WO2014049976A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2014049976A1
WO2014049976A1 PCT/JP2013/005254 JP2013005254W WO2014049976A1 WO 2014049976 A1 WO2014049976 A1 WO 2014049976A1 JP 2013005254 W JP2013005254 W JP 2013005254W WO 2014049976 A1 WO2014049976 A1 WO 2014049976A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery
rare earth
positive electrode
transition metal
Prior art date
Application number
PCT/JP2013/005254
Other languages
English (en)
French (fr)
Inventor
山本 貴史
仁徳 杉森
学 滝尻
純一 菅谷
正信 竹内
柳田 勝功
毅 小笠原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2014538126A priority Critical patent/JP6254091B2/ja
Priority to CN201380050899.1A priority patent/CN104685696B/zh
Priority to US14/423,975 priority patent/US20150221938A1/en
Publication of WO2014049976A1 publication Critical patent/WO2014049976A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries have high energy density and high capacity, and are therefore widely used as driving power sources for mobile information terminals such as mobile phones and laptop computers. Recently, attention has been paid to power sources for power tools and electric vehicles.
  • the power source for power is required to have a high capacity that can be used for a long time and to improve a large current discharge cycle characteristic that repeatedly discharges a large current in a relatively short time.
  • Patent Document 1 proposes to suppress a decomposition reaction with an electrolytic solution by using a positive electrode active material containing a lanthanum atom on the surface.
  • Patent Document 2 a good passive film is formed on the negative electrode active material by containing at least 0.2 mol / liter of lithium bisoxalatoborate (LiBOB) together with LiPF 6 in the electrolytic solution. It has been proposed to improve characteristics and low-temperature discharge performance after cycling.
  • LiBOB lithium bisoxalatoborate
  • Patent Document 1 and Patent Document 2 have not been able to sufficiently improve the large current discharge performance.
  • An object of one embodiment of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving large current discharge performance.
  • One embodiment of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode active material is a lithium-containing transition metal having a rare earth compound attached to the surface.
  • the non-aqueous electrolyte contains an oxide and a lithium salt having an oxalato complex as an anion.
  • high current discharge performance can be improved.
  • FIG. 1 is a schematic cross-sectional view showing a cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a three-electrode test battery according to an embodiment of the present invention.
  • the positive electrode active material includes a lithium-containing transition metal oxide having a rare earth compound attached to the surface thereof, and the non-aqueous electrolyte includes a lithium salt having an oxalato complex as an anion.
  • a rare earth compound attached to the surface of a lithium-containing transition metal oxide reacts with a lithium salt having an oxalato complex as an anion in a non-aqueous electrolyte at the time of charging to form a high-quality film having lithium ion conductivity. It is thought to form on the surface of the oxide. For this reason, it is possible to suppress a decrease in the reaction rate of insertion / extraction of lithium ions, and it is possible to dramatically improve the characteristics during large current discharge.
  • one embodiment of the present invention is extremely useful in tool applications and the like that need to be discharged with a large current of 5 It and 10 It. Further, one embodiment of the present invention exhibits the same effect even when discharging with a current of 2 It or more.
  • the above-mentioned high-quality film is often generated mainly at the first charging, but it is considered that it may be generated at the second and subsequent charging.
  • a lithium salt having an oxalato complex as an anion according to an embodiment of the present invention (to distinguish from a lithium salt as a solute described later, these lithium salts may be referred to as “lithium salts as additives”), As described above, it reacts with the rare earth compound on the surface of the lithium-containing transition metal oxide during charging to form a high-quality film.
  • the lithium salt as the additive may be a lithium salt having an oxalato complex (C 2 O 4 2 ⁇ coordinated at the central atom) as an anion.
  • a lithium salt having an oxalato complex C 2 O 4 2 ⁇ coordinated at the central atom
  • Li [M (C 2 O 4 ) x R y Wherein M is a transition metal, an element selected from Groups 13, 14, and 15 of the periodic table, R is a group selected from halogen, an alkyl group, and a halogen-substituted alkyl group, and x is a positive integer. , Y is 0 or a positive integer).
  • M in the above formula is preferably boron or phosphorus.
  • LiBOB Li [B (C 2 O 4 ) 2 ]
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ]
  • Li [ P (C 2 O 4 ) 2 F 2 ] and the like LiBOB is most preferable.
  • the content ratio of the lithium salt as an additive per liter of the nonaqueous electrolyte is preferably 0.005 mol or more and 0.5 mol or less, and more preferably 0.01 mol or more and 0.2 mol or less. Is desirable.
  • the amount of the lithium salt as an additive is too small, it may not sufficiently react with the rare earth compound, and it may be difficult to sufficiently form a good-quality film.
  • the amount of the lithium salt as the additive is too large, the film becomes thick, so that the lithium insertion / release reaction is inhibited, and the cycle characteristics in large current discharge may be deteriorated.
  • the rare earth compound is preferably a rare earth hydroxide, a rare earth oxyhydroxide, or a rare earth oxide, and in particular, a rare earth hydroxide or a rare earth oxyhydroxide. desirable. This is because when these are used, the above-described effects are further exhibited.
  • the rare earth compound may partially contain a rare earth carbonate compound, a rare earth phosphate compound, or the like.
  • rare earth elements contained in the rare earth compounds include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • Samarium and erbium are preferable. This is because a neodymium compound, a samarium compound, and an erbium compound have a smaller average particle diameter than other rare earth compounds, and are more likely to be deposited more uniformly on the surface of the positive electrode active material.
  • the rare earth compound examples include neodymium hydroxide, neodymium oxyhydroxide, samarium hydroxide, samarium oxyhydroxide, erbium hydroxide, erbium oxyhydroxide and the like. Further, when lanthanum hydroxide or lanthanum oxyhydroxide is used as the rare earth compound, lanthanum is inexpensive, so that the manufacturing cost of the positive electrode can be reduced.
  • the average particle size of the rare earth compound is preferably from 1 nm to 100 nm, and more preferably from 10 nm to 50 nm. When the average particle size of the rare earth compound exceeds 100 nm, the particle size of the rare earth compound is too large relative to the particle size of the lithium-containing transition metal oxide particles, so that the surface of the lithium-containing transition metal oxide particles is a rare earth compound. Will not be covered precisely.
  • the lithium-containing transition metal oxide particle surface is too densely covered with the rare-earth compound, so that lithium ions are occluded on the lithium-containing transition metal oxide particle surface.
  • the discharge performance may deteriorate, and the charge / discharge characteristics may deteriorate.
  • an aqueous solution in which a salt of a rare earth element (eg, erbium salt) is dissolved is mixed in a solution in which the lithium-containing transition metal oxide is dispersed, and lithium is added.
  • a rare earth element salt is attached to the surface of the transition metal oxide, followed by heat treatment.
  • the heat treatment temperature is preferably 120 ° C. or higher and 700 ° C. or lower, and more preferably 250 ° C. or higher and 500 ° C. or lower.
  • the temperature is lower than 120 ° C., the moisture adsorbed on the active material is not sufficiently removed, and there is a possibility that moisture is mixed in the battery.
  • the temperature exceeds 700 ° C., the rare earth compound adhering to the surface diffuses inside, making it difficult to be present on the surface of the active material, so that it is difficult to obtain the effect.
  • the temperature is set to 250 ° C. to 500 ° C., moisture can be removed and a state where a rare earth compound is selectively attached to the surface can be formed. If it exceeds 500 ° C., a part of the rare earth compound on the surface diffuses inside, and the effect may be reduced.
  • the heat treatment temperature is the same as that in the case of the method of mixing the above aqueous solution.
  • a lithium-containing transition metal oxide and a rare earth compound are mixed using a mixing processor, and the rare earth compound is mechanically attached to the surface of the lithium-containing transition metal oxide.
  • a heat treatment similar to that described above after deposition.
  • the method described first and the spraying method described above are preferable, and the method described first is particularly preferable. That is, a method of mixing an aqueous solution in which a salt of a rare earth element such as an erbium salt is dissolved in a solution in which a lithium-containing transition metal oxide is dispersed is preferably used. The reason is that in this method, the rare earth compound can be more uniformly dispersed and adhered to the surface of the lithium-containing transition metal oxide.
  • the pH of the solution in which the lithium-containing transition metal oxide is dispersed constant, and in particular, in order to uniformly disperse fine particles of 1 to 100 nm on the surface of the lithium-containing transition metal oxide, It is preferable to control the pH to 6-10.
  • the pH is less than 6, the transition metal of the lithium-containing transition metal oxide may be eluted.
  • the pH exceeds 10, the rare earth compound may be segregated.
  • the ratio of the rare earth element to the total molar amount of the transition metal in the lithium-containing transition metal oxide is preferably 0.003 mol% or more and 0.25 mol% or less.
  • the proportion is less than 0.003 mol%, the effect of attaching the rare earth compound may not be sufficiently exerted, whereas when the proportion exceeds 0.25 mol%, the lithium-containing transition metal oxide particles Lithium ion conductivity on the surface is lowered, and cycle characteristics in large current discharge may be deteriorated.
  • the lithium-containing transition metal oxide has a layered structure and is represented by a general formula LiMeO 2 (where Me is at least one selected from the group consisting of Ni, Co, and Mn). desirable.
  • the type of the lithium-containing transition metal oxide is not limited to the above, but an olivine represented by the general formula LiMePO 4 (Me is at least one selected from the group consisting of Fe, Ni, Co and Mn).
  • LiMePO 4 is at least one selected from the group consisting of Fe, Ni, Co and Mn.
  • Lithium-containing transition having a spinel structure represented by a lithium-containing transition metal oxide having a structure a general formula LiMe 2 O 4 (Me is at least one selected from the group consisting of Fe, Ni, Co, and Mn) It may be made of a metal oxide.
  • the lithium-containing transition metal oxide further includes at least one selected from the group consisting of magnesium, aluminum, titanium, chromium, vanadium, iron, copper, zinc, niobium, molybdenum, zirconium, tin, tungsten, sodium, and potassium. It may contain, and it is preferable that aluminum is included among them.
  • Specific examples of lithium-containing transition metal oxides preferably used include LiCoO 2 , LiNiO 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiFePO 4 , LiMn 2 O 4 , LiNi 0.8 Co 0. .15 Al 0.05 O 2 and the like. More preferably, lithium cobaltate, lithium nickel cobalt manganate, and lithium nickel cobalt aluminate are mentioned, and particularly preferred are nickel cobalt lithium manganate and nickel cobalt lithium aluminum oxide.
  • lithium cobalt oxide, nickel cobalt lithium manganate, or lithium nickel cobalt aluminum oxide is used as the lithium-containing transition metal oxide, the large current discharge characteristics are remarkably improved. This is presumably because the coating formed on the surface of lithium cobalt oxide, nickel cobalt lithium manganate, or nickel cobalt aluminum aluminate has excellent lithium ion conductivity.
  • the general formula Li a Ni x Co y Mn z O 2 (0.95 ⁇ a ⁇ 1.20,0.35 ⁇ x ⁇ 0.55,0.20 ⁇ y ⁇ 0.35,0.25 ⁇ z ⁇
  • the range of 0.30) is more preferable.
  • the value of a is 0.95 or less, the stability of the crystal structure is lowered, so that the capacity maintenance and the large current discharge characteristics during the cycle are not sufficient.
  • the value of a is 1.20 or more, gas generation increases.
  • the value of x is less than 0.30 or the value of y exceeds 0.40, the charge / discharge capacity gradually decreases.
  • the lithium nickel cobalt aluminate has the general formula Li a Ni x Co y Al z O 2 (0.95 ⁇ a ⁇ 1.20, 0.50 ⁇ x ⁇ 0.99, 0.01 ⁇ y ⁇ 0.50. , 0.01 ⁇ z ⁇ 0.10), and preferably satisfies the general formula Li a Ni x Co y Al z O 2 (0.95 ⁇ a ⁇ 1.20, 0.70 ⁇ x ⁇ 0.95, 0.05 ⁇ y ⁇ 0.30, 0.01 ⁇ z ⁇ 0.10) are more preferable.
  • the value of a is 0.95 or less, the stability of the crystal structure is lowered, so that the capacity maintenance and the large current discharge characteristics during the cycle are not sufficient.
  • the value of a is 1.20 or more, gas generation increases.
  • the value of x is less than 0.50 or the value of y exceeds 0.50, the charge / discharge capacity gradually decreases.
  • the value of z exceeds 0.10, the lithium diffusion rate inside the active material decreases, and the rate-limiting step of the reaction transitions from the active material surface to the inside, so that a sufficient effect cannot be exhibited.
  • structural stability will fall that the value of x exceeds 0.99, the value of z is less than 0.01, and the value of y is less than 0.01.
  • the solvent for the nonaqueous electrolyte is not particularly limited, and a solvent that has been conventionally used for nonaqueous electrolyte secondary batteries can be used.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, chain carbonates such as dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, propionic acid
  • esters such as ethyl and ⁇ -butyrolactone
  • compounds containing sulfone groups such as propane sultone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 1,2-dioxane, 1,4 -Compounds containing ethers such as dioxane and 2-methyltetrahydrofuran, butyronitrile, valeronitrile
  • a solvent in which a part of these H is substituted with F is preferably used. Further, these can be used alone or in combination, and a solvent in which a cyclic carbonate and a chain carbonate are combined, and a solvent in which a compound containing a small amount of nitrile or an ether is further combined with these is preferable. .
  • An ionic liquid can also be used as the non-aqueous solvent for the non-aqueous electrolyte.
  • the cation species and the anion species are not particularly limited, but low viscosity, electrochemical stability, and hydrophobic properties.
  • a combination using a pyridinium cation, an imidazolium cation, or a quaternary ammonium cation as the cation and a fluorine-containing imide anion as the anion is particularly preferable.
  • a lithium salt having an oxalato complex as an anion and a known lithium salt conventionally used in a nonaqueous electrolyte secondary battery can be mixed and used.
  • a lithium salt a lithium salt containing one or more elements among P, B, F, O, S, N, and Cl can be used.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), Lithium salts such as LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 and mixtures thereof can be used.
  • LiPF 6 is preferably used in order to enhance the high rate charge / discharge characteristics and durability of the nonaqueous electrolyte secondary battery.
  • the said solute may be used not only independently but in mixture of 2 or more types.
  • the concentration of the solute is not particularly limited, but is preferably 0.8 to 1.7 mol per liter of the nonaqueous electrolyte. In applications that require discharging with a large electric current, it is desirable that the concentration of the solute is 1.0 to 1.6 mol per liter of the electrolyte.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium.
  • a carbon material, a metal alloyed with lithium, an alloy material, a metal oxide, or the like can be used.
  • a carbon material for the negative electrode active material For example, natural graphite, artificial graphite, mesophase pitch-based carbon fiber (MCF), mesocarbon microbeads (MCMB), coke, hard carbon Etc. can be used.
  • MCF mesophase pitch-based carbon fiber
  • MCMB mesocarbon microbeads
  • coke hard carbon Etc.
  • a carbon material obtained by coating a graphite material with low crystalline carbon as the negative electrode active material.
  • separator conventionally used separators can be used. Specifically, not only a separator made of polyethylene but also a material in which a layer made of polypropylene is formed on the surface of polyethylene or a material in which an aramid resin or the like is applied to the surface of a polyethylene separator may be used.
  • a layer containing a conventionally used inorganic filler can be formed at the interface between the positive electrode and the separator or the interface between the negative electrode and the separator.
  • the filler it is also possible to use an oxide or a phosphoric acid compound that uses titanium, aluminum, silicon, magnesium, etc., which has been used conventionally or a plurality thereof, and whose surface is treated with a hydroxide or the like. it can.
  • the filler layer is formed by a method in which a filler-containing slurry is directly applied to a positive electrode, a negative electrode, or a separator, or a method in which a sheet formed with a filler is attached to a positive electrode, a negative electrode, or a separator. be able to.
  • the adhesion amount of the said erbium oxyhydroxide was 0.1 mol% with respect to the total molar amount of the transition metal of the said nickel cobalt lithium manganate in conversion of an erbium element.
  • non-aqueous electrolyte In a mixed solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate), DMC (dimethyl carbonate), PC (propylene carbonate) and FEC (fluoroethylene carbonate) were mixed at a volume ratio of 10: 10: 65: 5: 10
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 as a solute to a concentration of 1.5 mol / liter and lithium bisoxalatoborate to a concentration of 0.01 mol / liter.
  • the positive electrode and the negative electrode were arranged to face each other via a separator made of a polyethylene microporous film, and then wound in a spiral shape using a winding core. Next, the winding core is pulled out to produce a spiral electrode body, and after inserting the electrode body into a metal outer can, the non-aqueous electrolyte is injected and further sealed, so that the battery size becomes the diameter.
  • FIG. 1 is a schematic cross-sectional view showing a non-aqueous electrolyte secondary battery produced as described above.
  • an electrode body 4 including a positive electrode 1, a negative electrode 2, and a separator 3 is inserted into a negative electrode can 5.
  • a sealing body 6 also serving as a positive electrode terminal is disposed above the negative electrode can 5, and the sealing body 6 is attached by caulking the upper portion of the negative electrode can 5 to produce a nonaqueous electrolyte secondary battery 10.
  • the voltage drop 0.1 seconds after the start of the large current discharge at a low temperature is suppressed as compared with the comparative batteries Z1 to Z3. Accordingly, it can be seen that the large current discharge performance is excellent in a low temperature environment. This is presumably because, in Battery A, a high-quality film excellent in lithium ion conductivity was formed on the surface of the lithium-containing transition metal oxide. Although the details of the reaction mechanism are not clear, it is considered as follows.
  • the electronegativity of a rare earth element is the element having excellent reactivity among transition metal elements because it has the second highest positiveness after alkaline earth metals. Therefore, rare earth elements have high electron withdrawing properties.
  • the oxalato complex has a high electron donating property. For this reason, it is considered that during charging, the rare earth element and the oxalato complex are selectively bonded to form a film on the positive electrode active material. Since the oxalato complex bonded to the rare earth element has the property of coordinating with lithium ions in the non-aqueous electrolyte, the film formed by the rare earth compound and the oxalato complex attached to the lithium-containing transition metal oxide is It is considered that the lithium ion conductivity is excellent.
  • LiBOB was used as a lithium salt having an oxalato complex as an anion.
  • the present invention is not limited to LiBOB for the above reasons, and even when a lithium salt having another oxalato complex as an anion is used. It is considered that the same effect appears.
  • Example 1 A battery was fabricated in the same manner as in the first embodiment except that a non-aqueous electrolyte was prepared by dissolving lithium bisoxalatoborate in the electrolyte to a concentration of 0.03 mol / liter. did. The battery thus produced is hereinafter referred to as battery B1.
  • Example 2 A battery was fabricated in the same manner as in the first embodiment except that a non-aqueous electrolyte was prepared by dissolving lithium bisoxalatoborate in the electrolyte to a concentration of 0.06 mol / liter. did.
  • the battery thus produced is hereinafter referred to as battery B2.
  • Example 3 A battery was fabricated in the same manner as in the first embodiment except that a non-aqueous electrolyte was prepared by dissolving lithium bisoxalatoborate in the electrolyte to a concentration of 0.1 mol / liter. did. The battery thus produced is hereinafter referred to as battery B3.
  • Example 4 A battery was fabricated in the same manner as in the first embodiment except that a non-aqueous electrolyte was prepared by dissolving lithium bisoxalatoborate in the electrolyte to a concentration of 0.2 mol / liter. did.
  • the battery thus produced is hereinafter referred to as battery B4.
  • the ratio of LiBOB per liter of the nonaqueous electrolyte is 0.01 mol or more and 0.2 mol or less, the above-described high-quality coating (excellent lithium ion conductivity) on the surface of the lithium-containing transition metal oxide ( It can be seen that a film formed of a rare earth compound and an oxalato complex attached to the lithium-containing transition metal oxide is reliably formed.
  • a positive electrode slurry was prepared in the same manner as in the first example. Next, the slurry was applied to both sides of a positive electrode current collector made of aluminum and dried. The coating amount was 200 g / m 2 per side. Finally, it rolled using the roller, it cut to predetermined electrode size, and also the positive electrode lead was attached, and the working electrode used as a positive electrode (application area 2.5 cm x 5.0 cm) was produced.
  • Non-aqueous electrolyte In a mixed solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DMC (dimethyl carbonate) are mixed at a volume ratio of 3: 3: 4, LiPF 6 as a solute has a concentration of 1.0 mol / liter.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • LiPF 6 as a solute has a concentration of 1.0 mol / liter.
  • a non-aqueous electrolyte was prepared by further dissolving vinylene carbonate at a concentration of 1% by mass and lithium bisoxalatoborate at a concentration of 0.1 mol / liter.
  • separators 13 are arranged between the positive electrode (working electrode) 11 and the negative electrode (counter electrode) 12, and between the positive electrode (working electrode) 11 and the reference electrode 14, respectively.
  • an aluminum laminate cell three-electrode test battery
  • the battery thus produced is hereinafter referred to as battery C1.
  • Example 1 A battery was fabricated in the same manner as in Example 1 of the above third example except that lithium bisoxalatoborate was not added to the non-aqueous electrolyte.
  • the battery thus produced is hereinafter referred to as battery Y1.
  • Example 2 In the synthesis of the positive electrode active material, lanthanum oxyhydroxide uniformly adheres to the surface of LiNi 0.35 Co 0.35 Mn 0.30 O 2 using lanthanum nitrate hexahydrate instead of erbium nitrate pentahydrate.
  • a battery was fabricated in the same manner as in Example 1 of the third example except that the obtained nickel cobalt lithium manganate was obtained. The battery thus produced is hereinafter referred to as battery C2.
  • Example 2 A battery was fabricated in the same manner as in Example 2 of the third example, except that lithium bisoxalatoborate was not added to the nonaqueous electrolytic solution.
  • the battery thus produced is hereinafter referred to as battery Y2.
  • Example 3 In the synthesis of the positive electrode active material, neodymium nitrate hexahydrate was used instead of erbium nitrate pentahydrate, and neodymium oxyhydroxide was uniformly attached to the surface of LiNi 0.35 Co 0.35 Mn 0.30 O 2 A battery was fabricated in the same manner as in Example 1 of the third example except that the obtained nickel cobalt lithium manganate was obtained. The battery thus produced is hereinafter referred to as battery C3.
  • Example 3 A battery was fabricated in the same manner as in Example 3 of the third example except that lithium bisoxalatoborate was not added to the non-aqueous electrolyte.
  • the battery thus produced is hereinafter referred to as battery Y3.
  • Example 4 In the synthesis of the positive electrode active material, samarium oxyhydroxide is uniformly attached to the surface of LiNi 0.35 Co 0.35 Mn 0.30 O 2 using samarium nitrate hexahydrate instead of erbium nitrate pentahydrate.
  • a battery was fabricated in the same manner as in Example 1 of the third example except that the obtained nickel cobalt lithium manganate was obtained. The battery thus produced is hereinafter referred to as battery C4.
  • Example 4 A battery was fabricated in the same manner as in Example 4 of the third example except that lithium bisoxalatoborate was not added to the non-aqueous electrolyte.
  • the battery thus produced is hereinafter referred to as battery Y4.
  • Example 5 A battery was fabricated in the same manner as in Example 1 of the third example except that erbium oxyhydroxide was not attached to the surface of nickel cobalt lithium manganate. The battery thus produced is hereinafter referred to as battery Y5.
  • Comparative Example 6 A battery was fabricated in the same manner as in Comparative Example 5 of the third example except that lithium bisoxalatoborate was not added to the nonaqueous electrolytic solution. The battery thus produced is hereinafter referred to as battery Y6.
  • the rare earth element of the rare earth compound In this example, erbium, lanthanum, neodymium, and samarium were used as the rare earth element of the rare earth compound.
  • the above-described high-quality coating excellent in lithium ion conductivity has the rare earth element and the oxalato complex selectively bonded. Therefore, it is considered that the same effect is exhibited even when other rare earth elements are used.
  • the batteries C1, C3, and C4 in which erbium, neodymium, and samarium compounds are attached to the surface of lithium nickel cobalt manganate are compared to the battery C2 in which a lanthanum compound is attached to the surface of lithium nickel cobalt manganate. It can be seen that the capacity retention rate after the cycle is improved, and the large current discharge performance is excellent. This is considered to be due to the fact that erbium, neodymium, and samarium compounds have a smaller average particle size and are more likely to precipitate more uniformly on the surface of the positive electrode active material than lanthanum. Therefore, it is more preferable to attach erbium, neodymium, and samarium compounds to the surface of lithium nickel cobalt manganate.
  • a positive electrode slurry was prepared in the same manner as in the first example. Next, the slurry was applied to one side of a positive electrode current collector made of aluminum and dried. The coating amount was 100 g / m 2 . Finally, the electrode was cut into a predetermined electrode size, rolled using a roller, and a positive electrode lead was attached to produce a working electrode to be a positive electrode (application area 2.5 cm ⁇ 5.0 cm).
  • Non-aqueous electrolyte In a mixed solvent in which EC (ethylene carbonate), EMC (ethyl methyl carbonate) and DMC (dimethyl carbonate) are mixed at a volume ratio of 3: 3: 4, LiPF 6 as a solute has a concentration of 1.0 mol / liter.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • LiPF 6 as a solute has a concentration of 1.0 mol / liter.
  • a non-aqueous electrolyte was prepared by further dissolving vinylene carbonate at a concentration of 1% by mass and lithium bisoxalatoborate at a concentration of 0.1 mol / liter.
  • separators 13 are arranged between the positive electrode (working electrode) 11 and the negative electrode (counter electrode) 12 and between the positive electrode 11 and the reference electrode 14, respectively.
  • An aluminum laminate cell (three-electrode test battery) was produced by wrapping. The battery thus produced is hereinafter referred to as battery D1.
  • Example 2 instead of lithium nickel cobalt manganate represented by LiNi 0.55 Co 0.20 Mn 0.25 O 2 , lithium nickel cobalt manganate represented by LiNi 0.35 Co 0.35 Mn 0.30 O 2 A battery was fabricated in the same manner as in Example 1 except that was used as the positive electrode active material. In addition, the adhesion amount of erbium oxyhydroxide was 0.1 mol% with respect to the total molar amount of the transition metal of the said nickel cobalt lithium manganate in conversion of an erbium element. The battery thus produced is hereinafter referred to as battery D2.
  • Example 3 Instead of nickel cobalt lithium manganate represented by LiNi 0.55 Co 0.20 Mn 0.25 O 2 , lithium nickel cobalt aluminum oxide represented by LiNi 0.80 Co 0.15 Al 0.05 O 2 A battery was fabricated in the same manner as in Example 1 except that was used as the positive electrode active material. In addition, the adhesion amount of erbium oxyhydroxide was 0.1 mol% with respect to the total molar amount of the transition metal of the said nickel cobalt aluminum aluminate in conversion of an erbium element. The battery thus produced is hereinafter referred to as battery D3.
  • Example 4 LiNi 0.55 Co 0.20 Mn 0.25 instead O to lithium nickel cobalt manganese oxide represented by 2, except for using lithium cobaltate represented by LiCoO 2 as the positive electrode active material, the first embodiment A battery was fabricated in the same manner as in the example.
  • the adhesion amount of erbium oxyhydroxide was 0.1 mol% with respect to the total molar amount of the transition metal of the lithium cobaltate in terms of erbium element.
  • the battery thus produced is hereinafter referred to as battery D4.
  • the batteries D1 to D4 according to the present invention have an improved capacity retention rate after 10 cycles compared to the comparative batteries X1 to X4. Therefore, the lithium-containing transition metal oxide represented by the general formula Li a Ni x Co y Mn z O 2 (0.95 ⁇ a ⁇ 1.20,0.30 ⁇ x ⁇ 0.80,0.10 ⁇ y ⁇ 0 .40, 0.10 ⁇ z ⁇ 0.50), nickel cobalt lithium manganate, general formula Li a Ni x Co y Al z O 2 (0.95 ⁇ a ⁇ 1.20, 0.50 ⁇ x ⁇ 0.99, 0.01 ⁇ y ⁇ 0.50, 0.01 ⁇ z ⁇ 0.10)
  • nickel cobalt lithium aluminum oxide or lithium cobaltate a lithium-containing transition metal
  • a lithium-containing transition metal The surface of the lithium-containing transition metal oxide reacts with the rare earth erbium oxyhydroxide (rare earth compound) adhering to the oxide surface and LiBOB (lith
  • Lithium as described above Presumably because good coating is reliably formed with on conductivity.
  • the reason why the high capacity retention rate is not obtained for the batteries X1 to X4 in which LiBOB is not added to the electrolyte is that when the LiBOB is not added to the non-aqueous electrolyte, the lithium-containing transition metal oxide This is probably because a film having excellent lithium ion conductivity is difficult to be formed on the surface.
  • the lithium-containing transition metal oxide contains Ni
  • a cylindrical battery and a three-electrode battery are described as examples of the nonaqueous electrolyte secondary battery, but the present invention is not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極活物質を含む正極(1)と、負極(2)と、非水電解質とを備える非水電解質二次電池において、正極活物質は、表面に希土類の化合物が付着したリチウム含有遷移金属酸化物を含み、非水電解質は、オキサラト錯体をアニオンとするリチウム塩を含む。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関するものである。
 非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、携帯電話、ノートパソコンなどの移動情報端末の駆動電源として広く用いられている。最近では、電動工具や電気自動車等の動力用電源としても注目が高まっている。動力用電源では、長時間の使用が可能な高容量化や、比較的短時間に大電流の放出を繰り返す、大電流放電サイクル特性の向上が求められる。
 正極活物質は、触媒性を有する遷移金属を有しているため、電解液の分解反応などが生じ、大電流放電を阻害する被膜が、正極活物質の表面に形成されるという問題があった。例えば特許文献1では、表面にランタン原子が含有された正極活物質を用いることで、電解液との分解反応を抑制することが提案されている。
 特許文献2では、電解液に、LiPFとともに、少なくとも0.2モル/リットルのリチウムビスオキサラトボレート(LiBOB)を含有することで、負極活物質上に良好な不動態被膜を形成し、サイクル特性やサイクル後の低温放電性能を向上させることが提案されている。
特開2008-226495号公報 特開2008-159588号公報
 しかしながら、上記特許文献1及び特許文献2の技術では、大電流の放電性能を十分に向上させることができなかった。
 本発明の一実施形態の目的は、大電流放電性能を向上させることができる非水電解質二次電池を提供することにある。
 本発明の一実施形態は、正極活物質を含む正極と、負極と、非水電解質とを備える非水電解質二次電池において、正極活物質は、表面に希土類の化合物が付着したリチウム含有遷移金属酸化物を含み、非水電解質は、オキサラト錯体をアニオンとするリチウム塩を含む。
 本発明の一実施形態によれば、大電流放電性能を向上させることができる。
図1は、本発明に従う一実施形態の円筒型非水電解質二次電池を示す模式的断面図である。 図2は、本発明に従う一実施形態の三電極式試験電池を示す模式的断面図である。
 本発明の一実施形態において、正極活物質は、表面に希土類の化合物が付着したリチウム含有遷移金属酸化物を含み、非水電解質は、オキサラト錯体をアニオンとするリチウム塩を含んでいる。リチウム含有遷移金属酸化物の表面に付着した希土類の化合物は、非水電解質中のオキサラト錯体をアニオンとするリチウム塩と充電時に反応して、リチウムイオン伝導性を有する良質な被膜をリチウム含有遷移金属酸化物の表面に形成すると考えられる。このため、リチウムイオンの挿入脱離の反応速度の低下を抑制することができ、大電流放電時の特性を飛躍的に向上させることができる。従って、本発明の一形態は、5It、10Itという大電流で放電する必要性がある工具用途等において極めて有用である。また、本発明の一形態は、2It以上の電流で放電する場合においても、同様の効果を示す。なお、上記の良質な被膜は、主として初回の充電時に生成することが多いが、2回目以降の充電時にも生成することがあると考えられる。
 本発明の一実施形態におけるオキサラト錯体をアニオンとするリチウム塩(後述する溶質としてのリチウム塩と区別するため、これらのリチウム塩を、「添加剤としてのリチウム塩」と称することがある)は、上述のように、充電時にリチウム含有遷移金属酸化物の表面の希土類の化合物と反応して、良質な被膜を形成する。
 上記添加剤としてのリチウム塩は、オキサラト錯体(中心原子にC 2-が配位)をアニオンとするリチウム塩であればよく、例えば、Li[M(C](式中、Mは遷移金属、周期律表の13族,14族,15族から選択される元素、Rはハロゲン、アルキル基、ハロゲン置換アルキル基から選択される基、xは正の整数、yは0又は正の整数である。)で表わされるものを用いることができる。ここで、上記式中のMは、ホウ素またはリンであることが好ましい。具体的には、LiBOB(Li[B(C])の他、Li[B(C)F]、Li[P(C)F]、Li[P(C]等がある。ただし、常温や高温でのサイクル特性を考慮すると、LiBOBが最も好ましい。
 非水電解質の1リットル当たりの上記添加剤としてのリチウム塩の含有割合は、0.005モル以上0.5モル以下であることが望ましく、更に0.01モル以上0.2モル以下であることが望ましい。
 添加剤としてのリチウム塩の量が少な過ぎると、希土類の化合物と十分に反応することができず、良質な被膜を十分に形成することが困難な場合がある。一方、上記添加剤としてのリチウム塩の量が多過ぎると、被膜が厚くなるため、リチウム挿入脱離反応を阻害し、大電流放電でのサイクル特性を低下させる場合がある。
 上記希土類の化合物は、希土類の水酸化物、希土類のオキシ水酸化物、又は希土類の酸化物であることが望ましく、特に、希土類の水酸化物、又は、希土類のオキシ水酸化物であることが望ましい。これらを用いると、上記作用効果が一層発揮されるからである。尚、希土類の化合物には、これらの他に希土類の炭酸化合物や、希土類の燐酸化合物等が一部含まれていてもよい。
 上記希土類の化合物に含まれる希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられ、中でも、ネオジム、サマリウム、エルビウムであることが好ましい。ネオジムの化合物、サマリウムの化合物、及びエルビウムの化合物は、他の希土類の化合物に比べて平均粒径が小さく、正極活物質の表面により均一に析出し易いからである。
 上記希土類の化合物の具体例としては、水酸化ネオジム、オキシ水酸化ネオジム、水酸化サマリウム、オキシ水酸化サマリウム、水酸化エルビウム、オキシ水酸化エルビウム等が挙げられる。また、希土類の化合物として、水酸化ランタン又はオキシ水酸化ランタンを用いた場合には、ランタンは安価であるということから、正極の製造コストを低減することができる。
 上記希土類の化合物の平均粒子径は1nm以上100nm以下であることが望ましく、10nm以上50nm以下であることがより望ましい。希土類の化合物の平均粒子径が100nmを超えると、リチウム含有遷移金属酸化物粒子の粒径に対する希土類の化合物の粒径が大きくなり過ぎるために、リチウム含有遷移金属酸化物粒子の表面が希土類の化合物によって緻密に覆われなくなる。したがって、リチウム含有遷移金属酸化物粒子と非水電解質やその還元分解生成物が直に触れる面積が大きくなるため、非水電解質やその還元分解生成物の酸化分解が増加し、充放電特性が低下する場合がある。 
 一方、希土類の化合物の平均粒子径が1nm未満になると、リチウム含有遷移金属酸化物の粒子表面が希土類の化合物によって緻密に覆われ過ぎるため、リチウム含有遷移金属酸化物の粒子表面におけるリチウムイオンの吸蔵,放出性能が低下して、充放電特性が低下する場合がある。
 上記希土類の化合物をリチウム含有遷移金属酸化物の表面に付着させる方法としては、リチウム含有遷移金属酸化物を分散した溶液に、希土類元素の塩(例えばエルビウム塩)を溶解した水溶液を混合し、リチウム含有遷移金属酸化物の表面に希土類元素の塩を付着させた後、熱処理する方法が挙げられる。
 熱処理温度としては、120℃以上700℃以下であることが好ましく、さらには250℃以上500℃以下であることが好ましい。120℃未満の場合、活物質に吸着した水分が十分に除去されないために、電池内に水分が混合する恐れがある。一方、700℃を越える場合には、表面に付着した希土類化合物が内部に拡散してしまい、活物質表面に存在しがたくなるため、効果が得がたくなる。特に、250℃から500℃にしておくと、水分を除去でき、かつ選択的に表面に希土類化合物が付着した状態が形成できる。500℃を超えると、表面の希土類化合物の一部が内部に拡散し、効果が低下する恐れがある。
 また、別の方法としては、リチウム含有遷移金属酸化物を混合しながら、希土類元素の塩(例えばエルビウム塩)を溶解した水溶液を噴霧した後に、乾燥し、その後熱処理する方法が挙げられる。熱処理温度は、上記の水溶液を混合する方法の場合の熱処理と同様である。
 さらに、別の方法としては、リチウム含有遷移金属酸化物と、希土類の化合物とを、混合処理機を用いて混合し、リチウム含有遷移金属酸化物の表面に希土類化合物を機械的に付着させる方法があり、付着させた後に上記と同様の熱処理を行ってもよい。
 これらの方法の中でも、最初に記載した方法や上記した噴霧する方法が好ましく、特に最初に記載した方法が好ましい。すなわち、リチウム含有遷移金属酸化物を分散した溶液に、エルビウム塩等の希土類元素の塩を溶解した水溶液を混合する方法が好ましく用いられる。その理由としては、該方法では、リチウム含有遷移金属酸化物の表面に、希土類の化合物をより均一に分散して付着させることができるからである。この際、リチウム含有遷移金属酸化物を分散した溶液のpHを一定にすることが好ましく、特に1~100nmの微粒子を、リチウム含有遷移金属酸化物の表面に均一に分散させて析出させるには、pHを6~10に制御することが好ましい。pHが6未満になると、リチウム含有遷移金属酸化物の遷移金属が溶出する恐れがある。一方、pHが10を超えると、希土類の化合物が偏析してしまう恐れがある。
 リチウム含有遷移金属酸化物における遷移金属の総モル量に対する希土類元素の割合は、0.003モル%以上0.25モル%以下であることが望ましい。該割合が0.003モル%未満になると、希土類の化合物を付着させた効果が十分に発揮されないことがある一方、該割合が0.25モル%を超えると、リチウム含有遷移金属酸化物の粒子表面におけるリチウムイオン伝導性が低くなって、大電流放電でのサイクル特性が低下することがある。
 上記リチウム含有遷移金属酸化物は、層状構造を有し、且つ一般式LiMeO(但し、Meは、Ni、Co及びMnからなる群から選ばれた少なくとも一種)で表されるものであることが望ましい。
 但し、リチウム含有遷移金属酸化物の種類は上記のものに限定するものではなく、一般式LiMePO(MeはFe、Ni、Co及びMnからなる群から選ばれた少なくとも一種)で表されるオリビン構造を有するリチウム含有遷移金属酸化物からなるもの、一般式LiMe(MeはFe、Ni、Co及びMnからなる群から選ばれた少なくとも一種)で表されるスピネル構造を有するリチウム含有遷移金属酸化物からなるもの等であっても良い。尚、リチウム含有遷移金属酸化物は、マグネシウム、アルミニウム、チタン、クロム、バナジウム、鉄、銅、亜鉛、ニオブ、モリブデン、ジルコニウム、錫、タングステン、ナトリウム及びカリウムからなる群から選ばれた少なくとも一種をさらに含んでいても良く、その中でもアルミニウムを含んでいることが好ましい。好ましく用いられるリチウム含有遷移金属酸化物の具体例としては、LiCoO、LiNiO、LiNi1/3Co1/3Mn1/3、LiFePO、LiMn、LiNi0.8Co0.15Al0.05等が挙げられる。より好ましくは、コバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムが挙げられ、特に好ましくは、ニッケルコバルトマンガン酸リチウムやニッケルコバルトアルミニウム酸リチウムが挙げられる。
 ここで、リチウム含有遷移金属酸化物としてコバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムを用いた場合には、大電流放電特性が顕著に向上する。これは、コバルト酸リチウム、ニッケルコバルトマンガン酸リチウム、ニッケルコバルトアルミニウム酸リチウムの表面に形成される被膜が、特異的にリチウムイオン伝導性に優れることに起因するためと考えられる。
 上記ニッケルコバルトマンガン酸リチウムとしては、一般式LiaNixCoyMnz(0.95<a<1.20、0.30≦x≦0.80、0.10≦y≦0.40、0.10≦z≦0.50)の範囲を満たすことが好ましく、さらにはLiaNixCoyMnz(0.95<a<1.20、0.30≦x≦0.60、0.20≦y≦0.40、0.20≦z≦0.40)の範囲を満たすことが好ましい。特に一般式LiaNixCoyMnz(0.95<a<1.20、0.35≦x≦0.55、0.20≦y≦0.35、0.25≦z≦0.30)の範囲がより好ましい。
 aの値が0.95以下であると、結晶構造の安定性が低下するため、サイクル経過時の容量維持や大電流放電特性が十分でなくなる。一方、aの値が1.20以上であるとガス発生が多くなるからである。
 xの値が0.30未満であったりyの値が0.40を超えると充放電容量が徐々に低下する。一方、xの値が0.80を超えたり、yの値が0.10未満になると、徐々に活物質内部のリチウム拡散速度が低下し、反応の律速段階が活物質表面から内部へと遷移するために十分な効果が発揮できなくなる。
 また、zの値が0.10未満になると、ニッケルの一部と結晶構造中のリチウムとの元素配置の置換が生じ易くなり、大電流放電特性の低下が生じる。zの値が0.50を超えると、構造が不安定となり活物質合成時に安定的にニッケルコバルトマンガン酸リチウムを得るのが困難となる。
 ニッケルコバルトアルミニウム酸リチウムとしては、一般式LiaNixCoyAlz(0.95<a<1.20、0.50≦x≦0.99、0.01≦y≦0.50、0.01≦z≦0.10)の範囲を満たすことが好ましく、さらには一般式LiaNixCoyAlz(0.95<a<1.20、0.70≦x≦0.95、0.05≦y≦0.30、0.01≦z≦0.10)の範囲がより好ましい。
 aの値が0.95以下であると、結晶構造の安定性が低下するため、サイクル経過時の容量維持や大電流放電特性が十分でなくなる。一方、aの値が1.20以上であると、ガス発生が多くなるからである。
 xの値が0.50未満であったり、yの値が0.50を超えると、充放電容量が徐々に低下する。一方、zの値が0.10を超えると、活物質内部のリチウム拡散速度が低下し、反応の律速段階が活物質表面から内部へと遷移するために十分な効果が発揮できなくなる。
 また、xの値が0.99を超えていたり、zの値が0.01未満であったり、yの値が0.01未満であると、構造安定性が低下する。
 非水電解質の溶媒は特に限定するものではなく、非水電解質二次電池に従来から用いられてきた溶媒を使用することができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートや、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物や、プロパンスルトン等のスルホン基を含む化合物や、1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,2-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物や、ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタルニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物や、ジメチルホルムアミド等のアミドを含む化合物等を用いることができる。特に、これらのHの一部がFにより置換されている溶媒が好ましく用いられる。また、これらを単独又は複数組み合わせて使用することができ、特に環状カーボネートと鎖状カーボネートとを組み合わせた溶媒や、さらにこれらに少量のニトリルを含む化合物やエーテルを含む化合物が組み合わされた溶媒が好ましい。
 また、非水電解質の非水系溶媒としてイオン性液体を用いることもでき、この場合、カチオン種、アニオン種については特に限定されるものではないが、低粘度、電気化学的安定性、疎水性の観点から、カチオンとしては、ピリジニウムカチオン、イミダゾリウムカチオン、4級アンモニウムカチオンを、アニオンとしては、フッ素含有イミド系アニオンを用いた組合せが特に好ましい。
 更に、上記の非水電解質に用いる溶質として、オキサラト錯体をアニオンとするリチウム塩と従来から非水電解質二次電池において一般に使用されている公知のリチウム塩を混合して用いることができる。そして、このようなリチウム塩としては、P、B、F、O、S、N、Clの中の一種類以上の元素を含むリチウム塩を用いることができ、具体的には、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、LiAsF、LiClO等のリチウム塩及びこれらの混合物を用いることができる。特に、非水電解質二次電池における高率充放電特性や耐久性を高めるためには、LiPFを用いることが好ましい。
 尚、上記溶質は、単独で用いるのみならず、2種以上を混合して用いても良い。また、溶質の濃度は特に限定されないが、非水電解質1リットル当り0.8~1.7モルであることが望ましい。また、大電電流での放電を必要とする用途では、上記溶質の濃度が電解液1リットル当たり1.0~1.6モルであることが望ましい。
 負極活物質としては、リチウムを可逆的に吸蔵,放出できるものでれば特に限定されず、例えば、炭素材料や、リチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。なお、材料コストの観点からは、負極活物質に炭素材料を用いることが好ましく、例えば、天然黒鉛、人造黒鉛、メソフェーズピッチ系炭素繊維(MCF)、メソカーボンマイクロビーズ(MCMB)、コークス、ハードカーボン等を用いることができる。特に、高率充放電特性を向上させる観点からは、負極活物質として、黒鉛材料を低結晶性炭素で被覆した炭素材料を用いることが好ましい。
 セパレータとしては、従来から用いられてきたセパレータを用いることができる。具体的には、ポリエチレンからなるセパレータのみならず、ポリエチレンの表面にポリプロピレンからなる層が形成されたものや、ポリエチレンのセパレータの表面にアラミド系の樹脂等が塗布されたものを用いても良い。
 正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーを含む層を形成することができる。該フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。また、上記フィラー層の形成は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
 以下、本発明の一実施形態について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
                〔第1実施例〕
 (実施例)
 〔正極活物質の合成〕
 LiNi0.55Co0.20Mn0.25で表されるニッケルコバルトマンガン酸リチウムの粒子1000g(10.34mol)を3リットルの純水に投入し攪拌した。次に、これに硝酸エルビウム5水和物4.58g(10.33mmol)を溶解した溶液を加えた。この際、10質量%の水酸化ナトリウム水溶液を適宜加え、ニッケルコバルトマンガン酸リチウムを含む溶液のpHが9となるように調整した。次いで、吸引濾過、水洗した後、空気雰囲気中において400℃の温度で5時間熱処理をし、表面にオキシ水酸化エルビウムが均一に付着したニッケルコバルトマンガン酸リチウムを得た。尚、上記オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記ニッケルコバルトマンガン酸リチウムの遷移金属の総モル量に対して0.1モル%であった。
 [正極の作製]
 上記正極活物質94質量部に、炭素導電剤としてのカーボンブラック4質量部と、結着剤としてのポリフッ化ビニリデン2質量部とを混合し、更に、NMP(N-メチル-2-ピロリドン)を適量加えることにより正極スラリーを調製した。次に、該正極スラリーを、アルミニウムからなる正極集電体の両面に塗布、乾燥した。最後に、ローラーを用いて圧延し、所定の電極サイズに切り取り、更に、正極リードを取り付けることにより、正極を作製した。
 [負極の作製]
 負極活物質としての人造黒鉛を97.5質量部と、増粘剤としてのカルボキシメチルセルロースを1質量部と、結着剤としてのスチレンブタジエンゴム1.5質量部とを混合し、純水を適量加えて負極スラリーを調製した。次に、この負極スラリーを銅箔からなる負極集電体の両面に塗布、乾燥した。最後に、ローラーを用いて圧延し、所定の電極サイズに切り取り、更に、負極リードを取り付けることにより、負極を作製した。
 [非水電解液の調製]
 EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)とPC(プロピレンカーボネート)とFEC(フルオロエチレンカーボネート)を10:10:65:5:10の体積比で混合した混合溶媒に、溶質としてのLiPFを1.5モル/リットルの濃度となるように、またリチウムビスオキサラトボレートを0.01モル/リットルの濃度となるように溶解させて非水電解液を調製した。
 [電池の作製]
 上記正極と上記負極とを、ポリエチレン製微多孔膜から成るセパレータを介して対向配置した後、巻き芯を用いて渦巻状に巻回した。次に、巻き芯を引き抜いて渦巻状の電極体を作製し、この電極体を金属製の外装缶に挿入した後、上記非水電解液を注入し、更に封口することによって、電池サイズが直径18mmで、高さ65mmの18650型の非水電解質二次電池(容量:2.1Ah)を作製した。 このようにして作製した電池を、以下、電池Aと称する。
 図1は、上述のようにして作製した非水電解質二次電池を示す模式的断面図である。図1に示すように、正極1、負極2及びセパレータ3からなる電極体4は、負極缶5内に挿入されている。負極缶5の上方に、正極端子を兼ねる封口体6を配置し、負極缶5の上部をかしめて封口体6を取り付け、非水電解質二次電池10を作製している。
 (比較例1)
 ニッケルコバルトマンガン酸リチウムの表面に、オキシ水酸化エルビウムの付着を行わず、電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池Z1と称する。
 (比較例2)
 電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池Z2と称する。 
 (比較例3)
 ニッケルコバルトマンガン酸リチウムの表面に、オキシ水酸化エルビウムの付着を行わなかったこと以外は、上記実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池Z3と称する。
 <低温放電性能の評価>
 上記電池A、Z1~Z3について、下記条件で低温放電性能を調べた。
・充放電条件
 25℃の温度条件下、1It(2.1A)の充電電流で電池電圧が4.35Vまで定電流充電を行い、更に、電池電圧4.35Vの定電圧で電流が0.02It(0.042A)になるまで定電圧充電を行った。次に、-20℃の環境へ移し、9.52It(20A)の放電電流で定電流放電するという条件にて、放電開始から0.1秒後の電池電圧を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に従う電池Aは、比較の電池Z1~Z3に比べ、低温での大電流放電開始0.1秒後の電圧の低下が抑制されている。従って、低温環境下での大電流放電性能に優れていることがわかる。これは、電池Aにおいては、リチウム含有遷移金属酸化物の表面に、リチウムイオン伝導性に優れた良質な被膜が形成されたためであると考えられる。その反応機構の詳細は明らかでないが、以下のように考えられる。希土類元素の電気陰性度は、アルカリ土類金属の次に陽性が高いため、遷移金属元素の中でも反応性に優れる元素である。ゆえに、希土類元素は、高い電子吸引性を有している。一方、オキサラト錯体は高い電子供与性を有している。このため、充電時に、希土類元素とオキサラト錯体が選択的に結合し、正極活物質上に被膜が形成するものと考えられる。この希土類元素に結合したオキサラト錯体は、非水電解質中のリチウムイオンと配位する性質を有しているため、リチウム含有遷移金属酸化物に付着した希土類化合物とオキサラト錯体により形成された被膜は、リチウムイオン伝導性に優れるものと考えられる。
 本発明電池Aでは、オキサラト錯体をアニオンとするリチウム塩としてLiBOBを用いたが、上記の理由によりLiBOBに限定されるものではなく、他のオキサラト錯体をアニオンとするリチウム塩を用いた場合においても同様の効果が発現するものと考えられる。
                〔第2実施例〕
 (実施例1)
 電解液にリチウムビスオキサラトボレートを0.03モル/リットルの濃度となるように溶解させて非水電解液を調製したこと以外は、上記第1実施例の実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池B1と称する。
 (実施例2)
 電解液にリチウムビスオキサラトボレートを0.06モル/リットルの濃度となるように溶解させて非水電解液を調製したこと以外は、上記第1実施例の実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池B2と称する。
 (実施例3)
 電解液にリチウムビスオキサラトボレートを0.1モル/リットルの濃度となるように溶解させて非水電解液を調製したこと以外は、上記第1実施例の実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池B3と称する。
 (実施例4)
 電解液にリチウムビスオキサラトボレートを0.2モル/リットルの濃度となるように溶解させて非水電解液を調製したこと以外は、上記第1実施例の実施例と同様にして電池を作製した。このようにして作製した電池を、以下、電池B4と称する。
 <低温放電性能の評価>
 上記電池B1~B4について、上記第1実施例と同様の条件で低温放電性能を調べ、放電開始から0.1秒後の電池電圧を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、本発明に従う電池A、B1~B4は、比較の電池Z2に比べ、低温での大電流放電開始0.1秒後の電圧の低下が抑制されており、低温環境下での大電流放電性能に優れていることがわかる。従って、非水電解質1リットル当たりのLiBOBの割合が、0.01モル以上0.2モル以下であれば、リチウム含有遷移金属酸化物の表面に、上記したリチウムイオン伝導性に優れる良質な被膜(リチウム含有遷移金属酸化物に付着した希土類化合物とオキサラト錯体により形成された被膜)が確実に形成されることがわかる。
                  〔第3実施例〕
 (実施例1)
 [正極活物質の合成]
 LiNi0.55Co0.20Mn0.25で表されるニッケルコバルトマンガン酸リチウムに代えて、LiNi0.35Co0.35Mn0.30で表されるニッケルコバルトマンガン酸リチウムを用いたこと以外は、第1実施例の実施例と同様にして正極活物質を合成し、表面にオキシ水酸化エルビウムが均一に付着したニッケルコバルトマンガン酸リチウムを得た。尚、上記オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記ニッケルコバルトマンガン酸リチウムの遷移金属の総モル量に対して0.1モル%であった。
 [正極(作用極)の作製]
 上記正極活物質を用い、第1実施例の実施例と同様にして正極スラリーを調整した。次に、該スラリーをアルミニウムからなる正極集電体の両面に塗布、乾燥した。塗布量は、片面あたり200g/mであった。最後に、ローラーを用いて圧延し、所定の電極サイズに切り取り、更に、正極リードを取り付けることにより、正極(塗布面積2.5cm×5.0cm)となる作用極を作製した。
 [負極(対極)及び参照極の作製]
 負極となる対極と、参照極には、共にリチウム金属を用いた。
 [非水電解液の調製]
 EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)を3:3:4の体積比で混合した混合溶媒に、溶質としてのLiPFを1.0モル/リットルの濃度となるように、さらに、ビニレンカーボネートを1質量%、また、リチウムビスオキサラトボレートを0.1モル/リットルの濃度となるように溶解させて非水電解液を調製した。
 [三電極式試験電池の作製]
 図2に示すように、上記正極(作用極)11と上記負極(対極)12の間、及び上記正極(作用極)11と参照極14との間に、それぞれセパレータ13を配し、これらをアルミラミネート15で包み込むことにより、アルミラミネートセル(三電極式試験電池)を作製した。このようにして作製した電池を、以下、電池C1と称する。
(比較例1)
 非水電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y1と称する。
(実施例2)
 正極活物質の合成において、硝酸エルビウム5水和物に代えて硝酸ランタン6水和物を用い、LiNi0.35Co0.35Mn0.30の表面にオキシ水酸化ランタンが
均一に付着したニッケルコバルトマンガン酸リチウムを得たこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池C2と称する。
(比較例2)
 非水電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第3実施例の実施例2と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y2と称する。
(実施例3)
 正極活物質の合成において、硝酸エルビウム5水和物に代えて硝酸ネオジム6水和物を用い、LiNi0.35Co0.35Mn0.30の表面にオキシ水酸化ネオジムが均一に付着したニッケルコバルトマンガン酸リチウムを得たこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池C3と称する。
(比較例3)
 非水電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第3実施例の実施例3と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y3と称する。
(実施例4)
 正極活物質の合成において、硝酸エルビウム5水和物に代えて硝酸サマリウム6水和物を用い、LiNi0.35Co0.35Mn0.30の表面にオキシ水酸化サマリウムが均一に付着したニッケルコバルトマンガン酸リチウムを得たこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池C4と称する。
(比較例4)
 非水電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第3実施例の実施例4と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y4と称する。
(比較例5)
 ニッケルコバルトマンガン酸リチウムの表面に、オキシ水酸化エルビウムの付着を行わなかったこと以外は、上記第3実施例の実施例1と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y5と称する。
(比較例6)
 非水電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第3実施例の比較例5と同様にして電池を作製した。このようにして作製した電池を、以下、電池Y6と称する。
 <放電性能の評価>
 上記電池C1~C4、Y1~Y6について、下記条件で放電性能を調べた。
・充放電条件1
 25℃の温度条件下、0.1It(0.01A)の電流密度で4.5V(vs.Li/Li)まで定電流充電し、更に、4.5V(vs.Li/Li)の定電位で電流密度が0.02It(0.002A)になるまで定電位充電した。さらに、0.1It(0.01A)の電流密度で2.5V(vs.Li/Li)まで定電流放電した。
・充放電条件2(サイクル試験)
 さらに、25℃の温度条件下、2It(0.2A)の電流密度で4.5V(vs.Li/Li)まで定電流充電し、更に、4.5V(vs.Li/L
)の定電位で電流密度が0.02It(0.002A)になるまで定電位充電した。次に各セルをそれぞれ、2It(0.2A)の電流密度で2.5V(vs.Li/Li)まで定電流放電する条件を10回繰り返し、10サイクル後の容量維持率を測定した。結果を表3に示す。
 尚、電池C1~C4及び電池Y1~Y6の10サイクル後の容量維持率は、電池C1の10サイクル後の容量維持率を100としたときの相対値を示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、エルビウム、ランタン、ネオジム、サマリウムのような希土類の化合物をニッケルコバルトマンガン酸リチウムの表面に付着させた場合には、非水電解液にLiBOBが添加されていない電池Y1~Y4では、サイクル後の容量維持率が低下しているのに対して、希土類の化合物をニッケルコバルトマンガン酸リチウムの表面に付着させ、且つ、非水電解液にLiBOBが添加された電池C1~C4は、電池Y1~Y4のみならず、電池Y5と比較してもサイクル後の容量維持率が高くなっており、大電流放電性能に優れていることがわかる。これは、電池C1~C4においては、ニッケルコバルトマンガン酸リチウムの表面に、上記したリチウムイオン伝導性に優れた良質な被膜が形成されたためであると考えられる。一方、電池Y1~Y4、Y6については、電解液にLiBOBが添加されていないために、リチウム含有遷移金属酸化物の表面に、リチウムイオン伝導性に優れた被膜が形成されにくくなっているため、10サイクル後の容量維持率の向上の効果が得られなかったと考えられる。また、電池Y5については、ニッケルコバルトマンガン酸リチウムの表面に希土類の化合物が付着していない場合、リチウムビスオキサラトボレートを添加しても、ニッケルコバルトマンガン酸リチウムの表面に希土類の化合物が付着している場合と比較して、正極活物質上にリチウムイオン伝導性に優れる被膜が形成されにくくなっているため上記の効果が得られなかったと考えられる。
 本実施例では、希土類の化合物の希土類元素として、エルビウム、ランタン、ネオジム、サマリウムを用いたが、上記したリチウムイオン伝導性に優れる良質な被膜は、希土類元素とオキサラト錯体が選択的に結合することにより形成すると考えられるので、他の希土類元素を用いた場合においても同様の効果が発現するものと考えられる。
 また、エルビウム、ネオジム、サマリウムの化合物をニッケルコバルトマンガン酸リチウムの表面に付着させた電池C1、C3、C4は、ランタンの化合物をニッケルコバルトマンガン酸リチウムの表面に付着させた電池C2に比べて、サイクル後の容量維持率がより向上していることがわかり、大電流放電性能に優れている。この要因としては、 ランタンに比べてエルビウム、ネオジム、サマリウムの化合物は、平均粒径が小さく、正極活物質の表面により均一に析出し易いことに起因するものと考えられる。従って、エルビウム、ネオジム、サマリウムの化合物をニッケルコバルトマンガン酸リチウムの表面に付着させるのがより好ましい。
                〔第4実施例〕
(実施例1)
 〔正極活物質の合成〕
 第1実施例の実施例と同様にして、正極活物質を合成した。
 [正極(作用極)の作製]
上記正極活物質を用い、第1実施例の実施例と同様にして正極スラリーを調整した。次に、該スラリーをアルミニウムからなる正極集電体の片面に塗布、乾燥した。塗布量は、100g/mであった。最後に、所定の電極サイズに切り取り、ローラーを用いて圧延し、更に、正極リードを取り付けることにより、正極(塗布面積2.5cm×5.0cm)となる作用極を作製した。
 [負極(対極)及び参照極の作製]
 負極となる対極と、参照極とには、共にリチウム金属を用いた。
 [非水電解液の調製]
 EC(エチレンカーボネート)とEMC(エチルメチルカーボネート)とDMC(ジメチルカーボネート)を3:3:4の体積比で混合した混合溶媒に、溶質としてのLiPFを1.0モル/リットルの濃度となるように、さらに、ビニレンカーボネートを1質量%、また、リチウムビスオキサラトボレートを0.1モル/リットルの濃度となるように溶解させて非水電解液を調製した。
 [三電極式試験電池の作製]
 図2に示すように、上記正極(作用極)11と上記負極(対極)12の間、及び上記正極11と参照極14との間に、それぞれセパレータ13を配し、これらをアルミラミネート15で包み込むことにより、アルミラミネートセル(三電極式試験電池)を作製した。このようにして作製した電池を、以下、電池D1と称する。
(実施例2)
 LiNi0.55Co0.20Mn0.25で表されるニッケルコバルトマンガン酸リチウムに代えて、LiNi0.35Co0.35Mn0.30で表されるニッケルコバルトマンガン酸リチウムを正極活物質として用いたこと以外は、第1実施例の実施例と同様にして電池を作製した。尚、オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記ニッケルコバルトマンガン酸リチウムの遷移金属の総モル量に対して0.1モル%であった。このようにして作製した電池を、以下、電池D2と称する。
(実施例3)
 LiNi0.55Co0.20Mn0.25で表されるニッケルコバルトマンガン酸リチウムに代えて、LiNi0.80Co0.15Al0.05で表されるニッケルコバルトアルミニウム酸リチウムを正極活物質として用いたこと以外は、第1実施例の実施例と同様にして電池を作製した。尚、オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記ニッケルコバルトアルミニウム酸リチウムの遷移金属の総モル量に対して0.1モル%であった。このようにして作製した電池を、以下、電池D3と称する。
(実施例4)
 LiNi0.55Co0.20Mn0.25で表されるニッケルコバルトマンガン酸リチウムに代えて、LiCoOで表されるコバルト酸リチウムを正極活物質として用いたこと以外は、第1実施例の実施例と同様にして電池を作製した。尚、オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記コバルト酸リチウムの遷移金属の総モル量に対して0.1モル%であった。このようにして作製した電池を、以下、電池D4と称する。
(比較例1)
 電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第4実施例の実施例1と同様にアルミラミネートセルを作製した。このようにして作製した電池を、以下、電池X1と称する。
(比較例2)
 電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第4実施例の実施例2と同様にアルミラミネートセルを作製した。このようにして作製した電池を、以下、電池X2と称する。
(比較例3)
 電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第4実施例の実施例3と同様にアルミラミネートセルを作製した。このようにして作製した電池を、以下、電池X3と称する。
(比較例4)
 電解液にリチウムビスオキサラトボレートを添加しなかったこと以外は、上記第4実施例の実施例4と同様にアルミラミネートセルを作製した。このようにして作製した電池を、以下、電池X4と称する。
 <低温放電性能の評価>
 上記電池D1~D4、X1~X4について、下記条件で放電性能を調べた。
・充放電条件1
 25℃の温度条件下、0.1It(0.0025A)の電流密度で4.5V(vs.Li/Li)まで定電流充電し、更に、4.5V(vs.Li/Li)の定電位で電流密度が0.02It(0.0005A)になるまで定電位充電した。さらに、0.1It(0.0025A)の電流密度で2.5V(vs.Li/Li)まで定電流放電した。
・充放電条件2(サイクル試験)
 さらに、25℃の温度条件下、2It(0.05A)の電流密度で4.5V(vs.Li/Li)まで定電流充電し、更に、4.5V(vs.Li/Li)の定電位で電流密度が0.02It(0.0005A)になるまで定電位充電した。次に各セルをそれぞれ、2It(0.05A)の電流密度で2.5V(vs.Li/Li)まで定電流放電する条件を10回繰り返し、10サイクル後の容量維持率を測定した。結果を表4に示す。
 尚、電池D2~D4及びX1~X4の10サイクル後の容量維持率は、電池D1の10サイクル後の容量維持率を100としたときの相対値を示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、本発明に従う電池D1~D4は、比較の電池X1~X4に比べ、10サイクル後の容量維持率が向上していることがわかる。従って、リチウム含有遷移金属酸化物として、一般式LiaNixCoyMnz(0.95<a<1.20、0.30≦x≦0.80、0.10≦y≦0.40、0.10≦z≦0.50)の範囲を満たすニッケルコバルトマンガン酸リチウム、一般式LiaNixCoyAlz(0.95<a<1.20、0.50≦x≦0.99、0.01≦y≦0.50、0.01≦z≦0.10)の範囲を満たすニッケルコバルトアルミニウム酸リチウム、コバルト酸リチウムを用いた場合には、リチウム含有遷移金属酸化物の表面に付着された希土類のオキシ水酸化エルビウム(希土類の化合物)と電解液に添加されたLiBOB(添加剤としてのリチウム塩)とが充電時に反応し、リチウム含有遷移金属酸化物の表面に上記したリチウムイオン伝導性を有する良質な被膜が確実に形成されるためと考えられる。一方、電解液にLiBOBが添加されていない電池X1~X4について高い容量維持率が得られていない理由としては、非水電解液にLiBOBが添加されていない場合には、リチウム含有遷移金属酸化物の表面にリチウムイオン伝導性に優れた被膜が形成されにくくなっているためと考えられる。
 なお、本実施例で、ニッケルコバルトアルミニウム酸リチウムを用いた場合に、容量維持率の改善効果が小さくなっているが、ニッケルコバルトアルミニウム酸リチウムにおいても、表面に付着された希土類のオキシ水酸化エルビウム(希土類の化合物)と電解液に添加されたLiBOB(添加剤としてのリチウム塩)とが充電時に反応し、リチウム含有遷移金属酸化物の表面に上記したリチウムイオン伝導性を有する良質な被膜が確実に形成され、本願発明の効果は得られる。しかし、ニッケルコバルトアルミニウム酸リチウムの表面にはNiOからなる抵抗層が存在するため、ニッケルコバルトマンガン酸リチウム、コバルト酸リチウムを用いた場合の方が、より大きな効果が得られる。
 上記の理由で、リチウム含有遷移金属酸化物にNiを含む場合には、活物質中のNiの平均酸化数が2.9未満であるニッケルコバルトマンガン酸リチウムを用いることが望ましく、活物質中のNiの平均酸化数が2.66未満であるニッケルコバルトマンガン酸リチウムを用いることがより望ましい。これは、Niの平均酸化数が3であるニッケルコバルトアルミニウム酸リチウムでは、活物質表面でのNiOからなる抵抗層の割合が多くなるからである。
 上記実施例においては、非水電解質二次電池として、円筒型の電池及び三電極式の電池を例にして説明しているが、本発明はこれに限定されるものではない。
 1…正極
 2…負極
 3…セパレータ
 4…電極体
 5…負極缶
 6…封口体
10…円筒型非水電解質二次電池
11…正極(作用極)
12…負極(対極)
13…セパレータ
14…参照極
15…アルミラミネート
20…三電極式試験電池

Claims (6)

  1.  正極活物質を含む正極と、負極と、非水電解質と、を備え、
    前記正極活物質は、表面に希土類の化合物が付着したリチウム含有遷移金属酸化物を含み、前記非水電解質は、オキサラト錯体をアニオンとするリチウム塩を含む、非水電解質二次電池。
  2.  前記リチウム塩が、ホウ素またはリンのオキサラト化合物である、請求項1に記載の非水電解質二次電池。
  3.  前記リチウム塩が、リチウムビスオキサラトボレートである、請求項1または2に記載の非水電解質二次電池。
  4.  前記リチウムビスオキサラトボレートの濃度が前記非水電解質からなる電解液に対して0.005モル/リットル以上0.5モル/リットル以下である請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記希土類の化合物が、希土類の水酸化物、希土類のオキシ水酸化物、または希土類の酸化物である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記リチウム含有遷移金属酸化物が、層状構造を有し、かつ一般式LiMeO(但し、Meは、Ni、Co及びMn及びAlからなる群から選ばれた少なくとも一種)で表わされる、請求項1~5のいずれか1項に記載の非水電解質二次電池。
PCT/JP2013/005254 2012-09-28 2013-09-05 非水電解質二次電池 WO2014049976A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014538126A JP6254091B2 (ja) 2012-09-28 2013-09-05 非水電解質二次電池
CN201380050899.1A CN104685696B (zh) 2012-09-28 2013-09-05 非水电解质二次电池
US14/423,975 US20150221938A1 (en) 2012-09-28 2013-09-05 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-217926 2012-09-28
JP2012217926 2012-09-28
JP2013073419 2013-03-29
JP2013-073419 2013-03-29

Publications (1)

Publication Number Publication Date
WO2014049976A1 true WO2014049976A1 (ja) 2014-04-03

Family

ID=50387425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005254 WO2014049976A1 (ja) 2012-09-28 2013-09-05 非水電解質二次電池

Country Status (4)

Country Link
US (1) US20150221938A1 (ja)
JP (1) JP6254091B2 (ja)
CN (1) CN104685696B (ja)
WO (1) WO2014049976A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017074A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JPWO2015136922A1 (ja) * 2014-03-14 2017-04-06 三洋電機株式会社 非水電解質二次電池
JP2017130418A (ja) * 2016-01-22 2017-07-27 株式会社Gsユアサ 非水電解液、非水電解液二次電池、及び非水電解液二次電池の製造方法
KR20200096549A (ko) * 2017-11-22 2020-08-12 에이일이삼 시스템즈, 엘엘씨 배터리 캐소드 재료의 금속 도핑 방법 및 시스템
CN111630692A (zh) * 2017-12-08 2020-09-04 株式会社Posco 锂二次电池正极活性材料及包括该材料的锂二次电池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101980103B1 (ko) 2016-03-03 2019-05-21 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 이의 제조 방법
JP6986688B2 (ja) * 2016-06-30 2021-12-22 パナソニックIpマネジメント株式会社 正極活物質及び非水電解質二次電池
CN110073534B (zh) * 2016-12-28 2022-04-19 松下知识产权经营株式会社 非水电解质二次电池
WO2021039241A1 (ja) * 2019-08-30 2021-03-04 パナソニックIpマネジメント株式会社 リチウム二次電池
JPWO2021039178A1 (ja) * 2019-08-30 2021-03-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159588A (ja) * 2006-12-20 2008-07-10 Saft Groupe Sa 低温で動作するリチウム電池およびその組成物
JP2011159619A (ja) * 2010-01-06 2011-08-18 Sanyo Electric Co Ltd リチウム二次電池
JP2012169289A (ja) * 2008-09-30 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP2012169290A (ja) * 2008-12-03 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060042201A (ko) * 2004-02-27 2006-05-12 산요덴키가부시키가이샤 리튬 2차 전지
KR100898291B1 (ko) * 2007-09-12 2009-05-18 삼성에스디아이 주식회사 리튬 이차 전지
KR100910264B1 (ko) * 2008-03-20 2009-07-31 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
JP4725594B2 (ja) * 2008-04-04 2011-07-13 トヨタ自動車株式会社 リチウム二次電池の製造方法
CN102077396A (zh) * 2008-07-09 2011-05-25 三洋电机株式会社 非水电解质二次电池用正极活性物质、非水电解质二次电池用正极活性物质的制造方法、非水电解质二次电池用正极及非水电解质二次电池
JP5516418B2 (ja) * 2008-12-12 2014-06-11 株式会社村田製作所 非水電解液二次電池
CN102754268B (zh) * 2010-02-12 2014-11-19 三菱化学株式会社 非水电解液及非水电解质二次电池
CN102509810A (zh) * 2011-12-23 2012-06-20 惠州市赛能电池有限公司 一种锂离子电池的液态电解液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159588A (ja) * 2006-12-20 2008-07-10 Saft Groupe Sa 低温で動作するリチウム電池およびその組成物
JP2012169289A (ja) * 2008-09-30 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP2012169290A (ja) * 2008-12-03 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP2011159619A (ja) * 2010-01-06 2011-08-18 Sanyo Electric Co Ltd リチウム二次電池

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015136922A1 (ja) * 2014-03-14 2017-04-06 三洋電機株式会社 非水電解質二次電池
JPWO2016017074A1 (ja) * 2014-07-30 2017-04-27 三洋電機株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
US10283768B2 (en) 2014-07-30 2019-05-07 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
WO2016017074A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP2017130418A (ja) * 2016-01-22 2017-07-27 株式会社Gsユアサ 非水電解液、非水電解液二次電池、及び非水電解液二次電池の製造方法
JP7209714B2 (ja) 2017-11-22 2023-01-20 エー123 システムズ エルエルシー 方法、カソード材料を形成する方法
KR20200096549A (ko) * 2017-11-22 2020-08-12 에이일이삼 시스템즈, 엘엘씨 배터리 캐소드 재료의 금속 도핑 방법 및 시스템
JP2021504886A (ja) * 2017-11-22 2021-02-15 エー123 システムズ エルエルシーA123 Systems LLC 電池のカソード材料に金属をドープするための方法及びシステム
KR102627568B1 (ko) * 2017-11-22 2024-01-23 에이일이삼 시스템즈 엘엘씨 배터리 캐소드 재료의 금속 도핑 방법 및 시스템
CN111630692A (zh) * 2017-12-08 2020-09-04 株式会社Posco 锂二次电池正极活性材料及包括该材料的锂二次电池
JP7065967B2 (ja) 2017-12-08 2022-05-12 ポスコ リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
CN111630692B (zh) * 2017-12-08 2023-08-01 浦项控股股份有限公司 锂二次电池正极活性材料及包括该材料的锂二次电池
JP2021506080A (ja) * 2017-12-08 2021-02-18 ポスコPosco リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
US11901552B2 (en) 2017-12-08 2024-02-13 Posco Holdings Inc. Positive active material for lithium secondary battery and lithium secondary battery comprising same

Also Published As

Publication number Publication date
CN104685696A (zh) 2015-06-03
CN104685696B (zh) 2017-06-13
JPWO2014049976A1 (ja) 2016-08-22
JP6254091B2 (ja) 2017-12-27
US20150221938A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
JP6178320B2 (ja) 非水電解質二次電池
JP6254091B2 (ja) 非水電解質二次電池
JP6305984B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US9786908B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
JP6124309B2 (ja) 非水電解質二次電池用正極活物質及びその正極活物質を用いた非水電解質二次電池
JP6399388B2 (ja) 非水電解質二次電池
WO2012099265A1 (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
JP6443339B2 (ja) 非水電解質二次電池用正極
US20160043389A1 (en) Non-aqueous electrolyte secondary battery
WO2016017092A1 (ja) 非水電解質二次電池
JP2014072071A (ja) 非水電解質二次電池
WO2014049977A1 (ja) 非水電解質二次電池
WO2016136179A1 (ja) 非水電解質二次電池
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2012054067A (ja) 非水電解質二次電池
JP6072689B2 (ja) 非水電解質二次電池
JP2008021538A (ja) 非水電解質二次電池
WO2012101950A1 (ja) 非水電解質二次電池用正極、当該正極の製造方法、及び当該正極を用いた非水電解液二次電池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
JP2018092704A (ja) リチウム二次電池
US20170040606A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery including the same
WO2022203048A1 (ja) 非水系電解液及びそれを用いた非水系電解液電池
JP2014029782A (ja) 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
CN114342120A (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13840307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014538126

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14423975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13840307

Country of ref document: EP

Kind code of ref document: A1