WO2014167657A1 - リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2014167657A1
WO2014167657A1 PCT/JP2013/060770 JP2013060770W WO2014167657A1 WO 2014167657 A1 WO2014167657 A1 WO 2014167657A1 JP 2013060770 W JP2013060770 W JP 2013060770W WO 2014167657 A1 WO2014167657 A1 WO 2014167657A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode active
active material
ion secondary
lithium ion
Prior art date
Application number
PCT/JP2013/060770
Other languages
English (en)
French (fr)
Inventor
小西 宏明
章 軍司
孝亮 馮
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/060770 priority Critical patent/WO2014167657A1/ja
Publication of WO2014167657A1 publication Critical patent/WO2014167657A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode material containing a positive electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery using the same.
  • Lithium ion secondary batteries particularly lithium ion secondary batteries used for plug-in hybrid vehicles and electric vehicles are required to have high capacity and high output.
  • Layered solid solution is a positive electrode material that can be expected to have a high capacity.
  • Patent document 1 a solid solution compound represented by xLi [Li 1/3 M1 2/3 ] O 2 ⁇ (1-x) LiM 2 O 2 (0 ⁇ x ⁇ 1), LiNi 1-ab M3 a M4 b O 2 (0.3 ⁇ a ⁇ 0.5,0 ⁇ b ⁇ 0.2) the positive electrode for a lithium secondary battery having a lithium-nickel composite compound having a layered structure represented by The material is described.
  • Patent document 1 aims at providing the positive electrode material for lithium secondary batteries which suppressed the capacity
  • the present invention is to provide a lithium ion secondary battery achieving high capacity and high output.
  • Lithium ion secondary batteries have higher energy density per unit weight, higher power, and higher energy density and higher power than secondary batteries such as nickel hydrogen batteries and lead batteries, so they can be used in electric vehicles and power storage systems. Application is expected. However, in order to meet the demand for electric vehicles, it is necessary to further increase the energy density and the power.
  • Composition formula x Li 4/3 Mn 2/3 O 2- (1-x) LiNi a Mn b Co c MO 2 (0.5 ⁇ x ⁇ 0.7, aa0, b ⁇ 0, c ⁇ 0, a + b + c 1 and M is a metal element contained in a composition ratio of 0.02 or less, and the first positive electrode active material and the composition formula LiNi d Mn (2-d) M′O 4 (0.2 ⁇
  • the positive electrode material including the second positive electrode active material represented by d ⁇ 0.8 and M ′ is a metal element contained at a composition ratio of 0.02 or less), and thereby suppressing the increase in resistance at a high potential, It has been found that the above purpose can be achieved.
  • M and M ′ are additives and impurities contained at a composition ratio of 0.02 or less, and do not greatly affect the capacity and resistance of the positive electrode active material.
  • M is Al, Mg or the like, and M ′ is Co, Al, Mg or the like.
  • the layered solid solution has a high capacity (about 250 mAh / g) as compared with the conventional positive electrode active material (eg, about 180 mAh / g).
  • the conventional positive electrode active material eg, about 180 mAh / g.
  • the average discharge potential is low. If the discharge end voltage is not lowered, for example, 2.5 V or less, it is difficult to achieve a high capacity.
  • the SOC is high, the resistance is high, and the range of SOC used when the battery is used is limited.
  • layered solid solutions also have the problem of low output.
  • the average discharge potential can be increased by setting the compositional range of the layered solid solution to a specific range represented by Li 1.2 Ni 0.25 Mn 0.55 O 2 .
  • the problem of resistance reduction at high SOC can not be solved.
  • the present inventors conducted studies to achieve high output by mixing a 5V class spinel compound having a high reaction potential with a layered solid solution.
  • a 5V class spinel compound having a high reaction potential By combining specific spinel compounds with high SOC and low resistance, resistance reduction at high SOC is achieved.
  • the compounds to be mixed are also required to withstand high potential. As a result, while maintaining the discharge capacity, it was possible to raise the discharge potential, lower the resistance at high potential, and achieve high output.
  • the present invention is a positive electrode active material used for a lithium ion secondary battery, which has a composition formula xLi 4/3 Mn 2/3 O 2- (1-x) LiNi a Mn b Co c MO 2
  • a first element represented by (0.5 ⁇ x ⁇ 0.7, a ⁇ 0, b ⁇ 0, c ⁇ 0, a + b + c 1, and M is a metal element contained at a ratio of a composition ratio of 0.02 or less)
  • the positive electrode active material is represented by a composition formula LiNi d Mn (2-d) M′O 4 (0.2 ⁇ d ⁇ 0.8, M ′ is a metal element contained at a ratio of a composition ratio of 0.02 or less)
  • a second positive electrode active material is represented by a composition formula LiNi d Mn (2-d) M′O 4 (0.2 ⁇ d ⁇ 0.8, M ′ is a metal element contained at a ratio of a composition ratio of 0.02 or less.
  • M and M ′ are additives and impurities contained at a composition ratio of 0.02 or less, and do not greatly affect the capacity and resistance of the positive electrode active material.
  • M is Al, Mg or the like
  • M ′ is Co, Al, Mg or the like.
  • additives may be added to the first and second positive electrode active materials as long as the present invention is not affected.
  • the first positive electrode active material composed of a layered solid solution is preferably 60% or more, particularly 80% or more by weight.
  • the second positive electrode active material made of a spinel compound has a weight ratio of 40% or less, preferably 20% or less.
  • the particle diameter of the second positive electrode active material composed of the spinel compound is preferably larger than that of the first positive electrode active material particle composed of the layered solid solution, and particularly preferably twice or more.
  • the resistance can be reduced by reducing the particle size of the layered solid solution particles.
  • by making the particle size of the spinel compound particles a large particle size it is possible to achieve high density of the electrode.
  • a second positive electrode active material represented by a metal element a metal element
  • Layered solid solutions constituting the first cathode active material although expressed in combination with convenience Li 4/3 Mn 2/3 O 2 and LiNi a Mn b Co c MO 2 , each of which forms a different phase It is not a compound but a compound having an integrated composition.
  • X in the composition formula represents the proportion of Li 4/3 Mn 2/3 O 2 in the layered solid solution.
  • x is less than 0.5, the stability of the charge state is reduced, and a high capacity can not be obtained.
  • x is larger than 0.7, the proportion of the electrochemically inactive Li 4/3 Mn 2/3 O 2 increases, so that the resistance of the positive electrode active material increases and the capacity decreases.
  • a, b and c indicate the content ratio (atomic weight ratio) of Ni, Mn and Co in the positive electrode active material.
  • the values of a, b and c can be freely changed between 0 and 1.
  • a composition in which a is larger than b is preferable because the discharge potential is improved.
  • Co is expensive, the value of c is preferably small.
  • d represents the content ratio (atomic weight ratio) of Ni in the positive electrode active material. If d is 0.2 or less, the content of Ni that reacts at high potential is low, and the resistance at high SOC can not be reduced. Moreover, since the valence of Ni will become high and the capacity
  • a, b and c indicate the content ratio (atomic weight ratio) of Ni, Mn and Co in the positive electrode active material.
  • the values of a, b and c can be freely changed between 0 and 1.
  • a composition in which a is larger than b is preferable because the discharge potential is improved.
  • Co is expensive, the value of c is preferably small.
  • the primary particle size of the second positive electrode active material is characterized by being larger than the primary particle size of the first positive electrode active material. Since the first positive electrode active material has high resistance, it is necessary to reduce the primary particle size to reduce the resistance.
  • the positive electrode material for a lithium ion secondary battery of the present invention can be produced by a generally used method. For example, a compound containing Li, Ni, Mn, and Co, respectively, is mixed in an appropriate ratio, and the mixture is fired.
  • the composition of the positive electrode active material can be adjusted by changing the ratio of the raw material compounds to be mixed.
  • lithium acetate, lithium nitrate, lithium carbonate, lithium hydroxide etc. can be mentioned, for example.
  • the compound containing Ni include nickel acetate, nickel nitrate, nickel carbonate, nickel sulfate, nickel hydroxide and the like.
  • Mn manganese acetate, manganese nitrate, manganese carbonate, manganese sulfate, manganese oxide etc.
  • Co cobalt acetate, cobalt nitrate, cobalt carbonate, cobalt sulfate, cobalt oxide etc. can be mentioned, for example.
  • the composition of the positive electrode material for a lithium ion secondary battery can be determined, for example, by elemental analysis using inductively coupled plasma (ICP) or the like.
  • ICP inductively coupled plasma
  • the lithium ion secondary battery according to the present invention is characterized by containing the above-described positive electrode material for a lithium ion secondary battery.
  • a lithium ion secondary battery of high energy density can be obtained, and for example, it can be preferably used for an electric car.
  • the lithium ion secondary battery is composed of a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, a separator, an electrolytic solution, an electrolyte and the like.
  • the lithium ion secondary battery 1 includes an electrode group having a positive electrode 2 having a positive electrode active material coated on both sides of a current collector, a negative electrode 3 having a negative electrode active material coated on both sides of the current collector, and a separator 4.
  • the positive electrode 2 and the negative electrode 3 are wound via the separator 4 to form a wound electrode group.
  • the wound body is inserted into the battery can 5.
  • the negative electrode 3 is electrically connected to the battery can 5 via the negative electrode lead piece 7.
  • a sealing lid 8 is attached to the battery can 5 via a packing 9.
  • the positive electrode 2 is electrically connected to the sealing lid 8 through the positive electrode lead piece 6.
  • the wound body is insulated by the insulating plate 10.
  • the electrode group may not be a wound body shown in FIG. 1, and may be a laminate in which the positive electrode 2 and the negative electrode 3 are stacked via the separator 4.
  • the negative electrode active material is not particularly limited as long as it can absorb and release lithium ions.
  • Materials generally used in lithium ion secondary batteries can be used as the negative electrode active material.
  • graphite, lithium alloy and the like can be exemplified.
  • a separator those generally used in lithium ion secondary batteries can be used.
  • a microporous film or non-woven fabric made of polyolefin such as polypropylene, polyethylene, and a copolymer of propylene and ethylene can be exemplified.
  • the electrolytic solution and the electrolyte those generally used in lithium ion secondary batteries can be used.
  • the electrolytic solution diethyl carbonate, dimethyl carbonate, ethylene carbonate, propylene carbonate, vinylene carbonate, methyl acetate, ethyl methyl carbonate, methyl propyl carbonate, dimethoxyethane and the like can be exemplified.
  • the electrolyte LiClO 4, LiPF 6, LiBF 4, LiAsF 6, LiSbF 6, LiCF 3 SO 3, LiC 4 F 9 SO 3, LiCF 3 CO 2, Li 2 C 2 F 4 (SO 3) 2, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) can be exemplified 3 or the like.
  • ⁇ Preparation of positive electrode active material Lithium acetate, nickel acetate, manganese acetate and cobalt acetate were dissolved in purified water and then spray dried using a spray dryer to obtain a precursor. The obtained precursor was calcined at 500 ° C. for 12 hours in the air to obtain a lithium transition metal oxide. The obtained lithium transition metal oxide was pelletized and then fired at 700 to 1050 ° C. for 12 hours in air and air. The fired pellets were crushed in an agate mortar and classified with a 45 ⁇ m sieve to obtain a positive electrode active material.
  • the synthesized first positive electrode active material (composition formula: xLi 4/3 Mn 2/3 O 2- (1-x) LiNi a Mn b Co c O 2 ) and the second positive electrode active material (composition formula: LiNi d
  • compositions of Mn (2-d) O 4 are shown in Tables 1 and 2, respectively.
  • Examples 1 to 13 and Comparative Examples 1 to 6 were manufactured using the 15 types of positive electrode active materials manufactured as described above.
  • the first positive electrode active material and the second positive electrode active material are mixed in a desired ratio, and the positive electrode active material, the conductive additive and the binder are uniformly mixed in a ratio of 85: 10: 5 to prepare a positive electrode slurry. did.
  • the positive electrode slurry was applied onto a 20 ⁇ m thick aluminum current collector foil, dried at 120 ° C., and compression molded by a press so that the electrode density was 2.2 g / cm 3 to obtain an electrode plate.
  • the electrode plate was punched into a disk shape having a diameter of 15 mm to obtain a positive electrode.
  • the negative electrode was produced using metallic lithium.
  • As a non-aqueous electrolytic solution one in which LiPF 6 was dissolved at a concentration of 1.0 mol / L in a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 2 was used.
  • ⁇ Charge / discharge test> The charge and discharge test was performed on the 19 types of trial-produced batteries manufactured as described above. Charge and discharge tests were conducted on the trial batteries of each example and comparative example with a current equivalent to 0.05C and an upper limit voltage of 4.8V and a current equivalent to 0.2C and a lower limit voltage of 3.2V.
  • capacitance obtained when discharging from 4.8V to 3.2V was made into rated capacity the state in 4.8V as a full charge state.
  • the product of the potential at which 50% of the rated capacity is obtained and the discharge capacity is defined as energy density.
  • the resistance was determined from the value of the potential drop and the current when discharging for 10 seconds in a state where 10% of the rated capacity was discharged from the fully charged state.
  • Comparative Example 1 and Example 7 are compared.
  • the first positive electrode active material and the second positive electrode active material were mixed, it was possible to greatly reduce the resistance without substantially changing the energy density.
  • Examples 1 to 13 the reduction in energy density was reduced to 8% or less and the resistance was reduced by 10% or more in Examples 1 to 13 as compared with Comparative Example 1.
  • the energy density was improved by 5% or more as compared with Comparative Example 1, and the resistance value was reduced by 18% or more.
  • the d of the second positive electrode active material is preferably 0.3 to 0.7.
  • the batteries with different percentages of d were compared. As apparent from Examples 1, 9, 10, and Comparative Examples 5, 6, when the range of d is changed, the energy density ratio is lowered when the value of d is 0.2 and 0.8, and the resistance is also reduced. The ratio could not be improved by more than 10%.
  • the ratio of Ni and Mn of the first positive electrode active material is preferably a> b, because the energy density can be increased.
  • Ni and Mn have valences of 2 and 4 respectively, but by setting a> b, the valence of Ni can be partially made trivalent. If the charge number involved in the reaction is high, the reaction battery is also improved, so the energy density is also improved.
  • the proportion of the first positive electrode active material is preferably 70% or more by weight.
  • Comparative Example 2 and Comparative Example 4 are examples in which the particle sizes of the first and second positive electrode active materials are changed.
  • the particle size can be appropriately adjusted by the production conditions such as the baking temperature as well as the compound composition.
  • the particle size of the first positive electrode active material is larger than the particle size of the second positive electrode active material.
  • the particle diameter of the second positive electrode active material be larger than the particle diameter of the first positive electrode active material because the reduction effect of the resistance is small.
  • the reduction in energy density was suppressed to 10-% or less, and the resistance was reduced by 10% or more.
  • both high energy density and low resistance at high potential can be achieved both in the high potential region of 4.8 V to 3.2 V.
  • Lithium ion secondary battery 2 ⁇ ⁇ Positive electrode, 3 ⁇ ⁇ Negative electrode, 4 ⁇ ⁇ Separator, 5 ⁇ ⁇ Battery can, 6 ⁇ ⁇ Positive electrode lead piece, 7 ⁇ ⁇ Anode lead piece, 8 ⁇ ⁇ Sealed lid, 9 ⁇ ⁇ Packing, 10 ⁇ ⁇ Insulating plate, 11 ⁇ First positive electrode active material 12 ⁇ Second positive electrode active material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、高容量かつ高出力のリチウムイオン二次電池を提供することを課題とする。前記課題は、組成式xLi4/3Mn2/32-(1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質とを含むことを特徴とする正極材料により達成される。

Description

リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用正極活物質を含む正極材料、およびそれを用いたリチウムイオン二次電池に関する。
リチウムイオン二次電池、特にプラグインハイブリッド自動車や電気自動車用に用いられるリチウムイオン二次電池には、高容量かつ高出力が要求される。層状固溶体は、高容量が期待できる正極材である。
 特開2011-171012号公報(特許文献1)には、xLi[Li1/3M12/3]O2・(1-x)LiM2O2(0<x<1)で示される固溶体化合物と、LiNi1-a-bM3aM4b2(0.3<a<0.5、0<b<0.2)で示される層状構造を有するリチウムニッケル複合化合物と、を有するリチウム二次電池用正極材料が記載されている。特許文献1は、高電位での充放電の容量劣化を抑制したリチウム二次電池用正極材料を提供することを目的としている。
特開2011-171012号公報
 しかしながら、特許文献1で示されている正極材料は、層状構造を有する化合物を含んでいるため、高電位まで充電することができない。そのため、層状固溶体の抱える高電位で抵抗が高いという欠点を解決することができない。本発明は高容量かつ高出力を達成するリチウムイオン二次電池を提供することにある。
 上記課題を解決する本発明の特徴は、
リチウムイオン二次電池に用いられる正極材料であって、
組成式xLi4/3Mn2/32-(1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質とを含むことを特徴とする。
 上記構成によれば、高容量かつ高出力のリチウムイオン二次電池を提供することが可能となる。
リチウムイオン二次電池の構造を模式的に示す断面図である。 第一の正極活物質と第二の正極活物質の混合状態の模式図である。
 近年、地球温暖化の防止や化石燃料の枯渇への懸念から、走行に必要となるエネルギーが少ない電気自動車に期待が集まっている。しかし、駆動用電池のエネルギー密度および出力が低く、一充電での走行距離が短いため、電気自動車普及が進んでいない。
 リチウムイオン二次電池は、ニッケル水素電池や鉛電池等の二次電池に比べて重量当たりのエネルギー密度、出力が高く、高エネルギー密度かつ高出力が得られるため、電気自動車や電力貯蔵システムへの応用が期待されている。しかし、電気自動車の要請に応えるためには、さらなる高エネルギー密度化および高出力化が必要である。
 高エネルギー密度化および高出力化を達成するため電極(正極及び負極)の特性を向上させる必要がある。本願発明者らが鋭意検討した結果、
組成式xLi4/3Mn2/32-(1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質とを含む正極材により、高電位での抵抗上昇を抑制し、上記目的を達成できることを見出した。なお、M、M’は、組成比0.02以下の割合で含まれる添加物や不純物であり、正極活物質の容量、抵抗に大きな影響を与えないものである。Mは、Al、Mg等、M‘はCo、Al、Mg等である。
 層状固溶体は、従来正極活物質(例:180mAh/g程度)に比して、高容量を有する(250mAh/g程度)。しかしながら、平均放電電位が低いという課題を有する。放電終止電圧を低くしないと、例えば2.5V以下にしないと、高容量を達成することが困難である。また、SOCが高いとき、抵抗が高く、電池にした際の使用SOC範囲が限られる。また、層状固溶体では、出力が低いという課題もある。
 層状固溶体の組成範囲をLi1.2Ni0.25Mn0.552に代表される特定範囲とすることで、平均放電電位を高くすることが可能である。しかしながら、高SOCでの抵抗低減という課題は解消されない。
 そこで、本発明者らは、反応電位の高い5V級スピネル化合物を層状固溶体と混合することで、高出力を達成する検討を行った。高SOCで抵抗が低い特定のスピネル化合物を混合することで、高SOCでの抵抗低減を達成する。さらに、混合する化合物は、高電位での耐性も必要とされる。その結果、放電容量を維持しつつ、放電電位を上昇させ、高電位での抵抗を下げ、高出力を達成することが可能であった。
 LiNi0.5Mn1.54に代表されるスピネル構造の化合物は、高電位で充放電することができる。LiNi0.5Mn1.54系のスピネル化合物は、高SOCでの抵抗が低く、高電位(4.3~4.8V)での劣化が少なく、混合により高SOCでの抵抗低減に非常に有効である。
 上記検討に基づき、本発明は、リチウムイオン二次電池に用いられる正極活物質であって、組成式xLi4/3Mn2/32 - (1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質とを含むものである。なお、M、M’は、組成比0.02以下の割合で含まれる添加物や不純物であり、正極活物質の容量、抵抗に大きな影響を与えないものである。Mは、Al、Mg等、M‘はCo、Al、Mg等である。特に、0.55≦x≦0.65、a>b、0.4≦d≦0.6であることが好ましい。また、第一、第二いずれの正極活物質も、本発明に影響のない範囲で添加物を加えてもよい。
 層状固溶体よりなる第一の正極活物質は、重量比で60%以上、特に80%以上であることが好ましい。一方、スピネル化合物よりなる第二の正極活物質は、高容量を達成するため、重量比で40%以下、好ましくは20%以下とする。
 また、スピネル化合物よりなる第二の正極活物質の粒子径は、層状固溶体よりなる第一の正極活物質粒子径より大きく、特に二倍以上であることが好ましい。層状固溶体粒子を小粒径とすることにより、抵抗を低減することが可能である。また、スピネル化合物粒子の粒径を大粒径とすることにより、電極の高密度化を達成できる。
 以下、実施形態に基づき本発明を詳細に説明する。
<正極材料>
 リチウムイオン二次電池を電気自動車に採用する場合、高エネルギー密度が求められる。リチウムイオン二次電池において、この特性は正極活物質と密接な関係がある。
 本発明に係るリチウムイオン二次電池用正極材料は、リチウムイオンを吸蔵、放出するものであって、上述の通り、組成式xLi4/3Mn2/32 - (1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質と、を含むことを特徴とする正極材料である。
 第一の正極活物質を構成する層状固溶体は、便宜的にLi4/3Mn2/32とLiNiaMnbCocMO2との組み合わせで表記されるが、それぞれが異相を形成するものでなく、一体となった組成を有する化合物である。組成式におけるxは、層状固溶体におけるLi4/3Mn2/32 の割合を示す。xが0.5未満であると、充電状態の安定性が低下し、高い容量を得ることができない。一方、xが0.7より大きいと、電気化学的に不活性なLi4/3Mn2/32の割合が多くなるため、正極活物質の抵抗が上昇し、容量が低下する。
 組成式におけるa、b、cは正極活物質中のNi、Mn、Coの含有比率(原子量比率)を示す。a、b、cの値は0から1の間で自由に変更できる。特に、aがbより大きい組成とすると、放電電位が向上するため好ましい。また、Coは高価であるため、cの値は小さい方が好ましい。
 第二の正極活物質を構成するスピネル化合物の組成式におけるdは正極活物質中のNiの含有比率(原子量比率)を示す。dが0.2以下であると高電位で反応するNiの含有率が低く、高SOCでの抵抗を低減することはできない。また、0.8以上であるとNiの価数が高くなり、高SOCでの容量が低下するため、高SOCでの抵抗を低減することはできない。
 第二の正極活物質を混合することにより、第一の正極活物質を単独で使用する場合に比して、高電位での抵抗を低減することができる。第二の正極活物質を構成するスピネル化合物の組成式におけるa、b、cは、正極活物質中のNi、Mn、Coの含有比率(原子量比率)を示す。a、b、cの値は0から1の間で自由に変更できる。特に、aがbより大きい組成とすると、放電電位が向上するため好ましい。また、Coは高価であるため、cの値は小さい方が好ましい。
 また、第二の正極活物質の一次粒径は第一の正極活物質の一次粒径より大きいことを特徴とする。第一の正極活物質は抵抗が高いため、一次粒径を小さくして抵抗を低減する必要がある。
 本発明のリチウムイオン二次電池用正極材料は、一般的に使用されている方法で作製することができる。例えば、Li、Ni、Mn及びCoをそれぞれ含む化合物を適当な比率で混合し、焼成することにより作製する。混合する原料化合物の比率を変化させることにより、正極活物質の組成を調節することができる。
 原料となるLiを含有する化合物としては、例えば、酢酸リチウム、硝酸リチウム、炭酸リチウム、水酸化リチウム等を挙げることができる。Niを含有する化合物としては、例えば、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、硫酸ニッケル、水酸化ニッケル等を挙げることができる。Mnを含有する化合物としては、例えば、酢酸マンガン、硝酸マンガン、炭酸マンガン、硫酸マンガン、酸化マンガン等を挙げることができる。Coを含有する化合物としては、例えば、酢酸コバルト、硝酸コバルト、炭酸コバルト、硫酸コバルト、酸化コバルト等を挙げることができる。
 リチウムイオン二次電池用正極材料の組成は、例えば誘導結合プラズマ法(ICP)等による元素分析により決定することができる。
<リチウムイオン二次電池>
 本発明に係るリチウムイオン二次電池は、上記のリチウムイオン二次電池用正極材料を含むことを特徴とする。上記のリチウムイオン二次電池用正極材料を正極に使用することにより、高エネルギー密度のリチウムイオン二次電池とすることができ、例えば、電気自動車に対して好ましく使用することができる。
 本発明に係るリチウムイオン二次電池の構造の一実施形態を図1を用いて説明する。リチウムイオン二次電池は、正極活物質を含む正極、負極活物質を含む負極、セパレータ、電解液、電解質等から構成される。リチウムイオン二次電池1は、集電体の両面に正極活物質を塗布した正極2と、集電体の両面に負極活物質を塗布した負極3と、セパレータ4とを有する電極群を備える。正極2及び負極3は、セパレータ4を介して捲回され、捲回体の電極群を形成している。この捲回体は電池缶5に挿入される。
 負極3は、負極リード片7を介して、電池缶5に電気的に接続される。電池缶5には、パッキン9を介して、密閉蓋8が取り付けられる。正極2は、正極リード片6を介して、密閉蓋8に電気的に接続される。捲回体は、絶縁板10によって絶縁される。
 なお、電極群は、図1に示す捲回体でなくてもよく、セパレータ4を介して正極2と負極3とを積層した積層体でもよい。
 負極活物質は、リチウムイオンを吸蔵放出することができる物質であれば特に限定されない。リチウムイオン二次電池において一般的に使用されている物質を負極活物質として使用することができる。例えば、黒鉛、リチウム合金等を例示することができる。
 セパレータとしては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、ポリプロピレン、ポリエチレン、プロピレンとエチレンとの共重合体等のポリオレフィン製の微孔性フィルムや不織布等を例示することができる。
 電解液及び電解質としては、リチウムイオン二次電池において一般的に使用されているものを使用することができる。例えば、電解液として、ジエチルカーボネート、ジメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、メチルアセテート、エチルメチルカーボネート、メチルプロピルカーボネート、ジメトキシエタン等を例示することができる。また、電解質として、LiClO4、LiPF6、LiBF4、LiAsF6、LiSbF6、LiCF3SO3、LiC49SO3、LiCF3CO2、Li224(SO32、LiN(CF3SO22、LiC(CF3SO23等を例示することができる。
 以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。
<正極活物質の作製>
 酢酸リチウム、酢酸ニッケル、酢酸マンガン及び酢酸コバルトを精製水に溶解させた後、スプレードライ装置を用いてスプレードライし、前駆体を得た。得られた前駆体を大気中において500℃で12時間焼成し、リチウム遷移金属酸化物を得た。得られたリチウム遷移金属酸化物をペレット化した後、大気中および空気中において700~1050℃で12時間焼成した。焼成したペレットをメノウ乳鉢で粉砕し、45μmのふるいで分級し、正極活物質とした。
 合成した第一の正極活物質(組成式:xLi4/3Mn2/32 - (1-x)LiNiaMnbCoc2)および第二の正極活物質(組成式:LiNidMn(2-d)4)の組成をそれぞれ表1、2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<試作電池の作製>
 上述のように作製した15種類の正極活物質を用いて、19種類の試作電池(実施例1~13、比較例1~6)を作製した。第一の正極活物質と第二の正極活物質を所望の割合で混合し、さらに正極活物質と導電助剤とバインダとを85:10:5の割合で均一に混合して正極スラリーを作製した。正極スラリーを厚み20μmのアルミ集電体箔上に塗布し、120℃で乾燥し、プレスにて電極密度が2.2g/cm3になるように圧縮成形して電極板を得た。その後、電極板を直径15mmの円盤状に打ち抜き、正極とした。負極は金属リチウムを用いて作製した。非水電解液としては、体積比1:2のエチレンカーボネートとジメチルカーボネートとの混合溶媒に、LiPF6を1.0mol/Lの濃度で溶解させたものを用いた。
<充放電試験>
上述のように作製した19種類の試作電池に対して、充放電試験を行った。各実施例及び比較例の試作電池に対し、充電は0.05C相当の電流で上限電圧を4.8V、放電は0.2C相当の電流で下限電圧を3.2Vとした充放電試験を行った。また、4.8Vでの状態を満充電状態、4.8Vから3.2Vまで放電したときに得られる容量を定格容量とした。定格容量の50%の容量が得られる電位と、放電容量の積をエネルギー密度と定義した。また満充電状態から定格容量の10%放電した状態で、10秒間の放電させた際の電位降下と電流の値から抵抗を求めた。
 比較例1の結果を基準として、実施例1~13、比較例1~6の試作電池で測定した抵抗とエネルギー密度比の値(抵抗、エネルギー密度を、比較例1の測定結果で除した値)を算出した。使用した正極活物質の組み合わせとともに、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例1と、実施例7を比較する。第一の正極活物質と、第二の正極活物質を混合すると、エネルギー密度をほぼ変化させることなしに、大きく抵抗を下げることが可能であった。
 また、表3より明らかなとおり他の電池においても、実施例1~13では、比較例1と比較し、エネルギー密度の低減を8%以下におさえ、かつ抵抗を10%以上低減させた。特に、実施例1~3では、エネルギー密度が比較例1と比べ5%以上向上し、抵抗値が18%以上低減し、特に特性の優れた領域であることが分かった。
 xの割合を変更した電池を比較した。比較例2、実施例4、実施例1、実施例5、比較例3より明らかなように、xの範囲を変更すると、xの値が0.4および0.8のときにエネルギー密度比が低くなった。従って、xの範囲を0.45~0.75、特に0.5~0.7-とすることで高いエネルギー密度を得ることができる。
 第二の正極活物質のdは、0.3~0.7が好ましい。dの割合を変更した電池を比較した。実施例1、9、10、および比較例5、6より明らかなように、dの範囲を変更すると、dの値が0.2および0.8のときにエネルギー密度比が低くなり、かつ抵抗比を10%以上改善することができなかった。
 第一の正極活物質のNi、Mnの比率は、a>bとすることで、エネルギー密度を高くすることができ、好ましい。a=bの材料では、Ni、Mnの価数がそれぞれ、2価、4価として存在するが、a>bとすることで、Niの価数を一部3価にすることができる。反応に関与する価数が高いと反応電池も向上するため、エネルギー密度も向上する
 エネルギー密度の高い第一の正極活物質の混合比を変化させた結果、混合比が60%の実施例12では、抵抗比を小さくすることが可能であったが、エネルギー密度向上の効果が見られなかった。従って、第一の正極活物質の割合は重量比で70%以上とすることが好ましい。
 比較例2と比較例4は、第一、第二の正極活物質の粒径を変更した例である。粒径は、化合物組成のほか、焼成温度等の製造条件により適宜調整できる。比較例4では、第一の正極活物質の粒径が第二の正極活物質の粒径よりも大きい。エネルギー密度に変化はないものの、抵抗の低減効果が小さいため、粒径は第一の正極活物質の粒径よりも第二の正極活物質の粒径を大きくすることが好ましい。
 以上の通り、本実施例の電池では、エネルギー密度の低減を10-%以下に抑え、かつ抵抗を10%以上低減させることができた。正極活物質の組成および混合比、粒径を調節することにより、4.8V~3.2Vの高電位の領域においても高いエネルギー密度と、高電位での低い抵抗を両立することができる。
 1・・リチウムイオン二次電池、
2・・正極、
3・・負極、
4・・セパレータ、
5・・電池缶、
6・・正極リード片、
7・・負極リード片、
8・・密閉蓋、
9・・パッキン、
10・・絶縁板、
11・・・第一の正極活物質
12・・・第二の正極活物質

Claims (9)

  1. リチウムイオン二次電池に用いられる正極材料であって、リチウムイオンを吸蔵、放出する正極活物質を備え、
    組成式xLi4/3Mn2/32 - (1-x)LiNiaMnbCocMO2(0.5≦x≦0.7、a≧0、b≧0、c≧0、a+b+c=1、Mは組成比0.02以下の割合で含まれる金属元素)で表される第一の正極活物質と、組成式LiNidMn(2-d)M´O4(0.2<d<0.8、M´は組成比0.02以下の割合で含まれる金属元素)で表される第二の正極活物質とを含むことを特徴とする正極材料。
  2.  請求項1に記載された正極材料であって、
     0.55≦x≦0.65、a>b、0.4≦d≦0.6であることを特徴とする正極材料。
  3.  請求項1に記載された正極材料であって、
     前記第一の正極活物質は、前記正極活物質のうち60質量%以上を占めることを特徴とする正極材料。
  4.  請求項1に記載された正極材料であって、
    前記第二の正極活物質の一次粒径は、前記第一の正極活物質の一次粒径より大きいことを特徴とする正極材料。
  5.  請求項1に記載された正極材料であって、
     前記第一の正極活物質の一次粒径は、前記第二の正極活物質の一次粒径の1/2以下であることを特徴とする正極材料。
  6.  請求項1に記載された正極材料であって、
     Mは、Al、Mgの少なくともいずれか、M‘はCo、Al、Mgの少なくともいずれかであることを特徴とする正極材料。
  7.  正極活物質を含む正極と、負極活物質を含む負極と、を備えるリチウムイオン二次電池であって、前記正極は、請求項1ないし6のいずれかに記載された正極材料を含むことを特徴とするリチウムイオン二次電池。
  8.  請求項7に記載されたリチウムイオン二次電池であって、
     使用される際の最高電位が4.3~4.8-Vであることを特徴とするリチウムイオン二次電池。
  9.  請求項7に記載されたリチウムイオン二次電池であって、
     プラグインハイブリッド自動車、もしくは電気自動車に搭載されることを特徴とするリチウムイオン二次電池。
PCT/JP2013/060770 2013-04-10 2013-04-10 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池 WO2014167657A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060770 WO2014167657A1 (ja) 2013-04-10 2013-04-10 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/060770 WO2014167657A1 (ja) 2013-04-10 2013-04-10 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2014167657A1 true WO2014167657A1 (ja) 2014-10-16

Family

ID=51689092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060770 WO2014167657A1 (ja) 2013-04-10 2013-04-10 リチウムイオン二次電池用正極材料およびリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2014167657A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004310A (ja) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池
WO2011086102A1 (fr) * 2010-01-14 2011-07-21 Commissariat à l'énergie atomique et aux énergies alternatives Generateur electrochimique au lithium comprenant deux types de cellules electrochimiques distinctes
WO2012165654A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
WO2013008581A1 (ja) * 2011-07-13 2013-01-17 日本電気株式会社 二次電池用活物質

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004310A (ja) * 2007-06-25 2009-01-08 Mitsubishi Chemicals Corp リチウム二次電池用正極活物質材料、及びそれを用いたリチウム二次電池用正極並びにリチウム二次電池
WO2011086102A1 (fr) * 2010-01-14 2011-07-21 Commissariat à l'énergie atomique et aux énergies alternatives Generateur electrochimique au lithium comprenant deux types de cellules electrochimiques distinctes
WO2012165654A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系電解質二次電池
WO2012164752A1 (ja) * 2011-05-30 2012-12-06 住友金属鉱山株式会社 非水系二次電池用正極活物質とその製造方法、ならびに該正極活物質を用いた非水系電解質二次電池
WO2013008581A1 (ja) * 2011-07-13 2013-01-17 日本電気株式会社 二次電池用活物質

Similar Documents

Publication Publication Date Title
JP3625680B2 (ja) リチウム二次電池
WO2016136212A1 (ja) 非水電解質二次電池
WO2015136881A1 (ja) 非水電解質二次電池
JP2012190580A (ja) リチウムイオン二次電池用正極活物質
WO2014068831A1 (ja) 非水電解質二次電池
WO2013145721A1 (ja) 非水電解質二次電池およびその製造方法
CN106716701A (zh) 非水电解质二次电池
WO2017046858A1 (ja) 非水電解質電池及び電池パック
WO2015059778A1 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
WO2016132963A1 (ja) リチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池
JP2011171012A (ja) リチウム二次電池用正極
JP2016081716A (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
JP2018137122A (ja) ナトリウムイオン二次電池用正極活物質およびその製造方法、並びにナトリウムイオン二次電池
JP2008159543A (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
Yamashita et al. Hydrothermal synthesis and electrochemical properties of Li2FexMnxCo1− 2xSiO4/C cathode materials for lithium-ion batteries
WO2015132844A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2016046868A1 (ja) リチウムイオン二次電池用正極活物質、正極材料及びリチウムイオン二次電池
WO2015004705A1 (ja) リチウムイオン二次電池用正極活物質
WO2013125465A1 (ja) 正極活物質
JP5877898B2 (ja) リチウムイオン二次電池用正極活物質
WO2014167657A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
WO2015059779A1 (ja) リチウムイオン二次電池用正極材料およびリチウムイオン二次電池
JP2016058334A (ja) リチウム二次電池用正極材料
WO2015019729A1 (ja) リチウムイオン二次電池用正極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13881583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13881583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP