WO2021241423A1 - 全固体二次電池用負極、その製造方法および全固体二次電池 - Google Patents

全固体二次電池用負極、その製造方法および全固体二次電池 Download PDF

Info

Publication number
WO2021241423A1
WO2021241423A1 PCT/JP2021/019297 JP2021019297W WO2021241423A1 WO 2021241423 A1 WO2021241423 A1 WO 2021241423A1 JP 2021019297 W JP2021019297 W JP 2021019297W WO 2021241423 A1 WO2021241423 A1 WO 2021241423A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid
oxide
solid electrolyte
state secondary
Prior art date
Application number
PCT/JP2021/019297
Other languages
English (en)
French (fr)
Inventor
一揮 古川
春樹 上剃
優太 佐藤
政輝 西村
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Priority to US17/927,844 priority Critical patent/US20230216043A1/en
Priority to CN202180038233.9A priority patent/CN115699356A/zh
Priority to EP21813667.9A priority patent/EP4160729A1/en
Publication of WO2021241423A1 publication Critical patent/WO2021241423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a negative electrode for an all-solid-state secondary battery having a low resistance value, a method for manufacturing the negative electrode, and an all-solid-state secondary battery using the negative electrode.
  • lithium-containing composite oxides such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2) are used as the positive electrode active material.
  • Graphite or the like is used as the negative electrode active material, and an organic electrolyte solution containing an organic solvent and a lithium salt is used as a non-aqueous electrolyte.
  • Patent Document 1 describes a carbon material which is a negative electrode active material for the purpose of reducing the irreversible capacity of the negative electrode.
  • a technique of coating the surface with a solid electrolyte having lithium ion conductivity has been proposed.
  • lithium-ion secondary batteries are required to have longer life, higher capacity, higher energy density, and higher reliability.
  • the organic electrolyte used in the lithium ion secondary battery contains an organic solvent which is a flammable substance, the organic electrolyte abnormally generates heat when an abnormal situation such as a short circuit occurs in the battery. there is a possibility. Further, with the recent increase in energy density of lithium ion secondary batteries and the increasing tendency of the amount of organic solvent in organic electrolytic solutions, the reliability of lithium ion secondary batteries is further required.
  • an all-solid-state lithium secondary battery (all-solid-state secondary battery) that does not use an organic solvent is drawing attention.
  • the all-solid-state secondary battery uses a molded body of a solid electrolyte that does not use an organic solvent instead of the conventional organic solvent-based electrolyte, and has high safety without the risk of abnormal heat generation of the solid electrolyte. ..
  • all-solid-state secondary batteries have not only high safety, but also high reliability and high environmental resistance, and have a long life, so they contribute to the development of society and at the same time continue to contribute to safety and security. It is expected as a maintenance-free battery that can be used.
  • SDGs Sustainable Development Goals
  • Patent Document 2 the structural defect portion of the negative electrode active material having a graphite structure is coated with particulate lithium niobate having an average particle size of 1.5 nm or less to suppress heat generation and reduce resistance. It has been proposed to use the coated negative electrode active material in an all-solid-state secondary battery.
  • Patent Document 2 states that the resistance of the negative electrode active material can be reduced by coating the structural defect portion of the negative electrode active material having a graphite structure with small particles of lithium niobate. The resistance value of the negative electrode cannot be lowered to the extent that the characteristics of the next battery are sufficiently enhanced.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a negative electrode for an all-solid-state secondary battery having a low resistance value, a method for manufacturing the same, and an all-solid-state secondary battery using the negative electrode. It is in.
  • the negative electrode for an all-solid secondary battery of the present invention has a negative electrode material containing a negative electrode active material and a molded body of a negative electrode mixture containing a solid electrolyte, and the negative electrode material is a carbon material as a negative electrode active material.
  • a layer containing an oxide having lithium ion conductivity is formed on the surface thereof, the amount of the oxide is 1 part by mass or more with respect to 100 parts by mass of the carbon material, and the sulfide is used as the solid electrolyte. It is characterized by containing a system-based solid electrolyte.
  • the negative electrode for an all-solid secondary battery of the present invention is a negative electrode using a negative electrode material obtained through the following negative electrode material forming step (A) and the negative electrode material forming step (A) and a sulfide-based solid electrolyte. It can be produced by the production method of the present invention, which comprises the step (B) of forming a molded body of a mixture.
  • the negative electrode material forming step (A) includes (1) a step (i-1) of adhering an oxide having lithium ion conductivity or a material for forming the oxide to the surface of the carbon material.
  • the carbon material that has undergone the step (i-1) is fired so that a layer containing the oxide is formed on the surface of the carbon material, and the amount of the oxide is 1 part by mass or more with respect to 100 parts by mass of the carbon material.
  • the step (ii) includes a step (ii) of forming the oxide so that the amount of the oxide is 1 part by mass or more with respect to 100 parts by mass of the carbon material.
  • the all-solid-state secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode, and the negative electrode for the all-solid-state secondary battery of the present invention is used as the negative electrode. It is characterized by having.
  • a negative electrode for an all-solid-state secondary battery having a low resistance value it is possible to provide a negative electrode for an all-solid-state secondary battery having a low resistance value, a method for manufacturing the negative electrode, and an all-solid-state secondary battery using the negative electrode.
  • FIG. 2 is a cross-sectional view taken along the line II of FIG.
  • the negative electrode for an all-solid-state secondary battery of the present invention has a negative electrode material containing a negative electrode active material and a molded body of a negative electrode mixture containing a solid electrolyte.
  • a carbon material which is a negative electrode active material has a layer containing an oxide having lithium ion conductivity formed on the surface thereof, and a sulfide-based solid electrolyte is used as the solid electrolyte. do.
  • the carbon material used as the negative electrode active material is generally hydrophobic and has a low affinity with the sulfide-based solid electrolyte, the negative electrode (molded body of the negative electrode mixture) containing these is good between the two. It is difficult to form an interface, and it is difficult to reduce the resistance value of the negative electrode.
  • the negative electrode material a carbon material having a layer containing an oxide having lithium ion conductivity formed on the surface is used.
  • the negative electrode material has a high affinity with a sulfide-based solid electrolyte and can form a good interface. Therefore, since the negative electrode for the all-solid-state secondary battery of the present invention has a low resistance value and high acceptability of lithium ions, the all-solid-state secondary battery (that is, the all-solid-state secondary battery of the present invention) using this is It is possible to increase the CC capacity and improve the load characteristics.
  • a molded body formed by molding a negative electrode mixture or a layer composed of a molded body of a negative electrode mixture (negative electrode mixture layer) is formed on the current collector.
  • the structure of the battery can be mentioned.
  • the carbon materials constituting the negative electrode material include graphite (natural graphite; artificial graphite obtained by graphitizing easily graphitized carbon such as thermally decomposed carbons, mesophase carbon microbeads, and carbon fibers at 2800 ° C or higher; etc.) and easy graphite.
  • Examples include carbonized carbon (soft carbon), carbon refractory carbon (hard carbon), thermally decomposed carbons, cokes, glassy carbons, calcined organic polymer compounds, mesophase carbon microbeads, carbon fibers, activated carbon, etc. , One or more of these can be used.
  • the oxide constituting the layer formed on the surface of the negative electrode material has lithium ion conductivity, and is, for example, lithium niobium oxide (LiNbO 3 or the like), lithium titanium oxide (Li 4 Ti 5 O 12 or the like) or the like. ), Lithium phosphorus oxide (Li 3 PO 4, etc.), Lithium boron oxide (Li 3 BO 3, etc.), Lithium tungsten oxide (Li 4 WO 5, etc.), Lithium aluminum oxide (LiAlO 2, etc.), etc. Will be.
  • lithium niobium oxide LiNbO 3 or the like
  • lithium titanium oxide Li 4 Ti 5 O 12 or the like
  • Lithium phosphorus oxide Li 3 PO 4, etc.
  • Lithium boron oxide Li 3 BO 3, etc.
  • Lithium tungsten oxide Li 4 WO 5, etc.
  • Lithium aluminum oxide LiAlO 2, etc.
  • Li 3 PO 4 is an oxide-based solid electrolyte
  • other oxide-based solid electrolytes such as Li 7 La 3 Zr 2 O 12 , LiTi (PO 4 ) 3 , LiGe (PO 4 ) 3 , LiLaTIO 3 and the like can also be used as a constituent material of the layer formed on the surface of the negative electrode material.
  • the amount of the oxide having lithium ion conductivity in the negative electrode material is 1 part by mass or more with respect to 100 parts by mass of the carbon material from the viewpoint of satisfactorily ensuring the resistance value reducing effect of the negative electrode for all-solid-state secondary batteries. , 1.5 parts by mass or more is preferable. However, if the amount of the oxide is too large, the capacity of the negative electrode active material may be small, or the conductivity of the negative electrode mixture in the molded product may be lowered. Therefore, the amount of the oxide having lithium ion conductivity in the negative electrode material is preferably 20 parts by mass or less, and more preferably 10 parts by mass or less with respect to 100 parts by mass of the carbon material.
  • the oxide contained in the layer formed on the surface of the negative electrode material is preferably amorphous because the effect of the CC capacity of the all-solid-state secondary battery on enhancing the load characteristics is further increased.
  • the amorphousness of the oxide can be confirmed, for example, by the absence of a peak representing a crystal of the oxide when X-ray diffraction (XRD) is performed, or by the fact that the oxide is broad.
  • the negative electrode mixture in the negative electrode for an all-solid-state secondary battery can contain other negative electrode active materials normally used in a lithium ion secondary battery together with the negative electrode material.
  • the ratio of the negative electrode material to the total negative electrode active materials is preferably 60% by mass or more. Since the negative electrode mixture in the negative electrode for an all-solid secondary battery does not need to use a negative electrode active material other than the negative electrode material, the preferable upper limit value of the ratio of the negative electrode material in the total negative electrode active material is set. It is 100% by mass.
  • the content of the total negative electrode active material including the negative electrode material in the negative electrode mixture is preferably 30 to 70% by mass.
  • the sulfide-based solid electrolyte in all-solid secondary battery negative electrode for example, Li 2 S-P 2 S 5, Li 2 S-SiS 2, Li 2 S-P 2 S 5 -GeS 2, Li 2 S- other particles, such as B 2 S 3 type glass and the like, in recent years, those LGPS system has attracted attention as a high lithium ion conductivity (such as Li 10 GeP 2 S 12) and those of Arujirodaito system [Li 6 What is represented by Li 7-x + y PS 6-x Cl x + y (where 0.05 ⁇ y ⁇ 0.9, -3.0x + 1.8 ⁇ y ⁇ -3.0x + 5.7) such as PS 5 Cl.
  • a sulfide-based solid electrolyte containing lithium and phosphorus is preferable because of its high lithium ion conductivity, and an algyrodite-based material having high lithium ion conductivity and high chemical stability is more preferable.
  • the average particle size of the sulfide-based solid electrolyte is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, from the viewpoint of reducing the grain boundary resistance, while between the negative electrode material and the solid electrolyte. From the viewpoint of forming a sufficient contact interface in the above, it is preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less.
  • the average particle size of the solid electrolyte referred to in the present specification and the positive electrode active material described later is an integrated volume from particles having a small particle size using a particle size distribution measuring device (such as the Microtrack particle size distribution measuring device "HRA9320" manufactured by Nikkiso Co., Ltd.). It means the value (D 50 ) of the 50% diameter in the integrated fraction based on the volume when obtaining.
  • a particle size distribution measuring device such as the Microtrack particle size distribution measuring device "HRA9320" manufactured by Nikkiso Co., Ltd.
  • the negative electrode for all-solid secondary batteries other solid electrolytes (hydride-based solid electrolyte, oxide-based solid electrolyte, etc.) can be used in addition to the sulfide-based solid electrolyte.
  • the ratio of the solid electrolyte other than the sulfide-based solid electrolyte in the polar negative for the all-solid-state battery to the total amount of the solid electrolyte particles is preferably 30% by mass or less. Since all the solid electrolytes in the negative electrode for the all-solid secondary battery may be sulfide-based solid electrolytes, the lower limit of the ratio of the solid electrolytes other than the sulfide-based solid electrolytes to the total amount of the solid electrolytes is 0 mass. %.
  • Examples of the hydride-based solid electrolyte include a solid solution of LiBH 4 , LiBH 4 and the following alkali metal compound (for example, one having a molar ratio of LiBH 4 to the alkali metal compound of 1: 1 to 20: 1). Can be mentioned.
  • Examples of the alkali metal compound in the solid solution include lithium halide (LiI, LiBr, LiF, LiCl, etc.), rubidium halide (RbI, RbBr, RbF, RbCl, etc.), and cesium halide (CsI, CsBr, CsF, CsCl, etc.).
  • oxide-based solid electrolyte examples include Li 7 La 3 Zr 2 O 12 , LiTi (PO 4 ) 3 , LiGe (PO 4 ) 3 , and LiLaTIO 3 .
  • the average particle size of the solid electrolyte other than the sulfide-based solid electrolyte is preferably about the same as the average particle size of the sulfide-based solid electrolyte.
  • the content of the solid electrolyte in the negative electrode mixture is preferably 4 to 70% by mass.
  • the negative electrode mixture may contain a conductive auxiliary agent such as carbon black or graphene, if necessary.
  • a conductive auxiliary agent such as carbon black or graphene
  • the content thereof is preferably 1 to 10% by mass.
  • the negative electrode mixture may or may not contain a resin binder.
  • the resin binder include fluororesins such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the negative electrode mixture does not contain a resin binder, or if it does, the content thereof is 0.5% by mass or less.
  • the content of the resin binder in the negative electrode mixture is more preferably 0.3% by mass or less, and further preferably 0% by mass (that is, the resin binder is not contained).
  • a current collector When a current collector is used for the negative electrode for an all-solid-state secondary battery, copper or nickel foil, punching metal, net, expanded metal, foamed metal; carbon sheet; etc. can be used as the current collector.
  • the negative electrode for an all-solid secondary battery is, for example, a negative electrode mixture using a negative electrode material obtained through the negative electrode material forming step (A) and the negative electrode material forming step (A) and a sulfide-based solid electrolyte. It can be manufactured by a manufacturing method having a step (B) for forming a molded body.
  • the negative electrode material forming step (A) includes, for example, a step (i-1) of adhering an oxide having lithium ion conductivity or a material for forming the oxide to the surface of a carbon material, and the step (i). It has a step (i-2) of forming a layer containing the oxide on the surface of the carbon material by firing the carbon material that has passed through -1) to obtain the negative electrode material.
  • step (i-1) as a method of adhering an oxide having lithium ion conductivity to the surface of the carbon material, a composition prepared by dissolving or dispersing the oxide in a solvent is prepared on the surface of the carbon material.
  • a method of applying the carbon material to the oxide in a dry manner: or the like can be adopted.
  • a composition prepared by dissolving or dispersing the material in a solvent is used as the carbon material. It is possible to adopt a method of applying to the surface of the above.
  • alcohols such as methanol and ethanol; hexane, heptane, octane, nonane, decane, decalin, toluene and xylene.
  • Non-polar aprotonic solvents typified by hydrocarbon solvents such as; etc. can be used.
  • a dehydration solvent having a water content of 0.001% by mass (10 ppm) or less ( It is preferable to use a super dehydrating solvent).
  • water can be used as the solvent of the composition.
  • the method of applying the composition to the carbon material is not particularly limited, and various known coating methods can be adopted. Further, the method of dryly mixing the oxide and the carbon material is not particularly limited, and various known mixing methods can be adopted.
  • the carbon material obtained through the step (i-1) is calcined to form a layer containing an oxide having lithium ion conductivity on the surface of the carbon material.
  • the oxide is formed by the step (i-2). The material is reacted to synthesize the oxide, and a layer containing the oxide is formed.
  • the firing method in the step (i-2) is not particularly limited, and various known firing methods can be adopted.
  • the firing temperature in the step (i-2) is preferably a temperature at which the oxide can form a layer in an amorphous state, specifically, is preferably 450 ° C. or lower, and is preferably 300 ° C. or higher. It is preferable to have.
  • the firing time in the step (i-2) is preferably 0.5 to 3 hours.
  • the negative electrode material forming step (A) instead of the steps (i-1) and (i-2), a carbon material and an oxide having lithium ion conductivity are kneaded to obtain the carbon material. It is also possible to have a step (ii) of forming a layer containing the oxide on the surface.
  • the carbon material and the oxide having lithium ion conductivity are kneaded, that is, by mixing the carbon material while applying a share, a layer containing the oxide having lithium ion conductivity is formed on the surface of the carbon material.
  • a negative electrode material The method of kneading the carbon material and the oxide is not particularly limited as long as the method can be mixed while sharing the share, and a method using various known devices can be adopted.
  • the negative electrode material obtained in the negative electrode material forming step (A) and the sulfide-based solid electrolyte are used to form a molded body of the negative electrode mixture.
  • the molded body of the negative electrode mixture is, for example, a negative electrode mixture prepared by mixing the negative electrode material, a sulfide-based solid electrolyte, and a conductive auxiliary agent or a binder added as needed, and the like. It can be formed by compressing with.
  • the negative electrode for an all-solid-state secondary battery is composed only of a molded body of a negative electrode mixture, the negative electrode for an all-solid-state secondary battery can be obtained by this step (B).
  • the molded body of the negative electrode mixture obtained in step (B) is bonded to the current collector by crimping the molded body to the all-solid-state secondary battery.
  • a negative electrode for a secondary battery can be obtained.
  • the thickness of the molded body of the negative electrode mixture (in the case of a negative electrode having a current collector, the thickness of the molded body of the positive electrode mixture per one side of the current collector; the same applies hereinafter) is from the viewpoint of increasing the capacity of the battery. , 200 ⁇ m or more is preferable.
  • the load characteristics of the battery are generally easily improved by thinning the positive electrode and the negative electrode, but according to the present invention, the load characteristics can be improved even when the molded body of the negative electrode mixture is as thick as 200 ⁇ m or more. It is possible. Therefore, in the present invention, the effect becomes more remarkable when the thickness of the molded product of the negative electrode mixture is, for example, 200 ⁇ m or more.
  • the thickness of the molded product of the negative electrode mixture is usually 3000 ⁇ m or less.
  • the all-solid secondary battery of the present invention has a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode, and the negative electrode is the negative electrode for the all-solid secondary battery of the present invention.
  • FIG. 1 shows a sectional view schematically showing an example of the all-solid-state secondary battery of the present invention.
  • the all-solid-state secondary battery 1 shown in FIG. 1 has a positive electrode 10, a negative electrode 20, and a positive electrode 10 inside an exterior body formed of an outer can 40, a sealing can 50, and a resin gasket 60 interposed between them.
  • a solid electrolyte layer 30 interposed between the negative electrode 20 and the negative electrode 20 is enclosed.
  • the sealing can 50 is fitted to the opening of the outer can 40 via the gasket 60, and the opening end of the outer can 40 is tightened inward, whereby the gasket 60 comes into contact with the sealing can 50.
  • the opening of the outer can 40 is sealed and the inside of the battery has a sealed structure.
  • Stainless steel can be used for the outer can and the sealing can.
  • polypropylene, nylon, etc. can be used as the material of the gasket, and if heat resistance is required in relation to the use of the battery, tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), etc. can be used.
  • a glass hermetic seal can be used for the sealing.
  • FIGS. 2 and 3 show drawings schematically showing other examples of the all-solid-state secondary battery of the present invention.
  • FIG. 2 is a plan view of an all-solid-state secondary battery
  • FIG. 3 is a sectional view taken along line I-I of FIG.
  • the all-solid-state secondary battery 100 shown in FIGS. 2 and 3 accommodates an electrode body 200 composed of a positive electrode, a solid electrolyte layer, and a negative electrode of the present invention in a laminated film exterior body 500 composed of two metal laminated films.
  • the laminated film exterior body 500 is sealed at the outer peripheral portion thereof by heat-sealing the upper and lower metal laminated films.
  • each layer constituting the laminated film exterior body 500, and the positive electrode, the negative electrode, and the separator constituting the electrode body are not shown separately.
  • the positive electrode of the electrode body 200 is connected to the positive electrode external terminal 300 in the battery 100, and although not shown, the negative electrode of the electrode body 200 is also connected to the negative electrode external terminal 400 in the battery 100. There is.
  • the positive electrode external terminal 300 and the negative electrode external terminal 400 are drawn out on one end side to the outside of the laminated film exterior body 500 so that they can be connected to an external device or the like.
  • the positive electrode of the all-solid-state secondary battery has, for example, a molded body of a positive electrode mixture containing a positive electrode active material, a conductive auxiliary agent, a solid electrolyte, and the like, and has a positive electrode composed of only the molded body and a collection with the molded body. Examples thereof include a positive electrode having a structure in which an electric body is integrated.
  • the positive electrode active material is not particularly limited as long as it is a positive electrode active material used in a conventionally known lithium ion secondary battery, that is, an active material capable of storing and releasing Li ions.
  • Specific examples of the positive electrode active material include LiM x Mn 2-x O 4 (where M is Li, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Co, Ni, Cu, Al). , Sn, Sb, In, Nb, Mo, W, Y, Ru and Rh, which is at least one element selected from the group and is represented by 0.01 ⁇ x ⁇ 0.5).
  • manganese complex oxide Li x Mn (1-y -x) Ni y M z O (2-k) F l (although, M is, Co, Mg, Al, B , Ti, V, Cr, Fe, Cu , Zn, Zr, Mo, Sn, Ca, Sr and W, which is at least one element selected from the group consisting of 0.8 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.5, 0 ⁇ z.
  • LiCo 1-x M x O 2 (where M is Al.
  • Mg Ti, Zr, Fe, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba, which is at least one element selected from the group consisting of 0 ⁇ x ⁇ 0.5.
  • LiNi 1-x M x O 2 (where M is Al, Mg, Ti, Zr, Fe, Co, Cu, Zn, Ga, Ge, Nb, Mo, Sn. , Sb and Ba, at least one element selected from the group consisting of LiM 1-x N x PO 4 (where M is), a lithium nickel composite oxide represented by 0 ⁇ x ⁇ 0.5).
  • N is Al, Mg, Ti, Zr, Ni, Cu, Zn, Ga, Ge, Nb, Mo, Sn, Sb and Ba.
  • the average particle size of the positive electrode active material is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, preferably 10 ⁇ m or less, and more preferably 8 ⁇ m or less.
  • the positive electrode active material may be primary particles or secondary particles in which the primary particles are aggregated. When a positive electrode active material having an average particle size in the above range is used, many interfaces with the solid electrolyte can be obtained, so that the load characteristics of the battery are further improved.
  • the positive electrode active material has a reaction suppressing layer on its surface for suppressing the reaction with the solid electrolyte.
  • the solid electrolyte may oxidize to form a resistance layer and the ionic conductivity in the molded body may decrease.
  • a reaction suppression layer that suppresses the reaction with the solid electrolyte on the surface of the positive electrode active material and preventing direct contact between the positive electrode active material and the solid electrolyte, the ionic conductivity in the molded body due to the oxidation of the solid electrolyte The decrease can be suppressed.
  • the reaction suppressing layer may be made of a material having ionic conductivity and capable of suppressing the reaction between the positive electrode active material and the solid electrolyte.
  • a material that can form the reaction suppression layer for example, an oxide containing Li and at least one element selected from the group consisting of Nb, P, B, Si, Ge, Ti and Zr, more specifically. Examples thereof include Nb-containing oxides such as LiNbO 3 , Li 3 PO 4 , Li 3 BO 3 , Li 4 SiO 4 , Li 4 GeO 4 , LiTIO 3 , LiZrO 3 and the like.
  • the reaction suppression layer may contain only one of these oxides, or may contain two or more of these oxides, and a plurality of these oxides may be a composite compound. May be formed. Among these oxides, it is preferable to use a Nb-containing oxide, it is more preferable to use a LiNbO 3.
  • the reaction suppressing layer is preferably present on the surface in an amount of 0.1 to 1.0 part by mass with respect to 100 parts by mass of the positive electrode active material. Within this range, the reaction between the positive electrode active material and the solid electrolyte can be satisfactorily suppressed.
  • Examples of the method for forming the reaction suppressing layer on the surface of the positive electrode active material include a sol-gel method, a mechanofusion method, a CVD method, and a PVD method.
  • the content of the positive electrode active material in the positive electrode mixture is preferably 60 to 95% by mass.
  • Examples of the conductive auxiliary agent for the positive electrode include carbon materials such as graphite (natural graphite, artificial graphite), graphene, carbon black, carbon nanofibers, and carbon nanotubes.
  • the content of the conductive auxiliary agent in the positive electrode mixture is preferably 1 to 10% by mass.
  • the solid electrolyte of the positive electrode one or more of the various sulfide-based solid electrolytes, hydride-based solid electrolytes, and oxide-based solid electrolytes that can be used for the negative electrode and exemplified above are used. be able to. In order to improve the battery characteristics, it is desirable to contain a sulfide-based solid electrolyte.
  • the content of the solid electrolyte in the positive electrode mixture is preferably 4 to 30% by mass.
  • the positive electrode mixture may or may not contain a resin binder.
  • the resin binder include fluororesins such as polyvinylidene fluoride (PVDF).
  • PVDF polyvinylidene fluoride
  • the positive electrode mixture does not contain a resin binder, or if it does, the content thereof is 0.5% by mass or less.
  • the content of the resin binder in the positive electrode mixture is more preferably 0.3% by mass or less, and further preferably 0% by mass (that is, the resin binder is not contained).
  • a metal foil such as aluminum or stainless steel, a punching metal, a net, an expanded metal, a foamed metal; a carbon sheet; or the like can be used as the current collector.
  • the molded body of the positive electrode mixture is prepared by mixing, for example, a positive electrode active material, a conductive auxiliary agent, a solid electrolyte, and a binder added as needed, and the positive electrode mixture is compressed by pressure molding or the like. Can be formed by
  • a positive electrode having a current collector it can be manufactured by bonding the molded body of the positive electrode mixture formed by the above method by crimping it to the current collector.
  • the thickness of the molded body of the positive electrode mixture (in the case of a positive electrode having a current collector, the thickness of the molded body of the positive electrode mixture per one side of the current collector; the same applies hereinafter) is from the viewpoint of increasing the capacity of the battery. , 200 ⁇ m or more is preferable.
  • the thickness of the molded product of the positive electrode mixture is usually 2000 ⁇ m or less.
  • Solid electrolyte layer As the solid electrolyte in the solid electrolyte layer, one or more of the various sulfide-based solid electrolytes, hydride-based solid electrolytes, and oxide-based solid electrolytes exemplified above as those that can be used for the negative electrode are used. can do. However, in order to improve the battery characteristics, it is desirable to contain a sulfide-based solid electrolyte, and it is more desirable to contain the sulfide-based solid electrolyte in all of the positive electrode, the negative electrode and the solid electrolyte layer.
  • the solid electrolyte layer may have a porous body such as a non-woven fabric made of resin as a support.
  • the solid electrolyte layer is a method of compressing the solid electrolyte by pressure molding or the like; a composition for forming a solid electrolyte layer prepared by dispersing the solid electrolyte in a solvent is applied onto a base material, a positive electrode, and a negative electrode, and dried. If necessary, it can be formed by a method of performing pressure molding such as press processing: or the like.
  • a solvent that does not easily deteriorate the solid electrolyte as the solvent used in the composition for forming the solid electrolyte layer.
  • sulfide-based solid electrolytes and hydride-based solid electrolytes cause a chemical reaction with a very small amount of water, and are therefore represented by hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene.
  • hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, decalin, toluene, and xylene.
  • a non-polar aprotic solvent it is more preferable to use a super dehydration solvent having a water content of 0.001% by mass (10 ppm) or less.
  • fluorine-based solvents such as “Bertrel (registered trademark)” manufactured by Mitsui Dupont Fluorochemical, “Zeorolla (registered trademark)” manufactured by Zeon Corporation, and “Novec (registered trademark)” manufactured by Sumitomo 3M, as well as , Dichloromethane, diethyl ether and other non-aqueous organic solvents can also be used.
  • the thickness of the solid electrolyte layer is preferably 100 to 300 ⁇ m.
  • the positive electrode and the negative electrode can be used in a battery in the form of a laminated electrode body laminated via a solid electrolyte layer or a wound electrode body wound around the laminated electrode body.
  • the electrode body When forming the electrode body, it is preferable to perform pressure molding in a state where the positive electrode body, the negative electrode body and the solid electrolyte layer are laminated from the viewpoint of increasing the mechanical strength of the electrode body.
  • the form of the all-solid-state secondary battery is a form having an exterior body composed of an exterior can, a sealing can, and a gasket as shown in FIG. 1, that is, a form generally referred to as a coin-shaped battery or a button-shaped battery.
  • an exterior body made of a resin film or a metal-resin laminated film as shown in FIGS. 2 and 3
  • they are made of metal and have a bottomed cylinder (cylindrical or square cylinder). It may have an outer body having an outer can and a sealing structure for sealing the opening thereof.
  • Example 1 (Formation of solid electrolyte layer) A sulfide-based solid electrolyte (Li 6 PS 5 Cl): 80 mg was placed in a powder molding die having a diameter of 10 mm, and pressure molding was performed using a press machine to form a solid electrolyte layer.
  • the negative electrode material (1), graphene, and the same sulfide-based solid electrolyte used for the solid electrolyte layer are mixed at a mass ratio of 45: 5: 50 and kneaded well to prepare a negative electrode mixture. bottom.
  • the negative electrode mixture: 15 mg was put onto the solid electrolyte layer in the powder molding die, pressure molding was performed using a press machine, and the negative electrode mixture molded body was placed on the solid electrolyte layer.
  • an all-solid-state battery (model cell) having a planar structure similar to that shown in FIG. 2 was produced.
  • Laminated film A negative electrode current collector foil (SUS foil) and a counter electrode current collector foil (SUS foil) are placed laterally on the inner surface of the aluminum laminate film that constitutes the exterior body, with some space between them. I pasted them side by side.
  • Each of the current collector foils has a main body portion facing the negative electrode side surface or the counter electrode side surface of the laminated electrode body, and a negative electrode external terminal 400 and a counter electrode external terminal 300 protruding from the main body portion toward the outside of the battery. The one cut into a shape having a portion was used.
  • the laminated electrode body is placed on the negative electrode current collecting foil of the laminated film outer body, and the laminated electrode body is wrapped with the laminated film outer body so that the counter electrode current collecting foil is arranged on the counter electrode of the laminated electrode body.
  • the remaining three sides of the laminated film exterior body were sealed by heat fusion under vacuum to obtain a model cell.
  • Example 2 In 500 mL of dehydrated ethanol, 0.1 mol of lithium and 0.1 mol of niobium pentaoxide were mixed to prepare a composition for forming a coat layer. Next, the composition for forming a coat layer was applied to 500 g of graphite at a rate of 2 g per minute for 184 minutes using a coating device using a rolling fluidized bed. The obtained powder was calcined at 400 ° C. to obtain a negative electrode material (2) made of graphite having a coat layer containing an oxide (LiNbO 3) having lithium ion conductivity formed on the surface thereof. The amount of oxide in the negative electrode material (2) was 2.55 parts by mass with respect to 100 parts by mass of graphite. Further, in the negative electrode material (2), it was confirmed by the above method that the oxide constituting the coat layer was amorphous.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (2) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Example 3 The negative electrode material (3) was produced in the same manner as in Example 2 except that the coating layer forming composition was applied to graphite at a rate of 2 g / min for 132 minutes.
  • the amount of oxide in the negative electrode material (3) was 1.83 parts by mass with respect to 100 parts by mass of graphite. Further, in the negative electrode material (3), it was confirmed by the above method that the oxide constituting the coat layer was amorphous.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (3) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Example 4 The negative electrode material (4) was produced in the same manner as in Example 2 except that the coating layer forming composition was applied to graphite at a rate of 2 g / min for 72 minutes.
  • the amount of oxide in the negative electrode material (4) was 1 part by mass with respect to 100 parts by mass of graphite. Further, in the negative electrode material (4), it was confirmed by the above method that the oxide constituting the coat layer was amorphous.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (4) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Example 5 A negative electrode material (5) made of graphite having a coat layer containing an oxide (Li 3 PO 4 ) having lithium ion conductivity formed on the surface is obtained by kneading graphite: 20 g and Li 3 PO 4 : 1 g well. Obtained. The amount of oxide in the negative electrode material (5) was 5 parts by mass with respect to 100 parts by mass of graphite.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (5) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Example 6 The same coating layer forming composition as that prepared in Example 1 was applied onto 300 g of hard carbon at a rate of 4 g / min for 190 minutes. The obtained powder was calcined at 400 ° C. for 30 minutes to obtain a negative electrode material (6) made of hard carbon having a coat layer containing an oxide (Li 4 Ti 5 O 12) having lithium ion conductivity formed on the surface thereof. Obtained. The amount of oxide in the negative electrode material (6) was 6.72 parts by mass with respect to 100 parts by mass of hard carbon.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (6) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Comparative Example 1 The negative electrode material (7) was produced in the same manner as in Example 2 except that the coating layer forming composition was applied to graphite at a rate of 2 g / min for 36 minutes.
  • the amount of oxide in the negative electrode material (7) was 0.5 parts by mass with respect to 100 parts by mass of graphite. Further, in the negative electrode material (7), it was confirmed by the above method that the oxide constituting the coat layer was amorphous.
  • a negative electrode was produced in the same manner as in Example 1 except that the negative electrode material (7) was used instead of the negative electrode material (1), and a model cell was produced in the same manner as in Example 1 except that this negative electrode was used.
  • Comparative Example 2 A negative electrode was produced in the same manner as in Example 1 except that graphite having no coat layer formed on the surface was used instead of the negative electrode material (1), and the same as in Example 1 except that this negative electrode was used. A model cell was prepared.
  • Comparative Example 3 A negative electrode was produced in the same manner as in Example 1 except that hard carbon having no coat layer formed on the surface was used instead of the negative electrode material (6), and the same as in Example 1 except that this negative electrode was used. A model cell was prepared.
  • ⁇ CC capacity evaluation> Each model cell is charged with constant current at a current value of 0.05 C until the voltage reaches 0.62 V under pressure (1 t / cm 2) at a temperature of 23 ° C, and then at 0.62 V. A series of steps of constant voltage charging until the current value reaches 0.01 C with voltage and then discharging until the voltage reaches 1.88 V with a current value of 0.05 C is repeated twice, and the second constant current charge. The capacity at the time and the capacity at the time of the second discharge (initial capacity) were obtained. Then, the CC capacity was evaluated by expressing the value obtained by dividing the capacity of each model cell at the time of the second constant current charging by the initial capacity as a percentage.
  • each model cell is charged with constant current and constant voltage under the same conditions as at the time of initial capacity measurement under pressure (1 t / cm 2) at a temperature of 23 ° C., and then 0. It was discharged until the charging depth (SOC) reached 50% at a current value of 1 C, and then paused for 1 hour.
  • SOC charging depth
  • the voltage was measured after performing a pulse discharge for 10 sec with a current value of 0.1 C, and the voltage increase attributable to the solid electrolyte layer and the counter electrode was subtracted from the voltage difference before and after the pulse discharge. The voltage was obtained, and the DCR was calculated from the value.
  • the negative electrode used in the model cell with the smaller DCR required by this method can construct an all-solid-state secondary battery with lower internal resistance, better load characteristics, and larger CC capacity.
  • the model cells produced in Examples 1 to 6 are a negative electrode mixture containing a negative electrode material having a layer containing an appropriate amount of an oxide having lithium ion conductivity on the surface of the carbon material and a sulfide-based solid electrolyte.
  • a negative electrode made of a molded body was used, and the DCR was low. Therefore, by using these negative electrodes, the load characteristics and CC capacity of the all-solid-state secondary battery can be improved.
  • the model cell of Comparative Example 1 uses a negative electrode containing a negative electrode material having a small amount of oxide on the surface, and the model cells of Comparative Examples 2 and 3 contain a carbon material having no layer containing an oxide on the surface. Negative electrodes were used, but in these the DCR was higher than that of the examples.
  • the present invention can be implemented in a form other than the above as long as it does not deviate from the gist thereof.
  • the embodiments disclosed in the present application are examples, and the present invention is not limited to these embodiments.
  • the scope of the present invention shall be construed in preference to the description of the attached claims over the description of the above specification, and all changes within the scope of the claims shall be within the scope of the claims. included.
  • the all-solid-state secondary battery of the present invention can be applied to the same applications as the conventionally known secondary batteries, but has excellent heat resistance because it has a solid electrolyte instead of the organic electrolyte. , Can be preferably used for applications exposed to high temperatures.

Abstract

抵抗値が低い全固体二次電池用負極、その製造方法、および前記負極を用いた全固体二次電池を提供する。本発明は持続可能な開発目標(SDGs)の目標12、3、7、11に関連する。 本発明の全固体二次電池用負極は、負極活物質を含む負極材料と、固体電解質とを含有する負極合剤の成形体を有しており、前記負極材料は、負極活物質として炭素材料を含有し、かつリチウムイオン伝導性を有する酸化物を含む層が表面に形成されており、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上であり、前記固体電解質として硫化物系固体電解質を含有することを特徴とするものである。また、本発明の全固体二次電池は、正極、負極、および前記正極と前記負極との間に介在する固体電解質層を有し、前記負極として、本発明の全固体二次電池用負極を有することを特徴とするものである。

Description

全固体二次電池用負極、その製造方法および全固体二次電池
 本発明は、抵抗値が低い全固体二次電池用負極、その製造方法、および前記負極を用いた全固体二次電池に関するものである。
 近年、携帯電話、ノート型パーソナルコンピュータなどのポータブル電子機器の発達や、電気自動車の実用化などに伴い、小型・軽量で、かつ高容量・高エネルギー密度の二次電池が必要とされるようになってきている。
 現在、この要求に応え得るリチウム二次電池、特にリチウムイオン二次電池では、正極活物質にコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)などのリチウム含有複合酸化物が用いられ、負極活物質に黒鉛などが用いられ、非水電解質として有機溶媒とリチウム塩とを含む有機電解液が用いられている。
 そして、リチウムイオン二次電池の適用機器の更なる発達に伴って、リチウムイオン二次電池の更なる長寿命化・高容量化・高エネルギー密度化が求められている。
 例えば、有機電解液を有するリチウムイオン二次電池(非水電解質二次電池)の高容量化に関しては、特許文献1に、負極の不可逆容量を低減する目的で、負極活物質である炭素材料の表面を、リチウムイオン伝導性を有する固体電解質で被覆する技術が提案されている。
 また、リチウムイオン二次電池においては、長寿命化・高容量化・高エネルギー密度化とともに、その信頼性を高めることも求められている。
 しかし、リチウムイオン二次電池に用いられている有機電解液は、可燃性物質である有機溶媒を含んでいるため、電池に短絡などの異常事態が発生した際に、有機電解液が異常発熱する可能性がある。また、近年のリチウムイオン二次電池の高エネルギー密度化および有機電解液中の有機溶媒量の増加傾向に伴い、より一層リチウムイオン二次電池の信頼性が求められている。
 以上のような状況において、有機溶媒を用いない全固体型のリチウム二次電池(全固体二次電池)が注目されている。全固体二次電池は、従来の有機溶媒系電解質に代えて、有機溶媒を用いない固体電解質の成形体を用いるものであり、固体電解質の異常発熱の虞がなく、高い安全性を備えている。
 また、全固体二次電池は、高い安全性だけではなく、高い信頼性および高い耐環境性を有し、かつ長寿命であるため、社会の発展に寄与すると同時に安心、安全にも貢献し続けることができるメンテナンスフリーの電池として期待されている。全固体二次電池の社会への提供により、国際連合が制定する持続可能な開発目標(SDGs)の17の目標のうち、目標12(持続可能な生産消費形態を確保する)、目標3(あらゆる年齢のすべての人々の健康的な生活を確保し、福祉を促進する)、目標7(すべての人々の、安価かつ信頼できる持続可能な近代的エネルギーへのアクセスを確保する)、および目標11〔包摂的で安全かつ強靭(レジリエント)で持続可能な都市および人間居住を実現する〕の達成に貢献することができる。
 また、全固体二次電池においては、種々の改良が試みられている。例えば、特許文献2には、黒鉛構造を有する負極活物質の構造欠陥部を平均粒径が1.5nm以下の粒子状のニオブ酸リチウムで被覆することで、発熱を抑制し、かつ抵抗を低減した被覆負極活物質を、全固体二次電池に使用することが提案されている。
国際公開第2017/169616号 特開2017-54615号公報
 ところで、現在、全固体二次電池においては、その適用分野が急速に拡大しており、例えば大きな電流値での放電が求められる用途への適用も考えられることから、これに応え得るように負荷特性を高めることが求められる。また、全固体二次電池の充電方法としては、定電流で電池電圧が所定値に達するまで充電(定電流充電)を行い、その後に定電圧で電流値が低下して所定値に達するまで充電(定電圧充電)する方法が一般的であるが、例えば全固体二次電池の急速充電特性を高めるには定電流充電時の充電容量が大きいことが好ましい。このように、全固体二次電池の負荷特性や定電流充電時の充電容量(CC容量)を高める手段としては、例えば負極の抵抗値を下げることが挙げられることから、これを達成する技術の開発が求められる。
 特許文献2では、前記の通り、黒鉛構造を有する負極活物質の構造欠陥部を、小さな粒子状のニオブ酸リチウムで被覆することで、負極活物質の抵抗を低減できるとしているが、全固体二次電池の前記特性を十分に高める程度にまで負極の抵抗値を下げ得るものではない。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、抵抗値が低い全固体二次電池用負極、その製造方法、および前記負極を用いた全固体二次電池を提供することにある。
 本発明の全固体二次電池用負極は、負極活物質を含む負極材料と、固体電解質とを含有する負極合剤の成形体を有しており、前記負極材料は、負極活物質として炭素材料を含有し、かつリチウムイオン伝導性を有する酸化物を含む層が表面に形成されており、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上であり、前記固体電解質として硫化物系固体電解質を含有することを特徴とするものである。
 本発明の全固体二次電池用負極は、下記の負極材料形成工程(A)、および前記負極材料形成工程(A)を経て得られた負極材料と、硫化物系固体電解質とを用いて負極合剤の成形体を形成する工程(B)を有することを特徴とする本発明の製造方法によって製造することができる。
 ここで、負極材料形成工程(A)は、(1)炭素材料の表面に、リチウムイオン伝導性を有する酸化物または前記酸化物を形成するための材料を付着させる工程(i-1)と、前記工程(i-1)を経た前記炭素材料を焼成して、前記炭素材料の表面に前記酸化物を含む層を、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上となるように形成する工程(i-2)とを有するか、または、(2)炭素材料とリチウムイオン伝導性を有する酸化物とを混練して、前記炭素材料の表面に前記酸化物を含む層を、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上となるように形成する工程(ii)を有する。
 また、本発明の全固体二次電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、前記負極として本発明の全固体二次電池用負極を有することを特徴とするものである。
 本発明によれば、抵抗値が低い全固体二次電池用負極、その製造方法、および前記負極を用いた全固体二次電池を提供することができる。
本発明の全固体二次電池の一例を模式的に表す断面図である。 本発明の全固体二次電池の他の例を模式的に表す平面図である。 図2のI-I線断面図である。
<全固体二次電池用負極>
 本発明の全固体二次電池用負極は、負極活物質を含む負極材料と、固体電解質とを含有する負極合剤の成形体を有している。そして、負極材料には、負極活物質である炭素材料の表面に、リチウムイオン伝導性を有する酸化物を含む層が形成されたものを使用し、固体電解質には、硫化物系固体電解質を使用する。
 負極活物質として使用される炭素材料は、一般に疎水性であり、硫化物系固体電解質との親和性が低いため、これらを含む負極(負極合剤の成形体)においては、両者の間で良好な界面を形成し難く、負極の抵抗値を低くすることが困難である。
 そこで、本発明では、負極材料として、リチウムイオン伝導性を有する酸化物を含む層が表面に形成された炭素材料を使用することとした。前記負極材料であれば、硫化物系固体電解質との親和性が高く、良好な界面を形成できる。よって、本発明の全固体二次電池用負極は、抵抗値が低くリチウムイオンの受け入れ性が高くなるため、これを用いた全固体二次電池(すなわち、本発明の全固体二次電池)のCC容量を高めることが可能であり、また、負荷特性を向上させることができる。
 全固体二次電池用負極としては、負極合剤を成形してなる成形体(ペレットなど)や、負極合剤の成形体からなる層(負極合剤層)を集電体上に形成してなる構造のものなどが挙げられる。
 負極材料を構成する炭素材料としては、黒鉛(天然黒鉛;熱分解炭素類、メソフェーズカーボンマイクロビーズ、炭素繊維などの易黒鉛化炭素を2800℃以上で黒鉛化処理した人造黒鉛;など)、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソフェーズカーボンマイクロビーズ、炭素繊維、活性炭などが挙げられ、これらのうちの1種または2種以上を用いることができる。
 負極材料の表面に形成される層を構成する酸化物は、リチウムイオン伝導性を有するものであり、例えば、リチウムニオブ酸化物(LiNbOなど)、リチウムチタン酸化物(LiTi12など)、リチウムリン酸化物(LiPOなど)、リチウムホウ素酸化物(LiBOなど)、リチウムタングステン酸化物(LiWOなど)、リチウムアルミニウム酸化物(LiAlOなど)などが挙げられる。なお、LiPOは酸化物系固体電解質であるが、これ以外の酸化物系固体電解質、例えば、LiLaZr12、LiTi(PO、LiGe(PO、LiLaTiOなども、負極材料の表面に形成される層の構成材料として使用できる。
 負極材料におけるリチウムイオン伝導性を有する酸化物の量は、全固体二次電池用負極の抵抗値低減効果を良好に確保する観点から、炭素材料100質量部に対して、1質量部以上であり、1.5質量部以上であることが好ましい。ただし、前記酸化物の量が多すぎると、負極活物質の容量が小さくなったり、負極合剤の成形体中の導電性が低下したりする虞がある。よって、負極材料におけるリチウムイオン伝導性を有する酸化物の量は、炭素材料100質量部に対して、20質量部以下であることが好ましく、10質量部以下であることがより好ましい。
 負極材料の表面に形成される前記層に含まれる前記酸化物は、全固体二次電池のCC容量が負荷特性を高める効果がより増大することから、非晶質であることが好ましい。前記酸化物が非晶質であることは、例えば、X線回折法(XRD)を行った時に当該酸化物の結晶を表すピークがないか、またはブロードであることで確認することができる。
 全固体二次電池用負極における負極合剤は、前記負極材料とともに、リチウムイオン二次電池に通常使用されている他の負極活物質を含有することができる。ただし、負極活物質に、前記負極材料とともに、その他の負極活物質を併用する場合には、全負極活物質中の、前記負極材料の割合を、60質量%以上とすることが好ましい。なお、全固体二次電池用負極における負極合剤は、前記負極材料以外の負極活物質を使用しなくてもよいため、全負極活物質中の、前記負極材料の割合の好適上限値は、100質量%である。
 負極合剤における、前記負極材料を含む全負極活物質の含有量は、30~70質量%であることが好ましい。
 全固体二次電池用負極における硫化物系固体電解質としては、例えば、LiS-P、LiS-SiS、LiS-P-GeS、LiS-B系ガラスなどの粒子が挙げられる他、近年、リチウムイオン伝導性が高いものとして注目されているLGPS系のもの(Li10GeP12など)や、アルジロダイト系のもの〔LiPSClなどの、Li7-x+yPS6-xClx+y(ただし、0.05≦y≦0.9、-3.0x+1.8≦y≦-3.0x+5.7)で表されるもの、Li7-aPS6-aClBr(ただし、a=b+c、0<a≦1.8、0.1≦b/c≦10.0)で表されるものなど〕も使用することができる。これらの中でも、リチウムイオン伝導性が高いことから、リチウムおよびリンを含む硫化物系固体電解質が好ましく、特にリチウムイオン伝導性が高く、化学的に安定性の高いアルジロダイト系材料がより好ましい。
 硫化物系固体電解質の平均粒子径は、粒界抵抗軽減の観点から、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、一方、負極材料と固体電解質との間での十分な接触界面形成の観点から、10μm以下であることが好ましく、5μm以下であることがより好ましい。
 本明細書でいう固体電解質および後述する正極活物質の平均粒子径は、粒度分布測定装置(日機装株式会社製マイクロトラック粒度分布測定装置「HRA9320」など)を用いて、粒度の小さい粒子から積分体積を求める場合の体積基準の積算分率における50%径の値(D50)を意味している。
 全固体二次電池用負極には、硫化物系固体電解質と共に、その他の固体電解質(水素化物系固体電解質、酸化物系固体電解質など)も使用することができる。ただし、全固体電池用極負極における硫化物系固体電解質以外の固体電解質の、固体電解質粒子全量中の割合は、30質量%以下であることが好ましい。なお、全固体二次電池用負極における固体電解質は、全て硫化物系固体電解質であってもよいため、硫化物系固体電解質以外の固体電解質の固体電解質全量中の割合の下限値は、0質量%である。
 水素化物系固体電解質としては、例えば、LiBH、LiBHと下記のアルカリ金属化合物との固溶体(例えば、LiBHとアルカリ金属化合物とのモル比が1:1~20:1のもの)などが挙げられる。前記固溶体におけるアルカリ金属化合物としては、ハロゲン化リチウム(LiI、LiBr、LiF、LiClなど)、ハロゲン化ルビジウム(RbI、RbBr、RbF、RbClなど)、ハロゲン化セシウム(CsI、CsBr、CsF、CsClなど)、リチウムアミド、ルビジウムアミドおよびセシウムアミドよりなる群から選択される少なくとも1種が挙げられる。
 酸化物系固体電解質としては、例えば、LiLaZr12、LiTi(PO、LiGe(PO、LiLaTiOなどが挙げられる。
 硫化物系固体電解質以外の固体電解質の平均粒子径は、硫化物系固体電解質の平均粒子径と同等程度であることが好ましい。
 負極合剤における固体電解質の含有量は、4~70質量%であることが好ましい。
 負極合剤には、必要に応じて、カーボンブラック、グラフェンなどの導電助剤を含有させることもできる。負極合剤に導電助剤を含有させる場合、その含有量は、1~10質量%であることが好ましい。
 負極合剤には、樹脂製のバインダは含有させなくてもよく、含有させてもよい。樹脂製のバインダとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが挙げられる。ただし、樹脂製のバインダは負極合剤中においても抵抗成分として作用するため、その量はできるだけ少ないことが望ましい。よって、負極合剤においては、樹脂製のバインダを含有させないか、含有させる場合にはその含有量を0.5質量%以下とすることが好ましい。負極合剤における樹脂製のバインダの含有量は0.3質量%以下であることがより好ましく、0質量%である(すなわち、樹脂製のバインダを含有させない)ことがさらに好ましい。
 全固体二次電池用負極に集電体を用いる場合、その集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
 全固体二次電池用負極は、例えば、負極材料形成工程(A)、および前記負極材料形成工程(A)を経て得られた負極材料と、硫化物系固体電解質とを用いて負極合剤の成形体を形成する工程(B)を有する製造方法によって製造することができる。
 負極材料形成工程(A)は、例えば、炭素材料の表面に、リチウムイオン伝導性を有する酸化物または前記酸化物を形成するための材料を付着させる工程(i-1)と、前記工程(i-1)を経た前記炭素材料を焼成することで前記炭素材料の表面に前記酸化物を含む層を形成して、前記負極材料を得る工程(i-2)とを有する。
 工程(i-1)において、炭素材料の表面に、リチウムイオン伝導性を有する酸化物を付着させる方法としては、前記酸化物を溶媒に溶解または分散させて調製した組成物を、炭素材料の表面に塗布する方法;炭素材料と前記酸化物とを乾式で混合する方法:などを採用することができる。また、工程(i-1)において、炭素材料の表面に、前記酸化物を形成するための材料を付着させる方法としては、前記材料を溶媒に溶解または分散させて調製した組成物を、炭素材料の表面に塗布する方法などを採用することができる。
 前記酸化物を含む組成物や、前記酸化物を形成するための材料を含む組成物における溶媒としては、メタノール、エタノールなどのアルコール類;ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレンなどの炭化水素溶媒に代表される非極性非プロトン性溶媒;などが使用できる。なお、前記組成物に含有させる前記酸化物や前記酸化物を形成するための材料が、水分によって反応しやすい場合には、含有水分量を0.001質量%(10ppm)以下とした脱水溶媒(超脱水溶媒)を使用することが好ましい。他方、前記酸化物や前記酸化物を形成するための材料が、水分によって反応し難い場合には、前記組成物の溶媒に水を使用することもできる。
 前記組成物を炭素材料に塗布する方法については、特に制限はなく、公知の各種塗布方法が採用できる。また、前記酸化物と炭素材料とを乾式で混合する方法についても、特に制限はなく、公知の各種混合方法が採用できる。
 工程(i-2)では、工程(i-1)を経て得られた炭素材料を焼成して、リチウムイオン伝導性を有する酸化物を含む層を、炭素材料の表面に形成する。なお、工程(i-1)において、前記酸化物を形成するための材料を含む組成物を炭素材料に塗布した場合には、この工程(i-2)によって、前記酸化物を形成するための材料を反応させて前記酸化物を合成しつつ、前記酸化物を含む層を形成する。
 工程(i-2)における焼成方法については、特に制限はなく、公知の各種焼成方法が採用できる。工程(i-2)における焼成温度は、前記酸化物が非晶質の状態で層を形成し得る温度が好ましく、具体的には、450℃以下であることが好ましく、また、300℃以上であることが好ましい。工程(i-2)における焼成時間は、0.5~3時間であることが好ましい。
 また、負極材料形成工程(A)は、前記工程(i-1)および工程(i-2)に代えて、炭素材料とリチウムイオン伝導性を有する酸化物とを混練して、前記炭素材料の表面に前記酸化物を含む層を形成する工程(ii)を有することもできる。
 工程(ii)では、炭素材料とリチウムイオン伝導性を有する酸化物とを、混練、すなわち、シェアをかけつつ混合することで、炭素材料の表面に、リチウムイオン伝導性を有する酸化物を含む層を形成して、負極材料を得る。炭素材料と前記酸化物とを混練する方法については、シェアをかけつつ両者を混合できる方法であれば特に制限はなく、公知の各種装置を使用した方法を採用することができる。
 次に、工程(B)では、負極材料形成工程(A)によって得られた前記負極材料と、硫化物系固体電解質とを用いて負極合剤の成形体を形成する。
 負極合剤の成形体は、例えば、前記負極材料および硫化物系固体電解質、さらには必要に応じて添加される導電助剤やバインダなどを混合して調製した負極合剤を、加圧成形などによって圧縮することで形成することができる。全固体二次電池用負極が負極合剤の成形体のみで構成される場合には、この工程(B)によって全固体二次電池用負極を得ることができる。
 他方、全固体二次電池用負極が集電体を有する場合には、工程(B)によって得られた負極合剤の成形体を集電体と圧着するなどして貼り合わせることで、全固体二次電池用負極を得ることができる。
 負極合剤の成形体の厚み(集電体を有する負極の場合は、集電体の片面あたりの正極合剤の成形体の厚み。以下、同じ。)は、電池の高容量化の観点から、200μm以上であることが好ましい。なお、電池の負荷特性は、一般に正極や負極を薄くすることで向上しやすいが、本発明によれば、負極合剤の成形体が200μm以上と厚い場合においても、その負荷特性を高めることが可能である。よって、本発明においては、負極合剤の成形体の厚みが例えば200μm以上の場合に、その効果がより顕著となる。また、負極合剤の成形体の厚みは、通常、3000μm以下である。
<全固体二次電池>
 本発明の全固体二次電池は、正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、負極が本発明の全固体二次電池用負極である。
 本発明の全固体二次電池の一例を模式的に表す断面図を図1に示す。図1に示す全固体二次電池1は、外装缶40と、封口缶50と、これらの間に介在する樹脂製のガスケット60で形成された外装体内に、正極10、負極20、および正極10と負極20との間に介在する固体電解質層30が封入されている。
 封口缶50は、外装缶40の開口部にガスケット60を介して嵌合しており、外装缶40の開口端部が内方に締め付けられ、これによりガスケット60が封口缶50に当接することで、外装缶40の開口部が封口されて電池内部が密閉構造となっている。
 外装缶および封口缶にはステンレス鋼製のものなどが使用できる。また、ガスケットの素材には、ポリプロピレン、ナイロンなどを使用できるほか、電池の用途との関係で耐熱性が要求される場合には、テトラフルオロエチレン-パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレンエーテル(PEE)、ポリスルフォン(PSF)、ポリアリレート(PAR)、ポリエーテルスルフォン(PES)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)などの融点が240℃を超える耐熱樹脂を使用することもできる。また、電池が耐熱性を要求される用途に適用される場合、その封口には、ガラスハーメチックシールを利用することもできる。
 また、図2および図3に、本発明の全固体二次電池の他の例を模式的に表す図面を示す。図2は全固体二次電池の平面図であり、図3は図2のI-I線断面図である。
 図2および図3に示す全固体二次電池100は、2枚の金属ラミネートフィルムで構成したラミネートフィルム外装体500内に、正極、固体電解質層および本発明の負極からなる電極体200を収容しており、ラミネートフィルム外装体500は、その外周部において、上下の金属ラミネートフィルムを熱融着することにより封止されている。なお、図3では、図面が煩雑になることを避けるために、ラミネートフィルム外装体500を構成している各層や、電極体を構成している正極、負極およびセパレータを区別して示していない。
 電極体200の有する正極は、電池100内で正極外部端子300と接続しており、また、図示していないが、電極体200の有する負極も、電池100内で負極外部端子400と接続している。そして、正極外部端子300および負極外部端子400は、外部の機器などと接続可能なように、片端側をラミネートフィルム外装体500の外側に引き出されている。
(正極)
 全固体二次電池の正極は、例えば、正極活物質、導電助剤および固体電解質などを含む正極合剤の成形体を有するものであり、前記成形体のみからなる正極や、前記成形体と集電体とが一体化してなる構造の正極などが挙げられる。
 正極活物質は、従来から知られているリチウムイオン二次電池に用いられている正極活物質、すなわち、Liイオンを吸蔵・放出可能な活物質であれば特に制限はない。正極活物質の具体例としては、LiMMn2-x(ただし、Mは、Li、B、Mg、Ca、Sr、Ba、Ti、V、Cr、Fe、Co、Ni、Cu、Al、Sn、Sb、In、Nb、Mo、W、Y、RuおよびRhよりなる群から選択される少なくとも1種の元素であり、0.01≦x≦0.5)で表されるスピネル型リチウムマンガン複合酸化物、LiMn(1-y-x)Ni(2-k)(ただし、Mは、Co、Mg、Al、B、Ti、V、Cr、Fe、Cu、Zn、Zr、Mo、Sn、Ca、SrおよびWよりなる群から選択される少なくとも1種の元素であり、0.8≦x≦1.2、0<y<0.5、0≦z≦0.5、k+l<1、-0.1≦k≦0.2、0≦l≦0.1)で表される層状化合物、LiCo1-x(ただし、Mは、Al、Mg、Ti、Zr、Fe、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムコバルト複合酸化物、LiNi1-x(ただし、Mは、Al、Mg、Ti、Zr、Fe、Co、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるリチウムニッケル複合酸化物、LiM1-xPO(ただし、Mは、Fe、MnおよびCoよりなる群から選択される少なくとも1種の元素で、Nは、Al、Mg、Ti、Zr、Ni、Cu、Zn、Ga、Ge、Nb、Mo、Sn、SbおよびBaよりなる群から選択される少なくとも1種の元素であり、0≦x≦0.5)で表されるオリビン型複合酸化物、LiTi12で表されるリチウムチタン複合酸化物などが挙げられ、これらのうちの1種のみを用いてもよく、2種以上を併用してもよい。
 正極活物質の平均粒子径は、1μm以上であることが好ましく、2μm以上であることがより好ましく、また、10μm以下であることが好ましく、8μm以下であることがより好ましい。なお、正極活物質は一次粒子でも一次粒子が凝集した二次粒子であってもよい。平均粒子径が前記範囲の正極活物質を使用すると、固体電解質との界面を多くとれるため、電池の負荷特性がより向上する。
 正極活物質は、その表面に、固体電解質との反応を抑制するための反応抑制層を有していることが好ましい。
 正極合剤の成形体内において、正極活物質と固体電解質とが直接接触すると、固体電解質が酸化して抵抗層を形成し、成形体内のイオン伝導性が低下する虞がある。正極活物質の表面に、固体電解質との反応を抑制する反応抑制層を設け、正極活物質と固体電解質との直接の接触を防止することで、固体電解質の酸化による成形体内のイオン伝導性の低下を抑制することができる。
 反応抑制層は、イオン伝導性を有し、正極活物質と固体電解質との反応を抑制できる材料で構成されていればよい。反応抑制層を構成し得る材料としては、例えば、Liと、Nb、P、B、Si、Ge、TiおよびZrよりなる群から選択される少なくとも1種の元素とを含む酸化物、より具体的には、LiNbOなどのNb含有酸化物、LiPO、LiBO、LiSiO、LiGeO、LiTiO、LiZrOなどが挙げられる。反応抑制層は、これらの酸化物のうちの1種のみを含有していてもよく、また、2種以上を含有していてもよく、さらに、これらの酸化物のうちの複数種が複合化合物を形成していてもよい。これらの酸化物の中でも、Nb含有酸化物を使用することが好ましく、LiNbOを使用することがより好ましい。
 反応抑制層は、正極活物質:100質量部に対して0.1~1.0質量部で表面に存在することが好ましい。この範囲であれば正極活物質と固体電解質との反応を良好に抑制することができる。
 正極活物質の表面に反応抑制層を形成する方法としては、ゾルゲル法、メカノフュージョン法、CVD法、PVD法などが挙げられる。
 正極合剤における正極活物質の含有量は、60~95質量%であることが好ましい。
 正極の導電助剤としては、黒鉛(天然黒鉛、人造黒鉛)、グラフェン、カーボンブラック、カーボンナノファイバー、カーボンナノチューブなどの炭素材料などが挙げられる。正極合剤における導電助剤の含有量は、1~10質量%であることが好ましい。
 正極の固体電解質には、負極に使用し得るものして先に例示した各種の硫化物系固体電解質、水素化物系固体電解質および酸化物系固体電解質のうちの1種または2種以上を使用することができる。電池特性をより優れたものとするためには、硫化物系固体電解質を含有させることが望ましい。
 正極合剤における固体電解質の含有量は、4~30質量%であることが好ましい。
 正極合剤には、樹脂製のバインダは含有させなくてもよく、含有させてもよい。樹脂製のバインダとしては、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂などが挙げられる。ただし、樹脂製のバインダは正極合剤中において抵抗成分として作用するため、その量はできるだけ少ないことが望ましい。よって、正極合剤においては、樹脂製のバインダを含有させないか、含有させる場合にはその含有量を0.5質量%以下とすることが好ましい。正極合剤における樹脂製のバインダの含有量は0.3質量%以下であることがより好ましく、0質量%である(すなわち、樹脂製のバインダを含有させない)ことがさらに好ましい。
 正極に集電体を使用する場合、その集電体としては、アルミニウムやステンレス鋼などの金属の箔、パンチングメタル、網、エキスパンドメタル、発泡メタル;カーボンシート;などを用いることができる。
 正極合剤の成形体は、例えば、正極活物質、導電助剤および固体電解質、さらには必要に応じて添加されるバインダなどを混合して調製した正極合剤を、加圧成形などによって圧縮することで形成することができる。
 集電体を有する正極の場合には、前記のような方法で形成した正極合剤の成形体を集電体と圧着するなどして貼り合わせることで製造することができる。
 正極合剤の成形体の厚み(集電体を有する正極の場合は、集電体の片面あたりの正極合剤の成形体の厚み。以下、同じ。)は、電池の高容量化の観点から、200μm以上であることが好ましい。また、正極合剤の成形体の厚みは、通常、2000μm以下である。
(固体電解質層)
 固体電解質層における固体電解質には、負極に使用し得るものとして先に例示した各種の硫化物系固体電解質、水素化物系固体電解質および酸化物系固体電解質のうちの1種または2種以上を使用することができる。ただし、電池特性をより優れたものとするためには、硫化物系固体電解質を含有させることが望ましく、正極、負極および固体電解質層の全てに硫化物系固体電解質を含有させることがより望ましい。
 固体電解質層は、樹脂製の不織布などの多孔質体を支持体として有していてもよい。
 固体電解質層は、固体電解質を加圧成形などによって圧縮する方法;固体電解質を溶媒に分散させて調製した固体電解質層形成用組成物を基材や正極、負極の上に塗布して乾燥し、必要に応じてプレス処理などの加圧成形を行う方法:などで形成することができる。
 固体電解質層形成用組成物に使用する溶媒は、固体電解質を劣化させ難いものを選択することが好ましい。特に、硫化物系固体電解質や水素化物系固体電解質は、微少量の水分によって化学反応を起こすため、ヘキサン、ヘプタン、オクタン、ノナン、デカン、デカリン、トルエン、キシレンなどの炭化水素溶媒に代表される非極性非プロトン性溶媒を使用することが好ましい。特に、含有水分量を0.001質量%(10ppm)以下とした超脱水溶媒を使用することがより好ましい。また、三井・デュポンフロロケミカル社製の「バートレル(登録商標)」、日本ゼオン社製の「ゼオローラ(登録商標)」、住友3M社製の「ノベック(登録商標)」などのフッ素系溶媒、並びに、ジクロロメタン、ジエチルエーテルなどの非水系有機溶媒を使用することもできる。
 固体電解質層の厚みは、100~300μmであることが好ましい。
(電極体)
 正極と負極とは、固体電解質層を介して積層した積層電極体や、さらにこの積層電極体を巻回した巻回電極体の形態で、電池に用いることができる。
 なお、電極体を形成するに際しては、正極と負極と固体電解質層とを積層した状態で加圧成形することが、電極体の機械的強度を高める観点から好ましい。
(電池の形態)
 全固体二次電池の形態は、図1に示すような、外装缶と封口缶とガスケットとで構成された外装体を有するもの、すなわち、一般にコイン形電池やボタン形電池と称される形態のものや、図2および図3に示すような、樹脂フィルムや金属-樹脂ラミネートフィルムで構成された外装体を有するもの以外にも、金属製で有底筒形(円筒形や角筒形)の外装缶と、その開口部を封止する封止構造とを有する外装体を有するものであってもよい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
(固体電解質層の形成)
 硫化物系固体電解質(LiPSCl):80mgを直径:10mmの粉末成形金型に入れ、プレス機を用いて加圧成形を行いて固体電解質層を形成した。
(負極の作製)
 500mLの脱水エタノール中で、0.1molのリチウムと0.125molのチタンテトライソプロポキシドとを混合し、コート層形成用組成物を調製した。次に、転動流動層を用いたコート装置にて、500gの黒鉛上に、前記コート層形成用組成物を毎分2gの速度で180分間塗布した。得られた粉末を400℃で30分間焼成して、リチウムイオン伝導性を有する酸化物(LiTi12)を含むコート層が表面に形成された黒鉛からなる負極材料(1)を得た。負極材料(1)における酸化物の量は、黒鉛100質量部に対して1.91質量部であった。また、負極材料(1)において、前記コート層を構成する酸化物が非晶質であることを、前記の方法によって確認した。
 負極材料(1)と、グラフェンと、固体電解質層に用いたものと同じ硫化物系固体電解質とを、質量比で45:5:50の割合で混合し、よく混練して負極合剤を調製した。次に、前記負極合剤:15mgを前記粉末成形金型内の前記固体電解質層の上に投入し、プレス機を用いて加圧成形を行い、前記固体電解質層の上に負極合剤成形体よりなる負極を形成した。
(積層電極体の形成)
 対極として、Li金属とIn金属とをそれぞれ円柱形状に成形して貼り合わせたものを使用した。この対極を、前記粉末成形金型内の固体電解質層の、負極とは反対側の面上に投入し、プレス機を用いて加圧成形を行い、積層電極体を作製した。
(モデルセルの組み立て)
 前記の積層電極体を使用し、図2に示すものと同様の平面構造の全固体電池(モデルセル)を作製した。ラミネートフィルム外装体を構成するアルミニウムラミネートフィルムの、外装体の内側となる面に、負極集電箔(SUS箔)および対極集電箔(SUS箔)を、間にある程度の間隔を設けつつ横に並べて貼り付けた。前記各集電箔には、前記積層電極体の負極側表面または対極側表面と対向する本体部と、前記本体部から電池の外部に向けて突出する負極外部端子400および対極外部端子300となる部分とを備えた形状に切断したものを用いた。
 前記ラミネートフィルム外装体の負極集電箔上に前記積層電極体を載せ、対極集電箔が前記積層電極体の対極上に配置されるように前記ラミネートフィルム外装体で前記積層電極体を包み、真空下で前記ラミネートフィルム外装体の残りの3辺を熱融着によって封止して、モデルセルを得た。
実施例2
 500mLの脱水エタノール中で、0.1molのリチウムと0.1molのニオビウムペンタオキシドとを混合し、コート層形成用組成物を調製した。次に、転動流動層を用いたコート装置にて、500gの黒鉛上に、前記コート層形成用組成物を毎分2gの速度で184分間塗布した。得られた粉末を400℃で焼成して、リチウムイオン伝導性を有する酸化物(LiNbO)を含むコート層が表面に形成された黒鉛からなる負極材料(2)を得た。負極材料(2)における酸化物の量は、黒鉛100質量部に対して2.55質量部であった。また、負極材料(2)において、前記コート層を構成する酸化物が非晶質であることを、前記の方法によって確認した。
 負極材料(1)に代えて負極材料(2)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
実施例3
 黒鉛へのコート層形成用組成物の塗布を、毎分2gの速度で132分間とした以外は、実施例2と同様にして負極材料(3)を作製した。負極材料(3)における酸化物の量は、黒鉛100質量部に対して1.83質量部であった。また、負極材料(3)において、前記コート層を構成する酸化物が非晶質であることを、前記の方法によって確認した。
 負極材料(1)に代えて負極材料(3)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
実施例4
 黒鉛へのコート層形成用組成物の塗布を、毎分2gの速度で72分間とした以外は、実施例2と同様にして負極材料(4)を作製した。負極材料(4)における酸化物の量は、黒鉛100質量部に対して1質量部であった。また、負極材料(4)において、前記コート層を構成する酸化物が非晶質であることを、前記の方法によって確認した。
 負極材料(1)に代えて負極材料(4)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
実施例5
 黒鉛:20gとLiPO:1gとをよく混練して、リチウムイオン伝導性を有する酸化物(LiPO)を含むコート層が表面に形成された黒鉛からなる負極材料(5)を得た。負極材料(5)における酸化物の量は、黒鉛100質量部に対して5質量部であった。
 負極材料(1)に代えて負極材料(5)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
実施例6
 300gのハードカーボン上に、実施例1で調製したものと同じコート層形成用組成物を毎分4gの速度で190分間塗布した。得られた粉末を400℃で30分間焼成して、リチウムイオン伝導性を有する酸化物(LiTi12)を含むコート層が表面に形成されたハードカーボンからなる負極材料(6)を得た。負極材料(6)における酸化物の量は、ハードカーボン100質量部に対して6.72質量部であった。
 負極材料(1)に代えて負極材料(6)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
比較例1
 黒鉛へのコート層形成用組成物の塗布を、毎分2gの速度で36分間とした以外は、実施例2と同様にして負極材料(7)を作製した。負極材料(7)における酸化物の量は、黒鉛100質量部に対して0.5質量部であった。また、負極材料(7)において、前記コート層を構成する酸化物が非晶質であることを、前記の方法によって確認した。
 負極材料(1)に代えて負極材料(7)を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
比較例2
 負極材料(1)に代えて、表面にコート層を形成していない黒鉛を用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
比較例3
 負極材料(6)に代えて、表面にコート層を形成していないハードカーボンを用いた以外は実施例1と同様にして負極を作製し、この負極を用いた以外は実施例1と同様にしてモデルセルを作製した。
 実施例および比較例の負極を有するモデルセルについて、以下の各評価を行った。
<CC容量評価>
 各モデルセルについて、23℃の温度下で加圧(1t/cm)した状態で、0.05Cの電流値で電圧が0.62Vになるまで定電流充電を行い、続いて0.62Vの電圧で電流値が0.01Cになるまで定電圧充電を行い、その後に0.05Cの電流値で電圧が1.88Vになるまで放電させる一連の工程を2回繰り返し、2回目の定電流充電時の容量と、2回目の放電時の容量(初期容量)とを求めた。そして、各モデルセルの2回目の定電流充電時の容量を、初期容量で除した値を百分率で表して、CC容量を評価した。
<直流抵抗(DCR)測定>
 初期容量測定後の各モデルセルについて、23℃の温度下で加圧(1t/cm)した状態で、初期容量測定時と同じ条件で定電流充電および定電圧充電を行い、その後に0.1Cの電流値で充電深度(SOC)が、50%になるまで放電させてから1時間休止させた。その後の各モデルセルについて、0.1Cの電流値で10secのパルス放電を行った後に電圧を測定し、パルス放電前後の電圧差から固体電解質層と対極とに帰属される電圧上昇分を差引いた電圧を求め、その値からDCRを算出した。
 この方法で求められるDCRが小さいモデルセルに使用されている負極ほど、内部抵抗が低く、負荷特性に優れ、CC容量が大きな全固体二次電池を構成可能であるといえる。
 前記の各評価結果を、負極材料の構成と併せて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~6で作製したモデルセルは、炭素材料の表面にリチウムイオン伝導性を有する酸化物を適正量で含む層を有する負極材料と、硫化物系固体電解質とを含有する負極合剤の成形体からなる負極を使用しており、DCRが低かった。よって、これらの負極を用いることで、全固体二次電池の負荷特性やCC容量を向上させることができる。
 これに対し、比較例1のモデルセルは表面の酸化物量が少ない負極材料を含有する負極を使用し、比較例2、3のモデルセルは表面に酸化物を含む層を持たない炭素材料を含有する負極を使用したが、これらではDCRが、実施例のものよりも高かった。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の全固体二次電池は、従来から知られている二次電池と同様の用途に適用し得るが、有機電解液に代えて固体電解質を有していることから耐熱性に優れており、高温に曝されるような用途に好ましく使用することができる。
  1、100 全固体二次電池
 10  正極
 20  負極
 30  固体電解質層
 40  外装缶
 50  封口缶
 60  ガスケット
200  電極体
300  正極外部端子
400  負極外部端子
500  ラミネートフィルム外装体

Claims (5)

  1.  負極活物質を含む負極材料と、固体電解質とを含有する負極合剤の成形体を有しており、
     前記負極材料は、負極活物質として炭素材料を含有し、かつリチウムイオン伝導性を有する酸化物を含む層が表面に形成されており、
     前記炭素材料100質量部に対する前記酸化物の量が1質量部以上であり、
     前記固体電解質として硫化物系固体電解質を含有することを特徴とする全固体二次電池用負極。
  2.  前記酸化物として、リチウムニオブ酸化物、リチウムチタン酸化物またはリチウムリン酸化物を含有する請求項1に記載の全固体二次電池用負極。
  3.  負極活物質を含む負極材料と、固体電解質とを含有する負極合剤の成形体を有する全固体二次電池用負極を製造する方法であって、
     下記の負極材料形成工程(A)、および
     前記負極材料形成工程(A)を経て得られた負極材料と、硫化物系固体電解質とを用いて負極合剤の成形体を形成する工程(B)を有することを特徴とする全固体二次電池用負極の製造方法。
     前記負極材料形成工程(A)は、
     炭素材料の表面に、リチウムイオン伝導性を有する酸化物または前記酸化物を形成するための材料を付着させる工程(i-1)と、前記工程(i-1)を経た前記炭素材料を焼成して、前記炭素材料の表面に前記酸化物を含む層を、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上となるように形成する工程(i-2)とを有するか、または、
     炭素材料とリチウムイオン伝導性を有する酸化物とを混練して、前記炭素材料の表面に前記酸化物を含む層を、前記炭素材料100質量部に対する前記酸化物の量が1質量部以上となるように形成する工程(ii)を有する。
  4.  前記工程(i-2)において、450℃以下の温度で焼成する請求項3に記載の全固体二次電池用負極の製造方法。
  5.  正極と、負極と、前記正極と前記負極との間に介在する固体電解質層とを有し、前記負極として請求項1または2に記載の全固体二次電池用負極を有することを特徴とする全固体二次電池。
PCT/JP2021/019297 2020-05-28 2021-05-21 全固体二次電池用負極、その製造方法および全固体二次電池 WO2021241423A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/927,844 US20230216043A1 (en) 2020-05-28 2021-05-21 Negative electrode for all-solid-state secondary battery, method for manufacturing the same, and all-solid-state secondary battery
CN202180038233.9A CN115699356A (zh) 2020-05-28 2021-05-21 全固体二次电池用负极、其制造方法和全固体二次电池
EP21813667.9A EP4160729A1 (en) 2020-05-28 2021-05-21 Negative electrode for all-solid-state secondary cell, method for manufacturing same, and all-solid-state secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-093372 2020-05-28
JP2020093372A JP2021190264A (ja) 2020-05-28 2020-05-28 全固体二次電池用負極、その製造方法および全固体二次電池

Publications (1)

Publication Number Publication Date
WO2021241423A1 true WO2021241423A1 (ja) 2021-12-02

Family

ID=78744715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019297 WO2021241423A1 (ja) 2020-05-28 2021-05-21 全固体二次電池用負極、その製造方法および全固体二次電池

Country Status (5)

Country Link
US (1) US20230216043A1 (ja)
EP (1) EP4160729A1 (ja)
JP (1) JP2021190264A (ja)
CN (1) CN115699356A (ja)
WO (1) WO2021241423A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054615A (ja) 2015-09-07 2017-03-16 トヨタ自動車株式会社 被覆負極活物質
WO2017169616A1 (ja) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
WO2019058702A1 (ja) * 2017-09-25 2019-03-28 パナソニックIpマネジメント株式会社 二次電池用正極、二次電池および二次電池用正極の製造方法
JP2020021643A (ja) * 2018-08-01 2020-02-06 本田技研工業株式会社 活物質層、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
WO2021095719A1 (ja) * 2019-11-11 2021-05-20 昭和電工株式会社 複合材料、その製造方法及びリチウムイオン二次電池用負極材など

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017054615A (ja) 2015-09-07 2017-03-16 トヨタ自動車株式会社 被覆負極活物質
WO2017169616A1 (ja) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極活物質
WO2019058702A1 (ja) * 2017-09-25 2019-03-28 パナソニックIpマネジメント株式会社 二次電池用正極、二次電池および二次電池用正極の製造方法
JP2020021643A (ja) * 2018-08-01 2020-02-06 本田技研工業株式会社 活物質層、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
WO2021095719A1 (ja) * 2019-11-11 2021-05-20 昭和電工株式会社 複合材料、その製造方法及びリチウムイオン二次電池用負極材など

Also Published As

Publication number Publication date
US20230216043A1 (en) 2023-07-06
EP4160729A1 (en) 2023-04-05
CN115699356A (zh) 2023-02-03
JP2021190264A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
JP4061586B2 (ja) 非水電解質二次電池用正極活物質及びそれを用いた非水電解質二次電池
KR102648753B1 (ko) 고체 전해질 시트 및 전고체 리튬 이차전지
JP7345263B2 (ja) 全固体リチウム二次電池の製造方法
JP2021150204A (ja) 全固体リチウム二次電池及びその製造方法
JP7267163B2 (ja) 全固体電池用正極および全固体電池
JP7246196B2 (ja) 全固体リチウム二次電池
JP2021034326A (ja) 全固体電池
WO2022118928A1 (ja) 全固体電池のシステム
JP6963866B2 (ja) 全固体電池用負極および全固体電池
JPWO2022118928A5 (ja)
JP7401359B2 (ja) 全固体電池用電極および全固体電池
JP7313236B2 (ja) 全固体電池用負極および全固体電池
WO2021241423A1 (ja) 全固体二次電池用負極、その製造方法および全固体二次電池
JP2022048664A (ja) 全固体電池用正極および全固体電池
WO2022092055A1 (ja) 全固体二次電池用負極および全固体二次電池
JP2021144906A (ja) 全固体電池用正極および全固体電池
JP2021039887A (ja) 全固体電池用電極、その製造方法、全固体電池およびその製造方法
JP7376393B2 (ja) 全固体二次電池用正極および全固体二次電池
JP2020149867A (ja) 全固体リチウム二次電池およびその製造方法
JP7033697B2 (ja) 全固体電池用電極および全固体電池
JP7328166B2 (ja) 全固体二次電池
WO2022054665A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2023054333A1 (ja) 全固体電池
JP2021144915A (ja) 全固体二次電池用正極および全固体二次電池
JP2022083502A (ja) 全固体電池用正極および全固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021813667

Country of ref document: EP

Effective date: 20230102