WO2019058702A1 - 二次電池用正極、二次電池および二次電池用正極の製造方法 - Google Patents

二次電池用正極、二次電池および二次電池用正極の製造方法 Download PDF

Info

Publication number
WO2019058702A1
WO2019058702A1 PCT/JP2018/024995 JP2018024995W WO2019058702A1 WO 2019058702 A1 WO2019058702 A1 WO 2019058702A1 JP 2018024995 W JP2018024995 W JP 2018024995W WO 2019058702 A1 WO2019058702 A1 WO 2019058702A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
film
active material
electrode active
current collector
Prior art date
Application number
PCT/JP2018/024995
Other languages
English (en)
French (fr)
Inventor
浩史 川田
福井 厚史
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201880060350.3A priority Critical patent/CN111095614B/zh
Priority to US16/640,239 priority patent/US20200251716A1/en
Priority to JP2019543434A priority patent/JP7122632B2/ja
Publication of WO2019058702A1 publication Critical patent/WO2019058702A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an improvement of a positive electrode for a secondary battery.
  • Patent Document 1 discloses a method of coating a positive electrode with lithium ion conductive glass using a sol-gel method for side reaction suppression on the positive electrode side.
  • One aspect of the present disclosure includes a positive electrode current collector, a positive electrode active material layer provided on the surface of the positive electrode current collector, and a first film having lithium ion permeability
  • the first film contains a lithium ion-permeable oxide X represented by Li x M 1 O y (0.5 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 6), and a compound Y containing fluorine And covering at least a part of the surface of the positive electrode active material layer and partially covering the surface of the positive electrode current collector,
  • the compound Y contains a bond of a metal element M 2 and a fluorine element, and M 1 is at least selected from the group consisting of B, Al, Si, P, S, Ti, V, Zr, Nb, Ta, and La
  • the present invention relates to a positive electrode for a secondary battery, which is one type and M 2 is at least one type selected from the group consisting of Li, Na, Al, Mg, and Ca.
  • Another aspect of the present disclosure relates to a secondary battery including the positive electrode, the negative electrode, and a lithium ion conductive electrolyte.
  • Yet another aspect of the present disclosure relates to a method of preparing a positive electrode precursor including a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector; Coating at least a part of the surface of the positive electrode active material layer with the coating of 1, and partially covering the surface of the positive electrode current collector,
  • the present invention relates to a method for producing a positive electrode for a secondary battery, wherein the first film is formed by exposing the positive electrode precursor to an atmosphere at 200 ° C. or less containing the raw material of the first film.
  • battery safety can be enhanced without impairing desired battery characteristics.
  • a positive electrode for a secondary battery includes a positive electrode current collector, a positive electrode active material layer provided on the surface of the positive electrode current collector, and a first film having lithium ion permeability.
  • the first film contains a lithium ion-permeable oxide X represented by Li x M 1 O y (0.5 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 6) and a compound Y containing fluorine.
  • the first film covers at least a part of the surface of the positive electrode active material layer and partially covers the surface of the positive electrode current collector.
  • the compound Y contains a bond of the metal element M 2 and a fluorine element.
  • M 1 is at least one selected from the group consisting of B, Al, Si, P, S, Ti, V, Zr, Nb, Ta, and La.
  • M 2 is at least one selected from the group consisting of Li, Na, Al, Mg and Ca.
  • the oxide X having lithium ion permeability and the compound Y containing fluorine By uniformly covering the surface of the positive electrode active material layer with the oxide X having lithium ion permeability and the compound Y containing fluorine, covering the site serving as the origin of decomposition of the electrolyte on the surface of the positive electrode active material layer it can. Thereby, it is possible to suppress the side reaction and to enhance the battery safety without impairing the battery characteristics.
  • the surface of the positive electrode active material layer is not limited to the surface of the positive electrode active material layer on the side facing the negative electrode through the separator, and the inner wall of the void in the porous positive electrode active material layer on the surface of the positive electrode active material layer Also included. It is preferable that the first film that covers the surface of the positive electrode active material layer penetrates into the inside of the voids in the positive electrode active material layer and covers the inner wall.
  • the first film can partially cover the surface of the positive electrode current collector.
  • the surface of the positive electrode current collector is not completely covered with the positive electrode active material or the binder, and has a minute exposed surface.
  • the cut end surface of the positive electrode current collector and the lead attachment portion may be exposed.
  • the first film for covering the surface of the positive electrode active material layer comprises positive electrode active material particles and a binder Is formed on the surface of the positive electrode active material layer after the positive electrode active material layer is formed. Therefore, unlike the case where the first film is formed in advance on the positive electrode active material particles, a region in which the first film does not intervene may exist at the adhesion interface between the positive electrode active material particles and the binder. Similarly, there may be a region where the first film does not intervene in the contact interface between the positive electrode active material particles and the positive electrode current collector. Furthermore, there may be a region where the first film does not intervene in the contact interface between adjacent positive electrode active material particles.
  • the first film When the first film is formed after the positive electrode active material layer is formed, the first film can partially cover the surface of the binder.
  • the positive electrode active material layer contains a conductive agent, the first film can partially cover the surface of the conductive agent. Thereby, the decomposition of the electrolyte starting from the binder or the conductive agent is also suppressed.
  • the heat resistance temperature of the binder varies depending on the type of binder, but as a measure of the temperature for forming the first film, 200 ° C. or less is preferable, and 120 ° C. or less is more preferable.
  • the first film contains an oxide X having lithium ion permeability and a compound Y containing fluorine.
  • a chemically stable film can be formed.
  • the element M 1 constituting the oxide X is preferably at least one selected from the group consisting of B, Al, Si, P, S, Ti, V, Zr, Nb, Ta, and La. At least one selected from the group consisting of P, Si and B is more preferable in that the raw material is inexpensive. More preferably, the element M 1 contains at least P.
  • the compound Y is not particularly limited as long as it contains a bond of a metal element M 2 and a fluorine element, but M 2 is at least one selected from the group consisting of Li, Na, Al, Mg, and Ca. Is preferred. Among them, more preferably, M 2 contains Li, and the compound Y contains LiF.
  • the oxide X represented by the composition formula Li x M 1 O y contains an O-Li bond having ionic bondability, and exhibits lithium ion permeability by hopping of lithium ions via the O site.
  • the oxide X is preferably a polyoxymetallate compound from the viewpoint of stability.
  • the range of x and y is, for example, preferably 0.5 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 6.
  • polyoxymetallate compounds include Li 3 PO 4 , Li 4 SiO 4 , Li 2 Si 2 O 5 , Li 2 SiO 3 , Li 3 BO 3 , Li 3 VO 4 , Li 3 NbO 4 and LiZr 2 (PO 4 LiTaO 3, Li 4 Ti 5 O 12, Li 7 La 3 Zr 2 O 12, Li 5 La 3 Ta 2 O 12, Li 0.35 La 0.55 TiO 3, Li 9 SiAlO 8 , Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 and the like can be used alone or in any combination.
  • the composition of the oxide X preferably contains at least Li 3 PO 4, and preferably contains 80% to 95% by mass of Li 3 PO 4 and 5% to 20% by weight of lithium silicate.
  • the lithium silicate may be mentioned Li 4 SiO 4, Li 2 Si 2 O 5, Li 2 SiO 3. By including lithium silicate in the oxide X, the compactness of the first film can be improved.
  • the composition ratio of lithium and oxygen does not have to be the same as the stoichiometric composition. Rather, when the oxygen composition ratio of the oxide X is smaller than the stoichiometric composition, lithium ion permeability is more likely to be developed due to the presence of oxygen defects.
  • the oxide X is lithium phosphate, Li x PO y (1 ⁇ x ⁇ 3, 3 ⁇ y ⁇ 4) is more preferable, and when the oxide X is lithium silicate, Li x SiO y ( More preferably, 2 ⁇ x ⁇ 4, 3 ⁇ y ⁇ 4).
  • Film formation by the first film can be performed using, for example, an atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • the source gas of the oxide X is supplied to the reaction chamber to form a film of the oxide X
  • the source gas of the compound Y is supplied to the reaction chamber to form a film of the compound Y.
  • a first film in which the oxide X and the compound Y are mixed in the same atomic layer is formed. Is also possible.
  • the source gas for the oxide X and the source gas for the compound Y may be sequentially supplied to the reaction chamber to form a film of the compound Y on the film of the oxide X to form the first film. I do not care. If the film thickness of the first film is about 0.5 nm or more, the side reaction suppressing effect can be obtained.
  • the first film may contain nitrogen atoms because the lithium ion supply source contains nitrogen atoms.
  • the first film has high conductivity, can maintain lithium ion permeability even when the first film is thick, and battery characteristics are unlikely to be deteriorated.
  • the sheet-like positive electrode includes a sheet-like positive electrode current collector, a positive electrode active material layer provided on the surface of the positive electrode current collector, and a first film formed on the surface of the positive electrode active material layer.
  • the positive electrode active material layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • Positive electrode current collectors include metal foils and metal sheets.
  • a material of the positive electrode current collector stainless steel, aluminum, an aluminum alloy, titanium or the like can be used.
  • the thickness of the positive electrode current collector can be selected, for example, in the range of 3 to 50 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material and a binder as essential components, and may contain a conductive agent as an optional component.
  • the amount of the binder contained in the positive electrode active material layer is preferably 0.1 to 20 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material.
  • the thickness of the positive electrode active material layer is, for example, 10 to 100 ⁇ m.
  • a lithium containing transition metal oxide is preferable.
  • a transition metal element Sc, Y, Mn, Fe, Co, Ni, Cu, Cr, etc. can be mentioned. Among them, Mn, Co, Ni and the like are preferable.
  • the lithium-containing transition metal oxide is more preferably a lithium-nickel composite oxide containing Li, Ni and other metals.
  • lithium nickel composite oxide lithium-nickel-cobalt-manganese composite oxide (LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O) 2 LiNi 0.4 Co 0.2 Mn 0.4 O 2 etc.) Lithium-nickel-manganese complex oxide (LiNi 0.5 Mn 0.5 O 2 etc.) Lithium-nickel-cobalt complex oxide LiNi 0.8 Co 0.2 O 2 etc., lithium-nickel-cobalt-aluminum composite oxide (LiNi 0.8 Co 0.15 Al 0.05 O 2 , LiNi 0.8 Co 0.18 Al 0. 02 O 2 , LiNi 0.88 Co 0.09 Al 0.03 O 2 ), and the like.
  • the average particle diameter (D50) of the positive electrode active material particles is desirably sufficiently smaller than the thickness of the positive electrode active material layer.
  • the average particle diameter (D50) of the positive electrode active material particles is, for example, preferably 5 to 30 ⁇ m, and more preferably 10 to 25 ⁇ m.
  • an average particle diameter (D50) means the median diameter used as 50% of the accumulation volume in the particle size distribution based on volume. The average particle size is measured, for example, using a laser diffraction / scattering type particle size distribution measuring apparatus.
  • a fluorine resin such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (HFP), etc .
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • HFP tetrafluoroethylene-hexafluoropropylene copolymer
  • polymethyl acrylate ethylene-methacryl
  • acrylic resins such as acid methyl copolymer
  • rubbery materials such as styrene-butadiene rubber (SBR) and acrylic rubber
  • water-soluble polymers such as carboxymethyl cellulose (CMC) and polyvinyl pyrrolidone.
  • carbon black such as acetylene black and ketjen black is preferable.
  • the positive electrode active material layer may be formed by mixing positive electrode active material particles, a binder, and the like together with a dispersion medium to prepare a positive electrode slurry, applying the positive electrode slurry to the surface of the positive electrode current collector, drying and rolling. it can.
  • a dispersion medium water, an alcohol such as ethanol, an ether such as tetrahydrofuran, N-methyl-2-pyrrolidone (NMP) or the like is used.
  • NMP N-methyl-2-pyrrolidone
  • water it is preferable to use a rubber-like material and a water-soluble polymer in combination as a binder.
  • the first coating desirably forms a homogeneous layer covering the surface of the positive electrode active material layer in a necessary and sufficient amount.
  • the thickness of the first film is desirably smaller than the average particle diameter of the particles of the positive electrode active material, and for example, 0.1 ⁇ m (100 nm) or less is preferable, and 0.03 ⁇ m (30 nm) or less is more preferable. However, if the thickness of the first film is excessively reduced, for example, the movement of carriers (electrons or holes) by tunneling may progress, and the oxidative decomposition of the electrolyte may proceed.
  • the thickness of the first film is preferably 0.5 nm or more from the viewpoint of suppressing carrier movement and moving lithium ions smoothly.
  • the first film is formed after the formation of the positive electrode active material layer. Therefore, a region in which the first film is not formed may exist in the contact interface between the positive electrode active material particles, the adhesion interface between the positive electrode active material particle and the binder, or the like.
  • the first film may be, for example, a material having a lithium ion conductivity of 1.0 ⁇ 10 ⁇ 11 S / cm or more.
  • the conductivity of the first film is desirably small, and the conductivity is desirably less than 1.0 ⁇ 10 ⁇ 2 S / cm.
  • the amount of the first film contained in the positive electrode is preferably 0.01 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the positive electrode active material layer.
  • a method of manufacturing a positive electrode for a secondary battery prepares a positive electrode precursor including (i) a positive electrode current collector and a positive electrode active material layer provided on the surface of the positive electrode current collector. And (ii) covering at least a part of the surface of the positive electrode active material layer with the first film having lithium ion permeability and partially covering the surface of the positive electrode current collector.
  • the positive electrode precursor is exposed to an atmosphere containing the raw material of the first film to form the first film.
  • the atmosphere containing the raw material of the first film is preferably 200 ° C. or less, and more preferably 120 ° C. or less.
  • the first film is preferably formed by a liquid phase method or a gas phase method.
  • the liquid phase method is preferably a precipitation method, a sol-gel method, or the like.
  • the positive electrode precursor is immersed in a solution sufficiently lower than 200 ° C. in which the raw material of the first film is dissolved, and the first surface of the positive electrode active material layer or the positive electrode current collector is It refers to the method of precipitating the constituent material of the film.
  • the sol-gel method the positive electrode precursor is immersed in a liquid having a temperature sufficiently lower than 200 ° C. including the raw material of the first film, and then the first surface is formed on the surface of the positive electrode active material layer or the positive electrode current collector. It refers to a method of depositing intermediate particles of the coating and causing them to gel.
  • the vapor phase method examples include physical vapor deposition (PVD), chemical vapor deposition (CVD), atomic layer deposition (ALD) and the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • the PVD method and the CVD method are usually performed at high temperatures exceeding 200.degree.
  • the ALD method the first film can be formed in an atmosphere containing a raw material of the first film at a temperature of 200 ° C. or less, further 120 ° C. or less.
  • an organic compound having a high vapor pressure is used as a raw material of the first film.
  • the molecular raw material can interact with the surface of the positive electrode active material layer and the positive electrode current collector.
  • the molecular raw material easily reaches the void inside the positive electrode active material layer, and tends to form a homogeneous first film also on the inner wall of the void.
  • a first film covering the positive electrode active material layer and the positive electrode current collector is formed by the following procedure.
  • the first gas source is introduced into the reaction chamber in which the positive electrode precursor is accommodated. After that, when the surface of the positive electrode precursor is covered with the monomolecular layer of the first raw material, the self-termination mechanism by the organic group of the first raw material works, and the first raw material more than that is not adsorbed on the surface of the positive electrode precursor . Excess first raw material is purged with an inert gas or the like and removed from the reaction chamber.
  • a gaseous second source is introduced into the reaction chamber in which the positive electrode precursor is accommodated.
  • the second raw material no longer adsorbs to the surface of the positive electrode precursor.
  • the excess second raw material is purged with an inert gas or the like and removed from the reaction chamber.
  • Materials used as the first raw material and the second raw material are not particularly limited, and appropriate compounds may be selected according to the desired oxide X.
  • a material containing phosphorus as element M 1 trimethyl phosphate, triethyl phosphate, tris (dimethylamino) phosphine, trimethyl phosphine etc.
  • a material containing silicon as element M 1 orthosilicate tetramethyl orthosilicate
  • Materials such as tetraethyl orthosilicate, etc.
  • materials containing both element M 1 and lithium eg, lithium (bistrimethylsilyl) amide
  • materials serving as a lithium source eg, lithium tert-butoxide, lithium cyclopentadienyl, etc.
  • the first raw material and the second raw material may be changed to perform the same process as the oxide X deposition.
  • the materials used as the first raw material and the second raw material are not particularly limited, and appropriate compounds may be selected according to the desired compound Y.
  • the metal element M 2 when lithium is contained as the metal element M 2 , the above-described materials can be used.
  • a material to be a source of other metal element M 2 sodium, aluminum, potassium, magnesium, calcium
  • tert-butoxide of these metal elements can be exemplified.
  • the material for the fluorine source for example, fluorine gas, HF gas, such as NH 4 F can be mentioned.
  • fluorine gas for example, fluorine gas, HF gas, such as NH 4 F
  • HF gas such as NH 4 F
  • examples of the material containing both the metal element M 2 and fluorine include LiF.
  • the first film can be formed by sequentially forming the oxide X film and the compound Y film.
  • the first film may have a two-layer structure in which a film of compound Y is formed on a film of oxide X, or a multilayer film in which a film of oxide X and a film of compound Y are alternately deposited. It may be.
  • the raw material gas for forming the oxide X and the raw material gas for forming the compound Y are simultaneously supplied to the reaction chamber to form the oxide X and form the compound Y. It is also possible to carry out the membrane simultaneously.
  • the oxide X and the compound Y exist in the same atomic layer in a mixed state on the surface of the first film.
  • a film having high chemical stability is formed by the compound Y on the surface of the first film, a high side reaction inhibitory effect can be obtained.
  • the lithium ion can be converted to the positive electrode active material through the oxide X present on the first film surface without the lithium ion permeation being blocked by the compound Y on the first film surface (from the positive electrode active material) It can be transparent.
  • an oxidant is introduced into the reaction chamber at any timing to promote the reaction of each raw material, and the oxidant is used in combination with other raw materials. May be The introduction of the oxidizing agent may be performed at any timing in the repetition of the series of operations, and may be performed each time.
  • three or more types of raw materials may be used. That is, in addition to the first raw material and the second raw material, one or more kinds of raw materials may be further used. For example, a series of operations including the introduction of the first raw material, the purge, the introduction of the second raw material, the purge, the introduction of the third raw material which is different from the first raw material and the second raw material, and the purge may be repeated.
  • the binder comprises, for example, a fluorine compound such as polyvinylidene fluoride (PVdF)
  • part of the fluorine compound in the binder may be sublimed in the reaction chamber.
  • the sublimed fluorine compound serves as a fluorine source in the ALD method. Therefore, when using a fluorine compound as a binder, it is sufficient to select only materials necessary for film formation of the oxide X as the first and second materials.
  • a first film in which the oxide X and the compound Y having a lithium-fluorine bond (LiF) are mixed in the same atomic layer can be formed.
  • the film forming method of the oxide X and the compound Y is preferably the same, but may be different from each other.
  • one of the oxide X and the compound Y may be formed by a liquid phase method, and the other may be formed by a gas phase method.
  • each component other than the positive electrode will be described in detail, taking a square wound battery as an example.
  • the type, shape, and the like of the secondary battery are not particularly limited.
  • FIG. 1 is a perspective view schematically showing a prismatic secondary battery according to an embodiment of the present invention.
  • the one part is notched and shown.
  • a flat wound electrode group 10 and an electrolyte (not shown) are accommodated.
  • One end portion of the positive electrode lead 14 is connected to the positive electrode current collector of the positive electrode included in the electrode group 10.
  • the other end of the positive electrode lead 14 is connected to the sealing plate 12 which functions as a positive electrode terminal.
  • One end of the negative electrode lead 15 is connected to the negative electrode current collector, and the other end of the negative electrode lead 15 is connected to the negative electrode terminal 13 provided substantially at the center of the sealing plate 12.
  • a gasket 16 is disposed between the sealing plate 12 and the negative electrode terminal 13 to insulate them from each other.
  • a frame 18 made of an insulating material is disposed between the sealing plate 12 and the electrode group 10 to insulate the negative electrode lead 15 from the sealing plate 12.
  • the sealing plate 12 is joined to the opening end of the rectangular battery case 11 to seal the rectangular battery case 11.
  • a liquid injection hole 17 a is formed in the sealing plate 12, and the electrolyte is injected into the rectangular battery case 11 from the liquid injection hole 17 a. Thereafter, the liquid injection hole 17 a is closed by the sealing plug 17.
  • the sheet-like negative electrode includes a sheet-like negative electrode current collector and a negative electrode active material layer provided on the surface of the negative electrode current collector.
  • the negative electrode active material layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • Negative current collector examples of the negative electrode current collector include metal foils, metal sheets, mesh bodies, punching sheets, expanded metals and the like.
  • a material of the negative electrode current collector stainless steel, nickel, copper, a copper alloy or the like can be used.
  • the thickness of the negative electrode current collector can be selected, for example, from the range of 3 to 50 ⁇ m.
  • the negative electrode active material layer can be formed using a negative electrode slurry containing a negative electrode active material, a binder (binding agent) and a dispersion medium by a method according to the production of a positive electrode active material layer.
  • the negative electrode active material layer may optionally contain an optional component such as a conductive agent.
  • the amount of the binder contained in the negative electrode active material layer is preferably 0.1 to 20 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the negative electrode active material.
  • the thickness of the negative electrode active material layer is, for example, 10 to 100 ⁇ m.
  • the negative electrode active material may be a non-carbon-based material, a carbon material, or a combination thereof.
  • a carbon material usually occludes or releases lithium ions at a potential of 1 V or less with respect to metal lithium. In this potential region, reductive decomposition of components of the electrolyte is likely to proceed on the surface of the carbon material, and a solid electrolyte interface (SEI) is likely to be generated.
  • SEI solid electrolyte interface
  • the carbon material used as the negative electrode active material is not particularly limited, but for example, at least one selected from the group consisting of graphite and hard carbon is preferable. Among them, graphite is promising because it has high capacity and small irreversible capacity. In addition, since graphite has high activity for reductive decomposition of the electrolyte, the effect of coating the surface of the negative electrode active material layer with the second film is also remarkable.
  • Graphite is a generic term for carbon materials having a graphite structure, and includes natural graphite, artificial graphite, expanded graphite, graphitized mesophase carbon particles, and the like. As natural graphite, scaly graphite, earth-like graphite etc. can be illustrated. Usually, the carbon material surface spacing d 002 of (002) lattice planes of the graphite structure to be calculated from X-ray diffraction spectrum is 3.35 to 3.44 angstroms is classified into graphite.
  • hard carbon is a carbon material in which minute graphite crystals are arranged in a random direction and graphitization hardly progresses further, and the interplanar spacing d 002 of the 002 plane is larger than 3.44 angstrom.
  • an alloy-based material As a non-carbon-based material used as a negative electrode active material, an alloy-based material is preferable.
  • the alloy-based material preferably contains silicon or tin, and in particular, silicon alone or a silicon compound is preferable. Silicon compounds include silicon oxides and silicon alloys.
  • At least a portion of the surface of the negative electrode active material layer may be covered with a second film having lithium ion permeability.
  • the second film is formed, for example, after the negative electrode active material layer is formed.
  • the second film can partially cover the surface of the negative electrode current collector as well as the surface of the negative electrode active material layer.
  • the second film is, for example, a lithium ion-permeable oxide represented by the composition formula Li x M 1 O y (0.5 ⁇ x ⁇ 4, 1 ⁇ y ⁇ 6), and M 1 is It may be at least one selected from the group consisting of B, Al, Si, P, S, Ti, V, Zr, Nb, Ta, La.
  • the element M 1 contained in the oxide X constituting the second film may be the same as the element M 1 contained in the first film, or a different element may be contained.
  • a method of forming a 2nd film the method similar to a 1st film is mentioned.
  • Separator As the separator, a resin microporous film, a non-woven fabric, a woven fabric or the like is used.
  • resin polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide, polyamide imide and the like are used.
  • the electrolyte contains a solvent and a solute that dissolves in the solvent.
  • Various lithium salts are used as the solute.
  • the concentration of the lithium salt in the electrolyte is, for example, 0.5 to 1.5 mol / L.
  • cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC); linear carbonates such as diethyl carbonate (DEC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC); ⁇ -butyrolactone
  • PC propylene carbonate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • ⁇ -butyrolactone Nonaqueous solvents such as cyclic carboxylic acid esters such as ⁇ -valerolactone and water can be exemplified.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more types.
  • the lithium salt may, for example, be LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 or the like.
  • the lithium salt may be used alone or in combination of two or more.
  • Example 1 A secondary battery was produced by the following procedure.
  • the positive electrode precursor was accommodated in a predetermined reaction chamber, and a lithium ion permeable first film was formed on the surface of the positive electrode precursor according to the following procedure.
  • the first raw material (trimethyl phosphate) serving as a supply source of the element M 1 (phosphorus: P) and oxygen (O) was vaporized and introduced into the reaction chamber in which the positive electrode precursor was accommodated.
  • the temperature of the atmosphere containing the first raw material was controlled to 120 ° C., and the pressure was controlled to 260 Pa. After 30 seconds, the excess first raw material was purged with nitrogen gas, assuming that the surface of the positive electrode precursor was covered with the monomolecular layer of the first raw material.
  • the second raw material lithium (bistrimethylsilyl) amide
  • the second raw material as a lithium source was vaporized and introduced into the reaction chamber in which the positive electrode precursor was accommodated.
  • the temperature of the atmosphere containing the second raw material was controlled to 120 ° C., and the pressure was controlled to 260 Pa. After 30 seconds, the excess second raw material was purged with nitrogen gas, assuming that the monomolecular layer of the first raw material reacted with the second raw material.
  • a first film containing oxide X and compound Y was formed by repeating a series of operations consisting of introduction of the first raw material, purge, introduction of the second raw material, and purge.
  • composition of the first film was analyzed by XPS, ICP or the like, it was confirmed that lithium phosphate was formed.
  • the mass of the film of 1 was determined to be 0.1 parts by mass with respect to 100 parts by mass of the positive electrode active material layer.
  • the thickness of the first film is estimated to be in the range of 10 nm to 25 nm from the number of series of operations in ALD.
  • the positive electrode precursor on which the first film was formed was cut into a predetermined electrode size, and a positive electrode including a positive electrode mixture layer on both sides of the positive electrode current collector was produced.
  • Negative Electrode Natural graphite particles (average particle diameter (D50) 50 ⁇ m) as a negative electrode active material and a binder were mixed with an appropriate amount of water to prepare a negative electrode slurry.
  • SBR and CMC were used together. 1 part by mass of SBR and 1 part by mass of CMC were blended with 100 parts by mass of natural graphite particles.
  • coating the obtained negative electrode slurry on both surfaces of 10-micrometer-thick copper foil (negative electrode collector) it was made to dry and the coating film of negative electrode compound material was rolled using the roller. Finally, the obtained laminate of the negative electrode current collector and the negative electrode mixture was cut into a predetermined electrode size, to prepare a negative electrode precursor having a negative electrode mixture layer on both sides of the negative electrode current collector.
  • Electrolyte 1 part by mass of vinylene carbonate was added to 100 parts by mass of a mixed solution containing EC and EMC in a mass ratio of 1: 3 to obtain a non-aqueous solvent.
  • a non-aqueous electrolyte was prepared by dissolving LiPF 6 in a non-aqueous solvent at a concentration of 1.0 mol / L.
  • a positive electrode lead made of Al was attached to the positive electrode obtained above.
  • a negative electrode lead made of Ni was attached to the negative electrode obtained above.
  • the positive electrode and the negative electrode were spirally wound via a separator containing PP and PE with a thickness of 0.015 mm to produce a wound electrode group.
  • the obtained wound electrode group was inserted into a bottomed cylindrical battery case having an opening formed of a nickel-plated iron plate.
  • the other end of the negative electrode lead was connected to the inner side wall of the battery case, and the other end of the positive electrode lead was connected to the bottom of the sealing plate.
  • a ring-shaped insulating gasket was attached to the periphery of the sealing plate.
  • a predetermined amount of nonaqueous electrolyte was injected into the battery case.
  • a nickel-plated iron sealing plate was disposed at the opening of the battery case, and the opening end of the battery case was crimped to the peripheral edge of the sealing plate with the gasket interposed, and sealed.
  • a non-aqueous electrolyte secondary battery A1 (diameter 18 mm, height 65 mm) was obtained.
  • Electrode resistance measurement Two pieces of the produced positive electrode were punched into a square of 2 cm ⁇ 2 cm, and a pressure of 2 MPa was applied while facing each other. The resistance between the core materials of the two electrode plates at this time was taken as the electrode plate resistance.
  • Comparative Example 1 A positive electrode was produced in the same manner as in Example 1 except that the step of forming a lithium ion-permeable first film on the surface of the positive electrode precursor was not performed.
  • a non-aqueous electrolyte secondary battery B1 was produced using the produced positive electrode and evaluated in the same manner as in Example 1.
  • the positive electrode active material is mixed with acetylene black (AB) and polyvinylidene fluoride (PVdF) as in Example 1, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) is further added and stirred to obtain a positive electrode slurry.
  • NMP N-methyl-2-pyrrolidone
  • 5 parts by mass of Li 3 PO 4 was added to 100 parts by mass of the positive electrode active material to obtain a positive electrode slurry.
  • the obtained positive electrode slurry was applied to both sides of an aluminum foil (positive electrode current collector), and then dried, and a coated film of the positive electrode mixture was rolled using a roller to produce a positive electrode.
  • a non-aqueous electrolyte secondary battery B2 was produced using the produced positive electrode and evaluated in the same manner as in Example 1.
  • Example 1 and Comparative Examples 1 and 2 are shown in Table 1.
  • Table 1 the discharge capacity and the electrode plate resistance are shown as relative values with the result of the non-aqueous secondary battery B1 of Comparative Example 1 being 100.
  • the non-aqueous electrolyte secondary battery A1 of Example 1 was compared with the non-aqueous electrolyte secondary batteries B1 and B2 of Comparative Examples 1 and 2 in the first film and the positive electrode active material layer and the positive electrode.
  • the heat generation rate at the time of the occurrence of a short circuit is significantly reduced without a decrease in capacity.
  • the first film acts as a resistance, so the electrode plate resistance at the time of a short circuit is increased. Since the current flowing through the cell is decreased by the increase of the electrode plate resistance, it is considered that the heat generation rate at the time of the occurrence of the short circuit is decreased in the nonaqueous electrolyte secondary battery A1.
  • the ratio (mass ratio) of the first film contained in the non-aqueous electrolyte secondary battery A1 is sufficiently smaller than that of the positive electrode active material layer, the non-aqueous electrolyte secondary battery A1 includes the first film. It is considered that the capacity equivalent to that of the non-aqueous electrolyte secondary battery B1 not possessed was maintained.
  • Non-aqueous electrolyte secondary battery B2 is obtained by forming a positive electrode active material layer using the positive electrode slurry prepared by adding Li 3 PO 4. Also in the non-aqueous electrolyte secondary battery B2, an increase in electrode plate resistance and a decrease in heat generation rate are observed as compared to the non-aqueous electrolyte secondary battery B1. However, the non-aqueous electrolyte secondary battery B2 has a lower capacity than the non-aqueous electrolyte secondary batteries A1 and B1. That is, in the non-aqueous electrolyte secondary battery B2, the effects of maintaining the battery capacity of the non-aqueous electrolyte secondary battery A1 and the safety of the battery can not both be achieved. Therefore, by covering the surface of the positive electrode active material layer or the like with the first film, it is possible to enhance battery safety while maintaining desired battery characteristics.
  • the positive electrode according to the present invention is a power source for driving personal computers, mobile phones, mobile devices, personal digital assistants (PDAs), portable game devices, video cameras, etc., electric vehicles in hybrid electric vehicles, fuel cell vehicles, plug-in HEVs, etc. It is useful as a positive electrode of a secondary battery used for a main power source or auxiliary power source for driving a motor, a power source for driving a power tool, a vacuum cleaner, a robot or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

正極集電体と、正極集電体の表面に設けられた正極活物質層と、リチウムイオン透過性を有する第1の被膜と、を備える。第1の被膜は、LixM1Oy(0.5≦x<4、1≦y<6)で表されるリチウムイオン透過性の酸化物Xと、フッ素を含む化合物Yとを含み、正極活物質層の表面の少なくとも一部を被覆するとともに正極集電体の表面を部分的に被覆している。化合物Yは、金属元素M2とフッ素元素の結合を含み、M1はB、Al、Si、P、S、Ti、V、Zr、Nb、Ta、およびLaよりなる群から選択される少なくとも1種であり、M2はLi、Na、Al、Mg、およびCaよりなる群から選択される少なくとも1種である。

Description

二次電池用正極、二次電池および二次電池用正極の製造方法
 本発明は、二次電池用正極の改良に関する。
 リチウムイオン電池に代表される非水電解質二次電池の正負極活物質の表面では、充放電に伴って、非水溶媒とリチウム塩を含む非水電解質の一部が不可逆的に反応する。特許文献1には、正極側での副反応抑制について、ゾルゲル法を用いて、リチウムイオン伝導性ガラスで正極を被覆する方法が開示されている。
特開2003-173770号公報
 近年、二次電池に対しては、副反応を抑制することにより所望の電池特性を維持し、かつ所望の電池特性を損なうことなく短絡発生時の安全性を高めることが求められている。そこで、本開示は、所望の電池特性を損なうことなく、電池の安全性を高めた二次電池を提供するための正極の提供を、主な目的とする。
 本開示の一側面は、正極集電体と、前記正極集電体の表面に設けられた正極活物質層と、リチウムイオン透過性を有する第1の被膜と、を備え、
 前記第1の被膜は、Li(0.5≦x<4、1≦y<6)で表されるリチウムイオン透過性の酸化物Xと、フッ素を含む化合物Yとを含み、前記正極活物質層の表面の少なくとも一部を被覆するとともに前記正極集電体の表面を部分的に被覆しており、
 化合物Yは、金属元素Mとフッ素元素との結合を含み、MはB、Al、Si、P、S、Ti、V、Zr、Nb、Ta、およびLaよりなる群から選択される少なくとも1種であり、MはLi、Na、Al、Mg、およびCaよりなる群から選択される少なくとも1種である、二次電池用正極に関する。
 本開示の他の側面は、上記正極と、負極と、リチウムイオン伝導性の電解質を含む、二次電池に関する。
 本開示の更に他の側面は、正極集電体と、前記正極集電体の表面に設けられた正極活物質層と、を備える正極前駆体を準備する工程と、リチウムイオン透過性を有する第1の被膜で、前記正極活物質層の表面の少なくとも一部を被覆するとともに前記正極集電体の表面を部分的に被覆する工程と、を有し、
 前記第1の被膜が、前記第1の被膜の原料を含む200℃以下の雰囲気に、前記正極前駆体を暴露することにより形成される、二次電池用正極の製造方法に関する。
 本開示の二次電池用正極によれば、所望の電池特性を損なうことなく、電池安全性を高めることができる。
本発明の一実施形態に係る二次電池の一部を切り欠いた斜視図である。
 本発明の実施形態に係る二次電池用正極は、正極集電体と、正極集電体の表面に設けられた正極活物質層と、リチウムイオン透過性を有する第1の被膜と、を備える。第1の被膜は、Li(0.5≦x<4、1≦y<6)で表されるリチウムイオン透過性の酸化物Xと、フッ素を含む化合物Yとを含む。第1の被膜は、正極活物質層の表面の少なくとも一部を被覆するとともに正極集電体の表面を部分的に被覆している。化合物Yが、金属元素Mとフッ素元素の結合を含む。MはB、Al、Si、P、S、Ti、V、Zr、Nb、Ta、Laよりなる群から選択される少なくとも1種である。MはLi、Na、Al、Mg、Caよりなる群から選択される少なくとも1種である。
 リチウムイオン透過性を持つ酸化物Xおよびフッ素を含む化合物Yで正極活物質層の表面を均一に被覆することにより、正極活物質層の表面の電解質の分解の起点となる部位を被覆することができる。これにより、副反応を抑制し、電池特性を損なうことなく電池安全性を高めることが可能である。
 正極活物質層の表面とは、セパレータを介して負極と対向する側の正極活物質層の表面に限られず、正極活物質層の表面には、多孔質な正極活物質層内の空隙の内壁も含まれる。正極活物質層の表面を被覆する第1の被膜は、正極活物質層内の空隙の内部にまで侵入し、内壁を被覆していることが好ましい。
 正極活物質層が形成された後に第1の被膜を形成する場合、第1の被膜は、正極集電体の表面を部分的に被覆することができる。正極集電体の表面は、微視的に見ると、完全に正極活物質やバインダーで覆われているわけではなく、微小な露出表面を有している。また、正極集電体の切断端面やリード取り付け部が露出している場合もある。そのような露出表面を第1の被膜で被覆することで、正極集電体の表面を起点とする電解質の分解も抑制される。
 正極活物質層が、正極活物質、バインダー(結着剤)などを含む混合物(合剤)である場合、正極活物質層の表面を被覆する第1の被膜は、正極活物質粒子とバインダーとが混合され、正極活物質層が形成された後に、正極活物質層の表面に対して形成される。よって、正極活物質粒子に対して予め第1の被膜を形成する場合とは異なり、正極活物質粒子とバインダーとの接着界面には、第1の被膜が介在しない領域が存在し得る。同様に、正極活物質粒子と正極集電体との接触界面にも第1の被膜が介在しない領域が存在し得る。更に、互いに隣接する正極活物質粒子どうしの接触界面にも第1の被膜が介在しない領域が存在し得る。
 正極活物質層が形成された後に第1の被膜を形成する場合には、第1の被膜は、バインダーの表面を部分的に被覆することができる。正極活物質層が導電剤を含む場合、第1の被膜は、導電剤の表面を部分的に被覆することができる。これにより、バインダーや導電剤を起点とする電解質の分解も抑制される。
 バインダーの表面を第1の被膜で被覆するためには、バインダーの耐熱温度よりも低い温度で第1の被膜を生成させる必要がある。バインダーの耐熱温度は、バインダーの種類によって相違するが、第1の被膜を生成させる温度の目安としては、200℃以下が好ましく、より好ましくは120℃以下である。
 第1の被膜は、リチウムイオン透過性を有する酸化物Xと、フッ素を含む化合物Yとを含む。フッ素を含む化合物Yを含むことによって、化学的に安定な被膜を形成することができる。酸化物Xを構成する元素Mは、B、Al、Si、P、S、Ti、V、Zr、Nb、Ta、およびLaよりなる群から選択される少なくとも1種であることが好ましい。P、SiおよびBよりなる群から選択された少なくとも1種が、原料が安価である点でより好ましい。元素Mは、少なくともPを含むことがさらに好ましい。
 化合物Yは、金属元素Mとフッ素元素との結合を含むものであれば特に限定されないが、Mは、Li、Na、Al、Mg、およびCaよりなる群から選択される少なくとも1種であることが好ましい。中でも、MがLiを含み、化合物YがLiFを含んでいることがより好ましい。
 組成式Liで表される酸化物Xは、イオン結合性を有するO-Li結合を含み、Oサイトを介してリチウムイオンがホッピングすることでリチウムイオン透過性を発現する。酸化物Xは、ポリオキシメタレート化合物であることが、安定性の点で好ましい。なお、xおよびyの範囲は、例えば0.5≦x<4、1≦y<6が好ましい。
 ポリオキシメタレート化合物としては、Li3PO4、Li4SiO4、Li2Si25、Li2SiO3、Li3BO3、Li3VO4、Li3NbO4、LiZr2(PO4)、LiTaO3、Li4Ti512、Li7La3Zr212、Li5La3Ta212、Li0.35La0.55TiO3、Li9SiAlO8、Li1.3Al0.3Ti1.7(PO43などを、1種または任意の組み合わせで用いることができる。酸化物Xの組成としては、少なくともLi3PO4を含むことがより好ましく、質量比で80%以上95%以下のLiPOと5%以上20%以下のリチウムシリケートを含むことも好ましい。リチウムシリケートとしては、Li4SiO4、Li2Si25、Li2SiO3を挙げることができる。酸化物Xにリチウムシリケートを含むことにより、第1の被膜の緻密性を向上し得る。
 なお、これらのポリオキシメタレート化合物において、リチウムおよび酸素の組成比は化学量論組成と一致する必要はない。むしろ、酸化物Xの酸素組成比は化学量論組成より小さいほうが、酸素欠陥の存在によりリチウムイオン透過性が発現しやすい。具体的に、酸化物Xがリン酸リチウムの場合、LiPO(1≦x<3、3≦y<4)がより好ましく、酸化物Xがケイ酸リチウムの場合、LiSiO(2≦x<4、3≦y<4)がより好ましい。
 第1の被膜による被膜形成は、例えば、原子層堆積(ALD)法を用いて行うことができる。ALD法では、酸化物Xの原料ガスを反応室に供給して酸化物Xの成膜を行い、化合物Yの原料ガスを反応室に供給して化合物Yの成膜を行う。このとき、酸化物Xの原料ガスと化合物Yの原料ガスとを同時に反応室に供給することで、同一の原子層内で酸化物Xと化合物Yとが混在した第1の被膜を形成することも可能である。あるいは、酸化物Xの原料ガスと化合物Yの原料ガスとを順次反応室に供給して、酸化物Xの膜の上に化合物Yの膜を成膜し、第1の被膜を形成しても構わない。第1の被膜の膜厚は、0.5nm程度以上であれば、副反応抑制効果を得ることができる。
 なお、酸化物XをALD法で成膜する場合、リチウムイオン供給源に窒素原子が含まれることにより、第1の被膜が窒素原子を含むことがあり得る。第1の被膜は、酸化物X中に窒素を含むことによって伝導度が高くなり、第1の被膜が厚くなってもリチウムイオン透過性を維持でき、電池特性が低下しにくい。
 以下、捲回型電極群または積層型電極群を構成するシート状正極の一例について更に説明する。
 (正極)
 シート状正極は、シート状の正極集電体と、正極集電体の表面に設けられた正極活物質層と、正極活物質層の表面に形成された第1の被膜とを具備する。正極活物質層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 (正極集電体)
 正極集電体としては、金属箔、金属シートなどが例示できる。正極集電体の材料には、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどを用いることができる。正極集電体の厚さは、例えば3~50μmの範囲から選択できる。
 (正極活物質層)
 正極活物質層が、正極活物質粒子を含む混合物(合剤)である場合について説明する。正極活物質層は、必須成分として正極活物質およびバインダーを含み、任意成分として導電剤を含んでもよい。正極活物質層に含まれるバインダー量は、正極活物質100質量部に対して、0.1~20質量部が好ましく、1~5質量部がより好ましい。正極活物質層の厚さは、例えば10~100μmである。
 正極活物質としては、リチウム含有遷移金属酸化物が好ましい。遷移金属元素としては、Sc、Y、Mn、Fe、Co、Ni、Cu、Crなどを挙げることができる。中でも、Mn、Co、Niなどが好ましい。リチウム含有遷移金属酸化物は、LiとNiと他の金属とを含むリチウムニッケル複合酸化物であることがより好ましい。
 リチウムニッケル複合酸化物は、例えば、LiNi 1-b(Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)が挙げられる。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。結晶構造の安定性の観点からは、MとしてCoおよびAlを含むLiaNiCoAl2(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)がさらに好ましい。
 リチウムニッケル複合酸化物の具体例としては、リチウム-ニッケル-コバルト-マンガン複合酸化物(LiNi0.5Co0.2Mn0.3、LiNi1/3Co1/3Mn1/3、LiNi0.4Co0.2Mn0.4等)、リチウム-ニッケル-マンガン複合酸化物(LiNi0.5Mn0.5等)、リチウム-ニッケル-コバルト複合酸化物(LiNi0.8Co0.2等)、リチウム-ニッケル-コバルト-アルミニウム複合酸化物(LiNi0.8Co0.15Al0.05、LiNi0.8Co0.18Al0.02、LiNi0.88Co0.09Al0.03)等が挙げられる。
 正極活物質層への正極活物質の充填性を高める観点から、正極活物質粒子の平均粒径(D50)は、正極活物質層の厚さに対して、十分に小さいことが望ましい。正極活物質粒子の平均粒径(D50)は、例えば5~30μmが好ましく、10~25μmがより好ましい。なお、平均粒径(D50)とは、体積基準の粒度分布における累積体積が50%となるメジアン径を意味する。平均粒径は、例えばレーザ回折/散乱式の粒度分布測定装置を用いて測定される。
 バインダー(結着剤)としては、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(HFP)などのフッ素樹脂;ポリアクリル酸メチル、エチレン-メタクリル酸メチル共重合体などのアクリル樹脂;スチレン-ブタジエンゴム(SBR)、アクリルゴムなどのゴム状材料、カルボキシメチルセルロース(CMC)、ポリビニルピロリドンなどの水溶性高分子などを例示できる。
 導電剤としては、アセチレンブラック、ケッチェンブラックなどのカーボンブラックが好ましい。
 正極活物質層は、正極活物質粒子、バインダーなどを分散媒とともに混合して正極スラリーを調製し、正極スラリーを正極集電体の表面に塗布し、乾燥後、圧延することにより形成することができる。分散媒としては、水、エタノールなどのアルコール、テトラヒドロフランなどのエーテル、N-メチル-2-ピロリドン(NMP)などが用いられる。分散媒として水を用いる場合には、バインダーとして、ゴム状材料と水溶性高分子とを併用することが好ましい。
 (リチウムイオン透過性を有する第1の被膜)
 第1の被膜は、必要十分量で正極活物質層の表面を被覆する均質な層を形成していることが望ましい。第1の被膜の厚さは、正極活物質の粒子の平均粒径よりも小さいことが望ましく、例えば0.1μm(100nm)以下が好ましく、0.03μm(30nm)以下がより好ましい。ただし、第1の被膜の厚さが過度に小さくなると、例えばトンネル効果によるキャリア(電子または正孔)の移動が進行し、電解質の酸化分解が進行する場合がある。キャリア移動を抑制するとともにリチウムイオンをスムーズに移動させる観点からは、第1の被膜の厚さは0.5nm以上が好ましい。
 第1の被膜は、正極活物質層の形成後に生成するものである。よって、正極活物質粒子どうしの接触界面、正極活物質粒子とバインダーとの接着界面などには、第1の被膜が形成されない領域が存在し得る。
 第1の被膜は、例えば1.0×10-11S/cm以上のリチウムイオン伝導率を有する材料であればよい。一方、電解質の酸化分解を極力抑制する観点から、第1の被膜の導電性は小さいことが望ましく、伝導率が1.0×10-2S/cmより小さいことが望ましい。
 正極の容量を確保する観点からは、正極に占める第1の被膜の含有割合をできるだけ小さくすることが望ましい。正極に含まれる第1の被膜の量は、正極活物質層100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。
 本開示の実施形態に係る二次電池用正極の製造方法は、(i)正極集電体と、正極集電体の表面に設けられた正極活物質層と、を備える正極前駆体を準備する工程と、(ii)リチウムイオン透過性を有する第1の被膜で、正極活物質層の表面の少なくとも一部を被覆するとともに正極集電体の表面を部分的に被覆する工程と、を有する。
 工程(ii)においては、第1の被膜の原料を含む雰囲気に、正極前駆体を暴露することにより、第1の被膜を形成する。このとき、第1の被膜の原料を含む雰囲気は、200℃以下が好ましく、120℃以下の雰囲気がより好ましい。第1の被膜は、液相法や気相法で形成することが好ましい。
 液相法としては、析出法、ゾルゲル法などが好ましい。析出法とは、第1の被膜の原料が溶解している200℃よりも十分に低温の溶液中に、正極前駆体を浸漬し、正極活物質層や正極集電体の表面に第1の被膜の構成材料を析出させる方法などをいう。また、ゾルゲル法とは、第1の被膜の原料を含む200℃よりも十分に低温の液体に、正極前駆体を浸漬し、その後、正極活物質層や正極集電体の表面に第1の被膜の中間体粒子を沈着させ、ゲル化させる方法などをいう。
 気相法としては、例えば物理蒸着(PVD)法、化学蒸着(CVD)法、原子層堆積(ALD)法などが挙げられる。PVD法やCVD法は、通常、200℃を超える高温下で行われる。ALD法によれば、第1の被膜の原料を含む200℃以下、更には120℃以下の雰囲気で第1の被膜を形成することができる。
 ALD法では、第1の被膜の原料として、蒸気圧の高い有機化合物が用いられる。このような原料を気化させることで、分子状の原料を正極活物質層や正極集電体の表面と相互作用させることができる。分子状の原料は、正極活物質層の内部の空隙にまで到達させやすく、空隙の内壁にも均質な第1の被膜を形成しやすい。
 ALD法では、例えば、以下の手順により、正極活物質層や正極集電体を被覆する第1の被膜が形成される。
 酸化物XをALD法にて成膜する場合、まず、正極前駆体が収容されている反応室に、気体の第1原料を導入する。その後、正極前駆体の表面が第1原料の単分子層で覆われると、第1原料が有する有機基による自己停止機構が働き、それ以上の第1原料は正極前駆体の表面に吸着しなくなる。余分な第1原料は不活性ガスなどでパージされ、反応室から除去される。
 次に、正極前駆体が収容されている反応室に、気体の第2原料を導入する。第1原料の単分子層と第2原料との反応が終了すると、それ以上の第2原料は正極前駆体の表面に吸着しなくなる。余分な第2原料は不活性ガスなどでパージされ、反応室から除去される。
 上記のように、第1原料の導入、パージ、第2原料の導入、パージからなる一連の操作を所定回数繰り返すことにより、元素Mおよびリチウムを含むリチウム酸化物Xの被膜が形成される。
 第1原料および第2原料として使用する材料は、特に限定されず、所望の酸化物Xに応じて、適切な化合物を選択すればよい。例えば、第1原料としては、元素Mとしてリンを含む材料(リン酸トリメチル、リン酸トリエチル、トリス(ジメチルアミノ)ホスフィン、トリメチルホスフィンなど)、元素Mとしてケイ素を含む材料(オルトケイ酸テトラメチル、オルトケイ酸テトラエチルなど)、元素Mとリチウムの両方を含む材料(リチウム(ビストリメチルシリル)アミドなど)、リチウムの供給源となる材料(リチウムターシャルブトキシド、リチウムシクロペンタジエニルなど)が挙げられる。
 第1原料として元素Mを含む材料を用いたときは、第2原料としてリチウムの供給源となる材料(または元素Mとリチウムの両方を含む材料)が用いられる。第1原料としてリチウムの供給源となる材料を用いたときは、第2原料として元素Mを含む材料(または元素Mとリチウムの両方を含む材料)が用いられる。第1原料として元素Mとリチウムの両方を含む材料を用いたときは、第2原料として酸化剤(酸素、オゾンなど)を用いてもよい。
 酸化物Xの成膜後、フッ素を含む化合物YをALD法にて成膜する場合、第1原料および第2原料を変更し、酸化物Xの成膜と同様の処理を行えばよい。第1原料および第2原料として使用する材料は、特に限定されず、所望の化合物Yに応じて、適切な化合物を選択すればよい。例えば、金属元素Mとしてリチウムを含む場合、上述の材料を利用できる。また、他の金属元素M(ナトリウム、アルミニウム、カリウム、マグネシウム、カルシウム)の供給源となる材料としては、例えばこれらの金属元素のターシャルブトキシド(tert-butoxide)を例示できる。
 フッ素供給源となる材料としては、例えばフッ素ガス、HFガス、NHFなどが挙げられる。金属元素Mとフッ素の両方を含む材料としては、LiFなどが挙げられる。
 酸化物Xの成膜と化合物Yの成膜を順次行い、第1の被膜の成膜を行うことができる。第1の被膜は、酸化物Xの膜の上に化合物Yの膜を成膜した2層構造であってもよいし、酸化物Xの膜と化合物Yの膜を交互に堆積した多層膜であってもよい。
 第1原料および第2原料として、酸化物Xを成膜するための原料ガスと化合物Yを成膜するための原料ガスを同時に反応室に供給し、酸化物Xの成膜と化合物Yの成膜を同時に行うことも可能である。この場合、第1の被膜表面上において、酸化物Xと化合物Yとが同一の原子層内に混在した状態で存在している。この場合、第1の被膜表面上の化合物Yによって化学的安定性の高い被膜が形成されていることから、高い副反応抑制効果が得られる。さらに、第1の被膜表面上の化合物Yによってリチウムイオンの透過が妨げられることなく、第1の被膜表面上に存在する酸化物Xを介してリチウムイオンを正極活物質に(正極活物質から)透過させることができる。
 酸化物Xの成膜と化合物Yの成膜のいずれにおいても、各原料の反応を促進するために、酸化剤を任意のタイミングで反応室に導入して、酸化剤を他の原料と併用してもよい。酸化剤の導入は、一連の操作の繰り返しにおいて、いずれのタイミングで行ってもよく、毎回行ってもよい。
 また、3種以上の原料を用いてもよい。すなわち、第1原料および第2原料の他に、更に1種以上の原料を用いてもよい。例えば、第1原料の導入、パージ、第2原料の導入、パージ、第1原料とも第2原料とも異なる第3原料の導入、パージからなる一連の操作を繰り返してもよい。
 バインダーが例えばポリフッ化ビニリデン(PVdF)のようなフッ素化合物を含む場合、バインダー中のフッ素化合物の一部を反応室内で昇華させてもよい。昇華したフッ素化合物は、ALD法におけるフッ素供給源として働く。したがって、バインダーとしてフッ素化合物を用いる場合には、第1原料および第2原料として酸化物Xの成膜に必要な材料のみを選択すればよい。バインダーがフッ素を供給する結果、酸化物Xと、リチウム-フッ素結合(LiF)を有する化合物Yとが同一原子層内で混在した第1の被膜が形成され得る。
 酸化物Xと化合物Yの成膜方法は、同一のものが好ましいが、互いに異なる方法であってもよい。例えば、酸化物Xと化合物Yの一方の成膜を液相法で行い、他方の成膜を気相法で行ってもよい。
 以下、角型の捲回型電池を例にとって、正極以外の各構成要素について、詳細に説明する。ただし、二次電池のタイプ、形状等は、特に限定されない。
 図1は、本発明の一実施形態に係る角型の二次電池を模式的に示す斜視図である。図1では、二次電池1の要部の構成を示すために、その一部を切り欠いて示している。角型電池ケース11内には、扁平状の捲回型電極群10および電解質(図示せず)が収容されている。
 電極群10に含まれる正極の正極集電体には、正極リード14の一端部が接続されている。正極リード14の他端部は、正極端子として機能する封口板12と接続されている。負極集電体には、負極リード15の一端部が接続され、負極リード15の他端部は、封口板12の概ね中央に設けられた負極端子13と接続されている。封口板12と負極端子13との間には、ガスケット16が配置され、両者を絶縁している。封口板12と電極群10との間には、絶縁性材料で形成された枠体18が配置され、負極リード15と封口板12とを絶縁している。封口板12は、角型電池ケース11の開口端に接合され、角型電池ケース11を封口している。封口板12には、注液孔17aが形成されており、注液孔17aから電解質が角型電池ケース11内に注液される。その後、注液孔17aは封栓17により塞がれる。
 (負極)
 シート状負極は、シート状の負極集電体と、負極集電体の表面に設けられた負極活物質層とを具備する。負極活物質層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 (負極集電体)
 負極集電体としては、金属箔、金属シート、メッシュ体、パンチングシート、エキスパンドメタルなどが例示できる。負極集電体の材料には、ステンレス鋼、ニッケル、銅、銅合金などを用いることができる。負極集電体の厚さは、例えば3~50μmの範囲から選択できる。
 (負極活物質層)
 負極活物質層は、負極活物質、バインダー(結着剤)および分散媒を含む負極スラリーを用いて、正極活物質層の製造に準じた方法で形成できる。負極活物質層は、必要に応じて、導電剤などの任意成分を含んでもよい。負極活物質層に含まれるバインダー量は、負極活物質100質量部に対して、0.1~20質量部が好ましく、1~5質量部がより好ましい。負極活物質層の厚さは、例えば10~100μmである。
 負極活物質は、非炭素系材料でもよく、炭素材料でもよく、これらの組み合わせでもよい。炭素材料は、通常、金属リチウムに対して1V以下の電位でリチウムイオンを吸蔵または放出する。この電位領域では、炭素材料の表面で電解質の構成要素の還元分解が進行しやすく、固体電解質界面(SEI)が生成し易い。しかしながら、後述するように、負極活物質層の表面をリチウムイオン透過性の第2の被膜で被覆することによって、炭素材料と電解質との接触が抑制され、SEIの生成が抑制される。
 負極活物質として用いる炭素材料は、特に限定されないが、例えば、黒鉛およびハードカーボンよりなる群から選択される少なくとも1種が好ましい。中でも、黒鉛は、高容量で不可逆容量が小さく、有望である。また、黒鉛は、電解質の還元分解に対する活性が高いため、負極活物質層の表面を第2の被膜で被覆することによる効果も顕著となる。
 黒鉛とは、黒鉛構造を有する炭素材料の総称であり、天然黒鉛、人造黒鉛、膨張黒鉛、黒鉛化メソフェーズカーボン粒子などが含まれる。天然黒鉛としては、鱗片状黒鉛、土状黒鉛などが例示できる。通常、X線回折スペクトルから計算される黒鉛構造の002面の面間隔d002が3.35~3.44オングストロームである炭素材料は黒鉛に分類される。一方、ハードカーボンは、微小な黒鉛の結晶がランダム方向に配置され、それ以上の黒鉛化がほとんど進行しない炭素材料であり、002面の面間隔d002は3.44オングストロームより大きい。
 負極活物質として用いる非炭素系材料としては合金系材料が好ましい。合金系材料は、ケイ素や錫を含むことが好ましく、中でもケイ素単体やケイ素化合物が好ましい。ケイ素化合物には、ケイ素酸化物やケイ素合金が包含される。
 負極活物質層の表面の少なくとも一部は、リチウムイオン透過性を有する第2の被膜で覆われていてもよい。第2の被膜は、例えば、負極活物質層が形成された後に形成される。この場合、第2の被膜は、負極活物質層の表面とともに、負極集電体の表面を部分的に被覆し得る。
 第2の被膜を構成する材料としては、第1の被膜を構成する酸化物Xと同様の材料が挙げられる。すなわち、第2の被膜は、例えば、組成式Li(0.5≦x<4、1≦y<6)で表されるリチウムイオン透過性の酸化物であり、MはB、Al、Si、P、S、Ti、V、Zr、Nb、Ta、Laよりなる群から選択される少なくとも1種であり得る。ただし、第2の被膜を構成する酸化物Xに含まれる元素Mは、第1の被膜に含まれる元素Mと同じであってもよいし、異なる元素が含まれていてもよい。第2の被膜を形成する方法としては、第1の被膜と同様の方法が挙げられる。
 (セパレータ)
 セパレータとしては、樹脂製の微多孔フィルム、不織布、織布などが用いられる。樹脂には、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン、ポリアミド、ポリアミドイミドなどが用いられる。
 (電解質)
 電解質は、溶媒と、溶媒に溶解する溶質とを含む。溶質には様々なリチウム塩が用いられる。電解質中のリチウム塩の濃度は、例えば0.5~1.5mol/Lである。
 溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状炭酸エステル;ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などの鎖状炭酸エステル;γ-ブチロラクトン、γ-バレロラクトンなどの環状カルボン酸エステルなどの非水溶媒や水が例示できる。溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 リチウム塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiCF3SO3、LiN(SO2F)2、LiN(SO2CF32などが挙げられる。リチウム塩は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 [実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1》
 下記の手順により、二次電池を作製した。
 (1)正極の作製
 Li、Ni、CoおよびAlを含有する正極活物質としてのリチウム含有遷移金属酸化物(LiNi0.88Co0.09Al0.03(NCA))と、導電材としてのアセチレンブラック(AB)と、バインダーとしてのポリフッ化ビニリデン(PVdF)とを、NCA:AB:PVdF=100:1:0.9の質量比で混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極スラリーを調製した。次に、得られた正極スラリーをアルミニウム箔(正極集電体)の両面に塗布した後、乾燥して、ローラーを用いて正極合材の塗膜を圧延し、正極前駆体を作製した。
 正極前駆体を所定の反応室に収容し、下記手順により、リチウムイオン透過性の第1の被膜を正極前駆体の表面に形成した。
 (i)正極前駆体が収容されている反応室に、元素M(リン:P)と酸素(O)の供給源となる第1原料(リン酸トリメチル)を気化させて導入した。第1原料を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、正極前駆体の表面が第1原料の単分子層で覆われたものとして、余分な第1原料を窒素ガスでパージした。
 (ii)次に、正極前駆体が収容されている反応室に、リチウムの供給源となる第2原料(リチウム(ビストリメチルシリル)アミド)を気化させて導入した。第2原料を含む雰囲気の温度は120℃、圧力は260Paに制御した。30秒後、第1原料の単分子層が第2原料と反応したものとして、余分な第2原料を窒素ガスでパージした。
 (iii)第1原料の導入、パージ、第2原料の導入、パージからなる一連の操作を100回繰り返すことにより酸化物Xと化合物Yを含む第1の被膜を形成した。
 第1の被膜の組成をXPS、ICP等で分析したところ、リン酸リチウムが形成されていることを確認した。
 また、XPSスペクトルを分析したところ、685eV(±1eV)にLi-Fに起因したフッ素1sスペクトルのピークを確認した。また、688eV(±2eV)にPVdFに起因したフッ素1sスペクトルのピークを確認した。これより、正極前駆体に含まれるフッ素が、第1の被膜中にリチウムと結合した状態で存在していることが確認された。
 第1の被膜を形成する前の正極前駆体の質量、第1の被膜を形成した後の正極の質量、正極活物質層の組成と各材料の比重から、正極活物質層の全質量に対する第1の被膜の質量を求めると、正極活物質層100質量部に対して0.1質量部であった。
 第1の被膜の厚さは、ALDにおける一連の操作の回数から、10nm~25nmの範囲内であると推測される。
 第1の被膜が形成された正極前駆体を所定の電極サイズに切断し、正極集電体の両面に正極合材層を備える正極を作製した。
 (2)負極の作製
 負極活物質である天然黒鉛粒子(平均粒径(D50)50μm)とバインダーとを、適量の水と混合して、負極スラリーを調製した。バインダーとしては、SBRとCMCとを併用した。天然黒鉛粒子100質量部に対し、SBRは1質量部、CMCは1質量部を配合した。次に、得られた負極スラリーを、厚さ10μmの銅箔(負極集電体)の両面に塗布した後、乾燥させて、ローラーを用いて負極合材の塗膜を圧延した。最後に、得られた負極集電体と負極合材との積層体を所定の電極サイズに切断し、負極集電体の両面に負極合材層を備える負極前駆体を作製した。
 (3)電解質の調製
 ECとEMCとを質量比1:3で含む混合液100質量部に、ビニレンカーボネート1質量部を添加し、非水溶媒を得た。非水溶媒に濃度1.0mol/LでLiPF6を溶解させて、非水電解質を調製した。
 (4)電池の作製
 上記で得られた正極に、Al製の正極リードを取り付けた。上記で得られた負極に、Ni製の負極リードを取り付けた。正極と負極とを、厚み0.015mmのPPおよびPEを含むセパレータを介して渦巻状に捲回し、捲回型電極群を作製した。
 得られた捲回型電極群を、ニッケルめっき鉄板で形成された開口部を有する有底円筒形の電池ケースに挿入した。負極リードの他端部を電池ケースの内側壁に接続し、正極リードの他端部を封口板の底面に接続した。封口板の周縁部には、リング状の絶縁性ガスケットを装着した。電池ケース内に、非水電解質を所定量注液した。ニッケルめっきを施した鉄製の封口板を、電池ケースの開口部に配し、ガスケットが介在した状態で、電池ケースの開口端部を封口板の周縁部に対してかしめて、封口した。このようにして、非水電解質二次電池A1(直径18mm、高さ65mm)を得た。
 [評価1:極板抵抗測定]
 作製した正極を2枚、2cm×2cmの正方形に打ち抜き、互いに対向させた状態で2MPaの圧力を印加した。このときの2枚の極板の芯材間の抵抗を極板抵抗とした。
 [評価2:放電容量測定]
 電池の閉路電圧が4.2Vに達するまで0.02Cの定電流で充電した後、電池の閉路電圧が2.5Vに達するまで、0.02Cの定電流で放電を行い、放電容量を求めた。充放電は25℃の環境で行った。
 [評価3:発熱速度測定]
 電池の閉路電圧が4.2Vに達するまで0.02Cの定電流で充電した後、0.9mmφの釘を1mm/秒の速度で非水電解質二次電池に突き刺し、強制的に短絡させた。このときの電池の表面温度上昇率より、発熱速度[W]を算出した。
 《比較例1》
 正極前駆体の表面にリチウムイオン透過性の第1の被膜を形成する工程を行わなかったことを除いて、実施例1と同様の方法で正極を作製した。作製した正極を用いて、非水電解質二次電池B1を作製し、実施例1と同様に評価した。
 《比較例2》
 正極活物質を、実施例1と同様、アセチレンブラック(AB)、および、ポリフッ化ビニリデン(PVdF)と混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて撹拌して、正極スラリーを調製した。このとき、正極活物質100質量部に対して5質量部のLiPOを添加し、正極スラリーを得た。得られた正極スラリーをアルミニウム箔(正極集電体)の両面に塗布した後、乾燥して、ローラーを用いて正極合材の塗膜を圧延し、正極を作製した。作製した正極を用いて、非水電解質二次電池B2を作製し、実施例1と同様に評価した。
 実施例1および比較例1、2の評価結果を表1に示す。表1において、放電容量と極板抵抗は、比較例1の非水二次電池B1の結果を100とした相対値で示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の非水電解質二次電池A1は、比較例1、2の非水電解質二次電池B1、B2と比べて、第1の被膜で正極活物質層および正極集電体を覆うことにより、容量が低下することなく、短絡発生時の発熱速度が大幅に減少している。
 実施例1の非水電解質二次電池A1では、第1の被膜が抵抗として働くため、短絡時の極板抵抗が上昇している。極板抵抗の上昇によって、セルを流れる電流が減少するため、非水電解質二次電池A1では、短絡発生時の発熱速度が低下したものと考えられる。また、非水電解質二次電池A1に含まれる第1の被膜の占める割合(質量比)が正極活物質層に対して十分に小さいため、非水電解質二次電池A1は、第1の被膜を有していない非水電解質二次電池B1と同等の容量を維持することができたと考えられる。
 非水電解質二次電池B2は、LiPOを添加した正極スラリーを用いて正極活物質層を形成したものである。非水電解質二次電池B2においても、非水電解質二次電池B1と比較して、極板抵抗の上昇と、発熱速度の低下が認められる。しかしながら、非水電解質二次電池B2は、非水電解質二次電池A1およびB1と比較して、容量が低下している。つまり、非水電解質二次電池B2は、非水電解質二次電池A1のような電池容量の維持と電池の安全性という効果を両立することはできなかった。したがって、第1の被膜で正極活物質層等の表面が被覆することにより、所望の電池特性を維持した上で、電池安全性を高めることが可能となる。
 本発明に係る正極は、パーソナルコンピュータ、携帯電話、モバイル機器、携帯情報端末(PDA)、携帯用ゲーム機器、ビデオカメラなどの駆動用電源、ハイブリッド電気自動車、燃料電池自動車、プラグインHEVなどにおける電気モータ駆動用の主電源または補助電源、電動工具、掃除機、ロボットなどの駆動用電源などに用いる二次電池の正極として有用である。
 1 二次電池
 10 捲回型電極群
 11 角型電池ケース
 12 封口板
 13 負極端子
 14 正極リード
 15 負極リード
 16 ガスケット
 17 封栓
 17a 注液孔
 18 枠体

Claims (12)

  1.  正極集電体と、前記正極集電体の表面に設けられた正極活物質層と、リチウムイオン透過性を有する第1の被膜と、を備え、
     前記第1の被膜は、Li(0.5≦x<4、1≦y<6)で表されるリチウムイオン透過性の酸化物Xと、フッ素を含む化合物Yとを含み、前記正極活物質層の表面の少なくとも一部を被覆するとともに前記正極集電体の表面を部分的に被覆しており、
     化合物Yは、金属元素Mとフッ素元素との結合を含み、
     MはB、Al、Si、P、S、Ti、V、Zr、Nb、Ta、およびLaよりなる群から選択される少なくとも1種であり、MはLi、Na、Al、Mg、およびCaよりなる群から選択される少なくとも1種である、二次電池用正極。
  2.  前記酸化物Xが、LiPO(1≦x<3、3≦y<4)およびLiSiO(2≦x<4、3≦y<4)から選択される少なくとも1種である、請求項1に記載の二次電池用正極。
  3.  前記化合物Yが、LiFを含む、請求項1または2に記載の二次電池用正極。
  4.  前記正極活物質層が、LiNi 1-b(0<a≦1.2、0.85≦b≦1)を含み、
     MはMn、Co、およびAlよりなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の二次電池用正極。
  5.  前記第1の被膜が窒素を含む、請求項1~4のいずれか1項に記載の二次電池用正極。
  6.  前記正極活物質層が、正極活物質粒子、および、バインダーを含み、
     前記第1の被膜が、前記バインダーの表面を部分的に被覆している、請求項1~5のいずれか1項に記載の二次電池用正極。
  7.  前記正極活物質粒子と前記バインダーとの接着界面に、前記第1の被膜が介在しない領域を有する、請求項6に記載の二次電池用正極。
  8.  前記正極活物質粒子と前記正極集電体との接触界面、または、互いに隣接する前記正極活物質粒子どうしの接触界面に、前記第1の被膜が介在しない領域を有する、請求項6または7に記載の二次電池用正極。
  9.  請求項1~8のいずれか1項に記載の二次電池用正極と、負極と、リチウムイオン伝導性の電解質とを含む、二次電池。
  10.  前記負極が、負極集電体と、前記負極集電体の表面に設けられた負極活物質層と、リチウムイオン透過性を有する第2の被膜と、を備え、
     前記第2の被膜が、前記酸化物Xを含み、前記負極活物質層の表面の少なくとも一部を被覆するとともに前記負極集電体の表面を部分的に被覆している、請求項9に記載の二次電池。
  11.  正極集電体と、前記正極集電体の表面に設けられた正極活物質層と、を備える正極前駆体を準備する工程と、
     リチウムイオン透過性を有する第1の被膜で、前記正極活物質層の表面の少なくとも一部を被覆するとともに前記正極集電体の表面を部分的に被覆する工程と、を有し、
     前記第1の被膜が、前記第1の被膜の原料を含む雰囲気に、前記正極前駆体を暴露することにより形成される、二次電池用正極の製造方法。
  12.  原子層堆積法により、前記第1の被膜が形成される、請求項11に記載の二次電池用正極の製造方法。
PCT/JP2018/024995 2017-09-25 2018-07-02 二次電池用正極、二次電池および二次電池用正極の製造方法 WO2019058702A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880060350.3A CN111095614B (zh) 2017-09-25 2018-07-02 二次电池用正极、二次电池和二次电池用正极的制造方法
US16/640,239 US20200251716A1 (en) 2017-09-25 2018-07-02 Positive electrode for secondary battery, secondary battery, and method for producing positive electrode for secondary battery
JP2019543434A JP7122632B2 (ja) 2017-09-25 2018-07-02 二次電池用正極および二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184131 2017-09-25
JP2017-184131 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019058702A1 true WO2019058702A1 (ja) 2019-03-28

Family

ID=65810924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024995 WO2019058702A1 (ja) 2017-09-25 2018-07-02 二次電池用正極、二次電池および二次電池用正極の製造方法

Country Status (4)

Country Link
US (1) US20200251716A1 (ja)
JP (1) JP7122632B2 (ja)
CN (1) CN111095614B (ja)
WO (1) WO2019058702A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187391A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2021241423A1 (ja) * 2020-05-28 2021-12-02 マクセル株式会社 全固体二次電池用負極、その製造方法および全固体二次電池
WO2023008431A1 (ja) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 二次電池用正極およびその製造方法、ならびに二次電池
WO2023037757A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 正極材料、正極および電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI834042B (zh) * 2020-06-24 2024-03-01 法商液態空氣喬治斯克勞帝方法研究開發股份有限公司 在用於界面控制之電極上形成摻雜金屬之氧化物薄膜之方法
JP2022128083A (ja) * 2021-02-22 2022-09-01 セイコーエプソン株式会社 前駆体溶液、前駆体粉末、電極の製造方法および電極

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
JP2016136507A (ja) * 2015-01-14 2016-07-28 トヨタ自動車株式会社 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017097999A (ja) * 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2268355A1 (fr) * 1999-04-07 2000-10-07 Hydro-Quebec Revetement de collecteurs a base de lipo3
CN104221190B (zh) * 2012-03-29 2018-03-13 三洋电机株式会社 非水电解质二次电池
CN105518911B (zh) * 2013-09-30 2017-12-15 三洋电机株式会社 非水电解质二次电池用正极活性物质及使用其的非水电解质二次电池
JP6020490B2 (ja) * 2014-03-03 2016-11-02 トヨタ自動車株式会社 リチウムイオン二次電池の正極、及びリチウムイオン二次電池の製造方法
WO2016040461A1 (en) * 2014-09-09 2016-03-17 Sion Power Corporation Protective layers in lithium-ion electrochemical cells and associated electrodes and methods
WO2017201376A1 (en) * 2016-05-20 2017-11-23 Sion Power Corporation Protective layers for electrodes and electrochemical cells
FR3080862B1 (fr) * 2018-05-07 2022-12-30 I Ten Procede de fabrication d'anodes pour batteries a ions de lithium
JP7251069B2 (ja) * 2018-08-02 2023-04-04 トヨタ自動車株式会社 全固体電池およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173770A (ja) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd 非水電解質電池および非水電解質電池の製造法
JP2016136507A (ja) * 2015-01-14 2016-07-28 トヨタ自動車株式会社 リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP2017097999A (ja) * 2015-11-19 2017-06-01 株式会社デンソー 蓄電素子及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187391A1 (ja) * 2020-03-18 2021-09-23 パナソニックIpマネジメント株式会社 正極材料、および、電池
WO2021241423A1 (ja) * 2020-05-28 2021-12-02 マクセル株式会社 全固体二次電池用負極、その製造方法および全固体二次電池
WO2023008431A1 (ja) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 二次電池用正極およびその製造方法、ならびに二次電池
WO2023037757A1 (ja) * 2021-09-13 2023-03-16 パナソニックIpマネジメント株式会社 正極材料、正極および電池

Also Published As

Publication number Publication date
JP7122632B2 (ja) 2022-08-22
CN111095614B (zh) 2023-11-03
JPWO2019058702A1 (ja) 2020-10-15
CN111095614A (zh) 2020-05-01
US20200251716A1 (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7122632B2 (ja) 二次電池用正極および二次電池
US11637277B2 (en) Positive-electrode active material and battery
US11870053B2 (en) Secondary-battery negative electrode and manufacturing method thereof, and secondary battery
US11063254B2 (en) Negative electrode including lithium and fluorine containing coating film covering negative electrode active material layer
JP7182305B2 (ja) 二次電池用正極、二次電池および二次電池用正極の製造方法
US20210296632A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery
CN111033871B (zh) 水系二次电池
US9979015B2 (en) Nonaqueous electrolytic solution secondary battery
CN112018342A (zh) 正极活性物质和使用该正极活性物质的二次电池
US20220359871A1 (en) Secondary battery
JP2012243485A (ja) 非水二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858704

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543434

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858704

Country of ref document: EP

Kind code of ref document: A1