WO2014051020A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2014051020A1
WO2014051020A1 PCT/JP2013/076193 JP2013076193W WO2014051020A1 WO 2014051020 A1 WO2014051020 A1 WO 2014051020A1 JP 2013076193 W JP2013076193 W JP 2013076193W WO 2014051020 A1 WO2014051020 A1 WO 2014051020A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
ion secondary
lithium ion
electrode
Prior art date
Application number
PCT/JP2013/076193
Other languages
English (en)
French (fr)
Inventor
佐野 篤史
佳太郎 大槻
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US14/431,473 priority Critical patent/US20150255795A1/en
Priority to CN201380050724.0A priority patent/CN104704655A/zh
Priority to JP2014538610A priority patent/JP6020580B2/ja
Publication of WO2014051020A1 publication Critical patent/WO2014051020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • a layered compound such as LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 or a spinel compound such as LiMn 2 O 4 has been used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery. It was. In recent years, compounds having an olivine type structure typified by LiFePO 4 have attracted attention. It is known that a positive electrode material having an olivine structure has high thermal stability at high temperatures and high safety. However, the lithium ion secondary battery using LiFePO 4 has a drawback that its charge / discharge voltage is as low as about 3.5 V and the energy density is low.
  • a phosphate-based positive electrode material capable of realizing a high charge-discharge voltage such as LiCoPO4 and LiNiPO 4 it has been proposed.
  • the present situation is that a sufficient capacity is not obtained even in lithium ion secondary batteries using these positive electrode materials.
  • phosphate cathode material capable of realizing 4V grade discharge voltage LiVOPO 4 (Patent Document 1) and Li 3 V 2 (PO 4) 3 , etc.
  • Li a (M) b (PO 4) c X A vanadium phosphate having a structure of d (Patent Document 2) is known.
  • vanadium phosphate has a problem that the high-rate discharge characteristics are inferior compared with other positive electrode materials such as LiFePO 4 .
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a lithium ion secondary battery capable of improving the high rate discharge characteristics of the lithium ion secondary battery.
  • a lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and an electrolyte solution, and the positive electrode uses a compound represented by the following formula (1) as a positive electrode active material,
  • the electrode density is 1.8 to 2.9 g / cm 3 .
  • Li a (M) b (PO 4 ) c X d (1) (M is VO or V, X is F, 0.9 ⁇ a ⁇ 3.3, 0.9 ⁇ b ⁇ 2.2, 0.9 ⁇ c ⁇ 3.3, 0 ⁇ d ⁇ 1. .1.)
  • a lithium ion secondary battery excellent in high rate discharge characteristics can be obtained by the above means.
  • the electrolyte solution preferably contains a lithium salt, and the salt concentration of the lithium salt is preferably 1.1 to 1.7 mol / L.
  • the lithium ion secondary battery of the present invention preferably has a BET specific surface area of 5 to 20 m 2 / g as a positive electrode.
  • the pore volume of the positive electrode is preferably 0.01 to 0.1 cm 3 / g.
  • the amount of the electrode active material supported on the positive electrode is preferably 5 to 20 mg / cm 2 .
  • the positive electrode is preferably LiVOPO 4 or L 3 V 2 (PO 4 ) 3 .
  • the electrode 10 is Li a (M) b (PO 4 ) c X d (M is VO or V, X is F, 0.9 ⁇ a ⁇ 3.3, 0.9 ⁇ b as a positive electrode active material. ⁇ 2.2, 0.9 ⁇ c ⁇ 3.3, and 0 ⁇ d ⁇ 1.1), and the electrode density is 1.8 to 2.9 g / cm 3 .
  • An electrode coating film is a layer containing an active material, a conductive additive, a binder, and the like applied on a current collector.
  • the reason why the lithium ion secondary battery using the positive electrode 10 is excellent in high rate discharge characteristics is presumed as follows.
  • the electrode density is 1.8 to 2.9 g / cm 3
  • the contact with the positive electrode active material and the conductive additive is improved, the electron conductivity is excellent, the resistance is reduced, and the high rate discharge capacity is improved. It is thought that.
  • a roll press, a hot roll press, a flat plate press or the like is used. The density can be adjusted by adjusting the temperature, pressure and gap between rolls.
  • the BET specific surface area of the positive electrode 10 is preferably 5 to 20 m 2 / g.
  • the BET specific surface area of the positive electrode is 5 to 20 m 2 / g, it is considered that the affinity for the electrolyte solution is high and sufficient ion conductivity is ensured.
  • the BET specific surface area can be obtained by the adsorption isotherm of BET by performing adsorption / desorption of nitrogen while changing the pressure as a commonly used method.
  • the BET specific surface area of an electrode can be measured by cutting a part of the electrode and inserting the electrode into a sample tube.
  • the pore volume of the positive electrode 10 is preferably 0.01 to 0.1 cm 3 / g. Thereby, more excellent high rate discharge characteristics can be obtained. The following phenomena can be considered as the reason.
  • the pore volume of the positive electrode 10 is impregnated with an electrolyte solution to ensure ionic conductivity. In this case, it is considered that excellent high rate discharge characteristics can be obtained by securing necessary and sufficient pores.
  • the pore volume can be determined by nitrogen adsorption / desorption.
  • the pore volume obtained by this method is considered to be the pore volume possessed by pores of about 1000 mm or less.
  • the positive electrode 10 more preferably has an electrode active material loading of 5 to 20 mg / cm 2 . Thereby, more excellent high rate discharge characteristics can be obtained.
  • a raw material mixture is prepared.
  • Raw material mixture contains a Li a (M) b (PO 4) c X d, a conductive assistant and a binder as a positive electrode active material.
  • the BET specific surface area of the positive electrode active material is preferably in the range of 1.0 to 20.0. Those in this range have a high discharge capacity and excellent high rate discharge characteristics.
  • the mixing ratio of the positive electrode active material is preferably 80 to 98% by weight. By being in this range, a lithium ion secondary battery having excellent high rate discharge characteristics can be obtained.
  • Examples of the conductive aid for the positive electrode 10 include carbons such as carbon blacks, graphites, carbon nanotubes (CNT), and vapor grown carbon fibers (VGCF).
  • Examples of carbon blacks include acetylene black, oil furnace, and ketjen black. Among them, ketjen black is preferably used because of its excellent conductivity. When mixing ketjen black and the positive electrode active material, a small amount of water and argon may be added and bead milled. Since ketjen black has a large specific surface area and is bulky, it may be an obstacle to increasing the electrode density. By performing the bead mill treatment as described above, the adhesion between the ketjen black and the positive electrode active material can be increased, and the electrode density can be increased.
  • the specific surface area of the electrode can be adjusted by the type and mixing ratio of these conductive aids.
  • the mixing ratio of the conductive assistant is preferably 1 to 10% by weight. By being in this range, a lithium ion secondary battery having excellent high rate discharge characteristics can be obtained.
  • PVDF polyvinylidene fluoride
  • VDF-HFP-based fluororubber vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber
  • aromatic polyamide aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used.
  • thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used. Further, syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / ⁇ -olefin (2 to 12 carbon atoms) copolymer, and the like may be used.
  • the specific gravity of the polymer used as the binder is preferably greater than 1.2 g / cm 3 .
  • a weight average molecular weight is 700,000 or more from the point which makes an electrode density high and raises an adhesive force.
  • the mixing ratio of the binder is preferably 1 to 10% by weight. By being in this range, a lithium ion secondary battery having excellent high rate discharge characteristics can be obtained.
  • the slurry is prepared by adding the positive electrode active material and the binder described above and a conductive aid in an amount as necessary to the solvent.
  • a conductive aid for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.
  • a kneading process called kneading can be added by adjusting the amount of the solvent to be mixed.
  • the pore volume can be adjusted by adjusting the solid content concentration and kneading time during kneading. This is thought to be due to the difference in how the active material, the conductive additive and the binder are combined depending on the solid content concentration and the kneading time.
  • the slurry whose viscosity is adjusted after kneading can be applied onto the positive electrode current collector 12 by a method appropriately selected from methods such as a doctor blade, a slot die, a nozzle, and a gravure roll.
  • a method appropriately selected from methods such as a doctor blade, a slot die, a nozzle, and a gravure roll.
  • the amount of positive electrode supported can be adjusted so that the supported amount of the positive electrode active material is 5 to 20 mg / cm 2 .
  • Dry after application The drying method is not particularly limited, but the pore volume of the electrode can be adjusted by the drying speed.
  • the electrode after coating and drying is rolled by a roll press. By heating the roll and softening the binder, a higher electrode density can be obtained.
  • the roll temperature is preferably in the range of 100 ° C to 200 ° C.
  • the specific surface area of the electrode can be adjusted by adjusting the surface roughness of the roll surface according to the pressure of the roll press, the gap between the rolls, and the temperature of the roll.
  • the positive electrode 10 thus obtained is used as the positive electrode of a lithium ion secondary battery, high high rate discharge characteristics can be obtained.
  • lithium salt examples include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 , CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , A salt such as LiN (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , or LiBOB can be used.
  • these salts may be used individually by 1 type, and may use 2 or more types together.
  • the salt concentration of the lithium salt in the electrolyte solution is preferably 1.1 to 1.7 mol / L.
  • a salt concentration in the above range it is considered that the lithium salt is uniformly distributed in the pores of the positive electrode 10 and is excellent in high rate characteristics.
  • the salt concentration of the lithium salt is lower than 1.1 mol / L, the overvoltage necessary for the migration of lithium ions becomes large, and in the case of a constant current, the polarization becomes larger and the high-rate discharge characteristics are inferior. it is conceivable that.
  • the lithium salt concentration is higher than 1.7 mol / L, it is considered that the viscosity of the electrolyte solution increases and the lithium salt does not sufficiently penetrate into the pores of the positive electrode 10.
  • organic solvent for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate and the like are preferable. These may be used alone or in combination of two or more at any ratio.
  • Li a (M) b (PO 4 ) c X d (M is VO or V, X is F, 0.9 ⁇ a ⁇ 3.3, 0.9 ⁇ b ⁇ 2.2, 0.9 ⁇ c ⁇ 3.3, and 0 ⁇ d ⁇ 1.1) can be expressed by structural formulas such as LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , LiVPO4F, etc. it can. LiVOPO 4 and / or Li 3 V 2 (PO 4 ) 3 are particularly preferable from the viewpoint of excellent high rate discharge characteristics.
  • vanadium phosphate (LiVOPO 4 or Li 3 V 2 (PO 4 ) 3 ) can be synthesized by solid phase synthesis, hydrothermal synthesis, carbothermal reduction method, or the like.
  • vanadium phosphate produced by a hydrothermal synthesis method tends to have a small particle size and excellent rate characteristics, and vanadium phosphate produced by a hydrothermal synthesis method is preferable as a positive electrode active material.
  • a lithium ion secondary battery 100 As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10.
  • a negative electrode lead 62 whose other end protrudes outside the case, and a positive electrode lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case are provided. .
  • the negative electrode 20 has a negative electrode current collector 22 and a negative electrode active material layer 24 laminated on the negative electrode current collector 22.
  • the positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 stacked on the positive electrode current collector 12.
  • the separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.
  • Examples of the negative electrode active material included in the negative electrode active material layer 24 include carbon materials such as natural graphite, artificial graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon, and compounds such as lithium such as Al, Sn, and Si. Metals or alloys that can be used, amorphous compounds mainly composed of oxides such as SiO x (1 ⁇ x ⁇ 2), SnO x (1 ⁇ x ⁇ 2), lithium titanate (Li 4 Ti 5 O 12 ), TiO 2 .
  • the negative electrode active material may be bound by a binder.
  • the negative electrode active material layer 24 is formed by a step of applying a paint containing a negative electrode active material or the like on the negative electrode current collector 22.
  • the electrolyte solution may be a gel electrolyte obtained by adding a gelling agent in addition to liquid.
  • a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.
  • the separator 18 may also be formed of an electrically insulating porous structure, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or cellulose. And a fiber nonwoven fabric made of at least one constituent material selected from the group consisting of polyester and polypropylene.
  • the case 50 seals the laminate 30 and the electrolyte solution therein.
  • the case 50 is not particularly limited as long as it can suppress leakage of the electrolyte solution to the outside and entry of moisture or the like into the lithium ion secondary battery 100 from the outside.
  • a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used.
  • the case is also referred to as an exterior body, when the exterior body is used and a metal laminate film is used, a lithium ion secondary battery excellent in high rate discharge characteristics can be obtained. The reason is not clear, but the electrode expands or contracts when lithium ions are inserted into the electrode.
  • the metal laminate film follows the expansion and contraction of the electrode and does not inhibit the movement of lithium ions, it is presumed that the metal laminate film is excellent in high rate discharge characteristics.
  • an aluminum foil can be used as the metal foil 52
  • a film such as polypropylene can be used as the synthetic resin film 54.
  • the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide
  • PET polyethylene terephthalate
  • the material of the inner polymer film 54 is preferably polyethylene or polypropylene.
  • the leads 60 and 62 are made of a conductive material such as aluminum.
  • Example 1 [Production of evaluation cell]
  • V 2 O 5 , LiOH and H 3 PO 4 were in a molar ratio of about 1: 2: 2, heated in a sealed container at 160 ° C. for 8 hours, and the resulting paste was fired in air at 600 ° C. for 4 hours.
  • the particles thus obtained were found to be ⁇ -type LiVOPO 4 .
  • LiVOPO 4 Ketjen black and polyvinylidene fluoride (PVdF) Arkema HSV900
  • LiVOPO 4 , Ketjen black and water were put into a polyethylene container, argon was sealed, and they were mixed at 300 rpm in a bead mill.
  • PVdF was then added.
  • a slurry was prepared by adding N-methyl-2-pyrrolidone (NMP) as a solvent. Kneading was performed for 0.5 hour, and then NMP was added to adjust the viscosity to 3000 cPs. It apply
  • NMP N-methyl-2-pyrrolidone
  • artificial graphite FSN manufactured by BTR
  • NMP N methylpyrrolidone
  • PVdF polyvinylidene fluoride
  • a slurry paint was prepared.
  • the negative electrode was produced by apply
  • a positive electrode and a negative electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was placed in an aluminum laminate pack.
  • ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, and LiPF 6 was dissolved as a supporting salt to a concentration of 1.0 mol / L.
  • the electrolyte solution was poured into an aluminum laminate pack containing the laminate, and then vacuum-sealed to produce an evaluation cell of Example 1.
  • Examples 2-5, 11, 12, 15, 21-26 and Comparative Examples 1-2 are the same as Example 1 except that the electrode density and electrode BET specific surface area were changed by adjusting the pressing conditions, and the pore volume was changed by adjusting the drying conditions of the electrodes. 11, 12, 15, 21 to 26 and Comparative Examples 1 to 2 were prepared.
  • Example 9 Except for changing the loading amount of the positive electrode active material by changing the coating conditions, changing the electrode density and electrode BET specific surface area by adjusting the pressing conditions, and changing the pore volume by adjusting the drying conditions of the electrodes. In the same manner as in Example 1, evaluation cells of Examples 9, 10, and 17 to 20 were produced.
  • Example 6 to 8, 27, 28 Evaluation cells of Examples 6 to 8, 27, and 28 were produced in the same manner as in Example 4 or Example 9 except that the lithium salt concentration was changed.
  • Example 13 An evaluation cell of Example 13 was produced in the same manner as in Example 4 except that Li 3 V 2 (PO 4 ) 3 was used as the positive electrode active material and the electrode BET specific surface area and pore volume were changed.
  • Example 14 An evaluation cell of Example 14 was produced in the same manner as in Example 4 except that LiVPO 4 F was used as the positive electrode active material and the electrode BET specific surface area and pore volume were changed.
  • a slurry-like paint was prepared by mixing so that the ratio of The negative electrode was produced by apply
  • An evaluation cell of Example 29 was produced in the same manner as in Example 4 except that the negative electrode produced by the above method was used.
  • the negative electrode was produced by apply
  • An evaluation cell of Example 31 was produced in the same manner as in Example 4 except that the negative electrode produced by the above method was used.
  • Examples 32 to 35 are the same as Example 13 except that the electrode density and the electrode BET specific surface area were changed by adjusting the pressing conditions, and the pore volume was changed by adjusting the drying conditions of the electrodes. A cell for evaluation was prepared.
  • the rate characteristics (unit:%) of Example 1 were determined.
  • the rate characteristic is the ratio of the discharge capacity at 1C when the discharge capacity at 0.1C is 100%.
  • the results are shown in Table 1. Larger rate characteristics are preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】高レート放電特性が優れたリチウムイオン二次電池を得ること。 【解決手段】正極、負極および電解質溶液を有し、前記正極は下記式(1)で表される化合物を正極活物質として用い、前記正極の電極密度が1.8~2.9g/cmであることを特徴とするリチウムイオン二次電池。 Li(M)(PO4) ・・・(1) (MはVOまたはVであり、XはFであり、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3、0≦d≦1.1である。)

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関する。
 従来、リチウムイオン二次電池の正極材料(正極活物質)としてLiCoOやLiNi1/3Mn1/3Co1/3等の層状化合物やLiMn等のスピネル化合物が用いられてきた。近年では、LiFePOに代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する正極材料は高温での熱安定性が高く、安全性が高いことが知られている。しかし、LiFePOを用いたリチウムイオン二次電池は、その充放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。そのため、高い充放電電圧を実現し得るリン酸系正極材料として、LiCoPO4やLiNiPO等が提案されている。しかし、これらの正極材料を用いたリチウムイオン二次電池においても、十分な容量が得られていないのが現状である。リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPO(特許文献1)やLi(POなどLi(M)(PO(特許文献2)の構造を持つバナジウムホスフェートが知られている。しかし、バナジウムホスフェートはLiFePOなどの他の正極材料と比較して高レート放電特性が劣る課題があった。
特開2004-303527号公報 特開2008-123823号公報
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、リチウムイオン二次電池の高レート放電特性を向上することが可能なリチウムイオン二次電池を提供することを目的とする。
 上記目的を達成するために、本発明のリチウムイオン二次電池は、正極、負極および電解質溶液を有し、正極は下記式(1)で表される化合物を正極活物質として用い、前記正極の電極密度が1.8~2.9g/cmであることを特徴とする。
 Li(M)(PO   ・・・(1)
 (MはVOまたはVであり、XはFであり、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3、0≦d≦1.1である。)
上記の手段により高レート放電特性に優れたリチウムイオン二次電池を得ることができる。
 本発明のリチウムイオン二次電池は、電解質溶液はリチウム塩を含有し、リチウム塩の塩濃度が1.1~1.7mol/Lであることが好ましい。
 本発明のリチウムイオン二次電池は、正極の電極としてのBET比表面積が5~20m/gであることが好ましい。
 本発明のリチウムイオン二次電池は、正極の細孔体積が0.01~0.1cm/gであることが好ましい。
 本発明のリチウムイオン二次電池は、さらに正極の電極活物質担持量が5~20mg/cmであることが好ましい。
 本発明のリチウムイオン二次電池は、正極が、LiVOPOまたはL(POであることが好ましい。
 本発明によれば、高レート放電特性に優れたリチウムイオン二次電池を提供することができる。
リチウムイオン二次電池の模式断面図である
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。
<正極>
 以下、本実施形態に係る電極(図1の正極10を参照)について、詳細に説明する。
 電極10は正極活物質としてLi(M)(PO(MはVOまたはVであり、XはFであり、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3、0≦d≦1.1である)を用い、電極密度が1.8~2.9g/cmである。
 ここで言う電極密度とは電極塗膜の面積当たりの重量を電極塗膜の厚みで割ることにより求められる。
 具体的には電極密度[g/cm]=(電極塗膜の単位面積当り重量)[mg/cm]/(電極塗膜の厚み)[μm]×10の式で求められる。電極塗膜とは集電体の上に塗られた活物質、導電助剤、バインダー等を含む層のことである。
 この正極10を用いたリチウムイオン二次電池が高レート放電特性に優れる理由について下記のように推測される。電極密度が1.8~2.9g/cmであることにより、正極活物質および導電助剤との接触が良好になり、電子伝導性に優れ、抵抗が減少して高レート放電容量が向上したものと考えられる。電極密度を調整するためにはロールプレス、熱ロールプレス、平板プレスなどを用いる。温度や圧力、ロール間ギャップを調整することにより密度を調整することができる。
 正極10の電極としてのBET比表面積は5~20m/gであることが好ましい。正極の電極としてのBET比表面積が5~20m/gであることにより電解質溶液との親和性が高く、十分なイオン伝導性を確保されているものと考えられる。
 BET比表面積は通常用いられる方法として圧力を変化させながら窒素の吸着脱離をおこない、BETの吸着等温式により求めることができる。電極のBET比表面積を測定するには電極の一部を切断してサンプル管に電極を挿入することによって測定することができる。
 正極10の細孔体積は0.01~0.1cm/gであることが好ましい。これにより、より優れた高レート放電特性が得られる。その理由としては下記の現象が考えられる。正極10の細孔体積には電解質溶液が含浸されイオン伝導性を確保する。その際に必要十分な細孔が確保されることにより優れた高レート放電特性が得られるものと考えられる。
 細孔体積は窒素の吸着脱離により求めることができる。この方法より得られる細孔体積はおよそ1000Å以下の細孔が持つ細孔体積であると考えられる。
 正極10は電極活物質担持量が5~20mg/cmであることがさらに好ましい。これにより、より優れた高レート放電特性が得られる。
<正極の製造方法>
[スラリー作製工程]
(原料混合物)
 スラリー作製工程において、まず、原料混合物を準備する。原料混合物は、正極活物質としてLi(M)(PO、導電助剤および結着剤とを含む。正極活物質のBET比表面積は1.0~20.0の範囲であることが好ましい。この範囲にあるものは放電容量が高く、高レート放電特性に優れる。正極活物質の混合比率は80~98重量%であることが好ましい。この範囲にあることによって高レート放電特性が優れたリチウムイオン二次電池が得られる。
 正極10の導電助剤としてはカーボンブラック類、黒鉛類、カーボンナノチューブ(CNT)、気相成長炭素繊維(VGCF)などの炭素が挙げられる。カーボンブラック類としてはアセチレンブラック、オイルファーネス、ケッチェンブラック、などがあるが、中でも導電性に優れるという点でケッチェンブラックを用いることが好ましい。ケッチェンブラックと正極活物質を混合する際に少量の水とアルゴンを加え、ビーズミル処理をしてもよい。ケッチェンブラックは比表面積が大きく嵩高いため、電極密度を上げるための妨げになることがある。上記のようなビーズミル処理をすることによりケッチェンブラックと正極活物質の密着性を高め、電極密度を上げることができる。またカーボンブラック類および黒鉛類、カーボンナノチューブ(CNT)、気相成長炭素繊維(VGCF)など含む1種類以上の炭素を含むことがより好ましい。これら導電助剤の種類および混合比により電極の比表面積を調整することができる。導電助剤の混合比率は1~10重量%であることが好ましい。この範囲にあることによって高レート放電特性が優れたリチウムイオン二次電池が得られる。
 正極10の結着剤としてはポリフッ化ビニリデン(PVDF)、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1、2-ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン(炭素数2~12)共重合体等を用いてもよい。電極密度を高くするという観点から結着剤として用いられる高分子の比重は1.2g/cmより大きいことが好ましい。また電極密度を高くし、且つ接着力を高める点から重量平均分子量が70万以上であることが好ましい。結着剤の混合比率は1~10重量%であることが好ましい。この範囲にあることによって高レート放電特性が優れたリチウムイオン二次電池が得られる。
 上述の正極活物質及び結着材と、必要に応じた量の導電助剤とを、溶媒に添加してスラリーを調整する。溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。溶媒を混合する量を調整することによって混錬と呼ばれる固練りの工程を入れることができる。混錬をする際の固形分濃度と混錬時間を調整することによって細孔体積を調整することができる。混錬時の固形分濃度と混錬時間によって活物質と導電助剤および結着剤の複合のされ方に違いが出るためであると考えられる。
[塗布及び乾燥工程]
 混錬した後に粘度調整したスラリーはドクターブレード、スロットダイ、ノズル、グラビアロールなどの方法より適宜選択される方法によって、正極集電体12上に塗布することができる。塗布の量やライン速度の調整により正極活物質として5~20mg/cmの担持量になるように正極担時量を調整することができる。塗布の後に乾燥をおこなう。乾燥の方法は特に限定されないが、乾燥の速度により電極の細孔体積を調整することができる。
[圧延工程]
 塗布、乾燥後の電極はロールプレスにより圧延をおこなう。ロールを加熱し結着剤を柔らかくすることにより、より高い電極密度を得ることができる。ロールの温度は100℃~200℃の範囲が好ましい。ロールプレスの圧力、ロール間の隙間および、ロールの温度によりまた、ロール表面の表面粗さを調整することによって電極の比表面積を調整することができる。
 このようにして得られた正極10を、リチウムイオン二次電池の正極として用いると、高い高レート放電特性を得ることができる。
 (電解質溶液の製造方法)
 以下では、本発明の一実施形態に係る電解質溶液の製造方法について説明する。
 電解質溶液(電解質水溶液または有機溶媒を使用する電解質溶液)としては、リチウム塩を溶媒に溶解したものが使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCF、CFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
 電解質溶液中のリチウム塩の塩濃度は1.1~1.7mol/Lであることが好ましい。上記範囲の塩濃度を用いることによって正極10の細孔にリチウム塩が均一に分布し、高レート特性に優れるものと考えられる。リチウム塩の塩濃度が1.1mol/Lよりも低い場合にはリチウムイオンの泳動に必要な過電圧が大きくなり、定電流の場合には分極が大きくなって現れることにより高レート放電特性が劣るものと考えられる。リチウム塩濃度が1.7mol/Lよりも大きくなると電解質溶液の粘度が高くなり、正極10の細孔にリチウム塩が十分に浸透しないものと考えられる。
 また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。
 本実施形態に係る活物質であるLi(M)(PO(MはVOまたはVであり、XはFであり、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3、0≦d≦1.1である)はLiVOPO、Li(PO、LiVPO4Fなどの構造式で表すことができる。高レート放電特性に優れる点からLiVOPOおよび/またはLi(POが特に好ましい。
 バナジウムホスフェート(LiVOPOまたはLi(PO)は固相合成、水熱合成、カーボサーマルリダクション法などにより合成できることが知られている。中でも水熱合成法で作製したバナジウムホスフェートは粒子径が小さく、レート特性に優れる傾向があり、水熱合成法で作製したバナジウムホスフェートは正極活物質として好ましい。
 (電極、並びにリチウムイオン二次電池及びその製造方法)
 図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える発電要素30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される負極リード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される正極リード60とを備える。
 負極20は、負極集電体22と、負極集電体22上に積層された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に積層された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
 負極活物質層24が含む負極活物質としては、例えば、天然黒鉛、人造黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Sn、Si等のリチウムと化合することのできる金属又は合金、SiO(1<x≦2)、SnO(1<x≦2)等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)、TiOが挙げられる。負極活物質はバインダーにより結着されていてもよい。負極活物質層24は、正極活物質層14の場合と同様に、負極活物質等を含む塗料を負極集電体22上に塗布する工程によって形成される。
 なお、本実施形態において、電解質溶液は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。
 また、セパレータ18も、電気絶縁性の多孔質構造から形成されていればよく、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
 ケース50は、その内部に積層体30及び電解質溶液を密封するものである。ケース50は、電解質溶液の外部への漏出や、外部からのリチウムイオン二次電池100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図4に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。ケースは外装体とも呼ばれるが、外装体をして金属ラミネートフィルム用いると高レート放電特性に優れたリチウムイオン二次電池が得られる。その理由は定かでないが、電極にリチウムイオンが挿入される際に電極は膨張または収縮する。金属ラミネートフィルムは電極の膨張および収縮に追従し、リチウムイオンの移動を阻害しないため、高レート放電特性に優れるものと推測される。金属箔52としては例えばアルミ箔を、合成樹脂膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン、ポリプロピレン等が好ましい。
 リード60,62は、アルミ等の導電材料から形成されている。
 以上、本発明に係る活物質の製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 [評価用セルの作製]
 VとLiOHとHPOをモル比およそ1:2:2とし、密閉容器中において160℃で8時間加熱し、得られたペーストを空気中600℃4時間焼成した。このようにして得られた粒子はβ型LiVOPOであることがわかった。 LiVOPOとケッチェンブラックとポリフッ化ビニリデン(PVdF)(アルケマ社製HSV900)を重量比80:10:10で混合した。この際にLiVOPOとケッチェンブラックと水をポリエチレン容器に入れ、アルゴンを封入し、ビーズミルにて300rpmで混合した。その後にPVdFを加えた。溶媒であるN-メチル-2-ピロリドン(NMP)を加えてスラリーを調製した。固練りを0.5時間行い、その後NMPを追加して粘度を3000cPsに調整した。ドクターブレード法により集電体であるアルミニウム箔上に塗布し、90℃で10分間乾燥を行った。その後90℃に加熱したロールプレスにより線圧1.5t cm-1で圧延をおこない、正極を作製した。
 次に、負極として人造黒鉛(BTR社製FSN)とポリフッ化ビニリデン(PVdF)のNメチルピロリドン(NMP)5wt%溶液を人造黒鉛:ポリフッ化ビニリデン=93:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。
正極と、負極とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れた。
電解質溶液はエチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積比3:7で混合し、支持塩としてLiPFを1.0mol/Lになるよう溶解した。
積層体を入れたアルミラミネートパックに、上記電解質溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。
(実施例2~5、11、12、15、21~26および比較例1~2)
 プレス条件を調整することにより電極密度、電極BET比表面積を変更し、電極の乾燥条件を調整することにより細孔体積を変更したこと以外は実施例1と同様の方法で、実施例2~5、11、12、15、21~26および比較例1~2の評価用セルを作製した。
(実施例9、10、17~20)
 塗布条件の変更により正極活物質担持量を変更し、プレス条件を調整することにより電極密度、電極BET比表面積を変更し、電極の乾燥条件を調整することにより細孔体積を変更したこと以外は実施例1と同様の方法で、実施例9、10、17~20の評価用セルを作製した。
(実施例6~8、27、28)
 リチウム塩濃度を変更したこと以外は実施例4または実施例9と同様の方法で、実施例6~8、27、28の評価用セルを作製した。
(実施例13)
 正極活物質としてLi(POを用い、電極BET比表面積、細孔体積を変更したこと以外は実施例4と同様の方法で、実施例13の評価用セルを作製した。
(実施例14)
 正極活物質としてLiVPOFを用い、電極BET比表面積、細孔体積を変更したこと以外は実施例4と同様の方法で、実施例14の評価用セルを作製した。
(実施例29)
 負極として人造黒鉛(BTR社製FSN)とシリコン粉末(アルドリッチ製)とポリフッ化ビニリデン(PVdF)のNメチルピロリドン(NMP)5wt%溶液を人造黒鉛:シリコン粉末:ポリフッ化ビニリデン=84:9:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。上記方法により作製した負極を用いたこと以外は実施例4と同様の方法で、実施例29の評価用セルを作製した。
(実施例30)
 負極として人造黒鉛(BTR社製FSN)とシリコン粉末(アルドリッチ製)とポリフッ化ビニリデン(PVdF)のNメチルピロリドン(NMP)5wt%溶液を人造黒鉛:シリコン粉末:ポリフッ化ビニリデン=75:18:7の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。上記方法により作製した負極を用いたこと以外は実施例4と同様の方法で、実施例30の評価用セルを作製した。
(実施例31)
 負極として酸化シリコン粉末SiOとポリアミドイミド(PAI)のNメチルピロリドン(NMP)20wt%溶液をSiO:PAI=85:15の割合になるように混合し、スラリー状の塗料を作製した。塗料を集電体である銅箔に塗布し、乾燥、圧延することによって負極を作製した。上記方法により作製した負極を用いたこと以外は実施例4と同様の方法で、実施例31の評価用セルを作製した。
(実施例32~35)
 プレス条件を調整することにより電極密度、電極BET比表面積を変更し、電極の乾燥条件を調整することにより細孔体積を変更したこと以外は実施例13と同様の方法で、実施例32~35の評価用セルを作製した。
 [レート特性の評価]
 実施例1のレート特性(単位:%)をそれぞれ求めた。なお、レート特性とは、0.1Cでの放電容量を100%とした場合の1Cでの放電容量の比率である。結果を表1に示す。レート特性は大きいほど好ましい。
 表1の実施例1~5、22~26および比較例1、2の結果から正極の電極密度が1.8~2.9g/cmであり、正極の電極としてのBET比表面積が5~20m/gである場合にレート特性が優れていることがわかる。実施例6~8、16、27、28、比較例3、4の結果から、リチウム塩の塩濃度が1.1~1.7mol/Lである場合にさらに優れた特性を示すことがわかる。実施例9、10、17~20の結果から電極活物質担持量が4~21mg/cmの場合に優れたレート特性を示すことがわかる。
Figure JPOXMLDOC01-appb-T000001
 
 
 
 10・・・正極,20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・積層体、50・・・ケース、60,62・・・リード、100・・・リチウムイオン二次電池。
 

Claims (7)

  1.  正極、負極および電解質溶液を有し、
     前記正極は下記式(1)で表される化合物を正極活物質として用い、前記正極の電極密度が1.8~2.9g/cmであることを特徴とするリチウムイオン二次電池。
     Li(M)(PO   ・・・(1)
     (MはVOまたはVであり、XはFであり、0.9≦a≦3.3、0.9≦b≦2.2、0.9≦c≦3.3、0≦d≦1.1である。)
  2.  前記電解質溶液はリチウム塩を含有し、前記リチウム塩の塩濃度が1.1~1.7mol/Lであることを特徴とする請求項1に記載のリチウムイオン二次電池。
  3.  前記正極の電極としてのBET比表面積が5~20m/gであることを特徴とする請求項1または2に記載のリチウムイオン二次電池。
  4.  前記正極の細孔体積が0.01~0.1cm/gであることを特徴とする請求項1から3のいずれか一項に記載のリチウムイオン二次電池。
  5.  前記正極の正極活物質担持量が5~20mg/cmであることを特徴とする請求項1から4のいずれか一項に記載のリチウムイオン二次電池。
  6.  前記化合物はLiVOPOまたはLi(POであることを特徴とする請求項1から5のいずれか一項に記載のリチウムイオン二次電池。
  7.  外装体としてアルミラミネートフィルムを用いたことを特徴とする請求項1から6のいずれか一項に記載のリチウムイオン二次電池。
PCT/JP2013/076193 2012-09-28 2013-09-27 リチウムイオン二次電池 WO2014051020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/431,473 US20150255795A1 (en) 2012-09-28 2013-09-27 Lithium ion secondary battery
CN201380050724.0A CN104704655A (zh) 2012-09-28 2013-09-27 锂离子二次电池
JP2014538610A JP6020580B2 (ja) 2012-09-28 2013-09-27 リチウムイオン二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-216655 2012-09-28
JP2012216655 2012-09-28

Publications (1)

Publication Number Publication Date
WO2014051020A1 true WO2014051020A1 (ja) 2014-04-03

Family

ID=50388414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076193 WO2014051020A1 (ja) 2012-09-28 2013-09-27 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20150255795A1 (ja)
JP (1) JP6020580B2 (ja)
CN (1) CN104704655A (ja)
WO (1) WO2014051020A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062654A (ja) * 2014-09-12 2016-04-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
WO2018088557A1 (ja) * 2016-11-14 2018-05-17 株式会社 東芝 非水電解質電池及び電池パック
JP2019061826A (ja) * 2017-09-26 2019-04-18 Tdk株式会社 リチウムイオン二次電池
CN112054167A (zh) * 2019-06-06 2020-12-08 台湾立凯电能科技股份有限公司 二次电池用正极材料的制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301174B (zh) * 2017-07-24 2020-11-13 宁德时代新能源科技股份有限公司 正极材料及其制备方法及锂二次电池
CN109659607B (zh) * 2017-10-11 2021-09-07 中国科学院大连化学物理研究所 一种适用于降低锂离子电池自放电的电解液及应用
CN108844878A (zh) * 2018-05-24 2018-11-20 宁德时代新能源科技股份有限公司 负极极片、极片活性比表面积的测试方法及电池
CN110931728B (zh) * 2019-10-29 2021-06-15 大连博融新材料有限公司 氟磷酸钒锂-磷酸氧钒锂复合正极材料、其制备方法及用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117907A (ja) * 2000-10-06 2002-04-19 Sony Corp 非水電解液二次電池
JP2009231206A (ja) * 2008-03-25 2009-10-08 Gs Yuasa Corporation 非水電解質電池
JP2010086778A (ja) * 2008-09-30 2010-04-15 Tdk Corp 活物質材料、それを用いた正極及びリチウムイオン二次電池
WO2010080519A1 (en) * 2008-12-19 2010-07-15 Conocophillips Company Process for making fluorinated lithium vanadium polyanion powders for batteries
JP2010218829A (ja) * 2009-03-16 2010-09-30 Tdk Corp α型結晶構造のLiVOPO4を主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法
WO2011147907A1 (de) * 2010-05-27 2011-12-01 Süd-Chemie AG Kohlenstoff -lithiumübergangsmetallphosphat -verbundmaterial mit einem niedrigen kohlenstoffgehalt
JP2012204278A (ja) * 2011-03-28 2012-10-22 Kanagawa Prefecture リチウム二次電池用電極およびそれを用いた二次電池
JP2013069456A (ja) * 2011-09-21 2013-04-18 Fuji Heavy Ind Ltd 正極活物質の製造方法、正極、および蓄電デバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203946B1 (en) * 1998-12-03 2001-03-20 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and uses thereof
JP4314859B2 (ja) * 2003-03-31 2009-08-19 祐作 滝田 非水電解質二次電池用電極活物質、非水電解質二次電池用電極及び非水電解質二次電池
EP1716610B1 (en) * 2004-02-06 2011-08-24 A 123 Systems, Inc. Lithium secondary cell with high charge and discharge rate capability
JP5245191B2 (ja) * 2005-08-17 2013-07-24 パナソニック株式会社 非水電解液二次電池
KR100907621B1 (ko) * 2006-08-28 2009-07-15 주식회사 엘지화학 두 성분의 도전재를 포함하는 양극 합제 및 그것으로구성된 리튬 이차전지
CN100435390C (zh) * 2007-01-12 2008-11-19 中南大学 溶胶凝胶法合成锂离子电池正极材料氟磷酸钒锂
US9509015B2 (en) * 2007-07-09 2016-11-29 Sony Corporation Battery
JP5365126B2 (ja) * 2008-09-30 2013-12-11 Tdk株式会社 リチウムイオン二次電池の正極用活物質及びリチウムイオン二次電池の正極用活物質の製造方法
JP5434720B2 (ja) * 2010-03-19 2014-03-05 株式会社Gsユアサ 非水電解質二次電池用電極及び非水電解質二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002117907A (ja) * 2000-10-06 2002-04-19 Sony Corp 非水電解液二次電池
JP2009231206A (ja) * 2008-03-25 2009-10-08 Gs Yuasa Corporation 非水電解質電池
JP2010086778A (ja) * 2008-09-30 2010-04-15 Tdk Corp 活物質材料、それを用いた正極及びリチウムイオン二次電池
WO2010080519A1 (en) * 2008-12-19 2010-07-15 Conocophillips Company Process for making fluorinated lithium vanadium polyanion powders for batteries
JP2010218829A (ja) * 2009-03-16 2010-09-30 Tdk Corp α型結晶構造のLiVOPO4を主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法
WO2011147907A1 (de) * 2010-05-27 2011-12-01 Süd-Chemie AG Kohlenstoff -lithiumübergangsmetallphosphat -verbundmaterial mit einem niedrigen kohlenstoffgehalt
JP2012204278A (ja) * 2011-03-28 2012-10-22 Kanagawa Prefecture リチウム二次電池用電極およびそれを用いた二次電池
JP2013069456A (ja) * 2011-09-21 2013-04-18 Fuji Heavy Ind Ltd 正極活物質の製造方法、正極、および蓄電デバイス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016062654A (ja) * 2014-09-12 2016-04-25 トヨタ自動車株式会社 リチウムイオン二次電池用電極の製造方法
US10431807B2 (en) 2014-09-12 2019-10-01 Toyota Jidosha Kabushiki Kaisha Method of manufacturing lithium-ion secondary battery electrode
WO2018088557A1 (ja) * 2016-11-14 2018-05-17 株式会社 東芝 非水電解質電池及び電池パック
JPWO2018088557A1 (ja) * 2016-11-14 2019-10-10 株式会社東芝 非水電解質電池及び電池パック
US11038206B2 (en) 2016-11-14 2021-06-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, and battery pack
JP2019061826A (ja) * 2017-09-26 2019-04-18 Tdk株式会社 リチウムイオン二次電池
JP6992362B2 (ja) 2017-09-26 2022-01-13 Tdk株式会社 リチウムイオン二次電池
CN112054167A (zh) * 2019-06-06 2020-12-08 台湾立凯电能科技股份有限公司 二次电池用正极材料的制造方法
CN112054167B (zh) * 2019-06-06 2022-08-02 台湾立凯电能科技股份有限公司 二次电池用正极材料的制造方法

Also Published As

Publication number Publication date
CN104704655A (zh) 2015-06-10
US20150255795A1 (en) 2015-09-10
JP6020580B2 (ja) 2016-11-02
JPWO2014051020A1 (ja) 2016-08-22

Similar Documents

Publication Publication Date Title
JP6020580B2 (ja) リチウムイオン二次電池
US10361432B2 (en) Non-aqueous secondary battery
JP5699754B2 (ja) 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法
JP2015092462A (ja) 正極及びそれを用いたリチウムイオン二次電池
JP5487676B2 (ja) 活物質、これを含む電極、当該電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス
JP5928591B2 (ja) リチウムイオン二次電池
JP2008277152A (ja) 活物質、電極、電池、及び活物質の製造方法
US20140234724A1 (en) Method of manufacturing battery electrode
JP5359490B2 (ja) リチウムイオン二次電池
WO2012008423A1 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5347604B2 (ja) α型結晶構造のLiVOPO4を主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法
JP5347605B2 (ja) 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
JP5375446B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
TWI600195B (zh) 非水電解質二次電池及使用其之組電池
JP5609299B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP6613952B2 (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
US10211456B2 (en) Positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP2017152363A (ja) リチウムイオン二次電池用正極活物質、これを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017152119A (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
JP6349825B2 (ja) 正極及びそれを用いたリチウムイオン二次電池
JP2017152118A (ja) 正極活物質、及びそれを用いたリチウムイオン二次電池用正極ならびにリチウムイオン二次電池
JP6354498B2 (ja) リチウムイオン二次電池用非水電解液、及びそれを用いたリチウムイオン二次電池
JP2017183046A (ja) リチウムイオン二次電池
JP2017183047A (ja) リチウムイオン二次電池
JP2012212635A (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538610

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14431473

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842709

Country of ref document: EP

Kind code of ref document: A1