WO2016038699A1 - リチウム二次電池用正極活物質 - Google Patents

リチウム二次電池用正極活物質 Download PDF

Info

Publication number
WO2016038699A1
WO2016038699A1 PCT/JP2014/073858 JP2014073858W WO2016038699A1 WO 2016038699 A1 WO2016038699 A1 WO 2016038699A1 JP 2014073858 W JP2014073858 W JP 2014073858W WO 2016038699 A1 WO2016038699 A1 WO 2016038699A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium ion
ion secondary
Prior art date
Application number
PCT/JP2014/073858
Other languages
English (en)
French (fr)
Inventor
小西 宏明
所 久人
秀一 高野
崇 中林
心 ▲高▼橋
小林 満
章 軍司
達哉 遠山
孝亮 馮
翔 古月
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/073858 priority Critical patent/WO2016038699A1/ja
Publication of WO2016038699A1 publication Critical patent/WO2016038699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a lithium ion secondary battery, a positive electrode for a lithium ion secondary battery including the same, and a lithium ion secondary battery.
  • the problem with electric vehicles is that the energy density of the drive battery is low and the distance traveled by one charge is short. Therefore, there is a need for a secondary battery that is inexpensive and has a high energy density.
  • Lithium ion secondary batteries have a higher energy density per weight than secondary batteries such as nickel metal hydride batteries and lead batteries. Therefore, application to electric vehicles and power storage systems is expected. However, in order to meet the demands of electric vehicles, it is necessary to further increase the energy density. In order to realize high energy density, it is necessary to increase the energy density of the positive electrode and the negative electrode.
  • a layered solid solution compound represented by Li 2 MO 3 —LiM′O 2 is expected.
  • the layered solid solution compound is a solution that dissolves electrochemically inactive Li 2 MO 3 and electrochemically active LiM′O 2 in a solid solution and draws out a high capacity while utilizing high activity properties.
  • the layered solid solution compound can also be represented by the composition formula Li 1 + x M 1-x O 2 .
  • the layered solid solution compound has a high capacity, charging and discharging at a high potential of about 4.6 V is required, and deterioration due to charging and discharging cycles at a high potential becomes a problem. On the other hand, if the upper limit voltage of charge / discharge is lowered, cycle deterioration is mitigated, but it is difficult to achieve high capacity.
  • composition formula Li x MO 2 (1 ⁇ x ⁇ 1.1, M is one or more transition metals), yLi 2 MnO 3. (1-y) LiM′O 2 (0 ⁇ y ⁇ 1, M ′ is one or more transition metals), and a core portion including a lithium composite metal oxide selected from a combination of these compounds, and a shell portion including lithium iron phosphate (LiFePO 4 ) Cycle and thermal stability have been reported for positive electrode materials.
  • Patent Document 1 contains lithium iron phosphate (LiFePO 4 ) having a small discharge capacity, a sufficient capacity cannot be obtained.
  • the positive electrode material shown by patent document 2 is described that it contributes to the improvement of the thermal stability of a high Ni layered compound by the coating of a low Ni layered compound, the high capacity
  • an object of the present invention is to provide a lithium ion secondary battery that has a high capacity and good cycle characteristics.
  • ⁇ Positive electrode active material> When a lithium ion secondary battery is employed in an electric vehicle, it is expected that the mileage per charge is long and the life is long. In order to provide a battery satisfying such characteristics, a positive electrode active material having a high capacity and a high capacity retention rate by cycling is required.
  • the layered solid solution compound can obtain a high capacity by setting the upper limit potential of charging to 4.6 V or more on the basis of Li metal. However, at a potential of 4.6 V or higher, the electrolytic solution is decomposed and the resistance increases, so that the capacity of the positive electrode decreases with the cycle. In particular, when Co is present on the surface, the decomposition reaction is promoted, so it is necessary to reduce the Co content on the surface.
  • a solid solution compound having a high Co content is preferable because a high capacity can be obtained. That is, the layered solid solution positive electrode having a high Co content has an advantage that a high capacity can be obtained, but has a disadvantage that the capacity is significantly reduced with the cycle. On the other hand, although the discharge capacity of the layered solid solution decreases as the Co content contributing to the charge / discharge reaction decreases, the capacity decrease accompanying the cycle can be suppressed.
  • M is A shell comprising a layered solid solution compound represented by V, Mo, W, Zr, Nb, Ti, Al, Fe, Mg, Cu, etc. It is covered with the part 12 and is characterized in that the Co content of the composition of the shell part 12 is lower than the composition of the core part 11.
  • the positive electrode active material having this feature it is possible to provide a positive electrode active material having high capacity and good cycle characteristics.
  • x represents the ratio of Li in Li x Ni a Mn b Co c M d O 2 .
  • x / (a + b + c + d) is 1.45 or less, the amount of Li contributing to the reaction is reduced, and a high capacity cannot be obtained.
  • x is larger than 1.6 or more, the crystal lattice becomes unstable, and the discharge capacity decreases.
  • a represents the proportion of Ni.
  • a / (a + b + c + d) is 0.06 or less, the number of elements involved in the reaction decreases, and the capacity decreases.
  • a is 0.25 or more, the oxygen activation reaction in the initial charging process is unlikely to occur, and thus the capacity decreases.
  • b shows the ratio of Mn. If b / (a + b + c + d) is 0.6 or less, the activation reaction of oxygen hardly occurs, and the capacity decreases. On the other hand, when b is 0.8 or more, the amount of Ni and Co contributing to the reaction is lowered, and thus the capacity is lowered.
  • C indicates the ratio of Co.
  • c / (a + b + c + d) is 0.06 or less, the number of elements involved in the reaction decreases and the capacity decreases.
  • c / (a + b + c) is 0.25 or more, the activation reaction of oxygen in the initial charging process hardly occurs, and thus the capacity is reduced.
  • d is a metal element M other than Ni, Mn, and Co contained as additives, impurities, etc.
  • M is at least one element such as V, Mo, W, Zr, Nb, Ti, Al, Fe, Mg, Cu, etc.
  • d / (a + b + c + d) is greater than 0.02, the proportion of elements that contribute to the reaction decreases, so the discharge capacity decreases.
  • the shell part in the positive electrode material is preferably 5% by mass or more and 30% by mass or less. When the shell part exceeds 30% by mass, the capacity decreases. When the shell portion is less than 5% by mass, the effect of suppressing the capacity reduction due to the cycle is small. More preferably, the shell part is more than 10% by mass and 20% by mass or less.
  • a lithium ion secondary battery according to the present invention includes the above positive electrode active material. By using the positive electrode active material for the positive electrode, a high capacity can be obtained and cycle characteristics are good.
  • the lithium ion secondary battery according to the present invention can be preferably used for an electric vehicle.
  • the lithium ion secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode material, a separator, an electrolytic solution, an electrolyte, and the like.
  • the negative electrode material is not particularly limited as long as it is a substance that can occlude and release lithium ions.
  • Substances generally used in lithium ion secondary batteries can be used as the negative electrode material.
  • graphite, a lithium alloy, etc. can be illustrated.
  • separator those generally used in lithium ion secondary batteries can be used.
  • examples thereof include polyolefin microporous films and nonwoven fabrics such as polypropylene, polyethylene, and a copolymer of propylene and ethylene.
  • electrolytic solution and the electrolyte those generally used in lithium ion secondary batteries can be used.
  • diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified as the electrolytic solution.
  • the lithium ion secondary battery 10 includes an electrode group having a positive electrode 1 in which a positive electrode active material is applied on both sides of a current collector, a negative electrode 2 in which a negative electrode material is applied on both sides of the current collector, and a separator 3.
  • the positive electrode 1 and the negative electrode 2 are wound through a separator 3 to form a wound electrode group. This wound body is inserted into the battery can 4.
  • the negative electrode 2 is electrically connected to the battery can 4 via the negative electrode lead piece 6.
  • a sealing lid 7 is attached to the battery can 4 via a packing 5.
  • the positive electrode 1 is electrically connected to the sealing lid 7 via the positive electrode lead piece 8.
  • the wound body is insulated by the insulating plate 9.
  • the electrode group does not have to be the wound body shown in FIG. 2 and can take various forms such as a laminated body in which the positive electrode 1 and the negative electrode 2 are laminated via the separator 3.
  • ⁇ Preparation of positive electrode active material The composition of the core part of the positive electrode active material was adjusted such that Li was used in excess as compared with the transition metal element, Mn was the main component, and Co and Ni were the same amount.
  • the core part of the positive electrode active material was produced by the following method. Lithium carbonate, nickel carbonate, and manganese carbonate were mixed with a ball mill to obtain a precursor. The obtained precursor was calcined in the atmosphere at 500 ° C. for 12 hours to obtain a lithium transition metal oxide. The obtained lithium transition metal oxide was pelletized and then fired at 850 to 1050 ° C. for 12 hours in the air. The fired pellets were pulverized in an agate mortar and classified with a 45 ⁇ m sieve to obtain a core part of the positive electrode active material.
  • lithium acetate, nickel acetate, manganese acetate, and cobalt acetate were added to purified water in a predetermined ratio and mixed with stirring. Thereafter, purified water was evaporated at 120 ° C. and baked to produce particles having different compositions of the core part and the shell part.
  • the positive electrode active materials of Examples 1 to 15 and Comparative Examples 2 to 5 were prepared by changing the composition ratio of each raw material of the core part and the shell part and the mass ratio of the core part and the shell part.
  • Comparative Example 1 a positive electrode active material made only of a core portion and not forming a shell portion was produced. Table 1 shows the composition of the core part and the shell part in the produced positive electrode active material and the mass ratio of the core part in the positive electrode active material.
  • the positive electrode active material, the conductive agent, and the binder were uniformly mixed to prepare a positive electrode slurry.
  • the mass ratio of the positive electrode active material, the conductive agent, and the binder was 85: 10: 5.
  • the positive electrode slurry was applied onto an aluminum current collector foil having a thickness of 20 ⁇ m, dried at 120 ° C., and compression-molded with a press so that the electrode density was 2.2 g / cm 3 to obtain an electrode plate. Thereafter, the electrode plate was punched into a disk shape having a diameter of 15 mm to produce a positive electrode.
  • the negative electrode was produced using metallic lithium.
  • a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate having a volume ratio of 1: 2 was used.
  • the prototype battery was initialized under the following conditions.
  • the charging was constant current constant voltage charging (CC-CV mode), and the upper limit voltage was 4.6V.
  • the discharge was constant current discharge (CC mode), and the lower limit voltage was 2.5V.
  • the charge / discharge current was 0.05 C, and the charge cutoff current was 0.005 C.
  • charging / discharging was performed for 2 cycles, initialization was performed, and the discharge capacity at the second cycle was defined as the rated capacity.
  • a value obtained by dividing the rated capacity of each example and comparative example by the rated capacity of comparative example 1 was taken as the discharge capacity ratio.
  • Table 1 shows the discharge capacity ratio and capacity retention rate of each example and comparative example.
  • Example 1 to 15 as compared with Comparative Example 1, the capacity retention rate was improved to 30% or more while maintaining a discharge capacity ratio of 90% or more. This is because a high capacity is secured by using a composition having a high Co content in the core part, and the Co content in the shell part is lowered.
  • the capacity (discharge capacity ratio) is 95% or more and the capacity retention ratio is greater than 90%. This is because the composition of the shell part has a high capacity and a layered solid solution composition with good cycle characteristics, and the ratio of the shell part is 20% by mass or less.
  • Comparative Examples 2 to 8 although the capacity retention rate was improved, the discharge capacity ratio of 90% or more of Comparative Example 1 could not be maintained.
  • Comparative Examples 9 and 10 the capacity retention rate was lower than that of Comparative Example 1 although a high discharge capacity ratio was maintained. Details of these examples and comparative examples will be described below.
  • Example 1 is an example in which a shell portion is provided in comparison with Comparative Example 1.
  • Examples 2 and 3 and Comparative Examples 2 to 5 are examples in which the ratio of Ni, Mn, and Co in the core portion was changed from Example 1.
  • the total amount M of the metal elements Ni, Mn, and Co in the core portion is the same, the ratio of Co and Ni is the same, and the ratio of Mn is changed.
  • the ratio of Mn / M in the core is preferably in the range of 0.60 to 0.80.
  • Comparative Example 4 and Example 4 are examples in which the ratio of Li in the core portion was decreased with respect to Example 1, and Example 5 and Comparative Example 5 were examples in which the ratio was increased. In both cases of Examples 4 and 5, the capacity slightly decreased, and the capacity retention rate decreased. In Comparative Example 4, the Li / M of the core part is as small as 1.44, and in Comparative Example 5, the Li amount of the core part is as large as 1.63, so that both have a low discharge capacity. In either case, a decrease in discharge capacity was observed.
  • Examples 6 and 7 and Comparative Example 6 are examples in which the Li ratio of the shell of Example 1 was decreased, and Examples 8 and 9 and Comparative Example 7 were examples in which the Li ratio of the shell of Example 1 was increased. is there.
  • the discharge capacity ratio and the capacity retention rate were slightly decreased, but maintained high values.
  • the Li / M of the shell part is as small as 1.00, and in Comparative Example 5, the Li / M of the shell part is as large as 1.75. In particular, when Li / M is 1.15 to 1.50, the decrease in the discharge capacity ratio is small, which is preferable.
  • Examples 10 to 12 are examples in which Co is added to the shell.
  • the discharge capacity ratio did not change, but the capacity retention rate decreased with increasing Co and decreasing Mn. From this result, it is preferable that the amount of Co in the shell portion is small. However, even when the Co ratio is about 0.1, the capacity retention rate can be significantly improved while maintaining the discharge capacity. In particular, it is preferably 0.05 or less because a high capacity retention ratio can be achieved.
  • Examples 13, 14, 15 and Comparative Example 8 are examples in which the ratio of shells was changed. Even when the ratio of the shell was 5% by mass, the effect of improving the capacity retention ratio was observed, and the capacity retention ratio improved as the shell weight ratio increased. On the other hand, even when the amount of coating was larger than 20% by mass, the capacity retention rate was not improved. Furthermore, when it exceeded 30 mass%, the capacity
  • Comparative Example 9, Example 2, and Comparative Example 10 are positive electrode active materials having the same core composition
  • Example 2 is an example in which a composition containing less Co than the core composition is used for the shell
  • Comparative Example 10 has the same Co This is an example in which a compound containing an amount is used for a shell.
  • the capacity retention ratio was greatly improved.
  • Comparative Examples 9 and 10 even when an active material containing Co of the same ratio was coated, , It turns out that there is almost no effect.
  • a layered solid solution having a high capacity and good cycle characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 高容量と高サイクル特性を両立するリチウムイオン二次電池を提供することにある。 本発明に係るリチウムイオン二次電池用正極活物質は、組成式LixNiaMnbCocd2[x+a+b+c+d=2、1.45<x/(a+b+c+d)<1.6、0.06<a/(a+b+c+d)<0.25、0.6<b/(a+b+c+d)<0.8、0.06<c/(a+b+c+d)<0.25、0≦d≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるコア部と、組成式Lix'Nia'Mnb'Coc'd'2[x'+a'+b'+c'+d'=2、1.1<x'/(a'+b'+c'+d')<1.7、0.25≦a'/(a'+b'+c'+d')<0.5、0.5<b'/(a'+b'+c'+d')≦0.75、0≦c'<c、0≦d'≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるシェル部とを備える。

Description

リチウム二次電池用正極活物質
 本発明は、リチウムイオン二次電池用の正極活物質、及びそれを含むリチウムイオン二次電池用正極、リチウムイオン二次電池に関する。
 電気自動車の課題は、駆動用電池のエネルギー密度が低く、一充電での走行距離が短いことである。そこで、安価で高エネルギー密度をもつ二次電池が求められている。
 リチウムイオン二次電池は、ニッケル水素電池や鉛電池等の二次電池に比べて重量当たりのエネルギー密度が高い。そのため、電気自動車や電力貯蔵システムへの応用が期待されている。しかし、電気自動車の要請に応えるためには、さらなる高エネルギー密度化が必要である。高エネルギー密度化を実現するためには、正極及び負極のエネルギー密度を高める必要がある。
 高エネルギー密度の正極活物質として、Li2MO3-LiM′O2で表される層状固溶体化合物が期待されている。層状固溶体化合物は、電気化学的に不活性なLi2MO3と、電気化学的に活性なLiM′O2とを固溶させ、高容量を引き出しつつ、高活性な性質を利用するものである。層状固溶体化合物は、組成式Li1+x1-x2で表すこともできる。
 層状固溶体化合物は高容量であるものの、4.6V程度の高電位の充放電が必要となり、高電位での充放電サイクルによる劣化が課題となる。一方、充放電の上限電圧を低くすると、サイクル劣化は緩和されるものの、高容量の達成が困難となる。
 特許文献1には、組成式LixMO2(1≦x≦1.1、Mは1種以上の遷移金属)、yLi2MnO3・(1-y)LiM′O2で(0≦y≦1、M′は1種以上の遷移金属)、およびこれらの化合物の組み合わせから選択されるリチウム複合金属酸化物を含むコア部、並びにリチウム鉄リン酸塩(LiFePO4)を含むシェル部を含む正極材料によりサイクル、熱的安定性が報告されている。
 特許文献2では、組成式Lia[NixCoyMnz]O2(0.8≦a≦1.2、0.05≦x≦0.9、0.1≦y≦0.8、0.1≦z≦0.8、x+y+z=1)で表示されるニッケル系複合酸化物を含むコア部を含む正極活物質にシェル部を設けることが記載されている。
特開2013-149615号公報 特開2013-120752号公報
 特許文献1に示されている正極材料は、放電容量の小さいリチウム鉄リン酸塩(LiFePO4)を含んでいるため、十分な容量が得られない。また、特許文献2で示されている正極材料は、低Ni層状化合物の被覆により高Ni層状化合物の熱安定性の向上に寄与する旨記載されているが、層状固溶体化合物の高容量、高サイクル特性の両立について検討されていない。
 そこで、本発明は、高容量が得られ、サイクル特性の良好なリチウムイオン二次電池を提供することを目的とする。
 本発明に係るリチウムイオン二次電池用正極活物質は、組成式LixNiaMnbCocd2[x+a+b+c+d=2、1.45<x/(a+b+c+d)<1.6、0.06<a/(a+b+c+d)<0.25、0.6<b/(a+b+c+d)<0.8、0.06<c/(a+b+c+d)<0.25、0≦d≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるコア部と、組成式Lix’Nia’Mnb’Coc’d’2[x’+a’+b’+c’+d’=2、1.1<x’/(a’+b’+c’+d’)<1.7、0.25≦a’/(a’+b’+c’+d’)<0.5、0.5<b’/(a’+b’+c’+d’)≦0.75、0≦c’<c、0≦d’≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるシェル部とを備えることを特徴とする。
 本発明によれば、高容量が得られ、サイクル特性の良好なリチウムイオン二次電池を提供することができる。
リチウムイオン二次電池用正極活物質の構造を模式的に示す断面図である。 リチウムイオン二次電池の構造を模式的に示す断面図である。
 <正極活物質>
 リチウムイオン二次電池を電気自動車に採用する場合、一充電当たりの走行距離が長いこと、長寿命であることが期待される。このような特性を満たす電池を提供するためには、高容量かつサイクルによる容量維持率の高い正極活物質が必要となる。
 層状固溶体化合物は、充電の上限電位をLi金属基準で4.6V以上にすることで高容量が得られる。しかし、4.6V以上の電位では、電解液が分解され抵抗が上がるため、サイクルに伴い正極の容量が低下する。特に、表面にCoが存在すると、分解反応が促進されるため、表面のCo含有量を減らす必要がある。
 一方、Coの含有量が高い固溶体化合物は、高容量が得られ好ましい。つまり、Coの含有量が高い層状固溶体正極は高容量が得られるという利点があるものの、サイクルに伴い容量が大幅に低下するという欠点がある。一方、充放電反応に寄与するCo含有量の低下に伴い、層状固溶体の放電容量は減少するもののサイクルに伴う容量低下は抑制できる。
 発明者らが鋭意検討した結果、Co含有量の高い層状固溶体化合物粒子の表面をサイクル特性の良好なCo含有量の低い組成とする正極活物質を用いることで、高容量が得られ、かつサイクル特性の良好な層状固溶体を提供できることを見出した。
 本発明に係るリチウムイオン二次電池用正極活物質の一実施形態を、図1に示す。本発明に係るリチウムイオン二次電池用正極活物質は、組成式LixNiaMnbCocd2[x+a+b+c+d=2、1.45<x/(a+b+c+d)<1.6、0.06<a/(a+b+c+d)<0.25、0.6<b/(a+b+c+d)<0.8、0.06<c/(a+b+c+d)<0.25、0≦d≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される層状固溶体化合物をコア部11に含み、異なる組成の層状固溶体化合物よりなるシェル部12で被覆されており、コア部11の組成に比してシェル部12の組成のCo含有量が低いことを特徴とする。
 本特徴を有する正極活物質とすることで、高容量が得られ、かつサイクル特性が良好な正極活物質を提供することができる。
 正極材料のコア部において、xは、LixNiaMnbCocd2におけるLiの割合を示す。x/(a+b+c+d)が1.45以下であると、反応に寄与するLiの量が減り高容量が得られない。一方、xが1.6以上より大きいと、結晶格子が不安定になり放電容量が低下する。
aはNiの割合を示す。a/(a+b+c+d)が0.06以下であると、反応に関与する元素が少なくなり、容量が低下する。一方、aが0.25以上であると、初充電過程における酸素の活性化反応が起こりにくいため、容量が低下する。
bはMnの割合を示す。b/(a+b+c+d)が0.6以下であると、酸素の活性化反応が起こりにくいため、容量が低下する。一方、bが0.8以上であると、反応に寄与するNi、Coの量が低下するため、容量が低下する。
 cはCoの割合を示す。c/(a+b+c+d)が0.06以下であると、反応に関与する元素が少なくなり、容量が低下する。一方、c/(a+b+c)が0.25以上であると、初充電過程における酸素の活性化反応が起こりにくいため、容量が低下する。
 dは添加物、不純物等として含まれるNi、Mn、Co以外の金属元素M(MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素)の割合を示す。d/(a+b+c+d)が0.02より大きいと反応に寄与する元素の割合が低下するため、放電容量が低下する。
 さらに高容量が得られ、かつサイクルによる劣化を抑制するためには、シェル部のCo含有量をコア部より低下させる必要がある。
 シェル部の組成は、組成式Lix’Nia’Mnb’Coc’d’2[x’+a’+b’+c’+d’=2、1.1<x’/(a’+b’+c’+d’)<1.7、0.25≦a’/(a’+b’+c’+d’)<0.5、0.5<b’/(a’+b’+c’+d’)≦0.75、0≦c’<c、0≦d’≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表されることが好ましい。
 正極材料における、シェル部は5質量%以上30質量%以下であることが好ましい。シェル部が30質量%を超えると、容量が低下する。シェル部が5質量%未満であると、サイクルによる容量低下を抑制できる効果が小さい。より好ましくは、シェル部が10質量%より多く20質量%以下である。
 <リチウムイオン二次電池>
 本発明に係るリチウムイオン二次電池は、上記の正極活物質を含むことを特徴とする。上記の正極活物質を正極に使用することにより、高容量が得られ、かつサイクル特性が良好である。本発明に係るリチウムイオン二次電池は、電気自動車に対して好ましく使用することができる。
 リチウムイオン二次電池は、正極活物質を含む正極、負極材料を含む負極、セパレータ、電解液、電解質等から構成される。
 負極材料は、リチウムイオンを吸蔵放出することができる物質であれば特に限定されない。リチウムイオン二次電池において一般的に使用されている物質を負極材料として使用することができる。例えば、黒鉛、リチウム合金等を例示することができる。
 セパレータとしては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、ポリプロピレン、ポリエチレン、プロピレンとエチレンとの共重合体等のポリオレフィン製の微孔性フィルムや不織布等を例示することができる。
 電解液及び電解質としては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、電解液として、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、メチルアセテート、エチルメチルカーボネート、メチルプロピルカーボネート、ジメトキシエタン等を例示することができる。また、電解質として、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23等を例示することができる。
 本発明に係るリチウムイオン二次電池の構造の一実施形態を、図2を用いて説明する。リチウムイオン二次電池10は、集電体の両面に正極活物質を塗布した正極1と、集電体の両面に負極材料を塗布した負極2と、セパレータ3とを有する電極群を備える。正極1及び負極2は、セパレータ3を介して捲回され、捲回体の電極群を形成している。この捲回体は電池缶4に挿入される。
 負極2は、負極リード片6を介して、電池缶4に電気的に接続される。電池缶4には、パッキン5を介して、密閉蓋7が取り付けられる。正極1は、正極リード片8を介して、密閉蓋7に電気的に接続される。捲回体は、絶縁板9によって絶縁される。
 なお、電極群は、図2に示す捲回体でなくてもよく、セパレータ3を介して正極1と負極2とを積層した積層体など、種々の形態をとることができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
 <正極活物質の作製>
 正極活物質のコア部の組成は、Liを遷移金属元素に比して過剰に用いるとともに、Mnを主成分、CoとNiを同量として調整した。一般に、7~13モル%程度のCoを含む層状固溶体化合物は高容量を達成可能である。なお過剰に添加した場合であっても、容量が大きく向上するような効果は得られなかった。また、Coの比率をNiの比率よりも大きくすると、容量が急激に低下する。従って、最もコバルトを多く添加し、高容量が期待できる組成としてNi:Co=1:1を選択した。
 正極活物質のコア部は以下の方法で作製した。炭酸リチウム、炭酸ニッケル、及び炭酸マンガンをボールミルで混合し、前駆体を得た。得られた前駆体を大気中において500℃で12時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物をペレット化した後、大気中において850~1050℃で12時間焼成した。焼成したペレットをメノウ乳鉢で粉砕し、45μmのふるいで分級し、正極活物質のコア部とした。
  コア部を作製した後、精製水に酢酸リチウム、酢酸ニッケル、酢酸マンガン、酢酸コバルトを所定の比率で入れ、撹拌混合した。その後、120℃で精製水を蒸発させ、焼成することで、コア部とシェル部の組成が異なる粒子を作製した。
 コア部、シェル部の各原料の組成比と、コア部とシェル部の質量比を変更し、実施例1~15、及び比較例2~5の正極活物質を作製した。また、比較例1として、コア部のみよりなり、シェル部を形成しない正極活物質を作製した。作製した正極活物質におけるコア部とシェル部の組成、および正極活物質に占めるコア部の質量比を表1に示す。
 <試作電池の作製>
上述のように作製した各実施例及び比較例の20種類の正極活物質を用い、正極及び試作電池を作製した。
 正極活物質と導電剤とバインダとを均一に混合して正極スラリーを作製した。正極活物質、導電剤及びバインダの質量比は、85:10:5とした。正極スラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.2g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極を作製した。
 負極は金属リチウムを用いて作製した。非水電解液としては、体積比1:2のエチレンカーボネートとジメチルカーボネートとの混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させたものを用いた。
 <充放電試験>
 上述のように作製した各実施例及び比較例の20種類の試作電池に対して、充放電試験を行った。
 試作電池に対し、下記の条件で初期化した。充電は定電流定電圧充電(CC-CVモード)とし、上限電圧は4.6Vとした。放電は定電流放電(CCモード)とし、下限電圧は2.5Vとした。充放電の電流は0.05C相当とし、充電のカットオフ電流は0.005C相当とした。各実施例及び比較例において、充放電を2サイクル行い、初期化とし、2サイクル目の放電容量を定格容量とした。各実施例及び比較例の定格容量を比較例1の定格容量で除した値を放電容量比とした。
 <サイクル試験>
 初期化の後、充電および放電を1C相当の電流に上げ、4.6-2.5Vの電位範囲で100サイクルの充放電を行った(ただし、充電におけるカットオフ電流は0.2Cとした。)。初期化後100サイクル目の放電容量を初期化後1サイクル目後の放電容量で除した値を容量維持率と定義した。
 各実施例及び比較例の放電容量比、容量維持率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~15では、比較例1と比して、90%以上の放電容量比を維持した状態で、容量維持率を30%以上に向上させることを達成した。これは、コア部にCo含有量の高い組成を用いることで高容量を確保し、かつシェル部のCo含有量を低くしたためである。特に、実施例1~10、及び15では、比較例1と比して容量(放電容量比)が95%以上であって、かつ容量維持率が90%より大きい。これは、これは、シェル部の組成を高容量が得られ、サイクル特性の良好な層状固溶体組成とし、シェル部の比率を20質量%以下にしたためである。一方、比較例2~8では、容量維持率の向上は達成するものの、比較例1の90%以上の放電容量比を維持することができなかった。また、比較例9、10では、高い放電容量比を維持したものの、比較例1よりも容量維持率が低下した。以下、これらの実施例、比較例の詳細を説明する。
 実施例1は、比較例1に対し、シェル部を設けた例である。また、実施例2、3、比較例2~5は、実施例1に対し、コア部のNi、Mn、Coの比率を変更した例である。実施例2、3、比較例2、3では、コア部の金属元素Ni、Mn、Coの合計量Mは同量としたまま、それぞれのCo,Niの比率を同量とし、Mnの比率を変更した。その結果、Mn比(Mn/M(M=Ni+Mn+Co))が0.63~0.75の範囲で高い放電容量比を達成できた。一方、比較例2では、Mn/M(M=Ni+Mn+Co)が、0.88と多く、比較例3では0.50と少ないため、放電容量が少ない結果となった。従って、コア部のMn/Mの割合は0.60~0.80の範囲とすることが好ましい。
 比較例4、実施例4は、実施例1に対しコア部のLiの割合を減少させた例、実施例5、比較例5は増加させた例である。実施例4、5のいずれの場合にも容量はわずかに減少し、容量維持率は低下した。比較例4ではコア部のLi/Mが1.44と小さく、比較例5ではコア部のLi量が1.63と多いため、いずれも放電容量が少ない。いずれの場合にも放電容量の低下が見られた。
 実施例6、7、比較例6は、実施例1のシェルのLi比を減少させた例、実施例8、9、比較例7は、実施例1のシェルのLi比を増加させた例である。実施例6、7、8では、放電容量比および容量維持率はわずかに低下したが、高い値を維持している。比較例6ではシェル部のLi/Mが1.00と小さく、比較例5ではシェル部のLi/Mが1.75と多いため、いずれも放電容量が少ない。特に、Li/Mが1.15~1.50である場合に、放電容量比の低下が少なく好ましい。
 実施例10~12は、シェルにCoを添加した例である。放電容量比は変化がなかったが、Co増、Mn減に伴い、容量維持率は減少した。この結果より、シェル部のCo量は、少ない方が好ましいが、Co比が0.1程度でも、放電容量を維持しながら容量維持率の大幅な改善が可能であった。特に0.05以下であると、高い容量維持率を達成でき、好ましい。
 実施例13、14、15、比較例8は、シェルの比率を変更した例である。シェルの比率が5質量%であっても容量維持率を改善する効果が見られ、シェルの重量比が大きくなるにつれ容量維持率が向上した。一方、被覆の量を20質量%より大きくしても、容量維持率の向上は見られなかった。さらに30質量%を超えると、容量が低下した。比較例8より、40質量%では放電容量比が大きく低下した。したがって、シェルの比率は、30質量%以下、特に10~20質量%であることが好ましい。
 比較例9、実施例2、比較例10は同じコア組成の正極活物質であり、実施例2はコアの組成より少ないCo量を含む組成をシェルに用いた例、比較例10は同様のCo量を含む化合物をシェルに用いた例である。実施例2では、容量維持率が大きく向上したが、比較例9、10ともに容量維持率がほとんど変化しないことから、同様の比率のCoを含む活物質を被覆しても、容量維持率には、ほとんど効果がないことが分かった。
 以上の通り、Coを含み高容量が得られる層状固溶体のシェル部のCo含有量を低下させることで、高容量が得られ、かつサイクル特性の良好な層状固溶体を提供できる。
 1 正極
 2 負極
 3 セパレータ
 4 電池缶
 5 パッキン
 6 負極リード片
 7 密閉蓋
 8 正極リード片
 9 絶縁板
 10 リチウムイオン二次電池
 11 コア部
 12 シェル部

Claims (8)

  1.  リチウムイオン二次電池用の正極活物質であって、
     組成式LixNiaMnbCocd2[x+a+b+c+d=2、1.45<x/(a+b+c+d)<1.6、0.06<a/(a+b+c+d)<0.25、0.6<b/(a+b+c+d)<0.8、0.06<c/(a+b+c+d)<0.25、0≦d/(a+b+c+d)≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるコア部と、
     組成式Lix’Nia’Mnb’Coc’d’2[x’+a’+b’+c’+d’=2、1.1<x’/(a’+b’+c’+d’)<1.7、0.25≦a’/(a’+b’+c’+d’)<0.5、0.5<b’/(a’+b’+c’+d’)≦0.75、0≦c’<c、0≦d’≦0.02、MはV、Mo、W、Zr、Nb、Ti、Al、Fe、Mg、Cu等の少なくともいずれかの元素]で表される化合物よりなるシェル部と、を備えることを特徴とするリチウムイオン二次電池用正極活物質。
  2.  請求項1に記載のリチウムイオン二次電池用正極活物質であって、
     前記シェル部は、前記リチウムイオン二次電池用正極活物質の5~30質量%を占めることを特徴とするリチウムイオン二次電池用正極活物質。
  3.  請求項1に記載のリチウムイオン二次電池用正極活物質であって、
     前記シェル部は、前記リチウムイオン二次電池用正極活物質の10質量%以上20質量%以下であることを特徴とするリチウムイオン二次電池用正極活物質。
  4.  請求項1に記載のリチウムイオン二次電池用正極活物質であって、
     1.15<x’/(a’+b’+c’+d’)<1.50であることを特徴とするリチウムイオン二次電池用正極活物質。
  5.  請求項1に記載のリチウムイオン二次電池用正極活物質であって、
     前記c’は、0≦c’≦0.10であることを特徴とするリチウムイオン二次電池用正極活物質。
  6.  請求項1に記載のリチウムイオン二次電池用正極活物質であって、
     前記c’は、0≦c’≦0.05であることを特徴とするリチウムイオン二次電池用正極活物質。
  7.  正極活物質、導電材及びバインダを混合した正極合剤層と、正極集電体とを備えるリチウムイオン二次電池用正極であって、
     前記正極活物質は請求項1ないし5のいずれか一項に記載されるリチウムイオン二次電池用正極活物質であって、
     上限電圧4.6V以上の電位範囲で使用されることを特徴とするリチウムイオン二次電池用正極。
  8.  請求項7記載のリチウムイオン二次電池用正極を用いたことを特徴とするリチウムイオン二次電池。
PCT/JP2014/073858 2014-09-10 2014-09-10 リチウム二次電池用正極活物質 WO2016038699A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073858 WO2016038699A1 (ja) 2014-09-10 2014-09-10 リチウム二次電池用正極活物質

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073858 WO2016038699A1 (ja) 2014-09-10 2014-09-10 リチウム二次電池用正極活物質

Publications (1)

Publication Number Publication Date
WO2016038699A1 true WO2016038699A1 (ja) 2016-03-17

Family

ID=55458488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073858 WO2016038699A1 (ja) 2014-09-10 2014-09-10 リチウム二次電池用正極活物質

Country Status (1)

Country Link
WO (1) WO2016038699A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094404A (ja) * 2010-10-27 2012-05-17 Dainippon Printing Co Ltd 非水電解液二次電池用活物質、非水電解液二次電池用電極板、及び非水電解液二次電池、並びに電池パック
JP2013120752A (ja) * 2011-12-07 2013-06-17 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
JP2013182783A (ja) * 2012-03-01 2013-09-12 Gs Yuasa Corp 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2014515171A (ja) * 2011-04-26 2014-06-26 ユニスト・アカデミー−インダストリー・リサーチ・コーポレーション リチウム2次電池用正極活物質、その製造方法およびこれを含むリチウム2次電池
JP2014118335A (ja) * 2012-12-18 2014-06-30 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
WO2014133069A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094404A (ja) * 2010-10-27 2012-05-17 Dainippon Printing Co Ltd 非水電解液二次電池用活物質、非水電解液二次電池用電極板、及び非水電解液二次電池、並びに電池パック
JP2014515171A (ja) * 2011-04-26 2014-06-26 ユニスト・アカデミー−インダストリー・リサーチ・コーポレーション リチウム2次電池用正極活物質、その製造方法およびこれを含むリチウム2次電池
JP2013120752A (ja) * 2011-12-07 2013-06-17 Samsung Sdi Co Ltd リチウム二次電池用正極活物質、その製造方法及びそれを含むリチウム二次電池
JP2013182783A (ja) * 2012-03-01 2013-09-12 Gs Yuasa Corp 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2014118335A (ja) * 2012-12-18 2014-06-30 Jgc Catalysts & Chemicals Ltd リチウム複合酸化物およびその製造方法、そのリチウム複合酸化物を含む二次電池用正極活物質、それを含む二次電池用正極、ならびにそれを正極として用いるリチウムイオン二次電池
WO2014133069A1 (ja) * 2013-02-28 2014-09-04 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池

Similar Documents

Publication Publication Date Title
US9601772B2 (en) Cathode active material for a nonaqueous electrolyte secondary battery and manufacturing method thereof, and a nonaqueous electrolyte secondary battery that uses cathode active material
JP3625680B2 (ja) リチウム二次電池
JP5389620B2 (ja) リチウムイオン二次電池用正極材料およびそれを用いたリチウムイオン二次電池
JP4951638B2 (ja) リチウムイオン二次電池用正極材料及びそれを用いたリチウムイオン二次電池
JP5412298B2 (ja) リチウムイオン二次電池用正極材料およびそれを用いたリチウムイオン二次電池
WO2015059778A1 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP5145994B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法
JP2023015188A (ja) 非水電解質二次電池用正極活物質の製造方法
US10847788B2 (en) Lithium-iron-manganese-based composite oxide and lithium-ion secondary battery using same
JP2010086657A (ja) 非水電解液二次電池
US8828607B2 (en) Cathode material, cathode, and lithium ion secondary battery
JP5176317B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP6946536B1 (ja) リチウム二次電池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
WO2015132844A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2016046868A1 (ja) リチウムイオン二次電池用正極活物質、正極材料及びリチウムイオン二次電池
WO2015004705A1 (ja) リチウムイオン二次電池用正極活物質
WO2016038699A1 (ja) リチウム二次電池用正極活物質
JP5877898B2 (ja) リチウムイオン二次電池用正極活物質
WO2015059779A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
JP2016058334A (ja) リチウム二次電池用正極材料
WO2015019483A1 (ja) 非水系二次電池用正極活物質、それを用いた非水系二次電池用正極、非水系二次電池
JP5828754B2 (ja) 正極材およびリチウムイオン二次電池
WO2015037111A1 (ja) リチウムイオン二次電池用正極活物質およびそれを用いたリチウムイオン二次電池
WO2014167657A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP