH Metallkomplexe
US11950492B2 (en) 2019-01-29 2024-04-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2024170609A1 (en) 2023-02-17 2024-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012219A1 (en) 2014-02-28 2017-01-12 Merck Patent Gmbh Materials for organic light-emitting devices
KR102146367B1 (ko) * 2014-03-06 2020-08-21 삼성디스플레이 주식회사 유기 발광 장치
KR102401598B1 (ko) * 2014-11-07 2022-05-25 삼성디스플레이 주식회사 유기 전계 발광 소자
EP3032605B1 (de) * 2014-12-08 2019-08-21 LG Display Co., Ltd. Organische lichtemittierende anzeigevorrichtung
KR102624166B1 (ko) * 2015-06-15 2024-01-12 삼성디스플레이 주식회사 유기 전계 발광 소자
TWI764942B (zh) * 2016-10-10 2022-05-21 德商麥克專利有限公司 電子裝置
CN108164532A (zh) * 2016-12-07 2018-06-15 季昀 具有类四面体构形的有机化合物
CN109216565B (zh) 2017-06-30 2021-05-18 昆山国显光电有限公司 有机电致发光器件及其制备方法
JP7406486B2 (ja) * 2018-06-25 2023-12-27 保土谷化学工業株式会社 トリアリールアミン構造を有する化合物および有機エレクトロルミネッセンス素子
CN109004092A (zh) 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN112088161B (zh) 2018-07-03 2023-12-05 株式会社Lg化学 多环化合物和包含其的有机发光二极管
US20220119360A1 (en) * 2019-02-22 2022-04-21 Hodogaya Chemical Co., Ltd. Arylamine compound having benzoazole ring structure, and organic electroluminescent element
US20220298130A1 (en) * 2019-08-02 2022-09-22 Duk San Neolux Co., Ltd. Organic electronic device
US11711973B2 (en) 2019-08-02 2023-07-25 Duk San Neolux Co., Ltd. Organic electronic device
WO2021025372A1 (ko) * 2019-08-02 2021-02-11 덕산네오룩스 주식회사 유기전기소자
CN110635058B (zh) * 2019-09-26 2022-04-08 昆山国显光电有限公司 一种有机发光器件及显示面板
CN112552301A (zh) * 2019-09-26 2021-03-26 广州华睿光电材料有限公司 吲哚醌类有机化合物及其应用
KR20210084744A (ko) * 2019-12-27 2021-07-08 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 장치
JP7295824B2 (ja) * 2020-03-31 2023-06-21 双葉電子工業株式会社 有機elデバイス
KR20230077804A (ko) 2021-11-25 2023-06-02 삼성디스플레이 주식회사 발광 표시 장치
KR20230096204A (ko) 2021-12-22 2023-06-30 삼성디스플레이 주식회사 화소 및 이를 포함하는 표시 장치
KR20230161590A (ko) 2022-05-18 2023-11-28 삼성디스플레이 주식회사 발광 표시 장치
KR20240018019A (ko) 2022-08-01 2024-02-13 삼성디스플레이 주식회사 표시 장치 및 이의 구동 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122630A1 (de) * 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20070231596A1 (en) * 2006-03-30 2007-10-04 Eastman Kodak Company OLED device with improved efficiency and lifetime
US20110215308A1 (en) * 2010-03-08 2011-09-08 Samsung Mobile Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
WO2013083216A1 (de) * 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013135352A1 (de) * 2012-03-15 2013-09-19 Merck Patent Gmbh Elektronische vorrichtungen

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11251067A (ja) * 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
US6872472B2 (en) * 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
EP1610594A4 (de) 2003-04-02 2009-11-25 Fujifilm Corp Organisches elektrolumineszenzelement und organische elektrolumineszenzanzeige
JP4300176B2 (ja) * 2003-11-13 2009-07-22 ローム株式会社 有機エレクトロルミネッセント素子
WO2005109542A1 (en) * 2004-05-11 2005-11-17 Lg Chem. Ltd. Organic electronic device
CN100373656C (zh) * 2004-06-28 2008-03-05 友达光电股份有限公司 有机发光显示元件及其制造方法
US7449830B2 (en) * 2004-08-02 2008-11-11 Lg Display Co., Ltd. OLEDs having improved luminance stability
EP1829132B8 (de) * 2004-12-23 2010-11-24 Technische Universität Braunschweig Material für eine dotierte und undotierte loch- und elektronentransportschicht
US20070098891A1 (en) * 2005-10-31 2007-05-03 Eastman Kodak Company Vapor deposition apparatus and method
TWI299636B (en) * 2005-12-01 2008-08-01 Au Optronics Corp Organic light emitting diode
JP4673279B2 (ja) 2005-12-20 2011-04-20 三星モバイルディスプレイ株式會社 有機発光表示素子及びその製造方法
JP5268247B2 (ja) 2005-12-20 2013-08-21 キヤノン株式会社 4−アミノフルオレン化合物及び有機発光素子
JP2008177455A (ja) * 2007-01-22 2008-07-31 Toray Ind Inc 発光素子
EP1986473B1 (de) * 2007-04-03 2017-01-25 Tsinghua University Organische elektrolumineszente vorrichtung
KR101316752B1 (ko) * 2007-05-31 2013-10-08 삼성디스플레이 주식회사 백색 유기발광소자
JP2009071189A (ja) * 2007-09-14 2009-04-02 Fujifilm Corp 有機電界発光素子
EP2213662B1 (de) * 2007-11-30 2012-04-18 Idemitsu Kosan Co., Ltd. Azaindenofluorendionderivat, material für ein organisches elektrolumineszierendes gerät und organisches lumineszierendes gerät
WO2010022101A2 (en) * 2008-08-19 2010-02-25 Plextronics, Inc. Organic light emitting diode lighting devices
US20110256422A1 (en) * 2008-10-31 2011-10-20 Basf Se Merocyanines for producing photoactive layers for organic solar cells and organic photodetectors
JP2010123716A (ja) * 2008-11-19 2010-06-03 Fujifilm Corp 有機電界発光素子
DE102008063470A1 (de) * 2008-12-17 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
CN102356060B (zh) * 2009-03-19 2014-09-17 三井化学株式会社 芳香族胺衍生物及使用其的有机场致发光元件
JP5622254B2 (ja) 2009-03-31 2014-11-12 国立大学法人東京大学 二本鎖リボ核酸ポリイオンコンプレックス
US8603642B2 (en) * 2009-05-13 2013-12-10 Global Oled Technology Llc Internal connector for organic electronic devices
KR101097315B1 (ko) * 2009-10-12 2011-12-23 삼성모바일디스플레이주식회사 유기 발광 소자
US20110203649A1 (en) * 2010-02-19 2011-08-25 Basf Se Use of indanthrene compounds in organic photovoltaics
JP2011204801A (ja) * 2010-03-24 2011-10-13 Toshiba Mobile Display Co Ltd 有機エレクトロルミネッセンス装置
KR101657222B1 (ko) 2010-05-14 2016-09-19 삼성디스플레이 주식회사 유기 발광 소자
JP5783780B2 (ja) * 2010-06-03 2015-09-24 キヤノン株式会社 表示装置
US8633475B2 (en) * 2010-07-16 2014-01-21 Idemitsu Kosan Co., Ltd. Organic electroluminescence device and a method for producing the device
DE102010045405A1 (de) 2010-09-15 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US8637858B2 (en) * 2010-09-24 2014-01-28 Novaled Ag Tandem white OLED
WO2012073269A1 (ja) * 2010-11-29 2012-06-07 パナソニック株式会社 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
GB2486203A (en) * 2010-12-06 2012-06-13 Cambridge Display Tech Ltd Transition metal oxide doped interface by deposition and drying of precursor
DE102011106849A1 (de) * 2010-12-15 2012-06-21 Merck Patent Gmbh Verfahren zur Synthese N-N verknüpfter und um die N-N Bindung rotationsgehinderter bis-N-heterocyclische Carbene und deren Einsatz als Liganden für Metallkomplexe
JP2012182443A (ja) * 2011-02-11 2012-09-20 Semiconductor Energy Lab Co Ltd 発光素子及び発光装置
KR102304723B1 (ko) * 2014-10-01 2021-09-27 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
KR102373896B1 (ko) * 2015-05-23 2022-03-11 엘지디스플레이 주식회사 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006122630A1 (de) * 2005-05-20 2006-11-23 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
US20070231596A1 (en) * 2006-03-30 2007-10-04 Eastman Kodak Company OLED device with improved efficiency and lifetime
US20110215308A1 (en) * 2010-03-08 2011-09-08 Samsung Mobile Display Co., Ltd. Organic light-emitting device and method of manufacturing the same
WO2013083216A1 (de) * 2011-11-17 2013-06-13 Merck Patent Gmbh Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen
WO2013135352A1 (de) * 2012-03-15 2013-09-19 Merck Patent Gmbh Elektronische vorrichtungen

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388885B2 (en) 2012-11-02 2019-08-20 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
EP3190639A4 (de) * 2014-09-04 2018-05-02 Boe Technology Group Co. Ltd. Organische elektrolumineszierende anzeigevorrichtung, herstellungsverfahren dafür und anzeigevorrichtung
CN105489787A (zh) * 2014-10-06 2016-04-13 三星显示有限公司 有机电致发光装置
US10090475B2 (en) 2014-10-06 2018-10-02 Samsung Display Co., Ltd. Organic electroluminescent device
KR101796288B1 (ko) * 2014-12-02 2017-11-13 삼성디스플레이 주식회사 유기 전계 발광 소자
CN113659089A (zh) * 2014-12-02 2021-11-16 三星显示有限公司 有机电致发光装置
KR20170126103A (ko) * 2014-12-02 2017-11-16 삼성디스플레이 주식회사 유기 전계 발광 소자
US9893293B2 (en) 2014-12-02 2018-02-13 Samsung Display Co., Ltd. Organic electroluminescent device
CN105655492B (zh) * 2014-12-02 2021-09-03 三星显示有限公司 有机电致发光装置
EP3029752A3 (de) * 2014-12-02 2016-06-15 Samsung Display Co., Ltd. Organisches elektrolumineszenzelement
CN105655492A (zh) * 2014-12-02 2016-06-08 三星显示有限公司 有机电致发光装置
WO2016124304A1 (de) 2015-02-03 2016-08-11 Merck Patent Gmbh Metallkomplexe
US11081650B2 (en) 2015-11-17 2021-08-03 Lg Chem, Ltd. Spiro compound and organic light-emitting element comprising same
EP3378865A4 (de) * 2015-11-17 2019-07-03 LG Chem, Ltd. Spiroverbindung und organisches lichtemittierendes element damit
WO2017157744A1 (de) * 2016-03-15 2017-09-21 Osram Oled Gmbh Organische leuchtdiode und kfz-rücklicht
US11393987B2 (en) 2017-03-01 2022-07-19 Merck Patent Gmbh Organic electroluminescent device
WO2018158232A1 (en) 2017-03-01 2018-09-07 Merck Patent Gmbh Organic electroluminescent device
US11767299B2 (en) 2017-06-23 2023-09-26 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2018234346A1 (en) 2017-06-23 2018-12-27 Merck Patent Gmbh MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES
WO2019020538A1 (de) 2017-07-25 2019-01-31 Merck Patent Gmbh Metallkomplexe
WO2019115423A1 (de) 2017-12-13 2019-06-20 Merck Patent Gmbh Metallkomplexe
WO2019158453A1 (de) 2018-02-13 2019-08-22 Merck Patent Gmbh Metallkomplexe
WO2019175149A1 (en) 2018-03-16 2019-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
US11950492B2 (en) 2019-01-29 2024-04-02 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
WO2020165064A1 (de) 2019-02-11 2020-08-20 Merck Patent Gmbh Mononukleare iridiumkomplexe mit drei ortho-metallierten bidentaten liganden und optischer orientierungsanisotropie
WO2021110720A1 (de) 2019-12-04 2021-06-10 Merck Patent Gmbh Metallkomplexe
WO2022069380A1 (de) 2020-09-29 2022-04-07 Merck Patent Gmbh Mononukleare tripodale hexadentate iridium komplexe zur verwendung in oleds
EP4079742A1 (de) 2021-04-14 2022-10-26 Merck Patent GmbH Metallkomplexe
WO2024170609A1 (en) 2023-02-17 2024-08-22 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
JP2019062216A (ja) 2019-04-18
JP6449162B2 (ja) 2019-01-09
KR102071843B1 (ko) 2020-01-31
EP2907173A1 (de) 2015-08-19
US20180138439A1 (en) 2018-05-17
KR102007150B1 (ko) 2019-08-05
KR102023232B1 (ko) 2019-09-19
US10270052B2 (en) 2019-04-23
CN104718636A (zh) 2015-06-17
CN104718636B (zh) 2018-09-25
US20150270506A1 (en) 2015-09-24
EP2907173B1 (de) 2018-03-21
TWI637541B (zh) 2018-10-01
KR20150067331A (ko) 2015-06-17
CN109346615A (zh) 2019-02-15
KR102153871B1 (ko) 2020-09-09
KR20190090893A (ko) 2019-08-02
KR20180034693A (ko) 2018-04-04
US9917272B2 (en) 2018-03-13
JP2016500917A (ja) 2016-01-14
CN109346615B (zh) 2021-06-04
KR20180034692A (ko) 2018-04-04
JP6821637B2 (ja) 2021-01-27
TW201417369A (zh) 2014-05-01

Similar Documents

Publication Publication Date Title
EP2907173B1 (de) Elektronische vorrichtung
EP2984151B1 (de) Organische elektrolumineszenzvorrichtung
EP2984152B1 (de) Organische elektrolumineszenzvorrichtung
EP2984692B1 (de) Organische elektrolumineszenzvorrichtung mit thermisch aktiviertem verzögertem fluoreszenzmaterial
EP2898042B1 (de) Materialien für elektronische vorrichtungen
EP2984691B1 (de) Organische lichtemittierende vorrichtung mit verzögerter fluoreszenz
EP3609977B1 (de) Zusammensetzung für organische elektronische vorrichtungen
EP3052477B1 (de) Triarylamin-substituierte benzo[h]chinolin-derivate als materialien für elektronische vorrichtungen
EP3210248B2 (de) Materialien für elektronische vorrichtungen
WO2013135352A1 (de) Elektronische vorrichtungen
WO2013026515A1 (de) Organische elektrolumineszenzvorrichtung
EP3005433A1 (de) Organische elektrolumineszenzvorrichtung
WO2020225071A1 (de) Elektronische vorrichtung
EP2941470B1 (de) Elektronische vorrichtung
WO2020108899A1 (de) Elektronische vorrichtung
EP2941473B1 (de) Elektronische vorrichtung
WO2021028513A1 (de) Elektronische vorrichtung
EP3963641A1 (de) Elektronische vorrichtung
EP3887479A1 (de) Elektronische vorrichtung
WO2023036747A1 (de) Elektronische vorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13763188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013763188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14434277

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015536003

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157012027

Country of ref document: KR

Kind code of ref document: A