WO2016017074A1 - 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2016017074A1
WO2016017074A1 PCT/JP2015/003402 JP2015003402W WO2016017074A1 WO 2016017074 A1 WO2016017074 A1 WO 2016017074A1 JP 2015003402 W JP2015003402 W JP 2015003402W WO 2016017074 A1 WO2016017074 A1 WO 2016017074A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery
positive electrode
transition metal
compound
Prior art date
Application number
PCT/JP2015/003402
Other languages
English (en)
French (fr)
Inventor
貴雄 國分
毅 小笠原
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2016537727A priority Critical patent/JP6627758B2/ja
Priority to CN201580040095.2A priority patent/CN106575760A/zh
Priority to US15/327,549 priority patent/US10283768B2/en
Publication of WO2016017074A1 publication Critical patent/WO2016017074A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • a non-aqueous electrolyte secondary battery that performs charge / discharge by moving lithium ions between the positive and negative electrodes along with charge / discharge has a high energy density and a high capacity. Widely used as a drive power source.
  • non-aqueous electrolyte secondary batteries have attracted attention as power sources for power tools, electric vehicles (EV), hybrid electric vehicles (HEV, PHEV), etc., and further expansion of applications is expected.
  • a power source is required to have a high capacity so that it can be used for a long time and to improve output characteristics when a large current is repeatedly charged and discharged in a relatively short time.
  • it is indispensable to achieve high capacity while maintaining output characteristics with large current charge / discharge.
  • Patent Document 1 when a group 3 element of the periodic table is present on the surface of positive electrode active material base material particles, the charge voltage is increased, and this occurs at the interface between the positive electrode active material and the electrolyte. It has been suggested that the deterioration of the charge storage characteristics due to the decomposition reaction of the electrolytic solution can be suppressed.
  • Patent Document 2 high capacity and charge / discharge efficiency are achieved by applying a boric acid compound to a positive electrode active material containing lithium and at least one of nickel and cobalt, and performing heat treatment. It has been shown that improvements can be realized.
  • the object of the present invention is to provide a positive electrode for a non-aqueous electrolyte secondary battery in which a decrease in initial discharge voltage is suppressed even when a positive electrode active material or a positive electrode exposed to the atmosphere is used. It is to provide a water electrolyte secondary battery.
  • a positive electrode for a nonaqueous electrolyte secondary battery in which a decrease in initial discharge voltage is suppressed even when a positive electrode active material or a positive electrode exposed to the atmosphere is used, and a nonaqueous electrolyte secondary using the same Battery can be provided.
  • Nonaqueous electrolyte secondary battery An example of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention includes a positive electrode, a negative electrode capable of inserting and extracting lithium, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery as an example of the present embodiment includes, for example, an electrode body in which a positive electrode and a negative electrode are wound or stacked with a separator interposed therebetween, and a non-aqueous electrolyte solution that is a liquid non-aqueous electrolyte. Although it has the structure accommodated in the can, it is not limited to this. Below, each structural member of a nonaqueous electrolyte secondary battery is explained in full detail.
  • the positive electrode is preferably composed of a positive electrode current collector and a positive electrode mixture layer formed on the positive electrode current collector.
  • a positive electrode current collector for example, a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the positive electrode such as aluminum, or a film having a metal surface layer such as aluminum is used.
  • the positive electrode mixture layer preferably contains a binder and a conductive agent in addition to the positive electrode active material particles.
  • the cause of the characteristic deterioration due to atmospheric exposure is LiOH generation reaction, specifically, the moisture present on the surface of the lithium-containing transition metal oxide reacts with the lithium-containing transition metal oxide, and the lithium-containing transition metal oxide This is a reaction in which LiOH is extracted from a lithium-containing transition metal oxide and LiOH is generated by a substitution reaction between Li and hydrogen in the surface layer.
  • the LiOH generation reaction is suppressed, so the discharge voltage decreases when charging and discharging after exposure to the atmosphere. The deterioration of the initial charge / discharge characteristics due to atmospheric exposure can be reduced.
  • the surface energy of the lithium-containing transition metal oxide is reduced, and adsorption of moisture present in the atmosphere to the lithium-containing transition metal oxide can be suppressed. This action is an interaction obtained when the compound containing lithium and boron coexists with the rare earth compound, and is considered not to be obtained when the compound containing lithium and boron does not coexist with the rare earth compound.
  • the presence of a compound containing lithium and boron between the primary particles of the lithium-containing transition metal oxide secondary particles makes it difficult to adsorb moisture between the primary particles that are liable to cause the LiOH generation reaction. Can be suppressed. Between the primary particles, the area is larger than that of the outermost surface, and most of the LiOH generation reaction occurs at this site, so that deterioration in characteristics due to exposure to the atmosphere can be greatly suppressed.
  • the LiOH generation is a cause of characteristic deterioration due to atmospheric exposure.
  • the reaction can be further suppressed, whereby the deterioration of the initial charge / discharge characteristics due to atmospheric exposure can be further reduced.
  • the LiOH generation reaction is more likely to occur as the value of ab increases. This is because an increase in the value of ab represents an increase in the amount of trivalent nickel, and trivalent nickel adsorbs moisture, so that a LiOH generation reaction is likely to occur. That is, as the value of ab increases, the initial charge / discharge characteristics deteriorate due to exposure to the atmosphere. Therefore, the range of the value of ab is preferably greater than 0.20 and less than 0.65.
  • the value of ab when the value of ab is 0.65 or more, the amount of trivalent nickel becomes very large, so that LiOH generation reaction is likely to occur. As a result, even in this configuration, the effect of suppressing the LiOH generation reaction becomes insufficient, and thus the initial charge / discharge characteristics deteriorate due to exposure to the atmosphere.
  • the value of ab when the value of ab is 0.2 or less, since the amount of trivalent nickel is small, the LiOH generation reaction hardly occurs and the initial charge / discharge characteristics are hardly deteriorated by exposure to the atmosphere. There is no improvement.
  • the positive electrode active material particles are preferably those in which a compound containing lithium and boron is further attached to the surface of the lithium-containing transition metal oxide. .
  • the synergistic effect by the said rare earth compound, the compound containing lithium and boron is further exhibited, and the fall of the initial stage charge / discharge characteristic by atmospheric exposure is improved further.
  • the rare earth compound is preferably at least one compound selected from rare earth hydroxides, oxyhydroxides, oxides, carbonic acid compounds, phosphoric acid compounds and fluorine compounds.
  • at least one compound selected from rare earth hydroxides and oxyhydroxides is particularly preferable, and when these rare earth compounds are used, the effect of suppressing a decrease in initial efficiency due to atmospheric exposure is further exhibited. Is done. This is because rare earth hydroxides and oxyhydroxides increase the reaction activation energy of the LiOH production reaction.
  • rare earth elements contained in rare earth compounds include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • neodymium, samarium, and erbium are particularly preferable. This is because neodymium, samarium, and erbium compounds have a smaller average particle size than other rare earth compounds, and are more easily dispersed and precipitated over the entire surface of the lithium-containing transition metal oxide particles.
  • rare earth compounds include neodymium hydroxide, neodymium oxyhydroxide, samarium hydroxide, samarium oxyhydroxide, erbium hydroxide, erbium oxyhydroxide, and other hydroxides and oxyhydroxides, as well as neodymium phosphate.
  • the average particle size of the rare earth compound is preferably 1 nm or more and 100 nm or less, and more preferably 10 nm or more and 50 nm or less. If the average particle size of the rare earth compound exceeds 100 nm, the particle size of the rare earth compound becomes too large, so that the number of rare earth compound particles adhering to the particle surface of the lithium-containing transition metal oxide decreases. As a result, the effect of improving the low-temperature output may be reduced. On the other hand, when the average particle size of the rare earth compound is less than 1 nm, the lithium-containing transition metal oxide particle surface is densely covered with the rare-earth compound, so that lithium ions are occluded or released from the lithium-containing transition metal oxide particle surface. Performance may deteriorate and charge / discharge characteristics may deteriorate.
  • the ratio (attachment amount) of the rare earth compound to the total mass of the lithium-containing transition metal oxide is preferably 0.005% by mass or more and 0.5% by mass or less, and 0.05% by mass or more and 0.3% by mass in terms of rare earth elements. % Or less is more preferable.
  • the ratio is less than 0.005% by mass, the above-described effects due to the rare earth compound and the compound containing lithium and boron cannot be sufficiently obtained, and deterioration of the initial charge / discharge characteristics due to exposure to the electrode plate may not be suppressed.
  • it exceeds 0.5% by mass the surface of the lithium-containing transition metal oxide particles is excessively covered, and the initial charge / discharge characteristics may be deteriorated regardless of whether or not the electrode plate is exposed.
  • the molar ratio of nickel, cobalt, and manganese is particularly 50:30:20, 52:22:26, 55:20:25, 60:20:20, 60:10:30. 70:10:20, 70:20:10, and 75:15:10.
  • a material having a higher proportion of nickel than cobalt or manganese from the viewpoint that not only the positive electrode capacity can be increased but also the LiOH generation reaction is more likely to occur. These may be used alone or in combination with other lithium-containing transition metal oxides.
  • the lithium-containing transition metal oxide may further contain other additive elements.
  • additive elements include boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), and niobium (Nb). ), Molybdenum (Mo), tantalum (Ta), zirconium (Zr), tin (Sn), tungsten (W), sodium (Na), potassium (K), barium (Ba), strontium (Sr), calcium (Ca) ) And the like.
  • lithium-containing transition metal oxide examples include particles having an average particle diameter of 2 to 30 ⁇ m, and the particles may be in the form of secondary particles in which primary particles of 100 nm to 10 ⁇ m are bonded.
  • a method of adding an aqueous solution in which a compound containing a rare earth element is added to a suspension containing a lithium-containing transition metal oxide is an example of the present embodiment.
  • the pH of the suspension is adjusted in the range of 6 to 10 and kept constant while the aqueous solution in which the compound containing the rare earth element is dissolved is added to the suspension. This is because when the pH is less than 6, the lithium-containing transition metal oxide may be dissolved.
  • the pH exceeds 10 when an aqueous solution in which a compound containing a rare earth element is dissolved is added to the suspension, the particles of the rare earth compound are unevenly distributed on a part of the surface of the lithium-containing transition metal compound particles. As a result, the rare earth compound fine particles are uniformly dispersed over the entire surface of the lithium-containing transition metal acid compound particles and do not adhere.
  • Other methods include stirring or adding an aqueous solution or solution in which a compound containing a rare earth element is dissolved in the lithium-containing transition metal composite oxide while stirring the lithium-containing transition metal composite oxide, Examples thereof include a method in which a compound containing an element is added to the lithium-containing transition metal composite oxide and mechanically mixed.
  • a mechanical mixing method for example, a nobilta manufactured by Hosokawa Micron Co., Ltd. or a mechano-fusion can be used, which uses an Ishikawa-type separator or a twin-axis planetary mixer (such as Hibismix manufactured by Primics). Can do.
  • the rare earth compound fine particles are dispersed more uniformly on the entire surface of the lithium-containing transition metal composite oxide particles, the above LiOH generation when moisture is adsorbed on the surface of the lithium-containing transition metal composite oxide
  • a method of adding an aqueous solution in which a compound containing a rare earth element is dissolved to a suspension containing a lithium-containing transition metal composite oxide is particularly preferable.
  • aqueous solution in which a compound containing a rare earth element is dissolved is added to a suspension containing a lithium-containing transition metal oxide, if it is simply performed in water, it precipitates as a hydroxide, and a sufficient fluorine source is added to the suspension. If added, it can be precipitated as fluoride.
  • carbon dioxide is sufficiently dissolved, it precipitates as a carbonic acid compound.
  • sufficient phosphate ions are added to the suspension, it precipitates as a phosphoric acid compound, and a rare earth compound is deposited on the surface of the lithium-containing transition metal oxide particles. can do. Further, by controlling the dissolved ions of the suspension, for example, a rare earth compound in which hydroxide and fluoride are mixed can be obtained.
  • the lithium-containing transition metal oxide particles on which the rare earth compound is deposited can be further heat-treated.
  • the heat treatment temperature is preferably about 80 ° C. to 500 ° C., more preferably about 80 ° C. to 400 ° C. If it is less than 80 ° C, it may take an excessive amount of time to dry sufficiently. If it exceeds 500 ° C, a part of the rare earth compound adhering to the surface diffuses inside the particles of the lithium-containing transition metal composite oxide. As a result, the surface energy suppression effect may be reduced.
  • the temperature is 400 ° C. or less, rare earth elements hardly diffuse inside the particles of the lithium-containing transition metal composite oxide and are selectively present on the particle surface, so that the effect of reducing the surface energy is increased.
  • rare earth hydroxide when deposited on the surface, it becomes an oxyhydroxide at about 200 ° C. to about 300 ° C., and further becomes an oxide at about 450 ° C. to about 500 ° C. For this reason, when heat-treated at 400 ° C. or lower, rare earth hydroxides or oxyhydroxides having a large effect of suppressing the LiOH generation reaction can be selectively disposed on the particle surface, and uniform over the entire particle surface. As a result, it is possible to obtain an excellent atmospheric exposure resistance.
  • a rare earth acetate, a rare earth nitrate, a rare earth sulfate, a rare earth oxide, or a rare earth chloride dissolved in water or an organic solvent may be used. It can.
  • rare earth sulfates, rare earth chlorides, and rare earth nitrates obtained by dissolving rare earth oxides in sulfuric acid, hydrochloric acid, and nitric acid are the same as those dissolved in water as described above. Can do.
  • the compound containing lithium and boron is preferably lithium borate, lithium metaborate, or lithium tetraborate, and among these, lithium metaborate is particularly preferable.
  • these compounds containing lithium and boron are used, the effect of suppressing a decrease in initial discharge voltage due to atmospheric exposure is further exhibited.
  • the ratio of the compound containing lithium and boron to the total mass of the lithium-containing transition metal oxide is preferably 0.005% by mass or more and 5% by mass or less, and 0.01% by mass or more and 0.2% by mass in terms of boron element.
  • the mass% or less is more preferable.
  • the ratio is less than 0.005% by mass, the effect of the rare earth compound, the compound containing lithium and boron cannot be sufficiently obtained, and the deterioration of characteristics due to exposure of the electrode plate to the atmosphere may not be suppressed.
  • the ratio exceeds 5% by mass, the amount of the positive electrode active material is reduced by that amount, so that the positive electrode capacity is reduced.
  • an aqueous solution or solution in which a compound containing lithium and boron is dissolved in a lithium-containing transition metal composite oxide while stirring the lithium-containing transition metal composite oxide is used.
  • examples thereof include a method of spraying or dropping and a method of adding a compound containing lithium and boron to the lithium-containing transition metal composite oxide and mechanically mixing them.
  • a mechanical mixing method for example, a nobilta manufactured by Hosokawa Micron Co., Ltd. or a mechano-fusion can be used, which uses an Ishikawa-type separator or a twin-axis planetary mixer (such as Hibismix manufactured by Primics). Can do.
  • the compound containing lithium and boron is more uniformly attached to the entire surface of the lithium-containing transition metal composite oxide particles, the water adsorption reaction on the surface of the lithium-containing transition metal composite oxide can be suppressed, and moisture adsorption
  • the lithium-containing transition metal composite is stirred while the lithium-containing transition metal composite oxide is stirred into the suspension containing the lithium-containing transition metal composite oxide.
  • a method in which an aqueous solution or solution in which a compound containing lithium and boron is dissolved in an oxide is sprayed or added dropwise is particularly preferable.
  • the compound containing lithium and boron adheres to at least part of the surface of the lithium-containing transition metal oxide secondary particle, and adheres to at least part of the interface between the primary particles aggregated on the surface of the secondary particle. It is desirable. By taking such a form, the synergistic effect of the compound containing lithium and boron and the rare earth compound is particularly preferable.
  • the positive electrode active material particle grains which the rare earth compound adhered to the surface of a lithium containing transition metal oxide, or the rare earth compound and the compound containing lithium and boron adhered to the surface of a lithium containing transition metal oxide. It is not limited to the case where the positive electrode active material particles are used alone. The positive electrode active material particles and other positive electrode active materials can be mixed and used.
  • the average crystallite size L obtained by the Halder-Wagner method is 500 to 1700 ⁇ ⁇ based on the integral width obtained by the Pawley method of the lithium transition metal composite oxide.
  • the average crystallite size L of the lithium transition metal composite oxide in the present invention is obtained as follows.
  • the average crystallite size of the lithium transition metal composite oxide is preferably 500 to 1700.
  • the average crystallite size is 500 mm or more, crystal growth is sufficient, and there is little possibility of including an impurity layer such as Li 2 CO 3 or LiOH, which can further reduce deterioration of initial charge / discharge characteristics due to exposure to the atmosphere. it can.
  • the average crystallite size exceeds 1700 mm, the Li diffusion distance in the crystal increases and the resistance increases, which is not preferable as an active material.
  • the average crystallite size of the lithium transition metal composite oxide can be controlled by adjusting the firing temperature and firing time. For example, when the firing temperature is lowered, the average crystallite size tends to decrease, and when the firing time is shortened, the average crystallite size tends to decrease.
  • the average crystallite size can be controlled by a method of synthesizing a lithium transition metal composite oxide by mixing additives that promote or suppress crystal growth, and a method of adjusting the amount of a compound serving as a Li source to be mixed during firing. .
  • the average crystallite size can be controlled by controlling the particle size and particle size distribution of the precursor of the lithium transition metal composite oxide, adjusting the composition ratio of Ni, Mn, and Co.
  • the average crystallite size tends to increase as the amount of the compound serving as the Li source mixed during firing increases.
  • the positive electrode active material is not particularly limited as long as it is a compound that can reversibly insert and desorb lithium ions.
  • those having a spinel structure or an olivine structure can be used.
  • the positive electrode active materials may be of the same particle diameter or of different particle diameters. Also good.
  • binder examples include fluorine-based polymers and rubber-based polymers.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • examples include coalescence. These may be used alone or in combination of two or more.
  • the binder may be used in combination with a thickener such as carboxymethyl cellulose (CMC) or polyethylene oxide (PEO).
  • Examples of the conductive agent include carbon materials such as carbon black, acetylene black, ketjen black, and graphite as carbon materials. These may be used alone or in combination of two or more.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery which is an example of an embodiment of the present invention includes a lithium-containing transition metal oxide, a rare earth compound attached to the surface of the lithium-containing transition metal oxide, and the lithium-containing transition metal oxide. It contains lithium and boron-containing compounds attached to the surface of the transition metal oxide.
  • a conventionally used negative electrode can be used.
  • a negative electrode active material and a binder are mixed with water or an appropriate solvent, applied to the negative electrode current collector, dried, and rolled. Can be obtained.
  • the negative electrode current collector it is preferable to use a conductive thin film, particularly a metal foil or alloy foil that is stable in the potential range of the negative electrode such as copper, a film having a metal surface layer such as copper, or the like.
  • the binder PTFE or the like can be used as in the case of the positive electrode, but it is preferable to use a styrene-butadiene copolymer (SBR) or a modified body thereof.
  • SBR styrene-butadiene copolymer
  • the binder may be used in combination with a thickener such as CMC.
  • the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium ions.
  • a carbon material, a metal or alloy material alloyed with lithium such as Si or Sn, or metal oxide A thing etc. can be used. These may be used alone or in admixture of two or more, and are a combination of a negative electrode active material selected from a carbon material, a metal alloyed with lithium, an alloy material or a metal oxide. Also good.
  • Nonaqueous electrolyte As the nonaqueous electrolyte solvent, conventionally used cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, and chain carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate may be used. it can. In particular, it is preferable to use a mixed solvent of a cyclic carbonate and a chain carbonate as a non-aqueous solvent having a high lithium ion conductivity in terms of high dielectric constant, low viscosity, and low melting point. Further, the volume ratio of the cyclic carbonate to the chain carbonate in the mixed solvent is preferably regulated in the range of 2: 8 to 5: 5.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; compounds containing sulfone groups such as propane sultone; 1,2-dimethoxyethane, 1,2- Compounds containing ethers such as diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyltetrahydrofuran; butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile , 1,2,3-propanetricarbonitrile, compounds containing nitriles such as 1,3,5-pentanetricarbonitrile; compounds containing amides such as dimethylformamide, etc. can be used together with the above-mentioned solvents, These
  • solutes can be used as the solute of the non-aqueous electrolyte, for example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN which are fluorine-containing lithium salts.
  • (CF 3 SO 2 ) 2 LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6, etc.
  • LiPF 6 LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN which are fluorine-containing lithium salts.
  • (CF 3 SO 2 ) 2 LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6, etc.
  • lithium salt other than fluorine-containing lithium salt [lithium salt containing one or more elements among P, B, O, S, N, Cl (for example, LiClO 4 etc.)] is added to fluorine-containing lithium salt. May be used.
  • lithium salts having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], li [P (C 2 O 4 ) 2 F 2] and the like.
  • LiBOB lithium-bisoxalate borate
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ]
  • li [P (C 2 O 4 ) 2 F 2] examples include LiBOB [lithium-bisoxalate borate], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], li [P (C 2 O 4 ) 2 F 2] and the like.
  • the said solute may be used independently and may be used in mixture of 2 or more types.
  • separator As a separator, the separator conventionally used can be used. For example, a separator made of polypropylene or polyethylene, a multilayer separator of polypropylene-polyethylene, or a separator whose surface is coated with a resin such as an aramid resin can be used.
  • a layer made of an inorganic filler conventionally used can be formed at the interface between the positive electrode and the separator or the interface between the negative electrode and the separator.
  • the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surfaces are treated with hydroxide or the like.
  • the filler layer may be formed by directly applying a filler-containing slurry to the positive electrode, negative electrode, or separator, or by attaching a filler-formed sheet to the positive electrode, negative electrode, or separator. Can do.
  • the crystallite size of the obtained lithium-containing transition metal oxide was 950 mm.
  • the obtained powder is dried at 120 ° C., and part of the surface of the lithium-containing transition metal oxide is obtained. The thing to which erbium hydroxide adhered was obtained.
  • distilled water was added to 2.2 g of lithium metaborate to dilute to 75 ml to prepare a coating solution. Then, 500 g of the lithium-containing transition metal oxide to which the erbium hydroxide was adhered was stirred using a spatula made of polypropylene on a fluorine-processed pad, and the erbium hydroxide was adhered to the coating solution using a spray. Sprayed on lithium-containing transition metal oxides. Next, the lithium-containing transition metal oxide sprayed with the coating solution was dried at 120 ° C. for 2 hours. As a result, a positive electrode active material in which lithium metaborate was adhered to the surface of the lithium-containing transition metal oxide was obtained.
  • the obtained lithium-containing transition metal oxide powder to which erbium hydroxide and lithium metaborate were adhered was heat-treated in an air atmosphere at 300 ° C. for 5 hours to produce positive electrode active material particles.
  • heat treatment is performed at 300 ° C. in this way, all or most of the erbium hydroxide adhering to the surface changes to erbium oxyhydroxide, so that the state of erbium oxyhydroxide adhering to the surface of the lithium-containing transition metal oxide particles become.
  • erbium hydroxide may be attached to the surface of the lithium-containing transition metal oxide particles.
  • the positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector made of an aluminum foil, dried, and then rolled with a rolling roller, and a current collector tab made of aluminum is further attached.
  • a positive electrode plate having a positive electrode mixture layer formed on both sides of the electric body was produced.
  • the obtained positive electrode plate is made into a state in which the cross section of the electrode plate can be observed using a cross section polisher (CP) method, and then the lithium-containing transition metal oxide secondary particles contained in the electrode plate are subjected to wavelength dispersion X-ray analysis.
  • CP cross section polisher
  • boron element is confirmed at the primary particle interface aggregated on the surface of the active material secondary particles, and the compound containing lithium and boron is at least part of the surface of the active material secondary particles, It was confirmed that it adhered to at least a part of the interface between the primary particles aggregated on the surface of the secondary particles.
  • the positive electrode plate produced as described above was used as the working electrode 11, and the three-electrode test cell 20 was produced using metallic lithium as the counter electrode 12 and the reference electrode 13, respectively.
  • a non-aqueous electrolyte solution 14 in which LiPF 6 was dissolved to a concentration of 1 mol / L in a mixed solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 was used. It was.
  • the three-electrode test cell thus produced is hereinafter referred to as battery A1.
  • Example 2 As a positive electrode active material particle, a lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.55 Mn 0.25 Co 0.20 ] O 2 in which an erbium compound and lithium metaborate are not attached is used. A battery was fabricated in the same manner as the battery A1 except that. The battery thus produced is hereinafter referred to as battery A2.
  • a battery (battery) using a positive electrode plate exposed to the atmosphere in the same manner as the battery A2, except that after being rolled by a rolling roller and exposed to the atmosphere under the above-described conditions. B2) was produced.
  • Example 3 Except for using lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.55 Mn 0.25 Co 0.20 ] O 2 to which no erbium compound is attached as the positive electrode active material particles.
  • a battery was produced in the same manner as the battery A1. The battery thus produced is hereinafter referred to as battery A3.
  • the charge / discharge under the above conditions was defined as one cycle, the average discharge voltage at the time of discharge was measured, and the initial discharge voltage was obtained.
  • the initial discharge voltage without exposure to the atmosphere is defined as the “discharge voltage without exposure”, with exposure to the atmosphere (when using a positive electrode plate that has been exposed to the air) ) was defined as “discharge voltage with exposure”, and the amount of decrease in discharge voltage was calculated from the difference between the discharge voltage without exposure and the discharge voltage with exposure of the corresponding battery based on the following formula (1).
  • Discharge voltage drop (V) (Discharge voltage without exposure)-(Discharge voltage with exposure) (1)
  • the discharge voltage drop of the active material in which neither the rare earth element nor the compound containing lithium and boron is adhered to the surface of the lithium-containing metal transition oxide is referred to as “surface elementless discharge voltage drop”.
  • Example 1 in which lithium metaborate is attached to at least part of the interface between erbium oxyhydroxide attached to the surface of the secondary particles, the surface of the secondary particles, and the primary particles aggregated on the surface of the secondary particles
  • erbium oxyhydroxide suppresses the progress of the LiOH formation reaction, which is the cause of characteristic deterioration due to atmospheric exposure, so the charge / discharge efficiency decreases when charging / discharging after atmospheric exposure. It is thought that deterioration of charge / discharge characteristics can be reduced.
  • the surface energy of the lithium-containing transition metal oxide is lowered by the interaction between lithium metaborate and erbium oxyhydroxide, the adsorption of moisture in the atmosphere to the lithium-containing transition metal compound is suppressed. Due to the fact that this moisture adsorption amount can be reduced, the progress of the LiOH generation reaction, which is the cause of characteristic deterioration due to atmospheric exposure, is further suppressed, and the deterioration of initial charge / discharge characteristics due to atmospheric exposure can be further reduced. It is done.
  • the interaction between the boron compound and erbium oxyhydroxide described above is an effect exhibited by the boron compound when the boron compound and the rare earth compound coexist, and is exhibited when the boron compound is present alone. It is thought that it is not done.
  • the rare earth compound does not exist in the battery of Experimental Example 3, it is considered that the effect of suppressing the LiOH generation reaction by the rare earth compound was not obtained. That is, the experimental example 2 and the experimental example 3 have almost the same results, and the effect of suppressing the deterioration of the initial charge / discharge characteristics due to atmospheric exposure cannot be obtained only by attaching the boron compound as in the experimental example 3. I understand that.
  • the obtained positive electrode active material all or most of the samarium hydroxide adhering to the surface was changed to samarium oxyhydroxide by heat treatment, and the samarium oxyhydroxide was attached to the surface of the positive electrode active material particles. there were. However, since some may remain in the state of samarium hydroxide, samarium hydroxide may adhere to the surface of the lithium-containing transition metal oxide particles.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A5 in the same manner as the battery A5, except that it was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B5) was prepared.
  • Example 6 A battery was produced in the same manner as the battery A5 except that lithium metaborate was not mixed when producing the positive electrode plate.
  • the battery thus produced is hereinafter referred to as battery A6.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A6 in the same manner as the battery A6, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. A battery using this (battery B6) was produced.
  • Example 7 A battery was produced in the same manner as the battery A1 except that neodymium nitrate hexahydrate was used instead of erbium nitrate pentahydrate as the rare earth compound when producing the positive electrode active material particles.
  • the battery thus produced is hereinafter referred to as battery A7.
  • the obtained positive electrode active material particles are obtained by changing all or most of neodymium hydroxide adhering to the surface to neodymium oxyhydroxide by heat treatment, and neodymium oxyhydroxide adhering to the surface of the lithium-containing transition metal oxide. It was in a state that was. However, since some may remain in the form of neodymium hydroxide, neodymium hydroxide may adhere to the surface of the lithium-containing transition metal oxide particles.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A7 in the same manner as the battery A7, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. A battery using this (battery B7) was produced.
  • Example 8 A battery was produced in the same manner as the battery A7 except that lithium metaborate was not mixed when producing the positive electrode plate.
  • the battery thus produced is hereinafter referred to as battery A8.
  • the positive electrode plate exposed to the atmosphere corresponding to the battery A8 was prepared in the same manner as the battery A8 except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (Battery B8) was prepared.
  • Batteries A5 to A8 produced using a positive electrode plate that was not exposed to the atmosphere under the above conditions, and a positive electrode plate that was exposed to the atmosphere under the above conditions in batteries A5 to A8.
  • the characteristic improvement index by the surface element was calculated in the same manner as in the first experimental example. The results are shown in Table 2 below together with the results of the batteries of Experimental Examples 1 and 4.
  • the batteries of Experimental Examples 5 and 7 using a lithium-containing transition metal oxide in which a samarium compound or a neodymium compound is attached to a part of the surface instead of the erbium compound are boron.
  • the characteristic improvement index by the surface element was greatly increased.
  • the battery of Experimental Example 1 has a lower characteristic degradation index due to exposure than the batteries of Experimental Example 5 and Experimental Example 7. Is recognized. This shows that erbium compounds are particularly preferable among the rare earth elements.
  • the obtained positive electrode plate is made into a state in which the cross section of the electrode plate can be observed using a cross section polisher (CP) method, and then the lithium-containing transition metal oxide secondary particles contained in the electrode plate are subjected to wavelength dispersion X-ray analysis.
  • CP cross section polisher
  • boron element was confirmed at the interface of the primary particles aggregated on the surface of the active material secondary particles, and lithium tetraborate was found to be at least part of the surface of the active material secondary particles. It was confirmed that it adhered to at least a part of the interface between the primary particles aggregated on the surface of the particles.
  • lithium containing transition metal oxide particles lithium nickel manganese cobalt composite oxide
  • boron element %Met lithium containing transition metal oxide particles (lithium nickel manganese cobalt composite oxide) 0.05 mass in terms of boron element %Met.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A9 in the same manner as the battery A9, except that after being rolled by a rolling roller and exposed to the atmosphere under the above-described conditions.
  • a battery (battery B9) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A10 in the same manner as the battery A10, except that after being rolled by a rolling roller and exposed to the atmosphere under the above-described conditions.
  • a battery (battery B10) was prepared.
  • Batteries A9 to A10 produced using positive electrode plates that were not exposed to the atmosphere under the above conditions, and positive electrode plates that were exposed to the atmosphere under the above conditions in batteries A9 to A10.
  • the characteristic improvement index by the surface element was calculated in the same manner as in the first experimental example. The results are summarized in Table 3 below together with the results of the batteries of Experimental Examples 1 and 3.
  • the battery of Experimental Example 9 using a lithium-containing transition metal oxide in which lithium tetraborate is attached to a part of the surface instead of lithium metaborate is the battery of Experimental Example 9.
  • the characteristic improvement index by the surface element is greatly increased.
  • Example 4 (Experimental example 11) The above battery except that a lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.50 Mn 0.30 Co 0.20 ] O 2 was used when producing the positive electrode active material particles.
  • a battery was produced in the same manner as A1. The battery thus produced is hereinafter referred to as battery A11.
  • the crystallite size of the lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.50 Mn 0.30 Co 0.20 ] O 2 was 940 mm.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A11 in the same manner as the battery A11, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions. A battery using this (battery B11) was produced.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A12 in the same manner as the battery A12, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B12) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A13 in the same manner as the battery A13, except that it was exposed to the atmosphere under the above conditions after being rolled by a rolling roller. A battery using this (battery B13) was produced.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A14 in the same manner as the battery A14, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B14) was prepared.
  • Example 15 The above battery except that a lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.52 Mn 0.26 Co 0.22 ] O 2 was used when producing the positive electrode active material particles.
  • a battery was produced in the same manner as A1. The battery thus produced is hereinafter referred to as battery A15.
  • the average crystallite size of the lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.52 Mn 0.26 Co 0.22 ] O 2 was 935 mm.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A15 in the same manner as the battery A15, except that it was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B15) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A16 in the same manner as the battery A16, except that it was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B16) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A17 in the same manner as the battery A17, except that after being rolled by a rolling roller and exposed to the atmosphere under the above-described conditions.
  • a battery (Battery B17) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A18 in the same manner as the battery A18, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B18) was prepared.
  • Example 19 The above battery except that a lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.70 Mn 0.10 Co 0.20 ] O 2 was used when producing the positive electrode active material particles.
  • a battery was produced in the same manner as A1. The battery thus produced is hereinafter referred to as battery A19.
  • the average crystallite size of the lithium nickel manganese cobalt composite oxide represented by Li 1.06 [Ni 0.70 Mn 0.10 Co 0.20 ] O 2 was 984 mm.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A19 in the same manner as the battery A19, except that after being rolled by a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B19) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A20 in the same manner as the battery A20, except that it was exposed to the atmosphere under the above conditions after being rolled by a rolling roller. A battery using this (battery B20) was produced.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A21 in the same manner as the battery A21, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B21) was prepared.
  • the positive electrode plate when producing the positive electrode plate, the positive electrode plate exposed to the atmosphere corresponding to the battery A22 in the same manner as the battery A22, except that the positive electrode plate was rolled with a rolling roller and then exposed to the atmosphere under the above-described conditions.
  • a battery (battery B22) was prepared.
  • the characteristic improvement index by the surface element was calculated in the same manner as in the first experimental example. The results are summarized in Table 4 below.
  • the lithium-containing transition metal oxide having the composition of Li 1.06 [Ni 0.50 Mn 0.30 Co 0.20 ] O 2 the synergistic effect by the rare earth compound and the compound containing lithium and boron is obtained.
  • the Li 1.06 [Ni 0.50 Mn 0.30 Co 0.20 ] O 2 composition shows a very low discharge voltage drop due to exposure even in the absence of the surface element of Experimental Example 12. It is considered that no significant improvement was observed even when surface elements were deposited.
  • the lithium-containing transition metal oxide composition was changed from Li 1.06 [Ni 0.55 Mn 0.25 Co 0.20 ] O 2 to Li 1.06 [Ni 0. .52 Mn 0.26 Co 0.22 ] O 2
  • the battery of Experimental Example 15 in which an erbium compound and lithium metaborate were further adhered to the surface was the battery of Experimental Example 16 in which surface elements were not adhered.
  • the characteristic improvement index by the surface element is greatly increased.
  • the lithium-containing transition metal oxide composition was changed from Li 1.06 [Ni 0.55 Mn 0.25 Co 0.20 ] O 2 to Li 1.06 [Ni In addition to 0.70 Mn 0.10 Co 0.20 ] O 2
  • the battery of Experimental Example 19 in which an erbium compound and lithium metaborate were further adhered to the surface was the same as that of Experimental Example 20 in which surface elements were not adhered.
  • the characteristic improvement index by the surface element is greatly increased.
  • the lithium-containing transition metal oxide composition in which the effect of the rare earth compound and the compound containing lithium and boron is effective is represented by the general formula Li 1 + x Ni a Mn b Co c M d O 2 + e . It is considered that the lithium-containing transition metal oxide represented is exhibited when 0.20 ⁇ ab ⁇ 0.65.
  • a positive electrode for a partial nonaqueous electrolyte secondary battery according to one aspect of the present invention and a nonaqueous electrolyte secondary battery using the same are, for example, a driving power source for a mobile information terminal such as a mobile phone, a notebook computer, a smartphone, and a tablet terminal.
  • a mobile information terminal such as a mobile phone, a notebook computer, a smartphone, and a tablet terminal.
  • it can be applied to applications that require high energy density.
  • it can be expected to be used for high-power applications such as electric vehicles (EV), hybrid electric vehicles (HEV, PHEV) and electric tools.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • PHEV PHEV

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 大気暴露した正極を用いても、初期放電電圧の低下を抑制することができる非水電解質二次電池用正極を提供する。 本発明の非水電解質二次電池用正極の一局面は、非水電解質二次電池用正極が、一次粒子が凝集した二次粒子で構成されるリチウム含有遷移金属酸化物を含み、希土類化合物が、二次粒子の表面の少なくとも一部に付着し、リチウムとホウ素を含む化合物が、二次粒子の表面の少なくとも一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着している。

Description

非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
 本発明は、非水電解質二次電池用正極及びそれを用いた非水電解質二次電池に関する。
 近年、携帯電話、ノートパソコン、スマートフォン等の移動情報端末の小型・軽量化が急速に進展しており、その駆動電源としての二次電池にはさらなる高容量化が要求されている。充放電に伴い、リチウムイオンが正、負極間を移動することにより充放電を行う非水電解質二次電池は、高いエネルギー密度を有し、高容量であるので、上記のような移動情報端末の駆動電源として広く利用されている。
 さらに最近では、非水電解質二次電池は、電動工具、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)等の動力用電源としても注目されており、さらなる用途拡大が見込まれている。こうした動力用電源では、長時間の使用が可能となるような高容量化や、比較的短時間に大電流充放電を繰り返す場合の出力特性の向上が求められる。特に、電動工具、EV、HEV、PHEV等の用途では、大電流充放電での出力特性を維持しつつ高容量化を達成することが必須となっている。
 例えば、下記特許文献1には、正極活物質母材粒子の表面に周期律表の第3族の元素を存在させることにより、充電電圧を高くする際に正極活物質と電解液の界面で生じる電解液の分解反応に起因する充電保存特性の劣化を抑制できることが示唆されている。
 また、下記特許文献2には、リチウムと、ニッケルおよびコバルトのうちの少なくとも一方を含む正極活物質に、ホウ酸化合物を被着させて加熱処理を行なうことにより、高容量化と充放電効率の向上を実現できることが示されている。
国際公開第2005/008812号 特開2009-146739号公報
 しかしながら、上記特許文献1及び特許文献2に開示されている技術を用いても、正極活物質や正極を大気暴露した場合には、初期放電電圧の低下を抑制できないことがわかった。
 本発明の一局面によれば、その目的は、大気暴露した正極活物質や正極を用いた場合でも、初期放電電圧の低下が抑制される非水電解質二次電池用正極及びそれを用いた非水電解質二次電池を提供することである。
 本発明の一局面によれば、非水電解質二次電池用正極は、一次粒子が凝集した二次粒子で構成されるリチウム含有遷移金属酸化物を含み、リチウム含有遷移金属酸化物は、一般式Li1+xNiMnCo2+d(x、a、b、cおよびdは、a+b+c=1、0<x≦0.2、0.20<a-b<0.65、-0.1≦d≦0.1の条件を満たす)で表され、二次粒子表面に付着している希土類化合物と、二次粒子の表面の少なくとも
一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部にリチウムとホウ素を含む化合物が付着している。
 本発明の一局面によれば、大気暴露した正極活物質や正極を用いた場合でも、初期放電電圧の低下が抑制される非水電解質二次電池用正極及びそれを用いた非水電解質二次電池を提供できる。
本実験例で用いた三電極式試験セルを示す模式図である。
 本発明の実施形態について以下に説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 [非水電解質二次電池]
 本発明の実施形態に係る非水電解質二次電池の一例としては、正極と、リチウムを吸蔵・放出可能な負極と、非水電解質とを備える。本実施形態の一例である非水電解質二次電池は、例えば、正極および負極がセパレータを介して巻回もしくは積層された電極体と、液状の非水電解質である非水電解液とが電池外装缶に収容された構成を有するが、これに限定されるものではない。以下に、非水電解質二次電池の各構成部材について詳述する。
 [正極]
 本発明の実施形態の一例である非水電解質二次電池用正極は、一次粒子が凝集した二次粒子で構成されるリチウム含有遷移金属酸化物を含み、リチウム含有遷移金属酸化物は、一般式Li1+xNiMnCo2+d(x、a、b、cおよびdは、a+b+c=1、0<x≦0.2、0.20<a-b<0.65、-0.1≦d≦0.1の条件を満たす)で表され、二次粒子表面に付着している希土類化合物と、二次粒子の表面の少なくとも一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部にリチウムとホウ素を含む化合物が付着している。
 正極は、正極集電体と、正極集電体上に形成された正極合剤層とで構成されることが好適である。正極集電体には、例えば、導電性を有する薄膜体、特にアルミニウムなどの正極の電位範囲で安定な金属箔や合金箔、アルミニウムなどの金属表層を有するフィルムが用いられる。正極合剤層には、正極活物質粒子の他に、結着剤、導電剤を含むことが好ましい。
 大気暴露による特性劣化の原因は、LiOH生成反応であり、具体的には、リチウム含有遷移金属酸化物の表面に存在する水分とリチウム含有遷移金属酸化物とが反応し、リチウム含有遷移金属酸化物の表面層にあるLiと水素の置換反応が起こることにより、リチウム含有遷移金属酸化物からLiが引き抜かれてLiOHが生成する反応である。しかし、リチウム含有遷移金属酸化物の二次粒子の表面の少なくとも一部に付着している希土類化合物が存在すると、LiOH生成反応が抑制されるため、大気暴露後に充放電した際に放電電圧が低下するという、大気暴露による初期充放電特性の劣化を低減することができる。
 加えて、リチウム含有遷移金属酸化物の二次粒子の表面の少なくとも一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着したリチウムとホウ素を含む化合物の存在により、リチウム含有遷移金属酸化物の表面エネルギーが低下し、リチウム含有遷移金属酸化物への大気中に存在する水分の吸着を抑制することができる。この作用は、リチウムとホウ素を含む化合物が希土類化合物と共存している場合に得られる相互作用であって、リチウムとホウ素を含む化合物が希土類化合物と共存しない場合には得られないと考えられる。
 リチウム含有遷移金属酸化物二次粒子の一次粒子間にリチウムとホウ素を含む化合物が存在することにより、上記LiOH生成反応を起こしやすい一次粒子間への水分吸着がしにくくなるため、LiOH生成反応を抑制することができる。上記一次粒子間は、最表面に比べて面積が大きくLiOH生成反応の大部分はこの部位で起こるため、大気暴露による特性劣化を大きく抑えることができる。
 また、上述のリチウム含有遷移金属酸化物への水分吸着が抑制されることに起因して、上記LiOH生成反応に使われる水分量も少なくなるため、大気暴露による特性劣化の原因である上記LiOH生成反応をさらに抑制することができ、これにより大気暴露による初期充放電特性の劣化を一層低減することができる。このような相乗効果が発揮されることによって、大気暴露による特性劣化の原因である上記LiOH生成反応を抑制することができ、この結果、大気暴露による初期充放電特性の劣化を飛躍的に低減することができる。
 また、一般式Li1+xNiMnCo2+dで表されるリチウム遷移金属酸化物において、a-bの値が大きいほどLiOH生成反応が起こりやすい。これは、a-bの値の増加は3価のニッケル量の増加を表し、3価のニッケルは水分を吸着するため、LiOH生成反応が起こりやすくなる。すなわち、a-bの値が大きくなると大気暴露により初期充放電特性が劣化することから、a-bの値の範囲としては、0.20より大きく、0.65未満であることが好ましい。
 ここで、a-bの値が0.65以上の場合には、3価のニッケル量が非常に多くなるため、LiOH生成反応が起こりやすくなる。その結果、本構成においてもLiOH生成反応の抑制効果が不十分になるため、大気暴露により初期充放電特性が劣化する。
一方、a-bの値が0.2以下の場合には、3価のニッケル量が少ないためにLiOH生成反応が起こりにくく、大気暴露による初期充放電特性の劣化が少ないために、本構成による改善は見られない。
 さらに、本実施形態の一例である非水電解質二次電池用正極において、正極活物質粒子は、さらにリチウム含有遷移金属酸化物の表面にリチウムとホウ素を含む化合物が付着したものであることが好ましい。これにより、上記希土類化合物とリチウムとホウ素を含む化合物による相乗効果が一層発揮され、大気暴露による初期充放電特性の低下がより一層改善される。
 希土類化合物としては、希土類の水酸化物、オキシ水酸化物、酸化物、炭酸化合物、リン酸化合物及びフッ素化合物から選ばれた少なくとも1種の化合物であることが好ましい。これらの中でも、特に希土類の水酸化物及びオキシ水酸化物から選ばれた少なくとも1種の化合物であることが好ましく、これらの希土類化合物を用いると、大気暴露による初期効率の低下抑制効果が一層発揮される。これは、希土類の水酸化物及びオキシ水酸化物は、LiOH生成反応の反応活性化エネルギーをより大きくするからである。
 希土類化合物に含まれる希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。これらの中でも、特にネオジム、サマリウム、エルビウムが好ましい。ネオジム、サマリウム、エルビウムの化合物は、他の希土類化合物に比べて平均粒径が小さく、リチウム含有遷移金属酸化物粒子の表面全体により均一に分散して析出し易いからである。
 希土類化合物の具体例としては、水酸化ネオジム、オキシ水酸化ネオジム、水酸化サマリウム、オキシ水酸化サマリウム、水酸化エルビウム、オキシ水酸化エルビウム等の水酸化物やオキシ水酸化物の他、リン酸ネオジム、リン酸サマリウム、リン酸エルビウム、炭酸ネオジム、炭酸サマリウム、炭酸エルビウム等のリン酸化合物や炭酸化合物、酸化ネオジム、酸化サマリウム、酸化エルビウム、フッ化ネオジム、フッ化サマリウム、フッ化エルビウム等の酸化物やフッ素化合物等が挙げられる。これらの中でも、より粒子の表面全体に均一に分散して付着させることができ、かつ粒子表面に選択的に存在させやすい等の観点から、特に上記の水酸化物やオキシ水酸化物が好ましい。
 希土類化合物の平均粒径としては、1nm以上100nm以下であることが好ましく、10nm以上50nm以下であることがより好ましい。希土類化合物の平均粒径が100nmを超えると、希土類化合物の粒径が大きくなりすぎるために、リチウム含有遷移金属酸化物の粒子表面に付着する希土類化合物の粒子数が減少する。その結果、低温出力向上効果が小さくなることがある。一方、希土類化合物の平均粒径が1nm未満になると、リチウム含有遷移金属酸化物の粒子表面が希土類化合物によって緻密に覆われるために、リチウム含有遷移金属酸化物の粒子表面におけるリチウムイオンの吸蔵又は放出性能が低下して、充放電特性が低下することがある。
 リチウム含有遷移金属酸化物の総質量に対する希土類化合物の割合(付着量)は、希土類元素換算で、0.005質量%以上0.5質量%以下が好ましく、0.05質量%以上0.3質量%以下であることがより好ましい。上記割合が0.005質量%未満になると、希土類化合物とリチウムとホウ素を含む化合物による上述の効果が十分に得られず、極板暴露による初期充放電特性の低下が抑制できないことがある。一方、0.5質量%を超えると、リチウム含有遷移金属酸化物の粒子表面を過剰に覆ってしまい、極板暴露の有無に関わらず初期充放電特性が低下することがある。
 リチウム含有遷移金属複合酸化物としては、特にニッケルとコバルトとマンガンとのモル比が50:30:20、52:22:26、55:20:25、60:20:20、60:10:30、70:10:20、70:20:10、75:15:10である組成のものを用いることができる。特に、正極容量をより増大させ得るだけでなく、上記LiOH生成反応がより生じやすいという観点から、ニッケルの割合がコバルトやマンガンよりも多いものを用いることが特に好ましい。また、これらは単独で用いてもよいし、他のリチウム含有遷移金属酸化物と混合して用いてもよい。
 また、上記リチウム含有遷移金属酸化物は、さらに他の添加元素を含んでいてもよい。添加元素の例としては、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、ジルコニウム(Zr)、錫(Sn)、タングステン(W)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)等が挙げられる。
 上記リチウム含有遷移金属酸化物としては、平均粒径2~30μmの粒子が挙げられ、この粒子は、100nmから10μmの一次粒子が結合した二次粒子の形態でもよい。
 ここで、本実施形態の一例である非水電解質二次電池用正極を製造するにあたっては、リチウム含有遷移金属酸化物を含む懸濁液に、希土類元素を含む化合物を溶解した水溶液を加える方法を用いる。
 上記方法を用いる場合には、希土類元素を含む化合物を溶解した水溶液を上記懸濁液に加える間、懸濁液のpHを6以上10以下の範囲に調製して一定に保持することが望ましい。これは、pHが6未満になると、リチウム含有遷移金属酸化物が溶解してしまうことがあるためである。一方、pHが10を超えると、希土類元素を含む化合物を溶解した水溶液を上記懸濁液に加えた際に、希土類化合物の粒子がリチウム含有遷移金属化合物粒子の表面の一部に偏在して付着した状態となり、希土類化合物の微粒子がリチウム含有遷移金属酸化合物粒子の表面全体に均一に分散して付着しない状態となる。
 この結果、表面エネルギーを低下させる効果が偏ってしまうだけでなく、上記LiOH生成反応の抑制効果がリチウム含有遷移金属酸化物粒子の表面全体において十分に抑制することができない恐れがあるためである。
 その他の方法としては、リチウム含有遷移金属複合酸化物を攪拌しながら、リチウム含有遷移金属複合酸化物に希土類元素を含む化合物を溶解した水溶液や溶液を噴霧したり、滴下して加える方法や、希土類元素を含む化合物を、リチウム含有遷移金属複合酸化物に加えて機械的に混合したりする方法が挙げられる。機械的に混合する方法としては、例えば、石川式らいかい器や2軸遊星方式の混合機(プライミクス社製のハイビスミックスなど)などを用いる他ホソカワミクロン社製のノビルタや、メカノヒュージョンなどを用いることができる。
 しかし、より均一にリチウム含有遷移金属複合酸化物粒子の表面全体に希土類化合物の微粒子を分散させた方が、リチウム含有遷移金属複合酸化物の表面に水分が吸着してしまった際の上記LiOH生成反応の進行をより効果的に抑制できるために、リチウム含有遷移金属複合酸化物を含む懸濁液に、希土類元素を含む化合物を溶解した水溶液を加える方法が特に好ましい。
 リチウム含有遷移金属酸化物を含む懸濁液に、希土類元素を含む化合物を溶解した水溶液を加える際、単に水中で行った場合には水酸化物として析出し、十分にフッ素源を懸濁液に加えておいた場合にはフッ化物として析出することができる。十分に二酸化炭素を溶解した場合には炭酸化合物として析出し、十分に燐酸イオンを懸濁液に加えた場合には燐酸化合物として析出し、リチウム含有遷移金属酸化物の粒子表面に希土類化合物を析出することができる。また、懸濁液の溶解イオンを制御することで、例えば、水酸化物とフッ化物が混じった状態の希土類化合物も得られる。
 その後、希土類化合物が表面に析出したリチウム含有遷移金属酸化物の粒子をさらに熱処理することができる。熱処理温度としては、80℃から500℃程度であることが好ましく、80℃から400℃程度であることがより好ましい。80℃未満であると、十分に乾燥するのに過剰な時間がかかる恐れがあり、500℃を超えると、表面に付着した希土類化合物の一部がリチウム含有遷移金属複合酸化物の粒子内部に拡散してしまい、表面エネルギー抑制効果が低下する恐れがある。特に400℃以下である場合には、リチウム含有遷移金属複合酸化物の粒子内部に希土類元素は殆ど拡散せず、粒子表面に選択的に存在するため、表面エネルギーを低くする効果が大きくなる。
 また、希土類の水酸化物を表面に付着させた場合には、約200℃から約300℃でオキシ水酸化物になり、さらに約450℃から約500℃で酸化物になる。このため、400℃以下で熱処理した場合には、LiOH生成反応の抑制効果が大きい希土類の水酸化物やオキシ水酸化物を粒子表面に選択的に配置することができ、かつ粒子表面全体に均一に分散した状態が得られるため、優れた耐大気暴露性が得られる。
 水溶液に溶解させる希土類元素を含む化合物としては、希土類の酢酸塩、希土類の硝酸塩、希土類の硫酸塩、希土類の酸化物、又は、希土類の塩化物等を水や有機溶媒に溶解したもの用いることができる。また、希土類の酸化物を硫酸、塩酸、硝酸に溶解して得られた希土類の硫酸塩、希土類の塩化物、希土類の硝酸塩も、上記で水に溶解したものと同様のものになるため用いることができる。
 リチウムとホウ素を含む化合物としては、ホウ酸リチウム、メタホウ酸リチウム、四ホウ酸リチウムであることが好ましく、これらの中でも、特にメタホウ酸リチウムであることが好ましい。これらのリチウムとホウ素を含む化合物を用いると、大気暴露による初期放電電圧低下の抑制効果が一層発揮される。
 リチウム含有遷移金属酸化物の総質量に対するリチウムとホウ素を含む化合物の割合は、ホウ素元素換算で、0.005質量%以上5質量%以下であることが好ましく、0.01質量%以上0.2質量%以下がより好ましい。上記割合が0.005質量%未満になると、希土類化合物とリチウムとホウ素を含む化合物による効果が十分に得られず、極板の大気暴露による特性劣化を抑制できないことがある。一方、上記割合が5質量%を超えると、その分だけ正極活物質の量が減るため正極容量が低下する。
 リチウムとホウ素を含む化合物を含む活物質を作製する方法としては、リチウム含有遷移金属複合酸化物を攪拌しながら、リチウム含有遷移金属複合酸化物にリチウムとホウ素を含む化合物を溶解した水溶液や溶液を噴霧したり、滴下して加える方法や、リチウムとホウ素を含む化合物を、リチウム含有遷移金属複合酸化物に加えて機械的に混合したりする方法が挙げられる。機械的に混合する方法としては、例えば、石川式らいかい器や2軸遊星方式の混合機(プライミクス社製のハイビスミックスなど)などを用いる他ホソカワミクロン社製のノビルタや、メカノヒュージョンなどを用いることができる。
 しかし、より均一にリチウム含有遷移金属複合酸化物粒子の表面全体にリチウムとホウ素を含む化合物を付着させた方が、リチウム含有遷移金属複合酸化物の表面への水分吸着反応を抑制でき、水分吸着に起因する上記LiOH生成反応の進行をより効果的に抑制できるために、リチウム含有遷移金属複合酸化物を含む懸濁液に、リチウム含有遷移金属複合酸化物を攪拌しながら、リチウム含有遷移金属複合酸化物にリチウムとホウ素を含む化合物を溶解した水溶液や溶液を噴霧したり、滴下して加えたりする方法が特に好ましい。
 ここで、リチウムとホウ素を含む化合物はリチウム含有遷移金属酸化物二次粒子の表面の少なくとも一部に付着し、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着していることが望ましい。このような形態をとることで、リチウムとホウ素を含む化合物と希土類化合物の相乗効果が大きくなるため特に好ましい。
 尚、正極活物質としては、リチウム含有遷移金属酸化物の表面に希土類化合物が付着した正極活物質粒子、或いは、リチウム含有遷移金属酸化物の表面に希土類化合物とリチウムとホウ素を含む化合物が付着した正極活物質粒子を単独で用いる場合に限定されない。上記正極活物質粒子と他の正極活物質とを混合させて使用することも可能である。
 本発明では、リチウム遷移金属複合酸化物のPawley法で求めた積分幅よりHalder-wagner法を用いて求めた平均結晶子サイズLが500Å以上、1700Å以下であることが好ましい。
 なお、本発明におけるリチウム遷移金属複合酸化物の平均結晶子サイズLは、以下のようにして求められる。
 <平均結晶子サイズLの求め方>
 1)X線回折用標準資料(National Institute of Standards and Technology(NIST) Standard Reference Materials(SRM) 660b(LaB))のX線回折パターンから、ミラー指数(100)、(110)、(111)、(200)、(210)、(211)、(220)、(221)、(310)、(311)の10本のピークを用いてPawley法で分割型擬voigt関数を用いて、積分強度、ピーク高さから積分幅βを算出。
 2)測定サンプル(リチウム遷移金属複合酸化物)のX線回折パターンの中からミラー指数(003)、(101)、(006)、(012)、(104)、(015)、(107)、(018)、(110)、(113)の10本のピークを用いてPawley法で分割型擬voigt関数を用いて、フィッティングし、積分強度、ピーク高さから積分幅βを算出。
 3)上記結果から下記式(1)に基づき測定サンプルに由来する積分幅βを算出。
 測定サンプルに由来する積分幅β=β-β・・・(1)
 4)Halder-wagner法を用いて、β/tanθをβ/(tanθsinθ)に対してプロットして近似する直線の傾きから測定サンプルに由来する平均結晶子サイズLを算出。
 本発明においては、リチウム遷移金属複合酸化物の平均結晶子サイズが500Å以上、1700Å以下であることが好ましい。平均結晶子サイズが500Å以上であると、結晶成長が十分であり、LiCOやLiOHなどの不純物層を含む可能性が少なく、より大気暴露による初期充放電特性の劣化を低減することができる。一方、平均結晶子サイズが1700Åを超えると、結晶内のLi拡散距離が大きくなり抵抗が増大するため、活物質として好ましくない。
 なお、リチウム遷移金属複合酸化物の平均結晶子サイズは、焼成温度、焼成時間を調整することにより制御できる。例えば、焼成温度を低くすると平均結晶子サイズは小さくなる傾向にあり、焼成時間を短くすると平均結晶子サイズは小さくなる傾向にある。
 また、結晶成長を促進、または抑制する添加物を混合してリチウム遷移金属複合酸化物を合成する方法、焼成時に混合するLi源となる化合物の量の調整する方法により平均結晶子サイズを制御できる。
 更に、リチウム遷移金属複合酸化物の前駆体の粒径及び粒度分布の制御、Ni、Mn、Co組成比の調整等により平均結晶子サイズを制御できる。例えば、焼成時に混合するLi源となる化合物の量を多くすると平均結晶子サイズは、大きくなる傾向にある。
 当該正極活物質としては、可逆的にリチウムイオンを挿入・脱離可能な化合物であれば特に限定されず、例えば、安定した結晶構造を維持したままリチウムイオンの挿入脱離が可能である層状構造や、スピネル構造や、オリビン構造を有するもの等を用いることができる。尚、同種の正極活物質のみを用いる場合や異種の正極活物質を用いる場合において、正極活物質としては、同一の粒径のものを用いても良く、また、異なる粒径のものを用いてもよい。
 結着剤としては、フッ素系高分子、ゴム系高分子等が挙げられる。例えば、フッ素系高分子としてポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、またはこれらの変性体等、ゴム系高分子としてエチレンープロピレンーイソプレン共重合体、エチレンープロピレンーブタジエン共重合体等が挙げられる。これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。結着剤は、カルボキシルメチルセルロース(CMC)、ポリエチレンオキシド(PEO)等の増粘剤と併用されてもよい。導電剤としては、例えば、炭素材料としてカーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が挙げられる。これらを単独で用いてもよく、2種以上組み合わせて用いてもよい。
 本発明の実施形態の一例である非水電解質二次電池用正極活物質は、リチウム含有遷移金属酸化物と、上記リチウム含有遷移金属酸化物の表面に付着している希土類化合物と、上記リチウム含有遷移金属酸化物の表面に付着しているリチウムとホウ素を含む化合物とを含んでいるものである。これにより、上記希土類化合物とリチウムとホウ素を含む化合物による上記相乗効果が発揮され、大気暴露による初期充放電特性の劣化を低減することができる。
 [負極]
 負極としては、従来から用いられてきた負極を用いることができ、例えば、負極活物質と、結着剤とを水あるいは適当な溶媒で混合し、負極集電体に塗布し、乾燥し、圧延することにより得られる。負極集電体には、導電性を有する薄膜体、特に銅などの負極の電位範囲で安定な金属箔や合金箔、銅などの金属表層を有するフィルム等を用いることが好適である。結着剤としては、正極の場合と同様にPTFE等を用いることもできるが、スチレンーブタジエン共重合体(SBR)又はこの変性体等を用いることが好ましい。結着剤は、CMC等の増粘剤と併用されてもよい。
 上記負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、炭素材料や、SiやSn等のリチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができる。また、これらは単独でも2種以上を混合して用いてもよく、炭素材料やリチウムと合金化する金属或いは合金材料や金属酸化物の中から選ばれた負極活物質を組み合わせたものであってもよい。
 [非水電解質]
 非水電解質の溶媒としては、従来から使用されている、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、高誘電率、低粘度、低融点の観点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、2:8~5:5の範囲に規制することが好ましい。
 また、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物;プロパンスルトン等のスルホン基を含む化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物;ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物;ジメチルホルムアミド等のアミドを含む化合物等を上記の溶媒とともに用いることもでき、また、これらの水素原子Hの一部がフッ素原子Fにより置換されている溶媒も用いることができる。
 一方、非水電解質の溶質としては、従来から用いられてきた溶質を用いることができ、例えば、フッ素含有リチウム塩であるLiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFなどを用いることができる。さらに、フッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO等)〕を加えたものを用いても良い。特に、高温環境下においても負極の表面に安定な被膜を形成する点から、フッ素含有リチウム塩とオキサラト錯体をアニオンとするリチウム塩とを含むことが好ましい。
 上記のオキサラト錯体をアニオンとするリチウム塩の例として、LiBOB〔リチウム-ビスオキサレートボレート〕、Li[B(C)F]、Li[P(C)F]、Li[P(C]が挙げられる。中でも特に負極で安定な被膜を形成させるLiBOBを用いることが好ましい。なお、上記溶質は、単独で用いてもよいし、2種以上を混合して用いてもよい。
 [セパレータ]
 セパレータとしては、従来から用いられてきたセパレータを用いることができる。例えば、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータや、セパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いることができる。
 また、正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーからなる層を形成することができる。フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。上記フィラー層の形成方法は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
 以下、本発明を実施するための形態について実験例を挙げてさらに詳細に説明する。ただし、以下に示す実験例は、本発明の技術思想を具体化するための非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の一例を説明するために例示したものであり、本発明は以下の実験例に何ら限定されるものではない。本発明は、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
              〔第1実験例〕
 (実験例1)
 まず、実験例1の非水電解質二次電池の構成について説明する。
 [正極活物質の作製]
 共沈法により得られた[Ni0.55Mn0.25Co0.20](OH)を焙焼し遷移金属酸化物を得た。この遷移金属酸化物と、LiCOとを、Liと遷移金属全体とのモル比が1.06:1になるように、石川式らいかい乳鉢にて混合した。その後、この混合物を空気雰囲気中にて950℃で10時間焼成し、粉砕することにより、平均二次粒子径が約14μmのLi1.06[Ni0.55Mn0.25Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を得た。
 このようにして得られたリチウム含有遷移金属酸化物としてのリチウムニッケルマンガンコバルト複合酸化物粒子を1000g用意し、この粒子を3.0Lの純水に添加し攪拌して、リチウム含有遷移金属酸化物が分散した懸濁液を調製した。次に、この懸濁液に、硝酸エルビウム5水和物[Er(NO・5HO]5.42gが200mLの純水に溶解された水溶液を加えた。上記懸濁液に硝酸エルビウム5水和物水溶液を加えている間、リチウム含有遷移金属酸化物を分散した溶液のpHを9に調整して一定に保持するため、適宜、10質量%の硝酸水溶液、或いは、10質量%の水酸化ナトリウム水溶液を加えた。
 なお、得られたリチウム含有遷移金属酸化物の結晶子サイズは950Åであった。
 次いで、上記硝酸エルビウム5水和物溶液の添加終了後に、吸引濾過し、更に水洗を行った後、得られた粉末を120℃で乾燥し、上記リチウム含有遷移金属酸化物の表面の一部に水酸化エルビウムが付着したものを得た。
 また、メタホウ酸リチウム2.2gに、蒸留水を加えて75mlに希釈しコート溶液を調製した。そして、上記水酸化エルビウムが付着したリチウム含有遷移金属酸化物500gを、フッ素加工されたバッド上で、ポリプロピレン製ヘラを用いて攪拌しつつ、スプレーを用いて上記コート溶液を水酸化エルビウムが付着したリチウム含有遷移金属酸化物に噴霧した。次に、コート溶液が噴霧されたリチウム含有遷移金属酸化物を、120℃にて2時間乾燥した。これにより、メタホウ酸リチウムが、リチウム含有遷移金属酸化物の表面に付着した正極活物質を得た。
 その後、得られた水酸化エルビウムとメタホウ酸リチウムが付着したリチウム含有遷移金属酸化物粉末を空気雰囲気中にて300℃で5時間熱処理することにより正極活物質粒子を作製した。このように300℃で熱処理すると、表面に付着した水酸化エルビウムの全部或いは大部分がオキシ水酸化エルビウムに変化するので、リチウム含有遷移金属酸化物粒子の表面にオキシ水酸化エルビウムが付着した状態となる。但し、一部は水酸化エルビウムの状態で残存する場合があるので、リチウム含有遷移金属酸化物粒子の表面には水酸化エルビウムが付着されている場合もある。
 得られた正極活物質粒子について、走査型電子顕微鏡(SEM)にて観察したところ、リチウム含有遷移金属酸化物粒子の表面全体に、平均粒径100nm以下のエルビウム化合物が均一に分散して付着していることが確認された。また、エルビウム化合物とメタホウ酸リチウムの付着量をICPにより測定したところ、エルビウム元素換算で、リチウム含有遷移金属酸化物粒子(リチウムニッケルマンガンコバルト複合酸化物)に対して0.20質量%、ホウ素元素換算で、リチウム含有遷移金属酸化物粒子に対して0.05質量%であった。
 [正極極板の作製]
 上記正極活物質粒子に、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質粒子と導電剤と結着剤との質量比が95:2.5:2.5となるように秤量し、これらを混練して正極合剤スラリーを調製した。
 次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、さらにアルミニウム製の集電タブを取り付けることにより、正極集電体の両面に正極合剤層が形成された正極極板を作製した。
 得られた正極極板についてクロスセクションポリッシャ(CP)法を用いて極板断面を観察できる状態にした後、極板に含まれるリチウム含有遷移金属酸化物二次粒子を波長分散型X線分析装置(WDX)にて観察したところ、活物質二次粒子の表面に凝集した一次粒子界面にホウ素元素が確認され、リチウムとホウ素を含む化合物が、活物質二次粒子の表面の少なくとも一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着していることが確認された。
 そして、図1に示すように上記のようにして作製した正極極板を作用極11として用い、対極12及び参照極13としてそれぞれ金属リチウムを用いて三電極式試験用セル20を作製した。尚、非水電解質として、エチレンカーボネートとメチルエチルカーボネートとを3:7の体積比で混合させた混合溶媒にLiPFを1mol/Lの濃度になるように溶解させた非水電解液14を用いた。このようにして作製した三電極式試験用セルを、以下、電池A1と称する。
 [大気暴露した正極極板を用いた電池の作製]
 正極極板を作製する際に、圧延ローラーにより圧延した後、以下の条件で大気暴露を行ったこと以外は、上記電池A1と同様にして大気暴露した正極極板を用いた電池(電池B1)を作製した。
・大気暴露条件
 温度30℃、湿度50%の恒温恒湿槽に5日静置した。
 (実験例2)
 正極活物質粒子として、エルビウム化合物とメタホウ酸リチウムを付着させていないLi1.06[Ni0.55Mn0.25Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A2と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A2と同様にして大気暴露した正極極板を用いた電池(電池B2)を作製した。
 (実験例3)
 正極活物質粒子として、エルビウム化合物を付着させていないLi1.06[Ni0.55Mn0.25Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A3と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A3と同様にして大気暴露した正極極板を用いた電池(電池B3)を作製した。
 (実験例4)
 正極活物質粒子として、メタホウ酸リチウムを付着させていないLi1.06[Ni0.55Mn0.25Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A4と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A4と同様にして大気暴露した正極極板を用いた電池(電池B4)を作製した。
 <初期放電電圧の測定>
 上述の条件で大気暴露をしていない正極極板を用いて作製された電池A1~A4、及び電池A1~A4において上述の条件で大気暴露をした正極極板を用いて作製された電池B1~電池B4を用いて、下記の充放電試験を行い、各々の電池の初期放電電圧を測定した。
・1サイクル目の充電条件
 25℃の温度条件下において、0.4mA/cmの電流密度で4.3V(vs.Li/Li+)まで定電流充電を行い、4.3V(vs.Li/Li+)の定電圧で電流密度が0.08mA/cmになるまで定電圧充電した。
・1サイクル目の放電条件
 25℃の温度条件下において、0.4mA/cmの電流密度で2.5V(vs.Li/Li+)まで定電流放電した。
・休止
 上記充電と放電との間の休止間隔は10分間とした。
 上記の条件での充放電を1サイクルとし、放電時の平均放電電圧を測定し、初期放電電圧とした。
 <表面元素による特性改善指標の算出>
 上記で求めた初期放電電圧のうち、大気暴露なし(大気暴露していない正極極板使用時)の初期放電電圧を「暴露なし放電電圧」とし、大気暴露あり(大気暴露した正極極板使用時)の初期放電電圧を「暴露あり放電電圧」とし、下記に示す式(1)に基づき、対応する電池の暴露なし放電電圧と暴露あり放電電圧の差から放電電圧低下量を算出した。
放電電圧低下量(V)=(暴露なし放電電圧)-(暴露あり放電電圧) ・・・(1)
 この暴露による放電電圧低下量のうち、リチウム含有金属遷移酸化物表面に希土類元素もリチウムとホウ素を含む化合物も付着させていない活物質の放電電圧低下量を「表面元素なし放電電圧低下量」、リチウム含有金属遷移酸化物表面に希土類元素とリチウムとホウ素を含む化合物の両方、あるいは一方を付着させた活物質の放電電圧低下量を「表面元素あり放電電圧低下量」とし、下記に示す式(2)に基づき表面元素による特性改善指標とした。
表面元素による特性改善指標(V)=(表面元素あり放電電圧低下量)-(表面元素なし放電電圧低下量)   ・・・(2)
 その結果を纏めて下記表1に示した。
Figure JPOXMLDOC01-appb-T000001
 上記表1の結果からわかるように、リチウム含有遷移金属酸化物の二次粒子表面にオキシ水酸化エルビウムとメタホウ酸リチウムが付着した実験例1の電池は、実験例3および実験例4の電池に比べ、表面元素による特性改善指標が大きく増加している。加えて、メタホウ酸リチウムのみを付着した実験例3の電池、及びオキシ水酸化エルビウムのみを付着した実験例4の電池は、それらのどちらも備えていない実験例2の電池と比べ、表面元素による特性改善指標にほとんど変化が見られなかったが、実験例3と実験例4の電池の両者の構成が兼ね備わった実験例1の電池は、それら個々の効果をはるかに上回る改善がみられている。このような結果が得られた理由は、下記に述べるとおりのものと考えられる。
 二次粒子表面に付着したオキシ水酸化エルビウムと、二次粒子の表面と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部にメタホウ酸リチウムが付着している実験例1の電池の場合、オキシ水酸化エルビウムにより、大気暴露による特性劣化の原因であるLiOH生成反応の進行が抑制されるため、大気暴露後に充放電した際に充放電効率が低下するという、大気暴露による初期充放電特性の劣化を低減することができると考えられる。
 加えて、リチウム含有遷移金属酸化物の表面エネルギーがメタホウ酸リチウムとオキシ水酸化エルビウムの相互作用によって下げられるために、リチウム含有遷移金属化合物への大気中の水分の吸着が抑制される。この水分吸着量を少なくできることに起因して、大気暴露による特性劣化の原因である上記LiOH生成反応の進行がさらに抑制され、大気暴露による初期充放電特性の劣化を一層低減することができると考えられる。
 このような相乗効果が発揮されることによって、大気暴露による特性劣化の原因である上記LiOH生成反応を抑制することができ、この結果、大気暴露後に充放電した際に充放電効率が低下するという、大気暴露による初期充放電特性の劣化を飛躍的に低減することができる。
 尚、上記したホウ素化合物とオキシ水酸化エルビウムの相互作用は、ホウ素化合物と希土類化合物が共存している場合にホウ素化合物によって発揮される作用であって、ホウ素化合物が単独で存在する場合には発揮されないと考えられる。
 オキシ水酸化エルビウムのみが付着している実験例4の電池の場合、オキシ水酸化エルビウムとメタホウ酸リチウムによる上記相乗効果が得られない。すなわち、オキシ水酸化エルビウムの存在により大気暴露の劣化原因である上記LiOH生成反応が若干抑制できるものの、ホウ素化合物が存在していないことからリチウム含有遷移金属酸化物の表面エネルギーを下げることができず、リチウム含有遷移金属酸化物表面への水分吸着量が多くなる。このため、大気暴露の劣化原因である上記LiOH生成反応の進行が加速され、大気暴露による初期充放電特性の劣化を十分に抑制することができなかったと考えられる。
 メタホウ酸リチウムのみが付着している実験例3の電池の場合もまた、オキシ水酸化エルビウムとメタホウ酸リチウムによる上記相乗効果が得られない。すなわち、上述のとおりメタホウ酸リチウムが希土類化合物と共存せず単独で存在する場合には、メタホウ酸リチウムによる表面エネルギーの低下が起こらないと考えられる。このため、リチウム含有遷移金属酸化物への大気中の水分吸着を抑制することができず、上記LiOH生成反応の進行が加速されたと考えられる。
 加えて、実験例3の電池においては希土類化合物が存在しないために、希土類化合物による上記LiOH生成反応の抑制効果も得られなかったと考えられる。即ち、実験例2と実験例3ではほぼ同等の結果となっており、実験例3のようにホウ素化合物を付着させるだけでは、大気暴露による初期充放電特性の劣化を抑制する効果が得られないことがわかる。
 実験例2の電池の場合は、オキシ水酸化エルビウムとメタホウ酸リチウムの両方がリチウム含有遷移金属化合物の表面に付着していないため、オキシ水酸化エルビウムによる効果もオキシ水酸化エルビウムとメタホウ酸リチウムによる相乗効果も得られないために、上記LiOHが生成する反応が抑制できず、大気暴露による初期充放電特性の劣化が抑制されなかったと考えられる。
              〔第2実験例〕
 (実験例5)
 正極活物質粒子を作製する際に、希土類化合物として硝酸エルビウム5水和物の代わりに硝酸サマリウム6水和物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A5と称する。
 得られた正極活物質は、表面に付着した水酸化サマリウムの全部或いは大部分が熱処理によりオキシ水酸化サマリウムに変化したものであり、オキシ水酸化サマリウムが正極活物質粒子の表面に付着した状態であった。但し、一部は水酸化サマリウムの状態で残存する場合があるので、リチウム含有遷移金属酸化物粒子の表面には水酸化サマリウムが付着されている場合もある。
 この正極活物質粒子について、走査型電子顕微鏡(SEM)にて観察したところ、リチウム含有遷移金属酸化物粒子の表面全体に、平均粒径100nm以下のサマリウム化合物が均一に分散して付着していることが確認された。また、サマリウム化合物の付着量をICPにより測定したところ、サマリウム元素換算で、リチウムニッケルマンガンコバルト複合酸化物に対して0.20質量%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A5と同様にして、電池A5に対応する大気暴露した正極極板を用いた電池(電池B5)を作製した。
 (実験例6)
 正極極板を作製する際に、メタホウ酸リチウムを混合させなかったこと以外は、上記電池A5と同様にして電池を作製した。このようにして作製した電池を、以下、電池A6と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A6と同様にして、電池A6に対応する大気暴露した正極極板を用いた電池(電池B6)を作製した。
 (実験例7)
 正極活物質粒子を作製する際に、希土類化合物として硝酸エルビウム5水和物の代わりに硝酸ネオジム6水和物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A7と称する。
 得られた正極活物質粒子は、表面に付着した水酸化ネオジムの全部或いは大部分が熱処理によりオキシ水酸化ネオジムに変化したものであり、オキシ水酸化ネオジムがリチウム含有遷移金属酸化物の表面に付着した状態であった。但し、一部は水酸化ネオジムの状態で残存する場合があるので、リチウム含有遷移金属酸化物粒子の表面には水酸化ネオジムが付着されている場合もある。
 この正極活物質について、走査型電子顕微鏡(SEM)にて観察したところ、リチウム含有遷移金属酸化物粒子の表面全体に、平均粒径100nm以下のネオジム化合物が均一に分散して付着していることが確認された。また、ネオジム化合物の付着量をICPにより測定したところ、ネオジム元素換算で、リチウムニッケルマンガンコバルト複合酸化物に対して0.20質量%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A7と同様にして、電池A7に対応する大気暴露した正極極板を用いた電池(電池B7)を作製した。
 (実験例8)
 正極極板を作製する際に、メタホウ酸リチウムを混合させなかったこと以外は、上記電池A7と同様にして電池を作製した。このようにして作製した電池を、以下、電池A8と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A8と同様にして、電池A8に対応する大気暴露した正極極板を用いた電池(電池B8)を作製した。
 上述の条件で大気暴露をしていない正極極板を用いて作製された電池A5~電池A8の電池、及び電池A5~電池A8において上述の条件で大気暴露をした正極極板を用いて作製された電池B5~電池B8を用いて、上記第1実験例と同様にして表面元素による特性改善指標を算出した。その結果を実験例1、実験例4の電池の結果とともに纏めて下記表2に示した。
Figure JPOXMLDOC01-appb-T000002
 上記表2の結果からわかるように、エルビウム化合物に代えて、サマリウム化合物やネオジウム化合物を表面の一部に付着したリチウム含有遷移金属酸化物を用いた実験例5、実験例7の電池は、ホウ素化合物を加えなかった実験例6、実験例8の電池に比べ、表面元素による特性改善指標が大きく増加している。
 以上の結果から、サマリウム化合物、ネオジウム化合物であっても、エルビウム化合物の場合と同様の効果が得られることがわかる。このことから、リチウム含有遷移金属酸化物の表面に希土類化合物を付着させると、大気暴露による特性劣化の原因である上記LiOHが生成する反応が抑制され、これによって大気暴露による初期充放電特性劣化を低減することができると考えられ、この作用効果は、希土類化合物に共通する効果と考えられる。
 尚、実験例1、実験例5、実験例7の電池の結果を比較すると、実験例1の電池は、実験例5や実験例7の電池よりも暴露による特性劣化指標が低減していることが認められる。このことから、希土類元素の中でも、特にエルビウム化合物が好ましいことがわかる。
              〔第3実験例〕
 (実験例9)
 正極極板を作製する際に、ホウ素化合物としてメタホウ酸リチウムの代わりに四ホウ酸リチウムを用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A9と称する。
 得られた正極極板についてクロスセクションポリッシャ(CP)法を用いて極板断面を観察できる状態にした後、極板に含まれるリチウム含有遷移金属酸化物二次粒子を波長分散型X線分析装置(WDX)にて観察したところ、活物質二次粒子の表面に凝集した一次粒子界面にホウ素元素が確認され、四ホウ酸リチウムが、活物質二次粒子の表面の少なくとも一部と、二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着していることが確認された。
 また、得られた正極活物質粒子について、四ホウ酸リチウムの付着量をICPにより測定したところ、ホウ素元素換算で、リチウム含有遷移金属酸化物粒子(リチウムニッケルマンガンコバルト複合酸化物)0.05質量%であった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A9と同様にして、電池A9に対応する大気暴露した正極極板を用いた電池(電池B9)を作製した。
 (実験例10)
 正極活物質粒子として、エルビウム化合物を付着させていないLi1.06[Ni0.55Mn0.25Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A9と同様にして電池を作製した。このようにして作製した電池を、以下、電池A10と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A10と同様にして、電池A10に対応する大気暴露した正極極板を用いた電池(電池B10)を作製した。
  上述の条件で大気暴露をしていない正極極板を用いて作製された電池A9~電池A10の電池、及び電池A9~電池A10において上述の条件で大気暴露をした正極極板を用いて作製された電池B9~電池B10を用いて、上記第1実験例と同様にして表面元素による特性改善指標を算出した。その結果を実験例1、実験例3の電池の結果とともに纏めて下記表3に示した。
Figure JPOXMLDOC01-appb-T000003
 上記表3の結果からわかるように、メタホウ酸リチウムに代えて、四ホウ酸リチウムを表面の一部に付着したリチウム含有遷移金属酸化物を用いた実験例9の電池は、実験例9の電池に対応するエルビウム化合物を付着していない実験例10の電池に比べ、表面元素による特性改善指標が大きく増加している。
 以上の結果から、四ホウ酸リチウムであっても、メタホウ酸リチウムと同様の効果が得られることがわかり、この結果はホウ素を含む化合物を用いた場合に得られる共通の効果であると考えられる。
 尚、実験例1、実験例9の電池の結果を比較すると、実験例1の電池は、実験例9の電池よりも表面元素による特性改善指標が増加していることが認められる。このことから、リチウムとホウ素を含む化合物の中でも、特にメタホウ酸リチウムが好ましいことがわかる。
              〔第4実験例〕
 (実験例11)
 正極活物質粒子を作製する際に、Li1.06[Ni0.50Mn0.30Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A11と称する。なお、Li1.06[Ni0.50Mn0.30Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物の結晶子サイズは940Åであった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A11と同様にして、電池A11に対応する大気暴露した正極極板を用いた電池(電池B11)を作製した。
 (実験例12)
 正極活物質粒子を作製する際に、Li1.06[Ni0.50Mn0.30Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A2と同様にして電池を作製した。このようにして作製した電池を、以下、電池A12と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A12と同様にして、電池A12に対応する大気暴露した正極極板を用いた電池(電池B12)を作製した。
 (実験例13)
 正極活物質粒子を作製する際に、Li1.06[Ni0.50Mn0.30Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A3と同様にして電池を作製した。このようにして作製した電池を、以下、電池A13と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A13と同様にして、電池A13に対応する大気暴露した正極極板を用いた電池(電池B13)を作製した。
 (実験例14)
 正極活物質粒子を作製する際に、Li1.06[Ni0.50Mn0.30Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A4と同様にして電池を作製した。このようにして作製した電池を、以下、電池A14と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A14と同様にして、電池A14に対応する大気暴露した正極極板を用いた電池(電池B14)を作製した。
 (実験例15)
 正極活物質粒子を作製する際に、Li1.06[Ni0.52Mn0.26Co0.22]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A15と称する。なお、Li1.06[Ni0.52Mn0.26Co0.22]Oで表されるリチウムニッケルマンガンコバルト複合酸化物の平均結晶子サイズは935Åであった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A15と同様にして、電池A15に対応する大気暴露した正極極板を用いた電池(電池B15)を作製した。
 (実験例16)
 正極活物質粒子を作製する際に、Li1.06[Ni0.52Mn0.26Co0.22]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A2と同様にして電池を作製した。このようにして作製した電池を、以下、電池A16と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A16と同様にして、電池A16に対応する大気暴露した正極極板を用いた電池(電池B16)を作製した。
 (実験例17)
 正極活物質粒子を作製する際に、Li1.06[Ni0.52Mn0.26Co0.22]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A3と同様にして電池を作製した。このようにして作製した電池を、以下、電池A17と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A17と同様にして、電池A17に対応する大気暴露した正極極板を用いた電池(電池B17)を作製した。
 (実験例18)
 正極活物質粒子を作製する際に、Li1.06[Ni0.52Mn0.26Co0.22]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A4と同様にして電池を作製した。このようにして作製した電池を、以下、電池A18と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A18と同様にして、電池A18に対応する大気暴露した正極極板を用いた電池(電池B18)を作製した。
 (実験例19)
 正極活物質粒子を作製する際に、Li1.06[Ni0.70Mn0.10Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A1と同様にして電池を作製した。このようにして作製した電池を、以下、電池A19と称する。なお、Li1.06[Ni0.70Mn0.10Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物の平均結晶子サイズは984Åであった。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A19と同様にして、電池A19に対応する大気暴露した正極極板を用いた電池(電池B19)を作製した。
 (実験例20)
 正極活物質粒子を作製する際に、Li1.06[Ni0.70Mn0.10Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A20と同様にして電池を作製した。このようにして作製した電池を、以下、電池A20と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A20と同様にして、電池A20に対応する大気暴露した正極極板を用いた電池(電池B20)を作製した。
 (実験例21)
 正極活物質粒子を作製する際に、Li1.06[Ni0.70Mn0.10Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A3と同様にして電池を作製した。このようにして作製した電池を、以下、電池A21と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A21と同様にして、電池A21に対応する大気暴露した正極極板を用いた電池(電池B21)を作製した。
 (実験例22)
 正極活物質粒子を作製する際に、Li1.06[Ni0.70Mn0.10Co0.20]Oで表されるリチウムニッケルマンガンコバルト複合酸化物を用いたこと以外は、上記電池A4と同様にして電池を作製した。このようにして作製した電池を、以下、電池A22と称する。
 また、正極極板を作製する際に、圧延ローラーにより圧延した後、上述の条件で大気暴露を行ったこと以外は、上記電池A22と同様にして、電池A22に対応する大気暴露した正極極板を用いた電池(電池B22)を作製した。
 上述の条件で大気暴露をしていない正極極板を用いて作製された電池A11~電池A22の電池、及び電池A11~電池A22において上述の条件で大気暴露をした正極極板を用いて作製された電池B11、電池B22を用いて、上記第1実験例と同様にして表面元素による特性改善指標を算出した。その結果を纏めて下記表4に示した。
Figure JPOXMLDOC01-appb-T000004
 実験例11~実験例14の結果からわかるように、リチウム含有遷移金属酸化物組成をLi1.06[Ni0.55Mn0.25Co0.20]OからLi1.06[Ni0.50Mn0.30Co0.20]Oへ代えて、さらに表面元素を付着させた実験例11、実験例13および実験例14の電池は、実験例12の表面元素なしの電池と比較して、表面元素による特性改善指標はいずれも大きな変化は認められない。
 以上の結果から、Li1.06[Ni0.50Mn0.30Co0.20]O組成のリチウム含有遷移金属酸化物では、希土類化合物とリチウムとホウ素を含む化合物による相乗効果は得られないことがわかり、これはそもそもLi1.06[Ni0.50Mn0.30Co0.20]O組成では、実験例12の表面元素無しの場合においても、暴露による放電電圧低下が非常に小さく、表面元素を付着させても大きな改善が見られなかったものと考えられる。
 実験例15~実験例18の結果からわかるように、リチウム含有遷移金属酸化物組成をLi1.06[Ni0.55Mn0.25Co0.20]OからLi1.06[Ni0.52Mn0.26Co0.22]Oへ代えて、さらにエルビウム化合物とメタホウ酸リチウムを表面に付着させた実験例15の電池は、表面元素の付着を行っていない実験例16の電池及びエルビウム化合物かメタホウ酸リチウムのどちらか一方しか付着させていない実験例17、実験例18の電池に比べ、表面元素による特性改善指標が大きく増加している。
 また実験例19~実験例22の結果からわかるように、リチウム含有遷移金属酸化物組成をLi1.06[Ni0.55Mn0.25Co0.20]OからLi1.06[Ni0.70Mn0.10Co0.20]Oへ代えて、さらにエルビウム化合物とメタホウ酸リチウムを表面に付着させた実験例19の電池は、表面元素の付着を行っていない実験例20の電池及びエルビウム化合物かメタホウ酸リチウムのどちらか一方しか付着させていない実験例21~実験例22の電池に比べ、表面元素による特性改善指標が大きく増加している。
 以上の結果から、リチウム含有遷移金属酸化物組成をLi1.06[Ni0.55Mn0.25Co0.20]Oから変えた場合であっても、希土類化合物とリチウムとホウ素を含む化合物を表面に付着させた場合の作用効果は発揮されることがわかる。実験例11~14の結果を考慮すると、希土類化合物とリチウムとホウ素を含む化合物の作用効果が有効なリチウム含有遷移金属酸化物組成は、一般式Li1+xNiMnCo2+eで表されるリチウム含有遷移金属酸化物において0.20<a-b<0.65の場合に発揮されると考えられる。
 本発明の一局面の偏非水電解質二次電池用正極及びこれを用いた非水電解質二次電池は、例えば、携帯電話、ノートパソコン、スマートフォン、タブレット端末等の移動情報端末の駆動電源で、特に高エネルギー密度が必要とされる用途に適用することができる。さらに、電気自動車(EV)、ハイブリッド電気自動車(HEV、PHEV)や電動工具のような高出力用途への展開も期待できる。
 11 作用極(正極)
 12 対極(負極)
 13 参照極
 14 非水電解液
 20 三電極式試験セル

Claims (4)

  1.  一次粒子が凝集した二次粒子で構成されるリチウム含有遷移金属酸化物を含む非水電解質二次電池用正極であって、
     前記リチウム含有遷移金属酸化物は、一般式Li1+xNiMnCo2+d(x、a、b、cおよびdは、a+b+c=1、0<x≦0.2、0.20<a-b<0.65、-0.1≦d≦0.1の条件を満たす)で表され、
     希土類化合物が、前記二次粒子の表面の少なくとも一部に付着し、
     リチウムとホウ素を含む化合物が、前記二次粒子の表面の少なくとも一部と、前記二次粒子の表面に凝集した一次粒子間の界面の少なくとも一部に付着している非水電解質二次電池用正極。
  2.  前記リチウム含有遷移金属酸化物の結晶子サイズが、500Åから1700Åである非水電解質二次電池用正極。
  3.  前記リチウムとホウ素を含む化合物が、ホウ酸リチウム、メタホウ酸リチウムおよび四ホウ酸リチウムからなる群より選ばれた少なくとも1つである請求項1または2に記載の非水電解質二次電池用正極。
  4.  請求項1~3のいずれかに記載の非水電解質二次電池用正極を用いた非水電解質二次電池。
PCT/JP2015/003402 2014-07-30 2015-07-07 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池 WO2016017074A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016537727A JP6627758B2 (ja) 2014-07-30 2015-07-07 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
CN201580040095.2A CN106575760A (zh) 2014-07-30 2015-07-07 非水电解质二次电池用正极和使用其的非水电解质二次电池
US15/327,549 US10283768B2 (en) 2014-07-30 2015-07-07 Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-154462 2014-07-30
JP2014154462 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017074A1 true WO2016017074A1 (ja) 2016-02-04

Family

ID=55217003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003402 WO2016017074A1 (ja) 2014-07-30 2015-07-07 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US10283768B2 (ja)
JP (1) JP6627758B2 (ja)
CN (1) CN106575760A (ja)
WO (1) WO2016017074A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152262A (ja) * 2016-02-25 2017-08-31 富山薬品工業株式会社 リチウムイオン二次電池
JP2017157327A (ja) * 2016-02-29 2017-09-07 富山薬品工業株式会社 蓄電デバイス用非水電解液
WO2017199891A1 (ja) * 2016-05-16 2017-11-23 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200033354A (ko) * 2017-08-22 2020-03-27 에이일이삼 시스템즈, 엘엘씨 안전성 및 사이클링 안정성을 향상시키기 위한 캐소드 물질 상의 사붕산리튬 유리 코팅
US20220367852A1 (en) * 2019-09-27 2022-11-17 Panasonic Corporation Non-aqueous electrolyte secondary battery
US20220216463A1 (en) * 2019-11-28 2022-07-07 Lg Chem, Ltd. Method of Producing Positive Electrode Active Material for Lithium Secondary Battery and Positive Electrode Active Material for Lithium Secondary Battery Produced Thereby

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009146739A (ja) * 2007-12-14 2009-07-02 Sony Corp 正極活物質の製造方法
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池
WO2014049977A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014050115A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014049976A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2015079664A1 (ja) * 2013-11-29 2015-06-04 三洋電機株式会社 非水電解質二次電池用正極

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020119375A1 (en) * 2001-02-28 2002-08-29 Meijie Zhang Use of lithium borate in non-aqueous rechargeable lithium batteries
JP4740409B2 (ja) * 2003-06-11 2011-08-03 株式会社日立製作所 電気自動車或いはハイブリット自動車用リチウム二次電池
JP5717133B2 (ja) * 2010-06-28 2015-05-13 三洋電機株式会社 非水電解質二次電池用正極活物質、その正極活物質の製造方法、当該正極活物質を用いた正極、及びその正極を用いた電池
CN103247797B (zh) 2013-05-20 2015-10-28 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池正极材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
JP2009146739A (ja) * 2007-12-14 2009-07-02 Sony Corp 正極活物質の製造方法
WO2013108571A1 (ja) * 2012-01-17 2013-07-25 三洋電機株式会社 非水電解質二次電池の正極及び非水電解質二次電池
WO2014049977A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014050115A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2014049976A1 (ja) * 2012-09-28 2014-04-03 三洋電機株式会社 非水電解質二次電池
WO2015079664A1 (ja) * 2013-11-29 2015-06-04 三洋電機株式会社 非水電解質二次電池用正極

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017152262A (ja) * 2016-02-25 2017-08-31 富山薬品工業株式会社 リチウムイオン二次電池
JP2017157327A (ja) * 2016-02-29 2017-09-07 富山薬品工業株式会社 蓄電デバイス用非水電解液
WO2017199891A1 (ja) * 2016-05-16 2017-11-23 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
JPWO2017199891A1 (ja) * 2016-05-16 2019-03-14 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池
US11024836B2 (en) 2016-05-16 2021-06-01 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same, positive electrode mixed material paste for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP7077943B2 (ja) 2016-05-16 2022-05-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池

Also Published As

Publication number Publication date
CN106575760A (zh) 2017-04-19
JPWO2016017074A1 (ja) 2017-04-27
JP6627758B2 (ja) 2020-01-08
US20170155141A1 (en) 2017-06-01
US10283768B2 (en) 2019-05-07

Similar Documents

Publication Publication Date Title
JP6443339B2 (ja) 非水電解質二次電池用正極
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
JP6627758B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
WO2016047056A1 (ja) 非水電解質二次電池
JP6493409B2 (ja) 非水電解質二次電池
WO2012086277A1 (ja) 非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
JP6610552B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP6614149B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2005050779A (ja) 非水電解質二次電池
JP6572882B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2017094238A1 (ja) 非水電解質二次電池
JP5176317B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP6056685B2 (ja) リチウムイオン二次電池用正極活物質の処理方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
WO2013146115A1 (ja) 非水電解液二次電池用正極活物質及び当該正極活物質を用いた非水電解液二次電池
WO2015045315A1 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP5686041B2 (ja) 非水電解質二次電池
JP2014072072A (ja) 非水電解質二次電池用正極活物質、その製造方法及び当該正極活物質を用いた非水電解質二次電池用正極
WO2015059779A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2015098054A1 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
WO2016038699A1 (ja) リチウム二次電池用正極活物質
JP2016072038A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537727

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327549

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15827494

Country of ref document: EP

Kind code of ref document: A1