WO2014050943A1 - 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法 - Google Patents

冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法 Download PDF

Info

Publication number
WO2014050943A1
WO2014050943A1 PCT/JP2013/076011 JP2013076011W WO2014050943A1 WO 2014050943 A1 WO2014050943 A1 WO 2014050943A1 JP 2013076011 W JP2013076011 W JP 2013076011W WO 2014050943 A1 WO2014050943 A1 WO 2014050943A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
less
cross
sectional shape
length
Prior art date
Application number
PCT/JP2013/076011
Other languages
English (en)
French (fr)
Inventor
光司 高野
裕也 日笠
天藤 雅之
好宣 多田
公一 吉村
Original Assignee
新日鐵住金ステンレス株式会社
鈴木住電ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社, 鈴木住電ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to EP13841641.7A priority Critical patent/EP2902521B1/en
Priority to KR1020157007595A priority patent/KR101660197B1/ko
Priority to CN201380049985.0A priority patent/CN104662189B/zh
Priority to US14/430,144 priority patent/US9863016B2/en
Publication of WO2014050943A1 publication Critical patent/WO2014050943A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12382Defined configuration of both thickness and nonthickness surface or angle therebetween [e.g., rounded corners, etc.]

Definitions

  • the present invention relates to a highly shaped product having a high corrosion resistance and requiring super-nonmagnetism such as electronic equipment and medical equipment parts.
  • the present invention adds Mn and Cu to extremely enhance the stability of ⁇ (austenite), and can ensure cold workability and super non-magnetism even in the cold working state, and austenitic stainless steel wire containing Mn and Cu, and
  • the present invention relates to a manufacturing method, a steel wire, a steel wire coil, and a manufacturing method thereof.
  • austenitic stainless steel represented by SUS304 has been used for parts that require corrosion resistance and non-magnetism.
  • SUS304 is processed, a processing-induced martensitic transformation occurs and magnetism is generated. For this reason, SUS304 cannot be applied to parts that require non-magnetism.
  • high-Mn / N-type stainless steel that exhibits non-magnetism even if processed has been used (for example, Patent Documents 1, 2, and 3). reference).
  • high-Mn / high-N stainless steel has high strength and is difficult to cold work into a complicated shape.
  • work-induced martensitic transformation is generated in a very small amount and exhibits low magnetism, so super-nonmagnetism cannot be obtained. .
  • the super-non-magnetism referred to in the present invention means, for example, a level at which the product exhibits a magnetic flux density of 0.01 T or less (preferably 0.007 T or less) when the product is placed in a magnetic field of 10,000 (Oe).
  • a level at which the product exhibits a magnetic flux density of 0.01 T or less preferably 0.007 T or less
  • the magnetic flux density after cold working is 0.05 T or less, which can satisfy the non-magnetic requirement level in the world.
  • the non-magnetic requirement level cannot be satisfied.
  • Patent Document 5 describes a technique for twisting a wire having an irregular cross section.
  • the cross section of the steel wire is easily crushed or wrinkled easily by annealing and winding the deformed steel wire. There is an inconvenience. For this reason, there exists a problem that the steel wire coil which has a deformed cross section of a soft near net shape other than a simple plate shape cannot be manufactured substantially.
  • the present invention is suitably used as a material for a complex-shaped high corrosion resistance / super non-magnetic product, and is a super non-magnetic soft stainless steel wire excellent in cold workability / corrosion resistance, and its manufacturing method, steel wire, steel wire coil It is another object of the present invention to provide a manufacturing method thereof.
  • the present inventors have studied various component compositions and processes in austenitic stainless steel. As a result, the following findings 1) to 5) were obtained.
  • the super-nonmagnetism is stabilized by reducing micro alloy segregation.
  • the cross-sectional shape of the steel wire is made into a specific deformed cross-sectional shape, and after the strand annealing, the steel wire is wound up under specific conditions, so that the deformed shape remains in a soft heat-treated state close to the final part shape.
  • a steel wire coil can be provided.
  • the obtained steel wire coil can be suitably used for forming into a complex shaped part while maintaining super non-magnetism.
  • This invention is made
  • Group B Further, by mass%, Nb: 1.0% or less, V: 1.0% or less, Ti: 1.0% or less, W: 1.0% or less, Ta: Contains at least one of 1.0% or less.
  • Group C Further, by mass%, it contains Co: 3.0% or less.
  • Group D Further, by mass%, B: 0.015% or less.
  • Group E Further, by mass, Ca: 0.01% or less, Mg: 0.01% or less, REM: Contains one or more of 0.05% or less.
  • the standard deviation ⁇ of variation in Ni concentration at the central portion in the cross section is 5 mass% or less, and the standard deviation ⁇ of variation in Cu concentration is 1.5 mass% or less (1)
  • an ultra-nonmagnetic soft stainless steel wire excellent in cold workability and corrosion resistance is 5 mass% or less, and the standard deviation ⁇ of variation in Cu concentration is 1.5 mass% or less (1)
  • an ultra-nonmagnetic soft stainless steel wire excellent in cold workability and corrosion resistance is 5 mass% or less
  • the standard deviation ⁇ of variation in Cu concentration is 1.5 mass% or less
  • an ultra-nonmagnetic soft stainless steel wire excellent in cold workability and corrosion resistance is (4)
  • Steel wire rod is (5)
  • the steel wire according to any one of (6) to (9) in a wound state is provided, and the cross-sectional shape of the steel wire is a first side having a first straight portion, and the first side Including a second side having a second straight line portion that is parallel to the first straight line portion or inclined at an angle of 30 ° or less with respect to the first straight line portion and disposed opposite to the first straight line portion.
  • (T / W) is 3 or less
  • the length of the first side is not less than the length of the second side
  • Super-nonmagnetic soft stainless steel wire coil with excellent cold workability and corrosion resistance characterized in that each length is in the range of W / 10 to W
  • the steel wire according to (10) in a wound state is provided, and a cross-sectional shape of the steel wire is parallel to the first side having the first straight portion and the first straight portion, or A second side having a second linear part inclined at an angle of 30 ° or less with respect to the first linear part and disposed opposite to the first linear part, and in a direction perpendicular to the first linear part
  • a ratio (T / W) of a first dimension (T) which is the maximum dimension of the cross-sectional shape and a second dimension (W) which is the maximum dimension of the cross-sectional shape in a direction parallel to the first linear portion is 3
  • a slab having the component composition described in (1) or (2) above is hot-wire-rolled at a reduction in area of 99% or more, and then subjected to a uniform heat treatment at 1000 to 1200 ° C.
  • the wire rod according to (1) or (2) is drawn, and the cross-sectional shape is a first side having a first straight portion, and is parallel to the first straight portion, or the first A cross-sectional shape in a direction perpendicular to the first straight line portion, including a second side having a second straight line portion inclined at an angle of 30 ° or less with respect to the straight line portion and disposed opposite to the first straight line portion.
  • the ratio (T / W) between the first dimension (T) which is the maximum dimension of the first dimension and the second dimension (W) which is the maximum dimension of the cross-sectional shape in the direction parallel to the first linear portion is 3 or less
  • the length of the first side is equal to or greater than the length of the second side, and the length of the first side and the length of the second side with respect to the second dimension (W) are respectively W / 10 ⁇
  • the wire rod according to (3) is subjected to wire drawing, and the cross-sectional shape is parallel to the first straight portion and the first side having the first straight portion, or to the first straight portion.
  • a second side having a second straight line portion inclined at an angle of 30 ° or less and opposed to the first straight line portion, and having a maximum dimension of the cross-sectional shape in a direction perpendicular to the first straight line portion.
  • a ratio (T / W) between a certain first dimension (T) and a second dimension (W) that is the maximum dimension of the cross-sectional shape in a direction parallel to the first linear portion is 3 or less, and the first The length of the side is equal to or longer than the length of the second side, and the length of the first side and the length of the second side with respect to the second dimension (W) are in the range of W / 10 to W, respectively.
  • a second side having a second straight line portion inclined at an angle of 30 ° or less and opposed to the first straight line portion, and having a maximum dimension of the cross-sectional shape in a direction perpendicular to the first straight line portion.
  • a ratio (T / W) between a certain first dimension (T) and a second dimension (W) that is the maximum dimension of the cross-sectional shape in a direction parallel to the first linear portion is 3 or less, and the first The length of the side is equal to or longer than the length of the second side, and the length of the first side and the length of the second side with respect to the second dimension (W) are in the range of W / 10 to W, respectively.
  • a steel wire having an irregular cross-sectional shape, subjected to strand annealing, and then the steel wire to a pinch roll and each of the roll pairs arranged opposite to each other A super non-magnetic soft stainless steel wire coil excellent in cold workability and corrosion resistance, wherein the first straight portion and the second straight portion are sandwiched and passed so that the steel wire is wound.
  • a second side having a second straight line portion inclined at an angle of 30 ° or less and opposed to the first straight line portion, and having a maximum dimension of the cross-sectional shape in a direction perpendicular to the first straight line portion.
  • a ratio (T / W) between a certain first dimension (T) and a second dimension (W) that is the maximum dimension of the cross-sectional shape in a direction parallel to the first linear portion is 3 or less, and the first The length of the side is equal to or longer than the length of the second side, and the length of the first side and the length of the second side with respect to the second dimension (W) are in the range of W / 10 to W, respectively.
  • a steel wire having an irregular cross-sectional shape subjected to strand annealing, and then the steel wire to a pinch roll and each of the roll pairs arranged opposite to each other
  • a super non-magnetic soft stainless steel wire coil excellent in cold workability and corrosion resistance wherein the first straight portion and the second straight portion are sandwiched and passed so that the steel wire is wound.
  • the stainless steel wire and steel wire of the present invention are super non-magnetic and have excellent corrosion resistance and cold workability. For this reason, by using this as a raw material, the effect which provides the super nonmagnetic component excellent in corrosion resistance at low cost is exhibited.
  • the stainless steel wire coil of the present invention suppresses occurrence of cross-sectional shape crushing and wrinkles at the time of manufacture, it is a soft deformed cross-section steel wire that can be industrially used as a near-net shape stainless steel wire. Can provide. And it becomes possible to shape
  • Drawing 1 is a sectional view for explaining an example of the section shape of the steel wire of this embodiment.
  • 2 (a) to 2 (c) are cross-sectional views showing other examples of the cross-sectional shape of the steel wire of the present embodiment.
  • FIG. 3 is a cross-sectional view showing another example of the cross-sectional shape of the steel wire of the present embodiment.
  • % means “mass%” unless otherwise noted. If C is added in an amount exceeding 0.08%, the strength becomes high and the cold workability is inferior, so the upper limit is made 0.08%, preferably 0.05% or less. On the other hand, since excessive reduction leads to an increase in manufacturing cost, the lower limit is preferably 0.001%, and more preferably 0.01% or more. A preferable range of the C content is 0.01 to 0.05%.
  • Si is added at 0.05% or more, preferably 0.1% or more for deoxidation.
  • the upper limit of Si content is made 2.0%, preferably 1.0% or less.
  • a preferable range of the Si content is 0.1 to 1.0%.
  • Mn is added more than 8.0%, preferably more than 13.0% in order to drastically improve the stability of austenite after cold working and to obtain super non-magnetism.
  • the upper limit of the Mn content is 25.0%, preferably 20.0% or less, and more preferably less than 16.0%.
  • a preferable range of the Mn content is more than 13.0% and 20.0% or less. More preferably, the Mn content is less than 16.0%.
  • the P content is 0.06% or less, preferably 0.04% or less, in order to ensure cold workability.
  • the preferred range is 0.01% to 0.04%.
  • the S content is set to 0.01% or less, preferably 0.005% or less, in order to ensure hot manufacturability and corrosion resistance of the wire.
  • the preferred range is 0.0002 to 0.005%.
  • Ni is added in an amount of more than 6.0%, preferably 8.0% or more in order to dramatically increase the stability of austenite after cold working and to obtain super-nonmagnetism.
  • the upper limit of the Ni content is 30.0%, preferably 20.0% or less, more preferably less than 10.0%. Since it is preferable to reduce the interatomic bond of the Fe—Ni pair as much as possible, the preferable range of the Ni content is 8.0% or more and less than 10.0%.
  • Cr is added in an amount of 13.0% or more, preferably 15.0% or more in order to dramatically increase the stability of austenite after cold working and to obtain super-nonmagnetism and to obtain high corrosion resistance. To do. However, when Cr is added in excess of 25.0%, ⁇ (delta) -ferrite with a bcc structure of a ferromagnetic material is formed in a part of the structure, showing not only magnetism but also strength and cold working. Inferior to sex. Therefore, the upper limit of the Cr content is limited to 25.0%, preferably 20.0% or less. A preferable range of the Cr content is 15.0% to 20.0%.
  • Cu is added in an amount of 0.2% or more in order to dramatically improve the stability of austenite after cold working and to obtain super non-magnetism, and to suppress cold hardening of austenite and ensure cold workability.
  • Cu is preferably added at 1.0% or more, more preferably more than 3.0%.
  • the upper limit of the Cu content is limited to 5.0%, preferably 4.0% or less.
  • the preferable range of the Cu content is 1.0% to 4.0%, more preferably more than 3.0% and 4.0% or less.
  • the upper limit of N content is less than 0.20%, preferably less than 0.10%.
  • the upper limit of N content is preferably 0.001% or more, and more preferably 0.01% or more.
  • a preferable range of the N content is 0.01% or more and less than 0.10%.
  • Al is a deoxidizing element and, like Cu, is an important element for ensuring the cold workability by suppressing the work hardening of austenite, and is contained in an amount of 0.002% or more, preferably 0.01. % Or more.
  • the upper limit of the Al content is 1.5%, preferably 1.3% or less, more preferably 1.2% or less.
  • a preferable range of the Al content is 0.01% to 1.2%.
  • the content of C + N is limited to less than 0.20% in order to soften and secure cold workability to complex shaped parts.
  • the content of C + N is preferably 0.10% or less.
  • Md30 is an index obtained by investigating the relationship between the amount of processing-induced martensite after cold processing and the components.
  • Md30 is a temperature at which 50% of the structure is transformed into martensite when a true tensile strain of 0.3 is applied to single-phase austenite. The smaller the value of Md30, the more stable the austenite and the more martensite is suppressed. Therefore, it is necessary to control the Md30 value in order to ensure super-nonmagnetism of the wire. In order to show super non-magnetism even after cold working, it is necessary to control the Md30 value to ⁇ 150 or less. Therefore, the Md30 value is limited to ⁇ 150 or less. Preferably, the Md30 value is ⁇ 170 or less. A more preferable range of the Md30 value is ⁇ 200 or less.
  • Inevitable impurities include, for example, O: 0.001 to 0.01%, Zr: 0.0001 to 0.01%, Sn: 0.001 to 0.1%, which are mixed in the production of ordinary stainless steel, Pb: 0.00005 to 0.01%, Bi: 0.00005 to 0.01%, Zn: 0.0005 to 0.01%, etc., contained in raw materials and refractories.
  • the reasons for limiting the tensile strength and tensile fracture drawing of the wire rod of this embodiment will be described.
  • the tensile strength of the wire is 650 MPa or less, the cold workability is good.
  • the tensile breaking drawing of the wire is 70% or more, the cold workability is good. Therefore, in this embodiment, in order to ensure cold workability, it is preferable to set the tensile strength of the wire to 650 MPa or less and the tensile fracture drawing to 70% or more.
  • the tensile strength and the tensile fracture drawing of the wire manufactured by the manufacturing method described later using the slab having the above component composition are in the above ranges. Moreover, these mechanical characteristics can be further improved by more strictly controlling the component composition of steel according to the required cold workability. That is, the component composition is Mn: more than 13.0%, 20% or less, Cu: 1.0% to 4.0%, Al: 0.01% to 1.3%, N: 0.01% or more, 0 By controlling to less than 10%, the wire has a tensile strength of 590 MPa or less and a tensile fracture drawing of 75% or more. By further adding such limitation, the cold workability of the wire is further improved.
  • Mo is preferably added in an amount of 0.01% or more, more preferably 0.2% or more, if necessary, in order to improve the corrosion resistance of the product.
  • the upper limit of the Mo content is set to 3.0%, preferably 2.0% or less.
  • a further preferable range of the Mo content is 0.2 to 2.0%.
  • Nb, V, Ti, W, and Ta are added as needed to form carbonitrides and improve corrosion resistance.
  • the content of each element is preferably 0.01% or more, and more preferably 0.05% or more.
  • the upper limit of the content of Nb, V, Ti, W, Ta is set to 1.0%, preferably 0.6% or less.
  • a preferable range of the content of each element is 0.05 to 0.6%.
  • Co is preferably added in an amount of 0.05% or more, more preferably 0.2% or more, if necessary, in order to dramatically increase the stability of austenite after cold working and to obtain super-nonmagnetism. .
  • the upper limit of the Co content is set to 3.0%, preferably 1.0% or less.
  • a further preferable range of the Co content is 0.2 to 1.0%.
  • B is added in an amount of 0.0005% or more, preferably 0.001% or more, if necessary, in order to improve hot productivity.
  • the upper limit of the B content is 0.015%, preferably 0.01% or less.
  • a preferable range of the B content is 0.001% to 0.01%.
  • Ca, Mg, and REM are effective elements for deoxidation, and one or more kinds are added as necessary. However, when these elements are added excessively, not only the soft magnetism is deteriorated but also a coarse deoxidation product is generated, and the cold workability is deteriorated. Therefore, when it contains Ca, the content is 0.01% or less, preferably 0.004% or less. When Mg is contained, its content is 0.01% or less, preferably 0.0015% or less. When REM is contained, the content is 0.05% or less, preferably 0.01% or less. Moreover, the preferable lower limit of Ca content is 0.0005% or more, more preferably 0.001% or more.
  • the preferable lower limit of the Mg content is 0.0005% or more, more preferably 0.0006% or more.
  • a preferable lower limit of the REM content is 0.0005% or more, more preferably 0.001% or more.
  • the preferred ranges of the contents of these elements are Ca: 0.001 to 0.004%, Mg: 0.0006 to 0.0015%, and REM: 0.001 to 0.01%.
  • a slab having any of the above-described component compositions is hot-wire-rolled with a reduction in area of 99% or more, and then subjected to a uniform heat treatment at 1000 to 1200 ° C. Apply.
  • high-strength hot working can be performed in rolling a thin wire rod.
  • Hot wire rolling and heat treatment for homogenization are effective for homogenizing the wire and stabilizing the non-magnetic property.
  • the slab having the above-described component composition is extremely high in area reduction of 99% or more. It is necessary to perform hot wire rod rolling at a temperature of 1000 ° C. to 1200 ° C. and then perform a uniform heat treatment.
  • the area reduction rate in hot wire rolling is set to 99% or more, and more preferably 99.5 to 99.99%.
  • the homogenization heat treatment temperature after hot wire rolling is less than 1000 ° C., the strength is increased and the cold workability is inferior. Further, the homogenization is insufficient and the super-nonmagnetic property is also inferior. Therefore, the homogenization heat treatment temperature is 1000 ° C. or higher and preferably 1050 ° C. or higher.
  • the homogenization heat treatment temperature is set to 1200 ° C. or less, and preferably 1150 ° C. or less.
  • the range of the homogenizing heat treatment temperature is limited to 1000 to 1200 ° C., preferably 1050 to 1150 ° C.
  • the effect of the wire rod according to the present embodiment is not limited to the steel wire rod, but is also manifested in a steel wire obtained by drawing a steel wire rod.
  • the characteristic as a substance of the steel wire of this embodiment is the same as that of a steel wire. That is, the steel wire of this embodiment has the same component composition and Md30 value as the steel wire described above, and exhibits super-nonmagnetic properties.
  • the steel wire of the present embodiment preferably has a tensile strength of 650 MPa or less and a tensile fracture drawing of 70% or more in order to ensure cold workability similarly to the steel material. These characteristics can be obtained by using the steel wire of the present embodiment as a material of the steel wire of the present embodiment.
  • the component composition is Mn: more than 13.0%, 20% or less, Cu: 1.0% to 4.0%, Al: 0.01% to 1.3%, N: 0.01
  • the steel wire has a tensile strength of 590 MPa or less and a tensile fracture drawing of 75% or more. By using such a steel wire, the cold workability is further improved.
  • Ni and Cu affect the magnetism of paramagnetic steel.
  • the standard deviation ⁇ of the Ni concentration variation in the central part in the cross section of the wire or the steel wire is 5% or less and the standard deviation ⁇ of the Cu concentration variation is 1.5% or less. Since the formation of a place with high magnetism is suppressed, super-nonmagnetism can be obtained stably. Therefore, it is preferable to set the standard deviation ⁇ of variation in Ni concentration to 5% or less and the standard deviation ⁇ of variation in Cu concentration to 1.5% or less. More preferably, the standard deviation ⁇ of variation in Ni concentration is 3% or less, and the standard deviation ⁇ of variation in Cu concentration is 1.0% or less.
  • the standard deviation ⁇ of the variation in the Ni concentration or Cu concentration in the center of the cross section of the wire or steel wire is determined by EPMA (electron beam microanalyzer) analysis at an arbitrary location in the center region of the cross section of the wire or steel wire. This is obtained from the result of map analysis of Ni concentration and Cu concentration.
  • EPMA electron beam microanalyzer
  • the central region of the cross section of the wire or steel wire means a region surrounded by a circle whose radius is 1/4 of the diameter of the wire or steel wire from the center when the cross sectional shape is circular.
  • the cross-sectional shape is a regular polygon having four or more sides, it means a region surrounded by a circle whose radius is 1/4 of the length of a diagonal line passing through the center from the center. .
  • the cross-sectional shape has a deformed cross-sectional shape shown in FIGS. 1 to 3 forming a steel wire coil described later, the following regions are meant.
  • a first diagonal line 21 composed of a straight line connecting one end of the first straight line portion 1a (11a) and one end of the first straight line portion 1a (11a) in the second straight line portion 2a (12a), which is the farthest end.
  • a second diagonal line 22 formed of a straight line connecting the other end of the first straight portion 1a (11a) and the end portion of the second straight portion 2a (12a) far from the other end of the first straight portion 1a (11a).
  • the shorter one of the first diagonal line 21 and the second diagonal line 22 is short, and the shorter one of the first diagonal line 21 and the second diagonal line 22 is centered on the center position 23 in the length direction of the shorter one (second diagonal line 22 in FIG. 1).
  • a region surrounded by a circle having a radius r of 1 ⁇ 4 of the length is defined as the central region of the cross section.
  • the manufacturing method of the steel wire of this embodiment is not specifically limited, A general method can be used.
  • a general method for producing a steel wire includes, for example, a step of drawing the steel wire of the present embodiment at a drawing rate of 10 to 95%, and a step of performing strand annealing at 900 to 1200 ° C. for 5 seconds to 24 hours. The method containing these is mentioned.
  • the wire drawing rate of the steel wire is preferably 10% or more, and more preferably 20% or more in order to increase the dimensional accuracy of the steel wire.
  • the wire drawing rate of the steel wire is preferably 95% or less, more preferably 90% or less in order to prevent breakage during wire drawing.
  • the strand annealing temperature is preferably 900 ° C. or higher and more preferably 1000 ° C. or higher in order to remove distortion caused by the wire drawing process. Further, the strand annealing temperature is preferably 1200 ° C. or less, and more preferably 1150 ° C. or less in order to prevent precipitation of the ferrite phase which is ferromagnetic.
  • the annealing time for strand annealing is preferably 5 seconds or more, and more preferably 20 seconds or more. The annealing time for strand annealing is preferably 24 hours or less, and more preferably 1 hour or less, in order to improve productivity.
  • the cross-sectional shape of the steel wire of the present embodiment is not particularly limited, and may be a circular shape or an irregular cross-sectional shape such as a polygon.
  • the steel wire of this embodiment has an irregular cross-sectional shape, it is preferable to have a cross-sectional shape to be described later in order to prevent deformation of the cross-sectional shape due to winding after strand annealing.
  • the steel wire coil of this embodiment is demonstrated.
  • the steel wire coil of the present embodiment is obtained by winding the steel wire of the present embodiment having a specific cross-sectional shape under specific conditions.
  • the steel wire is processed into a near-net-shaped deformed cross-sectional shape
  • the wire rod is drawn into a deformed cross-sectional shape steel wire and wound after strand annealing
  • the cross-sectional shape of the steel wire is crushed.
  • the steel wire coil of this embodiment the steel wire has a cross-sectional shape shown below so that the cross-sectional shape is not crushed even if the wire is wound after strand annealing.
  • Drawing 1 is a sectional view for explaining an example of the section shape of the steel wire wound up by the steel wire coil of this embodiment.
  • the cross-sectional shape shown in FIG. 1 is a rectangular shape, and the first straight part 1a is inclined with respect to the first side 1 having the first straight part 1a and an angle ( ⁇ ) of 30 ° or less with respect to the first straight part 1a.
  • a second side 2 having a second straight line portion 2a disposed opposite to the second side 2 and a third straight line connecting one end of the first side 1 and the end of the second side 2 closer to one end of the first side 1.
  • the angle ⁇ formed by the extending direction of the first straight line portion 1a and the extending direction of the second straight line portion 2a is 30 ° or less.
  • the second straight line portion 2a is arranged at an angle inclined with respect to the first straight line portion 1a, but the second straight line portion 2a of the second side 2 is parallel to the first straight line portion 1a. It may be.
  • strand annealing is applied to a steel wire having an irregular cross-sectional shape obtained by drawing a wire.
  • the steel wire after strand annealing is transported in a predetermined transport direction by passing through a pinch roll having a pair of rolls arranged opposite to each other, sent to a cylindrical drum around which the steel wire is wound, and wound.
  • the wound steel wire is removed from the cylindrical drum and released from the tension at the time of winding to form a steel wire coil.
  • the angle ⁇ formed above is more than 30 °, the first straight portion 1a and the second straight portion 2a are hardly brought into contact with each pair of rolls of the pinch roll, and the steel wire is sandwiched between the roll pairs. The state becomes unstable. For this reason, even if a steel wire passes a pinch roll, the control function of the conveyance direction of the steel wire by a pinch roll cannot fully be obtained. Moreover, if the angle ⁇ formed above is more than 30 °, the first straight portion 1a and the second straight portion 2a of the adjacent steel wires wound around the cylindrical drum are unlikely to be in surface contact. As a result, adjacent steel wires wound around the cylindrical drum are likely to be in point contact with each other in a cross-sectional view. When adjacent steel wires are wound in a point-contact manner in a cross-sectional view, the point-contact portion of the steel wire may be crushed and deformed by the tension during winding, or wrinkles may occur in the steel wire There is.
  • the angle ⁇ formed above is more than 30 °, the state in which the steel wire is sandwiched between roll pairs becomes unstable, so that the steel wire being conveyed rotates and the cross-sectional shape of the steel wire.
  • the apex portion of the rectangle in contact with the roll pair of pinch rolls In this case, the rectangular apex portion in the cross-sectional shape of the steel wire may be crushed and deformed, or wrinkles may be generated in the steel wire.
  • the steel wire is not deformed by the stress from the pinch roll.
  • the pinch roll when the pinch roll is not arranged, when the steel wire is wound around the cylindrical drum, the steel wire rotates and twists so that adjacent steel wires wound around the cylindrical drum can be seen in a cross-sectional view. It tends to be in point contact. For this reason, the cross-sectional shape of the steel wire is crushed and deformed due to the tension at the time of winding, or wrinkles are generated in the steel wire.
  • the angle ⁇ formed above is 30 ° or less, the stress from the pinch roll is less likely to concentrate on the rectangular apex portion in the cross-sectional shape of the steel wire. Accordingly, the rectangular apex portion in the cross-sectional shape of the steel wire is not easily crushed and deformed, or wrinkles are not easily generated in the steel wire.
  • the angle ⁇ formed is 30 ° or less, the state in which the steel wire is sandwiched between the roll pairs is stabilized. For this reason, it becomes easy to become what the 1st linear part 1a and 2nd linear part 2a of the steel wire which the steel wire coil after winding adjoins has surface contact. Therefore, by making the above-mentioned angle 30 ° or less, it is possible to effectively prevent the steel wire after strand annealing from being crushed and deformed or brazed. Further, in order to more effectively prevent the steel wire from being crushed and wrinkled, the angle formed above is preferably 15 ° or less, and is 0 ° (the second straight portion 2a of the second side 2 and the second Most preferably, it is parallel to the one linear portion 1a.
  • the first dimension (T) which is the maximum dimension of the cross-sectional shape in the direction orthogonal to the first straight part 1a and the maximum dimension of the cross-sectional shape in the direction parallel to the first straight part 1a.
  • the ratio (T / W) to the second dimension (W) is 3 or less.
  • the ratio (T / W) exceeds 3, the state in which the steel wire is sandwiched between roll pairs becomes unstable.
  • the ratio (T / W) is 3 or less, the state in which the steel wire is sandwiched between the roll pairs becomes stable, and the steel wire can be prevented from being crushed or wrinkled.
  • the ratio (T / W) is 1.5 or less in order to make the state in which the steel wire is sandwiched between roll pairs more stable and more effectively prevent the steel wire from being crushed and wrinkled. It is preferable that it is 1 or less.
  • the steel wire shown in FIG. 1 has a length L1 of the first side 1 (the same as the maximum dimension (W) in the direction parallel to the first straight portion 1a in FIG. 1).
  • the length L1 of the first side 1 and the length L2 of the second side 2 with respect to the second dimension (W) are in the range of W / 10 to W, respectively.
  • the length L1 of the first side 1 and the length L2 of the second side 2 are each less than W / 10
  • the state in which the steel wire is sandwiched between the roll pairs becomes unstable.
  • the length L1 of the first side 1 and the length L2 of the second side 2 are within the above ranges, the state in which the steel wire is sandwiched between the roll pairs becomes stable, and the steel wire is crushed or broken. Can be prevented.
  • the length L1 of the first side 1 and the length L2 of the second side 2 are preferably W / 5 to W in order to more effectively prevent the steel wire from being crushed and wrinkled.
  • the steel wire coil of this embodiment is obtained by winding a steel wire having a cross-sectional shape shown in FIG. For this reason, at the time of manufacture, the 1st straight part 1a and the 2nd straight part 2a are made to contact each of the roll pair by which the pinch roll was opposingly arranged, and the steel wire was clamped between the roll pair of pinch rolls Even if it is made to pass through, the stress from the pinch rolls is difficult to concentrate on the rectangular apex portion in the cross-sectional shape of the steel wire. Moreover, in the steel wire coil of this embodiment, the state in which the steel wire is sandwiched between the roll pairs is in a stable state.
  • the steel wire coil of this embodiment can suppress generation
  • the steel wire coil of the present embodiment is made of a soft, irregular cross-section steel wire that can be used as a near-net-shaped stainless steel wire, and is therefore suitable for forming complex non-magnetic parts. .
  • the cross-sectional shape of the steel wire wound up by the steel wire coil of this embodiment is not limited to the example shown in FIG. 2 (a) to 2 (c) are cross-sectional views showing other examples of the cross-sectional shape of the steel wire of the present embodiment.
  • a concave portion C1 is formed on the first side 1B and a concave portion C2 is formed on the second side 2B. It is only where it is formed. Therefore, in FIG. 2A, the same members as those in FIG.
  • the 2A may be formed on both the first side 1B and the second side 2B, or may be formed only on one of the first side 1B or the second side 2B. Further, the recess may be provided on the third side 3 and / or the fourth side 4. Further, the number of recesses present on each side may be one as shown in FIG. 2A, or two or more.
  • the first side 1B is formed of a first side member 1b and a second side member 1c that extend on the same straight line with the recess C1 interposed therebetween.
  • the lengths of the first side member 1b and the second side member 1c may be the same or different.
  • Concave part C1 whose width dimension is W / 10 or more does not contribute to the contact between adjacent steel wires in the wound state or the contact between the pair of pinch rolls and first straight part 1a. For this reason, as shown in FIG.
  • the width dimension LC1 of the recess C1 is the first side 1B. Is not included in the length L1. Therefore, the length L1 of the first side 1B in the cross-sectional shape shown in FIG. 2A is equal to the length L1b of the first side member 1b extending on the same straight line and the length L1c of the second side member 1c. Is the total length.
  • the second side 2B is formed of a first side member 2b and a second side member 2c that extend on the same straight line with the recess C2 interposed therebetween.
  • the lengths of the first side member 2b and the second side member 2c may be the same or different from each other.
  • the concave portion C2 having a width dimension of W / 10 or more does not contribute to contact between adjacent steel wires in a wound state or contact between the pair of pinch rolls and the second straight portion 2a.
  • the length L2 of the second side 2B in the cross-sectional shape shown in FIG. 2A is equal to the length L2b of the first side member 2b extending on the same straight line, and the length L2c of the second side member 2c. Is the total length.
  • the width dimension of the recessed portions C1 and C2 in the cross-sectional shape is less than W / 10
  • the width dimension of the concave portions C1 and C2 in the cross-sectional shape is less than W / 10
  • the first straight portion 1a and the second straight portion 2a are in contact with each of the pair of rolls arranged to face each other of the pinch roll. The impact on the stability of the current state is negligible.
  • the width dimension of the recessed part C1 in cross-sectional shape is less than W / 10
  • the width dimension of the recessed part C1 is included in the length L1 of the 1st edge
  • the width dimension of the recessed part C2 in cross-sectional shape is less than W / 10
  • the width dimension of the recessed part C2 is included in the length L2 of 2nd edge
  • the steel wire having the cross-sectional shape shown in FIG. 2 (a) is a first straight line inclined at an angle ( ⁇ ) of 30 ° or less with respect to the first side 1B having the first straight part 1a and the first straight part 1a. It includes a second side 2B having a second straight portion 2a disposed opposite to the portion 1a. Further, the steel wire having a cross-sectional shape shown in FIG. 2A has a first dimension (T) which is the maximum dimension in a direction orthogonal to the first straight part 1a having a cross-sectional shape and a first straight part 1a having a cross-sectional shape. The second dimension (W) which is the maximum dimension in the parallel direction (in FIG.
  • the length L1b of the first side member 1b, the width dimension LC1 of the recess C1, and the length L1c of the second side member 1c are summed up).
  • the ratio (T / W) is 3 or less.
  • the length L1 of the first side 1B is not less than the length L2 of the second side 2B, and the length of the first side 1B with respect to the second dimension (W).
  • the length L1 and the length L2 of the second side 2B are in the range of W / 10 to W, respectively. Therefore, in the steel wire coil in which the steel wire having the cross-sectional shape shown in FIG. 2 (a) is wound, the steel at the time of manufacture is similar to the steel wire coil in which the steel wire having the cross-sectional shape shown in FIG. It is possible to suppress the collapse of the cross-sectional shape of the line and the generation of wrinkles.
  • the steel wire having a cross-sectional shape shown in FIG. 2A has a recess C1 formed on the first side 1B and a recess C2 formed on the second side 2B, the steel wire shown in FIG.
  • the steel wire coil in which the steel wire having the cross-sectional shape shown is wound is suitable, for example, as a near net shape stainless steel wire such as a cable connector.
  • side are FIG. As shown in FIG. 2, they may extend on the same straight line, or may extend on different straight lines as in the first side of FIGS. 2 (b) and 2 (c).
  • the first side member 10b and the second side member 10c of the first side 10B are parallel to each other.
  • the dimension d1 between the position in the extending direction of the first side member 10b in the direction orthogonal to the first straight part 1a and the position in the extending direction of the second side member 10c is the first dimension (T). 1/10 or less, even if the first side member 10b and the second side member 10c of the first side 10B extend on different straight lines, the same effect as the cross-sectional shape of FIG. Is obtained.
  • first side member 10b and the second side member 10c of the first side 10B extend on different straight lines
  • the first side member and the second side member of the side may also extend on different straight lines.
  • first side member and the second side member on the second side extend in different directions, and the first side member and the second side member are parallel, in the direction orthogonal to the first straight part 1a
  • the dimension between the position in the extending direction of the first side member on the second side and the position in the extending direction of the second side member is 1/10 or less of the first dimension (T)
  • T the dimension
  • the first side member 20b of the first side 20B and the second side member 20c extend on different straight lines across the recess C1, and the first side member 20b. If the angle ⁇ in the extending direction of the second side member 20c with respect to the extending direction of the first side member 20b is 30 ° or less, the second side member 20c is not parallel to the second side member 20c. The same effect as the cross-sectional shape can be obtained. That is, as shown in FIG. 2C, the first side member 20b and the second side member 20c may be inclined relative to the method of forming a mountain, or relative to the direction of forming a valley. You may lean on.
  • the extension direction of the 1st linear part 1a is a long side member among the 1st side member 20b and the 2nd side member 20c.
  • the extension direction of the 2nd side member 20c is meant.
  • the extension direction of the 1st linear part 1a in case the length of a 1st side member and a 2nd side member is the same is the 2nd when the 1st side member and the 2nd side member are each set as a reference
  • the dimension (W) is measured and means the extending direction of the side member having the longer second dimension.
  • the first side member 20b of the first side 20B and the second side member 20c extend on different straight lines, and the first side member 20b of the first side 20B and Although the case where the second side member 20c is not parallel has been described as an example, the first side member and the second side member on the second side may also be non-parallel extending on different straight lines. In this case, if both the first side member and the second side member on the second side are inclined at 30 ° or less with respect to the extending direction of the first linear portion 1a, the cross-sectional shape of FIG. The same effect can be obtained.
  • the second straight line portion 2a is determined based on the following (1) to (4).
  • (1) When there is one straight line inclined at 30 ° or less with respect to the first straight part 1a, the straight line is defined as the second straight part 2a.
  • (2) When there are a plurality of straight lines inclined at 30 ° or less with respect to the first straight line portion 1a, the longest straight line is defined as the second straight line portion 2a.
  • (3) When there are a plurality of straight lines inclined at 30 ° or less with respect to the first straight line portion 1a and there are two or more straight lines having the longest length, the angle with the first straight line portion 1a among them. Let the straight line with the smallest difference be the second straight part 2a.
  • FIG. 3 is a cross-sectional view showing another example of the cross-sectional shape of the steel wire of the present embodiment.
  • the cross-sectional shape of the steel wire shown in FIG. 3 differs from the cross-sectional shape shown in FIG. 1 in that both ends of each side 1C, 2C, 3C, and 4C are curved, and the sides and sides are smoothly curved. It is connected.
  • the first side 1C shown in FIG. 3 has a first straight portion 11a disposed at the center in the length direction. Further, the second side 2C has a second straight line portion 12a disposed at the center in the length direction. The first straight portion 11a and the second straight portion 12a are disposed to face each other. Similar to the cross-sectional shape shown in FIG. 1, the second linear portion 12a is inclined at an angle ( ⁇ ) of 30 ° or less with respect to the first linear portion 11a. Also in the cross-sectional shape shown in FIG. 3, the first dimension (T) which is the maximum dimension in the direction orthogonal to the first straight line portion 11a and the maximum dimension in the direction parallel to the first straight line portion 11a in the cross-sectional shape. The ratio (T / W) to the second dimension (W) is 3 or less.
  • contact ranges 11b, 11c, 12b, and 12c described later of the curves are: While promoting the surface contact of the adjacent steel wires in the wound state, it has the function of improving the stability of the state in which the steel wires are sandwiched between the pair of pinch rolls. Therefore, in the first side 1C shown in FIG. 3, the total dimension of the length L11a of the first straight portion 11a and the lengths L11b and L11c of the curved contact ranges 11b and 11c is the length L1 of the first side 1C. That's it. Further, in the second side 2C shown in FIG.
  • the total dimension of the length L12a of the second straight line portion 12a and the lengths L12b and L12c of the curved contact ranges 12b and 12c is the length L2 of the second side 2C. That's it.
  • the curved contact ranges 11b and 11c (12b and 12c) are 30 ° with respect to the first straight portion 11a (or the second straight portion 12a) from the end of the first straight portion 11a (or the second straight portion 12a). This is a range from the intersection of the straight line and the curve to the end of the first straight part 11a (or the second straight part 12a).
  • the length L1 of the first side 1C is not less than the length L2 of the second side 2C, and the length L1 of the first side 1C and the second side 2C with respect to the second dimension (W).
  • Each length L2 is in the range of W / 10 to W.
  • the steel wire having a cross-sectional shape shown in FIG. 3 is inclined at an angle ( ⁇ ) of 30 ° or less with respect to the first side 1C having the first straight portion 11a and the first straight portion 11a.
  • a first dimension (T) that is the maximum dimension in a direction orthogonal to the first straight line portion 11a having a cross-sectional shape, and a second straight line having a cross-sectional shape.
  • the ratio (T / W) to the second dimension (W) which is the maximum dimension in the direction parallel to the portion 1a is 3 or less, and the length L1 of the first side 1C is equal to or greater than the length L2 of the second side 2C.
  • the length L1 of the first side 1C and the length L2 of the second side 2C with respect to the second dimension (W) are in the range of W / 10 to W, respectively. Therefore, also in the steel wire coil in which the steel wire having the cross-sectional shape shown in FIG. 3 is wound, the cross section of the steel wire at the time of manufacture is similar to the steel wire coil in which the steel wire having the cross-sectional shape shown in FIG. It becomes possible to suppress the collapse of the shape and the generation of wrinkles.
  • the cross-sectional steel wire shown in FIG. 3 is connected to each side 1C, 2C, 3C, and 4C by a smooth curve, the stress from the pinch roll is further concentrated on the apex portion in the cross-sectional shape of the steel wire. Hard to do. Moreover, the state which made the 1st linear part 11a and the 2nd linear part 12a contact each of the roll pair by which the pinch roll was opposingly arranged becomes still more stable. For this reason, the steel wire coil in which the steel wire having the cross-sectional shape shown in FIG. 3 is wound can further suppress the collapse of the cross-sectional shape of the steel wire and the generation of wrinkles at the time of manufacture.
  • the shape of the steel wire constituting the steel wire coil of the present embodiment is not limited to the cross-sectional shape shown in FIGS. 1 to 3 and can be variously changed without departing from the gist thereof.
  • the manufacturing method of the steel wire coil of this embodiment is demonstrated.
  • the wire rod of the present embodiment having the above component composition is subjected to wire drawing to obtain any of the irregular cross-sectional shapes of FIGS.
  • the wire drawing rate of the wire drawing is preferably 10 to 95% as described above.
  • the annealing temperature in strand annealing is preferably 900 to 1200 ° C., and the annealing time is preferably 5 seconds to 24 hours.
  • the steel wire is passed through a pinch roll and wound.
  • the first straight portion on the first side and the second straight portion on the second side are in contact with each of the pair of rolls arranged opposite to each other. Pass between them.
  • the steel wire is turned into the cylindrical drum while the conveying direction is controlled by the pinch roll so that the outer surface of the cylindrical drum around which the steel wire is wound and the first straight portion or the second straight portion of the steel wire face each other. Send and take up.
  • production of a wrinkle are suppressed.
  • skin pass processing is performed before passing the steel wire after strand annealing to the pinch roll. Also good.
  • the cross-sectional shape of the steel wire of this embodiment is a circle
  • production of a wrinkle do not become a problem. Therefore, when the cross-sectional shape of the steel wire of the present embodiment is circular, the steel wire may be wound into a steel wire coil by using any conventionally known method.
  • Tables 1 to 3 show the component compositions of the wire rods of the examples.
  • the tensile strength and tensile breaking drawing of the wire and steel wire were measured according to JIS Z 2241.
  • the tensile strengths of the inventive examples were all 650 MPa or less, and the tensile breaking drawing was 70% or more.
  • Mn more than 13.0%, 20% or less
  • Cu 1.0% to 4.0%
  • Al 0.01% to 1.3%
  • N 0.01 or more, less than 0.10%
  • the tensile strength was 590 MPa or less
  • the tensile fracture drawing was 75% or more.
  • Cold workability is evaluated by cutting a cylindrical sample having a diameter of 4 mm and a height of 6 mm from a wire or steel wire, and subjecting it to a cold compression process (strain rate of 10 / s) at a processing rate of 75% in the height direction. Flat disk shape. And the presence or absence of the crack in the sample after compression processing and the deformation resistance at the time of compression processing were measured.
  • the cold workability is evaluated as B (good), and when cracking occurs or when the deformation resistance is SUS304 or higher, The cold workability was evaluated as C (bad).
  • cold workability was evaluated as A (excellent).
  • the evaluation of the examples of the present invention was B (good) and A (excellent), and showed excellent cold workability.
  • Corrosion resistance was evaluated according to whether or not it was caused by carrying out a spray test for 100 hours in accordance with the salt spray test of JIS Z 2371. Corrosion resistance was evaluated as good (B) if no rusting level, and corrosion resistance was evaluated as poor (C) in the case of red rust rusting such as flow rust. All the corrosion resistance evaluations of the inventive examples were good.
  • Evaluation of magnetism was performed by applying a magnetic field of 10,000 (Oe) to the sample after cold compression processing used for evaluation of cold workability by a DC magnetization test apparatus and evaluating the magnetic flux density at that time.
  • the magnetic flux density of the example of the present invention shows 0.01 T or less, even after cold compression processing, in particular, Mn: more than 13.0%, 24.9% or less, Ni: more than 6.0%, 10.
  • 78, 91, 92, 96 and 98 are 1150 ° C., No. 7 in Table 7.
  • 79 and 93 were kept at a temperature of 1250 ° C. for 30 minutes, then cooled with water, pickled, and formed into a wire having a circular cross section.
  • some wire rods were drawn into a circular steel wire having a diameter of 4.2 mm in a cross-sectional view in a normal steel wire manufacturing process, and subjected to strand annealing that was held at 1050 ° C. for 3 minutes. No. 96 to 99 in Table 7).
  • the tensile strength, tensile fracture drawing, cold workability, corrosion resistance, and magnetism of the obtained wire and steel wire were evaluated in the same manner as described above. Moreover, the standard deviation of the segregation of Ni and Cu of the steel material and the steel wire was calculated by the following method. The results are shown in Table 7. The various results shown in Table 7 are No. Nos. 77 to 81 and 90 to 95 are characteristic values measured in the wire state. 96 to 99 are characteristic values measured in the steel wire state. Various characteristic values of the steel wire were measured by the same method as that for the wire.
  • the standard deviation of the Ni concentration and the Cu concentration of the wire rod or steel wire was calculated as follows. First, from the center of the cross section of the wire or steel wire, the map of the concentration is analyzed by EPMA analysis for any part of the area surrounded by a circle whose radius is 1/4 of the diameter of the wire or steel wire, and evaluated. did. In the EPMA analysis, Ni and Cu concentrations were measured at 200 ⁇ m vertical and 200 horizontal points at 1 ⁇ m pitch, and the standard deviation ⁇ of variations in Ni concentration and Cu concentration was obtained.
  • the present invention example in which the hot working rate of the wire (reduction rate of hot wire rolling) is 99% or more and the uniform heat treatment temperature is 1000 to 1200 ° C. has a standard deviation of Ni segregation.
  • the standard deviation of Cu segregation was 5% or less and 1.5% or less, and good cold workability and super-nonmagnetism were obtained.
  • a slab of 180 mm in diameter of steel A and CW having the composition shown in Table 1 or Table 2 manufactured in the same manner as in the process for manufacturing the wire shown in Table 4 or 5 is 69.9 mm in diameter with a reduction in area of 99.9%.
  • Hot wire rolling was performed until the hot rolling was finished at 1000 ° C. Thereafter, as a solution treatment (homogenization heat treatment), it was held at 1050 ° C.
  • the manufactured wire rod having a diameter of 6 mm in cross-sectional view is subjected to irregular wire rolling (drawing) to have the cross-sectional shape shown in FIG. 1 and the dimensions of each part changed as shown in Table 8
  • a steel wire having a cross-sectional shape was formed, and then subjected to strand annealing that was held at 1050 ° C. for 3 minutes, and then wound into a steel wire coil using the method described below.
  • T is the maximum dimension in the direction perpendicular to the first straight line part of the cross-sectional shape
  • W is the maximum dimension in the direction parallel to the first straight line part of the cross-sectional shape
  • is an angle formed by the first straight line portion 1a and the second straight line portion 2a.
  • L1 is the length of the first side 1
  • L2 is the length of the second side 2.
  • Winding method A pair of rolls arranged in parallel and opposite to each other of the pinch rolls is passed while sandwiching a steel wire so that the first straight portion 1a and the second straight portion 2a are in contact with each other and winding the steel wire while controlling the conveying direction of the steel wire. I took it.
  • the steel wire of the steel wire coil is crushed or wrinkled, and the shape evaluation is C (bad). became.
  • the steel wire coil steel wire has a cross-sectional shape of ⁇ ⁇ 30 °, T / W is 3 or less, and L1 and L2 are in the range of W / 10 to W. It turned out that it can suppress that a cross-sectional shape crush and wrinkle generate
  • a highly corrosion-resistant and super-nonmagnetic austenitic stainless steel wire rod and steel wire excellent in cold workability can be manufactured at low cost.
  • the wire rod of this embodiment, and the steel wire coil in which the steel wire and the steel wire having an irregular cross-sectional shape are wound can be cold-worked into a complex shape using this, and can be used as a product after cold working.
  • this embodiment can provide a highly corrosion-resistant and ultra-nonmagnetic product at low cost, and is extremely useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

 この超非磁性軟質ステンレス鋼線材は、質量%で、C:0.08%以下、Si:0.05%~2.0%、Mn:8.0%超、25.0%以下、P:0.06%以下、S:0.01%以下、Ni:6.0%超、30.0%以下、Cr:13.0%~25.0%、Cu:0.2%~5.0%、N:0.20%未満、Al:0.002%~1.5%を含有し、C+Nが0.20%未満で、残部がFeおよび不可避的不純物からなり、下記(a)式で表されるMd30が-150以下である。 Md30=413-462(C+N)-9.2Si-8.1Mn-9.5Ni-13.7Cr-29Cu ・・・(a)

Description

冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法
 本発明は、電子機器,医療機器部品等の超非磁性が必要とされる高耐食性の複雑形状製品に係わる。本発明は、Mn,Cuを添加してγ(オーステナイト)安定度を極端に高めると共に、冷間加工性と冷間加工ままでも超非磁性を確保できるMn、Cu含有のオーステナイト系ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法に関する。
 本願は、2012年9月27日に日本に出願された特願2012-214059号及び2013年9月24日に日本に出願された特願2013-197097号に基づき優先権を主張し、その内容をここに援用する。
 従来、耐食性と非磁性が求められる部品には、SUS304を代表とするオーステナイト系ステンレス鋼が使用されてきた。しかしながら、SUS304を加工すると、加工誘起マルテンサイト変態し、磁性が発生する。このため、SUS304は、非磁性を要求される部品には適用できなかった。
 加工された状態のままで非磁性を求められる部品には、従来、加工しても非磁性を示す高Mn・高N系のステンレス鋼が使用されてきた(例えば、特許文献1,2,3参照)。
 しかし、高Mn・高N系のステンレス鋼は、強度が高く、複雑形状に冷間加工が困難である。また、高Mn・高N系のステンレス鋼に、複雑形状に冷間加工を施しても、極微量に加工誘起マルテンサイト変態が生成して低磁性を示すため、超非磁性が得られなかった。
 このため、従来、加工誘起マルテンサイトの生成を回避すべく、前記鋼を切削加工にて所定の形状に加工して使用していたが、コストが高いという問題があった。
 また、複雑形状で冷間加工された状態のままで使用される場合は、添加元素としてCu,Al等が使用されてきた。しかしながら、Cu,Alは、耐食性に劣る、強度が低い等の問題があった。
 なお、本発明でいう超非磁性とは、例えば、製品を10000(Oe)の磁場中に置いた時に、製品が0.01T以下(好ましくは、0.007T以下)の磁束密度を示すレベルをいう。
 従来の高Mn・高Nの非磁性用のステンレス鋼では、冷間加工後の磁束密度は0.05T以下の磁束密度であり、世の中の非磁性の要求レベルを満足できるが、本発明の超非磁性の要求レベルを満足できない。
 一方、高Mn系ステンレス鋼で冷間加工性を改善した材料として、Cuを添加した材料が提案されている(例えば、特許文献4参照)。しかしながら、この材料であっても、前述したように複雑形状に冷間加工を施すと、微量な低磁性を示し、本発明でいう超非磁性が得られない問題があった。
 また、最終部品形状に近い形状を有するニアネットシェイプのステンレス鋼の異形鋼線を用いて、ケーブルのコネクター用鋼線などの複雑形状に成形することが考えられる。例えば、特許文献5には、異形断面の素線をねじり加工する技術が記載されている。しかし、ニアネットシェイプの異形断面を有する鋼線コイルの製造時には、異形加工を施した鋼線を焼鈍して巻き取ることにより、鋼線の断面形状が潰れたり、疵が発生したりし易いという不都合がある。このため、単純な板状形状以外の軟質なニアネットシェイプの異形断面を有する鋼線コイルは、実質的に製造できないという問題がある。
 従来の高Mnステンレス鋼線材や鋼線は、耐食性に加え、十分な冷間加工性と冷間加工された状態のままで超非磁性を兼ね備えるものではなかった。また、従来の技術では、製造時に鋼線の断面形状が潰れたり疵が発生したりするため、複雑なニアネットシェイプの異形断面を有する軟質な鋼線コイルは実質的に製造できなかった。
特開2011-6776号公報 特開平6-235049号公報 特開昭62-156257号公報 特開昭61-207552号公報 特開2008-17955号公報
 本発明は、複雑形状の高耐食性・超非磁性製品用の素材として好適に用いられ、冷間加工性・耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するためにオーステナイト系ステンレス鋼において、成分組成およびプロセスを種々検討した。その結果、下記1)~下記5)の知見が得られた。
 1)下記(a)式で表されるMd30の値を低減して、オーステナイトの安定度を大幅に向上させることで、強冷間加工後も磁性体である加工誘起マルテンサイト組織を完全に抑制できる。
 2)低C,N化すると共にCuやAlを含有することで、加工硬化を抑制して冷間加工性を確保できる。
 3)更に、高Mn化,低Ni化により、非磁性体のベース磁性を更に低減することで超非磁性が得られる。
 4)加えて、強熱間加工を施す線材圧延での減面率と、その後の均一化熱処理条件を規定して、ミクロな合金偏析を軽減することで超非磁性が安定する。
 5)更に、鋼線の断面形状を特定の異形断面形状とし、ストランド焼鈍を行った後に特定の条件で鋼線を巻き取ることで、最終部品形状に近い軟質な熱処理された状態のままの異形鋼線コイルを提供できる。得られた鋼線コイルは、超非磁性を維持したまま複雑形状部品への成形に好適に使用できる。
 本発明は、上記知見に基づいてなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、C:0.08%以下、Si:0.05%~2.0%、Mn:8.0%超、25.0%以下、P:0.06%以下、S:0.01%以下、Ni:6.0%超、30.0%以下、Cr:13.0%~25.0%、Cu:0.2%~5.0%、N:0.20%未満、Al:0.002%~1.5%を含有し、C+Nが0.20%未満で、残部がFeおよび不可避的不純物からなり、下記(a)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
 Md30=413-462(C+N)-9.2Si-8.1Mn-9.5Ni-13.7Cr-29Cu      ・・・・・・・(a)
 但し、(a)式中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。
(2)更に、下記A群~E群から少なくとも1群以上の条件を満たすことを特徴とする前記(1)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
 A群 更に質量%で、Mo:3.0%以下を含有し、下記(b)式で表されるMd30が-150以下を満たす。
 Md30=413-462(C+N)-9.2Si-8.1Mn-9.5Ni-13.7Cr-18.5Mo-29Cu      ・・・・・・・(b)
 但し、(b)式中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。
 B群 更に質量%で、Nb:1.0%以下、
 V:1.0%以下、
 Ti:1.0%以下、
 W:1.0%以下、
 Ta:1.0%以下の内、1種以上を含有する。
 C群 更に質量%で、Co:3.0%以下を含有する。
 D群 更に質量%で、B:0.015%以下を含有する。
 E群 更に質量%で、Ca:0.01%以下、
 Mg:0.01%以下、
 REM:0.05%以下の内、1種類以上を含有する。
(3)更に、横断面内中心部のNi濃度のばらつきの標準偏差σが5質量%以下,Cu濃度のばらつきの標準偏差σが1.5質量%以下であることを特徴とする前記(1)または(2)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
(4)更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする前記(1)または(2)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
(5)更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする前記(3)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
(6)前記(1)に記載の成分組成を有し、前記(a)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
(7)前記(2)に記載の成分組成を有し、前記(a)式、又は、前記(b)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
(8)更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする前記(6)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
(9)更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする前記(7)に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
(10)更に、横断面内中心部のNi濃度のばらつきの標準偏差σが5質量%以下、Cu濃度のばらつきの標準偏差σが1.5質量%以下であることを特徴する前記(6)~(9)のいずれかに記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
(11)巻き取られた状態の前記(6)~(9)のいずれかに記載の鋼線を具備し、前記鋼線の断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲であることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイル。
(12)巻き取られた状態の前記(10)に記載の鋼線を具備し、前記鋼線の断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲であることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイル。
(13)前記(1)または(2)に記載の成分組成を有する鋳片を、99%以上の減面率で熱間線材圧延し、その後、1000~1200℃で均一化熱処理を施すことを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材の製造方法。
(14)前記(1)または(2)に記載の線材に伸線加工を施して、断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
(15)前記(3)に記載の線材に伸線加工を施して、断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
(16)前記(4)に記載の線材に伸線加工を施して、断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
(17)前記(5)に記載の線材に伸線加工を施して、断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
 本発明のステンレス鋼線材及び鋼線は、超非磁性で優れた耐食性と冷間加工性を合わせ持つ。このため、これを素材として用いることで、耐食性に優れる超非磁性部品を安価に提供する効果を発揮する。また、本発明のステンレス鋼線コイルは、製造時の断面形状潰れや疵の発生が抑制されたものであるため、産業的にニアネットシェイプのステンレス鋼線として利用可能な軟質の異形断面鋼線を提供できる。そして、本発明の鋼線コイルに巻取られた異形断面鋼線からケーブルのコネクターなどの複雑形状の超非磁性部品に成形することが可能となる。
図1は、本実施形態の鋼線の断面形状の一例を説明するための断面図である。 図2(a)~図2(c)は、本実施形態の鋼線の断面形状の他の例を示す断面図である。 図3は、本実施形態の鋼線の断面形状の他の例を示す断面図である。
 以下、本発明の実施形態について説明する。
 先ず、本実施形態の線材の成分組成の限定理由について説明する。
 なお、以下の説明において、特に注記しない場合「%」は「質量%」を意味する。
 Cは、0.08%を超えて添加すると強度が高くなり冷間加工性に劣るため、上限を0.08%にし、好ましくは0.05%以下とする。一方、過度の低減は製造コストの増大につながるため、下限は0.001%にすることが好ましく、0.01%以上であることがより好ましい。C含有量の好ましい範囲は、0.01~0.05%である。
 Siは、脱酸のために0.05%以上添加し、好ましくは0.1%以上添加する。しかしながら、2.0%を超えてSiを添加すると冷間加工性に劣る。このため、Si含有量の上限を2.0%にし、好ましくは1.0%以下にする。Si含有量の好ましい範囲は、0.1~1.0%である。
 Mnは、冷間加工後のオーステナイトの安定度を飛躍的に高めると共に超非磁性を得るために8.0%超を添加し、好ましくは13.0%超を添加する。しかしながら、25.0%を超えてMnを添加すると、その効果は飽和するし、強度が高く、冷間加工性が悪くなる。そのため、Mn含有量の上限を25.0%にし、好ましくは20.0%以下にし、さらに好ましくは16.0%未満にする。Mn含有量の好ましい範囲は、13.0%超、20.0%以下である。Mn含有量は16.0%未満であることが更に好ましい。
 P含有量は、冷間加工性を確保するために0.06%以下にし、好ましくは0.04%以下にする。しかしながら、工業的にP含有量をゼロにすることは困難なことから、好ましい範囲は、0.01%~0.04%である。
 S含有量は、線材の熱間製造性および耐食性を確保するために0.01%以下にし、好ましくは0.005%以下にする。しかしながら、工業的にS含有量をゼロにすることは困難なことから、好ましい範囲は、0.0002~0.005%である。
 Niは、冷間加工後のオーステナイトの安定度を飛躍的に高めると共に超非磁性を得るために6.0%超を添加し、好ましくは8.0%以上を添加する。しかしながら、30.0%を超えてNiを添加すると、オーステナイト系で非磁性であっても、インバー合金のようにFe-Ni対の原子間結合数が増大し、僅かな磁気特性を示すようになる。そのため、Ni含有量の上限を30.0%とし、好ましくは20.0%以下とし、更に好ましくは10.0%未満にする。Fe-Ni対の原子間結合を極力低減することが好ましいため、Ni含有量の好ましい範囲は、8.0%以上、10.0%未満である。
 Crは、冷間加工後のオーステナイトの安定度を飛躍的に高めると共に超非磁性を得て、且つ、高耐食性を得るために13.0%以上添加し、好ましくは15.0%以上を添加する。しかしながら、25.0%を超えてCrを添加すると、強磁性体のbcc構造のδ(デルタ)-フェライトが組織の一部に生成し、磁性を示すばかりか、強度も上昇し、冷間加工性に劣る。そのため、Cr含有量の上限を25.0%に限定し、好ましくは20.0%以下にする。Cr含有量の好ましい範囲は、15.0%~20.0%である。
 Cuは、冷間加工後のオーステナイトの安定度を飛躍的に高めると共に超非磁性を得て、且つ、オーステナイトの加工硬化を抑制して冷間加工性を確保するために0.2%以上添加する。Cuは、好ましくは1.0%以上、さらに好ましくは3.0%超を添加する。しかしながら、5.0%を超えてCuを添加すると、Cuの著しい凝固偏析で熱間割れが生成するため、工業的に製造できなくなる。そのため、Cu含有量の上限を5.0%に限定し、好ましくは4.0%以下にする。Cu含有量の好ましい範囲は、1.0%~4.0%であり、更に好ましくは、3.0%超、4.0%以下である。
 Nは、0.20%以上添加すると強度が高くなり冷間加工性に劣る。そのため、N含有量の上限を0.20%未満にし、好ましくは0.10%未満にする。一方、過度にN含有量を低減させることは製造コストの増大につながるため、0.001%以上にすることが好ましく、0.01%以上にすることがより好ましい。N含有量の好ましい範囲は、0.01%以上、0.10%未満である。
 Alは、脱酸元素であり、また、Cuと同様にオーステナイトの加工硬化を抑制して冷間加工性を確保するため重要な元素であり、0.002%以上含有させ、好ましくは0.01%以上含有させる。しかしながら、1.5%を超えてAlを添加してもその効果は飽和するし、粗大介在物が生成し、冷間加工性が逆に劣化する。そのため、Al含有量の上限を1.5%にし、好ましくは1.3%以下、より好ましくは1.2%以下にする。Al含有量の好ましい範囲は、0.01%~1.2%である。
 C+Nの含有量は、軟質化させ複雑形状部品への冷間加工性を確保するため、0.20%未満に限定する。C+Nの含有量は、好ましくは0.10%以下である。
 Md30は、冷間加工後の加工誘起マルテンサイト量と成分の関係を調査して得られた指標である。Md30は、単相のオーステナイトに対して0.3の引張真歪を与えたときに、組織の50%がマルテンサイトに変態する温度である。Md30の値が小さいほど、オーステナイトが安定であり、マルテンサイトの生成が抑制される。したがって、線材の超非磁性を確保するためにMd30値を制御する必要がある。冷間加工後でも超非磁性を示すためには、Md30値を-150以下に制御する必要がある。そのため、Md30値を-150以下に限定する。好ましくは、Md30値が-170以下である。更に好ましいMd30値の範囲は-200以下である。
 不可避的不純物とは、例えば、通常のステンレス鋼の製造で混入するO:0.001~0.01%,Zr:0.0001~0.01%,Sn:0.001~0.1%,Pb:0.00005~0.01%,Bi:0.00005~0.01%,Zn:0.0005~0.01%等、原料や耐火物に含有される物質である。
 次に、本実施形態の線材の引張強さと引張破断絞りの限定理由について説明する。
 線材の引張強さが650MPa以下であると、冷間加工性が良好なものとなる。また、線材の引張破断絞りが70%以上であると、冷間加工性が良好なものとなる。そのため、本実施形態においては、冷間加工性を担保するために線材の引張強さを650MPa以下、及び、引張破断絞りを70%以上にすることが好ましい。
 上記の成分組成を有する鋳片を用いて、後述する製造方法で製造した線材の引張強さ及び引張破断絞りは、上記の範囲となる。また、これらの機械特性は、必要とされる冷間加工性に応じて、鋼の成分組成を、より厳密に制御することで、更に向上させることが出来る。
 即ち、成分組成をMn:13.0%超、20%以下、Cu:1.0%~4.0%、Al:0.01%~1.3%、N:0.01%以上、0.10%未満に制御することで、引張強さが590MPa以下、及び、引張破断絞りが75%以上の線材になる。このような限定を更に加えることにより、線材の冷間加工性は更に向上する。
 次に、本実施形態の線材の成分組成において、必要に応じて含有される成分の限定理由について説明する。
 Moは、製品の耐食性を向上するため、必要に応じて、好ましくは、0.01%以上、より好ましくは0.2%以上添加する。しかしながら、3.0%を超えてMoを添加すると、強度が高くなり、冷間加工性が劣化する。そのため、Mo含有量の上限を3.0%にし、好ましくは2.0%以下にする。Mo含有量の更に、好ましい範囲は、0.2~2.0%である。
 Nb,V,Ti,W,Taは、炭窒化物を形成して耐食性を向上するため、必要に応じて、1種類以上を添加する。Nb,V,Ti,W,Taの内、1種類以上を含有する場合、各元素の含有量は好ましくは0.01%以上、より好ましくは0.05%以上とする。これらの元素は、1.0%を超えて添加すると粗大介在物が生成し、冷間加工性が劣化する。このため、Nb,V,Ti,W,Taの含有量の上限を1.0%にし、好ましくは0.6%以下にする。好ましい各元素の含有量の範囲は、0.05~0.6%である。
 Coは、冷間加工後のオーステナイトの安定度を飛躍的に高めると共に超非磁性を得るため、必要に応じて、好ましくは、0.05%以上、より好ましくは0.2%以上を添加する。しかしながら、3.0%を超えてCoを添加すると、強度が高くなり、冷間加工性が劣化する。そのため、Co含有量の上限を3.0%にし、好ましくは1.0%以下にする。Co含有量の更に、好ましい範囲は、0.2~1.0%である。
 Bは、熱間製造性を向上させるために、必要に応じて、0.0005%以上、好ましくは0.001%以上添加する。しかしながら、0.015%を超えてBを添加すると、逆にボライドが生成して冷間加工性が劣化する。そのため、B含有量の上限を0.015%にし、好ましくは0.01%以下にする。B含有量の好ましい範囲は、0.001%~0.01%である。
 Ca,Mg,REMは、脱酸に有効な元素であり、必要に応じて1種類以上を添加する。しかし、これらの元素を過度に添加すると、軟磁性が劣化するばかりか粗大脱酸生成物が生成して冷間加工性が劣化する。そのため、Caを含有する場合には、その含有量を0.01%以下,好ましくは0.004%以下とする。Mgを含有する場合には、その含有量を0.01%以下,好ましくは0.0015%以下とする。REMを含有する場合には、その含有量を0.05%以下、好ましくは0.01%以下とする。また、Ca含有量の好ましい下限値は、0.0005%以上、より好ましくは0.001%以上である。Mg含有量の好ましい下限値は、0.0005%以上、より好ましくは0.0006%以上である。REM含有量の好ましい下限値は、0.0005%以上、より好ましくは0.001%以上である。これらの元素の含有量の好ましい範囲は、Ca:0.001~0.004%,Mg:0.0006~0.0015%,REM:0.001~0.01%である。
 次に、本実施形態の線材の製造方法について説明する。
 本実施形態の線材の製造方法では、上記のいずれかに記載の成分組成を有する鋳片を、99%以上の減面率で熱間線材圧延し、その後、1000~1200℃で均一化熱処理を施す。
 薄板,厚板,鋼管,棒圧延と異なり、細径の線材圧延では、強熱間加工を施すことが可能である。熱間線材圧延および均一化熱処理は、線材を均一化して超非磁性を安定化させるのに有効である。とりわけ、本実施形態の軟質で、且つ、冷間加工後も安定して超非磁性となる線材を得るには、上記の成分組成を有する鋳片を、合計99%以上という極めて高い減面率で熱間線材圧延し、その後、1000~1200℃で均一化熱処理を施す必要がある。
 熱間線材圧延での減面率の合計が99%未満になると材料の均一化が不足し、超非磁性が得られ難くなる。そのため、熱間線材圧延での減面率を99%以上とし、更に、好ましくは99.5~99.99%とする。
 熱間線材圧延後の均一化熱処理温度が1000℃未満になると、強度が高くなり冷間加工性に劣る上、均一化が不足するため超非磁性にも劣る。そのため、均一化熱処理温度は1000℃以上とし、1050℃以上とすることが好ましい。一方、均一化熱処理温度が1200℃を超えると強磁性であるフェライト相が析出するため、超非磁性に劣る。そのため、均一化熱処理温度は1200℃以下とし、1150℃以下とすることが好ましい。均一化熱処理温度の範囲は1000~1200℃に限定し、好ましくは1050~1150℃とする。
 次に、本実施形態の鋼線について説明する。
 本実施形態の線材の効果は、鋼線材に限らず、鋼線材を伸線加工した鋼線においても発現する。本実施形態の鋼線の物質としての特徴は、鋼線材同様である。即ち、本実施形態の鋼線は、上述した鋼線材と同様の成分組成とMd30値を有し、超非磁性を示す。
 本実施形態の鋼線は、鋼材と同様に冷間加工性を担保するため、引張強さが650MPa以下であり、引張破断絞りが70%以上のものであることが好ましい。これらの特性は、本実施形態の鋼線が、本実施形態の鋼線材を素材として利用したものであることにより得ることが出来るものである。
 また、鋼線材同様、成分組成をMn:13.0%超、20%以下、Cu:1.0%~4.0%、Al:0.01%~1.3%、N:0.01以上、0.10%未満に制御することで、引張強さが590MPa以下、及び、引張破断絞りが75%以上の鋼線になる。このような鋼線とすることにより、冷間加工性は更に向上する。
 次に、本実施形態の線材および鋼線におけるNiおよびCuの濃度分布の限定理由について説明する。
 NiやCuは常磁性鋼の磁性に影響を及ぼす。線材または鋼線の横断面内中心部のNi濃度のばらつきの標準偏差σが5%以下であって、かつCu濃度のばらつきの標準偏差σが1.5%以下であるものでは、局所的な磁性の高い場所の形成が抑制されているため、超非磁性が安定して得られる。そのため、Ni濃度のばらつきの標準偏差σを5%以下,Cu濃度のばらつきの標準偏差σを1.5%以下とすることが好ましい。より好ましくは、Ni濃度のばらつきの標準偏差σを3%以下、Cu濃度のばらつきの標準偏差σを1.0%以下とする。
 なお、線材または鋼線の横断面内中心部のNi濃度またはCu濃度のばらつきの標準偏差σは、線材または鋼線の横断面の中心領域の任意箇所を、EPMA(電子線マイクロアナライザ)分析でNi濃度およびCu濃度をマップ分析した結果から求められるものである。
 線材または鋼線の横断面の中心領域とは、横断面形状が円形である場合には、中心から線材または鋼線の直径の1/4を半径とする円で囲まれた領域を意味する。
 また、横断面形状が、辺の数が4以上の正多角形である場合には、中心から、中心を通る対角線の長さの1/4を半径とする円で囲まれた領域を意味する。
また、横断面形状が、後述する鋼線コイルを形成する図1~図3に示す異形断面形状を有するものである場合には、以下の領域を意味する。まず、第1直線部1a(11a)の一端と第2直線部2a(12a)における第1直線部1a(11a)の一端のうち遠い方の端部とを結ぶ直線からなる第1対角線21とを描く。また、第1直線部1a(11a)の他端と第2直線部2a(12a)における第1直線部1a(11a)の他端から遠い方の端部とを結ぶ直線からなる第2対角線22を描く。そして、第1対角線21と第2対角線22のうち短い方(図1においては、第2対角線22)の長さ方向の中心位置23を中心とし、第1対角線21と第2対角線22のうち短い方の長さの1/4を半径rとする円で囲まれた領域を横断面の中心領域とする。
 本実施形態の鋼線の製造方法は、特に限定されるものではなく、一般的な方法を用いることが出来る。一般的な鋼線の製造方法とは、例えば、本実施形態の鋼線材を伸線率10~95%で伸線する工程と、900~1200℃で5秒~24時間のストランド焼鈍を行う工程とを含む方法が挙げられる。
 鋼線材の伸線率は、鋼線の寸法精度を高めるため、10%以上であることが好ましく、20%以上であることがより好ましい。また、鋼線材の伸線率は、伸線中の破断を防止するため95%以下であることが好ましく、90%以下であることがより好ましい。
 ストランド焼鈍の温度は、伸線工程による歪を取り除くために900℃以上であることが好ましく、1000℃以上であることがより好ましい。また、ストランド焼鈍の温度は、強磁性であるフェライト相の析出を防止するために1200℃以下であることが好ましく、1150℃以下であることがより好ましい。
 ストランド焼鈍の焼鈍時間は、十分な焼鈍効果を得るために5秒以上であることが好ましく、20秒以上であることがより好ましい。また、ストランド焼鈍の焼鈍時間は、生産性を向上させるために、24時間以下であることが好ましく、1時間以下であることがより好ましい。
 本実施形態の鋼線の断面形状は、特に限定されるものではなく、円形であってもよいし、多角形などの異形断面形状であってもよい。本実施形態の鋼線が異形断面形状である場合、ストランド焼鈍後に巻き取ることによる断面形状の変形を防止するために、後述する断面形状とすることが好ましい。
 次に、本実施形態の鋼線コイルについて説明する。
 本実施形態の鋼線コイルは、特定の断面形状を有する本実施形態の鋼線が、特定の条件で巻き取られたものである。
 鋼線から複雑形状に加工するには、鋼線の段階で最終製品に近い形状を有するニアネットシェイプのものに加工することが好ましい。但し、鋼線をニアネットシェイプの異形断面形状に加工する場合、線材に伸線加工を施して異形断面形状の鋼線とし、ストランド焼鈍を行った後に巻き取ると、鋼線の断面形状が潰れてしまう可能性がある。そのため、本実施形態の鋼線コイルでは、ストランド焼鈍後に巻き取っても断面形状が潰れないように鋼線を以下に示す断面形状にする。
 図1は、本実施形態の鋼線コイルに巻き取られた鋼線の断面形状の一例を説明するための断面図である。図1に示す断面形状は、矩形であり、第1直線部1aを有する第1辺1と、第1直線部1aに対して30°以下の角度(α)で傾斜して第1直線部1aと対向配置された第2直線部2aを有する第2辺2と、第1辺1の一端と第2辺2における第1辺1の一端に近い方の端部とを繋ぐ直線からなる第3辺3と、第1辺1の他端と第2辺2における第1辺1の他端に近い方の端部とを繋ぐ直線からなる第4辺4とを含むものである。
 図1に示す断面形状では、第1直線部1aの延在方向と第2直線部2aの延在方向とのなす角度αが30°以下となっている。図1に示す例では、第1直線部1aに対して傾斜した角度で第2直線部2aが配置されているが、第2辺2の第2直線部2aは、第1直線部1aと平行であってもよい。
 通常、線材に伸線加工を施して得られた異形断面形状の鋼線には、ストランド焼鈍が施される。ストランド焼鈍後の鋼線は、対向配置されたロール対を有するピンチロールを通過することにより所定の搬送方向に搬送され、鋼線の巻き付けられる円筒形ドラムに送られて、巻き取られる。巻き取られた鋼線は、円筒形ドラムから取り外されて巻き取り時の張力から解放され、鋼線コイルとなる。
 図1に示す断面形状において、第1直線部1aの延在方向と第2直線部2aの延在方向とのなす角度αが30°超である場合、後述する鋼線コイルの製造方法において、ピンチロールの対向配置されたロール対のそれぞれに、第1直線部1aと第2直線部2aを接触させて、鋼線をピンチロールのロール対間に挟持させた状態で通過させると、鋼線の断面形状における矩形の頂点部分に、ピンチロールからの応力が集中する。その結果、鋼線の断面形状における頂点部分が潰れて変形したり、鋼線に疵が発生したりすることがある。
 また、上記のなす角度αが30°超であると、ピンチロールのロール対のそれぞれに、第1直線部1aと第2直線部2aを接触させにくくなり、鋼線をロール対間に挟持させた状態が不安定となる。このため、鋼線がピンチロールを通過したとしても、ピンチロールによる鋼線の搬送方向の制御機能が十分に得られない。
 しかも、上記のなす角度αが30°超であると、円筒形ドラムに巻き付けられた隣接する鋼線の第1直線部1aと第2直線部2aとが面接触している状態になりにくい。その結果、円筒形ドラムに巻き付けられた隣接する鋼線同士が、断面視で点接触している状態となりやすい。隣接する鋼線同士が断面視で点接触して巻き付けられると、鋼線の点接触している部分が、巻き取り時の張力によって潰れて変形したり、鋼線に疵が発生したりすることがある。
 また、上記のなす角度αが30°超であると、上記の鋼線をロール対間に挟持させた状態が不安定となるので、搬送中の鋼線が回転して、鋼線の断面形状における矩形の頂点部分が、ピンチロールのロール対に接触した状態になる場合がある。この場合、鋼線の断面形状における矩形の頂点部分が、潰れて変形したり、鋼線に疵が発生したりすることがある。
 なお、ピンチロールが配置されていない場合には、ピンチロールからの応力によって鋼線が変形することはない。しかし、ピンチロールが配置されていない場合には、鋼線を円筒形ドラムに巻き取る際に鋼線が回転してねじれることにより、円筒形ドラムに巻き付けられた隣接する鋼線同士が断面視で点接触している状態となりやすい。このため、巻き取り時の張力によって、鋼線の断面形状が潰れて変形したり、鋼線に疵が発生したりする。
 図1に示す断面形状は、上記のなす角度αが30°以下であるので、鋼線の断面形状における矩形の頂点部分にピンチロールからの応力が集中しにくいものとなる。よって、鋼線の断面形状における矩形の頂点部分が潰れて変形したり、鋼線に疵が発生したりしにくいものとなる。
 また、上記のなす角度αが30°以下であると、上記の鋼線をロール対間に挟持させた状態が安定する。このため、巻き取り後の鋼線コイルが隣接する鋼線の第1直線部1aと第2直線部2aとが面接触しているものになりやすくなる。したがって、上記のなす角度を30°以下とすることで、ストランド焼鈍後の鋼線が潰れて変形したり、疵付けられたりすることを効果的に防止できる。
 また、鋼線の潰れや疵をより効果的に防止するためには、上記のなす角度は15°以下であることが好ましく、0°である(第2辺2の第2直線部2aと第1直線部1aとが平行である)ことが最も好ましい。
 また、図1に示す鋼線では、第1直線部1aに直交する方向の断面形状の最大寸法である第1寸法(T)と、第1直線部1aに平行する方向の断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下とされている。上記比(T/W)が3を超えると、上記の鋼線をロール対間に挟持させた状態が、不安定となる。上記比(T/W)が3以下であると、上記の鋼線をロール対間に挟持させた状態が安定なものとなり、鋼線の潰れや疵を防止できる。上記比(T/W)は、上記の鋼線をロール対間に挟持させた状態をより安定なものとし、鋼線の潰れや疵をより効果的に防止するために、1.5以下であることが好ましく、1以下であることがより好ましい。
 また、図1に示す鋼線は、第1辺1の長さL1(図1においては第1直線部1aに平行する方向の最大寸法(W)と同じ)が第2辺2の長さL2以上であり、第2寸法(W)に対する第1辺1の長さL1および第2辺2の長さL2が、それぞれW/10~Wの範囲であるものである。第1辺1の長さL1および第2辺2の長さL2が、それぞれW/10未満であると、上記の鋼線をロール対間に挟持させた状態が、不安定となる。第1辺1の長さL1および第2辺2の長さL2が上記範囲内であると、上記の鋼線をロール対間に挟持させた状態が安定なものとなり、鋼線の潰れや疵を防止できる。第1辺1の長さL1および第2辺2の長さL2は、鋼線の潰れや疵をより効果的に防止するために、W/5~Wであることが好ましい。
 本実施形態の鋼線コイルは、図1に示す断面形状の鋼線が、巻き取られたものである。このため、製造時に、ピンチロールの対向配置されたロール対のそれぞれに、第1直線部1aと第2直線部2aとを接触させて、鋼線をピンチロールのロール対間に挟持させた状態で通過させても、鋼線の断面形状における矩形の頂点部分にピンチロールからの応力が集中しにくい。しかも、本実施形態の鋼線コイルは、上記の鋼線をロール対間に挟持させた状態が、安定した状態になる。このため、巻き取り後の鋼線コイルが、隣接する鋼線の第1直線部1aと第2直線部2aとが面接触しているものとなりやすくなる。
 これらのことにより、本実施形態の鋼線コイルは、製造時における鋼線の断面形状の潰れや疵の発生を抑制できるものとなる。また、本実施形態の鋼線コイルは、ニアネットシェイプのステンレス鋼線として利用可能な軟質の異形断面形状の鋼線からなるものであるため、複雑形状の超非磁性部品の成形に好適である。
 本実施形態の鋼線コイルに巻取られている鋼線の断面形状は、図1に示す例に限定されるものではない。
 図2(a)~図2(c)は、本実施形態の鋼線の断面形状の他の例を示す断面図である。
 図2(a)に示す鋼線の断面形状が、図1に示す鋼線の断面形状と異なるところは、第1辺1Bに凹部C1が形成されているとともに、第2辺2Bに凹部C2が形成されているところのみである。したがって、図2(a)において図1と同じ部材については、同じ符号を付し、説明を省略する。
 図2(a)に示す凹部は、第1辺1Bおよび第2辺2Bの両方に形成されていてもよいし、第1辺1Bまたは第2辺2Bの一方のみに形成されていてもよい。また、凹部は第3辺3および/または第4辺4に設けられていてもよい。また、各辺に存在する凹部の数は、図2(a)に示すように1つでもよいし、2以上でもよい。
 図2(a)に示す断面形状の鋼線では、第1辺1Bは、凹部C1を挟んで同一直線上に延在する第1辺部材1bと第2辺部材1cとから形成されている。第1辺部材1bと第2辺部材1cの長さは、同じであってもよいし、それぞれ異なっていてもよい。
 幅寸法がW/10以上である凹部C1は、巻き取られた状態の隣接する鋼線同士の接触や、ピンチロールのロール対と第1直線部1aとの接触に寄与しない。このため、図2(a)に示すように、第1辺1Bに、幅寸法がW/10以上である凹部C1が形成されている場合には、凹部C1の幅寸法LC1は第1辺1Bの長さL1に含まない。したがって、図2(a)に示す断面形状における第1辺1Bの長さL1は、同一直線上に延在する第1辺部材1bの長さL1bと、第2辺部材1cの長さL1cとを合計した長さである。
 図2(a)に示す断面形状の鋼線では、第2辺2Bは、凹部C2を挟んで同一直線上に延在する第1辺部材2bと第2辺部材2cとから形成されている。第1辺部材2bと第2辺部材2cとの長さは、同じであってもよいし、それぞれ異なっていてもよい。
 幅寸法がW/10以上である凹部C2は、巻き取られた状態の隣接する鋼線同士の接触や、ピンチロールのロール対と第2直線部2aとの接触に寄与しない。このため、第2辺2Bに、幅寸法がW/10以上である凹部C2が形成されている場合には、凹部C2の幅寸法LC2は第2辺2Bの長さL2に含まない。したがって、図2(a)に示す断面形状における第2辺2Bの長さL2は、同一直線上に延在する第1辺部材2bの長さL2bと、第2辺部材2cの長さL2cとを合計した長さである。
 なお、断面形状における凹部C1、C2の幅寸法がW/10未満である場合には、第1辺1Bおよび/または第2辺2Bに凹部が形成されていても、巻き取られた状態の隣接する鋼線同士の接触に対する影響は無視できる。また、断面形状における凹部C1、C2の幅寸法がW/10未満である場合には、ピンチロールの対向配置されたロール対のそれぞれに、第1直線部1aと第2直線部2aとが接触している状態の安定性に与える影響も無視できる。このため、断面形状における凹部C1の幅寸法がW/10未満である場合には、凹部C1の幅寸法を第1辺1Bの長さL1に含める。また、断面形状における凹部C2の幅寸法がW/10未満である場合には、凹部C2の幅寸法を第2辺2Bの長さL2に含める。
 図2(a)に示す断面形状の鋼線は、第1直線部1aを有する第1辺1Bと、第1直線部1aに対して30°以下の角度(α)で傾斜して第1直線部1aと対向配置された第2直線部2aを有する第2辺2Bとを含むものである。さらに、図2(a)に示す断面形状の鋼線は、断面形状の第1直線部1aに直交する方向の最大寸法である第1寸法(T)と、断面形状の第1直線部1aに平行する方向の最大寸法である第2寸法(W)(図2においては第1辺部材1bの長さL1bと、凹部C1の幅寸法LC1、第2辺部材1cの長さL1cとを合計した長さである)との比(T/W)が3以下であるものである。しかも、図2(a)に示す断面形状の鋼線は、第1辺1Bの長さL1が第2辺2Bの長さL2以上であり、第2寸法(W)に対する第1辺1Bの長さL1および第2辺2Bの長さL2が、それぞれW/10~Wの範囲であるものである。
 したがって、図2(a)に示す断面形状の鋼線が巻き取られた鋼線コイルにおいても、図1に示す断面形状の鋼線が巻き取られた鋼線コイルと同様に、製造時における鋼線の断面形状の潰れや疵の発生を抑制できるものとなる。
 また、図2(a)に示す断面形状の鋼線は、第1辺1Bに凹部C1が形成されているとともに、第2辺2Bに凹部C2が形成されているので、図2(a)に示す断面形状の鋼線が巻き取られた鋼線コイルは、例えば、ケーブルのコネクターなどのニアネットシェイプのステンレス鋼線として好適である。
 また、本実施形態の鋼線コイルに巻取られている鋼線の断面形状では、第1辺(および/または第2辺)の第1辺部材と第2辺部材は、図2(a)に示すように、同一直線上に延在していてもよいし、図2(b)および図2(c)の第1辺のように、異なる直線上に延在していてもよい。
 図2(b)に示す断面形状では、第1辺10Bの第1辺部材10bと第2辺部材10cとが平行となっている。この場合、第1直線部1aに直交する方向の第1辺部材10bの延在方向の位置と第2辺部材10cの延在方向の位置との間の寸法d1が、第1寸法(T)の1/10以下であれば、第1辺10Bの第1辺部材10bと第2辺部材10cとが、異なる直線上に延在していても、図2(a)の断面形状と同じ効果が得られる。
 なお、図2(b)においては、第1辺10Bの第1辺部材10bと第2辺部材10cとが、異なる直線上に延在している場合を例に挙げて説明したが、第2辺の第1辺部材と第2辺部材も異なる直線上に延在していてもよい。第2辺の第1辺部材と第2辺部材とが異なる方向に延在しており、第1辺部材と第2辺部材が平行である場合、第1直線部1aに直交する方向の、第2辺の第1辺部材の延在方向の位置と第2辺部材の延在方向の位置との間の寸法が、第1寸法(T)の1/10以下であれば、図2(a)の断面形状と同じ効果が得られる。
 また、図2(c)に示すように、第1辺20Bの第1辺部材20bと第2辺部材20cとが凹部C1を挟んで異なる直線上に延在していて、第1辺部材20bと第2辺部材20cとが平行でない場合には、第1辺部材20bの延在方向に対する第2辺部材20cの延在方向の角度θが30°以下であれば、図2(a)の断面形状と同じ効果が得られる。すなわち、第1辺部材20bと第2辺部材20cとは、図2(c)に示すように、山を形成する方法に相対的に傾いていてもよいし、谷を形成する方向に相対的に傾いていてもよい。
 なお、第1辺部材20bと第2辺部材20cとが平行でない場合、第1直線部1aの延在方向とは、第1辺部材20bと第2辺部材20cのうち、長い方の辺部材(図2(c)では、第2辺部材20c)の延在方向を意味する。なお、第1辺部材と第2辺部材との長さが同じである場合における第1直線部1aの延在方向は、第1辺部材、第2辺部材それぞれを基準とした場合の第2寸法(W)を計測し、第2寸法が長い方の辺部材の延在方向を意味する。
 なお、図2(c)においては、第1辺20Bの第1辺部材20bと第2辺部材20cとが、異なる直線上に延在していて、第1辺20Bの第1辺部材20bと第2辺部材20cとが平行でない場合を例に挙げて説明したが、第2辺の第1辺部材と第2辺部材も、異なる直線上に延在する平行でないものであってもよい。この場合、第2辺の第1辺部材と第2辺部材が共に、第1直線部1aの延在方向に対して30°以下に傾斜していれば、図2(a)の断面形状と同じ効果が得られる。
 なお、第1直線部1aに対して対向している直線が2以上存在する場合、以下の(1)~(4)に基づいて第2直線部2aを決定する。
(1)第1直線部1aに対して30°以下で傾斜している直線が1つである場合は、その直線を第2直線部2aとする。
(2)第1直線部1aに対して30°以下で傾斜している直線が複数ある場合は、最も長さの長い直線を第2直線部2aとする。
(3)第1直線部1aに対して30°以下で傾斜している直線が複数あって、最も長さの長い直線が2以上ある場合には、それらのうち第1直線部1aとの角度の差が最も小さい直線を第2直線部2aとする。
(4)第1直線部1aに対して30°以下で傾斜している直線が複数あって、最も長さの長い直線が2以上あり、それらのうち第1直線部1aとの角度の差が最も小さい直線が2以上ある場合には、それらの直線のうちいずれの直線を第2直線部2aとしてもよい。
 図3は、本実施形態の鋼線の断面形状の他の例を示す断面図である。図3に示す鋼線の断面形状が、図1に示す断面形状と異なるところは、各辺1C、2C、3C、4Cの両端部が曲線となっており、辺と辺とが滑らかな曲線によって繋がっているところである。
 図3に示す第1辺1Cは、長さ方向中央に配置された第1直線部11aを有している。また、第2辺2Cは、長さ方向中央に配置された第2直線部12aを有している。第1直線部11aと第2直線部12aとは、対向配置されている。図1に示す断面形状と同様に、第1直線部11aに対して第2直線部12aは30°以下の角度(α)で傾斜している。
 また、図3に示す断面形状においても、第1直線部11aに直交する方向の最大寸法である第1寸法(T)と、断面形状の第1直線部11aに平行する方向の最大寸法である第2寸法(W)との比(T/W)は3以下である。
 図3に示すように、第1辺1C(および/または第2辺2C)の一方または両方の端部が曲線である場合、曲線のうちの後述する接触範囲11b、11c、12b、12cは、巻き取られた状態の隣接する鋼線同士の面接触を促進するとともに、鋼線をピンチロールのロール対間に挟持させた状態の安定性を向上させる機能を有する。
 したがって、図3に示す第1辺1Cでは、第1直線部11aの長さL11aと、曲線の接触範囲11b、11cの長さL11b、L11cとの合計寸法を、第1辺1Cの長さL1という。また、図3に示す第2辺2Cでは、第2直線部12aの長さL12aと、曲線の接触範囲12b、12cの長さL12b、L12cとの合計寸法を、第2辺2Cの長さL2という。
 曲線の接触範囲11b、11c(12b、12c)は、第1直線部11a(または第2直線部12a)の端部から、第1直線部11a(または第2直線部12a)に対して30°の角度で傾斜する直線を描き、その直線と曲線との交点から、第1直線部11a(または第2直線部12a)の端部までの範囲である。
 図3に示す断面形状においても、第1辺1Cの長さL1が第2辺2Cの長さL2以上であり、第2寸法(W)に対する第1辺1Cの長さL1および第2辺2Cの長さL2は、それぞれW/10~Wの範囲である。
 図3に示す断面形状の鋼線は、第1直線部11aを有する第1辺1Cと、第1直線部11aに対して30°以下の角度(α)で傾斜して第1直線部11aと対向配置された第2直線部12aを有する第2辺2Cとを含み、断面形状の第1直線部11aに直交する方向の最大寸法である第1寸法(T)と、断面形状の第1直線部1aに平行する方向の最大寸法である第2寸法(W)との比(T/W)が3以下であり、第1辺1Cの長さL1が第2辺2Cの長さL2以上であり、第2寸法(W)に対する第1辺1Cの長さL1および第2辺2Cの長さL2が、それぞれW/10~Wの範囲であるものである。
 したがって、図3に示す断面形状の鋼線が巻き取られた鋼線コイルにおいても、図1に示す断面形状の鋼線が巻き取られた鋼線コイルと同様に、製造時における鋼線の断面形状の潰れや疵の発生を抑制できるものとなる。
 さらに、図3に示す断面形状の鋼線は、各辺1C、2C、3C、4Cが滑らかな曲線によって繋がっているため、鋼線の断面形状における頂点部分にピンチロールからの応力がより一層集中しにくい。また、ピンチロールの対向配置されたロール対のそれぞれに、第1直線部11aと第2直線部12aとを接触させた状態が、より一層安定する。このため、図3に示す断面形状の鋼線が巻き取られた鋼線コイルは、より一層、製造時における鋼線の断面形状の潰れや疵の発生を抑制できるものとなる。
 なお、本実施形態の鋼線コイルを構成する鋼線の形状は、図1~図3に示す断面形状に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 次に、本実施形態の鋼線コイルの製造方法について説明する。
 本実施形態の鋼線コイルを製造するには、まず、上記成分組成を有する本実施形態の線材に伸線加工を施して、図1~図3のいずれかの異形断面形状とし、ストランド焼鈍を施して鋼線とする。線材の伸線加工の伸線率は、上述したように10~95%であることが好ましい。また、上述したように、ストランド焼鈍における焼鈍温度は900~1200℃であることが好ましく、焼鈍時間は5秒~24時間であることが好ましい。
 本実施形態の鋼線コイルの製造方法では、ストランド焼鈍を施した後、鋼線をピンチロールに通過させて巻き取る。本実施形態において、鋼線をピンチロールに通過させる際には、ピンチロールの対向配置されたロール対のそれぞれに、第1辺の第1直線部と第2辺の第2直線部が接触するように挟んで通過させる。そして、ピンチロールによって、鋼線の巻き付けられる円筒形ドラムの外面と、鋼線の第1直線部または第2直線部とが対向する方向に搬送方向を制御しながら、鋼線を円筒形ドラムに送って巻き取る。このことにより、本実施形態の鋼線コイルの製造方法では、製造時における鋼線の断面形状の潰れや疵の発生が抑制される。
 なお、本実施形態の鋼線コイルの製造方法においては、ストランド焼鈍後の鋼線をピンチロールに通過させる前に、断面形状を矯正したり転移を導入したりするために、スキンパス加工を施してもよい。
 なお、本実施形態の鋼線の断面形状が円形である場合には、製造時における鋼線の断面形状の潰れや疵の発生が問題となることはない。したがって、本実施形態の鋼線の断面形状が円形である場合には、従来公知の如何なる方法を用いて鋼線を巻き取って鋼線コイルとしてもよい。
 以下に本実施形態の実施例について説明する。
 表1~表3に実施例の線材の成分組成を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 ステンレス鋼の安価溶製プロセスであるAOD(Argon Oxygen Decarburization)溶製を想定し、100kgの真空溶解炉にて溶解し、表1~表3に示す成分組成を有する直径180mmの鋳片に鋳造した。得られた鋳片を直径6mmまで熱間線材圧延(減面率:99.9%)し、1000℃で熱間圧延を終了した。その後、溶体化処理(均一化熱処理)として1050℃で30分間保持した後に水冷し、酸洗を行い断面視円形の線材とした。
 また、一部の線材については、通常の鋼線の製造工程で、直径4.2mmの断面視円形の鋼線に伸線加工し、1050℃で3分間保持するストランド焼鈍を施し、鋼線とした。
 そして、得られた線材および鋼線の引張強さ,引張破断絞り,冷間加工性,耐食性と磁性を評価した。その評価結果を表4~表6に示す。なお、表4~6に示す各種結果は、No.1、3、5~76、82~89、116~119については線材状態で測定した特性値であり、No.2、4については鋼線状態で測定した特性値である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 線材と鋼線の引張強さ,引張破断絞りは、JIS Z 2241に準拠し、測定した。
 本発明例の引張強さはいずれも650MPa以下,引張破断絞りは70%以上であった。
 更に、Mn:13.0%超、20%以下、Cu:1.0%~4.0%、Al:0.01%~1.3%、N:0.01以上、0.10%未満に成分組成を適正化した本発明例は、引張強さは590MPa以下,引張破断絞りは75%以上と良好な値を示した。
 冷間加工性の評価は、線材、または鋼線から径4mm、高さ6mmの円筒形サンプルを切り出し、高さ方向に加工率75%で冷間圧縮加工(歪み速度10/s)を施し、平円盤状にした。そして、圧縮加工後のサンプルおける割れの有無および圧縮加工時の変形抵抗を測定した。
 割れが無く、SUS304の変形抵抗(1100MPa)より小さい変形抵抗で冷間圧縮加工できる場合、冷間加工性をB(good)と評価し、割れが発生した場合やSUS304以上の変形抵抗の場合、冷間加工性をC(bad)と評価した。また、SUSXM7並(1000MPa以下)の変形抵抗を示す場合、冷間加工性をA(excellent)として評価した。
 本発明例の評価はB(good)およびA(excellent)であり、優れた冷間加工性を示した。
 耐食性の評価は、JIS Z 2371の塩水噴霧試験に従い、100時間の噴霧試験を実施し、発銹するか否かで評価した。無発銹レベルであれば耐食性を良好(B),流れ錆等赤錆発銹の場合は耐食性を不良(C)として評価した。
 本発明例の耐食性の評価は全て良好であった。
 磁性の評価は、冷間加工性の評価に使用した冷間圧縮加工後のサンプルについて、直流磁化試験装置により10000(Oe)の磁場を付与して、その時の磁束密度で評価した。
 本発明例の磁束密度は、冷間圧縮加工後にも係わらず、0.01T以下を示し、特に、Mn:13.0%超、24.9%以下、Ni:6.0%超、10.0%未満、Md30:-167以下に適正化することで、0.007T以下の良好な超非磁性を示した。
 次に、NiやCuの局所偏析に及ぼす熱間線材圧延での熱間加工率および、その後の均一化熱処理温度の影響を調査した。
 表4または表5に示す線材を製造する工程と同様にして製造した表1または表2に示す成分組成の鋼A,CWの直径180mmの鋳片を、表7に示す減面率で直径6mm(減面率99.9%)、直径18mm(減面率99.0%),直径30mm(減面率97.0%)のいずれかまで熱間線材圧延し、1000℃で熱間圧延を終了した。その後、溶体化処理(均一化熱処理)として、表7のNo.80,94は900℃、表7のNo.77,81,90,95,97,99は1050℃、表7のNo.78,91,92,96,98は1150℃、表7のNo.79,93は1250℃の温度で30分間保持した後に水冷し、酸洗を行い断面視円形の線材とした。また、一部の線材については、通常の鋼線の製造工程で、直径4.2mmの断面視円形の鋼線に伸線加工し、1050℃で3分間保持するストランド焼鈍を施し、鋼線(表7のNo.96~99)とした。
 そして、得られた線材、鋼線の引張強さ,引張破断絞り,冷間加工性,耐食性,磁性を上記と同様にして評価した。また、下記の方法により鋼材及び鋼線のNiとCuの偏析の標準偏差を算出した。その結果を表7に示す。なお、表7に示す各種結果は、No.77~81、90~95については線材状態で測定した特性値であり、No.96~99については鋼線状態で測定した特性値である。鋼線の各種特性値は、上述の線材と同じ方法で測定を行った。
Figure JPOXMLDOC01-appb-T000007
 線材または鋼線のNi濃度とCu濃度の標準偏差(横断面内中心部のばらつきの標準偏差σ)は、以下のようにして算出した。まず、線材または鋼線の横断面の中心から、線材または鋼線の直径の1/4を半径とする円で囲まれた領域の任意箇所を、EPMA分析で濃度のマップ分析を実施し、評価した。EPMA分析では、1μmピッチで縦200点、横200点の格子状の測定箇所についてNiおよびCuの濃度を測定し、Ni濃度およびCu濃度のばらつきの標準偏差σを求めた。
 表7に示すように、線材の熱間加工率(熱間線材圧延の減面率)を99%以上、均一化熱処理温度を1000~1200℃にした本発明例は、Ni偏析の標準偏差が5%以下、Cu偏析の標準偏差が1.5%以下であり、良好な冷間加工性と超非磁性が得られた。
 次に、焼鈍が施され、軟質で形状が潰れない異形断面形状の鋼線コイルを得るために、ストランド焼鈍後の形状潰れに及ぼす鋼線の異形断面形状の影響を調査した。
 表4または表5に示す線材を製造する工程と同様にして製造した表1または表2に示す成分組成の鋼A,CWの直径180mmの鋳片を、減面率99.9%で直径6mmまで熱間線材圧延し、1000℃で熱間圧延を終了した。その後、溶体化処理(均一化熱処理)として1050℃で30分間保持した後に水冷し、酸洗を行って断面視円形の線材とした。
 製造した直径6mmの断面視円形の線材に異形線圧延(伸線加工)を施して、図1に示す断面形状を有し、各部の寸法を表8に示すように変化させた4角形の異形断面形状の鋼線を成形し、その後、1050℃で3分間保持するストランド焼鈍を施した後、以下に示す方法を用いて巻き取り、鋼線コイルにした。
 表8において「T」は断面形状の第1直線部に直交する方向の最大寸法であり、「W」は断面形状の第1直線部に平行する方向の最大寸法である。「α」は第1直線部1aと第2直線部2aとのなす角度である。「L1」は第1辺1の長さであり、「L2」は第2辺2の長さである。
「巻き取り方法」
 ピンチロールの平行に対向配置されたロール対のそれぞれに、第1直線部1aと第2直線部2aが接触するように鋼線を挟んで通過させて、鋼線の搬送方向を制御しながら巻き取った。
Figure JPOXMLDOC01-appb-T000008
 鋼線コイルの鋼線について、断面形状に潰れがあるか否かと、疵があるか否かを目視にて評価(形状評価)した。そして、潰れや疵が存在する場合をC(bad),潰れが存在しない場合をB(good)、潰れも疵も存在しない場合をA(excellent)として評価した。その評価結果を表8に示す。
 表8に示すように、T/W,α,L1のいずれかが本実施形態の範囲外の場合、鋼線コイルの鋼線に、潰れや疵が発生し、形状評価がC(bad)となった。
 表8より、鋼線コイルの鋼線の断面形状をα≦30°,T/Wが3以下,L1およびL2がW/10~Wの範囲である異形断面形状にすることで、鋼線に断面形状の潰れや疵が発生することを抑制できることが分かった。
 以上の各実施例から明らかなように、本実施形態により、冷間加工性に優れる高耐食性・超非磁性のオーステナイト系ステンレス鋼線材および鋼線を安価に製造できる。本実施形態の線材、及び、鋼線、異形断面形状の鋼線が巻き取られた鋼線コイルは、これを用いて複雑形状に冷間加工が可能で、且つ、冷間加工後の製品にて超非磁性を付与することが可能である。
 したがって、本実施形態は、高耐食性・超非磁性製品を安価に提供することができ、産業上極めて有用である。
 1、1B、1C:第1辺、1a、11a:第1直線部、2、2B、2C:第2辺、2a、12a:第2直線部。

Claims (17)

  1.  質量%で、
     C:0.08%以下、
     Si:0.05%~2.0%、
     Mn:8.0%超、25.0%以下、
     P:0.06%以下、
     S:0.01%以下、
     Ni:6.0%超、30.0%以下、
     Cr:13.0%~25.0%、
     Cu:0.2%~5.0%、
     N:0.20%未満、
     Al:0.002%~1.5%を含有し、
     C+Nが0.20%未満で、
     残部がFeおよび不可避的不純物からなり、
     下記(a)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
     Md30=413-462(C+N)-9.2Si-8.1Mn-9.5Ni-13.7Cr-29Cu      ・・・・・・・(a)
     但し、(a)式中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。
  2.  更に、下記A群~E群から少なくとも1群以上の条件を満たすことを特徴とする請求項1に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
     A群 更に質量%で、Mo:3.0%以下を含有し、下記(b)式で表されるMd30が-150以下を満たす。
     Md30=413-462(C+N)-9.2Si-8.1Mn-9.5Ni-13.7Cr-18.5Mo-29Cu      ・・・・・・・(b)
     但し、(b)式中の元素記号は、当該元素の鋼中における含有量(質量%)を意味する。
     B群 更に質量%で、Nb:1.0%以下、
     V:1.0%以下、
     Ti:1.0%以下、
     W:1.0%以下、
     Ta:1.0%以下の内、1種以上を含有する。
     C群 更に質量%で、Co:3.0%以下を含有する。
     D群 更に質量%で、B:0.015%以下を含有する。
     E群 更に質量%で、Ca:0.01%以下、
     Mg:0.01%以下、
     REM:0.05%以下の内、1種類以上を含有する。
  3.  更に、横断面内中心部のNi濃度のばらつきの標準偏差σが5質量%以下,Cu濃度のばらつきの標準偏差σが1.5質量%以下であることを特徴とする請求項1または2に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
  4.  更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする請求項1または2に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
  5.  更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする請求項3に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材。
  6.  請求項1に記載の成分組成を有し、前記(a)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
  7.  請求項2に記載の成分組成を有し、前記(a)式、又は、前記(b)式で表されるMd30が-150以下であることを特徴する冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
  8.  更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする請求項6に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
  9.  更に引張強さが650MPa以下、引張破断絞りが70%以上であることを特徴とする請求項7に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
  10.  更に、横断面内中心部のNi濃度のばらつきの標準偏差σが5質量%以下、Cu濃度のばらつきの標準偏差σが1.5質量%以下であることを特徴する請求項6~9のいずれか一項に記載の冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線。
  11.  巻き取られた状態の請求項6~9のいずれか一項に記載の鋼線を具備し、
     前記鋼線の断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、
     前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、
     前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲であることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイル。
  12.  巻き取られた状態の請求項10に記載の鋼線を具備し、
     前記鋼線の断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、
     前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、
     前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲であることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイル。
  13.  請求項1または2に記載の成分組成を有する鋳片を、99%以上の減面率で熱間線材圧延し、その後、1000~1200℃で均一化熱処理を施すことを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材の製造方法。
  14.  請求項1または2に記載の線材に伸線加工を施して、
     断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、
     ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
  15.  請求項3に記載の線材に伸線加工を施して、
     断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、
     ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
  16.  請求項4に記載の線材に伸線加工を施して、
     断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、
     ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
  17.  請求項5に記載の線材に伸線加工を施して、
     断面形状が、第1直線部を有する第1辺と、前記第1直線部と平行、または前記第1直線部に対して30°以下の角度で傾斜して前記第1直線部と対向配置された第2直線部を有する第2辺とを含み、前記第1直線部に直交する方向の前記断面形状の最大寸法である第1寸法(T)と、前記第1直線部に平行する方向の前記断面形状の最大寸法である第2寸法(W)との比(T/W)が3以下であり、前記第1辺の長さが前記第2辺の長さ以上であり、前記第2寸法(W)に対する前記第1辺の長さおよび前記第2辺の長さが、それぞれW/10~Wの範囲である異形断面形状の鋼線とし、
     ストランド焼鈍を施した後、前記鋼線をピンチロールに、対向配置されたロール対のそれぞれに前記第1直線部と前記第2直線部が接触するように挟んで通過させて、前記鋼線を巻き取ることを特徴とする冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線コイルの製造方法。
PCT/JP2013/076011 2012-09-27 2013-09-26 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法 WO2014050943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13841641.7A EP2902521B1 (en) 2012-09-27 2013-09-26 Super non-magnetic soft stainless steel wire material having excellent cold workability and corrosion resistance, method for manufacturing same, steel wire, steel wire coil, and method for manufacturing same
KR1020157007595A KR101660197B1 (ko) 2012-09-27 2013-09-26 냉간 가공성, 내식성이 우수한 초비자성 연질 스테인리스 강선재 및 그 제조 방법, 강선, 강선 코일 및 그 제조 방법
CN201380049985.0A CN104662189B (zh) 2012-09-27 2013-09-26 冷加工性、耐蚀性优良的超级无磁性软质不锈钢线材及其制造方法、钢丝、钢丝卷及其制造方法
US14/430,144 US9863016B2 (en) 2012-09-27 2013-09-26 Super non-magnetic soft stainless steel wire material having excellent cold workability and corrosion resistance, method for manufacturing same, steel wire, steel wire coil, and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-214059 2012-09-27
JP2012214059 2012-09-27
JP2013-197097 2013-09-24
JP2013197097A JP6259621B2 (ja) 2012-09-27 2013-09-24 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法

Publications (1)

Publication Number Publication Date
WO2014050943A1 true WO2014050943A1 (ja) 2014-04-03

Family

ID=50388338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076011 WO2014050943A1 (ja) 2012-09-27 2013-09-26 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法

Country Status (7)

Country Link
US (1) US9863016B2 (ja)
EP (1) EP2902521B1 (ja)
JP (1) JP6259621B2 (ja)
KR (1) KR101660197B1 (ja)
CN (1) CN104662189B (ja)
TW (1) TWI495735B (ja)
WO (1) WO2014050943A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200339A (zh) * 2015-09-18 2015-12-30 江苏省利金新材科技有限公司 高氮耐磨不锈钢矿筛丝加工工艺
CN107043011A (zh) * 2017-04-29 2017-08-15 江苏金火炬金属制品有限公司 一种钢丝卷退火进料设备
KR20220010185A (ko) 2020-07-17 2022-01-25 주식회사 포스코 비자성 오스테나이트계 스테인리스강

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6477181B2 (ja) * 2015-04-07 2019-03-06 新日鐵住金株式会社 オーステナイト系ステンレス鋼
CN104878301B (zh) * 2015-05-15 2017-05-03 河冶科技股份有限公司 喷射成形高速钢
CN107130175A (zh) * 2017-06-23 2017-09-05 上海材料研究所 一种高强度耐腐蚀无磁不锈钢及其制备方法
JP7262172B2 (ja) * 2018-02-23 2023-04-21 日鉄ステンレス株式会社 高Mnオーステナイト系ステンレス鋼
SE541925C2 (en) * 2018-04-26 2020-01-07 Suzuki Garphyttan Ab A stainless steel
EP3950970A4 (en) * 2019-03-27 2022-11-23 NIPPON STEEL Stainless Steel Corporation STEEL ROD
RU2696792C1 (ru) * 2019-05-23 2019-08-06 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Коррозионно-стойкая высокопрочная немагнитная сталь
CN111041364A (zh) * 2019-12-18 2020-04-21 江苏大屯矿业设备有限公司 一种洗选筛网专用耐磨无磁不锈钢丝及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207552A (ja) 1985-03-12 1986-09-13 Kawasaki Steel Corp 加工安定性に優れた非磁性オ−ステナイト系ステンレス鋼
JPS62156257A (ja) 1985-12-27 1987-07-11 Kobe Steel Ltd 高強度非磁性冷延鋼板
JPH0416241B2 (ja) * 1981-10-17 1992-03-23 Kobe Steel Ltd
JPH04272158A (ja) * 1991-02-28 1992-09-28 Nippon Stainless Steel Co Ltd 加工硬化性の少ない非磁性ステンレス鋼
JPH06235049A (ja) 1993-02-09 1994-08-23 Nippon Steel Corp 高強度非磁性ステンレス鋼及びその製造方法
JPH1094812A (ja) * 1996-09-24 1998-04-14 Daido Steel Co Ltd 線材圧延方法及び装置
JP2003027138A (ja) * 2001-05-10 2003-01-29 High Frequency Heattreat Co Ltd 熱処理異形鋼線とその製造方法及び装置
JP2008017955A (ja) 2006-07-11 2008-01-31 Hi-Lex Corporation 骨切りワイヤおよびそれに用いるワイヤガイドチューブ
JP2010196142A (ja) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd 高Mnオーステナイト系ステンレス鋼と服飾用金属部品
JP2011006776A (ja) 2009-04-27 2011-01-13 Daido Steel Co Ltd 高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB790303A (en) 1954-07-29 1958-02-05 Gen Electric Co Ltd Improvements in or relating to wire composed of nickel base alloy
GB784625A (en) 1954-10-02 1957-10-09 Straumann Inst Ag Non-magnetic thermally compensated spring
CA2187720C (en) * 1995-10-14 2005-06-14 Kohachiro Ohashi Method and an apparatus for manufacturing wire
US5832765A (en) 1995-10-14 1998-11-10 Daido Tokushuko Kabushiki Kaisha Method and an apparatus for manufacturing wire
KR100662963B1 (ko) * 2001-05-10 2006-12-28 고오슈우하네쓰렌 가부시기가이샤 열처리 이형강선 제조방법
FR2827876B1 (fr) 2001-07-27 2004-06-18 Usinor Acier inoxydable austenitique pour deformation a froid pouvant etre suivi d'un usinage
JP5544633B2 (ja) * 2007-07-30 2014-07-09 新日鐵住金ステンレス株式会社 衝撃吸収特性に優れた構造部材用オーステナイト系ステンレス鋼板
JP5744678B2 (ja) 2010-10-07 2015-07-08 新日鐵住金ステンレス株式会社 耐疲労性に優れた析出硬化型の準安定オーステナイト系ステンレス鋼線およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416241B2 (ja) * 1981-10-17 1992-03-23 Kobe Steel Ltd
JPS61207552A (ja) 1985-03-12 1986-09-13 Kawasaki Steel Corp 加工安定性に優れた非磁性オ−ステナイト系ステンレス鋼
JPS62156257A (ja) 1985-12-27 1987-07-11 Kobe Steel Ltd 高強度非磁性冷延鋼板
JPH04272158A (ja) * 1991-02-28 1992-09-28 Nippon Stainless Steel Co Ltd 加工硬化性の少ない非磁性ステンレス鋼
JPH06235049A (ja) 1993-02-09 1994-08-23 Nippon Steel Corp 高強度非磁性ステンレス鋼及びその製造方法
JPH1094812A (ja) * 1996-09-24 1998-04-14 Daido Steel Co Ltd 線材圧延方法及び装置
JP2003027138A (ja) * 2001-05-10 2003-01-29 High Frequency Heattreat Co Ltd 熱処理異形鋼線とその製造方法及び装置
JP2008017955A (ja) 2006-07-11 2008-01-31 Hi-Lex Corporation 骨切りワイヤおよびそれに用いるワイヤガイドチューブ
JP2010196142A (ja) * 2009-02-27 2010-09-09 Nippon Yakin Kogyo Co Ltd 高Mnオーステナイト系ステンレス鋼と服飾用金属部品
JP2011006776A (ja) 2009-04-27 2011-01-13 Daido Steel Co Ltd 高耐食・高強度・非磁性ステンレス鋼並びに高耐食・高強度・非磁性ステンレス鋼製品及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200339A (zh) * 2015-09-18 2015-12-30 江苏省利金新材科技有限公司 高氮耐磨不锈钢矿筛丝加工工艺
CN107043011A (zh) * 2017-04-29 2017-08-15 江苏金火炬金属制品有限公司 一种钢丝卷退火进料设备
CN107043011B (zh) * 2017-04-29 2018-11-27 江苏金火炬金属制品有限公司 一种钢丝卷退火进料设备
KR20220010185A (ko) 2020-07-17 2022-01-25 주식회사 포스코 비자성 오스테나이트계 스테인리스강

Also Published As

Publication number Publication date
EP2902521A1 (en) 2015-08-05
KR101660197B1 (ko) 2016-09-26
JP2014080684A (ja) 2014-05-08
TW201425602A (zh) 2014-07-01
TWI495735B (zh) 2015-08-11
US9863016B2 (en) 2018-01-09
JP6259621B2 (ja) 2018-01-10
EP2902521B1 (en) 2019-05-01
US20150225806A1 (en) 2015-08-13
KR20150044963A (ko) 2015-04-27
EP2902521A4 (en) 2016-04-27
CN104662189A (zh) 2015-05-27
CN104662189B (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
JP6259621B2 (ja) 冷間加工性、耐食性に優れた超非磁性軟質ステンレス鋼線材及びその製造方法、鋼線、鋼線コイル並びにその製造方法
WO2015190422A1 (ja) 高強度複相ステンレス鋼線材、高強度複相ステンレス鋼線とその製造方法、ならびにばね部品
JP6302722B2 (ja) ばね疲労特性に優れた高強度複相ステンレス鋼線材、及びその製造方法、ならびにばね疲労特性に優れた高強度複相ステンレス鋼線
JP6004653B2 (ja) フェライト系ステンレス鋼線材、及び鋼線、並びに、それらの製造方法
EP3483294B1 (en) Rolled h-shaped steel and manufacturing method thereof
KR20140105849A (ko) 면내 이방성이 작은 페라이트·오스테나이트 2상 스테인리스 강판 및 그 제조 방법
CN103890214A (zh) 双相不锈钢
JP6126881B2 (ja) ねじり加工性に優れるステンレス鋼線とその製造方法、並びに、ステンレス鋼線材とその製造方法
JP6560881B2 (ja) 極低透磁率ステンレス鋼線材、ならびに耐久性に優れる鋼線、異形線
KR101850231B1 (ko) 페라이트계 스테인리스강 및 그 제조 방법
WO2019240127A1 (ja) ステンレス鋼線用の線材、ステンレス鋼線およびその製造方法、ならびに、ばね部品
WO2017013850A1 (ja) フェライト系ステンレス熱延鋼板および熱延焼鈍板、ならびにそれらの製造方法
JP6359783B1 (ja) オーステナイト系ステンレス鋼板およびその製造方法
JP2012251191A (ja) 電磁鋼板およびその製造方法
JPWO2014157146A1 (ja) オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法
WO2014208134A1 (ja) ファスナー用金属部品及び、それを用いるスライドファスナー、並びに、ファスナー用金属部品の製造方法
JP2013049918A (ja) 電磁ステンレス鋼及びその製造方法
JP7337248B2 (ja) 電磁ステンレス棒状鋼材
JP7504672B2 (ja) ステンレス鋼線とその製造方法、及び、ばね部品
JP2019522726A (ja) 曲げ加工性に優れたリーン二相ステンレス鋼
JP7215938B2 (ja) 高強度非磁性ステンレス鋼板およびそれを用いた携帯電子機器
JP7506479B2 (ja) オーステナイト系ステンレス鋼材及びその製造方法、並びに電子機器部材
JP6796483B2 (ja) 軟磁性鋼板
JP2023144727A (ja) マルテンサイト系ステンレス熱間圧延線材及びその製造方法、並びにマルテンサイト系ステンレス焼鈍線材
JP6011509B2 (ja) 磁気シールド特性に優れた鋼管及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13841641

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14430144

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013841641

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157007595

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE