WO2015045315A1 - 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 Download PDF

Info

Publication number
WO2015045315A1
WO2015045315A1 PCT/JP2014/004691 JP2014004691W WO2015045315A1 WO 2015045315 A1 WO2015045315 A1 WO 2015045315A1 JP 2014004691 W JP2014004691 W JP 2014004691W WO 2015045315 A1 WO2015045315 A1 WO 2015045315A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2014/004691
Other languages
English (en)
French (fr)
Inventor
大造 地藤
毅 小笠原
藤本 洋行
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN201480048024.2A priority Critical patent/CN105518911B/zh
Priority to JP2015538882A priority patent/JP6256476B2/ja
Priority to US14/911,089 priority patent/US20160197348A1/en
Publication of WO2015045315A1 publication Critical patent/WO2015045315A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
  • a rare earth oxide is present on the surface of the active material in order to suppress a side reaction between the positive electrode and the electrolytic solution at a high voltage and improve cycle characteristics.
  • a fluorine compound such as LiF or AlF 3
  • the object of the present invention is to improve the output characteristics of a non-aqueous electrolyte secondary battery at a low temperature.
  • a compound containing a rare earth element and a compound containing lithium and fluorine on the surface of the positive electrode active material comprising a lithium-containing transition metal oxide It is characterized by adhering.
  • the output at a low temperature of the nonaqueous electrolyte secondary battery using the positive electrode active material can be greatly improved.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery characterized in that a compound containing a rare earth element and a compound containing lithium and fluorine are attached to the surface of a positive electrode active material comprising a lithium-containing transition metal oxide
  • the compound containing the rare earth element is a hydroxide, an oxyhydroxide, an oxide, a phosphate compound, or a carbonate compound.
  • a rare earth hydroxide or oxyhydroxide is preferred. This is because when these are used, the effect of improving the low-temperature output is further exhibited.
  • the compound containing lithium and fluorine is preferably LiF.
  • a solution obtained by dissolving the rare earth salt while stirring the lithium transition metal oxide And a method of spraying or dropping a liquid in which a fluorine salt is dissolved on a lithium transition metal oxide.
  • a solution in which the rare earth salt is dissolved or the fluorine salt is dissolved for example, water or an organic solvent such as alcohol can be used, but water is preferably used.
  • the rare earth element hydroxide changes to oxyhydroxide at about 200 ° C. to about 350 ° C.
  • the rare earth oxyhydroxide changes to an oxide at about 400 ° C. to about 500 ° C.
  • the rare earth element is erbium, it becomes erbium oxyhydroxide at 230 ° C. and erbium oxide at 440 ° C.
  • lithium hydroxide or lithium carbonate adhering to the powder surface reacts with fluorine ions.
  • an aqueous ammonium fluoride solution is used. And precipitated as lithium fluoride. The remainder is ammonia and water.
  • drying or heat treatment is preferably performed at a temperature of 350 ° C. or lower, and drying is performed to remove moisture.
  • the temperature is preferably 250 ° C. or lower.
  • erbium sulfuric acid solution is used as an aqueous solution in which a rare earth salt is dissolved and an aqueous ammonium fluoride solution is used as a solution in which a fluorine salt is dissolved
  • erbium hydroxide and lithium fluoride are precipitated. Since the hydroxide changes to oxyhydroxide at 230 ° C., when heat-treated at 250 ° C., a compound containing erbium oxyhydroxide and lithium fluoride adheres to the surface of the lithium transition metal oxide. Will be. When heat-treated at 200 ° C., erbium hydroxide and lithium fluoride remain.
  • the rare earth compound starts to react with lithium fluoride and tends to be a rare earth fluoride.
  • the temperature exceeds 500 ° C., the rare earth compound adhering to the surface not only reacts with lithium fluoride but also diffuses into the active material, so that the initial charge / discharge capacity decreases. Therefore, the heat treatment temperature is preferably 350 ° C. or less, and particularly preferably 250 ° C. or less. In addition, as a minimum of heat processing and drying temperature, it is preferable that it is about 80 degreeC.
  • Example 1 [Preparation of positive electrode active material] After mixing [Ni 0.35 Mn 0.30 Co 0.35 ] (OH) 2 and Li 2 CO 3 produced by the coprecipitation method, the positive electrode was fired at 950 ° C. for 10 hours in air. A lithium-containing transition metal oxide represented by Li 1.06 [Ni 0.33 Mn 0.28 Co 0.33 ] O 2 was produced as an active material. The lithium-containing transition metal oxide had an average particle size of about 10 ⁇ m.
  • the powder was dried at 120 ° C. for 2 hours and then heat treated at 250 ° C. for 6 hours.
  • the amount of erbium oxyhydroxide deposited was 0.14% by mass in terms of erbium element and 0.14% by mass of the lithium-containing transition metal oxide, and fluorine was also 0.05% by mass in terms of element. It was.
  • the positive electrode mixture slurry is applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled with a rolling roller, and a positive electrode is prepared by attaching an aluminum current collecting tab. did.
  • a three-electrode test cell was prepared using the positive electrode as a working electrode and metallic lithium as a counter electrode and a reference electrode.
  • LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate, methyl ethyl carbonate, and dimethyl carbonate were mixed at a volume ratio of 3: 3: 4 to a concentration of 1 mol / L, and vinylene carbonate was obtained.
  • a nonaqueous electrolytic solution in which 1% by mass was dissolved in the above mixed solvent was used.
  • the three-electrode test cell thus produced is hereinafter referred to as battery A1.
  • Example 3 A battery A3 was obtained in the same manner as in Experimental Example 1 except that only the erbium acetate tetrahydrate was added to the lithium-containing transition metal oxide when producing the positive electrode active material.
  • Example 4 A battery A4 was obtained in the same manner as in Experimental Example 1 except that only the aqueous ammonium fluoride solution was added to the lithium-containing transition metal oxide when producing the positive electrode active material. The following charge / discharge test was performed using the batteries A1 to A4 obtained in the above experimental example.
  • Example 1 where erbium oxyhydroxide and lithium fluoride adhered to the surface of the lithium-containing transition metal oxide particles, the low-temperature output characteristics were significantly improved compared to Experiment 2.
  • Example 3 when only erbium oxyhydroxide was adhered as in Experimental Example 3, when only LiF was adhered as in Experimental Example 4, the low-temperature output characteristics were rather deteriorated. The reason is considered as follows.
  • Example 5 Similar to Experimental Example 1 except that a solution of 3.71 g of neodymium nitrate hexahydrate in 50 mL of pure water was used instead of 3.76 g of erbium acetate tetrahydrate when producing the positive electrode active material. Thus, a battery A5 was obtained.
  • the adhering neodymium hydroxide does not change to oxyhydroxide at 250 ° C., and exists as a hydroxide.
  • Example 6 Similar to Experimental Example 1 except that a solution obtained by dissolving 3.77 g of samarium nitrate hexahydrate in 50 mL of pure water instead of 3.76 g of erbium acetate tetrahydrate was used in preparing the positive electrode active material. Thus, a battery A6 was obtained. The attached samarium hydroxide does not change to oxyhydroxide at 250 ° C. and exists as a hydroxide.
  • rare earth elements contained in the rare earth compound include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Among these, neodymium, samarium and erbium are preferable.
  • Neodymium, samarium or erbium compounds have a smaller average particle size than other rare earth compounds, are more easily dispersed and deposited on the surface of lithium-containing transition metal oxide particles, and are synergistic with compounds containing Li and fluorine. This is because the effect is increased.
  • rare earth compounds include neodymium hydroxide, neodymium oxyhydroxide, samarium hydroxide, samarium oxyhydroxide, erbium hydroxide, erbium oxyhydroxide and other hydroxides, oxyhydroxides, neodymium phosphate And phosphoric acid compounds such as samarium phosphate, erbium phosphate, neodymium carbonate, samarium carbonate, and erbium carbonate, carbonate compounds, neodymium oxide, samarium oxide, and erbium oxide.
  • rare earth hydroxides and oxyhydroxides are preferable because they can be more uniformly dispersed and, therefore, low-temperature output does not decrease even when charging / discharging normally in a wide temperature range and in a wide charging voltage range.
  • the average particle size of the rare earth compound is preferably 1 nm or more and 100 nm or less, and more preferably 10 nm or more and 50 nm or less.
  • the average particle size of the rare earth compound exceeds 100 nm, the particle size of the rare earth compound increases and the number of particles of the rare earth compound decreases. As a result, the effect of improving the low-temperature output may be reduced.
  • the lithium-containing transition metal oxide particle surface is densely covered with the rare earth compound, and lithium ions are occluded or released from the lithium-containing transition metal oxide particle surface. Performance may deteriorate and charge / discharge characteristics may deteriorate.
  • a solution in which a rare earth element or the like is dissolved can be obtained by dissolving a rare earth oxide such as a sulfuric acid compound, an acetic acid compound or a nitric acid compound in water, or by dissolving a rare earth oxide in nitric acid, sulfuric acid or acetic acid.
  • a rare earth oxide such as a sulfuric acid compound, an acetic acid compound or a nitric acid compound in water
  • the ratio of the rare earth compound to the total mass of the lithium-containing transition metal oxide is preferably 0.005% by mass or more and 0.5% by mass or less, and particularly 0.05% by mass or more and 0.3% by mass in terms of rare earth elements. The following is more preferable. If the ratio is less than 0.005% by mass, the effect of the compound containing the rare earth element and the compound containing lithium and fluorine may not be sufficiently obtained, and the effect of improving the low-temperature output characteristics may not be sufficiently obtained. On the other hand, if it is 0.5% by mass or more, the surface of the lithium transition metal oxide is excessively covered, and the cycle characteristics in large current discharge may be deteriorated.
  • the compound containing lithium and fluorine with respect to the total mass of the lithium-containing transition metal oxide is preferably 0.005% by mass or more and 0.8% by mass or less, and 0.01% by mass or more and 0.4% by mass in terms of fluorine element. The following is more preferable. If the ratio is less than 0.005% by mass, the effect of the compound containing the rare earth element and the compound containing lithium and fluorine may not be sufficiently obtained, and the effect of improving the low-temperature output characteristics may not be sufficiently obtained. Moreover, since the quantity of a positive electrode active material will reduce by that much when the said ratio exceeds 0.8 mass%, positive electrode capacity
  • a Ni—Co—Al based lithium composite oxide is similar to Ni—Co—Mn. High capacity and high input / output performance are preferable.
  • Other examples include lithium-cobalt composite oxide, Ni—Mn—Al-based lithium composite oxide, olivine-type transition metal oxide containing iron, manganese, etc. (expressed as LiMPO 4 , where M is Fe, Mn , Co, and Ni). These may be used alone or in combination.
  • the molar ratio of Ni, Co, and Mn is 35:35:30 as described above, or 5: 2: 3, 6: 2: 2.
  • a material having a known composition can be used.
  • the particle size of the positive electrode active material may be the same or different.
  • the lithium-containing transition metal oxide may contain other additive elements.
  • additive elements include boron (B), magnesium (Mg), aluminum (Al), titanium (Ti), chromium (Cr), iron (Fe), copper (Cu), zinc (Zn), and niobium (Nb). ), Molybdenum (Mo), tantalum (Ta), zirconium (Zr), tin (Sn), tungsten (W), sodium (Na), potassium (K), barium (Ba), strontium (Sr), calcium (Ca) ).
  • the negative electrode active material used for the negative electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can reversibly occlude and release lithium.
  • a carbon material, lithium such as Si or Sn, and the like A metal or alloy material to be alloyed, a metal oxide or the like can be used, and a carbon material or a combination of a negative electrode active material selected from the metal oxide, metal, and alloy material may be used.
  • Nonaqueous electrolytes used in the nonaqueous electrolyte secondary battery of the present invention are conventionally used cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate.
  • a chain carbonate can be used.
  • the volume ratio of the cyclic carbonate to the chain carbonate in the mixed solvent is preferably regulated in the range of 2: 8 to 5: 5.
  • esters such as methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate and ⁇ -butyrolactone; compounds containing sulfone groups such as propane sultone; 1,2-dimethoxyethane, 1,2- Compounds containing ethers such as diethoxyethane, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane, 2-methyltetrahydrofuran; butyronitrile, valeronitrile, n-heptanenitrile, succinonitrile, glutaronitrile, adiponitrile, pimelonitrile , 1,2,3-propanetricarbonitrile, compounds containing nitriles such as 1,3,5-pentanetricarbonitrile; compounds containing amides such as dimethylformamide, etc. can be used together with the above-mentioned solvents, These
  • the lithium salt used in the battery using the positive electrode active material for a non-aqueous electrolyte secondary battery of the present invention is a fluorine-containing lithium salt conventionally used, such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (C 2 F 5 SO 2 ) 3 , And LiAsF 6 can be used.
  • fluorine-containing lithium salt a fluorine-containing lithium salt other than the lithium salt [P, B, O, S, N, lithium salt containing one or more elements in Cl (e.g., LiClO 4, etc.)] was added A thing may be used.
  • lithium salts having the oxalato complex as an anion include LiBOB [lithium-bisoxalate borate], Li [B (C 2 O 4 ) F 2 ], Li [P (C 2 O 4 ) F 4 ], li [P (C 2 O 4 ) 2 F 2] and the like.
  • LiBOB lithium-bisoxalate borate
  • Li [B (C 2 O 4 ) F 2 ] Li [P (C 2 O 4 ) F 4 ]
  • li [P (C 2 O 4 ) 2 F 2] and the like.
  • separators used in the nonaqueous electrolyte secondary battery of the present invention include conventionally used resins such as polypropylene and polyethylene separators, polypropylene-polyethylene multilayer separators, and aramid resins on the separator surface. The coated one can be used.
  • a layer made of an inorganic filler that has been conventionally used can be formed at the interface between the positive electrode and the separator or the interface between the negative electrode and the separator.
  • the filler it is possible to use oxides or phosphate compounds using titanium, aluminum, silicon, magnesium, etc., which have been used conventionally, or those whose surfaces are treated with hydroxide or the like.
  • the filler layer may be formed by directly applying a filler-containing slurry to the positive electrode, negative electrode, or separator, or by attaching a filler-formed sheet to the positive electrode, negative electrode, or separator. Can do.
  • One method for obtaining an active material in which a compound containing a rare earth element and a compound containing lithium and fluorine are attached to the surface of the lithium transition metal oxide is as described above, while stirring the lithium transition metal oxide. Then, a solution A in which a salt containing a rare earth element is dissolved and a solution B having a fluorine source are added to the surface of the lithium transition metal oxide by adding A and B before mixing with the lithium transition metal oxide.
  • a manufacturing method in which a compound containing an element and a compound containing lithium and fluorine are attached can be used.
  • the solution A and the solution B are brought into contact with the lithium transition metal oxide almost simultaneously.
  • the lithium transition metal oxide before the solution A and the solution B are in contact with each other preferably contains a lithium compound that is not contained in the crystal.
  • a lithium compound that is not contained in the crystal When the solution B comes into contact, it easily changes to a compound containing lithium and fluorine (for example, lithium fluoride).
  • a lithium compound not contained in the crystal When a lithium compound not contained in the crystal is not contained, the lithium inside the crystal is drawn out to become a compound containing lithium and fluorine. In this case, since the amount of lithium that can be involved in charge / discharge decreases, the capacity may decrease.
  • the total weight of the solution to be added (the total weight of the solution of the compound containing the rare earth element and the solution of the compound containing lithium and fluorine) is the liquid / solid ratio (lithium calculated by the following formula (1).
  • the weight ratio with respect to the transition metal oxide is preferably adjusted to be 4% or more and 10% or less. If it is less than 4%, the amount of the solution to be added is too small, so that it becomes difficult to uniformly attach the compound containing the rare earth element and the compound containing lithium and fluorine, and the effect of improving the low-temperature output characteristics may not be sufficiently obtained.
  • the lithium transition metal oxide after the solution is added contains a large amount of the solution, so that it takes time to dry, resulting in poor mass productivity. For these reasons, it is preferably 4% or more and 10% or less.
  • Liquid / solid ratio total weight of solution to be added (g) / weight of lithium transition metal oxide (g) ⁇ 100 (1)
  • the pH of the solution to be added is preferably 2 or more, and more preferably 4 or more. This is because when the pH is less than 2, a part of the active material may be dissolved by the acid. Further, when a solution having a pH of 2 or more and less than 4 is added to the lithium transition metal compound, lithium inside the crystal and hydrogen ions in the solution are exchanged, which may deteriorate the characteristics of the lithium transition metal oxide. .
  • a method of stirring the positive electrode active material existing stirring equipment can be used.
  • a planetary stirrer such as Hibismix
  • a stirring device such as a drum mixer or a Redige mixer can be used.

Abstract

 低温出力特性に優れた非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池を提供する。本発明に係る非水電解質二次電池用正極活物質の一つの局面は、リチウム含有遷移金属酸化物からなる正極活物質の表面に、希土類元素を含む化合物と、リチウムとフッ素を含む化合物が付着している。前記正極活物質の表面に付着している希土類元素を含む化合物が、水酸化物、オキシ水酸化物、リン酸化合物、炭酸化合物、酸化物から選ばれた少なくとも1種であることが好ましい。

Description

非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
 本発明は非水電解質二次電池及びそれを用いた非水電解質二次電池に関するものである。
 非水電解質二次電池の分野では、高容量化、長寿命化、高出力化、高安全化等、様々な特性において更なる改善が求められている。たとえば、引用文献1においては、高電圧での正極と電解液の副反応を抑制し、サイクル特性向上のため、活物質表面に希土類の酸化物を存在させることが提案されている。また、引用文献2においては、LiFやAlFなどのフッ素化合物で活物質表面を被覆することにより、高電圧での正極と電解液の副反応を抑制し、サイクル特性が向上できることが提案されている。
WO2005-008812号 特表2008-536285号
 しかしながら、上記提案では低温での出力特性が低下するといった課題があった。 
 本発明は、非水電解質二次電池の低温での出力特性を改善することを目的とする。
本発明に係る非水電解質二次電池用正極活物質の一つの局面によれば、リチウム含有遷移金属酸化物からなる正極活物質の表面に、希土類元素を含む化合物と、リチウムとフッ素を含む化合物が付着していることを特徴とする。
 本発明に係る非水電解質二次電池の一つの局面によれば、前記正極活物質を用いた非水電解質二次電池の低温での出力を大幅に向上させることができる。
 非水電解質二次電池用正極活物質であって、リチウム含有遷移金属酸化物からなる正極活物質の表面に、希土類元素を含む化合物と、リチウムとフッ素を含む化合物が付着していることを特徴とする。
 本発明に係る非水電解質二次電池用正極活物質の一つの局面によれば、前記希土類元素を含む化合物が、水酸化物、オキシ水酸化物、酸化物、リン酸化合物、炭酸化合物であることが好ましく、特に、希土類の水酸化物又はオキシ水酸化物であることが好ましい。これらを用いると、低温出力向上の効果が一層発揮されるからである。
 本発明に係る非水電解質二次電池用正極活物質の一つの局面によれば、リチウムとフッ素を含む化合物がLiFであることが好ましい。
 ここで、希土類元素を含む化合物と、リチウムとフッ素を含む化合物をリチウム含有遷移金属酸化物の粒子表面に付着させる一つの方法として、リチウム遷移金属酸化物を攪拌しながら、希土類塩を溶解した液と、フッ素塩を溶解した液とをリチウム遷移金属酸化物に噴霧する、あるいは滴下する方法が挙げられる。希土類塩を溶解した液やフッ素塩を溶解した液としては、例えば水の他、アルコールなどの有機溶剤を用いることもできるが、好ましくは水を用いることが好ましい。
 希土類塩を溶解した水溶液をリチウム遷移金属酸化物粉末に噴霧すると、粉末と液の接触面では、粉末表面に付着している水酸化リチウムや炭酸リチウムが瞬時に溶解して液がアルカリ性となることから、希土類塩は、希土類水酸化物として粉末表面に付着する。希土類元素の水酸化物は、約200℃から約350℃でオキシ水酸化物に変化する。希土類のオキシ水酸化物は、約400℃から約500℃で酸化物に変化する。例えば、希土類元素がエルビウムの場合、230℃でオキシ水酸化エルビウムになり、440℃で酸化エルビウムとなる。
 一方、フッ素を含む水溶液をリチウム遷移金属酸化物粉末に噴霧すると、粉末表面に付着している水酸化リチウムや炭酸リチウムがフッ素イオンと反応して、例えば、フッ化アンモニウム水溶液を用いた場合には、フッ化リチウムとして析出する。尚、残りはアンモニアと水が生成する。
 この後、350℃以下の温度で、乾燥や熱処理をし、水分をとばすために乾燥することが好ましい。特に、250℃以下であることが好ましい。この際、希土類塩を溶解した水溶液としてエルビウムの硫酸溶液を、フッ素塩を溶解した液として、フッ化アンモニウム水溶液を用いた場合には、水酸化エルビウムとフッ化リチウムが析出する。水酸化物は230℃でオキシ水酸化物に変化するため、250℃で熱処理した場合、リチウム遷移金属酸化物の表面には、エルビウムのオキシ水酸化物とフッ化リチウムを含む化合物が付着していることになる。200℃で熱処理した場合は、エルビウムの水酸化物とフッ化リチウムのままである。
 400℃以上で熱処理する場合、希土類化合物がフッ化リチウムと反応し始め、希土類フッ化物になりやすくなる。500℃を越えると、表面に付着した希土類化合物が、フッ化リチウムと反応するだけでなく、活物質内部に拡散するため、初期の充放電容量が低下する。このため熱処理温度は350℃以下であることが好ましく、特には250℃以下であることが好ましい。尚、熱処理および乾燥温度の下限としては、80℃程度であることが好ましい。
 <実験例>
 以下、本発明を実験例に基づいてさらに詳細に説明するが、本発明は以下の実験例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
 (実験例1)
 [正極活物質の作製]
 共沈法により作製した[Ni0.35Mn0.30Co0.35](OH)とLiCOとを混合した後、空気中にて950℃で10時間焼成することで、正極活物質としてLi1.06[Ni0.33Mn0.28Co0.33]Oで表されるリチウム含有遷移金属酸化物を作製した。上記リチウム含有遷移金属酸化物の平均粒子径は約10μmであった。
 上記方法で作製されたリチウム含有遷移金属酸化物の粉末1000g攪拌しながら、酢酸エルビウム4水和物3.76gを50mLの純水に溶解した溶液を複数回に分けて加えた。また、同時にフッ化アンモニウム0.94gを水溶液30mLも複数回に分けて加えた。尚、リチウム含有遷移金属酸化物粉末に触れるまでに酢酸エルビウム4水和物溶液とフッ化アンモニウム水溶液が直接混合されることはないように加えた。
 この粉末を120℃で2時間乾燥した後、250℃で6時間熱処理した。
尚、上記オキシ水酸化エルビウムの付着量は、エルビウム元素換算で、上記リチウム含有遷移金属酸化物に対して0.14質量%であり、フッ素は、同様に元素換算で0.05質量%であった。
 [正極の作製]
 上記正極活物質と、導電剤としてのカーボンブラックと、結着剤としてのポリフッ化ビニリデンを溶解させたN-メチル-2-ピロリドン溶液とを、正極活物質と導電剤と結着剤との質量比が92:5:3となるように秤量し、これらを混練して正極合剤スラリーを調製した。
 次いで、上記正極合剤スラリーを、アルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、圧延ローラーにより圧延し、更にアルミニウム製の集電タブを取り付けることにより正極を作製した。
 作用極として上記の正極を、対極及び参照極としてそれぞれ金属リチウムを用いて三電極式試験用セルを作製した。尚、非水電解質として、エチレンカーボネートとメチルエチルカーボネートとジメチルカーボネートとを3:3:4の体積比で混合させた混合溶媒にLiPFを1mol/Lの濃度になるように溶解させ、ビニレンカーボネートを上記混合溶媒に対して1質量%溶解させた非水電解液を用いた。このようにして作製した三電極式試験用セルを、以下、電池A1と称する。
 (実験例2)
 正極活物質を作製する際に、酢酸エルビウム水溶液もフッ化エルビウム水溶液も加えず、その前の工程で得た活物質を用いたこと以外実験例A1と同様にして電池A2を得た。
 (実験例3)
 正極活物質を作製する際に、酢酸エルビウム4水和物のみリチウム含有遷移金属酸化物に加えたこと以外は実験例1と同様にして電池A3を得た。
 (実験例4)
正極活物質を作製する際に、フッ化アンモニウム水溶液のみリチウム含有遷移金属酸化物に加えたこと以外は実験例1と同様にして電池A4を得た。
 上記実験例で得られたA1からA4の電池を用いて、下記の充放電試験を行った。
 ・初期充放電特性
 充電:25℃の温度条件下において、0.4mA/cmの電流密度で4.3V(vs.Li/Li)まで定電流充電を行い、4.3V(vs.Li/Li)の定電圧で電流密度が0.08mA/cmになるまで定電圧充電する。
 放電:25℃の温度条件下において、0.4mA/cmの電流密度で2.5V(vs.Li/Li)まで定電流放電する。
上記の充放電を行い、初期の放電容量を測定し、定格放電容量とした。
 ・低温出力特性測定
 25℃の温度条件下において、定格容量の50%まで0.4mA/cmの電流密度で充電した後、雰囲気温度を-30℃にしてから、0.16,0.8,1.6,2.4,3.2,4.8mA/cmの各電流密度で10秒間放電を行い、電池電圧を測定した。各電流密度値と電池電圧とをプロットして、10秒間放電した場合に電池電圧が2.5Vになる電流密度を求めた。この電流密度に2.5Vを乗じた値を出力密度とし、実験例2の出力密度を100とした相対値を表1に示す。
 尚、放電によりずれた充電深度は0.16mA/cmの定電流で充電することにより元の充電深度に戻した。 
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、リチウム含有遷移金属酸化物粒子の表面にオキシ水酸化エルビウムとフッ化リチウムが付着した実験例1においては、実験2に比べ低温出力特性が大幅に向上した。一方、実験例3のようにオキシ水酸化エルビウムのみが付着した場合、実験例4のようにLiFのみが付着した場合には低温出力特性はむしろ低下した。その理由は下記のように考えられる。
 オキシ水酸化エルビウムとLiFが同時に付着している場合、オキシ水酸化エルビウムが存在していることから、活物質表面での脱溶媒和反応の活性化エネルギーが低くなるとともに、脱溶媒したLiイオンがオキシ水酸化エルビウムに近接したところに付着しているLiFおよびLiFを含む形で形成される皮膜を介してスムーズに活物質内部に挿入されるため、優れた低温出力が得られる。
 一方、オキシ水酸化エルビウムのみが付着している場合、活性化エネルギーは低くなっているものの、オキシ水酸化エルビウム自体はリチウムイオン導電性が低く、オキシ水酸化エルビウムが付着している部分とその周囲のイオン導伝が阻害されるため、むしろ低温出力は低下する。
 LiFのみが付着している場合、脱溶媒和反応の活性化エネルギーが何も付着していない活物質に対して大幅に高くなり、低温出力が低下する。
 (実験例5)
 正極活物質を作製する際に、酢酸エルビウム4水和物3.76gの代わりに硝酸ネオジム6水和物3.71gを、50mLの純水に溶解した溶液を用いた以外は実験例1と同様にして電池A5を得た。尚、付着した水酸化ネオジムは250℃ではオキシ水酸化物には変化せず、水酸化物として存在している。
 (実験例6)
 正極活物質を作製する際に、酢酸エルビウム4水和物3.76gの代わりに硝酸サマリウム6水和物3.77gを、50mLの純水に溶解した溶液を用いた以外は実験例1と同様にして電池A6を得た。尚、付着した水酸化サマリウムは250℃ではオキシ水酸化物には変化せず、水酸化物として存在している。
 上記実験例5及び6で得られたA5,A6の電池を用いて、上記実験例A1~A4と同様に、充放電試験を行った結果を以下表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から明らかなように、リチウム含有遷移金属酸化物粒子の表面に水酸化ネオジムとフッ化リチウムが付着した実験例5、水酸化サマリウムとフッ化リチウムが付着した実験例6とともに、実験例2に比べ低温出力特性が大幅に向上した。このことから低温出力特性の改善効果は、希土類化合物の効果であり、その他の希土類元素の場合でも同様の効果が得られると考えられる。
 また実験例5及び6と比較しても実験例1の低温出力特性の向上効果が最も大きいことから、希土類元素の中でもエルビウムが最も好ましい。
 (その他の事項)
 希土類化合物に含まれる希土類元素の例として、スカンジウム、イットリウム、ランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムが挙げられる。中でも、ネオジム、サマリウム、エルビウムが好ましい。ネオジム、サマリウム又はエルビウムの化合物は、他の希土類化合物に比べて平均粒径が小さく、リチウム含有遷移金属酸化物粒子の表面により均一に分散して析出し易く、Liとフッ素を含む化合物との相乗効果が大きくなるからである。
 希土類化合物の具体例としては、水酸化ネオジム、オキシ水酸化ネオジム、水酸化サマリウム、オキシ水酸化サマリウム、水酸化エルビウム、オキシ水酸化エルビウム等の水酸化物、オキシ水酸化物の他、リン酸ネオジム、リン酸サマリウム、リン酸エルビウム、炭酸ネオジム、炭酸サマリウム、炭酸エルビウム等のリン酸化合物や炭酸化合物、酸化ネオジム、酸化サマリウム、酸化エルビウム等が挙げられる。中でも、より均一に分散させることができるため、幅広い温度範囲で、幅広い充電電圧域において通常に充放電しても低温出力が低下しないことから、希土類の水酸化物やオキシ水酸化物が好ましい。
 希土類化合物の平均粒径は1nm以上100nm以下であることが好ましく、10nm以上50nm以下であることがさらに好ましい。希土類化合物の平均粒子径が100nmを超えると、希土類化合物の粒径が大きくなり、希土類化合物の粒数が減少する。その結果、低温出力向上効果が小さくなることがある。
 一方、希土類の化合物の平均粒子径が1nm未満になると、リチウム含有遷移金属酸化物の粒子表面が希土類の化合物によって緻密に覆われ、リチウム含有遷移金属酸化物の粒子表面におけるリチウムイオンの吸蔵又は放出性能が低下して、充放電特性が低下することがある。
 希土類元素等を溶解した液は、希土類等の硫酸化合物、酢酸化合物、硝酸化合物を水に溶解する方法の他、希土類の酸化物を硝酸、硫酸や酢酸などに溶かすことによっても得られる。
 リチウム含有遷移金属酸化物の総質量に対する希土類化合物の割合は、希土類元素換算で、0.005質量%以上0.5質量%以下が好ましく、特には、0.05質量%以上0.3質量%以下がより好ましい。上記割合が0.005質量%未満では希土類元素を含む化合物とリチウムとフッ素を含む化合物の効果が十分に得られず、低温出力特性向上効果が十分に得られないことがある。
 また、0.5質量%以上であると、リチウム遷移金属酸化物の表面を過剰に覆ってしまい、大電流放電でのサイクル特性が低下することがある。
 リチウム含有遷移金属酸化物の総質量に対するリチウムとフッ素を含む化合物は、フッ素元素換算で、0.005質量%以上、0.8質量%以下が好ましく、0.01質量%以上0.4質量%以下がより好ましい。上記割合が0.005質量%未満では希土類元素を含む化合物とリチウムとフッ素を含む化合物の効果が十分に得られず、低温出力特性向上効果が十分に得られないことがある。また、上記割合が0.8質量%を超えるとその分だけ正極活物質の量が減るため、正極容量が低下する。
 リチウム含有遷移金属酸化物としては、上述したようなNi-Co-Mn系のリチウム複合酸化物の他、例えば、Ni-Co-Al系のリチウム複合酸化物が、Ni-Co-Mnと同様に、高容量で入出力性が高いことから好ましい。その他の例としては、リチウムコバルト複合酸化物や、Ni-Mn-Al系のリチウム複合酸化物、鉄、マンガンなどを含むオリビン型の遷移金属酸化物(LiMPOで表され、MはFe、Mn、Co、Niから選択される)が例示される。また、これらを単独で用いてもよいし、混合して用いてもよい。
 また、上記Ni-Co-Mn系のリチウム複合酸化物としては、NiとCoとMnとのモル比が、上述の35:35:30であったり、5:2:3、6:2:2である等、公知の組成のものを用いることができる。特に、正極容量を増大させることができるようにするためには、NiやCoの割合がMnより多いものを用いることが好ましく、NiとCoとMnのモルの総和に対するNiとMnのモル比率の差は、0.04%以上であることが好ましい。尚、同種の正極活物質のみを用いる場合や異種の正極活物質を用いる場合において、正極活物質の粒径としては、同一のものを用いても良く、また、異なるものを用いてもよい。
 尚、上記リチウム含有遷移金属酸化物は、他の添加元素を含んでいても良い。添加元素の例としては、ホウ素(B)、マグネシウム(Mg)、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ニオブ(Nb)、モリブデン(Mo)、タンタル(Ta)、ジルコニウム(Zr)、錫(Sn)、タングステン(W)、ナトリウム(Na)、カリウム(K)、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)が挙げられる。
 本発明の非水電解質二次電池の負極に用いる負極活物質としては、リチウムを可逆的に吸蔵、放出できるものであれば特に限定されず、例えば、炭素材料や、SiやSnなどのリチウムと合金化する金属或いは合金材料や、金属酸化物等を用いることができ、炭素材料や前記金属酸化物や金属、合金材料の中から選ばれた負極活物質を組み合わせたものであってもよい。
 本発明の非水電解質二次電池に用いる非水電解液は、従来から使用されている、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等の鎖状カーボネートを用いることができる。特に、低粘度、低融点でリチウムイオン伝導度の高い非水系溶媒として、環状カーボネートと鎖状カーボネートとの混合溶媒を用いることが好ましい。また、この混合溶媒における環状カーボネートと鎖状カーボネートとの体積比は、2:8~5:5の範囲に規制することが好ましい。
 また、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステルを含む化合物;プロパンスルトン等のスルホン基を含む化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、テトラヒドロフラン、1,3-ジオキサン、1,4-ジオキサン、2-メチルテトラヒドロフラン等のエーテルを含む化合物;ブチロニトリル、バレロニトリル、n-ヘプタンニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等のニトリルを含む化合物;ジメチルホルムアミド等のアミドを含む化合物等を上記の溶媒とともに用いることもでき、また、これらの水素原子Hの一部がフッ素原子Fにより置換されている溶媒も用いることができる。
 本発明の非水電解質二次電池用正極活物質を用いた電池に用いるリチウム塩は、従来から使用されているフッ素含有リチウム塩、例えばLiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CSO、及びLiAsFなどを用いることができる。更にフッ素含有リチウム塩に、フッ素含有リチウム塩以外のリチウム塩〔P、B、O、S、N、Clの中の一種類以上の元素を含むリチウム塩(例えば、LiClO等)〕を加えたものを用いても良い。特に、高温環境下においても負極の表面に安定な被膜を形成する点から、フッ素含有リチウム塩とオキサラト錯体をアニオンとするリチウム塩とを含むことが好ましい。
 上記のオキサラト錯体をアニオンとするリチウム塩の例として、LiBOB〔リチウム-ビスオキサレートボレート〕、Li[B(C)F]、Li[P(C)F]、Li[P(C]が挙げられる。中でも特に負極で安定な被膜を形成させるLiBOBを用いることが好ましい。
 本発明の非水電解質二次電池に用いるセパレータとしては、従来から使用されている、ポリプロピレン製やポリエチレン製のセパレータ、ポリプロピレン-ポリエチレンの多層セパレータや、セパレータの表面にアラミド系の樹脂等の樹脂が塗布されたものを用いることができる。
 正極とセパレータとの界面、又は、負極とセパレータとの界面には、従来から用いられてきた無機物のフィラーからなる層を形成することができる。フィラーとしても、従来から用いられてきたチタン、アルミニウム、ケイ素、マグネシウム等を単独もしくは複数用いた酸化物やリン酸化合物、またその表面が水酸化物等で処理されているものを用いることができる。上記フィラー層の形成方法は、正極、負極、或いはセパレータに、フィラー含有スラリーを直接塗布して形成する方法や、フィラーで形成したシートを、正極、負極、或いはセパレータに貼り付ける方法等を用いることができる。
 リチウム遷移金属酸化物の表面に希土類元素を含む化合物と、リチウムとフッ素を含む化合物が付着した活物質を得る一つの方法としては、上述しているように、リチウム遷移金属酸化物を攪拌しながら、希土類元素を有する塩を溶解した溶液Aと、フッ素源を有する溶液Bを、リチウム遷移金属酸化物に触れる前にAとBが混合されることなく加えて、リチウム遷移金属酸化物表面に希土類元素を含む化合物とリチウムとフッ素を含む化合物を付着させる製造方法を用いることができる。
 上記の溶液Aと溶液Bを加える方法としては、数回にわけて付着させることが好ましい。その理由としては、より均一に分散して希土類元素を含む化合物と、リチウムとフッ素を含む化合物がリチウム遷移金属酸化物表面に付着させることができるからである。
 数回にわけて付着させる方法の例としては、正極活物質を攪拌しながら、液を投入するノズルから活物質に滴下する方法や、スプレーなどを用いて溶液を噴霧し活物質に付着させる方法などが挙げられる。
 上記の溶液Aと溶液Bを加える方法としては、溶液Aと溶液Bがほぼ同時にリチウム遷移金属酸化物に接触させることが好ましい。
 上記の溶液Aと溶液Bが接触する前のリチウム遷移金属酸化物は、結晶内に含まれていないリチウム化合物が含まれていることが好ましい。溶液Bが接触した際に、リチウムとフッ素を含む化合物(例えばフッ化リチウム)に変化しやすい。結晶内に含まれていないリチウム化合物が含まれていない場合には、結晶内部のリチウムを引き抜き、リチウムとフッ素を含む化合物になる。この場合、充放電に関与できるリチウムの量が減るので容量が低下するおそれがある。
 溶液として水溶液を用いる場合、加える溶液の総重量(希土類元素を含む化合物の溶液とリチウムとフッ素を含む化合物の溶液の総重量)は、下記の式(1)で求められる液/固比(リチウム遷移金属酸化物との重量比)が4%以上、10%以下になるように調整されることが好ましい。
 4%よりも小さいと加える溶液の量が少なすぎるため、希土類元素を含む化合物とリチウムとフッ素を含む化合物を均一に付着させにくくなり、低温出力特性向上効果が十分に得られないおそれがある。10%を超えると、溶液を加えた後のリチウム遷移金属酸化物が多量に溶液を含んだ状態になるため、乾燥に時間がかかるため量産性に劣る。これらの理由から4%以上10%以下であることが好ましい。
 液/固比 = 加える溶液の総重量(g)/リチウム遷移金属酸化物の重量(g)× 100 ・・・(1)
 溶液として水溶液を用いる場合、加える溶液のpHは2以上であることが好ましく、さらに好ましいpHとしては、4以上であることが好ましい。pHが2未満の場合は、活物質の一部が酸により溶解するおそれがあるためである。
 また、pHが2以上4未満の溶液をリチウム遷移金属化合物に加えると、結晶内部のリチウムと溶液中の水素イオンとが交換され、リチウム遷移金属酸化物の特性を低下させるおそれがあるためである。
 正極活物質を攪拌する方法としては、既存の攪拌設備を用いることができ、例えば、ハイビスミックスなどの遊星式の攪拌機などや、ドラムミキサーやレディゲミキサーなどの攪拌装置を用いることができる。

Claims (6)

  1. リチウム含有遷移金属酸化物からなる正極活物質の表面に、希土類元素を含む化合物と、リチウムとフッ素を含む化合物が付着している、非水電解質二次電池用正極活物質。
  2.  前記正極活物質の表面に付着している希土類元素を含む化合物が、水酸化物、オキシ水酸化物、リン酸化合物、炭酸化合物、酸化物から選ばれた少なくとも1種である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記希土類元素を含む化合物が、水酸化物、オキシ水酸化物である請求項1又は2に記載の非水電解質二次電池用正極活物質。
  4.  前記希土類元素を含む化合物が、ネオジム、サマリウム、エルビウムから選ばれる少なくとも1種である、請求項1~3のいずれか1項に記載の非水電解質二次電池用正極活物質。
  5. 前記リチウムとフッ素を含む化合物がフッ化リチウムである、請求項1~4のいずれか1項に記載の非水電解質二次電池用正極活物質。
  6.  請求項1~5のいずれか1項に記載の非水電解質二次電池用正極活物質を備える非水電解質二次電池。
     
PCT/JP2014/004691 2013-09-30 2014-09-11 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池 WO2015045315A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480048024.2A CN105518911B (zh) 2013-09-30 2014-09-11 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池
JP2015538882A JP6256476B2 (ja) 2013-09-30 2014-09-11 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
US14/911,089 US20160197348A1 (en) 2013-09-30 2014-09-11 Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203345 2013-09-30
JP2013-203345 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015045315A1 true WO2015045315A1 (ja) 2015-04-02

Family

ID=52742488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004691 WO2015045315A1 (ja) 2013-09-30 2014-09-11 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Country Status (4)

Country Link
US (1) US20160197348A1 (ja)
JP (1) JP6256476B2 (ja)
CN (1) CN105518911B (ja)
WO (1) WO2015045315A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095352A (ja) * 2013-11-12 2015-05-18 日亜化学工業株式会社 非水電解液二次電池用正極活物質の製造方法、非水電解液二次電池用正極及び非水電解液二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096830B2 (en) * 2014-12-26 2018-10-09 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2019058702A1 (ja) * 2017-09-25 2019-03-28 パナソニックIpマネジメント株式会社 二次電池用正極、二次電池および二次電池用正極の製造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151081A (ja) * 2000-08-29 2002-05-24 Santoku Corp 非水電解液2次電池用正極活物質、その製造方法及び非水電解液2次電池
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005174616A (ja) * 2003-12-08 2005-06-30 Nec Corp 二次電池用正極活物質、それを用いた二次電池用正極および二次電池
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2009104805A (ja) * 2007-10-19 2009-05-14 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2011141989A (ja) * 2010-01-06 2011-07-21 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用正極
JP2012054067A (ja) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd 非水電解質二次電池
WO2012099265A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2012101948A1 (ja) * 2011-01-28 2012-08-02 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
WO2012101949A1 (ja) * 2011-01-28 2012-08-02 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
JP2012169290A (ja) * 2008-12-03 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598665B2 (ja) * 1996-07-05 2004-12-08 株式会社ユアサコーポレーション 電池用活物質および電池
JP2007059142A (ja) * 2005-08-23 2007-03-08 Nissan Motor Co Ltd 非水電解リチウムイオン電池用正極材料、これを用いた電池および非水電解リチウムイオン電池用正極材料の製造方法
KR101082152B1 (ko) * 2006-06-20 2011-11-09 주식회사 엘지화학 고온 수명 특성을 개선하는 전해액 및 이를 포함하는 리튬이차 전지
KR20110025777A (ko) * 2009-03-31 2011-03-11 파나소닉 주식회사 리튬 이온 전지용 양극의 제조방법, 리튬 이온 전지용 양극 및 상기 양극을 사용한 리튬 이온 전지
JP5747457B2 (ja) * 2010-01-06 2015-07-15 三洋電機株式会社 リチウム二次電池
JP5623100B2 (ja) * 2010-03-12 2014-11-12 三洋電機株式会社 非水電解質二次電池及びその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151081A (ja) * 2000-08-29 2002-05-24 Santoku Corp 非水電解液2次電池用正極活物質、その製造方法及び非水電解液2次電池
WO2005008812A1 (ja) * 2003-07-17 2005-01-27 Yuasa Corporation 正極活物質及びその製造方法、並びに、これを用いたリチウム二次電池用正極及びリチウム二次電池
JP2005174616A (ja) * 2003-12-08 2005-06-30 Nec Corp 二次電池用正極活物質、それを用いた二次電池用正極および二次電池
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2009104805A (ja) * 2007-10-19 2009-05-14 Sony Corp 正極活物質、正極および非水電解質二次電池
JP2012169290A (ja) * 2008-12-03 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池
JP2011141989A (ja) * 2010-01-06 2011-07-21 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用正極
JP2012054067A (ja) * 2010-08-31 2012-03-15 Sanyo Electric Co Ltd 非水電解質二次電池
WO2012099265A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 非水電解質二次電池用正極活物質、その正極活物質を用いた非水電解質二次電池用正極及びその正極を用いた非水電解質二次電池
WO2012101948A1 (ja) * 2011-01-28 2012-08-02 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池
WO2012101949A1 (ja) * 2011-01-28 2012-08-02 三洋電機株式会社 非水電解液二次電池用正極活物質、その製造方法、当該正極活物質を用いた非水電解液二次電池用正極、及び、当該正極を用いた非水電解液二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015095352A (ja) * 2013-11-12 2015-05-18 日亜化学工業株式会社 非水電解液二次電池用正極活物質の製造方法、非水電解液二次電池用正極及び非水電解液二次電池
US10305095B2 (en) 2013-11-12 2019-05-28 Nichia Corporation Method of producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN105518911A (zh) 2016-04-20
JPWO2015045315A1 (ja) 2017-03-09
JP6256476B2 (ja) 2018-01-10
US20160197348A1 (en) 2016-07-07
CN105518911B (zh) 2017-12-15

Similar Documents

Publication Publication Date Title
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
US9786908B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10193153B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
WO2014132550A1 (ja) 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
WO2015136892A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JPWO2016047056A1 (ja) 非水電解質二次電池
JP6237765B2 (ja) 非水電解質二次電池
WO2014049976A1 (ja) 非水電解質二次電池
US20160301079A1 (en) Positive electrode for nonaqueous electrolyte secondary battery
CN106663780B (zh) 非水电解质二次电池用正极和非水电解质二次电池
JP6627758B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
CN107004897B (zh) 非水电解质二次电池
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2014072071A (ja) 非水電解質二次電池
WO2014049977A1 (ja) 非水電解質二次電池
JP6256476B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
JP2004296098A (ja) 非水電解質二次電池
JP2004281158A (ja) 非水電解質二次電池
JP6572882B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2007040114A1 (ja) 非水電解質二次電池用電極および非水電解質二次電池
CN107836056B (zh) 非水电解质二次电池
JP6299771B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848534

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015538882

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14911089

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848534

Country of ref document: EP

Kind code of ref document: A1